DEPARTMENT OF NATIONAL DEVELOPMENT. BUREAU OF MINERAL RESOURCES GEOLOGY AND GEOPHYSICS.

RECORDS.

RECORDS 1958/21.

PRELIMINARY REPORT ON THE GROUND WATER RESOURCES OF CABBAGE GUM BASIN. TENNANT CREEK. NORTHERN TERRITORY.

Ъу

J. Hays.

PRELIMINARY REPORT ON THE GROUND WATER RESOURCES OF CABBAGE GUM BASIN, TENNANT CREEK, NORTHERN TERRITORY.

рy

J. Hays.

RECORDS 1958/21.

PRELIMINARY REPORT ON THE GROUND WATER RESOURCES OF CABBAGE GUM BASIN, TENNANT CREEK. NORTHERN TERRITORY

Ъу

J. Hays.

RECORDS 1958/21.

2	CONTENTS	PAGE
SUMMARY		1
INTRODUCTION		1
GEOLOGY		2
GEOMORPHOLOG	Y .	2
HYDROLOGY CONCLUSIONS . REFERENCES	AND RECOMMENDATIONS	3 4 5
TABLE 1	Survey Data for Wells of Tennant Creek Water Supply	
TABLE 2	Rainfall at Tennant Creek, 1874-1957	
TABLES 3-17	Pump Tests, Tennant Creek Water Supply	
TABLE 18	Tennant Creek Water Supply - Logs of Wells down to Water Level	
TABLE 19	Purity of Water	
	PLATES	
PLATE 1	Geological Sketch Map, Tennant Creek Scale: 1 inch = 4 miles	Area.
PLATE 2	Sketch Map, Cabbage Gum Basin Approx. Scale $\frac{5}{8}$ " = 1 mile	
PLATE 3	Wells at Cabbage Gum Basin, Tennant (Scale: inch = 4 mile	reek.

SUMMARY

The Cabbage Gum Basin is a sand covered depression on a Tertiary Peneplain and contains an underground layer of fresh water above the characteristic saline water of Tennant Creek area. The basin appears suitable as a source of fresh water for Tennant Creek, but much more information is needed before expenditure on permanent equipment can be advised. It is recommended that pumping tests be continued, and that a geophysical team be sent into the area to carry out a resistivity survey.

INTRODUCTION

The Cabbage Gum Basin, 10 miles south of Tennant Creek (see plate 1), was selected by the Director of Mines as a possible source of fresh water for the town of Tennant Creek. A preliminary favourable report on the basin was submitted by Jones (1955), who recommended that testing by wells, started by the Director of Mines, be continued.

Tennant Creek requirements are between 100,000 and 250,000 gallons daily (from 100 million gallons to 300 million gallons in storage to cover a three year drought), the higher figure being based on the assumption that industrial use will be made of the water.

There is no information available on run-off, loss by transpiration and evaporation, infiltration, and porosity and specific yield of the rocks concerned. Rainfall figures dating back to 1874 are available (Table 2), and certain information has been collected from 14 wells which have been excavated in the basin (Plate 3, Tables 3 - 19). Logging of the wells was restricted to that portion above the water levels indicated in Table 18.

Pumping tests carried out to date have been inconclusive but it is the intention of the Director of Mines to carry out further tests: Tables 1 to 17, showing the results of the tests, have been supplied by the courtesy of the Director of Mines. From these tables, it is clear that pumping at No. 9 well and No. 10 well, individually and collectively, each at a rate of approximately 3,200 gallons an hour has had no lasting effect upon either the level of the water table or salinity. No. 9 well was tested at its maximum yield, 3,200 gallons which gave a draw down of 14 feet 5.5 inches, representing a capacity of approximately 220 gallons for each foot of draw-down. No. 10 well was not tested at its maximum yield but at 3,400 gallons an hour had a draw-down of 13 feet 6 inches representing a capacity of more than 250 gallons for each foot of draw-down. Recovery to within one foot of the original water level took 24 hours for each well at each test. No. 13 well was not tested because it was still being deepened, but its output has been estimated to be 3 500 gallons on hour at a depth of 106 feet. (Figures to be 3,500 gallons an hour at a depth of 106 feet. (Figures supplied by the Director of Mines). The three most productive wells (Nos. 9. 10. and 13) have a combined yield of more than The three most productive 10,000 gallons an hour, and a safe yield of between 5,000 and 8,000 gallons an hour (50% - 80% of yield). Even if the lower figure is accepted, the tests indicate that minimum requirements for Tennant Creek may be available. Unfortunately the wells are too far apart for any deductions on cones of depression to be made, nor can any estimate of the storage capacity of the basin be made. A favourable feature of the tests is that they were carried out at a time when the water table could be expected to be at its lowest level.

GEOLOGY

The only rocks exposed in the basin are travertine limestone and silicified fault rock. In the wells, rocks correlated with those known in the Tennant Creek area have been encountered. These include gneissoid granite, fault breccia, and vein breccia or conglomerate (Table 18).

All these rocks are extensively weathered and overlain by a complete lateritic profile upon which rests a thin layer of windblown sand, derived from reworked laterite. The windblown sand is restricted to the centre of the basin, occupying a gentle depression, and has a maximum thickness of eight feet, near the wells. The lateritic profile is best developed over the granite and the breccias. An upper layer of pisolitic and nodular ironstone grades downwards into a mottled, red and white layer which is well developed 15 to 20 feet from the top of the laterite. The mottled layer grades very gradually into a pallid layer, which is rich in kaolin and grades into weathered rock at about 60 feet. The depth of weathered rock is not known. Original textures of the parent rock can be identified in both the mottled and pallid zones. The profile over the Warramunga Group rocks is not so well developed and includes silicified material near the base of the profile.

GEOMORPHOLOGY

Jones (1955) has described the Tennant Creek area as showing clear evidence of a dissected laterite surface, the Cabbage Gum Basin being a broad valley eroded on that surface and filled with alluvium. This view, which cannot be supported by field evidence, seems to be based upon a suggestion by Woolnough (1934, p.3), repeated by Owen (1940, p.3) and Ivanac (1954, p.36), that the mesas in the Tennant Creek area, which rise 200 feet above general plain level, are remnants of the Miocene Peneplain.

Ivanac (p.54) states that at the Eldorado Mine "the base of the "laterite profile" water-table level in country rock is approximately 250 feet below the present surface, whereas the present water table level is at 306 feet" As the Eldorado Mine is situated on a hill 200 feet above the plain, the base of the lateritic profile can be expressed as 50 feet below main plateau level. This agrees with observations made in the wells at Cabbage Gum and hence one may suppose that the lateritisation of both plain and mesas is of one age. Noakes (1949) has attributed laterite cappings on flat topped hills in the northern part of the Northern Territory to a mid-Tertiary lateritisation. It is assumed that the lateritisation in the Tennant Creek area is of approximately the same age. The mesas are residuals of a pre-Tertiary surface.

It may be noted that the general drainage direction from the Cabbage Gum bore westwards is parallel to the regional strike which swings from west-north-west to north-north-west. The Cabbage Gum Basin is thus seen as a relic of early Tertiary mature drainage, fully adjusted to structure, persisting into and beyond senility and forming the nucleus of a new drainage system in the present cycle of erosion.

HYDROLOGY

Data collected from the wells show gradients to the west of 10 feet per mile for the ground surface and 5 feet per mile for the fresh water table (Table 1). Only one well (Number 13) has reached a depth known to be beyond the base of the lateritic profile. This well, at 106 feet, contains fresh water, and it is clear that Jones' idea of a perched fresh water table above the base of the laterite is not fully justified. The Cabbage Gum bore, 136 feet deep, is 2 miles east of number 13 well and contains saline water.

Local, unverified reports say that the bore encountered poor supplies of fresh water at an unknown depth and was stopped at 136 feet when salt water (2160 p.p.m. total dissolved solids) was encountered. Adjusting for height differences between No.13 well and Cabbage Gum bore, the top of the saline water at number 13 well can be expected between 106 feet and 126 feet. If this does not prove to be the case, number 13 well could tap a sub-laterite fresh water basin within decomposed granite; saline water, if present, being restricted to rocks of the Warramunga Group, as is the case north of Tennant Creek at Seven Mile, the present source of township water. It is noteworthy that all the high-yielding wells are associated with granitic rocks, vein material, or fault breccia and the low-yielding wells are associated with Warramunga slate and sandstone. If number 13 well does not tap fresh water from a restricted granitic area, the fresh water must occur as a layer upon the saline water, as there is no reason to anticipate an impervious layer between 106 feet and 126 feet in the wall. Further information is needed to clarify this point which is of importance in deciding the underground storage capacity.

With a perched water table, storage is restricted to 20 feet of material in the pallid zone of lateritisation. This material includes abundant kaolin, and specific yield is likely to be low. With a fresh water layer resting upon a saline layer, storage is increased by at least 30 feet of decomposed rock, probably of higher porosity and higher specific yield than the laterite, lying beneath the pallid zone of lateritisation. For such material a porosity of 10% and specific yield of 50% would be within the bounds of possibility. Two square miles of a saturated layer 30 feet thick would be capable of yielding approximately 500 million gallons of water. On the other hand, kaolinitic, lateritic material could have a specific yield of less than 5% so that a vastly increased area would be needed to store the same amount of available water and more draw points would be necessary to offset the slow yield. Variations in the gradient of the saline water table, about which little is known, could influence the available storage in both types of rock.

A complicating factor is that no data are available from No's. 9 and 10 wells below water level. It is not known what proportion of the total yield is derived from the lateritic profile and what proportion, if any, from weathered rock below the profile. According to verbal reports by the Director of Mines, the maximum flow of water in these wells was near the bottom.

A seasonal lake, 14 miles west of the Cabbage Gum bore (see plate 2), is reported locally to contain fresh water for at least 8 to 10 months each year. The lake dries up early in the wet season (before January) and refills before the end of the wet season (before March). Its area is approximately 400 acres and its mean depth 2 feet. As evaporation from open water in tropical desert climates may be as much as 12 feet per year, and the lake persists during the hottest and driest months, it must be replenished by underground flow. The observed gradients of ground surface and water table are such that, if they continue without variation, they may be expected to meet near the lake

which may be regarded as a window in the fresh water table. If the information available about the lake is reliable, wastage of fresh water at the window could be the order of 1000 million gallons per annum, although much of this would be derived from parts of the basin which do not feed the existing wells. There is reason to suppose that flow continues beyond the lake, and a second lake is said to exist further west. This was not visited because of transport difficulties. The existence of the lakes implies that the modern water table is constant (apart from minor, seasonal fluctuations), and that surplus water is available for diversion without depleting reserves stored in the basin. The point to be decided is whether that part of the basin feeding the existing wells has a sufficiently large surplus to supply the needs of Tennant Creek.

The average annual rainfall (Table 2) is 14.49 inches and drought periods are common. The longest recorded period of effective drought is 3 years, and any scheme must be able to supply water for the whole of that period - 300 million gallons at present maximum requirements - without replenishment. Transpiration and direct evaporation loss over the whole area must be high, but run off is low. Percolation and infiltration are high in areas of windblown sand but elsewhere may be low. The area feeding the wells (Plate 2) is between 30 and 50 square miles and, in an average year, between 5000 million and 8500 million gallons of rain will fall on this. Taking the lower figure, 6% of the rainfall must be available for recharge if the area is to be utilised. This figure is of the order to be expected but may not be reached. For that reason, geophysical delineation of the true limits of the basin is important.

CONCLUSIONS AND RECOMMENDATIONS

Superficially, there appears to be an excellent chance of obtaining adequate fresh water supplies from the Cabbage Gum Basin. If quantity were the only consideration, it is probable that wells near the seasonal lake would yield more water than is needed. Unfortunately the high cost of piping makes distance from Tennant Creek almost as important as quantity of water, and it is necessary to aim at a balance between capital expenditure, expected yield, and expected requirements. Much more information is needed before such a balance can be reached and it is recommended that a geophysical team be sent to the area as soon as possible.

A resistivity survey of the area combined with data from control bores should delineate the contact between fresh and salt water, confirm the presence, or otherwise, of a perched water table, and perhaps permit a geological map to be constructed. The probable lateral limits of fresh water storage could be mapped. Control bores should be drilled at sites recommended, and be supervised, by the geophysicist. Although such factors as porosity and specific yield could not be determined until laboratory tests on core samples are done, an approximate theoretical evaluation of the potential of the area could be made. Work should start 1 mile west of number 1 well and progress eastwards. As soon as the depth of the base of the fresh water is ascertained, the Director of Mines should be informed so that producing wells can, if necessary, be deepened.

A scheme which has to be capable of producing 250,000 gallons per diem should be tested at a rate of between 300,000 and 500,000 gallons per diem, and it is necessary for the wells to be developed to a stage where such a yield is possible. Development at depth is to be preferred to lateral drives, wherever possible, so that greater reserves of water can be tapped. Because of the danger of tapping saline water, deepening

should not be undertaken until the advice of a geophysicist is available. Even so, a conservative estimate of the maximum possible depth is desirable, to ensure that there is a safe margin between the top of the saline layer and the bottom of each well. Upon completion of pumping tests, continuous readings of the recovery rate at all wells during the first 6 hours must be taken if the value of the tests is to be utilised in full.

Finally, if the area is deemed suitable for installation of permanent equipment, consideration should be given to contour ridging of the catchment, in order to increase infiltration and decrease run off.

REFERENCES

IVANAC, J.F.	1954 - The Geology and Mineral Deposits of the Tennant Creek Gold Field, Northern Territory: Bur. Min. Resour. Aust., Bull. 22
JONES, N.O.	1955 - Report on Cabbage Gum Basin, Tennant Creek, N.T.: Resident Geologists' Report. (unpublished)
NOAKES, L.C.	1949 - A Geological Reconnaissance of the Katherine - Darwin Region, Northern Territory with notes on the mineral deposits: <u>Bur. Min.</u> Resour. Aust., Bull. 16
OWEN, H.B.	1940 - Geological Report on the Tennant Creek Goldfield: (unpublished)
WOOLNOUGH, W.G.	1934 - General Report on Tennant Creek Goldfield, N.T.: (unpublished)

(J. HAYS) Resident Geologist.

Resident Geologists' Office, DARWIN. N.T. 3rd February, 1958.

SURVEY DATA FOR WELLS OF TENNANT CREEK WATER SUPPLY

Well No	R.L. Bench Mark	R.L. Water Level	R.L. Well Bottom	Well Depth Feet	Depth to Water Level	Water Depth Feet	Ground Fall Feet	Water table Fall. Feet
6	1092.16	1045.14	1014.00	78.16	47.02	31.14	0	0
7	1987.28	1037.82	1014.32	72.96	49.46	23.50	4.88	7.32
5	1089.95	1040.62	1025.78	64.17	49.33	14.84	2.21	4.52
4	1089.40	1038.00	1018.95	70.45	51.40	19.05	2.76	7.14
3	1089.63	1032.97	1028.72	60.91	56.66	4.25	2.53	12.17
8	1083.59	1038.17	1020.52	63.07	45.42	17.65	8.57	6.97
9	1079.67	1036.33	1015.89	63.78	43.34	20.44	12.49	8.81
10	1075.76	1034.85	1011.10	64.66	40.91	23.75	16.40	10.29
12	1072.14	1033.39	1011.83	60.31	38.75	21.56	20.02	11.75
13	1071.95	1033.75	1004.75	67.20	38.20	29.00	20.21	11.39
11	1072.59	1031.77	1008.52	64.07	40.82	23.25	19.57	13.37
14	1058.74	-	-	-	. —	-	~	-
ı	106?.84	1023.95	1019.90	42.94	38.89	4.05	29.32	21.19

Year	Jan.	Feb.	Mar.	Apl	May.	June	.July	Aug.	Sept.	Oct.	Nov	Dec.	Total
1874 1875	322 405	522 i 798	48 (2	122 166	310 7	15 12	113	2	89	12 33 42	39 101	40 298	1634 1822
1876 1877 1878	532 689 55	169 337 556	618 808 140	74 11 155	50 20		_		3 279 73 62	90	52 172 80	161 315 603	1701 2611 1772
1879 1880 1881	25 842 298	288 17 605	305	167	196	26	326	116	62	244 306	134 21 102	92 120 250	1979 1317 1255
1882 1883 1884	726 36 27	85 54	104 226	140	389	25 2			7	67 263 90	255 4 1 6 226	472 95 93	2178 900 720
1885 1886	559 277	471 611	750 38	51 105	12 21	105		42 328 122	16 80	28	8 37 86	397 749 94	2322 2240 1639
.1867 1868 1889	167 468 1110	565 316 168	452 22	18 5 16	14 57	54		1	30 76	9 5 10	62 159	863 84	1764 1756
1890 1891 1892	165 231 47	340 233 31	91 155 344	648 156	32 50	90		3	250	90 165 89	45 46	38 17 170	1792 1247 681
1893 1894 1895	184 667 627	11 1067 810	62 484 1 0	36 21 53	18 28		371	72 2	134	5	120 269	147 236 81	650 2616 2249
1896 1897 1898	390 19	342 199 598	79 177	773	15 32	11 23	117		12 1 85	130	108 92	296 95 45	2135 455 1052
1899 1900 1901	606 100 30	157 9 38 9	101 143 128	50	126	23 6 17 37	217	15 10	3	56 5	46	26 61 61	1002 739 6 6 0
1902 1903 1904	311 57 776	85 90 480	979 247	101 55	220	5	B0			38 19 56	149 208 62	168 519 183	756 1973 2079
1905 1906 1907	269 493	15 21 477	262 7	42	1	33 2 122	13		92	56 108 100	46 60 61	181	862 14 17 1618
1908 1909 1910	195 316 28 33	669 49 1181	172 10 419	198 15 6	44 16 5	39		58		69	26 146 83	15 236	1412 380 2004
1911 1912 1913	212 750	285 892	57 43 161	198		9 9	15		109	9	211 108 15	75 27 291	650 708 2118
1914 1915 1916	602 985	107		35 32	52		62			48 51	265	369. 32 459	1071 1211 1707
1917 1918 1919	630 354 448	198 358 1 238	10 154	52		21	02	53 29	122	53	234 105	93	1389 1918 2347
1920 1921	764 429 588	1495 91 614	154 481	55		35	68		21	62 37	69 305 72	19 437 20	1622 1847
1922 1923 1924	31 82 21	394 153 558	560 9	19	53 16	49 164	22		2	133 56 18	93 29 212	308 154 9	1061 1233 851
1925 1926 1927	354 672 597	136 10 287	200 306 14	22 36	6		25	1	3	12	75 93 103	239 95	8 6 9 1351 1145
1928 1929 1930	209 635 262	94 51 959	38 235 1695	63 4		23	2 8		3 15	50 37 220	12 22 133	184 366 122	679 1350 3402
1931	127 133 49	5	440 765 87	189 57	31 269 70	23 145 84		11		50	243 40 35 214	89 171 123	1139 1324 1215
1933 1934 1935 1936	151 170	554 31 56 624	51 67 101	57 15 6 15	140	45	206	58	3	53 38 23 32	4 117	5 98	764 372 1288
1937 1938 1939	844 68 11 00	586 322	-32 57	9 288		275 6 160	112 211	22	46	32 151 77	137 17 102	47 53	1376 940 2438
1940	860 295	526 249	514 1467	. 7	217	106				7 32	91 287	148 134	2153 2787

TABLE 2. (cont).

Year	Jan.	Feb.	Mar.	Apl.	Ma y	June	July	Aug.	Sep-	.0ct.	Nov.	Dec	Total
1944 1944 1944 1944 1945 1947 1955 1955 1955 1955 1955 1955	3961 421 160 684 756 1755 1155 1213 144 1535	170 144 473 169 1042 175 264 331 368 55 2 467 1109	38 73 34 73 421 45 46 171	92 11 7 2 92 150 252 2 2 2	157 4 55 4 132 49	9 254 7 173 33 4 20 36 16	12 2 45 45 140 23	72 8 8 24	2 152 182 182 182 53 94	213 53 81 52 17 199 47 48 53 99 138	391 392 782 445 945 1544 100 110 100 100 100 100 100 1	239455 261924431256241362415621 231	1707 409 1617 879 2059 9668 1504 1285 1704 831 1847 826 1441 1776 2301
Aver- age	361	348	192	58	35	30	26	13	24	57	103	202	1449

TENNANT CREEK WELLS

No. 9 WELL PUMP TEST.

No. 9 WELL RECORDING

Date	Time	Elapse Minutes	Water Feet	Level Inches	Back Pressur P.S.I.	re Pumping Rate Seconds/50 gal
8/11/57	9.10 a.m.	-	42	9 3	5	50
	9.20 a.m.	10	46	1 2		
	9.30 a.m.	20	43	9		
	9.40 a.m.	30	50	ı		
	9.55 a.m.	45	51	$7\frac{3}{4}$		
	10.10 a.m.	60	52	6		
	10.40 a.m.	90	53	7		
	11.10 a.m.	120	54	1		*
	12.10 p.m.	180	54	81/2		
	5.11 p.m.	481	54	102		
	9.40 p.m.	7 50	54	10		
9/11/57	9.08 a.m.	1438	54	102	4 1	52
	3.00 p.m.	1790	54	$10\frac{3}{4}$		
	9.00 p.m.	2150	56	1		
10/11/57	8.20 a.m.	2870	56	3 1	41/2	52
	2.24 p.m.	3194	56	54		
	9.15 p.m.	3605	56	81/2	4 <u>1</u>	52
11/11/57	8.58 a.m.	4308	56	104	4 1 2	52
	4.32 p.m.	4762	54	103		
12/11/57	9.15 a.m.	5765	57	2	Lı	. 53
	4.40 p.m.	6205	57	2 1 /2	<i>L</i> ₁	53
13/11/57	8.55 a.m.	7185	57	5	,	
	4.10 p.m.	7620	57	1		
14/11/57	4.30 p.m.	9080	57	22	14	53
15/11/57	4.20 p.m.	10500	57	41/2	· Ц	53
16/11/57	4.25 p.m.	11945	57	14	4	53
17/11/57	4.00 p.m.	13360	57	4	4	53
18/11/57	9.07 a.m.	14397	57	<u>L</u> ‡	4	53
	9.10 a.m.	14400	57	4		Pump shut down

Approximate average time to pump 50 gallons $52\frac{1}{2}$ Seconds Approximate gallons pumped per hour 3400 Approximate total gallons pumped 810000

TENNANT CREEK WELLS No. 9 WELL PUMP TEST

No. 9 WELL RECOVERY RECORDINGS

	·									
Date	<u>Time</u>		Elapse Minutes			Level Inches				
18/11/57	9.10 a	ı.m.	0		5 7	4	Pump	shut	down	
	9.15 a	a.m.	5		56	$7\frac{1}{2}$				
	9.20 a	a.m.	10		56	0	•			
•	9.25 a	a.m.	15		55	1				
	9.30 a	a.m.	20		53	10				
	9.36 a	a.m.	26		52	61/2				
	9.41 a	a.m.	31	×	51	7 1 /2				
	9.50 a	a.m.	40		49	11		,		
	10.00 a	a.m.	50		49	5				
	10.10 a	a.m.	60		48	9 1 /2				
	10.20 a	a.m.	70		48	$2\frac{3}{4}$	-			
	10.30 a	a.m.	80		48	0				
	10.45 a	a.m.	95		. 47	5 1 /2				
	11. 00 a	a.m.	110		47	2				
	11.15 a	a.m.	125		46	11				
	11.31 a	a.m.	141		46	8				
•	12.00 a	a.m.	170		46	4				
	12.30 p	o. m.	200		46	$0\frac{1}{2}$				
	1.02 p	p. m.	232		45	104				
	2.03 p	o. m.	297		45	7				
	4.00 p	o.m.	410		45	3				
	10.35 p	p.m.	805		44	10				
19/11/57	9.50 a	a.m.	1480		44	7				
	10.20 a	a.m.	1510		1414	6 1				
	3.25 p	p.m.	1815		44	11/2				
	10.15 p	p. m.	2165		44	0				
20/11/57	7.12 a	a.m.	2762		43	11				
	3.55 p	o. m.	3285		43	7통				
21/11/57	4.10 p	p. m.	4740		43	5				
22/11/57	4.07 p	0. m.	6177		43	3 3				
23/11/57	**.		7626		43	2				
24/11/57			9048		43	03/4				
25/11/57	3.46 p	p. m.	10476		43	07/8				

No. 9 WELL PUMP TEST

WATER LEVEL VARIATION IN ADJACENT WELLS

Date

	No. 5 Wel	l ariation Inches		l <u>l</u> Väriati Inches	on Remarks
8/11/5 7			8.37 a.m.	0	No.9 Well pump started 9.10 a.m.
	5.03 p.m.	0	5.08 p.m.	: 1	
	10.00 p.m.	÷ 1/4	9.35 p.m.	÷ 1/2	
9/11/57	8.56 a.m.	0	9.05 a.m.	0	
	2.50 p.m.	÷ 2	2.56 p.m.	. 1	
•	8.45 p.m.	÷2 1	8.50 p.m.	÷l	•
10/11/57	8.11 a.m.	÷l	8.13 a.m.	2 1/2	
	2.16 p.m.	÷21/4	2.20 p.m.	÷l	,
	9.05 p.m.	÷14	9.10 p.m.	÷ 1	
11/11/57	8.45 a.m.	\$ 3 4	8.52 a.m.	÷ 2	
	4.23 p.m.	÷2 1	4.27 p.m.	÷14	
12/11/57	8.55 a.m.	* <u>3</u>	9.00 a.m.	<u> </u>	
	4.25 p.m.	÷ 2	4.30 p.m.	÷1	
13/11/57	8.45 a.m.	<u> </u>	8.50 a.m.	1 2	
	4.23 p.m.	÷1½	4.05 p.m.	÷l	
14/11/57	4.12 p.m.	÷2 1	4.17 p.m.	÷14	
15/11/57	4.13 p.m.	÷2 ¹ / ₈	4.16 p.m.	÷l	
16/11/57	4.12 p.m.	÷2‡	4.20 p.m.	÷l	
17/11/57	4.25 p.m.	÷2 ¹ / ₈	3.55 p.m.	+1 <u>+</u>	
18/11/57	8.53 a.m.	* 1 8	8.57 a.m.	0	Pump shut down 9.10 a.m.
	1.35 p.m.	*1 /	1.40 p.m.	\$ 1 2	9.10 a.m.
	4.27 p.m.	÷13/4	4.22 p.m.	*1	
	10.10 p.m.	÷l	9.25 p.m.	*l	,
19/11/57	8.40 a.m.	0	8.45 a.m.	0	
×			3.20 p.m.	*1	

No. 9 WELL PUMP TEST.

WATER LEVEL VARIATION IN ADJACENT WELLS

Date	No. 10 Wel	<u>l</u> riction Inches		e <u>ll</u> riation Inches		ell iation ches
8/11/57	8.41 a.m.	0	8.54 a.m.	0	8.47 a.m.	0
	5.17 p.m.	+2 1 /2	5.25 p.m.	- 1	5.22 p.m.	‡ 1/8
	9.45 p.m.	÷13/4	9.52 p.m.	-1	9.49 p.m.	. 0
9/11/57	9.21 a.m.	÷1½	9.30 a.m.	-1 1	9.25 a.m.	0
	3.05 p.m.	= 4-1	3.15 p.m.	÷1 1	3.10 p.m.	0
	9.05 p.m.	* 3	9.15 p.m.	*1	9.19 p.m.	0
10/11/57	8.34 a.m.	÷2 [†] / ₂	8.45 a.m.	\$ 3	8.40 a.m.	0
	2.30 p.m.	÷4 1	2.38 p.m.	*138	2.35 p.m.	0
	9.20 p.m.	÷ 3₹	9.30 p.m.	÷l	9.25 p.m.	0
11/11/57	9.15 a.m.	÷3½	9.20 a.m.	* <u>1</u>	9.17 a.m.	÷ 1/8
	4.40 p.m.	÷4½	4.50 p.m.	÷ 1	4.45 p.m.	÷ ¹ / ₈
12/11/57	9.20 a.m.	\$ 3	9.32 a.m.	-1	9.25 a.m.	0
*	4.45 p.m.	÷4	4.55 p.m.	* 1 * 2	4.50 p.m.	* 1 8
13/11/57	9.06 a.m.	÷3 . ‡	9.15 a.m.	_ <u>5</u>	9.12 a.m.	0
1	4.15 p.m.	÷ 5	4.26 p.m.	1 2	4.20 p.m.	0
14/11/57	4.36 p.m.	. 6	4.50 p.m.	*1	4.45 p.m.	0
15/11/57	4.45. p.m.	. 6	4.55 p.m.	* <u>1</u>	4.50 p.m.	0
16/11/57	5.00 p.m.	* 6	4.57 p.m.	÷ 1	4.49 p.m.	0
17/11/57	4.07 p.m.	÷6½	4.15 p.m.	+1 1	4.20 p.m.	0
18/11/57	8.35 a.m.	÷41/2	8.45 a.m.	0	8.40 a.m.	0
	1.13 p.m.	÷5 ¹ / ₈	1.25 p.m.	• <u>1</u>	1.17 p.m.	0
	4.04 p.m.	÷6 1	4.25 p.m.	+1 /	4.10 p.m.	0
	9.55 p.m.	* 5 1	9.45 p.m.	<u>3</u>	9.50 p.m.	0
19/11/57	8.50 a.m.	. 4	9.40 a.m.	0	9.20 a.m.	0
	3.27 p.m.	÷6½	3.40 p.m.	- 1	3.33. p.m.	0 .

No. 10 WELL PUMP TEST

No. 10 WELL RECORDINGS

Date	Time	Elapse Minutes	Water Feet		Back Pres	
30/10/57	9.20 a.m.	0	40	7	5월	51
4	9.35 a.m.	15	44	4 <u>1</u>		4
· T	9.40 a.m.	20	45	0		
	9.50 a.m.	30	47	2		•
,	10.05 a.m.	45	49	0		
	10.20 a.m.	60	50	11/2		
	10.50 a.m.	90	50	8		
	11.20 a.m.	120	50	3 1 /2		
	12.20 p.m.	180	50	3 1 /2	6 1	51
	2.20 p.m.	300	50	3		
	5.20 p.m.	480	51	7½		
	9.35 p.m.	733	51	· 9홍		
31/10/57	9.22 a.m.	1442	5 1	5 3	5½	56
	3.13 p.m.	1793	52	11 3	6 <u>1</u>	51
	9.10 p.m.	2150	53	1		
1/11/57	9.05 a.m.	2865	52	9	61/2	52
	2.32 p.m.	3192	52	8		
	9.17 p.m.	3597	52	103		
2/11/57	9.24 a.m.	4324	52	91	64	53
	6.27 p.m.	4867	52	9 1		*
3/11/57	8.11 a.m.	5681	52	11	5 1 /2	53
	8.13 p.m.	6413	52	$11\frac{3}{4}$		
4/11/57	8.21 a.m.	7141	52	114	5‡	53
	5.00 p.m.	7861	52	5		
5/11/57	1.30 a.m.	8371				Pump broke down
	Approximate	average	time to	o pump 50	gallons	$52\frac{1}{2}$ seconds
	Approximate	gallons	pumped	per hour	•	3400
_	Approximate	total ga	allons p	pumped	2	1 70000

No. 10 WELL PUMP TEST

No. 10 WELL RECOVERY RECORDINGS

Date	Time		Elapse Minutes	Water Feet	Level Inche			
4/11/57	5.00	p.m.		52	5			
5/11/57	1.30	a.m.	0		,	Pump	broke	down
	3.30	a.m.	120	41	9			
	3.40	a.m.	130	41	81			
	4.00	a.m.	150	41	7 3			
	4.15	a.m.	165	41	7			
	4.30	a.m.	180	41	7			
	5.07	a.m.	217	41	61/2			
	5.30	a,m.	240	41	6 <u>1</u>			
	6,00	a.m.	270	41	6			
	7.00	a.m.	330	41	5₹			
	9.18	a.m.	468	41	5			
	11.15	a.m.	585	41	3 1 / ₂			
	1.15	p.m.	705	41	14			
	4.12	p.m.	872	41	1.			
6/11/57	7.42	a.m.	1812	41	2			
	2.26	p.m.	2216	40	113			
7/11/57	2.27	p.m.	3656	40	9			1.
8/11/57	8.41	a.m.	4751	40	101	3:		

No. 10 WELL PUMP TEST

WATER LEVEL VARIATION IN ADJACENT WELLS

Date	No. 8 We	ll Variation Inches	No. 9 Wel	l Variation Remarks Inches
30/10/57	8.40 a.m.	0	8.48 a.m.	O No.10 pump started 9.20
	5.29 p.m.	÷1 ¹ 8	5.23 p.m.	*31 a.m.
	9.18 p.m.	<u>* 3</u>	9.30 p.m.	÷2
31/10/57	9.18 a.m.	0	9.17 a.m.	÷1 ³ / ₈
	3.48 p.m.	<u> </u>	3.44 p.m.	÷3 . ‡
	9.22 p.m.	÷ 1/4	9.17 p.m.	+1 ₂
1/11/57	8.52 a.m.	− ¹ / ₈ .	8.57 a.m.	*1. 1 ;
	2.20 p.m.	* 1	2.27 p.m.	÷3‡
	9.06 p.m.	÷ 1/4	9.10 p.m.	÷1½
2/11/57	9.13 a.m.	0 ,	9.17 a.m.	÷1½
	6.21 p.m.	* 1 * 2	6.24 p.m.	*2 ³ / ₄
3/11/57	8.00 a.m.	0	8.05 a.m.	÷1½
	8.00 p.m.	♦ 3/8	8.05 p.m.	• 2
4/11/57	8.11 a.m.	0	8.14 a.m.	÷13/4
*	4.47 p.m.	- <u>5</u>	4.53 p.m.	÷3 ‡
5/11/57	5.13 a.m.	0 ,	5.20 a.m.	+21 No.10 pumpbroke
	6.20 a.m.	0	6.15 a.m.	down 1.30 a.m.
	9.10 a.m.	0	9.13 a.m.	÷2 1
	4.00 p.m.	÷3/4	4.05 p.m.	÷41.
6/11/57	7.30 a.m.	0 -	7.37 a.m.	*1 <u>3</u>
	2.13 p.m.	÷ 1/2	*	
7/11/57	2.17 p.m.	$\frac{1}{2}$	2.20 p.m.	+3½
8/11/57	8.37 a.m.	- 1/2		

No. 10 WELL PUMP TEST

WATER LEVEL VARIATION IN ADJACENT WELLS

<u>Date</u>		l ariation Inches	No. 12 We	ell Variat Inche	
30/10/57	8.56 a.m.	0 .	9.05 a.m.	0	No.10 pump
	5.05 p.m.	÷1 1 8	5.10 p.m.	÷ 1/4	started 9.20 a.m.
	9.43 p,m.	*1.	9.48 p.m.	* 1 8	
31/10/57	9.27 a.m.	-1 /2 ,	9.32 a.m.	0	
	2.48 p.m.	÷ 1/2	5.05 p.m.	÷ 4/3	
	9.03 p.m.	0	8.57 p.m.	0	
1/11/57	9.31 a.m.	-1 2	9.20 a.m.	0	
	2.44 p.m.	2 1 2	2.38 p.m.	÷ 43	
	9.30 p.m.	0	9.25 p.m.	* 1 0	
2/11/57	9.48 a.m.	-1 2	9.43 a.m.	<u> </u>	
	6.37 p.m.	÷ 1/2;	6.32 p.m.	* <u>1</u> 8	
3/11/57	8.36 a.m.	-12	8.31 a.m.	- + 1/2,	
	8.25 p.m.	0	8.19 p.m.	* 1 ·	
4/11/57	8.40 a.m.	$-\frac{1}{ik}$	8.39 a.m.	+ 1	
5/11/57	4.45 a.m.	0	4.40 a.m.	÷ 2	No.10 pump
	6.35 a.m.	- <u>1</u>	6.30 a.m.	2 1/4	broke down 1.30 a.m.
	9.30 a.m.	- 1	9.25 a.m.	÷ 1/4	
	4.20 p.m.	3 /4	4.17 p.m.	* 1/4	
6/11/57	7.52 a.m.	$-\frac{3}{4}$	7.47 a.m.	<u>+1</u> 8	
	2.37 p.m.	÷ 1	2.32 p.m.	♣ 3	
7/11/57	2.45 p.m.	<u>. 1</u>	2.40 p.m.	÷3	
8/11/57	8.45 a.m.	- 3/4	8.49 a.m.	<u>+1</u> 8	

DUAL PUMP TEST 9 AND 10 WELLS

DECEMBER 1957

No. 9 WELL RECORDINGS

Date	Time	Elapse Minutes	Water Feet	Level Inches	Back Pressure	Baromete	Pumping Rate Seconds/ 50 gals
7th	10.26 a.m. 11.25 a.m. 12.26 p.m. 1.30 p.m. 2.28 p.m. 3.27 p.m.	59 120 184 242 301	42 55 55 55 55 56 66	19939 2483366561	4 1	29.98	50
	4.26 p.m.	360	56	42		29.85	
0+h	9.03 p.m.	637	56 57 57 58 58	8 <u>3</u>	1, 1	29.92	-
8th	8.50 a.m. 4.02 p.m.	1344 1776	27 57	ン <u>で</u> ろ	42	30.04 29.86	51
	9.22 p.m.	2156	57	<u> 6</u> 통		29.97	
9th	8.53 a.m.	2787	58	6	4 1 /2	30.02	50
	4.50 p.m.	3264	58	5½		29.83	
10th	9.05 p.m. 8.55 a.m.	3519 4229	59 60	5 11	41/2	29.92 30.05	53
10 011	3.20 p.m.	4614	58	111	42	29.96	53 59 Ø
	9.07 p.m.	4961	58	2	8	30.03	
11th	9.12 a.m. 2.52 p.m.	5686	58 557 577 556 56	11½ 2 3 3 5 11½	3 1 /2	30.09	5 7
	2.52 p.m. 9.21 p.m.	6026 6415	57	2		30.02 30.02	
12th	8.55 a.m.	7109	57	5	3 1	30.06	58
	2.55 p.m.	7469	56	11 1	22	29.92	50
	9.55 p.m.	7889	56	וו		30.03	
13th	9.05 a.m.	8559	56 56 56 56	912 812 812 112	3 2	29.99	58
14th	9.50 p.m. 8.35 a,m.	9324 9969	56 56	81	31/2	29.89 29.96	58
14011	9.35 p.m.	10749	56	113	J ₂	29.87	
15th	9.30 a.m.	11464	57		31/2	29.92	58
7 (+4	10.05 p.m.	12219	57	$1\frac{1}{2}$	-> 1	29.86	58
16th	9.05 a.m. 9.37 p.m.	12879 13631	57	7.1	3 1 /2	29.95 29.90	58
17th	9.50 a.m.	14364	57	$2\frac{1}{2}$	3 1	29.93	59
	10.30 a.m.	14404	57 57 57 57 57 57	$1\frac{1}{2}$ $2\frac{1}{2}$ 3	22		Pump shut
	*			,			down

Ø Engine speed was reduced at 10 a.m. on 10th as foot valve

was showing.

Foot valve was 18 inches from well bottom.

Approximate average time to pump 50 gallons

gallons per hour pumped

total gallons pumped 55 seconds 3200 768000 Reduced level of measuring point 1079.10 feet

DUAL PUMP TEST 9 AND 10 WELLS DECEMBER 1957.

No. 9 WELL RECOVERY RECORDINGS

PUMP SHUT DOWN 10.30 a.m. 17/12/57

<u>Date</u>	Time	Elapse Minutes	Water Level Feet Inches	Barometer
17/12/57	10.30 a.m.	-	57 3	29.93
	11.30 a.m.	60	48 8	29.20
	12.10 p.m.	120	47 14	29.86
	1.30 p.m.	180	46 5 ½	29.86
	2.30 p.m.	240	46 -	29.83
	3.30 p.m.	300	45 8	29.81
	9.18 p.m.	648	45 -	29.86
18/12/57	8.50 a.m.	1340	44 5	29.96
×	3.05 p.m.	1715	44 O ¹ / ₂	29.78
	9.30 p.m.	2100	44 0 1	29.90
19/12/57	8.36 a.m.	2766	43 101	29.92
	4.26 p.m.	3236	43 7 ¾	29.76
	9.30 p.m.	3540	43 8흡	29.90
20/12/57	4.00 p.m.	4650	43 5	29.72
21/12/57	4.15 p.m.	6105	43. 23/4	29,72
22/12/57	3.30 p.m.	7500	43 2	29.79
23/12/57	3.56 p.m.	8966	43 04	29.80
24/12/57	3.45 p.m.	10395	42 113	29.77
25/12/57	10.41 a.m.	11531	43 0 3 3	29.88
2/1/58	9.12 a.m.	22962	42 9출	30.03

DUAL PUMP TEST 9 AND 10 WELLS DECEMBER 1957.

No. 10 WELL RECORDINGS

Date	Time	Elapse Minutes	Water Feet	Level Inches	Back Pressure P.S.I.	Pumping Rate Seconds/50 gals
7th	10.40 a.m.	60	4 1 5 1	13	42	50
×	12.40 p.m. 1.40 p.m.	120 180	53 53	19134 1240 19134 1240 180		
	2.38 p.m. 3.26 p.m.	238 296	555555555555555555555555555555555555555	1423 534		•
	4.36 p.m. 9.17 p.m.	356 6 3 7	53 53	6 9		
8th	9.04 a.m. 4.10 p.m.	1344 1770	53 53	10 <u>1</u> 8 <u>1</u>	5	53
9th	9.55 p.m. 9.12 a.m.	2115 2792	53 54	11 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5	53
10+h	3.45 p.m. 9.15 p.m.	3185 3515	53 54	101/29 107/29 24	_	
10th	9.13 a.m. 3.25 p.m.	4233 4605	54 53	ıį	5	53
llth	9.20 p.m. 9.27 a.m. 2.57 p.m.	4960 5687 60 1 7	54 54	11 2 1 ¹ / ₂ 4 1 ¹ / ₂	5	53
12th	9.27 p.m. 9.08 a.m.	6407 7108	54 54	1 ₂ 4	5	53
	3.02 p.m. 9.07 p.m.	7462 7827	53 54	11½ 3¾		
13th	9.20 a.m. 10.02 p.m.	8560 9322	54 54	2 13	5	53
14th	8.48 a.m. 9.42 p.m.	9968 10742	53 54	87	5	53
15th	9.45 a.m. 10.10 p.m.	11465 12210	54 55	7 5 <u>1</u>	5	53
16th	9.16 a.m. 9.40 p.m.	12876 13680	54 54	7 7 7	5	53
17th	9.57 a.m. 10.45 a.m.	14357 14405	54 54 54	13218475777777777	5	53 Pump shut down
	Annarimata a					

Approximate average time to pump 50 gallons
Approximate gallons per hour pumped
Approximate total gallons pumped
Reduced level of measuring point

53 seconds
3400
816000
1075.59 feet

DUAL PUMP TEST 9 AND 10 WELLS

DECEMBER 1957

No. 10 Well Recovery Recordings

Pump shut down 10.45 a.m. - 17/12/57

Date		Time	æ	Elapse Minutes		Water Feet	Level Inches
17/12/57		10.45	a.m.	-		54	$7\frac{1}{2}$
		11.45	a.m.	60		747	5
		12.45	p.m.	120		42	11
	1	1.45	p.m.	180		42	8
		2.45	p.m.	240	*	42	7
		3.45	p.m.	300	r	42	5
	2	9.22	p.m.	637		42	3 1
18/12/57		8.55	a.m.	1330		42	2
	,	3.10	p.m.	1705		41	101
	×	9.35	p.m.	2090		42	0
19/12/57	٠	8.41	a.m.	2756		41	101
ě		4.41	p.m.	3236		41	8 1 /4
	x 31	9.35	$p_{\bullet} m_{\bullet}$	3530		41	9 1
20/12/57		4.06	p.m.	4641		41	81/2
21/12/57		4.21	p.m.	6096		41	6 ‡
22/12/57	v	3.55	p.m.	7940		41	5흫
23/12/57		4.02	p.m.	895 7		41	4홍
24/12/57		3.49	$p_{\bullet}m_{\bullet}$	10384		41.	4
25/12/57		10.46	a.m.	11521		41	4 3
2/1/58		9.17	a.m.	22952		41	3 1 /2

DUEL PUMP TEST 9 AND 10 WELLS DECEMBER 1957

		DECEMBER	1957		
Date	No. 5 Well Time	Variation	No Time	· 3 Well Va	ariation
		Inches			Inches
7th	10.03 a.m.	0	10.07	a.m.	0
	3.57 p.m.	÷13/4	3.53	p.m.	÷1 4
	8.50 p.m.	<u>• 1</u>	9•33	p.m.	*2
8th ·	8.39 a.m.	0	9.30	a.m.	*4
	3.50 p.m.	. 13/4	4.30	p. m.	. 14
	9.02 p.m.	* <u>1</u>	10.47	p.m.	<u> </u>
9th	8.42 a.m.	• <u>8</u>	9.38	a.m.	* 1 * 2
	4.06 p.m.	÷13/4	4.00	p.m.	÷13/4
	8.50 p.m.	. 3	9.45	p.m.	+1 1
lOth	8.43 a.m.	0	9.40	e.m.	*4
	3.10 p.m.	÷14	3.47	p. m.	÷1½
	8.55 p.m.	<u>+1</u>	9.45	p.m.	÷ 3/4
llth	9.00 a.m.	0	9.52	a.m.	<u>+3</u> 8 .
	2.40 p.m.	+14	3.15	p.m.	. 1
	9.07 p.m.	*1	9.50	$p_{\bullet}m_{\bullet}$	÷l
12th	8.40 a.m.	÷ 1.;	9.30	a.m.	÷ 3/4
4	2.45 p.m.	÷1½	3.20	p.m.	+1 1
	8.47 p.m.	÷l	9.30	p.m.	*1 3
13th	8.55 a.m.	÷ 1/2;	9.40	a.m.	<u>•</u> 3/4
	9.35 p.m.	÷l	10.20	p.m.	÷1 1
14th	8.25 a.m.	÷ 1/4	9.15	a.m.	<u>*3</u>
	9.30 p.m.	÷ l	10.08	p.m.	+1 ¹ / ₂
15th	9.20 a.m.	÷ 1/4	10.10	a.m.	♦ 3/4
	9.55 p.m.	<u>*1</u>	10.27	p.m.	+1 ¹ / ₈
16th	8.50 a.m.	0	9.45	a.m.	* 1
	9.20 p.m.	• 3	10.00	p. m.	+1 1
17th	9.00 a.m.	♦ 1/4	9.30	a.m.	÷ 3
	9.05 p.m.	4 3 4	9.38	p. m.	÷1‡
18th	8.40 a.m.	0	9.10	a.m.	<u> </u>
19th	8.30 a.m.	* 3 8	9.03	a.m.	÷3/4
20th	3.47 p.m.	∻ 1₹	4. 25	p. m.	÷ 2
21st	4.01 p.m.	÷13/4	4. 35	p,m.	+13/4
22nd	3.23 p.m.	÷1 [†] 2		p. m.	÷1½
23rd .	3.46 p.m.	*1 ¹ / ₂	4.20	p. m.	. 15/8

DUAL PUMP TEST 9 AND 10 WELLS DECEMBER, 1957 No. 11 Well

			No					_	
Date	No Time	. 12 V	Vell Variation in Incles	No. Time	11 W	Variatio in Inche		Varia	ll ation aches
7th	10.18	a.m.	<u>-1</u>	10.14	a.m.	-1/4	10.32	a.m.	+ <u>3</u> 8
	3.41	p.m.	-14	3.45	p.m.	÷l	4.03	p.m.	÷1∄
	9.23	p.m.	- <u>1</u>	9.27	$p_{\bullet}m_{\bullet}$	÷ 1/4	8.55	p.m.	÷l
8th	9.19	a.m.	-1 2	9.23	a.m.	0	8.43	a.m.	* 3 8
	4.15	p.m.	0 .	4.20	p.m.	*1	3.57	p.m.	+1 1 8
	10.30	p.m.	0	10.37	p.m.	* 4	9.09	p. m.	÷ 1
9th	9.25	a.m.	0	9.31	a.m.	÷ 1/4	. 8.47	a.m.	1 2
	3.50	p. m.	0	3.55	$p_{\bullet}m_{\bullet}$	÷14	4.11	p.m.	+1 1
	9.30	p.m.	0	9.35	p.m.	\$ 3 4	8.54	p.m.	÷14
lOth	9.30	a.m.	0	9.33	a.m.	-1/4	8.47	a.m.	÷3/8
	3.38	p.m.	0	3.40	p.m.,	+ ¹ / ₂	3.15	p.m.	÷l ·
	9.35	p.m.	0 ,	9.50	p.m.	0	9.02	p. m.	∻ 5/8
llth	9.40	a.m.	. 0	9.45	a.m.	0	9.04	a.m.	+3 8
	3.08	p.m.	0	3.06	p.m.	÷ 4/4	2.46	p.m.	÷3/4
	9.37	p.m.	0	9.40	p.m.	<u>3</u> 8	9.15	p. m.	* <u>3</u>
12th	9.15	a.m.	0	9.20	a.m.	0	8.50	a.m.	* <u>5</u>
	3.07	p.m.	0	3.10	p.m.	*34	2.50	p.m.	÷1‡
	9.16	p.m.	0	9.22	p.m.	*12	8.52	p.m.	#1
13th	9.30	a.m.	0	9.35	a.m.	0	9.00	a.m.	‡ ¹ / ₂
	10.10	p.m.	О	10.15	p.m.	+ ¹ / ₂	9.47	p. m.	+1 [†]
14th	9.00	a.m.	0	9.45	a.m.	. O	8.30	a.m.	+1/2
	9.47	p.m.	0	9.53	p.m.	+ 1	9.35	p. m.	*1
15th	10.00	a.m.	Ο.	10.05	a.m.	0	9.25	a.m.	+ 1/2
	10.15	p.m.	0	10.20	p.m.	*3 8	10.00	p.m.	÷ 1
16th	9.30	a.m.	0	9.37	a.m.	0	9.08	a.m.	*1 2
	9.45	p.m.	О.	9.50	p.m.	÷ 4	9.25	p.m.	÷1 ¹ / ₈
17th	9.20	a.m.	0	9.25	a.m.	÷ 0	9.05	a.m.	÷ 3/4
	9.25	p.m.	0	9.30	p.m.	- 3/8	9.10	p.m.	÷ 1
18th	9.00	a.m.	0 .	8.55	a.m.	0	8.45	a.m.	÷ 5/8
19th	8.45	a.m.	0	8.55	a.m.	. 0	8.33	a.m.	♦ 5/8
20th	4.10	p.m.	. 0	4.16	p.m.	+ ¹ / ₂	3.52	p.m.	÷l
21st	4.27	p.m.	0	4.31	p.m.	+34	4 09	p.m.	+14
22nd	3.40	p.m.	0	3.57	p.m.	<u>5</u>	2.27	p.m.	÷l

Salinity tests of daily water samples conducted by the Director of Water Use with resistivity apparatus during pumping tests of Nos. 9 and 10 wells. The apparatus gives results in micromhos per centimetre at 25° Centigrade from which salinity in parts per Million is derived on the basis that a conductivity of 1000 micromhos per Centimetre equals approximately 640 parts per million of contained solids.

Date	Mm/cm	Well p.p.m.	Mm/cm	D Well p.p.m.
17/11/57	800	512	š	
18/11/57	800	512	•	
7/12/57	810	518	700	448
8/12/57	800	512	710	454
9/12/57	800	512	700	448
10/12/57	800	512	69 0	442
11/12/57	800	512	690	442
12/12/57	810	518	690	442
13/12/57	810	518	690	442
14/12/57	810	518	690	442
15/12/57	820	525	710	454
16/12/57	820	525	690	442
17/12/57	Broken i	n Transit		

TENNANT CREEK WATER SUPPLY

LOGS OF WELLS DOWN TO WATER LEVEL.

WELL No. 1. 43 FEET DEEP. LOGGED TO 39 FEET.

O feet - 2 4 feet Wind blown sand

1 4 feet - 12 feet Concealed by tank

12 feet - 39 feet Pisolitic and nodular ironstone grading into pallid zone of lateritisation.

Remarks: Some travertinous limestone was seen in the spoil and this is stated to have occurred between 4 feet and 11 feet. The well started caving at 43 feet and had to be abandoned before the base of the lateritic profile was reached. Some of the spoil was similar to the vein breccia from number 5 well.

WELL No. 2. Not visited - dry well in Warramunga Group rocks on N.E. edge of basin.

WELL No. 3. 61 FEET DEEP. LOGGED TO 56 FEET.

O feet - 2 6 feet Wind blown sand

₹ 6 feet Regolith on laterite

± 6 feet - ± 20 feet Pisolitic and nodular ironstone grading into

± 20 feet - 56 feet pallid zone of lateritisation. Mottled zone poorly developed.

Remarks: Base of laterite not seen. Country rock doubtful but may be granite. There is abundant kaolin in the pallid zone.

WELL No. 4. 70 FEET DEEP. LOGGED TO 51 FEET.

O feet - 7 feet Wind blown sand

7 feet - 20 feet Pisolitic and nodular ironstone grading into

20 feet - 51 feet mottled and pallid zones of lateritisation containing recognisable fault breccia and shales.

Remarks: Base of lateritic profile not seen.

WELL No. 5. 64 FEET DEEP. PUMPED OUT TO 40 FEET FOR LOGGING.

O feet - 5 feet Wind blown sand

5 feet - 20 feet Pisolitic and nodular ironstone grading into

20 feet - 45 feet mottled and pallid zones of lateritisation.

Country rock may be vein breccia.

WELL No. 5. - (Continued)

Remarks: Country rock contains angular and subangular to rounded pebbles up to ½ inch in diameter, in a ferruginous matrix. The matrix itself shows signs of lateritisation. Unlateritised rock was not seen in situ and it is difficult to decide whether there is an occurrence of vein breccia resembling the quartz haematite ore bodies of Tennant Creek area or whether the rock is sedimentary. Base of lateritic profile not seen but thought to be exposed below water.

WELL No. 6.

78 FEET DEEP.

LOGGED TO 16 FEET.

- O feet 2 6 feet Wind blown sand
- ± 6 feet ± 16 feet Nodular and pisolitic ironstone.

Remarks: Not logged in detail because of crumbling lip of well.

From 16 feet the well is in the mottled and pallid zones.

At 78 feet the well had not reached the base of the lateritic profile. Fragments of spoil suggest that the country rock may be granitic. Pegmatite fragments recognised.

WELL No. 7.

73 FEET DEEP.

LOGGED TO 49 FEET.

- O feet \$ 6 feet Wind blown sand
- ± 6 feet ± 16 feet Pisolitic and nodular ironstone grading into
- 16 feet 49 feet mottled and pallid zones.

Remarks: Base of laterite thought to be near water level. Spoil included weathered but unlateritised Warramunga Group slate and shale.

WELL No. 8.

63 FEET DEEP.

LOGGED TO 45 FEET.

- O feet 7 feet Wind blown sand
- 7 feet - 20 feet Pisolitic and nodular ironstone grading into 20 feet 45 feet mottled and pallid zones.

Remarks: Kaolinised fault breccia and recognisable Warramunga Group slates in spoil. Base of laterite not seen.

WELL No. 9.

63 FEET DEEP.

PUMPED TO 48 FEET FOR LOGGING.

- O feet - 5 feet Wind blown sands
- 5 feet 20 feet Pisolitic and nodular ironstone grading into
- 20 feet 48 feet mottled and pallid zones.

Remarks: Base of laterite not exposed by pumping but thought to be near bottom of well. Spoil includes breccia similar to No. 1 and 5 wells.

WELL No. 10. 65 FEET DEEP. PUMPED TO 45 FEET FOR LOGGING.

O feet - = 5 feet Wind blown sand

5 feet - 20 feet Pisolitic and nodular ironstone grading into

20 feet - 45 feet mottled and pallid zones.

Remarks: Caving at bottom. Country rock doubtful - may be granitic.

Base of laterite not exposed.

WELL No. 11. 64 FEET DEEP. LOGGED TO 40 FEET.

O feet - = 6 feet Wind blown sand

5 6 feet - 15 feet Pisolitic and nodular ironstone grading into

15 feet - 40 feet mottled and pallid zones developed in quartzite and slate.

Remarks: Base of laterite profile thought to be near 40 feet.

WELL No. 12. 60 FEET DEEP. LOGGED TO 38 FEET.

O feet - 2 5 feet Wind blown sand

5 feet - 20 feet Pisolitic and nodular ironstone grading into

20 feet - 38 feet mottled and pallid zones developed in granite.

WELL No. 13. 106 FEET DEEP. PUMPED DRY FOR LOGGING.

O feet - 2 8 feet Wind blown sand

2 8 feet - 2 25 feet Pisolitic and nodular ironstone grading into

25 feet - 60 feet mottled and pallid zones

- 60 feet - 106 feet Gradual transition into very weathered granite - gneissoid with kaolin and chlorite and shattered phenocrysts of felspar.

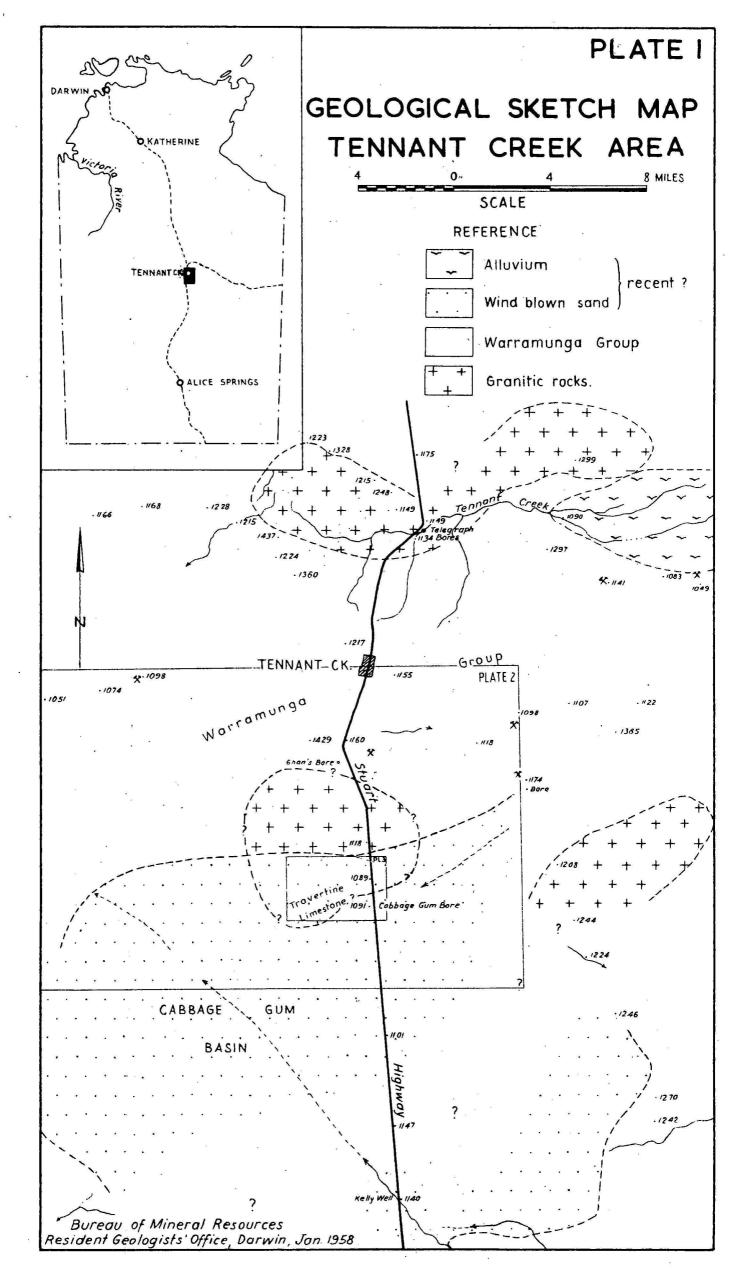
Ferruginised brecciated vein and kaolinised joints.

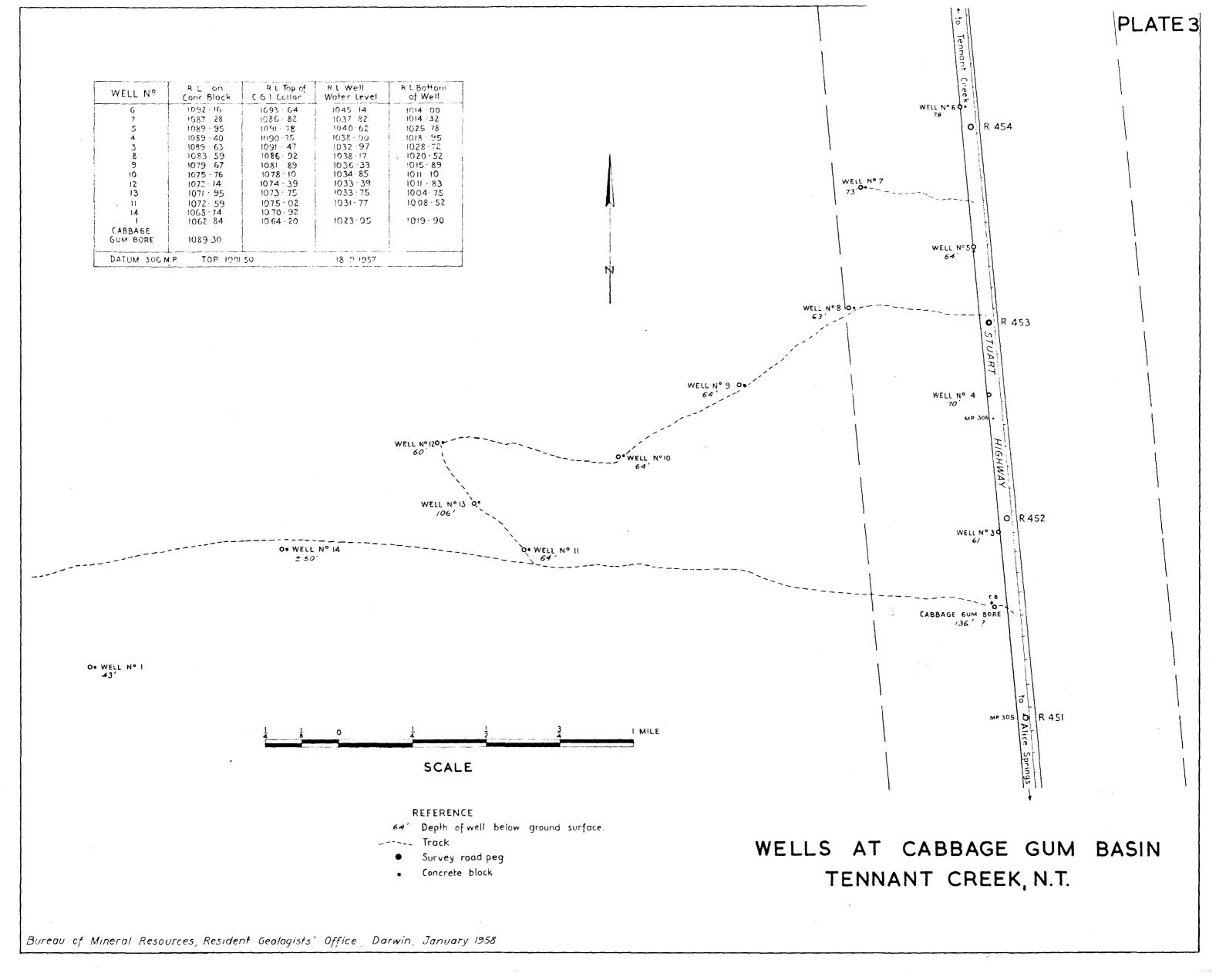
O feet - = 8 feet Wind blown sand

2 8 feet - 20 feet Pisolitic and nodular ironstone grading into

20 feet - 40 feet mottled and pallid zones. Silification at 40 feet.

Remarks: Warramunga group slate and shale recognisable in spoil.

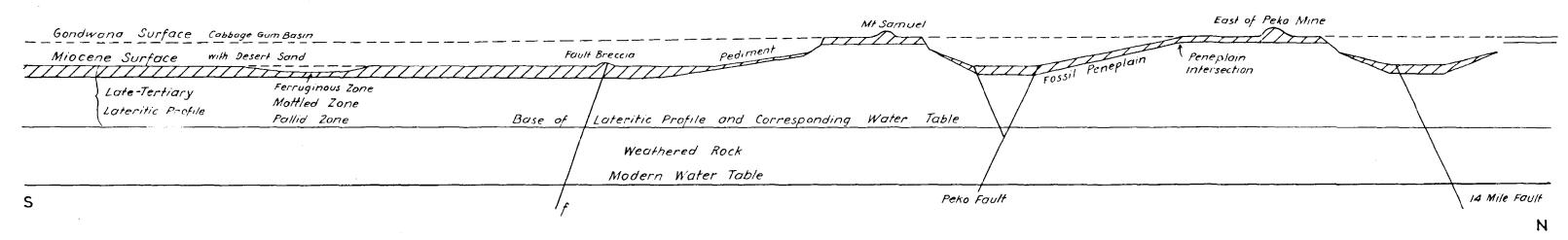

Caving at bottom. Base of laterite not seen.


TENNANT CREEK WATER SUPPLY WELLS AND BORES - CABBAGE GUM BASIN PURITY OF WATER

WELL/BORE	TOTAL DISSOLVED SOLIDS P.P.M.	REMARKS
٦.	628	Chemical analysis
3	511	11 11
4	631	51 11
5	846	11 17
6 } 7 } 8 }		Not yet available
9	790	Calculated from conductivity
10	554	Chemical Analysis
11	700	Calculated from conductivity
12	760	n .
13	760	tt ·
Perry No. 1	1325	Chemical Analysis Results awaited
Perry No. 2		Fresh tasting
Cabbage Gum Bore	2160	Chemical Analysis
Seasonal lake	430	Tested in October 1957 - Conductivity.

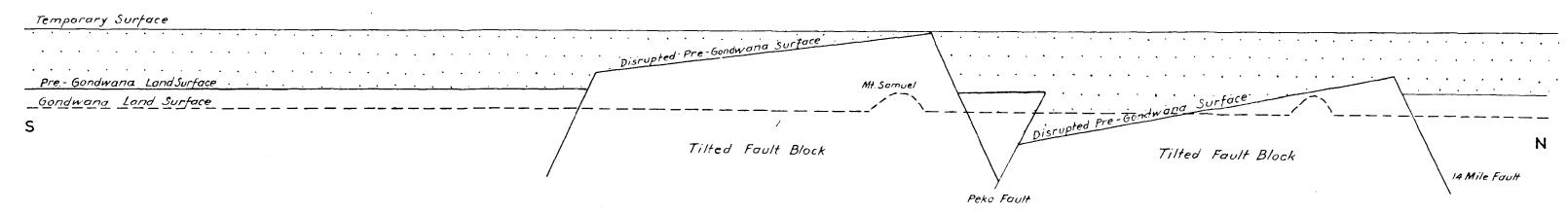
NOTE: Chemical Analyses by Chief Analyst, Animal Industries
Division, Alice Springs.

Conductivity tests by Director of Water Use.



TENNANT CREEK WATER SUPPLY

OF THE MODERN LAND SURFACE - TENNANT CREEK AREA


STAGE 3

COMPOUND SECTION OF MODERN SURFACE THROUGH CABBAGE GUM BASIN, MT. SAMUEL, AND EAST OF THE PEKO MINE.

STAGE 2

GONDWANA LAND SURFACE SUPERIMPOSED UPON BURIED OLDER SURFACE DISRUPTED BY FAULTING.

STAGE I

PRE-GONDWANA LAND SURFACE BEFORE DISRUPTION.

Pre - Gondwana Surface

/ 2 Incident Fault

N