COMMONWEALTH OF AUSTRALIA

DEPARTMENT OF NATIONAL DEVELOPMENT

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD No. 1963/76

GEOLOGICAL INVESTIGATION.

PORT MORESBY Nº 2

UNDERGROUND HYDRO-ELECTRIC

POWER GENERATION SCHEME,

LALOKI RIVER, T.P.N.G. 1962

by

E.K. CARTER and G.H. BROUXHON

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

GEOLOGICAL INVESTIGATION, PORT MORESBY NO. 2 UNDERGROUND HYDRO-ELECTRIC POWER GENERATION SCHEME, LALOKI RIVER. T.P.N.G.

bу

E.K. Carter and G. Brouxhon.

Records 1963/76

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

GEOLOGICAL INVESTIGATION, PORT MORESBY NO.2 UNDERGROUND HYDRO-ELECTRIC POWER GENERATION SCHEME, LALOKI RIVER, T.P.N.G.

bу

E.K. Carter and G. Brouxhon.

Records 1963/76

CONTENTS

SUMMARY	Page 1
INTRODUCTION	3
GENERAL	3
LOCATION AND ACCESS	`4
GEOLOGICAL INVESTIGATIONS	4
TOPOGRAPHY AND GEOMORPHOLOGY	5
GENERAL GEOLOGY	. 6
LITHOLOGY AND STRATIGRAPHY	6
••	J
Igneous rock basement and the Eriama Series.	6
Conglomerate	7
Volcanic rocks	8
Distribution and origin	8
Description	8
STRUCTURE	9
Joints and fractures	9
Shear zones	10
SLOPE STABILITY AND WEATHERING	12
GROUNDWATER	13
ENGINEERING GEOLOGY	14
SEISMICITY	14
PROPERTIES OF THE ROCKS	. 15
Agglomerate	15
Tuff	16
Conglomerate	16
Greywacke	17
ENGINEERING ASPECTS OF STRUCTURE	18
Agglomerate - Conglomerate Contact	18
Bedding	18
Joints	18
Fractures	19
Shears and Fracture Zone	19
WEIR SITE	20

CONTENTS (cont.)

	Page
TAILRACE TUNNEL	22
Groundwater	23
Mining conditions and support required	26
Lining	27
POWER STATION	28
Location	28
Orientation of machine hall	29
Shape of machine hall	29
Groundwater	30
Mining conditions	30
Support	30
Rock temperatures	31
Instrumentation	31
PRESSURE AND ACCESS SHAFTS	32
Pressure shaft	32
Access shaft	32
CONSTRUCTION MATERIALS	33
WATER QUALITY	34
CONCLUSIONS AND RECOMMENDATIONS	35
ACKNOWLEDGEMENTS	38
REFERENCES	39

APPENDICES

- APPENDIX 1 Geological logs of diamond drill holes.
 - 2 Water pressure test results and computations.
 - 3 Laboratory tests of the properties of specimens of drill core.
 - 4 Petrological descriptions.

PLATES

- PLATE 1 Surface geological plan. Scale 1 inch: 100 feet.
 - 2 Section through power station and tailrace tunnel. Scale T inch: 100 feet.
 - 3 Section through power station and tailrace tunnel. Interpretation of geology, groundwater conditions and support requirements. Scale 1 inch: 100 feet.
 - 4 Costeans, drill holes and auger holes to test diversion weir foundations. Scales 1 inch: 25 feet and 1 inch: 100 feet.
 - 5 Section through weir site. Scale 1 inch: 40 feet.

FIGURES

- FIGURE 1 Block diagram of Sogeri Plateau and environs.
 - 2 Schematic section showing regional geology.
 - 3 Joint Rosette.
 - 4 Location of underground power station in .
 - relation to joints at the surface.
 5 Intersection of 88 dipping fault or joint by drill hole R21.
 - 6 Temperature depth relationships.

SUMMARY

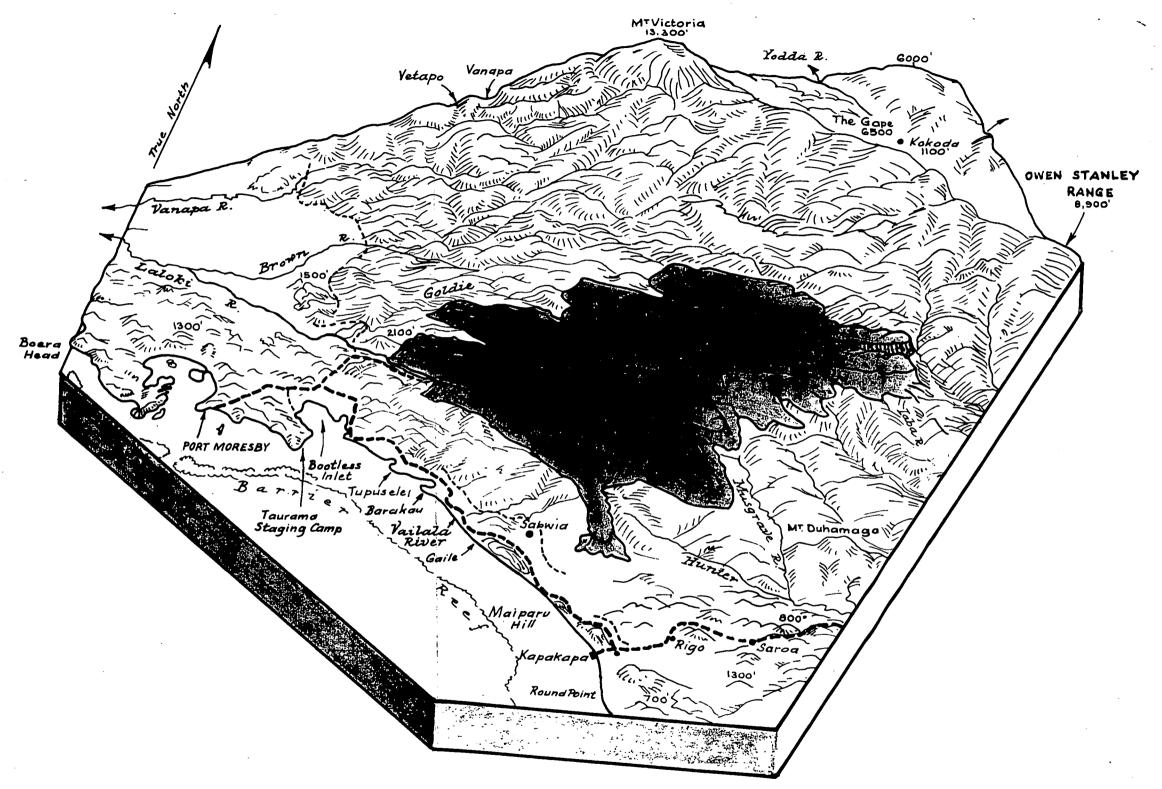
The Port Moresby No.2 hydro-electric project is designed to provide an ultimate 30,000 kilowatts of power for Port Moresby by utilizing the potential of the 500-foot high Rouna Falls, on the Laloki River, 23 miles by road from Port Moresby. The scheme consists of a storage dam, now nearing completion, 5 miles upstream of the Rouna Falls - the Sirinumu Dam - and power generation works in the vicinity of the Falls, consisting of a diversion weir, half-a-mile above the Falls, a power station 500 feet underground below the weir and a 2,700-foot long tailrace tunnel.

This report deals with the geological conditions that will affect the design and layout of the underground power station and related works. The presently-proposed layout was adopted because instability of the slopes, particularly the danger of rockfalls, made a surface power station, race lines and penstock too hazardous an undertaking. An alternative scheme for an underground power station near the Falls was rejected because of unsound rock conditions.

In the course of the investigation for the upstream underground power station 6,200 feet of diamond drilling has been undertaken and the surface mapped geologically. Drill holes have been water-pressure tested as required and selected drill core has been subjected to compression and durability tests.

The rocks of the area are gently-dipping agglomerate, unconformably underlain by a thick succession of conglomerate that consists largely of volcanic material, weathered near the top of the succession. Below the conglomerate is a basic igneous intrusive complex. The power generation works will be mainly in the agglomerate (which contains lenses of tuff) but about 1000 feet of the tailrace tunnel will be in more-or-less The strata are cut by widely-spaced weathered conglomerate. near-vertical and horizontal joints, and several faults, shears and fracture zones have been recorded. The whole rock mass appears to have been stressed to the point of failure and as a result is generally extensively, though irregularly, Weathering, with the formation of clay in many fractured. places, has extended along many of the faults, fractures and joints to below tunnel level. Fresh rock (agglomerate, tuff and conglomerate) is moderately strong but brittle, but weathered rock is generally weak owing to decomposition of the matrix.

The diversion weir site is not expected to offer any special difficulties. Foundations may have to be excavated to a depth of about 11 feet and the right abutment treated. Anchor bars are recommended in the foundation, and the abutments and foundation should be grouted.


Conditions expected to be encountered in the tunnel line are summarized in the Plate 3. Water inflow is not expected to be serious. Considerable support may be needed for portion of the conglomerate, where it is weathered near the contact with the agglomerate, and special mining techniques may be needed in this zone to prevent excessive overbreak. Steel and concrete support may be needed in a number of other places but generally the fresh conglomerate and agglomerate should stand unsupported; local areas will require rock bolting. Gunite, with mesh where necessary, is recommended for all exposed parts of the tunnel because of the durability test results, but it may not be needed. Further tests are recommended.

The present location proposed for the machine hall and ancillary excavations appears to be satisfactory but the final location and orientation should be decided after exploratory excavations and drilling have been carried out during construction. Rock-bolting of the machine hall, together with steel and concrete support of a few weak sections, should prove adequate for support purposes. Owing to seepage along fractures a ceiling will be needed; some points of entry of water may have to be grouted. Rock temperatures are expected to be about 82°F.

No special difficulties are expected with the pressure and access shafts.

Concrete aggregate is available from the Sogeri quarry, about 2 miles distant. Fresh agglomerate extracted during mining would probably also be suitable for aggregate but conglomerate or tuff should not be used. Further work needs to be done to locate suitable sand.

The earthquake hazard in the region is not thought to be high; ground acceleration of 0.1 g should be allowed for in design.

Block diagram of Sogeri Ptateau & environs.
Adopted from Stanley & Thompson (1946) with the permission of the Australian Petroleum Campany Pty. Ud.

INTRODUCTION

GENERAL

The increasing population of Port Moresby, the town's industrial expansion and the general raising of standards of living, have necessitated the provision of a new source of hydro-electric power. Investigation has shown that the harnessing of the Rouna Falls, on the Laloki River, is the most economical. The project is being carried out in two The first stage involves the construction of a rock-fill storage dam at Sirinumu, 5 miles south-east of Rouna Falls, to ensure an adequate supply of water for power generation; this part of the project is now nearly complete. The second stage of the scheme includes a diversion weir half a mile above the Rouna Falls, a tailrace tunnel about 2700 feet long, an underground power station at a depth of 500 feet below the weir, and a surface transformer sub-station. Generating plant will ultimately consist of six alternators, five of which are to have a capacity of 30,000 kilowatts, or six times the capacity of the existing hydro-electric station below the Rouna Falls. The sixth alternator will be used as a standby set. The project is expected to meet the requirements of Port Moresby for the next thirty years.

Because of the general instability of slopes and the everpresent danger of rock falls, a surface power station scheme was abandoned in favour of an underground station, for which alternative sites were envisaged. Under one plan, a long low-pressure headrace was to supply water to an underground power station near the Rouna Falls; in the other it was proposed that a vertical intake shaft would service an underground power plant almost underneath the weir site and that a long tailrace tunnel would discharge near the bottom of the falls. The second alternative has now been adopted. The local geography allows for a dynamic head of 500 feet.

LOCATION AND ACCESS

The power generation works of the project will be situated in the Territory of Papua, some 15 air miles northeast of Port Moresby, the administrative centre of the Territory, i.e. at longitude 147°22'26" E and latitude 9°25'28"S.

The Rouna Falls, which form a prominent landmark, are situated 23 miles by road from Port Moresby on the south-western edge of the Sogeri Plateau. The Falls can be approached from the left bank of the river by a good all weather road which primarily serves the inland rubber plantations of the Sogeri Plateau (See Fig. 1).

The right bank of the river is also accessible by a good gravel road which turns north from the main Rouna-Sogeri road just past the bridge over the Laloki River known as the Low Level Bridge. Some distance along this road another road turns westward and eventually leads to a disused saw mill on top of Hombrom Bluff. About one mile and a half from this second junction a jeep track runs southward towards the river.

GEOLOGICAL INVESTIGATIONS

Early investigations of the geology of the Laloki River and its suitability for power generation were carried out by Condon (1949), Edwards (1951), and Gardner and Noakes (1959). Davies (1960a and 1961) reported on a weir site above the Rouna Falls and on conditions for a surface penstock and surface power station below the Falls. Some drilling was done at Sogeri weir site No. 3 and extensive diamond drilling and augering was done to test the foundations for the surface power station, for the penstock and for a possible underground station beneath the ridge west of the Rouna Falls. Davies recorded the presence of a shear extending west from the Falls which made geological conditions for an underground power station in the area unfavourable.

In July 1961 D.G. Moye and J.A.S. McLeod, of the Snowy Mountains Hydro-Electric Authority, inspected the area and recommended the scheme which has now been adopted (Moye and McLeod, 1961).

st Reference: Ovo Agglomerate	East
Tuff Tuff Limestone Straing series Straing	
Basic igneous basement Chert Foult	
	1,1764
gure 2. Schematic Section showing regional geology B.M.R. March 1963. Joseph North:	y of the Astrolabe Range, Papura,
	The state of the s

.

Geological mapping associated with the current project was carried out by P.W. Pritchard and G. Brouxhon, and drill core was logged by G. Brouxhon and L. Hamilton, under the supervision of G.A. Taylor. The geological investigation was under the direction, in consultation with officers of the Commonwealth Department of Works, of E.K. Carter, who visited the project on five occasions. Drilling and water pressure testing was under the supervision of officers of the Commonwealth Department of Works.

E.J. Best measured drillhole temperatures.

TOPOGRAPHY AND GEOMORPHOLOGY

The southern and western margins of the Sogeri Plateau form a deeply dissected and prominent escarpment which rises abruptly from the surrounding terrain to an elevation of 2,177 feet above sea level at Hombrom Bluff. The plateau is broadly basin-like, with gently undulating Across it the Laloki River flows sinucasing in topography. or Mineral DESMARY ng a north-westerly direction. of the Laloki River is apparently The riceOlie red by numerous in the underlying rocks. consequent tributaries, many of which drain the elevated southern margin of the Astrolabe Range. The Laloki River upstream from the Falls has a catchment area of 120 square miles and a mean annual rainfall of 95 inches. The average flow rate for the river is 450 cubic feet per second.

From a geomorphological viewpoint the Laloki River valley can be divided into a lower course and an upper course, with the Rouna Falls as the main nick point in the longitudinal profile. In the four miles downstream of the Falls the river drops 650 feet; it is entrenched in a broad valley bounded on both sides by vertical rock faces, the feet of which are covered with extensive colluvial material. A series of small rapids extends for 2,500 feet upstream from the Rouna Falls. Above this point the river flows sluggishly for much of its course through a landscape that is in a youthful stage of erosion; it falls 250 feet in the 11½ miles of river course from the Sirinumu Dam site to the Sogeri weir site, half a mile above the Falls.

The transverse profile of the Laloki valley downstream from the Falls shows valley—in—valley—erosional forms. This can be seen from the Rouna Hotel looking westwards on to the valley slopes at Hombrom Bluff, where at least two erosional levels can be seen. Another more recent erosional profile can be seen on the right bank of the river downstream from the existing power station. At this point the river bed is separated from the outer wall of the valley by a saddle which runs for a mile along the valley. The edge of the saddle is a convex slope below which a vertical wall drops to the river.

The southern and western marginal areas of the Sogeri Plateau are attributed to the superimposition of more than one cycle of erosion. These are the result of a series of uplifts. The landscape of the lower levels of the valley downstream from the Falls is due to rejuvenation of the river bed by land slides. Large scale slumping of rock masses has taken place in recent geological times.

GENERAL GEOLOGY

LITHOLOGY AND STRATIGRAPHY

The Astrolabe Range, which forms the southern and western flanks of the Sogeri Plateau, consists of volcanic rocks resting on conglomerate. Both these formations overlie an igneous basement rock in which occur roof pendants of sedimentary rocks.

Ignecus Rock Basement and the Eriama Series.

The igneous rock basement occurs widely; it crops out extensively along the southern margin of the Astrolabe Range. Basic rocks are also found well up into the Laloki valley where they form the impressive hills flanking the left bank side of the valley opposite the existing power station. These hills are possibly faulted blocks formed before the deposition of the volcanic rocks.

The igneous rocks have a wide range of composition, from a true gabbro to a granodiorite. In places they show features of sedimentary contamination; they are commonly weathered.

Within the igneous basement are found remnants of folded and faulted sedimentary rocks consisting of limestone, calcareous shale and chert. These enclaves are thought to be roof pendants of the Eriama Series, to which a Cretaceous age has been ascribed. In places the rocks are sheared and metamorphosed by igneous intrusives.

Conglomerate

The conglomerate underlies the impressive sequence of volcanic rocks which constitute the Astrolabe Range. crops out from near the bottom of the Rouna Falls, on the left bank, to a point near the storage pond of the existing . power station. Glaessner (1952) mentions the occurrence of gravel and sand on the right bank of the river below, and to the west of, Hombrom Bluff which he calls the "Siro" In all likelihood these beds of sand and gravel can be correlated with the conglomerate. The contact between conglomerate and basement has been observed at two points; in the Laloki valley due south of the present power station and at the 21-mile post on the Rouna Road. The conglomerate rests on an irregular erosional surface. Because of this irregular contact the conglomerate has a wide range of thickness.

The conglomerate is essentially massive, tabular and unsorted, with a slight preferred orientation of the boulders. The succession is made up of coarse rock components embedded in an arenitic groundmass and bonded by a calcareous cement. The coarser components consist of sub-rounded volcanic and metamorphic rocks occurring in different proportions from place to place. Near the Rouna Falls the coarsest components are much larger than elsewhere up to large boulder size - and are predominantly of volcanic Near the storage pond of the existing power station rocks. a great number of the inclusions are metamorphic rocks. variety of rock types has been recognized in the conglomerate; they include quartz, schist, slate, quartzite, dolerite, basalt and andesite.

The unsorted distribution and heterogeneity of the components suggest that they were transported by mud flows but they may have been deposited from torrential streams carrying heavy loads in suspension. The conglomerate can be regarded as an old valley fill which Recent erosion by the Laloki River has exposed.

Volcanic Rocks

Distribution and origin.

The Astrolabe Range consists of an aggregate of coarsely stratified fragmental volcanic material, known as the Astrolabe Agglomerate, which covers an area of some 64 square miles and is 1000 to 1500 feet thick. The material is The Rouna Falls are located restricted to the Sogeri Plateau. on the south-western corner of this geological and geographic-Overall the plateau is a broad structural basin. al entity. The regional dips observed on the western and southern margins are 5° to 7° north-east and north respectively. This apparent radial dip has probably been caused by recent regional uplift of the marginal areas of the plateau. volcanic rocks consist of tuff and agglomerate. Both are grouped together under the name pyroclastics, the difference between the two being one of grain size rather than The emplacement of the pyroclastic rocks is composition. attributed to the formation of nuces ardentes by voluminous A nuee ardente is a explosive volcanic activity. gas-generating, eruptive avalanche, of which the heavy fractions of incandescent debris follow the depressions on the flank of the volcano and spread over the adjacent terrain. The lighter fractions of volcanic gases, sand, dust and hot air whirl upwards. Part of the agglomerate of the Sogeri Plateau was probably emplaced below water as in places it The nuee ardente has been re-worked by running water. origin of the agglomerate, and its redistribution, accounts for the wide range of physical properties of the rock.

The agglomerate consists of angular to sub-angular fragments of volcanic rocks. The fragments range in size from volcanic dust to rock boulders up to 8 feet across. The average size of the components is 2 to 6 inches in diameter. The coarse fraction of the agglomerate is composed of vesicular basalt, massive basalt and augite andesite; vesicular basalt is the most common. The fine fraction consists of small rock particles, glass and individual crystals; the three commonly occur together. According to grain size, the fine fraction is called ash, tuff or lapilli.

The Astrolabe Agglomerate is sub-horizontally bedded. The beds range in thickness from fine laminations for the finer grade material to more than fifteen feet. The proportion of coarse to fine material varies from place to place, laterally as well as vertically. The matrix generally accounts for 30% to 60% of the rock.

No interbedded lava flows were observed in the area investigated although flows are reported to occur on the Jawarere road and in a creek bed east of Eilogo plantation. (Davies, 1960b). During surface mapping two tuffaceous horizons of some importance were observed. One occurs below the Falls, where it is 10 feet thick, jointed and fine grained; it is at the base of the agglomerate. The transition from conglomerate to tuff is sharp and clear while the contact between tuff and agglomerate is irregular and gradational. The second occurrence is above the Rouna Falls, near survey peg 13, at an elevation of 1463 feet. Here, the tuff band is 4 feet The same bed is also found on the other side of the river where it thins out westwards and passes laterally into Both tuff beds have been preferentially eroded agglomerate. and form elongated caverns with overhanging agglomerate. Other minor tuff bands are common in the agglomerate. are too small to warrant a detailed description. Some of them show graded and current bedding.

The tuff bands are not reliable marker beds because they commonly pass laterally into agglomerate. In drill hole R19, agglomerate overlies the conglomerate and there is no evidence for the ten-foot thick bed of tuff that crops out only 300 feet away.

STRUCTURE

Joints and Fractures

Joints are common in the agglomerate. They have determined the characteristic shape of many boulders and outcrops. The spacing between the joints is notably different below the Falls to that above it. Above the Falls extensive sheet jointing predominates; below the Falls jointing is essentially columnar. In both cases, two sets of near-vertical joints are mutually perpendicular to one another. Horizontal partings appear to result from the weathering of weaker tuffaceous beds. Joint measurements of dip and strike

were taken above the Falls. One set of major vertical to steeply dipping joints crosses the river bed obliquely at between 3150 and 3570 magnetic. The other vertical to steep joints are secondary; they trend parallel to the river where they form cliff faces on many outcrops. joints commonly terminate at depth at an underlying Spacing between the joints varies from tuffaceous bed. place to place but generally exceeds 10 feet and many intervals are 100 feet or more. Gaping is common in the primary joints but the gap is generally closed at shallow depths and in places joints are tight a short distance along strike. Gaps more than six feet wide are common, particularly where large masses of rocks are exposed in cliff faces well above At river bed level the joints are fairly tight the river. and have a low permeability because they are lined or filled with clay material. Secondary joints in the river bed are The formation of joints and fractures in the uncommon. agglomerate has been described by Gardner and Noakes (1959): "This cracking is in response to relief of stress within the rock by the natural process of 'unloading' or excavation by erosion; under tension, the rock tends to fail along widely spaced joint planes or incipient joint planes which become open cracks in the vicinity of free faces. advanced stage of disintegration produces loose rectangular blocks of agglomerate which part along near vertical cracks and horizontal planes of bedding."

Shear Zones

Four shear zones have been identified. Three of them can be seen along the Rouna Road; the other occurs near and west of the Rouna Falls. They were all observed in the agglomerate.

The most prominent one is found on the Sogeri Road from the second 'U' bend past the Rouna Hotel to a point 1200 feet farther along the road towards Sogeri. It looks like a complex faulted zone and consists of several open fractures 6 inches to 9 feet wide, filled with crushed rock material. Ten pronounced fractures occur in the 1200-foot stretch of road; many strike south-west and dip steeply to the south-east. Eight of the fractures occur just south of the look-out point over a distance of 170 feet.

In this zone, also, the rocks are cut by a system of joints spaced at intervals of 3 to 10 feet.

The faulted zone is in line with the deep, wide gully on the right bank below the Falls and the shear zone at the bottom of the Falls.

The shear fractures have irregular, curved and weathered wall-like faces which are distinctly banded along the sides. The fill material consists of red, gouge-like earth around boulders of agglomerate in various stages of weathering. Some of the boulders and cobbles of agglomerate show concentric weathering structures and others are closely jointed along planes parallel to the faces of the fracture. The presence of sub-horizontal striations on the wall faces indicates that some movement has taken place.

Two of the other shear or fault zones are also exposed on the Sogeri Road. One is located on the first 'U' bend past the hotel; the other is half a mile farther along the road towards Sogeri. They are denoted by the letters 'B' and 'C' in Moye's (1962) report. Both shear zones are characterized by low-angle shear joints.

The first zone on the 'U' bend, is indicated at road level by a striated tabular face or floor of agglomerate. The striations strike O42° magnetic. Stepped pluck-marks on the striations indicate that movement has taken place in a north-easterly direction; that is towards the Falls.

The second is a fault and dips 28°W, strikes 355° and has a crush zone up to 27 inches wide. The footwall is irregular and wave-like, probably due to the formation of large mullion structures.

Neither of the shear or fault zones have been traced any distance from the road owing to poor exposure, but Moye connects his fault zone B with the shear zone described below.

The fracture or shear zone west of Rouna Falls (described by Davies and by Moye) is exposed 400 feet south of the intake of the flume line for No.1 power station. A broken zone 30 to 35 feet wide and with a general east-west trend, is bounded by steep rock faces showing sub-horizontal mullion structures. The northern (footwall) face strikes 266° magnetic and dips 63° south. The southern boundary trends 275° magnetic and dips 45° south. Mullion structure plunges 6°east.

Both boundaries of the broken zone are marked by a zone 4 to 6 feet wide of intensely jointed, sheared and weathered agglomerate. Elsewhere in the broken zone, the surface rocks are fairly fresh and moderately jointed. The zone therefore appears to be a zone of moderately fractured rocks bounded by two strike-slip shears a few feet wide, rather than a 35-foot wide shear zone.

The tuff band which intersects the northern boundary of the fracture zone shows little displacement.

SLOPE STABILITY AND WEATHERING

Slope stability is a function of the rate of erosion by the river and retreat of the valley slopes; the accumulation or disposal of displaced rock material is determined by the slope gradient. Destruction of existing surfaces is commonly triggered by saturation of the ground during prolonged periods of heavy rain or by earth tremors, and the presence of joints or of weak tuff bands control in part the location and magnitude of slope failures.

In a region of such youthful topography as that of the Rouna Falls mechanical erosion is active and slopes rapidly become unstable. The vertical cliff faces of exposed rock below the Falls have been produced by rock failure along joints, and many of the ridges and spurs in the Laloki valley below the Falls are considered to have been formed by major landslips in Recent geological time. However, only one recent (post-war?) scar, which is fairly small, has been noted and the failure of substantial rock faces is thought to occur at intervals of decades or centuries, rather than at intervals of years. alcve the proposed tailrace tunnel outlet must be regarded, in the geological sense, as unstable and subject to failure above river level, but no evidence has been found that failure is likely within a period of time that is significant for the proposed hydro-electric project.

Where cliffs have retreated away from the river the lower part is covered by a thick mantle of scree. The cliffs along the river have dumped shed material into the river.

Above the Falls slopes are more gentle and are largely covered by soil and rock debris (up to 15 feet thick), including large boulders of agglomerate. On the right bank, particularly, rock benches, some strewn by loose boulders which are commonly more or less in place, have been formed by well-developed open horizontal joints that appear to be lacking below the Falls. Failure of substantial masses of rock above the Falls is not to be expected; slope modification takes place largely by chemical destruction of the matrix of the rock and by wasting of soil, thereby releasing embedded boulders. The numerous boulders in the river channel and perched on slopes and benches show that this process is active.

In the absence of steep slopes the agglomerate weathers to a red clay. The tuffaceous matrix weathers first, and is followed by the alteration of the coarser volcanic components. Along the Sirinumu Road cuttings in agglomerate show a homogeneous lateratic clay grading downward into weathered agglomerate that shows relict textures of coarse fragments embedded in a red clay (decomposed tuffaceous matrix).

GROUNDWATER

Groundwater moves through the soil, along the soil-rock interface and along joints and fractures in the underlying rock. Most of the groundwater discharges finally into surface streams by migration through the soil, along the soil-rock interface and in the zone of circulating water above the static water table. As joints tend to close abruptly at short depths below surface most of the groundwater movement is within a few tens of feet of the surface. Groundwater in fractures has, however, penetrated at least 500 feet below the surface.

Springs on the left bank of the river below the Falls are considered to be mainly due to near-surface water movement, particularly that along the soil-rock interface.

Water movement in the rock masses is primarily along joints, fractures and faults. Fresh, unbroken rock has negligible porosity and permeability; even vuggy agglomerate lacks permeability because voids are generally not interconnected. Some movement may take place through the matrix and along grain or fragment boundaries of weathered

rock, particularly conglomerate. Owing to weathering of the wall rock of fractures, joints and faults, with the consequent formation of clay, even these channelways tend to become sealed at depth; as a result water loss in drill holes at depth, even in broken zones, is small.

The water table level is generally within a few feet of the surface and slopes normally to stream level at a slightly shallower gradient than the land surface. In the spur west of the Rouna Falls the water table falls sharply behind the cliffs below the Falls, indicating fairly free drainage to the cliff faces. The small flow of water from the cliffs indicates that no significant leakage from the Laloki River above the Falls occurs through the ridge.

ENGINEERING GEOLOGY

SEISMICITY

A comprehensive discussion on seismic risk within the Territory of Papua and New Guinea is contained in a current Bureau of Mineral Resources Report (in preparation) titled "Earthquake Activity and Seismic Risk in Papua-New Guinea" by J.A. Brooks.

The report discusses seismic zoning in different regions of the Territory and generally indicates that the Port Moresby area is one of fairly low risk.

The epicentres of most earthquakes felt, at least in recent years, in the Port Moresby - Rouna - Sogeri region have been located either to the north-east, in the vicinity of Popondetta and Kokoda, or to the north-west, in the Eastern Highlands and adjoining districts where large, deepfocus earthquakes have been recorded.

There are no historical records of damage to structures in the Port Moresby - Sogeri region by seismic activity. Recently, following the installation of highly sensitive recording equipment at the Port Moresby observatory, extremely small earthquakes have been recorded.

Recommendations that structures in the Port Moresby area be designed to withstand lateral forces due to ground acceleration of 0.1 g are contained in section VI of Brook's report. This precautionary measure is currently adopted by the United States Bureau of Reclamaticn in the design of dams in earthquake areas.

15.

PROPERTIES OF THE ROCKS

Agglomerate

Being a heterogeneous rock the properties of the agglomerate, even when fresh, display a wide range. It is, however, a massive rock and generally lacks pronounced bedding; it therefore has few prominent sub-horizontal planes of parting apart from widely spaced joints.

Mechanically, fresh agglomerate is only moderately strong, probably largely due to a weak matrix and to poor bonding between the inclusions of lava (which are very strong) and the matrix. Laboratory testing of the compressive strength of fresh agglomerate gave results in the range 10,340 to 4,200 pounds per square inch (see Appendix 3). Owing to the weak bond that commonly exists between the inclusions and the matrix the tensile strength of fresh agglomerate is very low. At the Sirinumu Dam some of the agglomerate appears to have been water-sorted after extrusion; this material is particularly weak in cohesive strength. Similar material may be encountered in the Rouna project.

The agglomerate appears to be fairly stable chemically but exposed faces show that the matrix weathers more readily than the inclusions. The wetting and drying tests reported in Appendix 3 suggest that the agglomerate would break down fairly quickly (although it appears to be more durable than the conglomerate), but no accurate guide exists to translate the results of the tests to durability under natural conditions. It is suggested that further durability tests should have as controls specimens of, say, granite, basalt, quartzite and crystalline limestone to provide a comparative figure.*

Examinations of the Sogeri quarry and road cuttings showed that weathering was no more than skin deep after up to 15 years exposure; this evidence suggests that fresh agglomerate is chemically stable, but does not provide information on resistance to erosion. Tests of erodability of the agglomerate, tuff and conglomerate should therefore also be undertaken.

The agglomerate is impermeable and all groundwater movement has taken place along joints and fractures.

^{*} It is also suggested that wetting and drying may not be the appropriate test as rock in the tunnel would probably always be wet. Further, drying by gentle boiling introduces an element - differential thermal expansion of minerals - that would not be present in the tunnel.

Behaviour on impact shows that the rock is extremely brittle. At the Sirinumu Dam, where the rock is in general weaker than in the Rouna area, the agglomerate tends to break into small pieces on blasting and extensive shattering of adjoining rock commonly takes place. In fresh agglomerate a fair measure of control of line of breakage has been achieved, but severe overbreak commonly occurred in weathered, or otherwise weak, rock.

The agglomerate rock mass generally has widely spaced joints and these tend to be tight at depth. However it has been severely stressed and contains numerous irregular fractures and some shears and faults along which groundwater has moved to a considerable depth (below tunnel level in places). Some degree of weathering has generally occurred along these water-bearing fractures - ranging from superficial oxidation to the formation of thick clay seams.

Weathered agglomerate, which can generally be recognized by the brownness of the rock, is considerably weaker and less cohesive than fresh agglomerate; it would generally require slight to complete support in excavations, depending on the degree of weathering. Where groundwater has severely affected the agglomerate complete decomposition to a greasy plastic clay has taken place.

Tuff

Tuff occurs as widely spaced bands and lenses from inch to about ten feet thick and commonly grades into fine-grained agglomerate. The mechanical properties of the tuff are generally similar to those of the agglomerate but are more uniform owing to the lack of inclusions. The tuff is also generally weaker than the agglomerate and tends to weather more readily. Exposures of tuff are commonly more deeply eroded than those of the agglomerate, and weathered tuff tends to be friable. The end product of complete weathering of tuff is, as for agglomerate, clay. Fresh tuff is essentially impermeable.

Wetting and drying tests (Appendix 3) indicate that tuff is probably less durable than the agglomerate.

Conglomerate

The inclusions in the conglomerate in the Rouna-Sogeri area are generally of volcanic rocks which are strong where fresh but weather in a manner similar to the inclusions in the agglomerate; a few schist inclusions, which

are weak, have been observed. The inclusions are generally well-rounded but poorly sorted; they range in size up to at least 30 inches across. The bond between the inclusions and matrix is commonly weak. In general, fresh conglomerate appears to be slightly weaker than fresh agglomerate, and to be less durable under wet and dry conditions.

The matrix is coarse to fine-grained and consists largely of weathered fragments of lava and tuff and metamorphic rocks, giving a greywacke matrix. As in the agglomerate, quartz is rare and feldspar is abumdant; as a result the matrix, on weathering, tends to decay with a breakdown both along grain boundaries and throughout the The upper part of the conglomerate was deeply, but irregularly, weathered before the agglomerate was emplaced, and very weak, thoroughly weathered, conglomerate is consequently to be found below strong agglomerate. In general, also, the conglomerate, except near present exposed surfaces, is fresher and stronger at distance from the agglomerate conglomerate contact. However it is not expected that the tunnel line, where it passes through conglomerate, will be farther than 120 feet vertically from the agglomerate-conglomerate contact and probably only local patches of fresh conglomerate will be encountered.

In the weathered zone the conglomerate commonly has a greasy feel, probably owing to the partial breakdown of ferro-magnesium minerals into chlorite. The worst material encountered, in drill hole R28, is almost completely lacking in cohesion and would require special mining techniques involving immediate support to avoid excessive overbreak. The strongest conglomerate observed would probably not require support, but gunite lining would be advisable.

Greywacke occurs as irregular beds and lenses in the conglomerate succession. It is similar to the matrix of the conglomerate but lacks volcanic pebbles and boulders, and its mechanical properties are similar to those of the conglomerate.

ENGINEERING ASPECTS OF STRUCTURE

Agglomerate - Conglomerate Contact

This contact is an erosional surface, the geometry of which is not known. The surface on which the agglomerate was deposited may have been extremely irregular and it is therefore not possible to predict the relationship of the contact to the tunnel line. None-the-less the exposure of the contact in the cliff west of Rouna Falls and the intersections in drill holes R19 - R28 give an apparent dip of $10 - 18^{\circ}$ upstream along the tunnel. Further, R24, although continued 175 feet below the tunnel invert, did not intersect the conglomerate. Probably, therefore the conglomerate does not extend along the tunnel line more than about 1000 feet from the outlet portal. However if the surface is very irregular it could be intersected at several places beyond R19; is not thought likely.

As the top of the conglomerate tends to be very weathered and weak both in compressive strength and cohesive strength, wherever the base of the agglomerate is approached from below very difficult mining conditions can be expected, with very serious overbreak and serious weakening of walls by explosives. Close support right up to the working face may be needed. Water pressure tests, however, indicate that large volumes of water are not to be expected.

Bedding

Bedding is generally poorly-developed, particularly in the conglomerate, and is not expected to have an important effect on the engineering properties of the rocks. Tuff bands may, however, provide weak layers in the agglomerate.

Joints

Earlier investigations have revealed that joints, though represented at the surface by wide clefts or soil—filled fissures, are generally closed at very shallow depths. At the level of the power station and tailrace tunnel most joints are completely tight but some have acted as channels for groundwater movement; where groundwater has moved along joints the walls of the joints are generally slightly to moderately weathered and some are clay—lined or clay—filled.

The tight joints should have little effect on the strength of the rock in which they occur or on the stability of openings, but in broken ground any clay-lined joints may provide slip-out planes for blocks of broken rock, which may have to be controlled by rock bolting. It would be prudent to orient structures so that major joints do not run parallel to the walls as this may result in overbreak or structural weakness.

Fractures

Drill core is generally broken at intervals of tinch to 2 or 3 feet. Apart from joints, faults and shears, these fractures are generally irregular and are apparently due to tectonic stressing of the essentially brittle agglomerate and conglomerate. They are generally not planar and owing to the interlocking of the blocks produced are not expected to produce serious structural weaknesses. Many of the "broken zones" recorded in drill logs probably represent local fracturing near the intersections of joints and faults. Rock bolting should effectively support fractured rock where the rock is not generally weathered. However fractured rock should be gunited in the tailrace tunnel to prevent weathering and erosion along the fractures (see p.27). Where the fractured rock is weathered its strength may be seriously impaired. Groundwater movement is greater in fractured ground than in unfractured rock but water movement even in the worst zones of fracturing is not expected to present any serious water-flow problems.

Shears and Fracture Zone

The probable shear zone near the Rouna Falls, shown by Davies (1961) in Plate 2 and discussed by Moye (1962), appears to be a zone of strong fracturing within two shears, marked at the surface by shallow-dipping slickensides and comminution. The surface evidence shows that the northern shear dips 630S while the southern shear dips about 450S and that movement was almost horizontal. Between the shears the rock is fairly strong and closely jointed but is not sheared. At tunnel level no major shears were encountered but several minor shears with weathering and some clay probably mark the limits of the zone. In between, the conglomerate is extensively, and in places closely, fractured, but is fairly strong and should only require rock-bolting for support. zone should be regarded as a zone of fracturing between

irregular shears. Displacement on the shears does not appear to have been large.

Vertical drill hole R21 is believed to have passed for about 200 feet through a zone of weathered and broken rock associated with a fault that strikes 0740 magnetic and dips 880N. A cliff face of this orientation stands only 18 feet south of the collar of R21 (see Plate 1 and Fig.4). The persistence of the fracturing in R21 suggests a weathered and broken zone up to 5 feet wide, provided the hole did not deflect along the structure; such a wide zone is more likely to be due to a fault than a joint. However R23 did not reveal any significant shear or fault zone along strike, so possibly R21 intersected the junction of two joints.

On the present information it should be assumed that the structure intersected is a fault filled with material of very low strength, and the power station should be sited at sufficient distance from it to avoid undue stress concentration in the southern wall of the station. Further information on the nature of the structure should be obtained during construction — the access tunnel will cut across it.

WEIR SITE

The diversion weir proposed consists essentially of a concrete sill about 10 feet high from which rise two concrete piers and abutments to carry radial gates of span 44 feet and height 30 feet. This design is necessary because of the high flood discharge of the Laloki River. In this type of structure a severe sliding force is placed on the foundation of the weir, and the absence of low angle joints or fractures is of vital importance.

The weir will be sited in agglomerate which is exposed in the river bed and on the right abutment. Soil cover is slight on the left bank as is indicated by several costeans and auger holes (Plate 4); the costean nearest the axis of the weir revealed an average depth of soil of about 2 feet, underlain by weathered, but fairly strong, jointed agglomerate. Drill hole R25 tested the left abutment at depths below the surface of from 12 to 33 feet; strong, sparsely fractured and jointed, rock was encountered below the abutment and beneath the river. Extensive broken ground was intersected in R25 at hole length 320 to 385 feet. This is 180-280 feet below the right bank of the stream and about 30 feet upstream from the axis of the dam.

Drill hole R30 was drilled in the right abutment to check whether the broken ground in R25 was related to two linear soil-covered areas, one parallel to the river and above the right abutment, and the other on the right bank in line with the axis and striking at 65° to the course of the river. No substantial unsound rock was encountered in the drill hole or in R31, which tested the weir foundations. The broken ground encountered in R25 will therefore have no effect on the soundness of the dam foundations.

The depth of soil and of weathered mock below the linear soil-covered area above the right abutment has not been established. It will be necessary to excavate all unsound material and replace it with a concrete plug large enough to support the right abutment and to prevent any water leakage. As the soil-covered area is 40 to 60 feet above the river bed level very little treatment may be necessary.

The left abutment should also be stripped and any joints cleaned out by sluicing or other methods and grouted up. It may be necessary to ensure that the upper 10 to 15 feet of the rock is sound by test drilling.

An attempt was made to test the soundness of the weir foundations by a grid pattern of vertical holes but these were not successful owing to the instability of the drilling platform which prevented satisfactory core recovery. In general the core was fresh and strong from the bed of the river down (see logs of holes A3 - A6 and B3 - B6, Appendix 1). A cavity was encountered in B3 from 4 - 5 feet, and tuff occurs in A4 from 5 to 11 feet and B6 from $8\frac{3}{4}$ to $10\frac{1}{4}$ feet. The cavity may be due to a horizontal joint. It may be necessary to remove the tuff and any weathered rock below the cavity; provision should therefore be made for stripping of the bed of the river to a depth of about eleven feet. Further probing by diamond drill to ensure that no other joints occur at shallow depth in the foundations of the weir should also be carried out during construction, and the foundations grouted to a depth of at least 20 feet. holes should be oriented to intersect known joints. view of the low mechanical strength of the agglomerate and the stresses to which it may be subjected during high flood it is considered wise to set tie rods in the foundations. An opinion as to the length of tie rod needed is beyond the competence of the authors.

Agglomerate from Sogeri quarry is being used for construction purposes at the Sirinumu Dam and the material presumably has an acceptably low reactivity with concrete. Despite this, several samples of rock from the foundation of the weir should be tested for reactivity to ensure that a satisfactory bond will be obtained between the foundation rocks and the concrete sill.

A few yards downstream from the dam several joints that cross the river obliquely have been eroded out by water action. They may fall within the area of the sill, in which case they would be treated adequately during preparation of the foundation of the sill. If however, they occur a short distance downstream of the sill they should be plugged to avoid turbulence and possible damage to the downstream toe of the sill.

No difficulty should be experienced with the take-off works - intake, settling tank and head works of the pressure shaft. All will have to be excavated from weathered to fresh rock and as load factors are low and the intake works will be completely lined no difficulties should be experienced even if some deeply weathered zones are encountered.

The slopes on either side of the weir site are fairly gentle and no difficulty is expected from falling boulders near the weir and intake works. Some boulders on the existing slopes may have to be removed. Provision should be made to prevent large boulders brought down the river by saltation during floods and floating debris from lodging in, or damaging, the weir or intake works.

TAILRACE TUNNEL

Plate 2 shows a summary of the available geological information along the line of the tailrace tunnel. The position of the tailrace tunnel is provisional, as the outlet portal may require variation to afford maximum protection from falling boulders from both sides of the river and from blocking of the outlet by river-borne boulders at times of high flood. The location of the power station may also have to be varied in the light of knowledge gained during construction of the tailrace tunnel or the access shaft.

This is discussed elsewhere. The section through the tailrace tunnel is based on a drawing provided by Mr. J.B. Fraser, in which the position of the outlet portal as shown in Works Department Drawing HC62/197/B was moved downstream 40 feet. In the section all drill intersections within about 50 feet of the plane of the section are shown with an unbroken line; other information is presented within a dashed representation of the drill hole position.

In Plate 3 uncorrected water pressure tests (i.e. gauge pressures and water consumption in gallons per minute per foot of test section) and an interpretation of the most probable position of the conglomerate - agglomerate boundary are given. It is emphasized that the position of the agglomerate - conglomerate contact may be very different from that shown as the surface is probably not planar (see p.16). In addition the expected groundwater conditions and support requirements are set out; the interpretations are subject to a number of qualifications which are discussed below. Full geological logs and water pressure tests results are set out in Appendices 1 and 2.

Groundwater

In only a few of the holes were applied pressures adequate to produce an effective pressure in the test section equal to the theoretical pressure exerted by the groundwater. Possibly greater flows would have been obtained with higher pressures but the results are considered to give the correct order of water leakage.

During drilling some anomalous static water levels were measured - in some holes the water table was apparently many feet below river level. Further, the water It is concluded level dropped as the hole was deepened. that the depth readings represented the difference between the hole volume and the volume of the drill rods. Possibly some sealing of fractures in the rock drilled, by fine products of drilling, made the holes temporarily impermeable. Subsequent readings gave water levels consistent with a normal piezometric surface. Tests were also made, as suggested by Moye (1962), on 7th June 1962 to establish whether the holes were watertight by filling the holes with water and noting the time for the water level to return to the static level. Results were as follows:

R.19 Vertical holes

Static water level 283 feet below natural surface.

Natural surface R.L. 1423.

Water level raised to 185 feet by pump.

Level dropped from 185 to 283 feet in 4 minutes.

R. 20

Drill hole blocked by caving; could not measure water level.

R21. Vertical hole

Static water level 49 feet below natural surface R.L. 1458.76. Static water level 1409.76.

Water level raised to natural surface by pump.

Water level dropped from top of hole to:

	<u>Time</u>
10 feet	3½ minutes
15 feet	6 minutes 10 seconds
20 feet	11 minutes 25 seconds
30 feet	14 minutes
35 feet	19 minutes
40 feet	24 minutes
45 feet	44 minutes
47 feet	120 minutes

R.22 630 Slope hole

Static water level 7.8 feet below natural surface.

Natural surface R.L. 1423.9.

Static water level raised to natural surface by pump.

Water level dropped from top of hole to:

	<u>Time</u>
4 feet	$\frac{3}{4}$ minute
6 feet	1 minute 5 seconds
7.8 feet	3 minutes

R.23 710 Slope hole

Static water 92.5 feet Slope distance below natural surface.

i.e. 87 feet vertical distance.

Natural surface R.L. 1494.12.

Water level pumped to top of hole.

Water level dropped from natural surface to:

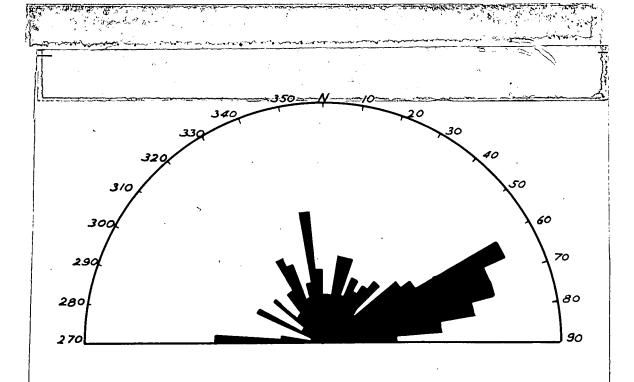


Figure 3. Joint rosette, showing frequency of joint directions

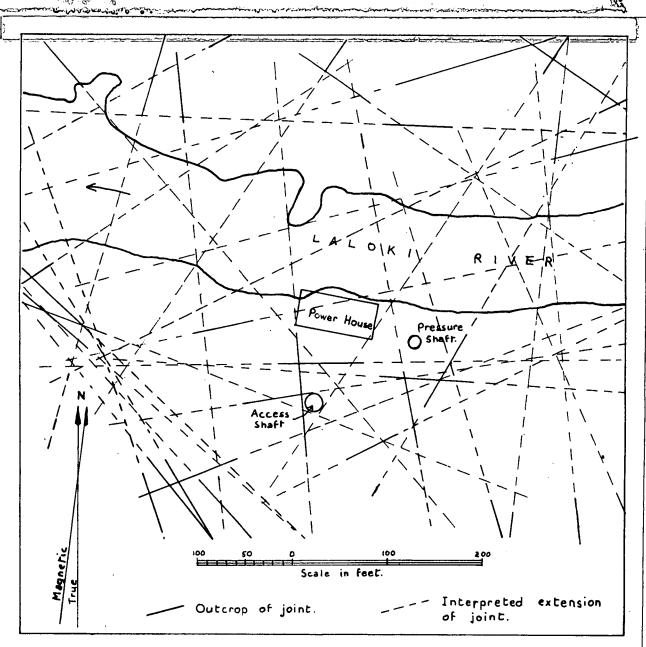


Fig. 4:- Location of underground power station in relation to joints at the surface.

25.

O

					Time
20	feet			3	minutes
40	feet			6	minutes
60	feet			9	minutes
80	feet			26	minutes
90	foet			40	mimites
92	feet	: <u>1</u>	inches	15!	5 minutes
92	feet	7	inches	4	hours.

R.24 74018' Slope hole

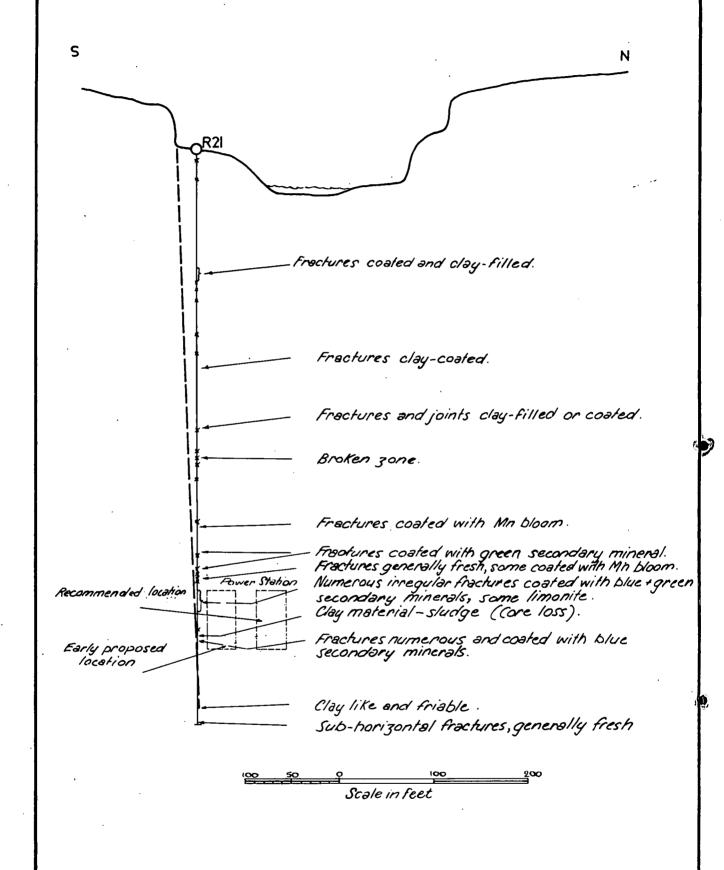
Static water level 21 feet below natural surface. Natural surface R.L. 1417.2.

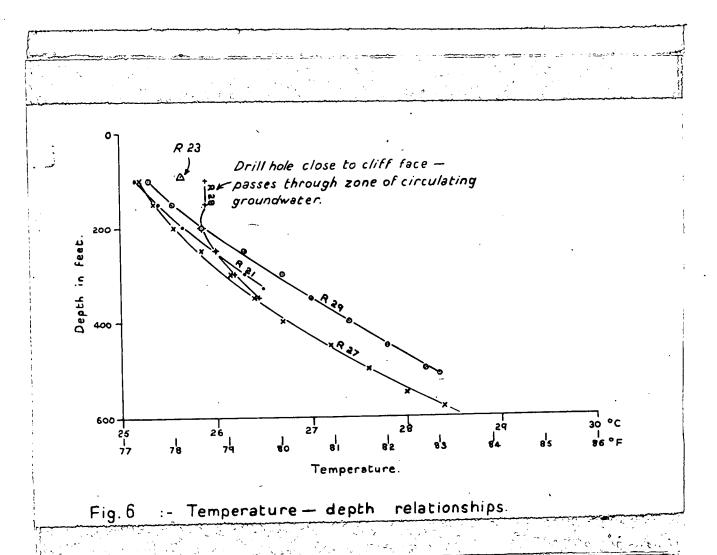
Water level could not be raised by pumping. No return water was obtained when drilling this hole.

The results indicate that near the surface the agglomerate is very permeable i.e. that groundwater can move freely along fractures. At the level of the tunnel, however, the water-pressure tests indicate that permeability is low, even in the fracture zone tested by R26 and R28. Because of the possible pugging of fractures in drill holes, and the opening of fractures along the tunnel line that might be expected as a result of blasting, inflow of water into the tunnel may be considerably greater than that to be expected from the water pressure tests. Wet conditions can be expected in many places but water inflow should not present any serious difficulties, nor should groundwater pressures materially affect the stability of openings.

The piezometric surface above the tunnel line west of the Rouna Falls shows that drainage occurs freely to the cliffs below the falls. However the lack of substantial spring action and the low yield of water (at low pressure) from drill hole R11 prove that there is no significant leakage from the Laloki River above the falls through the spur of the cliffs below the falls, and that the fracture zone does not behave as an aquifer. Should, however, the fractures below the river, intersected by R2O, persist as permeable zones to tunnel level (this is considered unlikely), substantial inflow of water invo the tunnel may occur.

Intersection of 88° dipping fault on joint by drill hole R21




Figure 5.
To accompany Record 1963/76

B.M.R. March 1963

Mining Conditions and Support Required

As bedding planes and sub-horizontal joints are widely spaced they are not expected to result in serious overbreak during tunnelling, but the brittle nature of the agglomerate, with poor bonding in places, and the weak cohesion of the conglomerate may result in substantial Drill hole R28 shows that in places over break in places. at least 20 feet of the upper part of the conglomerate, which is severaly weathered, has extremely little cohesive strength; if this material occurs widely at the top of the conglomerate serious difficulty may be experienced in preventing overbreak as the conglomerate - agglomerate contact is approached; further, mining techniques may have to be adopted that provide immediate and total support It should be noted that the right up to the working face. uppermost conglomerate in R19 is much stronger than in R28 but up to 4 feet of core was lost.

The behaviour of the agglomerate in blasting is In fresh agglomerate little referred to on p.16. Moye's suggestion, that drilling difficulty is expected. at close centres to effect smooth-wall blasting be adopted Locally substantial overbreak during mining, is supported. will occur where joints, faults or shears intersect at Rigorous inspection of walls and unfavourable angles. backs should be made after each round is fired. weathered agglomerate conditions will be worse and light charges and burnt cuts should be used. The conglomerate is expected to behave in a somewhat similar manner to the agglomerate as both rocks contain strong inclusions set in Mining will mainly be in weathered a weaker matrix. to slightly weathered conglomerate and infairly fresh agglomerate; mining conditions will be worse in the Very weathered conglomerate, such as in R28, conglomerate. Breaking will may have to be mined without blasting. normally occur around boulders in the conglomerate rather than across them unless smooth-wall techniques are used; therefore where boulders are large the falling out of boulders will result in overbreaking and projecting boulders will need secondary drilling and blasting.

It is understood that it is proposed to drive two short experimental tunnels, one in agglomerate and the other in conglomerate, to determine mining conditions. It is suggested that the tunnel in the conglomerate be as near as possible (but not closer than 20 feet) to the agglomerate - conglomerate contact. Possibly the tunnels could be sited so that they could subsequently be used as explosive magazines. During the experimental tunnel-driving close attention should be given to a possible relationship between drilling conditions and rock behaviour on blasting as it may, with experience be possible to gauge explosives and support requirements from the jack-hammer drilling.

Lining

In Plate 3 provision is made for lining with gunite and mesh all that part of the tunnel not supported by steel or structural concrete. This is because of the apparently poor resistance to wetting and drying shown by durability tests (see Appendix 3). Additional tests, as recommended (see P.15), may indicate that the results of the tests to which the agglomerate, tuff and conglomerate specimens were subjected indicate good durability. If this is so a considerable saving could be effected in tunnel protection. It is expected that weathered agglomerate, tuff and conglomerate will need surfacing to prevent erosion and fretting.

In the early stages of power generation, before the station is developed to full capacity lining of only the lower part of the tunnel may be necessary.

As the groundwater head will be about 500 feet over much of the tunnel guniting will not be possible where there is any significant water inflow. Such areas may require grouting before the gunite is placed. Minor seepages could probably be temporarily controlled by plugging of fractures with burlap, or wooden wedges, and mesh and gunite then affixed. In all wet areas relief holes should be drilled through the gunite into the rock to allow escape of groundwater. The relief holes should be designed to intersect known fractures.

POWER STATION

The power station will be entirely in agglomerate and tuff which is generally fresh to moderately fresh, and therefore fairly strong. Core specimen Nos. 7-Q-52 to 56 and 7-Q-74 to 78 (Appendix 3) are from within, or near, the provisional machine hall site and have ultimate (static) compressive strengths of 4,200 to 9,230 pounds per square inch and Young's modulus of 0.5 to 1.6 x 10⁻⁶ pounds per square inch (some higher results probably essentially represent the strength of inclusions rather than the rock). No drill core was lost within the proposed site of the power station in either of the holes into the area (R22 and R23). Some fractures and joints are weathered and a few are clay-coated or clay-filled. Core pieces ranged in length from fractions of an inch to 30 inches.

Location

Drill hole R21, the first hole to test a possible site for the underground power station, encountered very broken and weathered agglomerate from 350 to 550 feet. the collar of the hole is only 18 feet north of a cliff face that dips north at 88° it appears that the cliff represents a fault plane, the downward extensions of which was intersected by the drill hole. A plot of the postulated fault and the intersection of poor ground in R21 (Figure 5) suggest that the fault zone is about 5 feet wide. hole R23, however, does not show any significant broken ground where it cuts the line of strike of the fault; possibly, therefore, the poor ground in R21 is at the intersection of two major joints rather than part of a fault It would, never-the-less, be prudent to site the machine hall at sufficient distance from the 075° striking structure to avoid any weakness in the southern wall.

Drill holes R22 and R23 were designed to test a block of ground at least 30 feet north of the projection of the fault to R.L.950; they indicate acceptable rock conditions. The information they have supplied is, however, inadequate to fix a firm site for the power station, and additional testing will be needed during construction.

This should be done from an underground site. The foot of the access shaft would be a very suitable location for a drill site. This would require that the access shaft be excavated in advance of the tunnel line, and may not be practicable. The alternative appears to be to drive the tailrace tunnel to within, say, 200 feet of the presently-proposed machine hall site and to advance from that point with a smaller exploratory tunnel, simultaneously drilling to test the walls, roof and ancilliary works of the machine hall.

When selecting the site for testing by drill holes R22 and R23 consideration was given to the location and attitudes of joints at the surface, and the presently-proposed location appears satisfactory from that viewpoint (see Fig. 4). As, however, the joints are only known to dip about vertical and their persistence at depth is not known their relationship to the power station site can only be indicated very roughly.

Orientation of Machine Hall

A study of surface joint directions — see joint rosette (Fig. 3) — indicates that the best direction for the long axis of the machine hall is about 120°(i.e. 113° magnetic) — an angle of about 20° to the river near the weir site. There will be ample opportunity to make a much more complete study of joint directions during excavation of the tailrace tunnel, on which to finally determine the orientation of the machine hall.

Shape of Machine Hall

Moye (1962) has discussed the strength of the agglomerate in relation to likely stresses around a machine hall and concludes that the rock is sufficiently strong to enable an underground power station to be built. In the absence of information on horizontal tectonic stresses and in veiw of the fairly small safety margin between maximum possible stresses and minimum rock strength (both compressional and tensional), the designed shape of the machine hall should be kept as simple as possible.

Groundwater

The maximum loss below 400 feet depth in drill holes R21, R22, R23, R27 and R29 during water pressure testing was 0.2 gallons per minute per foot (in R22 at 60 pounds per square inch gauge pressure). Leakage at a comparable rate from a persistent fracture or joint in the roof or wall of the machine hall would produce wet conditions, but unless permeable fractures are much more numerous than the drill core indicates no serious water inflow is expected. Inflow could be substantially reduced by grouting of the larger water paths.

As seepage and dripping from the roof is to be expected provision should be made for a suspended ceiling, as recommended by Moye.

Mining Conditions are expected to be similar to those for the agglomerate in the tailrace tunnel. Smooth-wall blasting should be adopted at the walls, roof and floor of the machine hall and in the tailrace access shaft and tunnel but once faces have been established in the machine hall conventional methods of mining by benching could be followed.

Special care should be exercised when excavating the slots for the inlet pipes for the generators as the intervening pillars are likely to fracture.

Support

Moye considers that rock-bolting of the roof and walls will provide sufficient support. As clay seams were intersected in drill holes within the proposed site of the power station some measure of additional support appears necessary in view of the span of the roof. Also, hole R29 (pressure shaft) intersected some rather friable and broken agglomerate at power station level. If this zone extends into the eastern end of the machine hall some support beyond that provided by rock bolts may be needed. Provision has therefore been made for 20 percent steel and concrete support in the machine hall in Plate 3 but the support required will have to be re-assessed after conditions, including tectonic stress, have been determined after excavation.

Rock Temperatures

A thermister probe, loaned by the Department of Geophysics, Australian National University, Canberra, was used to measure rock temperatures in several holes. Holes R21 and R23 were probed on 25th September 1962 and the remaining holes were done on 7th December. The results are shown in Figure 6.

Rock temperatures at power station level are therefore between 27.5 and 28.2°C (about $81\frac{1}{3}-82\frac{3}{4}^{\circ}\text{F}$). As significant seepage into the machine hall is expected humidity would approach 100% without forced ventilation and working conditions would be very trying.

Instrumentation

As the existing stress conditions in the rock mass, due to tectonic forces, are not known and as the existing stress field will have a very marked effect on the stress distribution around openings, stress and strain gauges should be installed as soon as possible and in as many places and directions as possible. In this way data could be built up on which to base final decisions about support for the machine hall.

It is also suggested that the gauges could be maintained and read regularly after completion of the project. Valuable information might be built up about response of stress conditions to seismic activity and secular variation of crustal strain. This information, in addition to being of great interest to seismologists and others, may be of considerable use in the design and construction of other projects in the region. Probably officers of the Port Moresby Geophysical Observatory of the Bureau would be interested in participating in any study programme.

PRESSURE AND ACCESS SHAFTS

Pressure Shaft

Soil, clay and decomposed rock extends 10 feet from the collar of the drill hole (R29) and weathered and broken rock extends a further 12 feet; a steel and concrete collar will therefore need to extend about 12 feet from the top of the shaft to R.I. 1424. Below this point the agglomerate, apart from fractures and joints, is generally fresh and is amply strong to stand during excavations of the shaft and to support the internal pressure in the shaft under maximum operating loads. Weathered zones and clay around and in fractures and joints persist to the bottom of the hole. In the last 160 feet the core is generally rather broken and minor core loss occurred. may therefore be necessary during construction to rockbolt several zones and to afix mesh to prevent minor fallouts of rock. Experience gained in driving the tailrace tunnel should enable techniques to be adopted which will prevent excessive overbreak and no difficulty should be experienced in placing the concrete lining and tying it satisfactorily to the rock wall,

Water inflow during construction should not be serious as to a depth of 400 feet the maximum water loss during pressure tests was 0.04 gallons per minute per foot. From 400-450 feet the loss was 0.12 gallons per minute, at gauge pressure of 60 pounds per square inch. This section may require some grouting at points of water entry before the concrete lining is placed as plugging would be difficult because of the high groundwater pressure.

The concrete lining would have to withstand a static groundwater head of nearly 500 feet at the bottom of the shaft - a pressure of about 280 pounds per square inch.

Access Shaft

Conditions generally are similar to those in the pressure shaft, but the ground is not so broken near the bottom of the hole (R27) as in R29. The collar should extend to about R.L. 1406. The treatment recommended by Moye - mesh lining during construction and subsequent lining by gunite - should be satisfactory. A few broken zones may require rock bolting, and perhaps grouting for permanent control of water; the one-foot wide zone of clay and

decomposed rock at hole depth 418 feet may require special treatment, depending on the angle of the zone to the shaft. The few tuff bands present should not require special protection.

CONSTRUCTION MATERIALS

aggregate No homogeneous material suitable for use as concrete/ is available within many miles of the Rouna area. Aggregate for use in the Sirinumu Dam project is obtained from Sogeri quarry only 1.2 miles, in a straight line, from the weir site; crushed and sized material from the quarry is reported to be entirely satisfactory. The rock in the quarry is agglomerate, similar to that in which much of the power generation works will be sited. high proportion of inclusions and a correspondingly small tuffaceous matrix; the inclusions are strong basalt and andesite fragments. It is concluded that on crushing, the matrix, which is weaker than the inclusions, is finely broken and is discarded in the undersize fraction (which is used for road surfacing). The sized product from the Sogeri quarry should be quite satisfactory for use in the power generation project and should be cheap. Routine reactivity tests should be made. Road haulage distance is about 2 miles to the weir site and 3 miles to the portal of the tailrace tunnel. Ample supplied of suitable rock are available.

It is not known what proportion of matrix is included in the sized product. Should small quantities of matrix-free aggregate be required for special structural concrete very large boulders of lava, probably andesite, lie in the bed of the creek between the quarry and Sogeri village. They have been eroded from the agglomerate but are quite fresh.

Unweathered agglomerate spoil from the tunnel and power station should prove as satisfactory a source of concrete aggregate as the rock from Sogeri quarry. The conglomerate should not be used because it is generally weathered and it contains a proportion of schist pebbles and boulders. Tuff should also be rejected.

No large supply of sand is known in the area. As the outcropping rocks are all almost, or completely, devoid of crystalline silica little quartz sand is formed by erosion; most of the sand deposits consist of weathered ferromagnesium and iron oxide minerals. A small deposit

occurs at Sapphire Creek but it contains a large variety of minerals. The weathered conglomerate at the 21-mile peg on the Port Moresby - Rouna road might possibly provide suitable sand by washing. The matter requires further investigation as the occurrence is extensive.

WATER QUALITY

The Laloki River is normally clear and carries very little material in suspension; it also does not have any dissolved impurities likely to be injurious to structures or machines. However in time of flood it is very discoloured and clearly has such an erosive power that substantial suspended material and bed load are to be expected. This matter is discussed by Moye (1962) and his conclusions as to the need for intake works designed to remove transported solids are supported.

the state of the s

CONCLUSIONS AND RECOMMENDATIONS

- 1. Investigations have shown that the underground power station scheme recommended by Moye and McLeod (1961) is practicable.
- 2. The proposed underground power station, access and pressure shafts, weir, and probably about 1700 feet of the tailrace tunnel will be in agglomerate, with included thin lenses of tuff, of the Astralobe Agglomerate. The remainder of the tunnel (about 1,000 feet) will be in more or less weathered volcanic conglomerate.
- Fresh to moderately fresh agglomerate is strong enough to stand in openings without support but the agglomerate is extensively fractured, jointed and locally faulted and sheared. Joints are widely spaced and are generally fairly tight but weathering has taken place to below tunnel level along many fractures and other places of perting. The end product of weathering is clay.
- 4. Tuff appears generally weaker and less durable in exposed surfaces than agglomerate but occurs in thin beds and lenses only the widest measured bed is 10 feet thick.
- 5. The conglomerate, where fresh, is probably as strong as the agglomerate, but probably very little fresh conglomerate will be encountered in the tailrace tunnel.
- Results of durability tests conducted by the Department of Works Central Testing Laboratories cannot be translated into durability under operating conditions, and it is recommended that additional tests be carried out, with other rock types as standards. Provisionally, in the meantime, it is considered that allowance should be made for lining by gunite, or mesh, all unprotected parts of the tunnel.

Proposals by Department of Works engineers for tests of resistance to erosion by agglomerate, tuff and conglomerate are supported.

7. Weir site foundations are sound but will have to be excavated to any open flat-lying joints and probably the tuff encountered during drilling should be removed. Possibly about 11 feet will have to be removed but further drilling is needed to establish maximum depth of excavation needed. Some grouting and plugging of joints will be needed, particularly in the right abutment, and anchor bars in the foundations are recommended.

8. Conditions likely to be encountered in the tailrace tunnel are summarized in Plate 3. Generally conditions should be fairly good but extremely bad ground is likely to be encountered in the conglomerate near the contact with the agglomerate. For upwards of 100 feet special mining techniques may be needed, with strong support, and considerable overbreak - possibly to the base of the agglomerate - is likely. Several smaller weak zones can be expected, particularly in the conglomerate, where full support will be needed. Elsewhere local rock bolting will probably be needed.

Water inflow should not be serious but some broken zones will need grouting before guniting.

Experience at Sirinumu has shown that the agglomerate is very brittle and care will therefore have to be exercised in the use of explosives to minimise fracturing of the tunnel walls and to restrict overbreak. Smooth-wall drilling, as proposed by Moye, is supported. The conglomerate will probably behave in a manner similar to the agglomerate.

expected to be similar to those in the agglomerate in the tunnel. Some steel support will probably be needed and, because of the greater size of opening and the consequently increased stresses around the opening, rock bolting throughout is recommended.

Water inflow should not be serious but provision should be made for a ceiling, and the main points of entry of water may have to be grouted.

10. Drilling to date has indicated only one structure which should be avoided in siting the machine hall; this is the fault or weathered joint intersected by drillhole R21. On present information the currently proposed location appears satisfactory but a final decision should await additional information obtained during construction. The most favourable orientation of the long dimension appears to be about 120° (true bearing).

- 11. Rock temperatures in the vicinity of the machine hall are expected to be about 82°F. Owing to seepage and dripping, humidity will be high and forced ventilation will be necessary.
- 12. As nothing is known about tectonic stresses in the agglomerate, stress and strain gauges should be installed in the workings as soon as possible after excavation.
- 13. No difficulty is expected in the excavation of the pressure and access shafts. The pressure shaft will be lined; mesh for safety purposes, and finally gunite (as recommended by Moye), with some grouting should generally be sufficient for the access shaft.
- 14. Aggregate from the Sogeri quarry is being used at Sirinumu dam site and should be satisfactory for concrete for the Rouna-Sogeri works. Fresh agglomerate from the tunnel and power station could probably also be used to produce aggregate but the conglomerate and tuff should not be used.

Further investigations to locate a suitable source of sand are needed.

- 15. It should be assumed that substantial suspended matter and bed load is moved by the Laloki River in times of flood.
- 16. Compared with most of Papua-New Guinea the seismic hazard in the Port Moresby region is low. It is suggested that a ground acceleration of 0.1 g be allowed for in design.

ACKNOWLEDGEMENTS

The geological investigation was carried out at all times in close co-operation with officers of the Commonwealth Department of Works, Port Moresby, who provided survey facilities and arranged and supervised drilling contracts. They also provided labour and other services as required. The investigations were designed in consultation with the Investigation staff of the Department of Works in Melbourne and Port Moresby.

Discussions and correspondence were conducted on a number of occasions with officers of the Snowy Mountains Hydro-Electric Authority, particularly Mr. D.G. Moye. Mr. Moye's and Mr. J.A.S. McLeod's reports have been drawn on extensively while conducting the investigations and writing the report.

Strength and durability tests of specimens of drill core were carried out by officers of the Central Testing Laboratories, Department of Works, Port Melbourne.

Professor Jaeger and Mr. J.H. Sass, of the Department of Geophysics, Australian National University, Canberra, made a thermister probe available for measuring drill hole temperatures, and Mr. Sass instructed Mr. Best, of the Bureau, in its use.

Officers of several construction authorities and organisations were consulted in various technical matters.

Permission to use the block diagram, shown as Figure 1 was given by the Australasian Petroleum Company Pty. Ltd.

The assistance given by all these people is gratefully acknowledged.

REFERENCES

- CONDON, M.A., 1949 Report on dam sites on the Laloki River, Papua. Bur.Min.Resour.Aust. Rec. 1949/25 (unpubl.).
- DAVIES, H.L.,

 1960a- Geological report on Sogeri No.3
 damsite, Upper Laloki River, Central
 District, Papua. Bur.Min.Resour.Aust.
 Rec. 1960/9 (unpubl.).
- DAVIES, H.L., 1960b- Geological report on Sirinumu dam site No.2 Upper Lalloki River, Central district, Papua. <u>Ibid</u>. 1960/57 (unpubl.).
- DAVIES, H.L.,

 1961 Geological report on the surface penstock route and the No.2 power station site, Port Moresby hydroelectric scheme. Ibid 1961/81 (unpubl.).
- EDWARDS, A.K.M., 1951 Geological report on the proposed hydro-electric installation Laloki valley, Territory of Papua. Bur.Min. Resour.Aust.Rec. 1951/1
- GARDNER, D.E. and NOAKES, L.C., 1959 Geological reconnaissance of the Laloki River hydroelectric project, Port Moresby. Bur.Min.Resour.Aust.Rec. 1959/21. (unpubl.).
- GLAESSNER, M.F., 1952 Geology of Port Moresby, Papua. In SIR DOUGLAS MAWSON ANNIVERSARY VOLUME. University of Adelaide, 63-86.
- MOYE, D.G.,

 1962 Report on an inspection of the site of the proposed No.2 hydro-electric station (upstream underground arrangement) Port Moresby, Papua.

 Snowy Mountains Hydro-Electric Authority. March 1962 (unpubl.).
- MOYE, D.G. and McLEOD, J.A.S., 1961 Report on an inspection of the site of the proposed No.2 hydro-electric station, Port Moresby, Papus. Snowy Mountains Hydro-Electric Authority. July 1961 (unpubl.).
- STANLEY, G.A.V. and THOMPSON, J.E., 1946 Report on Kemp Welsh Reconnaissance survey.

 <u>Australian Petroleum Company Pty.Ltd.</u>

 <u>Report NE 1946 (unpub.).</u>

APPENDIX 1 - GEOLOGICAL LOGS OF DIAMOND DRILL

HOLES R18 - R31

A3 - A6 and B3 - B6

Logs of drill holes R8 - R15 (Rouna Falls area) appear in Davies (1961) and of drill holes R16 and R17 (No.3 Sogeri Weir site) appear in Davies (1960a).

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE PROJECT ROUNA FALLS HYDRO-ELECTRIC SCHEME HOLE NO _____A_3____ R.L _ Weir Site ANGLE FROM HORIZONTAL _ LOCATION __ DIRECTION ROCK TYPE A DEGREE OF WEATHERING DESCRIPTION JOINTS VEINS SEAMS FAULTS CRUSHED ZONES core grinding every Core grinding every 10 All medium agglomerate except 10'0 to 18'8' which is largely tust Core grinding every (containing a Sow lara) Fresh Core grinding every 34. aggiomerate. fragments 20 core grinding every core grinding every 4" 30 Core grinding every grinding every grinding every 6" 50 0 100 Hole . DRILL NO ... Agglomerate Hamilton COMMENCED. VERTICAL 1 inch : 10 feet SCALE __

	BUREAU OF MIN				D GEOPHYSIC	s
			DLOGICAL LOG OF DE		4 4	
PROJECT	VA FALLS HYDRO-ELECT	TRIC	SCHEME	HOLE NO.	<i>A_4</i>	Rt
LOCATION	Weir Site			ANGLE F	FROM HORIZONTAL	DIRECTION
BOCK TYPE B DEGREE OF WEATHERING	01.5CRIPTION	Fracture	DEPTH LIFT B SIZE OF LOG CORE REPOVERS		CTURES FAULTS CRUSHED TONES	
Fresh agg/omerate	Medium grained aggli	,~	۵ / ₁₅		joint at 3° unding every 2	± *
Slightly weathagglomerate	Tuft with a few large fragments	15	10 100	Core gri	inding every 3	*
		12	100	Core g	rinding every	3*
		2*	20 100	core gr	unding every	7*
Fresh agglomerate	Medium grained agglomerate.		100/	Core gi	rinding every	5*
		z.	30 <u>90</u>	Core g.	rinding every	4*
			100/	Core gr	unding every	24*
			40 100	Core gi	rinding every	4"
		3		. Core gi	unding every	5*
		4*	50 4 100	i Core gr	unding every	6*
	End of Hole					
			,]			·
				·		
	·					·
					•	
ORIGI NO		•]			
TVINE	Toff		•		LOGGED Ha	milton
COMMENCED	. Agglo	mera	rte.	•	VERTICAL SCALF 1 / MC	h: 10 feet

	BUREAU OF MINERAL				OPHYSIC	S	
		LOGICAL LOG		HOLE NO			
PROJECTROU	NA HYDRO-ELECTRIC SC			HOLE NO			
LOCATION	eir Site			ANGLE FROM HO	RIZONTAL	DIR	CTION
ROCH TYPE S DEGHER OF WESTMERING	DESCRIPTION	DEPTH SIZE OF LOG CORE	LIFT B CORE RECOVERY	STRUCTURES JOINTS VEINS SEAMS FAULTS	CRUSHED ZONES		
		-A	50	16 to 19	~	rounded	fragments
			//3				•
] ,	V/\	core grindil	ng every	*	
]	75				
		10 0	V/A	core grindin	g every	12"	
] -]	100		,		
		1 1.		core grindin	a every	12.	
	Medium grained agglomerate	. 4	100/	1	9 2757	,	
Fresh		20.0	<i>Y//</i>	Core grindin	a. Allandia	10"	
aggiomerate.	•	"	100/	(ore grinain	y every	1,00	
] .	777			m-	
			100	Core grindin	ng every	100	•
].	777				
	,	30]	////	Core grandii	ng every	8	
		1 1	3 / 100 / 				
		۱	Y//	Core grinding	g every	10	
		 .	/100 /	4.42.4.4		15*	
	,	40] 4	100/	Core grindin	gevery		
		.	100	1			
	·].	V/	Core grindi	ng every	35	
•		1.4	00/ //				
·		50	100/	7			
	End of Hole					1	
	Abta All come is comencille		1				•
	Mote:- All core is generally fractured at 2" to 3"					· .	
	intervals, mostly if not wholly by drilling practices	, -					
	_						
		1 1					
		[]	ļ				
		1 1	İ				
						1	
•							
		1 3					
		<u> </u>					
a]					
<i>C</i>							
		1 1					
1411£ 40	[Δ'.] Agglomera	ite		100	GEN	Hamilton.	
DRILLER							
COMMENCED					RTICAL	ch : 10 f	et.
COMPLETED							

(

	BUREAU		RESOURCES, G	EOLOGY AND GEOPHY	SICS
PROJECTRG	OUNA FALLS HYD			HOLE NO	R. L
LOCATION	Wair Site			ANGLE FROM HORIZONTAL .	DIRECTION
ROCH TYPE 8 DEGREE OF WEATHERING	DESCRIPTI	spacing	DEPTH LIFT & CORE CORE RECOVERS	STRUCTURES JOINTS VEINS, SEAMS FAULTS CRUSHED ZON	
		/* //*	NX 66	Badly broken Core grinding	
Fresh	Medium grained	1 <u>1</u> '	10 0 90	Core grinding ever	y 5°
agg/omerate.		2	75	Core gunding ever	r 4.
		<u>£</u> *	20 A (100 20 A (100	Core grinding	
			A /100/	Core grinding.	
			30	joints not of	brious fractures weathered.
				·	
	·			·	
	:				
			1		
				·	
		!	1		
				1	
				•	
DRILL NO	.4:	Agg/qmerate		roceen	. Hamilton
COMMENCEO				VERTICAL SCALE	inch : 10 feet

Fresh is mod real to goldene. Care pieces 2'-5' goldene fresh is goldene. Care pieces 2'-5' Tragementa gone Tresh application Tresh application Tresh application Tresh application Care pieces 2'-5' Tresh application	Fresh lo mod Fragments of core < 1" MML Fresh lo mod Fragments of core < 1" Fresh agglome: Core pieces 2", ground throughout Mod fresh to agglomerate. Fragmented zone. Core pieces 1", fragmented zone. Core pieces 1", fragmented in place. Fresh agglomerate. Core pieces 2"-3" Moderately Land Subtract suith slightly Moderately Fresh agglomerate Moderately Core pieces 2"-3" Moderately Land Subtract suith weathered sunfaces coaled with limonite Continues with weathered sunfaces fresh All Fractures with weathered sunfaces coaled with limonite Continues with weathered sunfaces coaled with limonite Moderately All Moderately All Moderately Moderately All Moderately Moderat	PROJECT Rouns-Hydro-Electric Scheme LOCATION We'r Sile ANGLE FROM HORIZONTAL 90° DIRECTION							
Trech kined Cone pieces 2 -5' BX Trechers in the meditive down proposed in piece pieces (Ingonited in piece pieces 2 -5' BX Trechers in the meditive down proposed in piece pieces (Ingonited in pieces pieces (Ingonited in	Tresh to mod Tresh	LOCATION	<u> </u>	DEPTH	T	LIFT		DIRECTION	
resh anglome in the case of the control of the cont	irror to mod Core pieces ?' ground throughout The first has been subjected and faces coaled with limenth The first has been subjected and faces coaled with limenth The first has been first has been subjected and faces coaled with limenth The first has been first has been subjected and faces coaled with limenth The first has been first has been subjected and faces coaled with limenth The first has been first has been subjected and faces coaled with limenth The first has been first has been for the limenth The first has been first highly throughout a first has been first highly throughout a first has been first has been first has been first highly throughout a first has been first has been first highly throughout a first has been first highly throughout a first has been first has been first highly throughout a first has been first has been first has been first highly throughout a first has been first highly throughout a first has been first has been first highly throughout a first has been first highly throughout a first highly		DESCRIPTION	517 E GF		A CORE PECOVERS			
The process 2'. NH 4 Joint June Tractures Test Test Tractures Tr	Trush agglanae. Tale ground throughout The fresh has been core pieces 2'-3' Signify mental grow. Trush agglaneage. Core pieces 3'-3' Trush agglaneage. Core pieces 2'-3' Trush agglaneage. Trush agglan	Fresh to mod.	Fragments of core < !"		T	V////	Fractures with weathered se	unfaces coaled with limonite	
The ground throughout. The first has been considered from the con	Table ground throughout the process 2'-3' by the process subsect throughout the process of particular throughout throughout the process of particular throughout	· ·		NM	1	982	Cavily, other fractures fres	<i>rh</i>	
Tool fresh to core preces 2-3' by a figure of the core	Most first had been care preces 2'-5' BX A 15			1461	1.0	11///	and sub-horizontal	NOTE: Grinding and	
** applemental Fregmental some Core precess 7, ingermental in piece reach applemental Core precess 2 ** 5 *** Much grinding of core. That soft in the precess 2 ** 5 *** Long precess 2 ** 6 ** Long precess 2 ** 6 *** Long precess 2 ** 6 *	agglomerate Tragmented spine Trush agglomerate Core precess 5-3" 10 4 50 Much grinding of core Trush agglomerate Core precess 2-3" 10 4 50 Much grinding of core Trush agglomerate Core precess 2-3" 10 4 50 Much grinding of core Trush agglomerate Core precess 2-3" 10 4 50 Much grinding of core Trush agglomerate Core precess 2-3" 10 50 Much grinding of core Trush agglomerate Core precess 2-3" 10 50 Much grinding of core Trush agglomerate Core Trush agglomerate Core Trush agglomerate Core Trush agglomerate Tr		······································	RY	†	700	Fractures with slightly	, broken nature of core	
Core pieces 7, inserted in piece rest agglomenate. Core pieces 5-4: Much agglomenate. Core pieces 2-3* 20 4 988 Much grinding of core. The presence of met bed in the presence of piech holes to be present and piece received. The core pieces 2-3* 20 4 988 Much grinding of core. The presence of piece to be presented in the presented in th	Care pieces 3-4: Molt grinding of care. Molt grindin	lightly weathered	Core pieces 2 -3	→ .	 •	1///	Enomented core	1 1 0 1 11	
rest appliment. Core pieces 2-3. The cort of	rest agglomers to Core pieces 2-3- Thote sirty trest agglomers Core pieces 2-3- 20 A					////	No Recover		
Tour of the control o	Minds skip read applanting. Core pieces 2'-5' 20 4 100's END OF HOLE		Care pieces 1, liegmenieu III piece.		"	90%	Much grinding of core.	the presence of pot-holes.	
Total agglands. Core pieces 2'-3' 20 4 100% LND OF HOLE	Protest of the process 2"-3" To a work of the process 2"-3"	resh əgglomerə.			<u> </u>	<u>////</u> /			
4 LOST ENO OF HOLE	A GOY END OF HOLE	Moderately		7	4:	1////			
4 LOST ENO OF HOLE	A SON ENO OF HOLE	rest egglome -	Core pieces 2"-3"	20	<u>ار ا</u>	100%			
IND OF HOLE	END OF HOLE	, 0,0.			. :::				
		!				100%	END OF HOLE		
G. Browton.	X-RAY John G. Brownon.			+	<u>. o</u> .	/////			
G. Aroustron.	X-RAY				-				
G. Browston.	X-RAY DOUG G-Brownan.	}		-	}				
S. Browthan.	X-RAY G. Browthon.				}				
G. Browshare.	X-RAY A - RAY G. Browthon.		•						
T- N- POX	X-RAY (SIGN) G. Browthon.				_				
G. Browston.	X-RAY				-				
G. Brownton.	X-RAY S. Browner.	·		-	1		•		
V. P.A.Y. G. Brownhon.	X-RAY G Browston.				1		·		
V. PAY G. Brouxton.	X-RAY G. Brouxton.				_				
V. PAY G. Brouxton.	X-RAY Occus G. Browston.				:				
Y.RAY G. Browston.	X-RAY Occus G. Browston.				1				
Y.RAY G. Brounton.	X-RAY			-	1	ļ.,			
Y. PAY G. Brouxhon.	X-RAY NOGRO G. Browston.				1				
Y-RAY G. Brouxhon.	X-RAY 100550 G. Browton.								
Y-RAY G. Brouxhon.	X-RAY 100 X-RAY				1	.:			
Y-RAY G. Browshop.	X-RAY 100000 G. Browston.				1				
Y. RAY G. Brouxbon.	Y-RAY 100610 G. Browner.		•	-]				
Y. RAY G. Browston.	X-RAY 155610 G. Browthon.			ľ	1				
Y. RAY G. Browston.	X-RAY NOGES G. Browston.]				
Y. PAY G. Brouxhon.	X-RAY LOGGED G. Brouxhan.								
Y-RAY G. Brouxhon.	X-RAY Locate G. Brouxhan.								
Y-RAY G. Brouxhon.	X-RAY 10000 G. Browshon.				-				
Y-RAY G. Brouxhan.	X-RAY LOCCED G. Browshan.	,	·		1				
Y-RAY G. Brouxhon.	X-RAY LOCKED G. Brouxhon.	·	•						
Y-RAY G. Brouxhon.	X-RAY Locate G. Brouxhon.	1							
Y-RAY G. Brouxhon.	X-RAY 1006EE G. Brouxhan.		,	-	1			,	
Y-RAY G. Brouxhon.	X-RAY LOCATE G. Brouxhan.				1				
Y-RAY G. Brouxhon.	X-RAY LOGGED G. Browshon.								
Y-RAY G. Brouxhan.	X-RAY LOGGED G. Brouxhon.				1				
Y-RAY G. Brouxhon.	X-RAY LOGGED G. Browshon.				1		,	1.	
Y-RAY G. Brouxhan.	X-RAY LOGGED G. Browshon.			-	}				
Y-RAY G. Brouxhon.	X-RAY LOGGED G. Browshan.]		·		
Y-RAY G. Brouxhon.	TOUR X-RAY LOGGED G. Browshon.				1				
Y-RAY G. Brouxhon.	X-RAY LOGGED G. Browshan.				1]			
Y-RAY G. Brouxhon.	X-RAY Logge G. Brouxhan.		•		:	}		,	
Y-RAY G. Brouxhon.	X-RAY LOGGED G. Brouxhon.				<u></u>	<u> </u>			
	LOGGED LOGGED	V_DAY					G. Box	ouxhon.	

Ø

LOCATION Weir	·-Site				ANGLE FROM HORIZONTAL	90° DIRECTION
MOCH TYPE DEGREE OF MEATHERING	065CP1P110*	PENTH - B SIZE OF CORE	105	LIFT 5 COME RECOVERN	STRUCTURES JOINTS VEINS SEAMS FAULES CRUSHED FORES	
	NO RECOVERY			0		
loderalely fresh o slightly weathered agglomerale	2 feet of very broken agglomerate has been was recovered	BX 10 -	Δ Δ	24%	Large core loss because of pol-hole.	
	Cores 2" 103" long, fragmented in places.	. :	1	90%	> Fragmented zones	
	Cores very broken throughout. Core pieces \$ "to1" long. Also has many zones of fragmented material 6" to 1" in length.	20 -	4	100%	Fractures with slightly weath	ered
			-:∆::	<u> </u>	END OF HOLE	
			1			
			1			
		-			•	
		-				
			-		!	
		-				
			1			
		<u></u>	<u></u>	<u></u>	1066ER G. Brow	

	Sile				ANGLE FROM HORIZONTAL	Direction
# DECREE OF WENTHERING	DESCRIPTION	DEPTH A SIZE OF CORE	106	LIFT N CORE FOOVERY	STRUCTURES JOINTS VEINS SEAMS FAULTS CRUSHED JONES	
Moderalely Fresh to slightly weathered agglomerale	Cores are uniformly broken throughout Average length of core piece Linch.	BX:		97%	Fractures often obscured by grinding - Fractures when not ground are sub-hurizont and fresh	ə/
Ihroughou! hole	6"wide luff bands —<	20'	1. /	92%	No Care recovery Dilto END OF HOLE	·
						· .
	·					

	. Site					T
BACK TYPE DEGREE OF WEST-OFFICE	1 11.05	STATE OF CORE	100	1 6 WE BY	STRUCTORES JOINTS VEINS SEAMS FAULTS CRUSHED LONES	
deralely Presh slightly yeathered ggtomerate	Core pieces 1°-1.5" long throughout.	BX	0 V.	50	Fractures sub horizontal, either fresh or with slightly weathered surfaces. No core recovery	
	y weath tuff hand. Core pes 1-15" to O to 8 feet	10'	Δ Δ	73	No core recovery	
		18'	A V A V	70	END OF HOLE	
			**************************************		BUREAU OF MINERS GEOFTYSICA	AL RESOURCES LIBRARY

er en		REAU OF MINE	GEOLOGIC	AL LO	G OF D	RILL HOLE	D GEOPHYSIC		474·3
•		_	Morest						•
ROCK TYPE	ovna fa		DEPTH SIZE OF		LIFT	 	FROM HORIZONTAL	90	DIRECTION
& DEGREE OF WEATHERING		DESCRIPTION	SIZE OF CORE	FOG	CORE	JOINTS, VEINS, SEANS	, FAULTS, CRUSHED ZONES		
Soil and Scree					o				
	Extreme	ly broken co Preces	10_	Δ	//// //00 ///	Med, gr Aggl, com	: SIZE oponents L ^a da		
Fresh Aggiomerate	Fa		ta	Δ .	/// /// ////	Fine gr Aggl. com /"dia	ponents		
	18	good core preces	30.	A	// /44/ /	Coarse gi Aggl. comp 5" Poorly : Inverted gi	Ponents		
Extremely weathered at 32'4"	Fairly bro Slicken-s	ided fracture	zone	A	/ / / / / / / / / /	Med. gr. Aggl. comp			
*	Broke	ore axis at s in core pieces	19' 40	A		Fine go Agglomera ha	tiam. - size te components diam.		
_	12"	good core pieces	50	ΙΛ 、	/ 100 /// //00	Med. gr. Aggl. Com	SIZC Ponents		
Fresh Agglomerate		sty broken 5+ pieces	60_	٨	/// /// ///	Fine gr. s Aggl. com, Med. gr.	size p. 34" diam.		
	irregular	ed steep fractures as and TR'6*	7 10	Δ Δ	/95°	Coarse gi	p. /f diam, r. size r. 3° diam,		
		oken 75'- illed fracture broken pieces	79' 45	Δ	100 / 100 100	Med. gr. Aggl. comp poorly s	o. It diam.		
Moderately Fresh Agglomerate	Very 1 Water loss	broken, high during drilli	90_	Δ	77	fine gr			
DRILL NO.		· Toff	/00	<u>;</u>	/ ,		LOGGED L. H	amilto	2
COMPENSED 7-3	& Reed	▲ Agglomer	rate				Sheet	1 of 2 ': /*	

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE PROJECT Hydro-electric Schema Nº Power House HOLE NO. RIB R.L. 1474-3 90° LOCATION ROUNA FALLS Port Moresby ANGLE FROM HORIZONTAL _ DIRECTION _ STRUCTURES SIZE OF CORE JOINTS, VEINS, SEAMS FAULTS CRUSHED ZONES Tuff 1007 - 1011 Fairly broken core 6 pieces Fine gr. size Aggl. components 1" dia //el] 4 · Waathered Med. 9r. size Graded bedding Tuff band 114'0"-114'4" Med. Agglomerate Coarse gr. size Graded bedding Very broken core 2" pieces ∙ ۵ قدر High water loss in drilling 119-126 Medium, gr. size Aggl. comp. 1 - 2" dia. fairly broken core 6° pieces 130 At 134' matrix extremely fine below a porous zone Moderately Frach Clay-filled fractures 134'6" - 140'2" Fine gr. size Aggl. comp. 3" dia. Agglomerate Close fracture zones at 136'6" and 140' at 80° to axis 140 Very broken core preces ٠ ۵ 11 Med. gr. size 150 Δ Weathered 153'-155' 18 Δ Broken core que pieces 160 Bands of fine and Med. grained Aggl. fair sorting Extremely broken 4° pieces Clay-filled Very broken It" pieces Broken 7 peces 170 END OF HOLE Fractures generally much more weathered in matrix than in elements. Most are sub-horizontal with pregular surfaces weathering is more intense along joints. TIPE NMLC L. Hamilton Sheet 2 0/ 2 DRILLER W. Pearce & M. Reid CONNENCED 7-3-61 VERTICAL COMPLETED . 10 feet : 1 inch

	BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE						
PROJECT ROU	NA FALLS Hydro-electe			R19	R.L. /422.6		
LOCATION	Port Maresby (Tunn			ROM HORIZONTAL	90° DIRECTION		
ADCK TYPE B DEGREE OF WEATHERING	CESCAIATION	COME SECONEN		TURES. FAULTS CRUSHED ZONES			
	Soil and Scree			·.			
Fresh Agglomerate	Broken core 8" pieces	/ο Δ // / / / / / Δ / / / / Δ	Fine gr. Aggl. Company of	ment & dia. F vesicular			
Weathored Agglomerate	Vary broken 24 pieces	20 Δ /// Δ ///	7				
	Fairly good 18" pieces	Δ //	Fine and Aggl. comp. poorly so	med, grained If dia.			
	Broken 7 pieces	Δ /100	Coarse 9				
Fresh	Broken 9° pieces Very broken 2° pieces,	49 \\ \(\sqrt{100} \)					
Agglomerate	Broken 9" pieces	Δ ///	Fine to a	e			
	Very broken 1½ pieces Broken 8" pieces	50 Δ //q6	very poor med to c	coarse			
	Very broken 3" pieces	60 Δ /96					
	Fairly broken 4" pieces	98	/				
Moderate/y	Very broken 12" pieces Extremely broken 2" Very broken 2" pieces	70 A //98	(Fine to grain si. Aggl. com				
Weathered Agglomerate	Fairly broken 4" Very broken 14" pieces	80 A /01/	med, to co		1		
	Broken 9" pieces	90 1 94	Med. gr	5/22			
Fresh			some fine med. to	bands coarse	:		
Aggiomerate	Extremely broken 1º pieces Broken 9" pieces	A 744	Fine gr. Aggl. comp		- 222) water level Tam. 9/3/61		
DRILL RO.	toff						
TYPE NML	C Agglomerat	re		1066ED			
COMPLETED	Onglomera Conglomera			WEATHER	feet: / jack		
L				L			

		OLOGICAL I	LOG OF D	RILL HOLE		1422.6
	lydro-electric Power Ho		<u> </u>	LITTE HOLE NO.		
LOCATION	una Falls Fort More	S D Y	LIFT	ANGLE	FROM HORIZONTAL	90° DIRECTION
ROF - TYPE A DEGREE MEATHERING	DESCRIPTION	SIZE OF 10		B	UCTURES, 5. FAULTS, CRUSHED ZONES	
		Δ.	:///	Coarse gr. Aggl. comp.		
	Broken core 8" pieces]]	100/	av. 3"dia	to max. of 10"	
			·4///	Med. gr.		
•]:	· ///	Aggl. comp.	av. / dia.	
		//O_A	· ///		T	four sorting
	Some cavities present	1 1.	100	Med. gr s	112.6	Water level 7em 29
	Sama amat/ cambre	1.	4///	Fine gr.	SIZE 114' p. ax 3" dia.	7777 " " 7·/5 a.m 2
	Some small cavities	1 1			4	
		ر ا قعرا	. ///	Med. to	coarse gr. size	
]".	·//,	Aggl. comp	. av. 1"	
		-	/100	Fine gr.	of 1'10"	
	Broken core 9" pieces	1.	<u> </u>	av. 3/4	dia.	
	·		\//	_	• * .	·
	.4*	/30 A	:Y//	very poorly	size av 3, dia	
	12 band of tuff at 131'6"]	100	Coarse M	atrix	
_	·	.	4///			
Fresh			`\//	Med. gr.	SIZE "	
		140		Aggl comp. Coarse m	av. 34 dia.	
		'	. [//		41772	
]].	100			
Aggiomerate			[//			
•		1 14.	• [//		vith 5" vesicular	
· ·		150			1 fragment	
]]	Δ/100	poorly sor	oarse gr. size 1ed	Green secondary mineral in matrix
		-	77	'yze'rang	e = - 9°	
		۵ ا		Coarse gr.	512e 3° dia.	
		160	· ///	ì	coarse gr. size	
		[] .	: ///	Agg/. Comp	av. I' dia.	
]];	100	Coarse m	iatrix ieral present l	
		1 4.	.///			1
		1 1		Medium g	Tr. SIZE	
		170		Aggl. comp Very coars	se matrix	
]	::[//	•	one 173-175	
			.∆ <u>.100</u> ///	_		
		‡:	.///	···		
		180	: <i>\//</i>	Coarse g Appl. comp.	er. size av. 24 dia.	
		`].	. ///		SVZG	. Well sorted
~	Cavity bearing	1 1.	100	Fine to	coarse ,	
		‡. '	$\mathbb{C}///$	gr. 312 range	e av. / dia. 0 — 12." dia.	
Q.		1 74.	:///			
•		190	:///			
]]:	4			
	forous zone	† ‡.	/100			
	The board sall " san's	4	:[//	Coarse or	5/28 av. 2"die.	1
	Tust band 196 6"-197"0"	200	·[//	tine mat		<u> </u>
DRILL NO.			-~		<u> </u>	
WALC					LOGGED L. H	
DRILLER <u>PRAFCE</u>	- Reid				sheer d	of 6
COMPLETED					VERTICAL 10 F	eet: I inch

	BUREAU OF MINERAL GEO	RESOURCES, G		GEOPHYSICS	5	
PROJECTROUN	IA HYDRO-ELECTRIC SC			R19	RL. <u>/422.6</u>	
LOCATION	Turnel line	DEPTH LIFT	ANGLE FR	OM HORIZONTAL	DIRECTION	
ROCK TYPE a degree of weathering	DESCRIPTION	SIZE OF LOG CORE CORE RECOVERY	STRUCT JOINTS VEINS SEAMS F	URES AULIS CAUSHED ZONES		
Fresh a gg/omerate	Fine gr. size poorly sorted Coarse gr. size agglomerate components average 3° dia,	A // / / / / / / / / / / / / / / / / /	Extreme at 203	ly broken (±°) "6" – 204"		
	Coarse gr. SIZE aggl. comp. ar. 2" dia. poorly sorted, coarse matrix	220 4/100/	Cavity b	fracture		
Fresh to moderately fresh agglomerate	Fairly good to fairly broken Core Aggl. composed of resicular basalt, andesite and fine grained perphyritic rocks ambedded in a medium to coarse grained tuffaceous matrix] -[]///	Tuff, coarse	ires e to medium ed		
	Brown andesitic triff Fairly broken core Coarse gr. size 3 to 8 dia.	240 100	Irrag. f	o° coated yells tractures riz. Tracture	o w	
Mod, fresh to weathered agglomerate	Aggl. comp. f" to 1" dia. Med. gr. tuttaceous matrix Broken to fairly broken core				weathered surface	•
Fresh to Mod. fresh agglomerate Mod. fresh to weathered Aggl.	Aggl. interbedded with tuff Med. to coarse gr. Size to a max. size of 14° coarse matrix Fairly broken to broken Gores	240 /100	Fract. Irreg. t. Sub-hers	res (45,90,80)	d surface	\
Fresh to mod. fresh agglomerate Mod. fresh to weath. aggl. fresh to mod. fresh to Mod. fresh to	Aggl. poorly sorted, consisting of resicular basalt intermediate rocks and 'red basalt'. 2"-3" dia.	2.76 · A 100	Joint at Irreg. f Frair. 9 Joint 55' Weather	ract. o° red urreg, fract. o° starned Ma ract.	·	
weathered aggl. Fresh to mod. Fresh aggl.	Fine to med. gr size av. size 4" - 1" dia. Core broken to fairly broken Aggl. comp. av. size 4"-6"	2 98 2 98 4 98	Verl. fract. d Fract. d Fract. d Fract. d Fract. d	ract, stained to* for fract.	yellow	
Mod, fresh to weathered agglomerate Fresh to mod, fresh agglomerate		290 95 11111 100 300 96	Irreg. Clay co	ported horiz. sectors	o, irrag)	
ORILLER H. Pag					ulton and G. Brou	<u>x hon</u>
COMMENCED		•		VERTICAL SCALE / INC.	: 10 feet	

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE				
PROJECT ROUN	A HYDRO-ELECTRIC SCH	EME HOLE NO		
LOCATION	Tunnel line	ANGLE FROM HORIZONTAL 90° DIRECTION		
ROCK TYPE B DEGREE OF WEATHERING	DESCRIPTION .	DEPTH B STRUCTURES. CORE CORE CORE RECOVERY LUIT STRUCTURES. CORE CORE CORE RECOVERY		
		NX Table 1		
	Broken to fairly broken cores	Vert. fract coated with Mn		
Fresh to	Aggl. components to 6"	1 4 7 1 Fractured zone		
moderately fresh	Vesicular basalt fragments are abundant	1] . [/]		
aggiomerate		3/0 1 . 98/ Irreg. tract.		
	Cores broken to fairly	A 198 Fract. 20°		
	broken. Agglomerate components	integ. fract. couted Mn		
	average 1" to 2" dia poorly sorted	Szo 98 Broken and weathered zone		
Moderately		Junt 80° very broken zone		
fresh to		Irreg. fract. coated with Mn Irreg tract. coated with limonite		
meathered agglomerate	Core fairly broken to broken	Joint 40°		
	Large fragments of augite porphyrite	330 A 93 Veathered and broken zone		
	Pairly broken to broken cores aggl. comp. av. f. to 1"	fract. To weathered surface		
	Poorly sorted aggl.	Broken zone tragments < 3		
ŀ	av. size 2" to a maximum of 1"2"	4 Joint 30° Fract 50°		
Fresh	THE STATE OF THE S	340 100 Fract. 45° coated with Mr		
to moderately		Irreg. fract		
tresh agglomerate	Fairly broken to broken	Fract. 45° Mn coated		
	Cores	Irreg. tract.		
		Vert. Fract.		
	Very broken cores	Joints at 55° and 30° Joint 60° Irreg. fract.		
	Tuff band Fairly broken to broken core	Toint (70°, 60°)		
Moderately	The property of the property continues	360 \(\square \)		
fresh to	Core generally very	Δ //		
weathered agglomerate	broken to 2"-3" pieces			
"	,			
		370 1 93		
		Joints (45, 40, 45, 40, 45, 90, 25)		
	Fairly broken core			
fresh to	Agglomerate consists of resicular basalt,	380 4 48		
moderately fresh	fine grained porphyritic rock, fine grained	Clay filled fracture Broken and weathered zone		
aggiomerate	basalt, and andesites set in an andesitic	Joints (45, 75, 45)		
	tuffaceous matrix	1 1 1		
		390 100 Joints (40, 41)		
	*			
		100		
		Joints (50, 40, 60, ver)		
DRILL NO MINGELLI	F1000	1 7001 1 700 / 1		
TYPE		LOGGED G Brouxhan		
DRILLER W. PLAN	rce	Sheet 4. of 6		
COMPLETED	-	SCALE 1 Inch : 10 feet		

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE R19 1422.6 PROJECT ROUNA HYDRO-ELECTRIC SCHEME HOLE NO. __ ANGLE FROM HORIZONTAL 90° Tunnel line DIRECTION DESCRIPTION JOINTS, VEINS, SEAMS, FAULTS. CRUSHED FONES Fresh to Fairly broken to broken core fragments of resicular mod. fresh agg/omerate lava abundant. ex. size 1-3 100 Very broken core Matrix coarse to \$" size aggl. comp. av. 1" to 3" dia. 98 40 4 98 Very broken core Matrix coarse and scoriaceous 420 Very broken core 4. -Granulated and weathered zone 434 97 · Δ[Very broken core Moderately Aggl. components consist of Tresh Vesicular basalt and various porphyritic rocks with an av. size & to 2° dia. Joint's (25, 10, 15°) aggiomerate Δ. -Joint clay couted matrix scoriaceous, fairly coarse & to 4" size - Toint 25° 100/ ۱۵. - Joint 80° clay coated Very broken core, much grinding. Descr. of aggl. -Joint 10° clay coated 189 as above. Δ Toints (5°, 4°) Very broken cores, much grinding, much clay clay sludge. Matrix coarse and scoriaceous. 85 ΔŁ 450 - Joint 3° 87 Δ Striated fract. with 'soapy' coating. Cores very broken 100 460 Pebbles sub-angular to roundu É size . Or heterogeneous Fractures numerous Composition including quartz porphyritic, and volcanic rocks Weathered set in a greenish talcose Conglomerate Numerous joints at 70°, 27°, 40° coated with a greenish material. (Epidote or chlorite!) ground-mass. Much clay sludge present. 470 Very broken core - containing 66 pebbles and cobbles of Various igneous perphyritic and occasional metamorphic Weathered to rock. Numerous joints and fractures at 45° + 75° generally coated with chlorite or epidote. Very broken core, granulated mod. fresh conglomerate in parts 95/ 480 Fairly broken to broken Joints (70,40, 45, 45, 45) Igneous perphyritic Joint 20° coated with red soft micaceous mineral. rocks common. Pebbles Moderately coated with talcose material Toint 28° fresh Fractures and joints follow shape of pebbles often smoothly curved. Coarse grained greenish matrix. conglomerate - Joint 5° 97 490 Fairly broken core 196 Joints (75, 75, 78, 65°) Fresh to mod. Iresh fairly broken core Aggl. components, smaller and -Joint 15° are of quartz shale & porph. conglomerate 110 Mindrell E 1000 LOGGED G Brouxhon Sheet 5 of 6 DRILLER W. Pearce COMMENCER SCALE 1 Inch : 10 feet COMPLETE.

PROJECT	DUNA HYDRO-ELECTRIC SL			***
LOCATION .	Tunnel line	Taxaa I I I	ANGLE FROM HORIZONTAL	90° DIRECTION
ROCK TYPE DEGREE OF WEATHERING	OESCRIPTION	DEPTH LIFT & SIZE OF LOG CORE RECOVERY	STRUCTURES, JOINTS, VEINS, SEAMS. FAULTS: CRUSHED ZONES	
Moderately fresh to fresh	Fairly broken core Conglomerate matrix contains Sub-angular fragments Fairly broken core Igneous perphyritic rocks Set in a matrix of quartz frags, metamorphics and frags of syncous rocks	516 100	Joint 60° Joint 55° coated Joints (35°, 0, 30, 40° Granulated zone Joint 40° Joint 15° coated a Joint3 (73°, 45°)	
Conglomerate	Pairly broken to very broken core Pabbles of porphyritic rock to a size of 6" Matrix fairly soft and green Very broken cores The conglomerate also contains phyllite, slate and quartz grains, all set in a med. fresh matrix.	529 73	— Joint 34° — Joint 20° coated wh	te
	END OF HOLE			
		1 1 1	·	
	•		·	
,		1		
				·

HILL NO	£1000		LOCGED G	3rov x hon
	Ī		Sheet	

(

	BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE								
PROJECT	nouse word controls souther warm R20 or /363:/								
LOCATION	dengrav	md Tail Race, und	ler_	Laloki	RIV	er Co	ANGLE P	FROM HORIZONTAL	DIRECTION
ROCH TYPE B DEGREE OF WEATHERING	Grain	DESCRIPTION	dr. Sze Channa	DEPTH SIZE OF CORE	LOG	LIFT & CORE RECOVERY		CTURES, FAULTS, CRUSHED ZONES	
		Soil and scree				///	Surfu A		
	С	foor sorting Madium matrix.	7*] =	Δ			cone (1º frags.)	
	. F	Yary poor serting Medium matrix.	\$.	10	٨		Some small Vary bro		
Moderately	с	Coarse matrix	8	-			fairly br		
weathered agglomerate	f —	Unsortod Coarse matru,	4	-		rated	Pairly broke	and clay-	
	M	Very poor sorting. Well sorted, Med metro	11/8	20	Δ			6" pieces	
	М	foor serling Med. matrix.	13	-	Δ .	jou	23 8	and 27	
	F	Wall sorted. Sine matrix four sorting. Med matrix		30				all cavities	
	М	Poor sorting. Med. medru				85	Some sme	10° preces.	
	F	Med to coarse matrix	7]	4 .	/95/	Yery bra	ten L' pieces.	
	м	Vesicular agglom.	14	10	. 4		Fairly by	rokan 5" preces	
Fresh	F	Med. matrix.	1'	-		100	4		
aggiomerate.	M	tigh properties of matrix Unserted . Med. matri	a 3/"				Extremely Fairly bro	ken 5* preces	
	, M	foor sarting.	12"	NX 50	. 4			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
					Δ				
·				60			Joint 45		
					•	93/			
Moderately fresh		٠.			Δ .	100	S Broken		
agg/merate.	Agglo	Broken care omerate mostly vesice and red basalt, and		70	4	/ //	K Broken	zone.	,
	cabea	lded in a brown tiffact ox which is line gra	eous			100/	Broken Soint 45	5*	
1	l	Grinding is traguant arge size of aliments				100	Irreg. 1	fracture.	·
				80	4	100/			
					۵		1		•
				90	۵ .)		
					Δ .	100			
						100			
ORILL NO		- Toff		1 /00		<i>C</i> =	Coarse		
DRILLER M. Pages			- eraf	•		M = F =	Madium Fine	LOGGED L. Hamilton	9 G. Brouxham
COMPLETED								VERTICAL LINGH	: 10 Feet

	BUREAU OF MINERAL					D GEOPHYSIC	S	
and the second of the second o	GEO <i>NA HYDRO-ELECTRIC SCHEN</i>		AL LOC	G OF D	RILL HOLE	<u> </u>	R.L. /363·/	
ì	dacground Tail Race, under L		A			FROM HORIZONTAL	45° DIRECTION	
ROCE TIPE		DEPTH		LIFT		ICTURES	DIRECTION	
& DEGREE OF WEATHERING	DESCRIPTION	SIZE OF CORE	LOG	RECOVERY	JOINTS VEINS, SEAMS	S, FAULTS CRUSHED ZORES		
				777				
,	fainly broken cores Agglom. components of vesicular basall, andesites, angire- porphyritic rocks Average size of clements in	//a_	Δ.	85/	Irreg. joint 20	fracture .		
	From 110' to 119', components increase in size to 2" - 3" in a matrix of medium grained andesitic tuff. Grinding of core common.	120	Δ	 	;			
Moderately fresh agglomerate	fairly good to lairly broken core.	/30	Δ	/	- Oroken fragme Joint	nt 2° to 3° long	.	
	Fairly broken to broken core Pescription of agglom, as above	/ 40	Δ		¥ — Broken .	zone .		
	Cores fawly good to fairly braken, Agglom, components of fine grained perphyritic rocks 2" to 3" across set in a fairly coarse triffaceous matrix.	/50 <u>.</u>	a	95 1	45°	5 *		
	Cores fairly good to fairly broken	/60	Δ	70 74	Clay Si	//mg /*		
fresh to mod. fresh agglomerate.	Agglom description as above. Average size of components 1' consisting of resicular basalt andesites, and porphyritic rock embedded in a fairly coarse tulfaceous matrix.	/8a	Δ		Clay fills Clay fills Fracture	ed fracture		
	Cores - fairly good to fairly broken. Agglom. description as above. Tuff occupies a greater proportion of the rock.	196	Δ.	100/	Irreg.			
		200	• •		Vertical	fracture		
TYPE MINGE!						L06640 <u>G</u>	Seouxhan.	
COMPLETED	Reid					VERTICAL SCALE	ch: 10 feet.	

	BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE						
l .	PROJECT ROUNA HYDRO-ELECTRIC SCHEME HOLE NO. R. 1363.1						
LOCATION UNA		DEPTH	LIFT STRUCT	URES			
ROCK TYPE a DEGREE OF WEATHERING	DESCHIPTION		CORE JOINTS, VEINS, SEAMS, FI	NULTS, CHUSHED CORES			
	Fairly good to fairly broken cores Aggl. description as above	l	Fractures f. 45°	irregular fracture s (70°, 35°, 70°, 40°)			
Fresh to Mod. Fresh agglomerate	Agglom, components larger 3" to 4" across consisting mostly of vesicular basalt and andesites. Agglom, components smaller	22 0	X—Broken Zone of Joint 50° Plat fract				
	fairly good cores Component layer 2" to 3 across consisting of andesites, resicular basalt and fine grained porphyritic rocks. Embedded in a brownish tuffaceous matrix.	230 A	Joint 45° Joint 70° Joint 45° Fracture 100 60° clay 80° frac	Mn coating. Mn coating. I do zone. I coated fractive. It coated with yellow sec. minerals. 6°			
Mod. fresh aggl.	Cores fairly good.	240 - A	Large & 100 Irreg. Foint 4:	5° coated black			
Fresh to mod. fresh aggiomerate	Fairly good to fairly broken cores Agglom. wasorted. Compenents vary in size from 6" to 4"	250 ^Δ	Fracture	fractures			
Moderately fresh agg/omerate	Fairly good to fairly broken cores Compenents are 5° to 6° dm. Tuff coarse to fine. Agglom. components 1° to 5° Fairly good to fairly broken cores. Agglom. components 1° to 3	270 	Joint 4.				
	Aggi. comp. have av. size 1"to 2" 4" to 5" End of Hole.	<u> </u>	Fracture Irreg.				
		29 <u>0</u>					
DRILL NO	F 1000			LOGGED G. Brauxhan			
		ORILLER PRANCE Reid COMMENCED VERTICAL 1 mg/s 1/0 feet					

		RESOURCES, GEOLOGY AND GEOPHYSICS	
PROJECT	GE OUNA HYDRO-ELECTRIC SE	OLOGICAL LOG OF DRILL HOLE CNEME HOLE NO	
	achine Hall Yo Power Statu	ANGLE FROM HORIZONTAL 90° DIRECTION	
ROCK TYPE	DESCRIPTION	DEPTH LIFT STRUCTURES.	
DEGREE OF WEATHERING	DESCRIPTION	CORE JOINTS, VEINS, SEAMS, FAULTS, CRUSHED ZONES	
Lateritic	T .	J goal l	
soil and rubble	·	Broken zone and weathered	
Moderately fresh	Boulder of agglomerate		
aggiomerate			
Lateritic soil		Broken zone and weathered	
Mod. fresh aggiomerate	•		
	Cores fairly broken to good.	\ \(\langle \frac{1}{2} \)	
	'		
Fresh	,	20 4 / Joint 45°	
agglomerate	Aggl. consists of unsorted		٠.
	elements of vesicular lara 9 fine grained		
	perphyritic rocks set in a		
Mod trash fuff	brown tullaceous matrix	Fracture (45° 80°, 80°) Broken Zone	
Mod. fresh to Weath. tuff	Yellowish brown arenitic	Joint 45°	
	Fairly good core		
ľ	Grey arenitic tuttaceous		
ļ		40 Tount (38, 45)	
	Fairly good core broken In parts		
	1991. components av.	As' A Joint 35° coated with a green secondar Broken zone mineral.	ry
	2/11/61	Joint 70°	
		50 100	
	Fairly good core	Joint 80° coated with a metallic sheen	, .
Moderately tresh	8am 15/11/61	<u> </u>	
to fresh	8:30 am 16/11/61 10 am 18/11/61	Joint 25 coaled with	
agglomerate	·	60 198 sec. mineral.	
ļ	Fairly good cores to fairly broken.	Fractures (70° 20° 45° 45° 70°)	
·	Aggl. comp. to a max.		
	SIZE OF 10"		
ļ		NM 2 A (100)	
	Faurly good to fairly		
	broken cores.	151//	
	Element of aggl. poorly sorted.	Fractures (40. 75,65, 75,75)	
		80 4 100	
		A Fractures (80,85,80, 45 65,78)	
Mod. fresh tull	gray to grayish brown	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	7 7 7 7 7 7 M.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
40. 4 4. 4	Fairly good to fairly broken	90 (99) Fractures (69°, 45°)	
Moderately fresh to	cores. Aggl. comp. range in composition from intermediate	Fractures (85, 65)	
tresh agglomerate	to basic laras, are poorly		ľ
	sorted set in a medium to coarse grained greyish brown		
	matrix.	100 - 96 - 2009 Watt. 80 MM Coaled.	
TYPE Mindrill	E1000 IN TUSS	A	
DRILLER T. Hugh	[D] Agglomerate	Sheet 1 of 7	
COMMENCED		VERTICAL	
COMPLETED		SCALE 1 Inch : 10 feet	-

		. RESOURCES, GEOL OLOGICAL LOG OF DRILL	OGY AND GEOPHYSICS
PROJECTRQ	UNA HYDRO-ELECTRIC		HOLE NO
LOCATION	chine Hall 1/2 Power Statio	<u> </u>	ANGLE FROM HORIZONTAL 90° DIRECTION
ROCK TYPE B DEGREE OF WEATHERING	DESCRIPTION	RECOVERY	STRUCTURES. RTS. VEIRS. SEARS. FAULTS. CRUSHED ZONES
	Bands of brownish gray full, medium grain size. Fairly good to fairly broken core.	110 /99/ A /97/	- Irregular fracture 30 = Fractures (70, 90, 20, 70) - Irregular fracture = Fracture (85°, 90°) - Fracture 60° - Joint 70° > Fractures (85°, 74°,45°)
	Greyish tuff band Fairly good to fairly broken cores. Aggl. components consist of vesicular basalt and andesite set in a greyish brown tuffaceous matrix. Foorly sorted.	/30 A //	-Irreg. fractToint 43° -Fract 20° coated with green materialNoriz. fracture -Fract. 35° clay filled -Fract. 30° clay filled =Toints at 40° -Fract. 20° coated with green materialToint 50° -Toint 45° coated blue secondary minero
Moderately tresh to fresh agglomerate	Fairly broken core	1 1 1 / L	Crushed zone - Irreg. fracture - Joint (60°, 70°) coated with black bloom: - Irreg. tracture 70° - Fract, 40° Crushed zone
	Fairly broken to broken core. Description as above with a greater proportion of tuff in aggl.	16a A 99	Crushed zone Toint 65° Treg. fract. Joints (65°, 62°) Fracture 55° Broken or crushed zone
	Fairly broken to fairly good cores. Tuff becomes more predominent.		-Irreg. fractures -Horizontal fractJoint (65° 55°) -Fracture 55° coated with blue materialFract (50°, 45°)
	Fairly broken to fairly good cores. Intermediate to basic laras set in a greyish brown tuffaceous matrix.	1 14 1//1	= Toints (65°, 45°)
	Pairly good core Description as above but in addition contains augite perphyritic rocks in a fine grained tuffaceous matrix	190 4 99	-'Toint 56° - Practure 70° > Irreg. fract.
	Fairly broken core.	200	Broken zone > Joints (27,45°) > Irreg. fractures
DRILL NO			Sheet & of 7
COMMENCED			SCALE 1 inch : 10 feet

į

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE HOLE NO. R.L. 1458.8 ROUNA HYDRO - ELECTRIC SCHEME ANGLE FROM HORIZONTAL 90° DIRECTION Machine Hall 's Power Station STRUCTURES, DESCRIPTION JOINTS, VEINS, SEAMS, FAULTS, CRUSHED ZONES 100 Fairly broken core. Aggl. consists of layered fragments of resicular > Irreq. tractures - Fract. 20° coated with secondary mineral basalt and avgite -porphyritic rocks. Pragments are unsorted. = Irreg. tractures -Irreg. tract. 20° Irreg. fractures 100 4 . Broken zone -Irreg. fract. -Joint 75° Δ Fairly broken to fairly good core Trreg. fractures 224 4. 93 Fract. 40° Description as above. - Track. 40 - Track. horiz.
- Irreg. fract.
- Fract.
- Fract. 45° Coaled with secondary mineral.
- Irreg. fract.
- Fractures (60,50) . 1 4 = Fractures (46',5') clay coated. = Irreg. fractures -Fract. 50° -Joints (77°, 67°) Fairly broken core Fresh Rocks of intermediate - Irreg. fract. moderately composition more abundant. 240 - Fract. 85° Joints (30°, 70°)

Irreg. tractures fresh agg/omerate Δ Practures (40°, 25,75°) Fairly good to fairly broken cores. 100 = lrreg. fractures 250 ۸ **۲** Fract. 60° Vesicular basalt, andesite = Irreg. fractures and various porphyritic - Fractures (50,45°) rocks ranging in composition from -Joint 85° coated with limonitic material, basic Δ intermediate are - Toint 65° embedded in a greyish-brown tuffaceous matrix. Irreg. fractures 249 S . . - Fracture 50° : Δ 100 Fireg. Tructures 4. 270 Fairly broken core. 100 > Tants (70,60) Aggl. composed of andesite and red black -Vertical fract. In broken zone. vesicular basalt set in a grayish brown arenitic tuffaceous matrix. - Joint 50° ۵٠. -Irreq. fract. 280 Moderately - Joint 80° - Fract. 45° Fairly broken cores. tresh Aggl. in general is layered. 4° to 6" of porphyritic rocks agglomerate = Irreg. fractures Curved fract. weathered on surface. 97 Horiz fract clay tilled.

Itreg fract with clay mineral.

Joint 35° coated brown.

Joint 70°

Irreg fract.

Joint 45° coated yellow.

Joint 45° coated yellow.

Joint 45°

Broken zone

Joints 60°

Treas fract. Aggl. components have an 2QQ average size of Mod tresh to work Mod. fresh Fairly broken to 97/ agglomerate. broken core. 4 Irrey. fract, LOGGED G. Broux hon TYPE Mindrell F1000 Sheet 3 of 7 DAILLER T Hughes 1 inch : 10 feet SCALE __

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS						
GEOLOGICAL LOG OF DRILL HOLE ROUNA HYDRO-ELECTRIC SCHEME HOLE NO. R.L. 1458.8						
PROJECT ROL	INA HYDRO - ELECTRIC S	CHEME	•			
LOCATION	Machine Hall 1/9 Power	Station LIFT	ANGLE FROM HORIZONTAL 90 DIRECTION			
ROCK TYPE	DESCRIPTION	SIZE OF LOG COME	STRUCTURES. JOINTS, VEINS, SEANS, FAULTS, CRUSHED ZONES			
		NMLC				
		Δ 100	Irreg. fract. coated blue.			
Moderately	fairly broken to fairly	l <u>l:::</u> //	Horiz. tractures			
aggiomerate	Med. to coarse gr. aronitic toff.	8/98	Fract. 45°			
	Aggl. contains abundant		Total 45°			
	fragments of vesicular basalt 2" to 3" in size	3/0	Irreg. fract.			
Presh to						
moderately tresh	Med to coarse gr. arenitic tuff		Sub horiz fract.			
agglomerate	shows graded bedding.]∴∆ / <u>95</u>	The Part tract waathared surtace.			
		//	Fract. 45° clay coated.			
Moderately	Family hadron to history	320 4 / 100	Broken zone weathered tragments.			
fresh to	Fairly broken to broken cores.	1 1 77	Irreg. tract. weathered surface. Irreg. tractured clay coated.			
agg/omerase.			Broken zone fragments /"-2" long.			
		4. 98	much clay material. Irreg. tractures weathered surface.			
j		330 //	Fractures (0. 10) coated with brown mineral			
		Δ <u>98</u>	Braken zone			
	Very broken cores - trags.	''	Broken zone Numerous fractures with weathered surfaces.			
		4 / 94				
Moderately	Broken cores	1 1 1 7	7			
fresh	Aggl. consists of augite-	340 /	Fractures (o, go, 20) with weathered surface			
agglomerate	andesites, vesicular	3 ₄	1			
	basalt. Aggl. poorly sorted, max. size of] //	/			
	components 12.	1 44//	Broken zone			
		350	/			
Moderately		1 48	Numerous fractures the surface of Which are either weathered or coaled			
fresh to	of 1" to 2" size.	1 1:1//	with secondary minerals and clay.			
weathered agglomerate]] " //	Mo slickensides seen.			
		1 96	A I			
	Broken Core	360 //	Numerous tractures with weathered			
	,	1 1 1//	surfaces.			
Weathered	Very broken cores	95	· <u>/</u>			
mod. fresh]4 [//	/			
agglomerate	Broken to fairly broken cores	·T 1. 41//	Numerous tractures with weathered.			
	Vary broken cores	370 4//	Surfaces.			
Weathered	Broken to very broken	A 100	1			
agg/omerate	Very broken core.	98	/ 1			
	Cares harbon to ford]. 4 95				
Moderately	Cores broken to fairly broken. Aggl. components	389 //	/ 			
fresh	consists mostly of andesite	98	Fract. 45°			
fresh	Very broken to broken cores		Pragmented zone			
aggiomerate	Broken to fairly broken	1 1/	Toints (70, 70, 65°)			
	Cores formly broken to	}	Irreg. fractures			
Sugarly wears	Cores fairly broken to broken. Aggl. comp.	390	Fragmented zones			
1	unsorted and to a size 8"	1 97				
Moderately fresh	Cores broken to fairly	// /	' / /			
agglomerate	broken. Average size		Irreg. tractures coated with Mn bloom.			
	of components / to 2"	400	1)			

TYPE MINARILL	F (MA)		LOGGED G. Broukhon			
			Sheet 4 of 7			
CONNENCED	7.5A	•				
COMPLETED			SCALE 1 inch : 10 feet			

:

	BUREAU OF MINERAL					D GEOPHYSIC	cs
PROJECT	GEO U <i>NA HYDRO- ELECTRIC</i>	_	_		HOLE NO	R 21	R.L. /458-8
	achine Hall 49 Power Statio					ROM HORIZONTAL	_
NOCK TYPE	DESCRIPTION	DEPTH a size of Cone	106	LIFT B CORE RECOVERY	STRUI	CTURES FAULTS CRUSHED ZONES	
Mod. fresh to	Broken cores Aggl. components consists of unsorted fragments of	-	NMLC	95 95 95 95	-Freque	nt fractures and coule	e sub-horizontal d with Mn bloom,
slightly weath. Aggl. Weathered Slightly weath to med fresh	Broken to very broken	41 <u>0</u>	Δ	94	Numerouson Fragm	ented zones	and vuggy fractures; y coarest.
Moderately fresh agglomerate	Fairly broken core.	-	Δ	/100	Irreg. 1 Joint Verlica	ract. Bo° .l fracture	
Mod frash aggi.	Broken Core, Aggl. components consist of unsorted red andesite and augite perphyritic rocks to a size of 6"	420	Δ	100	Fragme	red cores , rug inted zones ruggy fractu seconda	gy fractures res with green ry mineral.
3/ightly weathered agglomerate	Very broken core	430	Δ	94/	Extrem	ely broken i	tone - fragments triable
Moderately fresh to slightly	Broken to fairly broken core with small carities on the surface. Aggl. comp. have av. size of to Very broken core. Broken core. Aggl.	440	Δ	100	some to but secon	may be coandory minera	
weathered agglomerate	Broken to fairly broken core.	150	Δ		Fragme Very b. Fracti	nted zone; a few are roken zone	ractures coated with a secondary mineral. I rack usually trosh but coated with Mn bloom. to 3" pieces. The fresh although with Mn bloom.
Moderalely fresh agglomerate	Very broken cores <3" Broken cores 3"-6" Very broken core. Oroken core	432	۵	97	7		with Mn bloom irreg sometimes vuggy with secondary minerals
Slightly weath.	Very broken core. Broken to very broken.	} :	Δ,	100	Tresh,	some coated	fractures generally with secondary minerals
sightly	Extremely broken core. Yary broken to extremely broken core. Surface of cores vuggy. Aggl. components small. Average size is \$\frac{1}{2}\$ but may range to \$6^*.	-	Δ		17		one - soft and friable r, often ruggy and thered.
weathered agglemerate	Very broken core. Vesicular component are coated with a blue secondary mineral. Cores are generally friable.	-	Δ	V/λ	Sometii	TERN SECOND	ar, sometimes coated ary minerals and ic. Vuggy in places.
Slightly weath, to mod fresh, Slightly weath, Slightly weath to mod, fresh aggl.	Very broken core	49.0	Δ	100	Irregula	ar and with scondary	
Moderately fresh aggiomerate	Very broken to fairly broken core. Vesicular components are coated with blue secondary mineral.	500	Δ	99/ / / / / (00 /			
DRILL NO				-		VERTIGAL	reuxhon 5 of 7 h : 10 feet

	BUREAU OF MINERAL				RILL HOLE	ND GEOPHYSI	CS	
PROJECT	OUNA HYDRO-ELECTRIC					_821	R.L	
LOCATION	Sachine Hall & Power Stat	zen			ANGL	E FROM HORIZONTAL	90° DIRECTION	
ROCK TYPE	DESCRIPTION	DEPTH SIZE OF	106	LIFT		RUCTURES		
A DEGREE OF WEATHERING	DESCRIPTION	CORE		RECOVERY	JOINTS VEINS, SEA	MS, FAULTS, GRUSHED ZONES		
			Δ,	1001	Em ed			•
	Very broken cores] ; ;	V//	coate	ed with a bl	ve secondary m	ully uneral.
Moderately fresh	Broken to tairly good] :	<u></u> △	100				
agglomerate	Average size of aggl. components & "		Δ.	V//	Fragi	mented zone		
	2	51 <u>0</u>	4 ₄	100/				
	Average size comp. 4"] ` . :					
Moderately		:	A .		Clay	material - s	Sudoe.	
fresh to slightly weath.	Very broken cores]·:^	[//]	, ·	core loss)	1	
agglomerate		522	g ⊿	93/	Fract Secon	ures numero dary blue a	vs and coated wherals.	with
Mod. fresh tuff.	Broken cores		733	<i>Y//</i>			·	
Mod. fresh to		-	₽	98/				
slightly weath.	Very broken cores 3" pieces. Cores very broken.		Δ	///	h			
	Very broken cores. Aggl. Consists of unsorted frags.	534	Δ	100	ll .			
	of augite-porphyritic andesites vesitular andesites in a	-]					
	coarse arenitic tuffaceous matrix. Vesicles often] · ^.	100				
	Conted with blue secondary mneral	-	Δ.	Y //	Nume	rous sub-hoi	zontal fracture	•
	Broken to very broken cares. Max. size aggl. comp. 4 £"	544	1	100	} some	coated will ral, otherwi	secondary b	lue
Moderately	Agglomerate unsorted.	-	"	Y / X		· — , where,	SE 776377.	,
tresh		-	Δ	941	}			
agglomerate.	Yery broken to broken core.	-	Δ	///	}			
		55 <u>0</u>	.	100	<i>y</i>	•		
	Broken cores Aggl. components large up	-	۵	///	Fracti	ures usually	sub-horizontal	
	to 7" and generally unsorted. Vesicles in	-]	99	WITH	Hue seconda	minerals.	
	andesites coaled with blue secondary mineral.	-	Δ	///	Curre	d tracture		
	Very broken cores 3 pieces	560	1	99/			ctures, usually t	resh.
Mod. fresh to Slightly weath.	Broken cores.	-	֓֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֟֓֓֓֓֟֓֓֓֟֓֓֓֓	Y / X				
agglomerate.	very broken cores.	-	<u> </u>	195	Irreg.	fractures	coated with o	ι
Moderately	Broken to fairly broken cores.	-	Δ.	V/λ				
fresh to	Aggl. Components mainly of vesicular undesite av. size &	5 <u>70</u>		97	and i	orizontal fra rregular.	ctures usually fres	ih
fresh aggi.	Very broken core	-	∆	[//I				
	Fairly broken care	-	۷. ۲	97/	fract	ures general	sub-horizontal	,
Mod. fresh to slighty weath.	3 pieces and friable	- -	1	Y//				
Slightly weath.	Broken to fairly broken cores	582	355	/49	Grade	d bedding		
Mod. fresh agg/	Fairly broken cores.	-	1	V/A				
Mod. fresh to slightly weath.	Broken to very broken	-	133	100		• •		
mod fresh tuff.	core. Dark grey pelitic	-		//00	S Clay	like and fria	d/e	
Mod. fresh to	Fine grained.	590	. 0	961	1			
fresh aggl. Mod. fresh tuff	Grey politic tuff.	-	:::\\	///	Y-Pron-	unted zone.		
Mod. fresh.		-	Α.	99/	, , , , , , , , , , , , , , , , , , , 	chica zone,		
aggl.	Fairly broken cores.	-		///				
		600	12.50			<u> </u>		
TYPE Mindrell	<u> </u>					LOGGESG_	Braux hon	
DHILLER W. PROCE							6 of 7	
COMMENCED						VERTICAL		
COMPLETED						SCALE	ch: 10 feet.	

A SEC COMP.

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE											
PROJECTRO	UNA HYDRO-ELECTRIC				R.L. /4-58-8						
LOCATION	Machine Hall "Ig Pawer Ste	tion	ANGLE	FROM HORIZONTAL	go DIRECTION						
ROCK TYPE & DEGREE OF WEATHERING	DESCRIPTION -	DEPTH & SIZE OF CORE RE	*	UCTURES, S. FAULTS CRUSHED ZONES							
Mod. fresh tuff Mod. fresh	Fairly broken to broken core. Ourk gray pelific tuff.	1 1 1 1	// fresh .	some have	tures generally blue secondary						
aggiomerate.	Fairly broken to broken core.	60¢ A	100 mineral	's as a coati	n g.						
	END OF HOLE										
	, i										
				•							
			•								
		=			·						
	·										
]									
					•						
					,						
],									
] .									
		3									
	,										
				:							
DRILL NO.			·····								
DRILLER W. POPCE				LOGGED G G							
COMMENCED											
COMPLETED				SCALE	h: 10 feet						

		BUREAU OF MINERAL				EOLOGY AN	D GEOPHYSIC	es
PROJECT ROL	INA H	YDRO - ELECTRIC					R22	R.L/423.9
LOCATION	race)	Tunnel below Loloki		<u>e </u>	T	ANGLE	FROM HORIZONTAL	6.3° DIRECTION 94° M
ROCK TYPE a degree of weathering		DESCRIPTION	BEPTH B SIZE OF CORE	LOG	LIFT -& CORE RECOVERS		OCTURES. S FAULTS CRUSHED ZONES	
	<u> </u>			1				
	Sci	rce and rubble	-					30·1·6Z
	Agg16 vesic porphy	meces 1'10" to 6" merate consists of ular andesite, and iritic undesite rocks re pieces 4" to 5"	10	ò .	95		n Zone	
Fresh to Moderately fresh agglomerate	Agg/. ande andes a tut in pl	e pieces 6" to 9" consists of vesicula site, augite porphyrit it es embedded in faceous matrix which aces is friable.	c 20	Δ · Δ	100	Joint	50° coated	with blue secondary mineral.
	Cor Tuttace Core	pieces 8" to 1' e pieces 1" to 3" outs: matrix fairly friable gol. consorted.' pieces < 3"	3 <u>6</u>	Δ	100			with secondary minerals. coated fractures.
	AV. 51.	pieces 3" to 5" ze of aggl. components	40	۵	100	50b-h	orizontal jóil	nt coated with clay clay coated tractures.
Moderately tresh agglomerate.	A99/.	pieces 8" to 4" comp. av. 1" in size.	-		98/	Fracto Toint		ar and fairly fresh
	Core	pieces 4" to 9"]		Y //			
		pieces 2' - 3'	50	Δ		Fracti With	ires are fre a thin film	sh and coated of black secondary mineral
Fresh to moderately tresh agglomerate	red as andess	nerate consists of vited fragments of ad black vesicular te, also porphyritic sites in a matrix	60	Δ Δ	100	Joint	ertical joint. 45° n zone, clay	coated tragments.
	of ar	remitic tuff.	70		100	Fractu Set of	irregular fra	tures coated with clay.
Med. Iresh		own arenitic-tuff.	/ = -	. 0		Irreg	rizontal join fracture	t, mainly coated with secondary minerals
Fresh to mod. fresh apolomerate	Agg/. Ave comper	yenerally unsorted rage size of aggl. nents \$"-1" to a mum of 5".	8 <u>0</u>	Δ	100'		ractures ally fresh rregular	·
agglomerate	Cor Agg/. 2" I	components av. sin size and consist ine grained andesites vesicular andesites		Δ	100	some		regular and fresh a thin film of rals
04111 40		Toff						
DRILLER PRACTE Z CONNENCED 23 -1-	is barth	(Aggiomerate					Sheef 1	of 6
COMPLETED _15-2-	62						SCALE 1 INC	: 10 feet

?

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE ROUNA HYDRO-ELECTRIC SCHEME 9+ M Toutrace Tunnel below Laloki River 63 ANGLE FROM HORIZONTAL DIRECTION _ LOCATION . DEPTH ROCK 17-1 DESCRIPTION . DEGREE OF WINTHERING JOINTS VEINS SEAMS FAULTS CRUSHED ZONES Core pieces 9" Agglomerate unsorted. Fractures irregular Moderately 'Components vary in size from 1° to 1' as a boulder and fresh in appearance. tresh Δ aggiomerate of coarsly vesicular andesit Brown arenitic tuff. matrix. ΙΙΏ 100 Greyish brown tuff. Mod. fresh -Sub-horizontal joint Core pieces 6" to /'. -Irregular tractures clay coated. - Broken zone coated with secondary minerals. 100 120 Core pieces 3" to 6" ٥ Fractures generally coated with Core pieces 8" Mn. bloom. Agglomerate components are 11 to 11 in size and /30 / 100 consist mainly of fine grained andesites. Δ Moderately Core pieces 3" to 6" tresh - Sub-vertical fracture coated with clay. agg/omerate Δ Core pieces 1. 144. 4 Broken zone, tragments coated with blue secondary minerals. Joint 45° coated with sec. minerals. 1001 Core pieces 8° Agglomerate coarser 4. Components consists of - Toints 45°, 30° vesicular andesites, porphyriti andesites some of which show flow textures. Oroken zone 2", fragments coated with clay or secondary minerals along plane of fracture. 150 98 Δ. Irreg. tracture coated with secondary minerals. Core pieces 1' Fresh to Aggl. components & in size up to 10° -derately fresh . 4 aggiomerate Core pieces < 3" -Broken zone, tragments clay coated. Δ. weathered zone, triable fragments. Core 43" 160 1<u>100</u> fractures generally slightly weathered and irregular. Core pieces 6 Aggl. unsorted gr. . ۵ unsorted gr. size 1"-9" -Broken zone 2* Δ Core pieces 8" -Toint 20° 170 Δ 97/ Various fractures coated with blue secondary minerals. Core pieces 6" - 8" Aggi. components have an average size \$ - \frac{1}{2}" Narrow broken zone clay coated and blue secondary mineral on fractures. Δ Core pieces 1' - Fracture, clay coated. Moderately 180 ٠ ۵ thin broken zone, blue secondary mineral along fractures. fresh 100 agg/omerate Core pieces 6" ۸ 100. Fractures irregular usually coated with a Nue secondary mineral. Aygl. unsorted \$" to 2\$" Size of components. 190 Foint coated with clay , 75° 99 Δ -Broken zone 2° Core pieces 3" to 4" Narrow broken zone ٨ Core pieces 10" Fractures generally slightly weathered and irregular. Mindrill E1000 G. Brouxhon Sheet 2 of 6 DRILLER Pearse, Ziebarth COMPLETED . Linch: 10 feet

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE HOLE NO. __ RZZ __ R.L. _/42.3.9 ROUNA NYORO- ELECTRIC SCHEME DIRECTION 94° M ANGLE FROM HORIZONTAL 6.3° LOCATION Tailrace Tunnel below Lalaki RIVER LIFT STRUCTURES, ROCK TYPE a DEGREE OF WEATHERING SIZE OF DESCRIPTION JOINTS, VEINS, SEAMS, FAULTS, CRUSHED ZONES 99 -Broken zone, thin film of clay on fragments. ٥ Core pieces Aggl. unsorted, components large irreg. sub-vertical fracture crumbly surface. Moderately range in size from \$\fo 7. Largest comp. fresh are course resicular agglomerate Δ٠ Broken zone. andesites, otherwise fine grained andesites 98 Broken zone 3º wide. Brownish grey Tuff Mod. frash tuff Δ٠. -fracture, thin clay coating. Core piaces 5' Moderately Abundance of persus full frash agg/omerate Core pieces 8" Aggl components &" in size. 220 Δ Vuggy cores. Slightly weath. -Vuggy irreg. fractore. 98 ۸ Core pieces 9" Fractures irreg. sometimes coated with secondary minerals. Aggl. components & Δ. Broken zone - weathered surface on tragments or coated with secondary minerals. 230 Core pieces 3" 100 ٠, ۵ Core pieces 1° Moderately =cores= slightly=vuggy= tresh Δ agg/omerate Cores 3" Core pieces up to 2' 240 100 Δ Fractures irregular coated with blue secondary minerals. Core pieces 5" 25\$ 0 weath. aggl. core pieces (3" Fragments weathered and vuggy Core pieces 10" 4 . Thin broken zone. along weak section of core. Weathered fracture Aggl. components 1-1" 260 IN SIZE. Moderately Δ Broken zone, fragments coated with secondary minerals. tresh 98 aggiomerate Cores < 3" porous + friable Otherwise fractures irregular. `Δ Broken zone with friable tragments. fractures either tresh or coaled with secondary minerals. ٥. 270 Narrow broken zone Core pieces 6" -Irreg. fracture. 99 -Narrow broken zone !*, clay coated fragments Andesitic resicular rocks common in aggl. Δ. -Broke zone 2* 280 yellowish grey arenitic Slightly weath tuff Mod. fresh to ٠. ۵ Cores sometimes vuggy, fractures.
Thin clay coatings, also secondary minerals. Core pieces approx. 3" slightly weath agglomerate 100 tuff grades from coarse near the top to fine near the bottom of the bed Core pieces < 3", friable Slightly weath. to mod fresh tuff Fractures irregular. 290 A and porous. Slightly weath 96 agglomerate Core pieces 4", friable slightly less porous. -Irregular fractures, clay coated. Mod. fresh Δ Core pieces 8" Sub-vertical tracture clay filled. agglomerate. THE MINDRILL E1000 LOGGED G. Brankhon sheet 3 of 6 DRILLER PRATSO, Ziebarth COMMENCED 1 inch : 10 feet COMPLETED . SCALE _

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE HOLE NO. R.Z. R.L. 1423.9 PROJECT ROUNA HYDRO - ELECTRIC SCHEME ANGLE FROM HORIZONTAL 63 DIRECTION 94 M Tailrace Tunnel balow Laloki River ROCK TYPE B DEGREE OF WEATHERING SIZE OF DESCRIPTION JOINTS VEINS, SEAMS FAULTS CHUSHED ZONES -Irregular fracture, clay filled. -Broken zone 2°, fragments clay coated. 99 Mod. fresh Core pieces 8° agglomerate 100 ٠ ۸ Irregular fractures, thin clay coated. Core pieces 6"-3" Mod. Tresh to Aggl. components for in size tresh aggl. - Joint 45° ۵. Sightly altered 31<u>0</u> . 0// Core pieces 6" = Irreg. fractures coated with green clay material. core pieces 4" Moderately ٠.: ۵ Fractures 40°, irregular sometimes wated with secondary minerals. Vesicular andesitic rocks abundant fresh Broken zone with some scratches on fragments suggestive of movement. A 2° piece of hardened clay minerals. agglomerate ͺ ʹΔ Core pieces 8"-2" 320₄ . Core pieces 2" - 3 Med. fresh to slightly altered 98/ Agg! porous, cores friable Cores 6"-7" اه fractures generally irregular sometimes coated with secondary minerals. -Clay coated tragments. fine to fairly coarse Mod tresh to locally porous and frable sightly weath 334 Cores ruggy in places, generally porous a friable. -Sub-horizontal fractures coated with clay as above. 99/ minerals. Mod. fresh Δ Core pieces 5"-6". agglomerate Fractures generally irregular and core pieces 3" coated with limonitic material. core pieces 8", slightly porous and friable. 340 Δ. -Broken zone, tragments coated with limonitic material. Cores vuggy and friable. Moderately fresh ۸ Core pieces up to 2' 354 slightly weath. Not reliable No blocks put Tomark end blown Fractures irregular coated with limonitic material. agglomerate. Aggl. Unsorted trags. to 4" in Size - Broken zone, fragments coated with Erreg. fractures Coated with immentia material. Sub-herizontal coated iron compound. (This broken zone contains weathered) fragments coated with clay. Core pieces + "- 1 ,. 369 3~ ۸. Irregular fract. sub-horizontal coated. with clay and limonite. 10" . 4 Core pieces Other fractures tainly fresh sometimes coated with secondary Mn. minerals. Aggi. unsorted. 370 4 Set of fractures coated black with secondary minerals. 100 ∵ Δ Core pieces b" and slightly ruggy. Core Fractures generally fresh & irregular. Aggl. components consisted of resicular andesites the fine grained andesites to a size of 2"-3". 384. Moderately -Joint 50° coated with secondary minerals. frash 97 to Fractures tresh and Irregular. A . . fresh Core pieces I" Aggl. components I" in Size mostly of time agglomerate. Large sub-vertical fracture 5" long. grained andesites. 100 3900 Fractures fresh 100 Core pieces. 6" -Large irreg. fracture. Foint 70°. Core pieces generally m Mindrill E 1000 G. Brouxhon Sheet 4 of DRILLER Cearse , Ziebarth CONNENCED 23.1.62 COMPLETED _15 . 2 . 62 VERTICAL SCALE ___ 1 inch : 10 fect

	BUREAU OF MINERAL				EOLOGY AN	D GEOPHYSIC	CS
PROJECT	UNA HYDRO-ELECTRIC SCH					R22	AL 1423.9
LOCATION	Tailrace Tunnel below La	lok i	RIV	er.	ANGLE	FROM HORIZONTAL	63° DIRECTION 94°M
ROCK TYPE & DEGREE OF WEATHERING	DESCRIPTION	DEPTH a SIZE OF CORE	rue	LIFT B CORE RECOVERY	B	UCTURES IS FAULTS CRUSHED ZONES	
Fresh to mod fresh aggl. Mod. fresh agglomerate	Core pieces 8° - 1'9° Aggl. unsorted,	-	Δ	100	Joint	75° coated wit	th limonitic materia h blue secondary miner
mod. fresh luft.	Core pieces 6", ruggy and pitted. Aggl. Consists mainly of vesicular andesites and	410	Δ	99/	Joint 8	lo coated with compound.	ted with blue secondai minerals. ble & porous.
	fine grained andesitic rocks	420	Δ				es tresh sometimes ndary minerals.
Moderately fresh agglomerate	Core pieces >1' Aggl. components have a size & "-1"	430	Δ	/100'	*—— Oroke	n zone b [*] , fra	agments coated with Mn. Woom.
		441	Δ.	100	Fractu	res irregular	and slightly weathere
Slightly weathered to mod fresh agglomerate	Core pieces 6" Some of the cores are ruggy. Agglomerate unsorted.	450	Δ	100		i broken zone	hered fragments
	Core pieces < 3° Core pieces average 1'	460	۵	,100	Fractus and c	res irregular Iten coated	friable on surface with black Mn bloom.
	Core pieces (3", friable* porous Core pieces 5" Aggi. unsorted	- - - -	Δ	1001	Fractu	re sub-vertice 50°, 45° res irregular n zone 3°.	al 3" long. and friable on surface
	Core pieces 3" " 4° Core pieces 5° Aggl. comp. unsorted.	476	Δ			es irregular	coated with Mn bloom.
Moderately tresh aggiomerate.	Core pieces <3"	480	Δ	98/			
	Core pieces 7" " 4° " 7° to 2'6" Cores pitted and ruggy.	49	Δ Δ	99	- Fractui second	res irregular dary minera	coated with black is:
	core pieces 4"	500		97 / / /	Irreg.	fracture coats	d with blue sec. minera
DRILL NO. TYPE MINDER!! F						LOGGED G. B.	
COMPLETED 15.2.	62					VERTICAL SCALE	: 10 feet

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE HOLE NO. R.L. /423.9 PROJECT ROUNA HYDRO-ELECTRIC SCHEME ANGLE FROM HORIZONTAL 63° DIRECTION 94 M Tailrace Tunnel below Laloki Rivar DESCRIPTION JOINTS, VEINS SEAMS FAULTS CRUSHED ZONES Core pieces 4° Large fracture 4° long, coated with black secondary minerals.

Droken zone 2°, fragments coated with secondary minerals. Core / length Moderately Core pieces 4" 100 Broken zone 4" fresh 510 fragments coated with black secondary minerals. 4" to 5" Δ agglomerate Broken zone. Otherwise fractures sub-horizontal. Irreg. fracture coated with clay like material Fracture 3° long, coated Mn bloom. Core pieces 6° Aggl. unsorted. 100 Large tracture sub-vertical coated with secondary minerals. 520 /100 Core pieces /'7"-3" Agglomerate unsorted. Large fracture 40° - 7" long coated with blue secondary mineral. Vuggy on surface. 100 Δ 530 Core pieces 6° Irregular fracture sub-horizontal coated with blue secondary minerals. Moderately -Vuggy irreg. tractures coated with blue Foint 45° coated with black secondary mineral. trash agglomerate 100 54<u>d</u> Core pieces 8° Fractures coated with blue secondary mineral vuggy on surface. Sub-horiz, tracture coated blue. Core preces 4"-5" last 7 of core 99 / Broken zone, fragments coated with secondary minerals. Slightly weath. 55<u>0</u> to mod fresh core pieces 4º agg/ Fractures irregular and coated black. Irregular fracture black (ore pieces 7-8" up to 2' Mod. fresh aggl coated with blue and secondary minerals. 100 Mod fresh tuft Core pieces 4" to slightly waa Joint 10° coated with secondary minerals. . 4 Mod. fresh 12 560 tracture 5" long, coated aggl. Large sub-vertical Mod. Tresh tuff Coarse tuff or fine aggl, size f with secondary minerals. Otherwise tractures sub-horiz, generally coated with these sec. minerals. Agg/. unsorted. Δ. 99 Irregular fracture coated with black secondary minerals. 514 Moderately 100 Core pieces 6° frash Aggl." unsorted Fore porous inthe first toot of the nun. -large irreg. fracture 6" long coated blue. agg/omerate Irregular tractures (30,30,40)

Large tracture coated with sec. mineral.
sub-vertical. Core pieces l' rairly coarse ruff core pieces 3" Mod. fresh tuff fractures in tuit coated with black sec. minerals. dark gray. 584 100 - Joint coated black.

- Joint 45° coated blue secondary mineral.

- Irrog. fracture

- Joint 45° coated blue 8 Mod. fresh agg/omerate Core pieces > 1'3" -Large tracture 4" long coated with secondary minerals. 590 ۰۵ -fracture 80° coated with black secondary minerals. 99 End of Hole LOGGED G. Brouxhon m Mindrill E1000 sheet 6 of 6 BRILLER PRANSE, Ziebarth CONNENCED 23.1.62 1 Inch: 10 fact

	BUREAU OF 1	GEOL	OGICAL L		RILL HOLE	R 23	RL
PROJECT <i>ROUL</i>			HEME				•
LOCATIONMA	chine Hall, 19 Por	<u>ver Statio</u>	DEPTH	LIFT	ANGLE FR	OM HORIZONTAL	7/ DIRECTION320_M
ROCK TYPE a DEGREE OF WESTHERING	DESCRIPTION		SIZE OF COME	CORE	JOINTS, VEINS, SEAMS. F		
				<u> </u>			
		including en zones			Angles	measured	with respect to core- axis.
		spacing	10		·		
·		acture s					
Slightly weathered		2,01	20 0	///	Irregula:	r (20°, 70°, 45°,	o'), clay filled
(yellowish colour)		2*	1.	·///	20° clay	filled	
	Medium grained agg Agglomerate compon poorly sorted, aver	ents] .		Flat suri	face 80° r 30° r 80° clay fill	
	Size 1+	2"	30	100/		gular 0° clay	1
			<u></u>	△///	1 🔪	ken zone./ gular (90°,80°	
Moderately fresh	•			. V//	Flat surl	ace 80°	
aggiomerate			₹0.	-///		r 30°, clay fi egular (70°,76	
		7	40	Δ ///		o 30° clay fil	Ked,
·			=].		Irregular		pated with black mineral
;				100			surface 30°.
•	Aggl. components (no matrix) strongly join	nted 3°	50	Δ 100 / 100	1	r (0°, 80°, 80°, 3	
	lava boulder in	\dashv	4		Flat sur	face 80°	surface 5 slicken fided.
Slightly weathered	agglomerate Agglomerate with		6 <u>0</u>	16	Bit bloc	ked, core g	round away.
to moderately fresh aggl.	coarse matrix.	¦	1.	. [77]	Very in	egular 90°	
·	Components strong jointed.	7.	10	·.[//	1	irregular 7	·
.;	Med - coarse gr. tuff L			5 //	Flat sur	face (70°, 30°	·}
	Contacts not distin	cf.	10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- Broken	core 1, 0	
,	Components stron	gly	Δ	100	Flat su	rface 70°	
	Agglomerate poorly sorted madium grain size.		8 <u>0</u>	Δ 100	Irregula.	r 60°	
Moderately	Medium matrix.		۵		Irregula	or o	
trosh agglomerate		10	90	Δ 100	Polished	l flat surface	80°
]		
			100	<u> </u>	/ <u> </u>		
TYPE MINACILL E	1000 Est Tuf	ſ				LOGGED	Hamilton
DAILLES PEARCE,	Zecbarth A Agg/	omerate				Sheet	
COMMENCED 30 · 4	0.62					VERTICAL SCALE 1/00	ch: 10 feet
1							_

	BUREAU OF MIN						ND GEOPHYSI	cs
PROJECT	OUNA HYORO-ELECTA					PRILL HOLE HOLE NO.	R23	R.L
								•
	chine Hall 1/9 Power 5	181 -	DEPTH	T	LIFT	1	FROM HORIZONTAL	71° DIRECTION 320 M
ROCH TYPE a DEGREE OF WEATHERING	DESCRIPTION	Fractury	SIZE OF CORE	roc	CORE RECOVER	JOINTS, VEINS SEAS	RUCTURES MS FAULTS CRUSHED ZONES	
		14 15			1 788	<u> </u>		
		10*		Δ	177	T	n zone 4"	Citta d
		 			100	177.90	lar 30° clay	*///E0.
					Y//	1		
	Agglomerate medium	·	11 <u>0</u>		Y//	1		
	grain size, poor sorting.		- 11 <u>v</u>	.	100			
	Medium gr. matrix		-			Irregu	lar 0°	
			-	. 4	///			
			-			· Very /	Pregular 0°, c	Vay filled
		18*	120	Δ	100	,	urface 45°	
						Irregu	lar (45°, 30°)	
			-	٠, ۵	///	- Irregu	lar 30° clay	filled.
			-		///	very "	regular 5°	
			/30	Δ	Y//	- Broke	n zone with	caled with black mineral.
			4		100/	Flat p	polished surfac	e /o°.
Moderately		12	-	Δ	100/	Broke	n zone flak	y rock and clay, joints o.
tresh agglomerate	• .]	•				filled. (0,0,0,5)
sayyirina ara,				Δ				
			140	•	100/			
		1	1	Δ	///			
	Coarse grained aggl. average size of comp.		=		///	Regula	r Zo°, clay	Villed.
	2" in medium gr.	10]	Δ.				
			/5 <u>0</u>		100			
			7	· Δ	//			
			=					
				, ,				
			160					
		\vdash		 <u>\</u>	100			
	Medium grained		=	• :		Irregu	vlar (30°,5°)	i :
	agglomerate Matrix med gr			Δ.	///			
·			=	· .				
			170		100			
			4	٠. ۵		Flat s	urface (45°, 30°,	30)
			1					
				Δ.		Flat o	rregular 0° surface 80°	
		/3*	180		100			
				. Δ	///	Irreau	lar 5°	
			1			Irregu	lar 50 , clay 1	illed.
			3	<u> </u>	//			
			190	٥	100	- 1/2	, , , o•	
			1		///		irregular 0° lar 70°	
			3	·	///	-3-		
]	Δ			•	
			200		///			
04111.40								
TIPE MINDELLI E	7000		•					lamilton
COMMENCED 21 . 3							Sheet i	2 of 7
COMMENCED 30 · 4	•						VERTICAL SCALE	ich: 10 feet
	· 1							

	BUREAU OF MINE	ERAL	RESOURC	ËS, G	SEOLOGY AND GEOPHYSICS								
day	GEOLOGICAL LOG OF DRILL HOLE PROJECT ROUNA HYDRO-ELECTRIC SCHEME HOLE NO R23 R.L. 1494-12												
PROJECT	NA HYDRO-ELECTRIC	<u> 52</u>	NEME.		HOLE NO R.L. 1444								
LOCATIONMa	chine Hall Yo Power S	tatio			ANGLE FROM HORIZONTAL Z/ DIRECTION 320 M								
ROCK TYPE a DEGREE OF WEATHERING	DESCRIPTION	ractur	DEPTH B SIZE OF LOG CORE	LIFT a CORE	STRUCTURES JOINTS YEINS, SEAMS FAULTS CRUSHED ZONES								
		8 %		RECOVERY	1								
	Agglomerate, medium grain size, med matrix	" •	2100	100	Irregular (46,5°d) — flat surface 90° — Irregular 5° blue bloom on surface.								
	Thin irregular tull bands		22.0	100	Irregular 5° — Flat surface 60° — Irregular 5° — Bedding approx. 70° to core axis.								
	and fine agglom. of varying yr. size, some graded bedding.	7*	230	100	- Flat surface 45°								
Moderately tresh agglomerate	Medium grained aggl. with some large boulders (>12") Med. gr. matrix.	4.	24 <u>0</u>	100	Irregular (5°, 70°, 5°) Very irregular 0°, green bloom Irregular (10°, 5°) — Flat black polished surface 80° — Flat polished surface 5° — Very irregular 20° clay filled — Irregular (5°, 45°) Very irregular, clay filled (0° 60°)								
	Medium grained aggl.	,0	Δ	100	Irregular, clay filled (5°, 30°) Broken core 4" clay filled Irregular, clay filled (5°, 5°, 0°, 30°, 30°, 0°) Irregular, clay filled (5°, 0°, 0°) Broken core, clay filled 0°. Irregular, clay filled 30°.								
	Coarse aggl. tutl trags 2° Medium grained aggl.	24	290 A	100	Irregular (30°,80°, 30°,0°, 45°, 30°,) — Irregular, Clay filled 30°. — Broken zone 4° chay filled. — Yery irregular 50° day filled.								
DRILLER PROTECTION OF THE CONTRACTO SO 4 - 3 - 4 - 5 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5	Gabarth 62				Sheet 3 of 7 VERTICAL SCALE I Inch 10 feet								

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE PROJECT ROUNA FALLS HYDRO-ELECTRIC SCHEME R23 R.L. 1494.12 Machine Hall 1/9 Power Station DIRECTION 320 M Fracture Spacing ROCH TYPE & DEGREE OF WEATHERING DESCRIPTION JUINTS, VEINS, SEAMS, FAULTS. CRUSHED ZONES Irregular, clay filled 30° 100 Clay filled (15°0°) Moderately fresh = Irregular 10°. agg/omerate Flat surface 45°. 3/0 7. 100 Irregwar (80,70,60, 80,60,60) Δ Fine graded bedding. some slickensides Erregular 90° Slightly weathered Medium grained aggl. average size 14". agg/. Irregular 90°, porous zone. Med. to coarse matrix peorly sorted. 320 Irregular (40°,90°) Δ 100 -Flat polished surface 60° . ۵ - Clay filled 70°, & clay 24 Flat 30° Fine graded bedding 330 ٥ 340 Δ <u>100</u>, -Irregular 30° ۵ Moderately fresh Very porous weak rock . agglomerate 350 Δ 10" - Irregular 100 . ۸ Irregular 70° 360 ۸٠ 100 Fairly flat 70° porous zone Fine graded bedding. 370 A . Irregular 60° 100/ = Flat surface (60°, 48°) Irregular 80° Flat 40° 6" Δ 380 100 Agglomerate medium grainsize. Slightly Irregular weathered tractures at angles between 0° ± 90°. Unsorted. weathered angles between 2* aggiomerate 390 Irregular fractures clay filled 70° 100 9 Flat slickensided surface 4.5° Moderately Irregular Irregular 80° Plat surface 20° Irregular 10° 3* fresh agg/. 9. MINDER! E 1000 Hamilton Sheet 4 ORILLER POORCE Zeebarth of CONNENCED 21.3.62 COMPLETED 30.4.62 VERTICAL 1 inch: 10 feet

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE ROUNA HYDRO - ELECTRIC SCHEME HOLE NO. R 23 RL 1494.12 DIRECTION 320M Machine Hall "/g Power Station LOCATION Fracture Spacing ROCK TYPE A DEGREE OF WEATHERING DESCRIPTION JOINTS VEINS SEAMS FAULTS CRUSHED ZONES 100/ =80° Medium grained aggl. 8* 410 Δ Coarse grained aggl. Av. grain size 2* Matrix of compactable tuff. 4~ Medium grained aggl. 420 90 poorly sorted. 8 4 - Flat surface 10°, blue bloom. 430 - 90° 100 Fine grained aggl.
Components average £* = 90° porous zone . 8 440 moderately sorted. 10Ò Moderately = 90° tresh Medium grained aggl. aggiomerate -45° contains to secondary filling. go broken zone 450 4* 100 Coarse grained aggl. Broken zone (probable due to drilling) - 90° thin coating 900 464 100, -Broken zone (probably due to drilling). Medium grained aggi. 414 Very porous zone. 5° irregular. 8* -0° irregular . fine to coarse bands of tuff. Ift. of irregular 0°, fractures. 480 Bedding 70° to core axis Δ 100 -60° flat. Medium grained aggi. 490 100/ -5° irregular. m Mindeill E1000 LOGGED L. Hamilton Sheet 5 of 7 DAILLER BOCKE , Zeebarth COMPLETED 21 · 3 · 62 COMPLETED 30 · 4 · 62 1 Inch : 10 feet

	BUREAU OF MINE						D GEOPHYSIC	cs	
	ROUNA HYDRO-ELECTRIC					RILL HOLE	R23	R.L	2
				/ * / L ea					
LOCATION Ma	chine Hall Yg Power 51	12 2	060111	T	LIFT		FROM HORIZONTAL	77 DIRECTION	320 M
ROCK TYPE & DEGREE OF WEATHERING	DESCRIPTION	Fractu	SIZE OF COME	106	CORE		UCTURES S *AULTS CRUSHED FORES		
		15.34	<u></u>						
			-	Δ.	///		ay filled and	weathered.	
			:	· .	100		regular.		•
			-			60° 1	flat.		
		6"] -	Δ		60° c	lay filled.		
			513]		60° 1r	regular.		
] :	Δ.	100	// "	<i>ar</i> .		
			-		V/,				
	Medium grained aggl. with a few larger] :	V/	80° fla	o. f		
	boulders or cobbles.	10*	52.0	Δ	V//				
] :		100	70° fla	if f		
		\vdash	-	-	777	30° v	20° flat	Ì	
			-]^ .	Y //	20° 110			
	·		424			20 110	-1 .		
,			532	1 4				ŀ	
			-		100				
		16*	:] .	V/,	20° f/a	· · · · · · · · · · · · · · · · · · ·		
F			-	Δ,	V//	70° f/a			
fresh agglomerate			544		Y//	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
	·		-	١.,					
		<u></u>	-	Δ .	100/	5° 100	egular. 1.		
]] ,		20 112		·	
		4*	55/		V/,	30° 100	regular.		•
•		7	550	Δ	V//	5° irr	egular.	İ	
j] :	1	100	20° fl			
] .	Y//	- 70° 11a	it.		
			-	₫. Δ	Y //	20° flas	• .		
			560			5 pare	ulei flat frac	tures at 20°	
	Maduum geomed earl			Δ	\\ <u>\\</u>	- 20 1/2	,		
4	Medium grained eggl. with a few boulders] :	- -	Limous	111 01	broken tragm	ents l"dia.	fresh.
·		7*]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			· ·	
			478	·. A	/ 5/	20° Fla	of.		
1			57 <u>0</u>	1	13/			ļ , , , ,	
]		///	45° f/a	s.£		
			-	Δ.	Y//		•		
			-	ļ · . ·		Grindi	ng of core ev	dent.	
			580	٠. ۵	100	30° fla	proken zone d t	dent. ve to low angi and di	e tractures
1			-			90° fla	√.		
	Medium grained aggl.]] .	100				
	completely unsorted.	8*	-	Δ .	Y//	60° f/a	£		
			590	٠.	100/	20° 1/a	J.		
			- 279	. Δ	/ /	_			
}	Band of full				/100	90° irri	igular		
	Medium grained aggl.	14.	-	۵		30° 1/a			
	Coarse to fine tuff bands	/4	-		100	90° f/a			
	load casts present.	<u></u> l	600	1::::		30° fla	<u>′. </u>	<u> </u>	
DRILL NO								· · · · · · · · · · · · · · · · · · ·	
TYPE Mindrill E	1000							lamilton .	
COMMENCED 21.3.							Sheet	6 of 7	
COMPLETED 30 - 4							VERTICAL 1.0C	h : 10 feet	
L									

	BUREAU OF MIN						GEOPHYSIC	s		
PROJECTRG	OUNA HYDRO-ELECI					RILL HOLE HOLE NO .	R23	R.L	494 · /2	
	Machine Hall Yo Power					ANGLE F	ROM HORIZONTAL	7/°	DIRECTION3	ZOM.
ROCH TYPE B DEGREE OF WEATHERING	DESCRIPTION	16.04	DEPTH SIZE OF CORE	foe	LIFT B CORE RECOVERY		TURES FAULTS CRUSHED ZONES			
	Fine grained aggl. with large cobbles	14.		Δ	100	30° f/a.	<i>,</i>			
tresh aggiomenate	Very fine aggl. with coarse matrix. gr: size average f" A few boulders. Completely unsorted.	4.	620	Δ . Δ	100	80° f/a Cone gr 30° f/a	t unding eviden at.			,
	Fine grained aggl.	8*	630	Δ	100	30° 1/a/ Core g	regular ut rinding y irregular, c gylar	alcile	f,//ed.	
	av. šize f. very coarse matrix. Calcite veinlets become more compact marbottom d ha	5°	640	Δ	100/	30 100	igular			
	End of Hole.	ì								
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
		÷								
			1							
									,	,
			1							
TYPE MINARILL	E 1000						LOGGED	Hamilt	on	
DRILLER CEARGE	Zesbarth							of 7		
COMPLETED 30.							VERTICAL 100	sh : /0	feet	

	BUREAU OF MINERAL					ND GEOPHYSIC	cs
PROJECTROV	NA HXDRO-ELECTRIC SCHEM				RILL HOLE HOLE NO.	_R24	R.L/4/7.2
LOCATION	lerground tail race, under	Lalo	ki B	erer (74 /8 DIRECTION 280 M.
ROCK TYPE a DEGREE OF WEATHERING	DESCRIPTION	DEPTH 8 SIZE OF CORE	LOG	LIFY A CORE RECOVERY		RUCTURES, MS. FAULTS, CRUSHED ZONES	
		NMLC		·			
	Scree & Rubble Material.	-					
M. F. aggiomenate.	F. G. cores Components of aggi, time grained augite & vesicular andesites. Sue to 2'	/0_	4 .		I.F h	l. Surfaces 45° 45°	
SW. to W.	Broken to very broken cores.	1 "	. Δ		I.f. cla	y filled 1" thi	et.
Moderately fresh agglomerate	Fairly good core.	1 1 1	Δ.	100			
		20	Δ	100/			
M.F. to S.W.	Broken to very broken cores	1	· ·	98		in rock ± 6"	with weathered surfaces
M.F. to F	·]	4 				
299/.	fairly broken cores.	<i>y</i> 2	. Δ	/106 / ///	2 brok	kan zone, fracti	res coated with black frieble material.
Tuff Band				100	5ma//	frag. zone	
	Components of vesicular andesites more common.		4 .		-	rted Wack - Sr	tracture 5" long. Table
i	Very broken cores.	10	۵.	100	I.F.		
	Fairly broken cores.	-	Δ .				
		50 <u> </u>	٠.		- J 45°		
fresh to mod. Iresh.	fairly broken to fairly	-		100		k broken Zond Thorwise few	inregular tractures
agglomerate.	good cores. Aggl. unsorted.	-	Δ.				•
	Broken cores 4° pieces.	10	` · .	100	5 <i>H</i> .	racture coated	*
	,	1	٠ کا				condary minerals.
	·						
	Fairly good cores up to 3'	70	Δ.		•		
	Aggl. fairly well sorted.		. Δ	100/	IF. WO	athored surfac	. .
,							
		90	Δ	100		·	
		1	Δ,				
M.F. 10 S.W.		-	-		5.H. fra	clure - weather	red surface.
Fresh to Mod. fresh		90.		100/	75	and and a south	andani na ariti
agg/omerate			. 4				ondary minerals. To secondary minerals.
·]	ا ، د				
		1001	<u> </u>	///			
TYPE Mindeill E						LOGGEO <u>G. B</u> 1	soux hon
COMPLETED 1-6-6	2	ate				VERTICAL	
						SCALE	h: 10 seet.

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE RL 14/7-2 PROJECT ROUNA HYDRO-FLECTRIC SCHEME HOLE NO. R.Z. Underground Tail Race under Lalaki River (%) ANGLE FROM MORIZONTAL 74 18 DIRECTION 280 M STRUCTURES. ROCK TYPE

a DEGREE OF WEATHERING SIZE OF JOINTS, VEINS, SEAMS, FAULTS, CRUSHED ZONES KML -I.F. friable surface, coaled with secondary minerals. ۵ ٔ Yery broken cores. Aggl. hottaccors Fairly good core 110 Aggl. - vesicular andesite with zone of dominantly tuffaceous material. -IFracture - S.V. joint 4" long. Fresh to -SH. fracture coated with secondary minerals. Mod fresh aggiomerate 120 - Joint 45° -I.F. - IF coated thin with clay. - F. 45° coated 5M. 1.30 A - Core ground. Fairly broken cores 140 Very broken cores - vuggy 100/ - fractures conted with secondary minerals. Fairly good cores. 150 100 Otherwise fractures coated with sec. minerals. broken to very broken cons 6" long S.V. fracture coated with secondary minerals. core slightly ruggy. 3 Appearance of red compound T 45. 160 andesites Aggi. as usual-rather unsorted. Otherwise Ism fractures with slightly weathered surfaces. Fairly good to good core. Moderately fresh aggiomerate 110 180 f' crushed zone, syckensides developed - 2" thick fragmented zone. Pairly broken cores slightly vuggy in places. 190 100/ - 40° joint coated with blue secondary minerals fairly good core . Large I.F. coated with blue sec. minerals. 45 fracture coated with clay. /100/ ... Mindrill E 1000 1066ED G. Browshon DRILLIA W. Pearce CONNENCED 8-5-68 COMPLETED 1-6-62 Linch: 10 feet

	BUREAU OF MINERAL				GEOPHYSIC	:s	:.
PROJECT	GE <u>'UNA MYDRO-ELECTRIC SCH</u>	OLOGICAL LO	G OF D	PRILL HOLE HOLE NO	R24	(4.4)	, ,
ł					•	R.L	
	langround Tail Race, under	DEPTH DEPTH	LIFT	T -		4 /8 DIRE	CTION 280° M
ROCK TYPE a degree of weathering	DESCRIPTION	SIZE OF LOG	CORE RECOVERY	STRUCTU JOINTS, VEINS, SEANS, FAI			
	Υ	NMLC		<u> </u>			1.4
Mod. fresh		10.	100				
aggiomerate.	Care slightly vuggy.	1 1	///	2º Sragm	rented zone	- Inactures Su	with weatheres
	j		Y//				<i>.</i>
		2/0	///				
]	/100° /	3 .			
Fresh to		-{[. ·	///	38			٠.
mod. fresh agglomerate	Fairly good core throughout.]]	///	1461			
"		220		8 %			
	Aggl. fairly well sorted.		100	*			
		-		200			
M.F SW.			///]				
		1		rac	İ		
`		230	/ / /	•			,
	Core ruggy.	1	///				
	, , , , , , , , , , , , , , , , , , , ,	4	100				
			///	- Vuggy fr	acture.		
		24 <u>0</u> A	///	I.F. clay			
				I. fractur	e - clay coar	ed. T weath	hered.
]4	100/	- I. fracture	e - Way co	ated 9 wed	athered.
		<u></u>	///		1		
		25ē · Δ	///		ŀ		
	Fairly good core		///				
Fresh to	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Δ .	100	If coates	e 2° wide d with seco	mdary min	enats.
mod. fresh agglomerate.	Broken to very broken were]	///	50° joint.		·	
	Fairly good to fairly broken	260 0		- Clay coals	d tracture		
	COPE] · · /		- Fract clay	coated the	nly & with s	weathered urface.
			100/	· I.F.			
		T Y	///				
	Fairly good core.	270 A	///]				,
	<i>y 30.0</i> 10.0.]. · · k	100/	- 45° Fracti	re coated.	sec. mines weathe	nals 8
		1, 1	///		Ì	W 2554 11-	
	•	1. 1	///]		ĺ		
٠.		280	///				
		1.1	100/				
	Fairly broken to fairly good		///[Irreg. fract	. weather	ed surface	١.
:	core		//I	·			
		290	///[Irreg. fra	ct. weather	red surface	
	Dominantly tuffaceous aggl.		100	5.H. Fract	Jay contad	9 weathers	ed.
MF. + 5.W.	Fairly broken cores	4	//ホ	I.F. We	athered sur weathered	face.	
tuff.	Aggl. unsorted.		// / F	F. coated	Mack second	dary miner	a/.
		300	///	60 Fract.	weathered	surface.	
Dau P2							
TYPE MIRACELLE E	7000			roe	GED G. Bro	uxhon.	
DRILLER W. Pear						· · · · · · · · · · · · · · · · · · ·	
COMMENCED 8-5-6					TICAL LING	h : 10 fee	٠,
	· ·			30,			

ۥ€£

	GE	OLOGIC			GEOLOGY AND GEOPHYSICS DRILL HOLE HOLE NO
	<u>UNA HYDRO-ELECTRIC SCHA</u> NDFRGROUND TAII RACF III		lalak	i Rive	RELY) ANGLE FROM MORIZONTAL ZE'S DIRECTION 280° M
ROCK TYPE a DEGREE OF WEATHERING	DESCRIPTION	DEPTH A SIZE OF CORE	rae	LIFT B COBF RECOVERY	STRUCTURES JOINTS VEIRS SEAMS, FAULTS CRUSHED ZORES
	fairly Broken cores.	NMIC	Δ	100/	4° wide trag zone
Fresh to mod. fresh	Cores putted Broken Cores	3/ <u>ó</u>	Δ	100	Compound fracture 6" wide frag. zone.
agglomerate	fairly broken cores.	322	Δ		Otherwise fractures slightly coated with secondary minerals.
M.F. to SW. Aggl.	Broken cares.			99/	4
		-	Δ		- I" wide frag. zone - IF 80° clay coated fracture
Mod. fresh to fresh agglomerate	fairly broken to broken cores	334	Δ	100/	
		340	Δ	100 /	IF. In S.W. core prece
ļ.	Broken cores dominantly tuffaceous]	Δ.	1//	Large I.F. weathered surface Small frag. zone - weathered core pieces
Mod. fresh		-			IF slightly weathered in surface.
agglomerate		350	Δ	100	Large IF. weathered surface. Weathered fracture. 45° Joint - weathered surface. Weathered fracture.
S.W. to W.			Δ		I.I. weathered surface.
Mod. fresh agg/omerate.	Cores pitted	360	٥		Large fract: coated with secondary muneral.
3W. 10 W.	fairly broken cares	-	Δ.	100/	Large sub-vertical freature clay filled.
			Δ		1. coaled secondary minerals.
Mod. Sresh agglomerate		310		100	
•		-	٨		4" wide fragmented zone.
		380	۵ .	///	EF, with joint strictions 9 coated with sec. evinoneEF, coated with sec. evinerals.
	fairly broken to broken cores.	-	Δ		Otherwise fractures irregular 9 coated with Sec. minerals
Mod. fresh to slightly w. aggl.	Friable sores Very broken cores mostly < 3°	390	Δ	100	- Small frag. zone fractures coated with secondary minerals.
	Fairly broken cores. cores pitted.	-	4	100	45° joint - possible faint striations - on surface yellow secondary minerals
	Broken cores.	400		//	
TYPE MINDELL E	,				LOGGED 6. Brouxhon.
COMPLETED 1-6-	62				VERTICAL SCALE 1 Inch 10 FBB1

()

-

				GEOLOGY AND GEOPHYSICS
PROJECTR	OUNA HYDRO-ELECTRIC SCI	OLOGICAL LO		DRILL HOLE - HOLE NO
LOCATION	Underground Toul Race, und	er Laloki	River	CE (S) ANGLE FROM HORIZONTAL TE 18 DIRECTION 280 M
ROCE TYPE & DEGREE OF WEATHERING	DESCRIPTION	DEPTH B SIZE OF LING COME	LIFT B COBE RECOVERY	STRUCTURES JOINTS VEINS SEAMS FAULTS CRUSHED ZONES
Moderately trosh agglomerate	fairly broken cores Aggl. unsorted. Components of vesicular and augite andesites.	410	/ joo/	fractures irregular a slightly coated with secondary minerals.
Mr. to SN. agglomenate	Broken cores		/	不
Moderately fresh	Fairly broken cores Aggl. unserted.	42 2 A	/100/	
agg/omerate	Very broken cores.	434		Numerous tractures coated with sec. minerals.
		۵	100	I.f. large 45° joint — 4" wide fragmented zone
Mod. frash tuff	Fairly broken cores.	444	100	- Small fragmented zone. 6° wide fragmented zone frag. Coated with secondary minorals. 2" broken zone
Moderately Irosh	6" of core vuggy	45ā à		I.f. coated with sec. minerals.
agg/omerate		14	000	I.F. coated with bive sec. minerals.
·	Broken cores 6" core piece, very tullaceas Fairly broken cores through-		100/	Compound fracture coated with sec, minerals. Sub-horiz, fracture with weathered surface. Large sub-horiz, fract g"long coated with sec. I.F. Throat zone Large compound fracture 45" joint.
		4700		Large compound tracture 45° joint. If coated with sec. minerals Large IF. weathered surface.
Mod. fresh to fresh agglomerate.	Aggl. unsurted with a dominance of fairly large components 2" to 3" across. Some of the fragments of andeste show yellow rim of oxidation.	Δ Δ 480	100	e—— Curved Stacture coated with sec. minerals.
		Δ .		I.F. coated with blue sec. minerals.
		490 A A	99	45° junt coated with sec. minerals. Joint 60° coated sec. minerals.
		500	///	
TYPE Mindell E	2000			LOCCEED G. Branchan
COMPLETED 1-6-6	£			VERTICAL SCALE

	BUREAU OF MINERAL				EOLOG		ND GEOPHYSI	cs		
PROJECT	INA HYDRO-ELECTRIC SCHEM							R L	1417.2	
LOCATION	lerground Tail Race, under		ki R		<u>(Ys)</u>	ANGLE	FROM HORIZONTAL	£18'	DIRECTION	280° M
ROCK TYPF & DEGREE OF WEATHERING	DESCRIPTION	DEPTH A SIZE OF CORE	LNG	LIFT B COME RECOVERY	V STPIOL		UCTURES. IS FAULTS CRUSHED ZONES			
MF to F aggl.	-	NALC	۸		1		4		<u> </u>	
ME full bond		-	Δ	////			le frag. zone I frag. zone			
Mr. tvfl band.		51 0			c	ompou	and fract coat	ad with	h blue sec	. minerals
	fairly broken cores throughout		, <u>a</u>	100			ated blue sec. und fract, coated			an/
			۵			ompor			366	-
Moderately		 52ā								
fresh aggiomerate.		-		/100/			therwise frac cated with blu			
	Broken cores & trable preces				1					
	fairly broken core.	510	. Δ			سام	le frag. zone.			
	Yery broken care		Δ	99		_	e pag. 2011e. Oken zone.			
	Fairly good to fairly broken core.	-	. ∆		1					
Mod fresh totl hand	Broken to very braken cores	- 540	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;				fract. and fract. coa	red wil	'h chay ba	and 2" wide .
Mederatoly	Fairly good to fairly broken	- -	Δ `	/100 /		-	clay band 1"		•	
Iresh agg/omerate	'Cores .	-	٠ ۵			af	therwise fract. with sec.	rreg.	9 coated b e/s .	Vue
		350	4		2	(A				
	Fairly broken to broken Core. Tuff - fine grained, coarser	-		100/			t coated with s trag. Zone.	c. man	erals.	
Moderately fresh	Zone of coarse grained tuff Broken to very broken cores.	-				rag.	Zone			
tuff.	Tuff progressively finer towards bes	540				0	Otherwise fraction			
·				991			or slightly			
Moderately	Fairly broken cores	-]	Z	aggl. fractur with blue s	ec. mi	egular oflei enerals.	n coated
fresh Magglomerate		57 <u>0</u>	Δ	100/						
	Broken to fairly broken cores throughout.	-			1					
ME -SW. Tuff		-	Δ	///	├	L* w.	ide frag. zom	4		
Mod. fresh aggiomerate		580	Δ	/ / / 100	/ 2	." w/	ide frag. zome			
	Broken to fainly broken cores	-	, Δ							
M.F. tuff band	Here, core surface of aggl. more rugged - not as brugh ns usual.	5q <u>ō</u>			2	." w/	de frag. zone			
M.F. aggl.		-	Δ	/100 /			•			
MF. toff band.		-								
MF. aggl.		600	۵		1					
DHILL NO	F (A) (A)							Zumanut.		
TYPE HINDRILL D							LOGGED G. C		× €1 .	
COMPLETED	62						VERTICAL SCALE	:b :	10 feet.	

O

BB01777 P011	BUREAU OF MINERAL GEO WA HYDRO - ELECTRIC S	OLOGICA	AL LO		RILL HOLE		R.L/4/7·2
-				ver			4° 12' DIRECTION
	langround Tail Race, under	DEPTH		LIFT	<u> </u>	CTURES.	UNRELITUR
ROCK TYPE & DEGREE OF WEATHERING	DESCRIPTION	SIZE OF CORE	100	CORE		FAULTS, CRUSHED ZONES	
	Andrew Color	NMLC	Δ.	7.77			
Mod. fresh to slightly W.	Broken to fairly broken core	-		99/			•
aggiomerate.	·	-		<i>[///</i>	1		
•		1 -		Y //	1		
	Fairly broken cores Core surface still vuggy but	Wā	4	///			
Moderately frosh	but less so than previously.	-]	/100			
agg/omerate] :	۵ ا				
] []				
	End total Activities	620	. A				
	fairly broken to fairly	-	1.	100/	Irr	egular fractu enally subber	res throughout sontal and coated
	Aggiomerate unsorted.]	///	WITH	white and	blue sec minerals.
		:	1 ^	V//	1		
		630		// /	1	•	
	Broken to very broken wres	1] * ·	100	4		
Fresh to Mod. Fresh	fairly good core	:		Y//	1		
agg/omerate.		1 :] . !	¥//	1		
		645		Y//	1		
		-	<u>^</u> .	100	2" wide	frag. zone	material friable.
	fairly good to good cores.		<u>}</u> `.`) .		
			· /	V //	1		
	Aggl. contains fossil wood] 		1		
		650	a	100/	4		
·	Unsorted tuff, fairly friable and soft.] :		¥//	1 5	ractures irreg	war 4 generally
Moderately	Fairly good core.			100/	ىد (b-horizontal	and Iresh.
trash' agg/omanate] :	<u></u>	1//			
and tuff	Broken to very broken core. Surface of core vuggy - not as	5 466	f .		\langle		
]	Fairly good core. Yery breken cores triable] :	1 . 4	4///	1		
.]	100	4		
	Broken to fairly broken cores.		┧ · ·	Y //	1		
M.F to SW.	1	674	2	1//	ZF.		
aggiomerate			Δ.				
		_	}	100	2" frag	. Zone .	
	End of Hole					9	
		68	2				
			-				
			‡			,	
]				
		-	4				
			1				
			‡				
]				
		<u></u>	1				
UNILL NO					\		
tre Mindeill	<u>E/000</u>			,		LOGGEDG. E	Brauxhon
DRILLER M. PRO							
COMPLETED 1-6						VERTICAL SCALE	ch: 10 feet

C

	BUREAU OF MII					EOLOGY AN	ND GEOPHYSIC	cs .
PROJECT	ROUNA HYDRO-ELEC	TRIC	_SCH	EME	-	HOLE NO	R25	R.L 1461.4
LOCATION	Weir Site					ANGLE	FROM HORIZONTAL	45° DIRECTION /3°45
MOCK TYPE • DEGREE OF WEATHERING	DESCRIPTION	Fracture	DEPTH 517F OF CORF	LOG	LIFT B CORE RECOVERN		UCTURES IS FAULTS CRUSHED 70%85	
	Soil and scree							
Slightly Weathered Aggl.		3*	/Q	Δ	///	Jo' cle	ay filled, rejular (5°,20°,20	vlar . , o,,5°)
	Medium grained aggl	4.	20	Δ	100	Zone 70° reg	gular, polished	d. led fragments l, slickensided. T slightly irregular re aris, some seconda
			30	۵ ۱. ۵	92,	Joints	ar 20 10 co	re arrs , some seconda mineral development
Fresh agylomerate	Tuff band, brown med g	10°	4 <i>0</i>	Δ	100		grinding .	f://ed
	,			۵	100	,	geinding.	
			6 <u>0</u>	Δ	100	→ 45°		
	Medium grained aggl	, 10	7 <u>0</u>	Δ	100/			
			8 <u>0</u>	Δ	100			
			90_	Δ .	100/	5° irre	egular.	
			100	Δ				
DRILL NO	Tuff Agglomen	rate				**************************************	LUGGED L. Ha	milton.
COMMENCED							VERTICAL SCALE	h: 10 feet.

Fresh agglomerate Gr	OESCRIPTION	10*	DEPTH B SIZE OF CORT	LOG	LIFT & CONE RECOVERN	STRUCTURES JOINTS VEINS SEABS FAULTS CRUSHED ZONES
Presh agglomerate		10*	SIZE OF	<u> </u>	CORE	STRUCTURES JOINTS VEINS SEARS FAULTS CRUSHED ZORES
Fresh agglomerate Gr		10°	-	Δ	///	1
	rey bedded tuff rey bedded tuff rey bedded tuff. Indian grained aggl. The grained aggl. The grained aggl.	4"	120 120 130 140 140		100	Irregular (0',0',5',20') Irregular (10',0') Very Irregular 0', clay filled. 20' day filled. 10° clay filled. 42' " 42' "
Med. Med	d. gr. grey tuff.		-	Δ		

	BUREAU OF MINE	RAL RESOURCES, G	SEOLOGY AND GEOPHYSICS ORILL HOLE
PROJECTROU	INA HYDRO-ELECTRIC	SCHEME	HOLE NO R 25 R.L 1461-4
LOCATIONWE	ir Site	·	ANGLE FROM HORIZONTAL 45° DIRECTION 13°45'
ROCK TYPE B DEGREE OF WEATHERING	DESCRIPTION	DEPTH LIFT A SITE OF CORE RECOVERY	STRUCTURES JOINTS VEINS, SLAWS FAULTS CRUSHFO ZONES
Fresh aggiomerate	Medium grained aggl.	210 D 100	porous zone
Slightly weathered agglomerate		240 A 100'	30° 20° flat polished 40° flat 90° day filled, very irregular.
	Coarse grained aggl. Fine grained aggl.	260 100 100 100 100	80° flat polished
Fresh to slightly weathered agglomerate	Medium grained aggl.	270 100 100 280 100 100 200 4 300	— porous zone 0° irregular.
DRILL NO TYPE ORILLER COMMENCED COMPLETED			Sheet 3 of 5 VERTICAL 1 Inch: 10 feet

	BUREAU OF MINE	RAL	RESO	URCE	s, G	EOLOGY AN	D GEOPHYSIC	es
						RILL HOLE	0.25	
PROJECT	INA HYDRO-ELECTRIC	_542	IEME.			HOLE NO.		R.L
LOCATION	lair Site	1 d =	I I			ANGLE	FROM HORIZONTAL	45 DIRECTION 13 45
ROCK TYPE • DEGREE OF WEATHERING	DESCRIPTION	Practure	DEPTH B SIZE OF CORE	LOG	LIFT B CORE ECOVERY		UCTURES S. FAULTS, CRUSHED ZONES	
Fresh aggiomerate	Medium grained aggl.	8*	310	4	100	20° irri 20° irri 8 Broken Clay a	egular weath in zone 2° fra and 5° of che	ered lled quants tr!
Moderately weathered.	Graded bedding in matrix	4*	370	4/	95	- Chaiky weather	, broken zon Bred irregula	e, 2" tragments r' fractures gments in places y filled.
Matrix is a light brown colour, chalky in places.	Medium grained aggl. fine to coarse matrix		340		/ /00 /	Core g	9. 4 weathered irinding. ires 2° apart	ragments irregular s. Sickensides at 30° to core axis. at 30°, irregular and clay filled.
	Fine grained aggl. coarse matrix.	3*	350	` [851	Irregula Core gr 30° cla 35 " 5° Very	lar, weathered (0°, 5°) ar, clay filled rinding. Ly filled regula " irregular, c filled.	5°
Generally Slightly wea- thered matrix, light grey- brown.	Fine grained aggl. medium matrix.	gʻ	360	\ /	100	0° cla	egular Ly filled Ly filled irre Ly filled grinding	igular.
	Medium grained agg/.	4'	370	Δ/	100	0° clay	egular, clay	gular.
Fresh to slightly weathered brownish grey colour.	·	5°	390	· , /	(00)	Weather 90° Irre	ered (30°, 60° egular, weark) Bred.
DRILL RD TYPE DRILLER COMMENCED			400		/ <u>/</u>		sheet 4	
COMPLETED							VERTICAL SCALE	: 10 feet.

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE PROJECT ROUNA HYDRO - ELECTRIC SCHEME ANGLE FROM HORIZONTAL 45° __ DIRECTION _/3°4-5' LOCATION WEIR Site STRUCTURES JOINTS VEINS, SEAWS FAULTS CRUSHED ZONES ROCK TYPE & DEGREE OF WEATHERING DESCRIPTION Fresh Medium grained aggl. **5**1 aggiomerate. -Core grinding A 100/ End of Hole. 410 LOGGED L. Hamilton Sheet 5 of 5 VERTICAL 1 Inch : 10 feet COMPLETED .

PROJECT <i>ROU</i>		OLOGIC#			GEOLOGY AND GEOPHYSICS ORILL HOLE HOLE NO
	race Tunnel to test shear		•		ANGLE FROM HORIZONTAL 25° 30' DIRECTION 146 M
ROCK TYPE	DESCRIPTION	DEPTH SIZE OF CORE	roc	LIFT	STRUCTURES, JOINTS, YEIMS, SEAMS FAULTS, CRUSHED ZOMES
		NMLC	<u> </u>	RECOVERY	<u> </u>
		10		No recovery	
Slightly weath, conglomerate	Core pieces 6" to 1'	-		//po/	
5.W. conglomerate	Core pieces 6 to <3" Components of conglomerate consisting of various igneous rock types (andesites) set in a grey wacke groundmes frequent joints, generally irregular, dip 20° - 30° from vertical.	30	0	97	
Moderately fresh to fresh grey wacke	Core pieces l'to 2' Crisscrossed by calcite veins. Core pieces 3 to 6'	40	(-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	8000	
fine conglom. Clay.	Brown clay		0	100/	1 Clay filled macrore.
5.W. Grøywacke	Core pieces 3° to 6°	50		100	Joints irregular often steeply ' dipping 30' from vertical.
,	Core pieces 3" to 6" Coarser components of conglomerate surrounded by pellicle of calcite. Joints in conglomerate often coated with saleite.	.60		/99 /	1
	Core pieces 1' to 2'	10	 ° .	100	Numerous fractures weathered surfaces I' wide frag. Zone.
Moderately fresh	Core pieces 3° to 6° Conglomerate coarse and unsorted.	-	0	99	
Core pieces l'to 2' Coarse conglumerate. Core pieces b to l' Coarse conglumerate.	Core pieces l'to 2' Coarse conglemerate.	80	0	99	
	· ·	100] .	100	fragmented zone l'wide
TYPE MINAPILL	. — .	ko			LOGGED G. Brownhon
COMMENCED	Cong/oma				VERTICAL SCALE 1 INCh: 10 feet

<u>,</u>					EOLOGY AND GEOPHYSICS
BROJECT ROU	GEO NA HYDRO-ELECTRIC SCH			G OF D	RILL HOLE HOLE NO
	race Tunnel, to test " she				ANGLE FROM HORIZONTAL 23° 30 DIRECTION 146° M.
ROCK TYPE	DESCRIPTION	DEPTH A SIZE OF CORE	LOG	LIFT b CORE	STRUCTURES JOINTS, VEINS, SEAMS, FAULTS, CRUSHED ZONES
		NMLG	<u> </u>	RECOVERY	
	Core pieces 1' to 2' Coarse conglomerate.	-	•		
	Core pieces (3° friable	-	۰	I/ / X	Joints sub-horizontal.
		-	0	100/	- Irregular fract. clay coated.
	Core pieces 6 to 1	ווּסַ	ľ		
·		-		100	
	·	-	0	100	few joints lined with calcite material.
Fresh to mod. fresh	Core pieces l'to 2'	120	0		
conglomerate		-	٥	100	45° fracture
·] :	ľ		Compound fracture coated with calcite.
		130		/ 100 /	
	Core pieces 6 to 1'	-	,	1 100	1 wide frag. zone, weathered.
	Core pieces 1' to 2'	-			
		140	°	100	
	Core pieces 2' to 4'	-	°		Fractures and joints
		} :	0		generally fresh.
Fresh congl.	Average size of compenents &	-	322	100	,
Fresh greywacke	Core pieces 2' to4'	150	\' <i>\'</i>		
Fresh to		-	0	100	
mod. fresh fine grained		160	0		
conglemerate	Core pieces 6 to 1	-	0		
,	Conglom, heterogeneous,— and unsorted, greywacke groundmass,	-	0	100	2" suda Gana Tana handhadad
5.W. to W.	groppiane grounding.	170			2 wide frag. zone, weathered. Joints lined with calcite. (Nigh water loss according to driller).
			۰	100	- 60° fracture weathered.
		-	"		
Fresh to mod. Fresh	Core pieces i' to 2' Conglomerate heterogeneous	/80			Sub-horiz, join's & irregular fractures - generally fresh.
conglomerate.	components as valcanic to metamorphic rocks.		°	100/	
	_		°		
5 N. to N.	Core pieces 3° to 6°	-	°		Subhoriz. joint weathered surface.
		190		100	_
Moderately fresh			°	7/	70° joint weathered surface.
conglomerate.	Core preces 6 to 1'	-	ľ.		
		200	<u> </u>	<u> </u>	
TYPE MINDER! E	1000				LOGGED G. Braukhan
DRILLER					
COMPLETED					SCALE LINCH: 10 feet
L					

			EOLOGY AND GEOPHYSICS
PROJECT ROUM	IA HYDRO-ELECTRIC SCI	DLOGICAL LOG OF D	HOLE NO
LOCATION	drace Tunnel, to test "she	ear zone*	ANGLE FROM HORIZONTAL 23 30 DIRECTION 146 M
ROCH TYPE a degree of weathering	DESCRIPTION	DEPTH LIFT & CORE CORE RECOVER	STRUCTURES JOINTS YEINS, SEAMS, FAULTS, CRUSHED ZONES
	Core pieces 6 to 1'	NML C //00/	Small fract. zone
	Core pieces 6" to 1' Conglomerate, unsorted and		Sub-horiz. joints coated with calcite.
Mod. Iresh	heterogeneous - volcanic and metamorphic components	210 , 100	
conglomerate		. //	Sub-horiz. fracture weathered surface. Small frag. • weathered zones.
10	Core pieces 3" to 6" Conglemenate unsorted.	224.	Joints 10°-80° from vertical, fresh.
W. Gong/		99/	- 2° wide jointed and weathered zone - 45° joint coated with sec. mineral - 2° wide frag. + weathered zone
Fresh to mad fresh conglomerate		230	
Mod. fresh grey wacke		0 /100	2° wide frag. To weathered zone.
Mod fresh		240.	45° weathered joint
conglomerate.	·	100/	Compound fracture fresh.
F. to Mod. fiest conglomenate.	Cores pieces l'to L'	250 0	large sub-vert. fracture coated with calcite:
F. to Mod. Fresh greywacke. P. to Mod. fresh	longlomerate unsorted. and heterogeneous.	99/	Erreg. fract. coated with calcite.
F. to Med. Trash graywacka	·	260	Sub-horiz, joint coated with calcite.
	,	100'	few fractures fresh.
Fresh to		270	
mod. fresh conglomerate		100/	
	Core pieces 2 to 3	222	> 45° joints with slightly weathered surface
	Longlomerate unsorted and coarse.	. 100/	
	·	200	Irregular fracture Compound fract. Slightly coated with clay.
Mod. Iresh conglomorate	Core praces 6" to 2'	0 100	3,3,1,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
		30d° 1//	1
TYPE Mindeill	E /000		LOCGED G Brownham
COMMENCED	,		VERTICAL SCALE 1 inch: 10 feet

					GEOLOGY AND GEOPHYSICS DRILL HOLE
PROJECT ROL	WA HYDRO-ELECTRIC SCHE	u <i>E</i>			HOLE NO. <u>R 26</u> R.L. 1013.0 approx
LOCATION	ulrace Tunnel, to test "s		2000	<u> </u>	ANGLE FROM HORIZONTAL 23° 30' DIRECTION 146 M
MOCK TYPE A DEGREE OF WEATHERING	DESCRIPTION	SIZE OF CORE	LOG	LIFT B CORE RECOVERN	STRUCTURES. JOINTS, VEINS SEAMS FAULTS CRUSHED ZONES
	Core pieces / to 2'	NMLC	0	98/	X-6° wide frag. Zone friable Sub-horiz. fracture - clay. 3° wide frag. zone
Moderately Sresh Conglomerate	Core pieces b to l' Unsorted congl. criss- crossed with small 4 irregular veins of calcite.	310	0	100/	45° fract. coasted calcute mineral.
Slightly weath to weathered conglomerate	Core pieces 6" to < 3"	-	o .	(// %///	Iragmented zone 2" wide. 5" wide trag zone clay coated triable.
Moderately	Core pieces 3" to 6°	322			Otherwise fractures generally coated with calcute:
fresh conglowerate.	Core pieces 6' to 2'		0	99	Large rertical tract - clay coated. Sub-horiz tracture clay coated. 60° joint - clay coated.
Weathered conglomerate.	Core preces, extremely broken-much clay material.	BALC.	,	100 /	Large 3. vertical fracture, clay coated.
Slightly	Matrix of conglo. often green with cpidotic mineral.			99/	fractures numerous throughout clay coated.
weathered conglomerate		340] · ·	723	1 wide frag. zone. 1 wide frag. zone. 1 wide frag. zone.
·	Core pieces < 3" and frag. Core pieces 3" to 1" Core pieces < 3"	350	0	V100 /	Numerous fractures coated with green opidotic material.
Mod. fresh conglomerate.	Core pieces 6° to 13"			98	
As above	Groundmass of conglo. Spidotic. Core pieces < 3" 6			80	-9 very broken zone
Slightly Weath ers d	fragmented friable Fractures of corepieces show faint strictions Fractures generally conted		0	95	Very fractured throughout
conglomerate.	Groundmass of conglo. 18 apidetic. Core pieces 3 to 6"	314		95/	45° joint coated sec minerals Very broken zone
Mod. fresh cong.	Criss-crossed with secondary calcite yeins. Core pieces 3" to 6			99/	
weathered conglomerate. Mod. fresh congl.	Core pieces < 3° and fragmented. Core pieces < 3° and fragmente	380	0	100	
Weath, congl. Mod. fresh conglomerate	Cay dest present Core preces 3" to 1'		0	99/	Compound tracture
Weath, congl. Mod. fresh congl.	Core pieces < 3" with much clay material present core pieces 6" to 1" core pieces < 3" 3" to 6"	390		97/	Irreg. fractures clay coated. 1—4" wide frag. zone
Slightly weath conglomerate	Core pieces <3" is fragmented.		. ,	99/	4
Mod.frash congl.	core preces 6" to 1"	100	ı° i	1//	Compound fracture coated calcite
TIPE MINDELLE	End of Hole	401"	L*		LOGGED <u>G. Brouxhon</u>
COMMENCED					VESTICAL 1 INCh : 10 feet

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS								
GEOLOGICAL LOG OF DRILL HOLE PROJECT ROUNA HYDRO-FLECTRIC SCHEME HOLE NO R27 R.L 1497-33								
LOCATIONACC	ess shall of up power sta	ation.	•	ANGLE	FROM HORIZONTAL	70 DIRECTION		
ROCH TYPE A DEGREE OF WEATHERING	DESCRIPTION	DEPTH SIZE OF LOG CORE	LIFT b CORE RECOVERY	STRU	ICTURES 5 FAULTS CRUSHED ZONES			
Moderately fresh aggiomerate	Core pieces 3° to 6° Agglomerate fairly well sorted. Core pieces < 3"	AMLC A	79	Very b		fragmentary in places.		
	Core pieces < 3"	4	100/	•	nd Iracture. Irag. Zone.			
	Core pieces < 3" Core pieces 6" to 2' Aggl. containing coarse components of augite- andesites up to 2'3" across.	20	100	•	ous joints and	(fractures		
	Core pieces 3° to 6° Core pieces 6° to 1'	30 	100	3" wid	roken zone. Le frag. zone			
	Aggl. predominantly tultaceous. Core pieces 8" to 1"	40	100	Very	broken zone . fract: weather	ound fracture, weathers surfaces		
S.W. to W. tuff	Core pieces < 3°	50				re, weathered.		
Mod. fresh agglomerate	Core places 6" to 1" Aggl. unsorted.		100	· - g wide	E Day Dang to	ated limonitic material.		
Mod. Iresh to Iresh aggi.	Core pieces b" to 1' Core pieces 1' to 2' First 2' from beginning of run aggl. is fine grained.	6 <u>0</u> Δ	100		therwise fraction and sub	rres generally horizontal.		
5. weath. tuff Mod: Iresh aggl. M. fresh & S.W.	Core pieces 7 to 2' through out. Aggl. generally unsorted- consisting of vesicular to augite andesites.	Δ 7 <u>0</u>	100			othered surface. clay coated.		
Fresh to slightly weath cugglow		80 A	100		Fractures fre	sh throughout.		
		90 A	100		•	·		
	According to the drillers, the water table							
stood at 85' below natural surface before the casing. Clay						rouxhon		
COMPLETED	COMMENCED TUST					VERTICAL 1 Inch : 10 feet		

()

			DLOGY AND GEOPHYSIC	S
POU	GE NA HYORO-ELECTRIC SCH	OLOGICAL LOG OF DRII <i>IFMF</i>		1497.33
ì				•
LOCATIONACCE	ss shaft of 1/g power house	DEPTH LIFT	I	O DIRECTION
POCK TYPE A DEGREE OF WEATHERING	DESCRIPTION	\$12F 0F 10G	STRUCTURES JOINTS VEINS SEAMS FAULTS CRUSHED FORES	
		NMLC		
	Come overes l'to 8	_A / /	few tractures, ga	nerally sub-horizontal and clean.
	Core pieces l'10 2' throughout.	1 100/	Vuggy fract.	sometimes coated with blue secondary minerals.
				,
	\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	3 .	110		
		100		
	3			
	2			
j .	6.5	120 100		
1	2 4			
	1,6	100		
:	sw of se			
	24		— 20° joint thinly coat — Irreg, compound, tract	ed. vre.
		/3₫ . △		
	55 C	100/		
Fresh to	ر خ خ			
moderately	ate of the state o			
lresh agglomerate	1	140	Large irreg. Fract.	
	0/60 0/80			
	, ₹,8	1 100		
	Vunav care meces		_8 long sub-vertical thinly clay coat	irreg fract.
	Vuggy core pieces.		thinly clay coat	id.
		150	Encidence along the	and and an article the second and
	Core pieces / to 4'	100	with seconda	ighout or slightly coated ry minerals
	throughout		· .	
		160 //		
		100		
	Aggl. predominantly Tuffaceovs.	1 4		
	7077242003	1 ///		
		170		
	Unsorted agglomerate	1 1 1//	•	
		/100		
			·	
		100/		t ·
	Core pieces 6" to 1"	/80		
	preces o ror	100		
			— Irreg. joint — Compound Sracture	
		190	÷	
		1001	_4" wide very broken	zone.
	Weathered core proces.		— 2° " " " " — 20° joint coated with b	" .
1	'	//	no join comes on a	roc. myrrerula,
		200 4		
David Fil				
Mindrell E	1000		LOGGED G. Bro	ouxhon
nautra Papuan	Buddy			
COMMENCED			VERTICAL	h : 10 fa-1
			SCALE INC.	h: 10 feet

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE						
PROJECT ROUNA HYDRO-ELECTRIC SCHEME HOLE NO 827 RL 1497.33						
LOCATIONAC	cess shaft of 1g power	station LIFT	ANGLE; FROM MORIZONTAL DIRECTION			
ROCK TYPE A DEGREE OF WSATHERING :	DESCRIPTION	SIZE UF LOG CORE	STRUCTURES JOINTS VEINS, SEAMS FAULTS CRUSHED PUNES			
	Core pieces 6° to 1' Vuggy core pieces 5	MMLC A //100/	Irreg. fractures Small frag. zone 2" wide frag. zone.			
Moderately fresh agglomerate	Core pieces 6° to 2' Agglomerate components	210 / 100/ 210 / 100	2° frag. zone. Otherwise fractures generally irregular and coated thinly with secondary minerals.			
	coarse	220 ///	- Irreg. fracture coaled thinly with sec. minerals.			
	Core pieces < 3° to 6"	23d // 100 /	Numerous fractures with weathered surfaces. — Irreg. fracture weathered surface. — Large irreg. fract. S.W. Irreg. fract. S.W. coated with sec. minerals			
Mod. fresh to slightly weathered agglomerate.	Aggl. dominantly tuffaceou	Δ // 100	Irrég. fractures W. sorfaces — Irreg. fract. — b" wide - very broken zone. — Irreg. fract. 5.W. surface. — 8" long - sub-vert. fracture clay coated. — 5" wide very broken zone.			
	Core pieces 6" to 1'	1 1 777	Compound fract. W. surface 85° joint W. surface Irreg. Fract. "			
Coarse fuff		100	45 joint SW surface coated limonitic material			
			1 surface			
	Vuggy core pieces	4/2/	Trreg. fract. S.W. surface. Sub. vert. & irreg. fracture.			
	Core pieces 6' to 1'	27 <u>0</u>				
	Core pieces 3" to 6"	Δ (100)	Irreg. fract. coated sec. minerals a a slightly weathered surface. Compound fracture, frable surface.			
Moderalely fresh agglomerate	Core preces 6" to 1'	280 /100/ 280 / //	Compound fracture slightly weathered.			
·		290	Large irreg. fracture 5.W. surface. 45° joint.			
Agglomerate mod. fresh to 5. W. in	Core pieces < 3" to 6" Broken core 3" to 6" Vuggy cores.	\(\frac{100}{100}\)	Numerous irreg. fractures thinly coated with clay Large sub-vert. Fracture, suggy surface & thinly coated with clay.			
patches	(377) (07=3)	30ā //	- Vert. fracture clay coated.			
THE HINDRY E			LOGGED G. Brouxhon			
COMPLETED	Buddy	,	SCALE LINCH : 10 fect			

	BUREAU OF MINERAL				EOLOGY AND	GEOPHYSIC	S
PROJECTROU	INA HYDRO-ELECTRIC SCHE					R27	RL
LOCATIONACC	ess shaft of 4/9 Power sta	21/01			ANGLE FROM	HORIZONTAL	90° DIRECTION
# DECATE OF METATORING	DESCRIPTION	DEPTH B SIZE OF CORE	100	CONE PECOVERY	STRUCTUR ZOINTS VEINS SEAMS FAU		
	Core pieces 3" to 6"	NMLC	۵		· Compound	fracture, vu	ggy and clay coated (thin)
	Core pieces 6° to 2'	3/0	Δ	100			
Moderately Iresh to 5. W.	Core pieces 6 to 1'		Δ	100	Irreg. In	acture coat	ed with sec. minerals.
agglomerate	Core pieces 6" to 1 Cores stained with yellow secondary minerals	322	Δ	100	Irreg. fro		·
	Core pieces 3° to 6°	320	Δ.	100	Very bro	ken cores,	clay coated in parts. fractures coated with low sec. minerals.
Mod. frash to fresh ugglomerate	Core pieces 4" to 1"	330	· Δ	99		fragmented	
5.W. to Weath. agglomerate	Core pieces <3"			100/	i .	fracture, practures ted and we	reathered surfaces coated with sec. minerals.
5.W. agg/.	Core pieces 3" to 6"]	۵. ا	100/	45° fractu	ire weathe	rad surface.
	two pieces 5 no	34.0	1	V//	l		zone surfaces coated
Mod. Iresh aggiomerate	cores slightly pitted.	-	۵	/100/			with sec. minerals.
Fresh aggiomeratz		350	Δ	100	45° joint		
	Core pieces 6* to 2' throughout	360	Δ.	100	Sub-verti	cal fracture	ture, thinly clay coaledthinly clay coaled.
5.W. agg/.			. A	///	Compound	fracture we	athered surfaces.
Fresh agglomerate		370	Δ	100 100 100 100 100 100 100 100 100 100			
		380		7)		
5.W. agg/. F. to M.F. agg/. M.F. to S.N. agg/.	Core pieces (3" to 6" Core pieces 3" to 1" core pieces pitted and ruggy.		Δ .	99	vert. fram	rreg. <i>Sractu</i> uture W. sui	- clay coated. re, weathered surface. face coated with clay. coated with chloritic re structions.
Mod. fresh agg/.		390	1 ; :	///	<i>V</i>	bear bear	conthead sime
Mod. fresh to slightly weath agglomorate	Core pieces <3° Core pieces b° to 1'	-	Δ 	98/	5" zone Irreg. Ir	d very bracture thin	veathered surfaces. (Ilmonitic material) oken cores weathered ly day coated. 9 weathered Zone.
		1_400	1	1/ / /			<u> </u>
THE MINDER LOCAL L							
DRILLER Lapuan COMMENCED COMPLETED	Brddy				1	ERTICAL GALE	och: 10 fact

		BUREAU OF MINER	AL RES	OUR	CES. G	EOLOGY A	ND GEOPHYSIC	cs
						RILL HOLE		
PROJECT	ROUNA	HYDRO - ELECTRIC	SCHE	ME		HOLE NO		RL /497.33
LOCATION	ccess_	shaft of up powe	er statio	99		ANGLE	FROM HORIZONTAL	90° DIRECTION
ROCK TYPE A DECREE OF WEATHERING		DESCRIPTION	DEPTH B SIZE OF CORE	106	LIFT 6 - CORE RECOVERS	1	RUCTURES MS FAULIS CRUSHED ZONES	
			WMLC	Δ.	777			blue sec. minerals.
		ore pieces 6° 101'		- - - -	100	Compoi Irreg.	and fracture of fract thinly co	pated with limonite.
Moderately fresh agglomerate		ine precia e ver	416	Δ.				oints occurring l'intes limonitic material.
	:		-		100			
				Δ	100/	· '		coated & containing limenitic material
<u> </u>		assive clay band	420	1	90	İ	imonitic mate	
Slightly weath. to weathered		ore pieces 3" to 6"	_ :	1	00		_	weathered.
agglomerate		ore pieces 3° to 6°] .	177		limonitic mate	
		re pieces 6" to 1'	-	Δ				weathered surfaces h limonitic material.
		core pitted.	43 <u>4</u>		/100 /			me fract. coated will blue sec. minerals. d with sec. minerals.
Moderately fresh agglomerate.	Co	re pieces 6" to 2"	-				fracture	u win set, minerals,
			440	Δ .	/100 /	2- 2° NIA	le Irag zone	
			-				en Iractures	Clean
			- 1 :	Δ				
	Cor	e pieces l'to 2's	450	· · Δ	100/			
tresh agglomerate				Δ .	100/	(m	actures fresh	due to drilling.
			-					·
			460		100/			·
Moderately fresh	Col	re pieces 8°	- -				ert. fract. 20 joint 45°	
aggiomerate		re pieces 3° to 6°	410		100/		oriz, fract. we fracture	ath. surface.
• •			-	Δ .	100/ 100	Compou	fracture. and joints coat	ed with sec. minerals.
Fresh .		e preces 6" to 1" ogl. unsorted.		Δ		- 1" widi	e vary broken	zone.
agg/omerate			480	۵ .	//	- Compour	nd fracture co	rated sec. minerals
Mod. fresh Tull	Fin	core 3-10 6"	BMLC		/00/	Sub-rer	fract. t. fract. thinly irreg. fracture	clay coated.
	Cor	re pieces (3° to 6"		٥	100/		de very brok	
Moderately sresh aggiomerate.	,	fine agglomerate.		Δ	99		representing	incipient joints 4 sned up during drilling
	C	ore pieces < 3°	-	. Δ 	100/	- Compou	end fracture.	
			500	Δ.				
THE MINDELLE E	1000	From 482 down conditions due to	drilling	with	BALL	c orts.	LOGGED G. BI	aurhan
OMILLER		Excess ubrations joints.	openeo	d up	tight	incipient		
COMPLETED	Buddy						VERTICAL SCALE / inch	: 10 feet
		<u> </u>						

	BUREAU OF MINERAL				D GEOPHYSIC	S
0	GEO D <i>UNA <u>HYDRO-ELECTR/C</u>.</i>	OLOGICAL I			<i>R27</i>	R.L
						
	less shaft of 44 power	SFQ1/ON .	LIFT	· · · · · · · · · · · · · · · · · · ·	ROM HORIZONTAL	DIRECTION
BOCK TYPE & DEGREE OF WEATHERING	CESCRIPTION .	SITE OF LC	DG CORE PECOVERM		FAULTS CRUSHED ZONES	
		BMLC	I			
Mod. fresh].	100	6" wide	Srag. Zone	
to slightly weath.	Core pieces < 3° to 6° fine grained agglomerate.			Turen	fracture, wear	sunface
agg/omerate			100	- 277cg.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, somac
		5/0 4				
	Core pieces 3° to 6"] ;;	. [100]	FF	iciures nume	rous throughout, coated with sec. minerals
	Core pieces < 3]]	· 🛦 🗸 🔏			
	Core pieces 6"		98			
	core pieces 6°	520 A	. 100/	(0)		
,	Core pieces < 3° to 5°		.///	•	nd joints 4:	
1	Sine grained agglomerate.] ;	.4//	- Frag. 2	tone : very broken	rand
			·//	£ 10/0	. vay orona.	
Moderately fresh		330	98	1" frag	. Zane . . Zane .	
agg/omerate	Core pieces 3" to 8"			- 10 frag	ZONE, - SOME	fragment show fine
·].		coated i	trag. zone-fra vith sec. mine frag. zone	ra/s
		- .		5.		
			4 /	Of.	herwise fract	vres coated with
		54 <u>0</u>	77		seconda	y minerals.
]	:\//	sub-ve	rt. fract thinly	coated with clay
	core pieces 6" to 23"	1 1			,,,,	, , , , ,
	Core pieces 6].		Very b	roken zon	
		550 _A	100	,	Fractures acc	erally trash or coated
	Core pieces 6" to ! Sine grained agglom.]			with iz. fracture.	secondary minerals.
	_	<u> </u>		·— Compoun ·— Irreg.	d vert. Fractur Fract. S.N. sur	es - thinly clay conted.
Mod. fresh to slightly weath.	Core pieces 4" Pyrite abundant in core Cores friable.			Sub-hori	frag. zone. z. fractures	
aggiomerate.	cores friable.	5600	99/	_	frag. Zone.	
Moderately	Core pieces 6" with pyrite]	4///		•	
fresh agglomerate.	Core friable		100/		very broken	core
"		A			ag. Ione Fractures sub-	horizontal
		510	. 4///		clay coated	ì
		‡	100/	2" wid	e frag zone	with day material.
i	End of Hole]				
	·	580				
]				
]				
		590				
	,]		·		
·]				
	<u> </u>	600				l
ORILI 40						
um Mindeill A	-1000				LOGGED <u>G.</u> B	rouxhon.
CONNENCED	Buddy			•		
COMPLETED					VERTICAL SCALE	ch: 10 feet

	BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE								
PROJECTR	OUNA HYDRO-ELECTRI				G OF D		. <u>R28</u>	1/386	
	ulrace Tunnal (Rouna s						LE FROM HORIZONTAL	٠	
ROCK TYPE		racture pacing	_		LIFT	Τ΄	STRUCTURES	DIRECTION	
& DEGREE OF WEATHERING		2 g	CORE	roe	RECOVERA	JOINTS, VEINS, SE	AMS, FAULTS, CRUSHED ZONES		
Fresh	Andesite boulder. Medium grained aggiomerate.	4. 6.	20	Δ Δ Δ	100	Irregulation of the Core Core Tregulation of the Core Regulation of the Core Regulation of the Core Regulation of the Core Regulation of the Core	grinding gular joint. gular weathere egular weathere clar weathered completely weathere clar weathere clar weathere clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weath clar joint weathered	ed joints at 20° ed joints 20° - 80° d joints at 80° joint at 80° ered joints 20° d joints joint 30° ered 0° 30°	
	Basalf boulder	14"	7 <u>0</u> 1		90	Three Two II	grinding pregular weather weather weather weather weather weather	hered joints. " 5° ar joints 70° hered Joints 30°	
DRILLER COMPLETED COMPLETED		mera/ omera					Sheet 1 VERTICAL SCALE 1 INCh		

	BUREAU OF MIN		RESOUR			D GEOPHYS	ICS
PROJECT ROL	INA HYORO-ELECTA	?/C	SCHEME		HOLE NO.	_R28	R.L. /386
LOCATION	Tailrace Tunnel ("	Round	T		ANGLE	FROM HORIZONTAL	90° DIRECTION
ROCK TYPE & DEGREE OF WEATHERING	DESCRIPTION	fractory Spacing	SIZE OF LOG	LIFT B CORE RECOVER		ICTURES, S. FAULTS, CRUSHED ZONE	
	Medium grained. aggiomerate	12*	/20 /30	100		ar fracture	(45°, 30°, 20°, 30°) S at 40°
Fresh aggiomerate		12*	16C	100	30° irra	egular clay s	filled fracture
	Medium grained. tuff.	8.	/8 0	97	Clay fi		filled tracture fractures at (50°, 70°, 90° s 0° shear zone
	Broken zone due 10 0° fracture. Medium grained agglomerate.	3*	190 A	100		ar (30°, 50°	
DRILLER			·			VERTICAL	Mamulton 2 of 5 nch: 10 feet

	BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE								
PROJECTROS	UNA HYDRO-ELECTR				HOLE NO.	<u> </u>	RL		
LOCATION	ruleace Tunnal (Roune	a sha	ar*1		ANGLE	FROM HORIZONȚAL	90° DIRECTION		
ROCK TYPE & DEGREE OF WEATHERING	DESCRIPTION	Frechre	DEPTH SIZE OF CORE	LIFT h CORE RECOVER	1	UCTURES. S. FAULTS CRUSHED FORES			
Fresh agglomerate		12°	216	/100/ A//00	Irregui 30° re	lar. gular.			
Slightly Neathered, Ugglomerate	·	7*	Δ	Δ 95/ //00	Irregu		limonitic coating, during driving		
		5'	236 .	Δ 100/ 100/	45° reg	Water lace			
	Medium grained aggiomerate	/2*	250	Δ // 100 100	Irregu	dar.			
Agglomerate fresh except at joints			6"		△ 100 /	20° regul 20° in Erregul 5° irr	ular clay fill sickensiding regular lar , clay fill egular , clay gular lar fractures	filled fracture; water loss	
		4*	27 <u>6</u> Δ	100	Erregu (10°,	lar, clay fill 0°,5°,0°,70°,	10°)		
		2.	28ā ∆	100/	Low a	ilar , clay fi ngle irregula regular,clay	r clay filled fracture		
		8.	290 A	100		rregular, cla	·		
		2*	300	90			day filled fractures.		
DRILLER DRILLER COMMENCED COMPLETED						Sheet	Hamilton 3 of 5 ch: 10 feet.		

PROJECTR	BUREAU OF MINI	GE	OLOGICA	AL LO		RILL HOLE		R.L/ <i>386</i> ′
LOCATION	Ilrace Tunnel ("Round	2. SÁ	ear ~ :)		AMCLE	FROM HORIZONTAL	90° DIRECTION
ROCE TYPE • DESTREE OF WEATHERING	DESCRIPTION	Fracture	·	LOG	LIFT CORE RECOVERY	STR	UCTURES, S. FAULTS, CRUSHED ZONES	United the second secon
Slightly weathered agglomerate	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	6	310	Δ.	/90	Brokes	r Zone 1° pie	d fractures body broke water lass. ces not clay filled. filled water loss.
	Medium grained agglomerate	12.	32.0	Δ	100	broker		ing, plugged. Hed.
fresh aggiomerate			33 <u>0</u>	Δ	100/			
		12°	350	Δ Δ	100/	1 4° 50/	veinlets co id core then	gravel and sand.
Apparently frach conglomerate	SHEAR ZONE Oblique to hole possibly 50°-60°	10	360	0	10 50	Pebble		rounded and Sickensided by developed
		3"	370	0	8		tove but more.	
Moderately trash		,	380	0	,80 ,80		generally	calcité veinlots common . ragments f [*] diameter
conglamenate.		5.	390	0 0 0 .	80 95 100		zone.	<i>y</i> .
DRILL MD			400	0	100)	·	LOCGED	
COMPLETED							VERTICAL	of 5 h:10 feet

	BUREAU OF MIN	NERAL RESOURCES, GEO	OLOGY AND GEOPHYSICS
PROJECT _ROUN	A HYPRO-ELECTRIC SI		HOLE NO
LOCATION	Tailrace Tunnel ("Ro	runa shear*)	ANGLE FROM MORIZONTAL DIRECTION
ROCK TYPE & DEGREE OF WEATHERING	DESCRIPTION	DEPTH LIFT CORE CORE	STRUCTURES, JOINTS, VEINS, SEAMS, FAULTS, CRUSHED ZONES
Fresh to Moderately tresh Conglomerate	Conglomerate	6 0 100 100 100 100 100 100 100 100 100	b" broken zone, pieces f dia. some Irregular slickensided slickensiding. 40° flat polished slickensided. 50° " 30° flat polished v slickensided. 60° " Irregular. 30° flat, strongly slickensided, pitch sub-horizontal. Irregular fractures Irregular 0° Irregular. Droken zone 6", f pieces. core grinding. 4° flat, polished. If broken zone, clay filled. Irregular.
		4' 90	— 20° — Very strong slicken side development. — Irregular. — Irregular, clay filled. — 30° irregular, calcite filled.
	Rock appears to be stronger with depth.	440° 100°	— 30° regular — 50° calcite tilled — Irregular tractures — Irregular, slicken sided — Regular slicken sided — Irregular, slickensided — 60° regular — 30° regular, slickensided
Larger dia Core show Contacts a	Vomerate appears to be es are very common meter cores are nece d be much larger diam	secondary calcite a essay to an appro- peter than the average curved The congi	the agglemerate. Slickensides around also is very common and possibly clabrite, ecation of the rock fracturing. The pebble size otherwise pebble-matrix lomerate is polymictic and contains metamorphic tragments deeper down.
ORILL NO			Sheet 5 of 5
COMPLETED			VESTICAL SCALE LINCH : 10 Feet

	BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE								
PROJECTROU	GEC INA HYDRO-ELECTRIC SCA		. UF D	RILL HOLE HOLE NO	1460 approx				
LOCATION	Pressure shaft			ANGLE FROM HORIZONTAL	DIRECTION				
ROCK TYPE	DESCRIPTION	DEPTH B SIZE OF LOG	LIFT B CORE	STRUCTURES. JOINTS YEINS SEAMS FAULTS CRUSHED FONES					
A DEGREE OF WEATHERING		NMLC	RECOVERY	Julia tella della tella della tella della tella della tella della tella della tella della tella					
	Overburden.	1							
	Gravel and clayey soil	=							
	no recovery								
		10							
	core pieces 5°		77)	Irregular fract, with friat	ble surfaces.				
		1::		Toint 35° coated with gr	een secondory				
		ه ا		minerals and cl	ay.				
	pitted core	20	/97						
	,		77						
			Y//						
	Core pieces l' Aggiomerate unsorted		Y//						
	nggi um er wie Unsert ea	3₫	100 /						
		 	V/,						
			V/,	Tenna frant - forable sun	foce				
	pitted core.		//	Irreg. fract. frable sur. 5ub-vertical fracture frid					
		40	100	Horiz joint friable surfa Compound fracture coate	d with blue				
			[//	Vuggy Tracture.	ondary minerals.				
				1					
Face] . ۵	Y//						
agglomerate.		.50	/100						
			V/,	Fractures tresh	·				
	' '		V/.	throughout, generally sub-horizontal.					
		1.	V/						
	·	60	99/						
			/ //	1					
		٥	Y/,	Compound fracture					
			V_	- Communications					
		10	100/	Compound fracture.					
		Δ.	\mathbb{Z}						
				1					
	· Core pieces 6" -1"	80 4	100	1	•				
	Agglomerate unsorted.		17/	1					
			Y//						
			///	Irreg. fractures slightly c	clay coated.				
		90	100						
			V/]	•				
	Core pieces 6	1 1	V/						
		<u></u> f. :		Clay coaled fragments 2° wide frag. zone	•				
	Yery broken core	100	100	Numerous fractures coated	with sec, minerals.				
DRA1 40	Toff								
Mindrell .	£/000 .	ata		LOGGED G. Broux	chon.				
COMMENCED	Buddy nygromer			,					
COMPLETED	·			SCALE 1 INCh	10 fact				

					EOLOGY AND GEOPHYSICS
	•			OF D	RILL HOLE
PROJECTR	OUNA HYDRO-ELECTRIC SCI	HEME		<u></u>	HOLE NO
LOCATION	ressure shaft.		,	·	ANGLE FROM HORIZONTAL 90° DIRECTION
ROCK TYPE. a Degree OF WEATHERING	UESCRIPTION	SIZE OF CORE	roc	LIFT B COBF PLCOVERY	STRUCTURES JOINTS YEINS, SEAMS FAULTS: CRUSHED JONES
		NALC		1//	
Fresh agglomerate	Core pieces /' - 1'6"	110	Δ .	100	Sub-horiz. fract. 5 W. surface Irreg. fracture Large irreg. fracture thin chay coated. Comp. fract. clay coated. Sub-vert. irreg. fracture clay coated.
		_	<u> </u>	Y//	Jub-vert irreg. Fracture day coated,
Mod. fresh aggl.	Friable cores.] :		<i>Y//</i>	Sub-vert. fracture. 45° imeg. "
Mod. fresh tuff,	Core pieces b" - l' Well graded tuff containing clay filled vesicles in some cores	120		/ / / 100 / / /	
	Broken cores 4" pieces Core pieces 1' - 1'5"		Δ		x— fragmented zone.
Moderately fresh agglomerate	Friable cores	/30		100	Yumerous fractures filled with red material (Soil?)
	Core pieces b - 8 agglomerate unsorted	466	Δ	100	Sub-vert. fractures Compound fracture
Fresh		'4ā	۵		— heriz, fracture X — 2* wide broken zone. Sub-horiz, fracture
agglomerate.		150		100	Irreg. tractures
Mod fresh . to fresh agglomerate			Δ.		Sub-horiz v irreg fracture. trinly day coated. Fracture. Irreg. fract.
Mod. fresh aggiomerate.	Come queras hi-	160	Δ		45° irreg. fract. coaled with sec. minerals Horiz. fracture, friable surface. Sub-horiz. tractures, thinly clay coated Irreg. fracture. Compound fract. coated with sec. minerals.
	Core pieces 6°-1' agglomerate unsorted.	170		100	1 — Very broken zone, fragments are clay coated a realhered. 1 — 3" Nide V. broken zone, clay coated and
Slightly weathered to weathered agglomerate		/80	Δ		Joint 60° — Joint 50° thinly clay coated. Sub-vert joint x— 3° wide fragmented zone 5w. frags. — Sub-horiz fract. clay coated. — Sub. " irreg. fracture.
			[] ∆ .		45° irreg. tracture Sub-heriz. joint clay coated. Horiz fract SW. surface.
Weathered	Core pieces 4"-2"	1	. 0	1 / /	- Numerous fractures conted with clay
Mod. fresh to slightly	Core pieces 3° - 8°	190		77	material.
weathered agg!omerate	Core pieces 3"-6" friable cores, appear porous.	200		100	Irreg. fractures S.W. surface.
Mindrill	E 1000				LOGGED G. Brouxhon
COMPLETED	Buddy				SCALD 1 Inch : 10 feet

					EOLOGY AND GEOPHYSICS
PROJECT Ra	GEO Guna Hydro-electric Sch				RILL HOLE HOLE NO R.L 1460 approx.
	soure shaft				ANGLE FROM HORIZONTAL DIRECTION
BOCK TYPE B DEGREE OF ATTREPING	DESCRIPTION	DEPTH A SIZE OF COME	106	LIFT CORE PECOVERY	STRUCTURES JOINTS VEINS SEAMS FAULTS CRUSHFD ZONES
	Company 4" /'	NALL	ΙΔ .	1//	
Mod. fresh to S.W.	Core pieces b" - 1' Very tuffaceous aggiomerate	} :		1//	
agglomerate.	Core pieces 3°-6	1 :	1 '		-3 wide very broken zone fragments frieble
Weathered	Core pieces 3°	:] · ^	Y//	Numerous tractures with W. to S.W., surface.
to 5.W.		210	4	100/	
aggiomerate.	Core pieces 6° Agglomerate unsorted.	:	₫ .		- Very broken core weathered.
	Aggiomerate unsorted.			Y //	5. horiz fracture — Irregular fracture
		1	4		fractures generally sub-horiz, surfaces friable and 3. weathered.
		22	4	91	
Mod. fresh to 5. weath.			Δ	Y/,	Irregular tractures coated with sec. minerals
agglomerate.	Core pieces 3°-6°			Y/,	Very broken cores, weathered and clay coates
			1 4	V/	Compared the second
		234	4	100	Horiz fract.
5.W. to			Δ	V/	Sub-vert. fract. "
weathered	Core pieces 3°	1		V/	3° wide V. broken ceres coated with sec.
agglomerate.	Cores often pitted & vuggy		1 . 4	43	Fructures numerous throughout weathered and clay coated.
Limonitic sand.	findly granulated tone.	24	9	77	
Mod fresh aggl.	Core pieces 6"	İ] <u>a</u>	!//	[
5.W. to W. aggl. Mod. fresh			· ·		Waathered fractures.
Mod. fresh	GOFE PIECES (3"	†		///	Irreg. fracture triable surfaces.
agg/.	Core pieces b" agglomerate unsorted.	250	4 4	100	Fractures tresh or slightly coated
]	Y//	with secondary minerals
		1	Δ.	Y //	
Fresh to		26	d	100	Noriz tract vuggy surface and conted with sec minerals vuggy fragments
mod. Frash	Core pieces 8°	~~	4		Comp. fract. coated blue sec minerals.
agglomerate				V/	
	Yery broken section	┧	Δ	1//	Compound fracture.
	Core pieces 6"	21	a	100	<u></u>
	Core pieces 8°] . '	1//	
	Aggiomerate unsorted				Sub-vertical fract, raggy surface.
	Core pieces 3°-6°		4		Comp. fract.
		28	ā i	100	Frag. zone due to large compound tracture
		1	1.	1//	Otherwise fractures are clean or slightly coated with secondary minerals
Mod. fresh	Core pieces /] <u>`</u> .	1//	- Very broken cores
aggiomerate	Lora pieces < 3* Granulated zone with chay	1	1.	Y//	Horiz joints
	Granulated zone with clay very tuffaceous aggl.	29		100	4
			<u></u>	Y /,	1
	Core pieces 8°		∄ ^ ·	\//	1
			1.	W //	
	Core pieces 53"	30	ā	100	_ 2" wide, very brakely cares.
ORIL1 40					
ten Mindrill E	E/000				LOGGED G. Brauxhan
CONNENCED	Buddy				
COMPLETED					SCALE LINCH : 10 feet.

	BUREAU OF MINERAL				EOLOGY AND	GEOPHYSIC	cs
PROJECT	IA HYDRO-ELECTRIC SCHE					RZ9	RL 1460 approx
LOCATION	Pressure shaft.				ANGLE FRO	OM HORIZONTAL	go DIRECTION
BOCK TYPE	DESCRIPTION	DEPTH 8 512E UI GORE	rog	LIFT B CORE PECOVERY	STRUCT JOINTS VEINS SEAMS F		
Agglomerate fresh.	Core pieces 6° to >1' Aggi. finer grained Components are set in an unsorted tuffaceous matrix.		Δ		large su	n. fracture b-vert. fract	tre.
Mod. fresh	Fine grained tuff.	314		100			
tuff	Core pieces 5° - 8°		۵		15° comp Irreg. fr	o. joints racture.	
Mod. tresh to tresh aggiomerate	Core pieces l'	322	۵.	/100/		. fracture	
	Agglomerate tairly well sorted - coarser components average 1" across.	-	330 330	96/	Otherwis are	sc tractures tresh thro	and joints ughout.
	Core pieces 3°-5° Core pieces 1' Very trag. zone • weathered.	340	Δ	100			
Moderately fresh	Core pieces 6" to 8" Aggl. unsorted.	350	Δ	95/	Comp. 1.		
aggiomerate	Core pieces l'	-	۵		Frag. Z. Sub·hori Fracture	one 3" wide 2. fracture (5. or joints	ceated sec. minerals. are fresh or slightly
3.6. pgg/-	Core pieces 8"	360	1	99	5" wide		dary minerals. Ten core Zone
Mod. fresh agglomenate	Core praces 5° - 1'	1	۵		45° join.	<i>f</i> .	
	6"long W. core pieces	37 <u>4</u>	2	90/	4" Wide	frag. Zone .	
SW. to W. agglomerate	Very frag. Zone > Neathered. Core pieces 4" to 6"	-	Δ		Much 11.	monitic alle	eration coated with sec minere and limonite
Fresh agglomerate	Core piece l'	380	Δ	100	Sub-hori	izontal frac aled with	tores clean or slightly sec. minerals.
	Aggl fresh and sound throughout	39	1 .	37/			
TYPE Mindrell						LOGGED G .	Brouxhon
COMPLETED						VERTICAL SCALE	nch lo feet

					SEOLOGY AND GEOPHYSICS DRILL HOLE
PROJECT ROL	INA NYDRO-ELECTRIC SCHE	ME		·	HOLE NO <u>R29</u> R1
LOCATION	eressure shaft.	T			ANGLE FROM HORIZONTAL
ROGE TEPE TO DEGREE OF WEATHER, NO.	DESCRIPTION	DEPTH & SIZE OF CORE	FOE	LIFT B COBE RECOVERY	STRUCTURIS JOINTS, VEINS SEAMS JAULTS CRUSHID JOHIN
		NWIC		V / /	2' wide very broken cores
	Core pieces 6 to 1'			[//	<u> </u>
	Agglomerate unsorted.			Y//	fractures & joints generally tresh or slightly coated with secondary
] :		Y//	reinerals.
	Core pieces (3	-	, <u>a</u>	///	8° long vert. fracture.
	Core pieces 3° 106"	410		////	
	Core pieces l'		Δ		fractures fresh or slightly coated with secondary minerals.
Fresh to mod. fresh	Core pieces 3'-6"	1 :		[//	
agg/omerate	Core pieces 6" to 1'	1 -	,	Y//	1
	preces 0 70 7	420	~	100	
	Core pieces 3° to 5° core pitted.] -	'	V/λ	- Sub-vertical - compound fracture coated
	1	1 3	⊿`.		3 wide very broken with clay.
	Core piece 8"]	• •		
	core piece < 3]	٠.	Y/_1	- Fragments are clay coated
	Care pieces 8	430	۸ ' ۱	/97	
	Core preces 6" to 8"	_		V//	
			٠	V//	4" wide zone of very broken core.
		-			- 4" wide frag. zone Joints and fracture
	Core preces 2" to 5" throughout	440	٠.	100/	6" wide frag zone with blue sec.
		-	٠.	Y//	mineral
	Agglomerate more triable + less tough than usual.		٠Δ	V/A	
	Undoubtedly a weak zone.		٠.		
Moderately		1 4			
fresh agglomerate		450	Δ ·	100	4° wide frag. zone.
	6000 2000 20 50			///	
	Core pieces 2"-5" The grained agglomerate	-	٠ ،	//,	5° wide frag. zond.
	Aggiomerate weaker than		Δ		·
	usual - more friable.	460	٠.	100	1—9" wide trug, zone
		4,442.00	A .	777	* 4" Wide Srag. Zond.
	Trag. Zone]	4 .	V/J	Francisco control out of the second
	Very broken core <3"]	٠.		— Fragments coated with sec. minerals, vuggy in places.
	Very frag. zone.	-			
	Core pieces l'	470		96/	
	Aggl. unsorted.]	•	Y//	x-4° wide frag. zone.
Nod. frash tuff.	Fine grained tuff.			V//	
	Core preces 3"-6"			V/A	
	Very broken to fragmented Lores with clay material	-	Δ	///	
Mod. fresh	Core preces 4" to 6"	480		/ 100 / / /	- Irreg. sub-vert. fracture.
agglomerate.	, , , , , ,	-			Sub-vert. fract. coated with green talcose
	Core pieces 1" To 3"	-	. Δ	Y / /	Fractures coated with Material.
	Core pieces 5" to 5"			V/λ	white secondary minerals.
		490	٠. ۵	100	
	Core pieces <3°	1			Badly fractured & jointed throughout,
Mod. fresh	throughout with occasional core pieces 6" long.			///	but fract. I joints are clean or coated with white sec. minerals.
agg/omerate]	4	Y//	
		[[]	///	
		500	لحيا	100	
DRILL ND	/000				
WE MINDEIll E.					LOGGED G. Brownhon
CONNENCED	Duddy _				
COMPLETED					SCALE 1 Inch : 10 feet
					I

	Prossure shaft			ROM HORIZONTAL	
	F. 65.30 F.C. 38441	Dest. Fr	17	Crunis	
PERMIT OF MENTHERING BOLD TANK	DESCHIPTION	SIZE OF LOG CO	NE JOINTS VEINS SEANS	FAULTS I RUSHED ZONES	
	Very broken cores <3°	AML C			
-	Very Broken cores - 5	1 1 //			
Mod. fresh	Core pieces 4"-5"			4	4.4 6
igg/omerate	,		coate	ed with seco	sub-horizontal 4 ndary minerals.
		5/0 10	9 4		
	·				
	End of Hole.	520 0	<u>~</u>		
	27,0 0, 7,0,0				
			•	•	
	•		·		
`					
		. -			
1					
,					
]]			
				•	
•		[[•	
<i>:</i>					
TYPE MINDEILL E	7,000			LOGGED G.	Brouxbon

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE HOLE NO. R. 1427 approx ROUNA HYDRO-ELECTRIC SCHEME Right Abdment of Weir 30° DIRECTION __3.30° M. ANGLE FROM HORIZONTAL __ BOCK TYPE B DEGREE OF WEATHERING DESCRIPTION MMLC Very broken cores core pieces 2°-4" fractures slightly coated with limonitic material. Moderately Agglomerate unsorted. fresh <u>100'</u> -Very broken cores. agg/omerate core pieces 3"-5" Fractures irregular 7 sub-horizontal. 100 10 Fresh Core preces 6" - 2' 100 agg/omerate 100 B - Fractures coated with limonite and core pieces 2" Med. fresh to S. W. 20 clay material. core pieces 8" - 1' -Very broken cores coated blue secondary 100/ minerals. - Very broken cores Core pieces 6"-8" 1991. unsorted. - Joints 50° Fresh 100) 30 3° wide broken core agg/omerate Fractures sub-horizontal but irregular and clean. 100 Core pieces 6 -1' 100/ 40 well sorted aggl.
Good cores throughout. Mod. frash aggi. -5. W. compound fracture. 100 100 5<u>Ø</u> Frash fractures clean and sub-horizontal throughout. agglomerate Core pieces 4" - 6" /100 j 2" frag. zone. Sometimes coated with secondary minerals. Core pieces 2" - 3" 60₀ 100 = 1" wide frag. zone Mod. fresh agg/. Core preces 1" - 2" 100 Fresh aggl. core pieces 3°-7° S. W. agg/ Mod. fresh agg/ 100 10 Core pieces 4 - 5 100 -2" wide trag. zone Core preces /" - 2" 100 80 Frash Core pieces 3" - 5" aggiomerate -3" wide frag zone 100 core pieces 1"-3" 100 90 100 core pieces + Mod. fresh to -frag. zone, fragments weathered. S.W. agg/. 100 8" mde frag. Zone Tuff THE Mindrell E 500 LOGGED G Beauxhon Atkinson Agglomerate. COMMENCED _ VERTICAL COMPLETED 1 inch : 10 feet

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE HOLE NO. R.S. 1427 approx PROJECT ROUNA HYDRO-ELECTRIC SCHEME DIRECTION 330° M Right Abutment of Weir LOCATION . STRUCTURES ROCK TYPE & DEGREE OF WEATHERING Core pieces 2°-3° Aggl. more triable than usual Mod. fresh Fractures generally sub-horizontal. agg/omerate Very broken cores to frag. Clean or slightly coated with secondary minerals. Core pieces 4° - 8" Fresh aggiomerate 110 of Hole. End THE MINdell E500 LOGGED G. Brouxhon DAILLER Atkinson. COMMENCED . 1 inch : 10 feet

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE ROUNA HYDRO-ELECTRIC PROJECT 30 DIRECTION Lest Abutment of wair ANGLE FROM HORIZONTAL _ ROCK TYPE & DEGREE OF WEATHERING SIZE OF JOINTS, VEINS, SEAMS, FAULTS CRUSHED ZONES ML No 10 Mod. fresh agg/ Core pieces .6° -Fractures coated with limonite. weath. zone ۵ Core pieces 3'-6" Fractures generally irregular and moderately iresh. Moderately Core pieces 6" - 8" 201 fresh Broken zone agglomerate 45° tracture clay coated. Core pieces 6" Δ. Otherwise fractures irregular and moderately fresh Core pieces 2" - 3" 3* Vuggy core with thin clay coating. -Comp. fracture , clay coated. -Irregular fracture , friable surface. .30 100 Core pieces 5° - 1 - Hole plugged 40 . Δŀ -Very broken zone Fractures slightly weathered-coated with limorite. Surface of fractures sometimes friable. Core pieces 3'-5" Δ Agglomerate very tuffaceous in places. V / 38 / **50** -30° joint slightly weathered. -4" wide fragmented zone. Core pieces 4" - 1'2" Δ Core pieces /* - 2" -Fract, generally tresh or slightly coated with secondary minerals. >1 60 100 Δ 4. Core pieces 6 - 1 ٥ Moderately 70 100 ۵ tresh aggiomerate. Core pieces variable but good, average 6 in langth. .801 90 -30 joint, slightly clay coated. 100 5, W. TUff. - Yery broken zone | Fractures vertical or oblique - lightly S. W. Tuff weathered. Prodominantly tuffaceous Mod. fresh agglomérate. aggiomerate. TWS THE Mindrell E1000 LOGGED ____G__ Brauxhan Agg/omerate COMMENCED _ 1 inch : 10 feet COMPLETED _ SCALE _

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF DRILL HOLE ROUNA HYDRO- ELECTRIC SCHEME R.L. 14-18-6 Left Abutment of weir ROCK TYPE & DEGREE OF WEATHERING DESCRIPTION JOINTS, VEINS, SEAMS, FAULTS, CRUSHED ZONES Mod. fresh aggiomerate Cores 2" - 3" average. Mod fresh to slightly weath tuff. fractures vertical oblique, weathered to the same degree as the cores. - Sointed & fractured. Very broken thinly clay coated. Mod. fresh to fresh aggiomerate 140 /5₫ fractures sub-horizontal Sometimes thinly coated with white clay. This clay is probably drilling sludge derived from elsewhere. Fresh agglomerate, 160 100 End of Hole. THE MINdrill E1000 LOGGED G. Brownhan COMMENCED ... COMPLETED . 1 inch : 10 feet

APPENDIX 2 - WATER PRESSURE TEST RESULTS AND COMPUTATIONS

The key to the symbols in the column headings of the Table is as follows:

- * measured along the inclination of the hole.
- Use (1) when water table is below the test section.
- Use (2) when water table is above the test section.
- factor e for head loss is read from standard graphs.

BUREAU OF MINERAL RESOURCES

PORT MORESBY NO. 2 UNDERGROUND HYDRO - ELECTRIC SCHEME

								.	·	4	_			For ex	planatory no	tes, see page 1	,
	SECTION		TIME OF	TIME OF	ł	Į.	R READINGS	WATER	LEAKAGE		1 "	DEPTH OF	SIZE	WATER COLUMN		EFFECTIVE	WATER
DATE	FROM	TO	START	TEST	PRESSURE	START	FINISH	LOSS	RATE	PROPERTIES	1	STANDING WATER (Ft.)	OF ROD	PRESSURE (p. s. i.) w	•	TEST PRESSURE (p. s. i.)	LOSS (g.p.m. per Ft)
	(feet)	(feet)	OF TEST	(min.)	(p.s.i)	(gall.)	(gall.)	(gall.)	(g,p.m.)		(PEEC)	<u> </u>	- NOD	+0.44 sin 0(a+h) 1	4	i	+
	a	Ь		t	ρ	k	1	L-k = m	m t	•	b-a=c	d*		0-44 sin 9(d+h) 2	(a + h)et=f	p+w-f=P	t c
Hole No						Surge Ta		_			Height of G	Bauge abov	ve Hal	e(h)*:-2f	eet	•	
) :- 90°	1 '	, , ,	pe:- Triefu	•	+ BMLC		4	t					,	
4.5.61	/53	163	/347	5	60	1/.0	15 · 5	4.5	0.9	Good	10	95	N	42.7	.46	102	0.09
,,	/53	163	/352	5	70	/5.5	19.25	3.75	0.8		ļ					112	0.08
*	/53	/63 /63	/357	5	80	19·25 35·75	23.0	3·75 6·75	0.8	ļ	1 22	95		42.7	•53	82	ļ
"	/30	163	/43/	5	60	42.0	42.0	5.0	1.4		33	45	N	72.7	.39	102	0.04
	130	/63	1436	5	80	47.0	52.0	5.0	1.0		-	+		-	•39	/22	0.03
	100	163	1449	5	40	83.0	86.25	3.25	0.7	•	63	95	N	42.7	. 30	\$2	0.01
**	100	163	1454	5	60	86.25	88 .5	2.25	0.5	••				7		102	
•	100	163	1459	5	80	88.5	90.5	2.0	0.4			- 1				122	.,
9.5.61	160	184	09.20	5	20	90.0	99.8	9.8	2.0		24	95	N	42.7	-81	62	0.08
	160	184	09.26	5	60	102.0	109.5	7.5	1.5			1 1		.	· 6 5	102	0.06
"	160	184	09.33	5	80	111.0	118 -4	7.4	1.5	,				I	.65	122	0.06
17.5.61	180	204	09.35	5	20	124.0	126.4	2.4	0.5	"	24	95	N	42.7	· 5 5	62	0.02
"	180	204	09.44	5	60	130.0	132.7	2.7	0.5			<u>.</u>				102	0.02
"	/80	204	09.51	5	80	137.0	139.8	2.8	0.6	h	20	ar			, 01	122	0.03
19 · 5 · 61	200	220	10.00	5	20	147.0	152.3	5.3	1.1		20	95	N	42.7	.81	102	0.08
	200	220	10.06	5	80	154.5	161.9	7.4	1.4	ļ						122	0.01
29-8-61	440	461	14 20	5	20	165.5	13.5	5.5		Good		 			1	/~~	
47 8 61	740		1425	,	.,	/3.5	17.5	4.0	0.8	, ,	21	112	A	50	Negligible	10	0.04
			1430	1,		17.5	21.5	4.0		•	· · · · · · · · · · · · · · · · · · ·				ļ. <u></u>		
	.,	H	/435		• · · · · · · · · · · · · · · · · · · ·	21.5	24.75	3.75)				† †			<u> </u>		
11	11	h	1440	h	40	25.0	29.0	4.0				İ					
	. "	٠,	/445	,	.,	29.0	32 - 75	3.75	0.7		''	•	ħ		••	90	0.04
••		h	1450	,	•	32.75	36.0	3.25		,							
"	"	11	1455	"		36.00	39.0	3.0]		''		1 1		<u>.</u>	, , ,		
•	 		1501	tr tr	60	39 · 25	43.0	3.75	-								
"	•		1506	41		43.0	46.0	3.0	0.7	*	51		4	,	ļ ." <u> </u>	110	0.04
"			1511 1516		.	46·0 49·5	49·5 53·0	3.5 ∫			<u> </u>					t t + Manda a	
	"	W	1521		**************************************	53.5	\$7.5	4.0	0.8			1			<u> </u>	130	0.04
."			1526			57.5	62.5										0.04
			/53/		••		+										
	!		1536	,,	••	Gauge	unservic	eable			1		-	·	<u> </u>		
23.9.61	460	530	1113	5	20	167.5	73.4	5.9		Good							
u	1 . 1	••	1118	"	"	73.4	78.5	5./	1.0		10	1/4	A	51	·45	71	0.01
	•	•	//23	"	,	78.5	83.5	5.0		4							
4,	"	*	1128	11		83.5	88.2	4.7		•		<u> </u>					
t	"	٠	// 33		40	88.2	94./	5.9		**	<u> </u>				ļ		
	"	•	// 38	4		94.1	202.4	8.3	1.5		ıt				1.4	90	0.02
tr	"		1/43		"	202.4	09.6	7.2				1					
• -	"	1s	1148			09.6	/7·/ 27·3	10.2	ļ			ł ·-·					
	"	•	1/50		60	27.3	35.6	8.3	1.6		ļ . <u>.</u> -	 .	-		3.2	108	0.02
11	"	7	1200	,,	† :	35.6	43.7	8.1	 		ļ · · · · "	t "·· t			 		
	ļ ,	11	1205	hr	· · · · · · · · · · · · · · · · · · ·	43.7	52.0	8.3				t					
11	"	•	12.10	ļ	80	52.0	61.5	9.51	<u> </u>	••		† †			1		
"	"	•	1215	h		61.5	7/-4	9.9	1.8	10	- n	ļ ļ	"	١,	1.4	/30	0.03
•		•	1220	•	•	7/-4	81.2	9.8		11	†	<u> </u>			İ		
t.	"		1225	,		81.2	91.0	9.8				I 1					
4		,11	12 30		100	91.0	302.5	11.5	2 25	••	•	, ,	•	"	5.5	146	0.04
11	14	41	/235		"	302.5	13.6	11.1									

PORT MORESBY NO. 2 UNDERGROUND HYDRO - ELECTRIC SCHEME

								WATER	PRESSU	JRE IES	ST RESU	LIS			For exp	planatory not	tes, see page 1 o	of Appendix.
DATE PRODUCT Treet OFFER Com C		SECTION	TESTED	TIME OF	TIME OF	GAUGE	WATER METER	READINGS	WATER	LEAKAGE	SEALING	LENGTH OF	DEPTH OF	SIZE	N	FRICTION	EFFECTIVE	WATER
	DATE	ľ			1	ľ								l.	13		TEST PRESSURE	1
Note Note		!	1	1	l .	1	i i			1 .		1	WATER (Ft.)	ROD	(p.s.i.) w	(p. s. i.)	(p. s. i.)	(g.p.m. per fi
Tell with R10 Tell Tel			<u> </u>		<u> </u>			1	<u> </u>	 -		h	*	,		(a + h)e+ +	<u> </u>	
	•		Ь			l			L-K = m	t		D-9 = c	a		*0:44 sin 0(d+h) 2.	10	p+w-r=P	t c
1871-6 100 120 6812 5 10 390.0 394.5 15.5 31.6 680.0 10 0 N 63.1 110 140 1408 5 30 335.5 330.5 5.0 10.0 N 63.1 110 140 1408 5 30 335.5 330.5 5.0 10.0 N 63.1 111 110 140 1405 5 30 335.5 330.5 5.0 10.0 N 63.1 111 110 140 150.0 150.0 10 10 388.0 440.5 60.6 60.0 60.0 111 110 140 150.0 150.0 10 10 388.0 440.5 60.6 60.0 60.0 111 110 130 130.0 130.0 130.0 140.0 100.0 150.0 150.0 150.0 150.0 111 110 130 130.0 130.0 140.0 150.0	· ·		4 4 4 4 8	400								Height o	f bouge a	bove	Hole (h) :-	2 feet		
136 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 160 150 10 10 314.5 370.5 500.0 50 120 0 N 60.1		T	F	T	t	T -			1 ,	1	1 0	t -	1		· n -	,	†	T
1.00 140 1415 5 30 3275 330.6 5:0 10 10 16.7 tal 140 160 160 156 10 10 330.5 340.5 5:0 5.0 1.0	13.7.61	100	.	, i	5	. .			4	1	Good	ł			 	.61	20	0.16
14-0	1)	120	140	1408	5	20	318.5	and the state of t	4	1.05	. •	20		N.	.62	· 49	20	0.05
140	h 1	120	140	1415	5	30	325.5	330.5	5.0	1.0	h			N	<u> </u>	· 49	30	0.05
140 160 160 161 160	14.1.61	14-0	160	1505	10	10	326.5		1	5.0	ts et	20	0 .	, N	-62	1.4	9	0.25
17.7 At 180 180 0845 10 20 546.5 601.0 555 555	h	140	160	1516	10	20	380∙0	440.5	60.5	6.05	h			N		1.66	19	0.30
150 180 0850 10 40 504 5 614 0 615 515 1	ħ	140	160	1527	10	30	446·Q	514·0	68.0	6.8	15			N		2 · 2	28	0.34
160 180 0101 10 60 618 0 750 5 785 5 785 10 10 10 10 20 791 0 880 10 185	17-7-61	160	180	0845	10	20	<i>5</i> 45·5	601.0	55.2	5.55	u	20	0	N	-62	1.6	19	0.28
160 180 100 180 100 10 60 618 0 750	4	160	180	0856	10	40	606.5	674.0	67.5	6.15	n			N	, .62	2.3	38	0.34
185 200 120 16 40 81 5 831 20 20 5 20 5 20 5 20 120 121 10 60 833 884 5 21 5 8 8 10 10 10 10 10 10	н	160	180	0907	10	60	618.0	756.5	78.5	7.85	11	1		N		2.9	58	0 · 39
180 200 1201 10 40 811-5 832 0 205 205 1	19.7.61	180	200	1150	10	20	792.0	810.0	18.0	1.8	11	20	0	N	-62	.73	20	0.09
180 200 1212 10 60 833.5 834.6 21.5 21.5 10 20 31.0 92.1 40.4 40.1 40.1 10.5 1		L	1	1 .	10	L		* 10.00	20.5	2.05	h		1	N	1	. 73	40	0.10
2076 200 210 1435 0 20 3120 9621 401 401 20 0 N 62 200 210 1437 10 40 366 0 1081 501 501 501 200 220 1448 10 60 1020 0 1971 5 5515 5115 N 210 240 1531 10 40 1084 0 1065 1550 1.5 N 210 240 1531 10 40 1084 0 1065 1550 1.5 N 220 240 1533 10 60 1101 5 1170 1555 1.55 220 240 1533 10 60 1101 5 1170 1555 1.55 227:41 240 260 1534 10 50 1186 0 1281 0 450 4.5 240 260 1554 10 50 1186 0 1281 0 450 4.5 240 260 1554 10 50 1186 0 1281 0 450 4.5 240 260 1554 80 1284 0 1286 0 520 52 251 261 200 377 1445 5 30 346 0 352 5 99 261 200 377 1445 5 30 346 0 352 5 99 261 200 377 1445 5 30 346 0 352 5 99 271 2	·	L	L	1		L			i	2.15	1 "	<u> </u>	†	N	t	. 90	60	0.41
1 200 220 1448 10 40 98.0 108.2 502.2 5.02				1		↓	L		Į	4.01	h	20	10		-62	.16	19	0-20
200 220 1448 10 60 1020 1071.5 51.5 51.5 51.5 1.5				l .	L	.			L	1				N	† · · · · · · · · · · · · · · · · · · ·	-20	39	0.25
			+	.	+	l			↓ .		11	<u> </u>	†	N	·	-20	59	0.26
			1	1 .		ļ ·			<u>.</u>	1	+	20	1 0	N	-62	.66	20	0.08
10 10 10 10 10 10 10 10	ļ <u>"</u>		1	,			1 1			1				·	<u> </u>	-66	40	0.08
22.7.61 240 260 1533 10 20 1138.0 1176.5 38.5 3.9 110 0 N 62 1240 260 1554 10 50 1186.0 1240 450 4.5 1 N N 1			1	1	L	ļ	ì			<u> </u>						_		0.08
	L.,	L	1	1			li		1	l .		,	ļ <u>^</u>			1.69	60	0.20
Note No.	22. 1.01			I .		l.	1 1		ł				 			+	19	0.23
Feature := Access 5hatf to lower House Height of Gauge above Hole (h)*:- Inclination to Harizontal (a):-90° Packer type: "Triefus" NMLC & BMLC	.			1	10	ļ	l			1	"					2.18	48	
Inclination to Norizontal (\$\text{\$\text{\$\sigma}\$}\$ = \$\frac{90^{\text{\$\chick}}}{2\chick}\$ \$\frac{1}{16\chick}\$	240	260	1554	. 11	80	1234.0	1286-0	52.0	2.7	ti.		. .	14		2.4	18	0.26	
Inclination to Norizontal (\$\text{\$\text{\$\sigma}\$}\$ = \$\frac{90^{\text{\$\chick}}}{2\chick}\$ \$\frac{1}{16\chick}\$ Nº :	- R 21				Feature:	- Access S	haft to P	ower Ho	use	•	Haish a	f Gauge	a b	Hala (b)*	2 Coat			
2 1.61 200 377 1445 5 30 345 0 348 6 352 5 3.9 375	Inclination	n to Hor	izontal (e):-90°		Packer t	ype:-Triefus	" NMLC E	BMLC			neight o	r vouge 2	DOVE	note (11) :-	24661		
		200	377	1445	5	• •	1		3.6	0.75		177	45	Α	21.6	0	52	0
	† †				5	t ·	348.6	352.5	3.9									
		u		†	5	60	t t		8-0	1.6		177	45	A	21.6	1.44	84	0.01
		u			+	†	† · · · · · †		8.2	1	1				i	•		
					•	• • •	t t		+	3.5		177	45	Α	21.6	6.0	119	0.02
13- -6 375 403 0856 5 30 396 0 405 5 5 5 5 5 5					L	† - ·	t		+	1								
	↓ +	l	403	0856	.	+				1.75		28	53	Α	23.2	2.64	51	0.06
		3,3	†	+	1	t .	t		+	1	† · · ·						1	1
		. "			t	,	+ +		•	3.0		28	53	Α	23.7	8.6	75	0.11
				.	_		ļ	and the second second	1	50		1 20		- '				
	N		, n	1	ļ	.	ļ		1	1.2		28	52	Δ	72.7	16.2	97	0.15
	- "		†	1		ł	,		+	# - 3	1.00		33	ļ.	23.6	102		3.13
0935 5 30 550 0 553 25 3 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		400-	1	1	1	i	+ -			٠ 	+ .	205	FC	Δ	35.0	0	55	0.04
0940 5 60 553.25 558.75 5.5 1.05 20.5 55 A 25.0 0946 5 60 558.75 50.0 6.25 1.25 0950 5 90 570.0 576.25 6.25 16.11.61 420 440 0900 5 30 589.0 593.75 598.0 4.25 1	12.11.01	407.5	425	+	1		,		-	₩		1 20.5			13.0	ļ ,	39	100
0946 5 60 558.75 563.76 5 0	11	ļ.	-	4 -	1	•	↓		4					Δ	35.0			0.05
0950 5 90 563.75 570.0 6.25 1.25 20.5 55 A 25.0 0955 5 90 570.0 576.25 6.25 16.11.61 420 440 0900 5 30 589.0 593.75 598.0 4.25	•		1	1		+ · · · · · · · · · · · · · · · · · · ·	1		1	1.05		20.5	25		∡ 5.∪	ļ	85	0.05
			ļ.,	1	+	.			1		-		ļ					
			.	↓		ļ			1	1.25		20.5	55	A	25.0	0	115	0.06
	и			1 .		.	L,		1	<u>.</u>	1	ļ	ļ		!			ļ., . <u></u>
	16.11.61	420	440	1	. .	1	1		1 .	0.9		20	56.5		25.8	0	56	0.04
1 0916 5 60 603·5 608·5 5·0 1·1 20 56·5 A 25·8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		u	*	1	5		1			1								<u>.</u>
	[n	_ •	. .	1	5	60	1			1.05	1	20	56.5	A	25.8	0	86	0.05
		•	u	0915	5	1	603.5			1	1					<u> </u>		
18.11.61 440 460.5 1111 5 30 660.0 664.75 4.75 0.95 20.5 57 A 26.0		4	ĸ	0920	5	90	608.5		1	1.1	1	20	56.5	A	25.8	0	116	0.06
" " 1116 5 30 664.75 669.5 4.75	n		ų	0225	5	90	614.5				I							
	18-11-61	440	460.5	1111	5	. 30	660.0		l .	0.95	I	20.5	57	Α	26.0	٥	56	0.05
	ii ii	11		1116	l	L			1	<u></u>								
" " 1121 5 60 669.5 676.15 7.25 1.4 20.5 57 A 26.0	• 11	4		1121	1				1	1.4		20.5	57	Α	26.0	2.2	84	0.07
11 1126 5 60 676.75 683.5 6.75	li li	n	ч	1126	5	60	676 - 15	683.5	6.15	J		1,				<u> </u>	continued	

PORT MORESBY NO. 2 UNDERGROUND HYDRO-ELECTRIC SCHEME

WATER PRESSURE TEST RESULTS

<u> </u>	T		T -	Ι.	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						.	For exp	planatory no	tes, see page 1	of Appendix.
DATE		TESTED	TIME OF	TIME OF	GAUGE	WATER METER		WATER	LEAKAGE			DEPTH OF	SIZE	WATER COLUMN	FRICTION	EFFECTIVE	WATER
DATE	FROM (feet)	TO (feet)	START OF TEST	TEST (min.)	PRESSURE (p.s.i)	START (gall.)	FINISH (gall.)	LOSS (gall.)	(g.p.m.)	PROPERTIES	SECTION (Feat)	STANDING WATER (Ft.)		PRESSURE (p.s.i.) W	HEAD LOSS (ρ. s. i)	I	1
R21 continued	a	Ь		t	ρ	k	(gam.)	L-k = m	<u>m</u>		b-a=c	d.	NOD	+0.44 sin 8(a+h) 1.	(a + h)e+ = f		(g.p.m. per ft.) m t c
18 - 11 - 61	440	460.5	1131	5	90	683.5			t 1.6		1	<u> </u>		*0:44 sin 0(d+h) 2.	10	p.w	
10.11.01	4	700.5	1(36	5	90	691.5	691·5 699·25	8.0 7.75	1.0		20.5	57	A	26.0	3.0	113	0.08
1.12.61	460	480	1153	10	30	703.0	708.0	5.0	0.45	<u> </u>		5-3 6	20'B		<u> </u>	56	
(1	"	130	1203	10	30	708.0	712.2	4.2	V-45		20	57.5	20'B 315'A	26 .2	0.4	56	0.02
(1	<u>"</u>		1214	10	60	712.7	718.2	5.5	0.5		20	51.5	80'B	26.2	0.49		
"			1224	10	60	716.2	724.6	6.4			- 20 -	51.5	80'B 375'A	20.2	0.49	86	0.02
и и		n .	1234	10	90	725.0	731.8	6.8	0.65		20	57.5	80'B	26.2.	0.49	116	0.03
n		<u> </u>	1244	10	90	73(-8	737.9	6.1	1 000		20	21.3	80'B 315'A	26.7	0.47	116	0.03
4.12.61	475	50I	1632	10	30	753.0	761.0	8.0	0.75		26	51.5	80'B	<i>2</i> 6·2	0.49	5 %	0.03
ħ	A		1642	10	30	761.0	767.5	6.5				31.3	395'A	26.2	0.49		0.03
"	,		1652	10	60	767.5	775.3	7.8	0.7		26	51.5	80 B 395'A	26.2	0.49	86	0.03
N N	•	n	1702	10	60	115.3	781.0	5.7					395'A	20-	0.49		
•		4	1712	10	90	781.0	786.8	5.8	0.6		26	57.5	80'B 396'A	26.2	0.45	116	0.02
11		4	1722	10	90	186.8	792.3	5.5			1	31.3	395'A	20.2	0.43		5.02
					, ,						· · · ·					····	
Hole Ne :-	R22			, ,	eature :- f	ower House					 						
Inclinatio		zontal (e):-63°			:-'Triefus'	NMLC				Height of	Bauge at	sove t	$tole(h)^*:-2$	feet		1
12.2.62		518	1100	5	30	922 · Q	922.6	0.6	0.1	Good	68	90	80°B	36	0.41	66	0
(1	п	К		5	30	922.6	913.3	0.7		0000			310 A				
h	11	h		5,	60	923.3	930.8	7.5	1.5	· · · · · · · · · · · · · · · · · · ·	68	90	80'B 370'A	36	2.87	93	0.02
IL	4	4		5	60	930.8	938.3	7-5					3/0'A		10,		302
12-2-62	510	530	0856	5	30	945.0	949.0	4.0	0.75		20	92	80'B	37	0.33	67	0.04
ч	¥	4		S	30	949.0	952.5	3.5			-		430'A				
1)	6		0907	5	60	954.5	962.9	8.4	1.5	n .	20	92	80'B 430'A	37	2.80	94	0.08
11	•	"		5	60	962.9	969.3	6.4					480' A				
13.2.62	530	548.6	0800	5	30	1017.6	1027.0	9.6	1.95	ų	18.6	92	80'B	37	5.32	62	0.20
н	u	u		5	30	1027.0	1035.8	8.8	1				- 	= .	1	·†	
11	, h	t		5	60	1038.5	1058.7	20.2	3.95	ч	18.6	92	20'B	37	20.7	76	0.40
tı	h	at .		5	60	1058.7	1078.4	19.7		-			ł				
17.2.62	550	590	0900	5	30	1084.5	1090.0	5.5	1.25	. h	40	92	80'B	25	1.59	53	0.03
11				5	30	1090.0	1096.8	6.8]				j				
		41		5	60	1099.0	1117.5	18.5	3.75	h	40	92	20'B	25	16.56	68	0.09
11	ħ	. <u> </u>		5	60	1117.5	1136-4	18.9	J								
												· · · - -	1				
				+						-			#				
		- · - · · · · · · · · · · · · · · · · ·							-								
								·				,	#	ļ	-		····
								-					#		ļ		
		 									•						
								-					#				
						+				· · · · ·			1				
														·			
				-													
<u> </u>															ļ		
			-									-		· · · · · · · · · · · · · · · · · · ·			
											L		- 4		-		
	-											ł .	- 1				
								· · · · · · · · 									
			· +			<u> </u> -		···					+ +				
						1			· · · · · · · ·				1				
			+			+											
	-				·- 	• +											
<u> </u>				l													

BUREAU OF MINERAL RESOURCES

PORT MORESBY NO. 2 UNDERGROUND HYDRO-ELECTRIC SCHEME

							***	TILLOO	JIL IL	JI KESU	ILIS			For ev	planatory no	tes, see page I	of Annendia
	SECTION	TESTED	TIME OF	TIME OF	GAUGE	WATER METE	R READINGS	WATER	LEAKAGE	SEAL!NG	LENGTH OF	DEPTH OF	SIZE	WATER COLUMN	+	EFFECTIVE	WATER
DATE	FROM	TO	START	TEST	PRESSURE	START	FINISH	LOSS	RATE	PROPERTIES		STANDING		PRESSURE		TEST PRESSURE	
	(feet)	(feet)	OF TEST	(min.)	(p.s.i)	(gall.)	(gall.)	(gall.)	(g.p.m.)		(Feet)	WATER (Ft.)	ROD	(p. s. i.) W	(p.s.i)	(p. s. i.)	(g.p.m. per ft
	a	Ь		t	ρ	k	l	L-k=m	m t		b-a=c	d*		\$ 0.44 sin 8(a+h) 1 0 44 sin 8(d+h) 2		p+w-f=P	m t c
Hole No :-	R23		.	.l	Feature :-	Machine	Hall			<u> </u>							te
	n to Hor	rizontal (9):-710				fus' NMLC				Heightot	Gauge al	bove H	ble (h)*:-2	teet.		
28 · 3 · 62	50'	252'	1513	5	30	1146.5	1174.6	28.1	5.9	Good	202	90	В	21.3	3.2	48.1	0.03
			ļ	ļ	30	1174.6	1205.6	3/-0									
					60	1206.6	1252.8	46.2	8 · 55	Good.	•	••		1	6.8	74.5	0.04
22.2.42				_	60	1252.8	1292.5	39.7	کِل				1	1			
29 · 3 · 62	250'	302 7	1600	5	30	1302.0	1324.5	22.5	4.4	Good	52.6	85	A	36	11.3	54.7	0.09
		-			30	1324.5	1346.0	21.5					ļ		•		
		 		+	60	1380.5	1380·5 1409·0	30·5 28·5	3.9	Good	••		•	••	20.2	75.8	0.12
3.4.62	300'0"	353'0"	1625	5	30	1441.6	14-61-5	19.9	4.15	6000	53	85	Α.				ļ <u>.</u>
				T = -	30	1461.5	1482.8	21.3	7	G 600	9.5	85	A	36	12.1	53.9	0.08
			1	···	60	1484.6	1520.4	35.8	h 6 15	Good	41	.,			21./	74.9	0.12
		T	İ	†	60	1520.4	1545.8	25.4				-	-		~,	(T) 1	
4.4.62	350'0"	403′ 7"	0830	5	30	1558.1	1579.8	21.7	4.2	Good	53.6	95		36	4.6	61.4	0.08
					30	1579.8	1600.3	20.5						-		•	
				ļ	60	1609.0	1642-9	33.9	6.2	Good	.,	"		••	9./	86 · 9	0.12
6. 4.62	400'0"	453'6"	,,,,		60	1642.9	1671.0	28./	Į.		_		300'A				
6.4.0%	400 0	405 6	1/12	5	30	1728.0	1739.2	11.2	} - 2 ·/	Good	53.5	87	100.B	36	4.0	62	0.04
					30 60	1139.2 1752.5	1749·0 1766·5	9.8		Good .		•	, 11				
-					60	1766.5	1719.5	/4·0 /3·0	2.7	W 004 ,			- 11		6.9	89	0.05
12.4.62	450'0"	503'0"	2043	5	30	1792 0	1810.5	18.5	3.45	Good	53	80	350. A	34	12.3	51	0.07
		1		t - I	30	1810.5	1826.5	16.0	}		-	="	100.8	3 4	,,,,,		
		_			60	/831.0	1854.0	23.0	4.45	Good	**	,,	n	4,	18	76	0.09
		ļ			60	1854.0	1875.5	21.5	3				h				İ
14.4.62	500° 0°	553 /0"	0900	5	30	17.5	32.5	15.0	2.95	Good	53 · 8	110	420'A 80'B	46	10	66	0.06
		ļ <u></u>			30	32.5	47-1	14.6	Į]	"	,			-
		 		+	60	48·0 61·5	61·5	13.5	3.3	Good	. "	,	٠,	••	12	94	0.01
1.5.62	540' 0°	642' 0"	0906	5	60 30	61·5 214·5	76·0 250·0	74·5 36·5]] 7.0			. ,,,	MO'A	4.0			
	JTV V	072 V	77-0	— •	30	250·0	283.5	33.5) · · · ·	Good	102	110	B 001	46	62	14	0.07
		t			60	287.0	324.5	37.5	1∙5	Good		1	•	_	67.6	38	0.08
		1		†	60	324.5	362.0	37.5				·	H	٠			
													. * .				
Hole Nº R	24			10.01			ace Tunnel				Height of	Carros -		Hole(h)*:	- 9 Land		
Inclinatio	n to Ho	rizontal	(0):-74				Tricfus' N			ļ •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	vouge 3	, 00 76	· · · ·	- 7 Les.	•	
18 · 5 · 62	57	32/.4		5	17	375.5	426.3	50.8						·		··_ · · · · · · · · · · · · · · · · · ·	
						426.3	4 67·5 524·1	41·2 57·0) 10 · 8	Good	264 · 3	90	B	24	10.6	30.4	0.04
		 				524-1	580.5	56.4									
19.5.62	100	321.4	9 A.M.	5	30	786.0	801.5	14.5	2.7	,.	221.3	90	8	38.9	1.7	67.2	0.01
		† · · · · · · · · · · · · · · ·	<u> </u>	†		801.5	8/3.5	12.0	} ~~~		. 77	• •	2			# 1 · A	
			<u>L</u>	İ	60	8/3 -7	8 36 .9	23-2	4.3	•	• =		8	••	3.7	95.2	0.02
				I		836.9	856.8	20.0								errar i	
22 · 5 · 62	32/.4	372.8	2, P.M.	5	30	860.4	872.6	12.2	2 3	ч	51.4	90	130#A	38.6	4.2	64-4	0.04
						872.6	883.5	11.0	<u>[</u>]								
			ļ	.	60	883.8	890.9	7./	1.5	4 4		• [4	••	3.2	95 .4	0.03
24.5.62	372.8	433 -1	7 A.M.	ļ	36	890.9	8 99·1 916·0	8.2	<u> </u>				130'A		3.2	, .	
~4.2.PY	314.8	433.1	- / ^.M.	5	30	905·5 916·0	970.0 922.3	10·5 6·3	1.65	14	60.3	90!	130'A 240 B	38.6	3.2	65.4	0.03
		+	_		60	922.5	927.8	5·3	1.0						1.03	97.6	0.02
			 			927.8	932.3	4.6	} - '-				''		, 500	71.0	
		1		<u> </u>						 	†		 			continued	

BUREAU OF MINERAL RESOURCES

PORT MORESBY NO. 2 UNDERGROUND HYDRO - ELECTRIC SCHEME

	1								1	Ţ	I		<u> </u>	I		tes, see page 1	
	SECTION	TESTED	TIME OF	TIME OF	GAUGE	WATER METER		WATER	LEAKAGE			DEPTH OF	1	WATER COLUMN	FRICTION		WATER
DATE	FROM	ТО	START	TEST	PRESSURE	START	FINISH	LOSS	RATE	PROPERTIES	SECTION	STANDING	OF	PRESSURE		TEST PRESSURE (p. s. i.)	
	(feet)	(feet)	OF TEST	(min.)	(p.s.i)	(gall.)	(gall.)	(gall.)	(g.p.m.)		(Feet)	WATER (Ft.)	ROD	(p.s.i.) w	(p. s. i.)		(g.p.m. pe
	a	Ь		t	ρ	k	ι	L-k = m	m t		b-a=,c	d.*		\$0.44 sin 9(a+h) 1 0.44 sin 9(d+h) 2.	$\frac{(a+h)e^{+}}{10}=f$	p+w-f=P	tc
24 .0	ontinue	ا ما							<u> </u>								
5.5.62	433.1	483.3	10-15 A.M.	5	30	935.7	945.8	10.1	1.7	Good.	50.2	90!	130' 6 300' A	38.6	1.6	67.0	0.04
						945.8	953·4	7.6	3								
	· · · · · · · · · · · · · · · · · · ·				60	953.4	960.1	6.7	1.25		",		11	•	1.35	97.3	0.03
						960.1	966.1	6.0	I	†						1	<u> </u>
8 · 5 · 62	482	543	1102	5	30	974.5	982.0	7.5	1.4	•	6/	90	352' A	38.6	2.94	65.7	0.02
						982.0	988.75	6.8	ľ		1			1			
					60	990.5	997.5	7.0	1.2	••	•	,	34	,	2.46	96.1	0.0
						947.5	1002.75	5.3	}								
29 - 5 - 62	543	59/8"	/332	5	30	1006.0	1011-0	5.0	1.05	"	48.8	90	130' B	38.6	2.2	66.4	0.0
	3.75					1011.0	1016.5	5.5	1		1						
					60	1017.0	1026.0	9.0	1.8			,			5.4	43.2	0.04
						1026.0	1035	9.0	₩				1	•			
1 .5.62	59/-8	655.5	800 AM	5	30	1184.5	1203.0	18.5	3.7		63.7	90	160' B	38.6	19.8	488	0.0
,, J. 52.	34/10					1203.0	1221.3	18.3	3.7	 	-		#30. V			†	1
					60	1221.3	1249.1	27.8	5.3			+		†	37 5	61-1	0.0
						1249.1	12745		*				- "	İ		1	1
		<u> </u>				1	1307-1	25.4	6.5			1		- · ·	55.3	73.3	0.1
	<u> </u>	ļ		.	90	1274.5		32.5	.5	',	"	"	11	''		•	1
						/307-/	1340.9	33.8	¥							†	†
4 . 44.67	. 83		<u></u>		522	1	inancian V	1010 616	•		4 .	1 0 0		44.4	1 24	00.1	
ole N ²	:-R2	> U ~!!	L-1 (01)	_ 450	Pez	Hura: - D	version v	MAL MAL	<u> </u>		Heigh	t of Gou	ge at	ove Hole (h)+:-	21001	
	on to	norizoni	al (B):			ker type	- 1112103		-	Good	·	5/	t	16.9	0.83	46.1	0.0
26 -6 - 62	50′0″	164'5"	12.20	5	30	1610.0	1623.1	13.1	2.5	Good	1/4.4	, J	8	, , ,			
		ļ	12.70			1623./	1634.5	11.4	<u> </u>				_		1.46	75.4	0.0
		<u> </u>	12.12		60	1634.5	1652.5	18.0	3.5	"		•	B		1.40	/3 4	
			12:17			1652.5	1669.3	16.8	2				†		1.84	105.1	0.0
			12.22		90	1669.3	168:0	19.7	4.05	••	"	"	8	•	1.04	,05.7	
			12.27			1689.0	1709.	20.1	<u> </u>	1.			ł				0.0
27 · 6 · 62	150' 0"	2,03′10″	9.45	5	30	17/7 .3	1728.4	//-/	1.8		53.8	5/	8	16.9	1.4		
			9.50.			1728.4	1735.3	6.9	<u> </u>	1			1		-	-,	
			q· 55		60	1735.3	1742.1	6.8	/ 3	••	"	"	В	••	0.1	76	0.0
			10.00			1742.1	1748.3	6.2	<u> </u>				1				
			10.5		qo	1748.3	1756.3	8.0	1.5		"		B	. .	1.2	106	0.0
			10.10			1756.3	1763.6	7.3	<u> </u>				1				
2 · 7 · 62	253.5	312.8		5	30	1922.1	1933.1	11.0	1.9	u	59.3	51	β	16.9	2.3	46	0.0
				†		1933.1	1941.0	7.9					Ī	1			1 .
	<u> </u>			1	60	1941.0	1954.2	11.2	2.5	Not sealing	"	"	ß	I	3.8	76	0.0
	<u> </u>			 	1	1954.2	1967.6	13.4	T		1						1
	<u> </u>		 	 	90	1967.6	1983.3	14.7	3.0	•	"	,	ß] ,	5.1	106	0.0
		-		 	<u> </u>	1983.3	1998-4	15.1					1	Ī			
3.7.62	3/2.8	324.8		5	30	2008-5	2019.4	10.9	2.1	Good	17.0	5/	ABB	16.9	2.7	46	0.1
	3,20				 	2019.4	2029.2	9.8	1		†		1			******	
	 	+	 	 	60	2024.2	2041.1	11.9	3.5	Not sealing	,,	- 4	A & 5		4.6	76	0.2
	 	-		 	 	2041.1	2058-7	17.6		inoi seemid	-	•	11.55	,		1	†
				 	1	1 2047		+				†	100	16.0	11.0	85	0.0
	330	405.5	+	 	30		DAT A		3.6	Good	75.5	51	A & B	16:9	11.0	46	0.0
		<u> </u>				+		· · · · · ·				1	-	~			
	-				60		NOT	ļ	3.8	 "		. 11	A & B	16.9	15.9	76	.0.0
		1		_				<u> </u>				1				100	_
	ļ	ļ	<u> </u>	_	90	A	VAILABL	#	5.0	nn	 		ALG	16.9	20.6	106	0.0
			ļ		<u> </u>			<u> </u>					 -		+	1	
	ļ					1		}		+	<u> </u>	-			+		
	<u></u>			1					-				+	. .	+ -	-	
	1							ļ		1		<u> </u>	 				
							1			4				_			

PORT MORESBY NO. 2 UNDERGROUND 'HYDRO - ELECTRIC SCHEME

							**/\L\	1 NL 330	INL IE	DI KESU	LIS			For exp	planatory no	tes, see page 1	of Appendix.
	SECTION	TESTED	TIME OF	TIME OF	GAUGE	WATER METE	R READINGS	WATER	LEAKAGE	SEALING	LENGTH OF	DEPTH OF	SIZE	WATER COLUMN	FRICTION	EFFECTIVE	WATER
DATE	FROM	ТО	START	TEST	PRESSURE	START	FINISH	LOSS	RATE	PROPERTIES	SECTION	STANDING		PRESSURE		TEST PRESSURE	1
	(feet)	(feet)	OF TEST	(min.)	(p.s.i)	(gall.)	(gall.)	(gall.)	(g.p.m.)		(feet)	WATER (Ft.)	ROD	(p.s.i.) W	(p. s. i.)	(p. s. i.)	(g.p.m. per f
	a	ь		t	ρ	k	ι	L-k = m	<u>m</u>		b-a=c	d*		\$ 0.44 sin θ(a+h) 1. 0.44 sin θ(d+h) 2.	$\frac{(a + h)e^{+}}{(a + h)}$	p+w-f=P	m t c
HOK Nº :	R26		1		Feature	Tailmace To	unnel R 5h	420 700	1					#		,	
		zontal (e):-25°				s' NMLC &				Height of	liange a	bove	Hole (h)*:-	2 feet.		
6.8.62	70	106.1	9905	5	30	2945-5	2952.7	7.2	1.35	1	46.1	9.5	В	2.3	0.58	27	0.03
h	11	n	0910	5	30	2952.7	2959.4	6.7	,		, , ,		. –				
n	11	6	0915	5	60	2959.4	2966-6	7.2	1.4		46.1	9.5	B	2.3	0.65	62	0.03
п	11	tı	0920	5	60	2966.6	2973.7	7.1							į		
н	fı	п	0925	5	90	2973.7	2982.5	8.8	1.7		46.1	9.5	В	2.3	0.72	92	0.04
11	h	ĸ	0930	5	90	2982.5	2991.2	8.7									
8.8.62	100	157.7	1525	5	30	2992.7	3004.4	11.7	2.35		57.7	100	В	18.4	1.6	47	0.04
þ	tı	"	1530	5	30	3004.9	3016.5	12.1				1	+		<u> </u>	1	
h	ч	ĸ	1535	5	60	3016 5	3031.6	15.1	2.9		57.7	100	В	18.4	2.0	76	0.05
и	k	Ħ	1540	5	60	3031.6	3045.6	14.0									
8.8.62	332	401.2	0943	5	30	3510.3	3530.7	20.4	3.7		69.2	180	B	32.6	9.4	53	0.05
lı	11	•	0948	5	30	3530.7	3546.8	16.1									I
	4	h	0953	5	60	3546.8	3569.5	22.7	4.45	,	69.2	180	₽	32-6	10.5	82	0.06
•	•	4	0958	5	€0	3569.5	3591.7	22.2						I			
15.8.62	200	255.6	1146	5	30	3295.1	3335.9	40.8	8.2		55.5	180	В	32.6	19.2	43	0.15
li .	. tt	ų	1151	5	30	3335.9	3377.5	41.7									
11	u	ч	1156	5	60	3377.5	3437.2	59.7	11.75		55· 5	180	В	32.6	48.5	44	0.21
lı .	((1	1201	5	60	3437.2	3495-4	58.2	<u></u>								
10.9.62	170	202.B	1604	5	30	3149.5	3178.9	29.4	5.65		32.8	168	В	3 0.6	10.3	51	0.18
4		· · · · · · · · · · · · · · · · · ·	1609	5	30	3178-9	3206.4	27.5						1			
			1614	5	60	3206.4	3241.0	34.6	6.8		32.8	168	B	30.6	13.9	77	0.21
(1	- "	4	1619	5	60	324(-0	3274.6	33.6	<u> </u>			ļ l					
Hole No:	R27				Feature	Access 5											
Inclination		izontal ((e) :-90°	•	Packer tu	oe:-'Tried	fus' NML	c & BM	LC.		Height of	Gouge 26	ove H	:de (h)*:-2	! feet.		
20.7.62	50	103.2	1113	5	30	2292.4	2309.5	17.1	2.4		53.2	85	B	53.7	1 1	83	0.05
1/	4	h	1118	5	30	2309.5	2320.8	11.3							·		
4	Ą	l _L	1123	5	60	2320.8	2335.0	14.2	2.9		53.2	85	В	53.7	1	113	0.06
tł	11,	1,	1128	5	60	23350	2349.9	(4.9				İ	•		-		· · · · · · · · · · · · · · · · · · ·
23.7.62	100	. 153.3	1534	5	30	2359.0	2369.8	10.8	2.1		53.3	85	В	38.3	1.5	67	0.04
ii.	t	\	1539	5	30	2369.8	2380.2	10.4								·	
и	4		1544	5	60	2380.2	2393.8	13.6	2.5		53.3	28	В	38.3	1-6	97	0.05
ч	ч	ų	1549	5	e0	2393.8	2407.5	13.7				Ī			,		
li	ц	4	1554	5	90	2407.5	2427.6	20.1	4.2		53.3	85	В	383	3.6	125	0.08
14	<u> </u>	!!	1559	5	90	2427.6	2448.5	20.9				<u> </u>					
25.7.62	150	203.2	1606	5	30	2453.6	2467.4	13.8	2.7		53.2	85	B	38.3	2.7	66	0.05
	<u> </u>		1611	5	30	2467.4	2480.9	13.5									
			1616	5	60	2480.9	2498.5	17.6	3.55		53.2	85	В	<i>3</i> 8·3	4.2	94	0.07
ч	.	_ · · · · · · · · · · · · · · · · · · ·	1621	5	60	2498.9	2516.6	18.1			. <u></u>						
10	<u> </u>	<u>'t</u>	1626	5	90	2516.6	2538.3	21.7	425		53-2	85	B	38.3	5.3	123	0.08
4			1631	S	90	2538.3	2558.9	21.6			· · - <u>-</u>	-	- <u></u>			·	
27.7.62	200	250	1507	5	30	2564.0	2568.25	4.25	0.95		50	86	В	38.7	0.4	68	0.02
ч	<u> </u>	lt	1512	5	30	2568.25	2573.5	5.25	0.975				#	3			
<u> </u>	u		1517.5	5	60	2576.5	2579.15	3.25	7.412		50	86		38.7	0.4	98	0.02
	*	٧	1522.5	5	60	2519·75	2585.15	<u>ن</u> 0.0	} \				<u> </u>	38 -			,
<u> </u>		11	1528	5	90	2586·5 2593·O	2593.0	6.2	1.3		50	86	ΦA	38.7	0.6	128	0.03
31.7.62	250	300	1600		90		2599.5	15.5	3.2		50		В.	307	5.8		0.06
	250	300	1600	5 5	30 30	2684·0 2699·5	2699.5 2716.0	16.5	3.4		20	86	B	38.7		63	0.06
		11		ر.		70 77.D	7110.0		L	l					I		
ti .	•			_	60	2710.0	2725.5	17.5	2.0		50	26	B	22.7	7.1.	۱۵	$\alpha \cdot \alpha =$
ti ti	4	<u> </u>	1610.5	5	60 60	2718.0	2735·5 2156·0	17·5 20·5	3.8		50	86	Ø	38.7	7.6	91	0.08
ti .				5	60 60	2718·0 2735·5	2735·5 2156·0	17·5 20·5	3.8		50	86	Ď.	38.7			Q.○ &

BUREAU OF MINERAL RESOURCES

PORT MORESBY NO. 2 UNDERGROUND HYDRO-ELECTRIC SCHEME

							WATER	PRESSU	IRE TES	ST RESU	LIS			For exp	planatory no	tes, see page 1 o	of Appendix.
	SECTION	TCCTED	TIME OF	TIME OF	GAUGE	WATER METE	R READINGS	WATER	LEAKAGE	SEALING	LENGTH OF	DEPTH OF	SIZE	WATER COLUMN	FRICTION	EFFECTIVE	WATER
DATE	FROM	I TO	START	TEST	PRESSURE	START	FINISH	LOSS		PROPERTIES	SECTION	STANDING	OF	PRESSURE		TEST PRESSURE	
	(feet)	(feet)	OF TEST	(min.)	(p.s.i)	(gall.)	(gall.)	(gall.)	(g, p. m.)		(feet)	WATER (Ft.)	ROD	(p.s.i.) W	(p. s. i.)		(g.p.m. per ft.)
	а	ь		t	ρ	k	l	L-k = m	m t		b-a=c	d.*		+ 0.44 sin 0(a+h) 1. 0.44 sin 0(d+h) 2.		p+w-f=P	t c
HOLNE		<u> </u>		FLATUR	2:- Pr264	ure Shati	<u> </u>				Ma'044 A	l Gauss		Hole (H)	 	<u> </u>	
Inclinati	ion to He	erizonta	1:-900	Pauler	+40e 3-"	Trietus' N	impl & B	MLC			Height o	, omge a	19342	noie (ii)	,		
13 - 10 - 62	1	100	0901	5	30	31.5	46.0	14.5	2.7	Good	68	15	N	7.5	0:1	37	0.03
15 15 55	<u> </u>		0906	5	30	46.0	58.1	12.1		4							
			0913	5	60	62.0	72.0	10.0	1.8	ļ u				7:S	0:1	67	0.02
			0918	5	60	72.0	80.4	8.4)	••							
19-10-62	100	200	0822	5	_30	4424.0	4432.5	8.5	<u> 1:5 </u>	•••	100	15	_N	7.5	0.3	37	0.01
		ļ	0827		30	4432.5	A438 8	6.3)	••				7.5	0.5	67	0.02
			0832	5	60	4439.4	4449.0	9.6	2.0	••				/-3			
			0837	5	60	4449.0	4469.5	9.0	1.9		50	30	NAB	14:1	3.0	41	0.04
22-10-62	200	250	1427	5	30	4880.0	4889·0 4898·6	9.6	1. 4	•,							
			1432	5	30 60	4900.5	4911 2	10.7	2.1		<u></u>	<u> </u>		14:1	3.2	71	0.04
	 	†	1443	5	60	4911.2	4921.2	9.9	<u> </u>								
26-10-63	300	350	0933	5	30	4930.0	4934.5	4.5	0.7	t _f	50	35	N	16:3	0.6	46	0:01
10 05		I	0938	5	30	4934.5	4937.0	2.5	<u> </u>	4		1			1		<u> </u>
			0944	\$	60	4938.6	4942.5	3.9	0.9.	B+		-	-	16:3	P:Q.	75	0.05
			0949	5	60	4942.5	4947.1	4.6	ļ	••			_				
30-10-63	350	400	08.54	5	30	5331.0	5341.3	10.3	1.9	••	50	33	BBA	[S· 4	3.5	4.2	0.03
			0859	5	30	5341.3	5349.5	8.2	ļ	••			. ,	15.4	3.5	72	0.04
	 	<u> </u>	0904	5	60	5350.5	5362.5	12.0	2:2		 	 		15.4	<u> </u>	1	, O.4
			0909	5	60	5362.5	5372 5	20.5	4.2		50	33	8 & A	15-4	13.2	32	0.08
2-11-62	400	450	0850	5	30	5424·5 5445·0	5445.0 546 6 .0	21.0	7.6		1 30	33		1	'-		
		<u> </u>	0855		30 60	5468.0	5496.0	26.0	R 6.1	.,				15.4	32.0	43	0.12
	1	-	0906	5	60	5496.0	5529.0	35.0		4				_			
7-11-62	450	519	0850	5	30	5557.5	5560.5	3.0	0.5	"	69	35	BRA	16.3	1.3	44	0.01
_4			0855	5	30	5560.5	5562.8	2.3	ļ	"							
			0903	. L. 5	60	5563.5	5568.6	5.1	0.8		.			16.3	1.8	74	0.01
			0908	5	60	5568.6		2.5)				1		1		
U-10 N/A	. D26		1		Enstu	ea :- Diva	rsion Wei	r Site	1		110/0106-0	f Garage	<u>. </u>	Hale (h)3	k . 2 C	act	
Hole ME	:-R3C	Horýzon	tal (0):	-300	Packe	rtype:-	Trictus'	BMLC			neight a	i usuga	3 000 (" HOSE CHY	~ 27	88 • /	1
16-10-6	1	25	1140	<u> </u>	30	85.0	85.5	0.5	0.1	Good	10	15	A	3.7	0.0	34	0.00
16-10-6	[3		1145	5	30	8 5.5	85.5	0.0	}			ļ			1 .		
		1	1150	5	60	85.5	82.6	0.1	0.0	**		ļ		3.7	0.0	64	0.00
			1155	5	60	85.6	82.6	0:0	-	ч		1			_		
17-10-6	2 25	35 .	1	5	30	102.0	106.1	1:1	0-1	•	10	15	A	3 .7	0.0	34	0.01
			1120	. .	30	106:1	106.1	0.0	-	•			1		0.0	G A	0.01
			1125	5	60	106.1	106.2	0.1	0.1			+ •	1	3.7	0.0	64	0.01
			1130	5	60	106.2	106.8	0.6	1 0.3	.,	10	ıs	A	3.7	0.0	34	0:03
17-10-6	2 35	45	1520	5	30	119.0	122.0	1.8	0.3		1	- 1.3	^				
			1230	<u>5</u>	30	122.0	123.5	1.5	0.5	•				3.7	0.1	64	0.05
			1535	5	60	123.5	127.0	3.5	7				_		 .		
22-10-6	2 65	75	1045	5	30	190.5	192.1	1.6	0.35	•••	10	28	.A	6.6	0.1	37	0:04
14 6			1050	5	60	192.1	194.1	2.0	1	.: "		1			ļ	1	1.
			1102	<u> </u>	30	200:0	202.5	2.5	0.5					6.6	0.1	67	0.02
			1107	.	. 60	202.5	205.0	2.5	<u> </u>							1 22	A
	75	85	1530	5	30	211.3	213.0	1:7	0.35		10	28	A	6:6	0.5	36	0.04
		ļ	1535	5_	1	213.0	215:1	2.1	J	''	· ·		† ··	6.6	02	66	0.05
		-	1545	5	60	218.0	220.3	2.3	0.45	- " ···		†					0.03
			1550	5	60	220:3	222.7	2.4			1					continue	d →
								_									

BUREAU OF MINERAL RESOURCES

PORT MORESBY NO. 2 UNDERGROUND HYDRO-ELECTRIC SCHEME

	SECTION	TESTED	TIME OF	TIME OF	GAUGE	WATER METER	R READINGS	WATER	LEAVACE	SCALIAIO	1 CHCT!! CT	DEPTH OF	C	*	1	tes, see page 1	
DATE	FROM	TO TO	START	TEST	PRESSURE	START		LOSS	RATE	SEALING PROPERTIES		STANDING	SIZE	WATER COLUMN PRESSURE		EFFECTIVE TEST PRESSURE	WATER
DATE	(feet)	(feet)	OF TEST	(min.)	(p.s.i)	(gell.)	FINISH (gall.)	(gall.)	(9.p.m.)	PROPERITES		WATER (ft.)		(p.s.i.) W	(p. s. i)	(p. s. i.)	(g.p.m. per l
		`	01 1201	1				 	1	 				+0:44 sin 8(a+h) 1.		1	
	a	Ь		t	ρ	k	L	L-k = m	E t		b-a = c	d *		TO 44 sin 9 (d+h) 2.	$\frac{(a+h)e^{+}}{10}$	p+w-f=P	t c
R 30	continu	ed.						ļ			-						
														.			
23-10-62	8 5	95	1015	5	30	230.0	232.0	2.0		Good	10	.30	A	7:0	0.2	37	0.04
			1020	5	30	232.0	234.1	2:1	0.40								
			1025	<u> </u>	30	234.1	236.3	2.2	K		<u> </u>						
			1031	S	60	240.0	242.3	2.3	10.00		Ì			7.0	0.2	67	0.05
			1036	5	60	242.3	244.7	2.4	0.45		†· - · · · ·			1	 		
25 12 62			1041	5	60	244.7	247.0	2.3	K	† .	-	30		5.5		35	0.03
25-10-62	40	110	1340	5	30	227.0	230.0	3.0	1 2.55		20	23	Α	_5:5	0:2	33	0.03
			1345	5	30	230.0	232.5	2.5	0.55	•							· · · · · · · · · · · · · · · · · · ·
	·		1350	\$	30	232.5	235.0	2.5	6	•		 		S· S	0.2	65	0.03
	 		1358	5	60	237.0	240.0	30	2.40			•			0.2	63	0.03
			1363	S	60	240.0	243.1	3.1	0.60	-					 		
			1368		60	243.1	246.0	2.9	,	•	<u>.</u>		-				
HOLENS:	- R31	ri cantal	(0):-30	∽	Festure:	- Diversii ype :- Tri	on Weir	Site		en en en en en en en en en en en en en e	He	ight of B	auga	sbove Hol	e (h)*:	- 2 feet.	
1		51.7	1030	5		0.3	4.7	A-3	0.90	Good	38.7	> 13	N .	3.3	0.5	33	0.02
21-11-62	13	31.7	1035	<i>S</i>	30	i i	4· / 8·9	5.2	8 0.40		38.1	13	14	3.3	03.,		
			1040	5	30 60	4·7 8·9	15-9	7.0	1.40		†	1		3.3	0.6	63	0.04
			1045	5	60	15.9	22.7	6.8	1.30		†	1 1					
26-11-62	51.7	103.8	0823	S	30	38.0	56.2	18.2	3.60		52·1	23	В	5.5	1.6	3.4	0.07
E6 11 0E		103.4	0826	\$	30	\$6.5	74:0	17.8		.,							
			0833	5	60	74.0	96.3	22.3	4.40		Ĭ			5:5	2.2	63	0.09
			0838	5	60	96.3	117.9	21.6		.,	1						
28-11-62	100	153.7	0934	<i>S</i>	30.	124.0	129-3	5.3	0.10	,	53.7	23		5.5	0.5	3 <i>5</i>	0.02
			0939	5	30	129.3	133.8	4.5									
			0944	5	60	133.8	143-2	9.4	1.75	4,				5.5	1.0	65	0.04
			0949	_ 5	60	143.2	151.2	8.0		••							
							No. 10 10								-		
		.			·						 						
																•	
												1					
												† †			†		
			1			·			†			1					
							-				1						
								†	†		<u> </u>		-			**	
		•			•	•			1		†				Ì		
		† ···	*						1								
		†		· :					†	f			•		Î		
							•				1		·				
											1		-				
		†	†						Ī	1	1						
		†		<u> </u>							1	†	F				
		<u> </u>		†									***]		
			† · · · · · · · · ·	<u> </u>				1	T	T	Ī						I
		†				†	•	1				†		-]	· · · · · · · · · · · · · · · · · · ·	
	<u></u>	1		T			h " '				1						
		†							1			1			[
		<u>†</u>	†	†							[l
		†	† '	†				1	1		1					-	
i .		I.	1	1	L	1.		ļ	+			+		· · · · · · · · · · · · · · · · · · ·	•	·	T

APPENDIX 3 - LABORATORY TESTS OF THE PROPERTIES OF SPECIMENS OF DRILL CORE

Adapted from two reports by L.T. Ryan, Officerin-Charge, Central Testing and Research Laboratories, Department of Works, Melbourne.

Twenty-nine samples from drill cores, obtained during test drilling Port Moresby No.2 Hydro-Electric Scheme, were submitted for examination and determination of the physical properties of the rock. In addition to static and dynamic tests on each sample, many samples were combined and durability (wetting and drying) tests conducted on them. The results of all tests are shown in Tables 1 to 3.

STATIC AND DYNAMIC TESTS

The properties determined by the static methods are those consequent upon the relatively slow applications of physical stress and are normally determined by loading to destruction sections of the samples in a testing machine, recording the strain suffered by the specimen under investigation. The dynamic properties of a material are those exhibited when it is subjected to a rapid application of load. Such determinations may be made by sonic methods in which the velocity/propogation of sonic energy is determined. Laboratory techniques for sonic determinations include:

- (a) Direct determination of the velocity of propogation of a wave through a specimen.
- (b) Determination of the frequency of natural vibration of the specimen and consequent velocity determination. These two techniques normally give different results,
 (a) gives the velocity of the compressional wave (i.e. the longitudinal velocity) while
 (b) gives the velocity of the shear or transverse wave which at no time will be greater than 0.7 times the longitudinal wave velocity.

Formulae have been developed for the determination of the physical parameters of rocks based on these two velocities.

Further, results from laboratory determinations made on drill cores can be correlated with the similar type of determination in which seismic exploration techniques are used to investigate the material in situ. Such direct correlation between the properties determined in the laboratory and the in situ properties is not possible with the static methods, although by utilizing triaxial shear testing (with high lateral pressure techniques) an effort is made to partially simulate the in situ conditions.

This dynamic technique is non-destructive and consequently static determinations can subsequently be made upon the same sample.

For the design of machine halls and similar installations the dynamic properties of the surrounding rock may well be of greater importance than the static properties, as the structure will be required to tolerate the vibrations set up by the operating machinery.

Of the samples submitted Nos. 7-Q-43 and 7-Q-44 were from a volcanic material in which was incorporated water-worn boulders of various rock types and may thus be referred to as a volcanic conglomerate. The remainder of the samples were of a volcanic agglomerate, the fragments of which varied in rock type, were of a very wide size range and also varied in their state of assimilation by the matrix.

With heterogeneous material such as this it could not be considered that any overall correlation of consequence could be attained between the static and dynamic properties. Further, as it was desirable that sonic determinations should be done on specimens as large as possible while the static determinations (in this instance compression tests) should be on specimens in which the height of the specimen tested is twice the diameter. Thus after the sonic testing only selected portions of the samples are tested statically.

The sonic determinations were made by the staff of the Geophysical Laboratories of the Department of National Development who have recently acquired equipment to conduct such work. Unfortunately, it proved impossible to make critical determinations of the transverse wave velocities. However, of the results obtained, that which most probably represents the transverse wave velocity is included on the attached sheet of results with the consequent parameters computed.

The heterogeneous nature of the sections of cores submitted is indicated, viz. 7-Q-55 in which two pieces from the same section of core gave ultimate compressive stress results of 6,680 and 26,300 p.s.i. and corresponding values for E (Young's Modulus) of 1.6 and 3.0 x 10^{-6} p.s.i. The section which gave the high ultimate stress consisted almost wholly of an inclusion of biotite schist within the volcanic agglomerate, the planes of schistosity being parallel with the axis of loading.

The approximate specific gravity was determined for each of the samples as received; subsequent to this the samples were trimmed for sonic determinations and then cut into required specimens for compression testing. It was on these last specimens that accurate specific gravity determinations were made.

Compression tests were conducted on sections cut from the samples submitted so that the length of the test sample was twice the diameter where possible. Particular care was exercised in cutting the specimens to ensure that the cuts were square and planar. Due to the nature of the rock it was thought advisable to incorporate a piece of manilla folder between the rock and the metal platens of the compression machine. The deflections of the specimens were determined by using dial gauges mounted between the platens of the compression machine, thus permitting the plotting of the stress/strain relationship of each specimen tested for the determination of Young's Modulus (E).

It was thought initially that the deflection caused by the compression of the manilla would be eliminated after only a relatively small load; however subsequent investigations have indicated that the static Young's Modulus values obtained were slightly low because of the manilla and corrections have been made accordingly.

Some specimens were also submitted to the diametric (or indirect) tensile test, also known as the Brazilian Test. These tests were conducted upon appropriate offcut sections remaining after the cutting of the compression test specimens.

Because of the heterogeneous nature of most specimens electrical strain gauges were not used for the determination of the longitudinal and lateral strains, and consequently no determinations were made of Poisson's Ratio under static conditions.

The relationships used in the determination of the dynamic properties are as follows:

Longitudinal (compressional) wave velocity – $C_B(ft/sec)$ Transverse (shear) wave velocity $C_S(ft/sec)$

Poisson's Ratio
$$\sigma = 1 - 1/2 \frac{(^{\text{C}}\text{B})^2}{(^{\text{C}}\text{S})^2}$$

$$\frac{(^{\text{C}}\text{S})^2}{1 - \frac{(^{\text{C}}\text{B})^2}{(^{\text{C}}\text{S})^2}}$$

Youngs Modulus Eo = 1.34 x 10^4 x $Px(^{C}B)^2x(1+\sigma)(1-2\sigma)$

(Not restrained) psi

Where P = SG

An examination of the results indicates a wide variation in the rock properties both dynamically and statically. As stated earlier this can be attributed to the heterogeneous nature of the material investigated. In many instances the longitudinal velocity is less than 1.43 times the transverse velocity, which in fact is not theoretically possible, and such transverse velocities may indicate the natural frequency of an inclusion within the section of a higher velocity material (thus, higher natural frequency). Where this ratio is less than 1.43 the results are of doubtful significance.

Where it is considered that the longitudinal and transverse velocities may bear a relationship to each other, the dynamic Young's Modulus and the Poisson Ratio have been computed. One feature is the overall higher value obtained for dynamic E that static E; this is normally the case.

The tests on samples 7-Q-70 and 7-Q-69 indicate that the conglomerate samples are far weaker than the agglomerate or tuff samples submitted. (See results of 7-Q-43 and 7-Q-44, however). The compressive strength recorded for Sample 7-Q-80(i) cannot be considered as representing the strength of the rock.

DURABILITY TESTS

To ascertain the durability of the material, a particular grading was selected and this subjected to a series of soaking and drying cycles. Each cycle consisted of soaking the material overnight in water, and then evaporating to dryness with gentle boiling, this procedure being repeated numerous times. The grading of the material was determined after a certain number of cycles as indicated in Table 3.

Many samples were combined for these tests, each durability sample representing a depth section within a drill hole. The results show the fraction retained by 3/16 inch and $\frac{3}{4}$ inch sieves after each series of cycles as a decimal of the original quantity retained on the 3/16 inch and $\frac{3}{4}$ inch sieves respectively.

In the first batch of samples, which were graded after 1, 5, 20 and 47 cycles, the samples most affected by the soaking and drying cycles were 7-Q-43 and 7-Q-54, 55, and 56. Sample 7-Q-56 yielded a low longitudinal velocity; it has a low ultimate compressive strength and a low value for Young's Modulus, and thus may contribute largely to the lower durability of the combined sample. Sample 7-Q-43 is conglomerate, and this suggests that the conglomerate would be more subject to weathering than the agglomerate.

In the second batch of samples which were graded after 1, 2, 10 and 31 cycles, the sample, which consists of principally conglomerate tuff, showed a greater breakdown under test than the sample consisting of agglomerate and tuff. This again indicates that the conglomerate would be more subject to weathering than the agglomerate or tuff.

		<u>:</u>	SONIC DETERMINATIONS								<u>s</u>	STATIC DETER	MINATIONS	<u>.</u>		
Sample No.	Hôle	Depth	Rock Type	Core Dia•	Apprex S.G.	Longi- tudinal Velocity C _B ft/ sec.	Transver Velocit S # ec		Poisson's Ratio O	Young's Modulus E p.s.i x 10-6	App.S.G.	Absorption %	E 10 ⁻⁶ P.s.i.	Ultimate stress P.s.i.	Tensile stress (Brasilian) p.s.i.	Sample No.
7 - Q-43	R14	2216"-2316"	Slightly weathered conglomerate	2"	2.54 (2.52)	15,400	11280 (2300)	(1•37)			- 2•717	- 1•31	1.1	5 , 430	1,270	7-Q-43
7-0-44	R15	21'0"-21'9"	Slightly weathered conglomerate	211	2•44	11,200	9250 5720	(1.21) 1.54	0.14	4.0	- 2•5 1 2	2.75	1.1	8 , 120	- 950	7-0-44
7-0-45	R21	5213"-52110"	Fresh agglomerate	211	2.36	13,800	6790 (3540)	2.03	0•34	4.2	-	-	0.8	4,350	-	7 - Q-45
7-Q-46	R21	15117"-15214"	Moderately fresh agglomerate	211	2.27	11,800	\$530 6650	(1.38) 1.7¶	0.27	3.7	2.536	3. 78	1.0 4 1.4	4,630 5,200		7 - Q-46
7-9-47	R21	21116"-21216"	Moderately fresh agglomerate	211	2.32	11,500	7320 5380	1.57 (2.14)	0.16	4.3	2.645 2.607	4•97 5•24	1.1	4 , 250		7-0-47
7-Q-48	R21	28518# - 28616#	Moderately fresh agglomerate	2"	2•34	12,500	7330 5 6 70 4580	1.71 (2.20) (2.83)	0.24	4•5	2.571	1.74	1.3	5, 820	1 ,16 0	7-Q-48
7-0-19	R21	290'2"-290'10"	Moderately fresh agglomerate	13n	2.32	13,300	• 72 0 3 7 40	(1.36) (3.56)			2.575	6 . 79	1.3 0.9	7,730 4,275	<u>-</u>	7-0-49
7 - Q-50	R21	33016"-33110"	Moderately fresh agglomerate	1 3 11	2.40	11,700	7 7 20 (3520)	1.52	0.12	4.6	<u>-</u> 2•655	- 4•85	1.4 1.6	7,220 9,178	-	7-0-50
7-Q-51	R21	34116"-34210"	Moderately fresh agglomerate	2 ¹¹	2•31	10,700	9910 8450 7350	(1.08) (1.27) 1.46	0.06	3•9	2.566	4•93 -	1.0 -	♦, 034	(564)	7-9-51
7 - Q-52	R21 /	441 ¹ 2"-441 ¹ 8"	Moderately fresh agglomerate	2"	2.37	9,840	7040 6060	(1.40) 1.62	0.19	3. 0	2•586 -	4•87 -	1 . C	4 , 840	<u> </u>	7 - 9-52
7-9-53	R21	50318"-50410"	Moderately fresh agglomerate	1 3 11	2•42 (2•55)	10,000	-				2.699 2.652 2.685	4.80 6.09 2.26	1.3	5,921 - -	- 532 1,130	7-9-53
7 - Q-54	R21	51212"-512110"	Moderately fresh agglomerate	1 3 11	2•59	13,000		-			2.763	1.73	1.2 1.7 to 1.9	5,550 14,670	-	7-0-54
7 - Q-55	R21 5	55516"-55611"	Moderately fresh agglomerate	1 <mark>8</mark> 11	2.55	14,500	(14680) 9 9 70	1.45	0.05	7•3		<u>-</u>	1.6 3.0 <u>±</u> 0.2	6,680 26,300	-	7 - Q-55
7-9-56	R21 6	60716"-607111"	Moderately fresh agglomerate	1 3 11	2,28	10,980							0.7	4,220 5,880	_	7-9-56
7-4- 57	_ 7	lest Sample (i)	?	211	2.39	10,300	9970 6420	(1.05) 1.60	0.18	3.2	2•475	2.59	2.0	> 7,880	Ann	7-Q-5 7
		(ii)	?	2"	2,36	15,800	5510 9950 (4110)	1.87 1.59	0•30 0•18	2.6 7.9	2.609 2.572 2.582 2.579	1.85 3.62 3.72 3.84	1.4	- \$6,935 -	1,395 - 598 344	
7 - Q-58	7	Test Sample	?	2"	2•39	10,000	5640 4 1 20	1.77 (2.43)	0.27	2.7	2.575 2.593	3.07 1. 4.38	7 = 0.2	> 6,980	5 1 0	7 -Q- 58

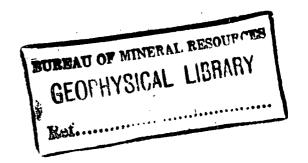
Results shown in brackets are of doubtful significance.

TABLE 2

RESULTS OF STATIC TESTS ON SELECTED SPECIMENS OF DRILL CORE

Sample No.	Hole	Depth	Rock Type	Ultimate Compressive Stress p.s.i.	Young's Modulus p.s.j. x10	Tensile Stress (Brazilian) p•s•i•
7-Q-73 (i) (ii)	R19	45510# - 45516쿨미	Moderately fresh agglomerate	10 , 340 -	1.3	904
7-Q-72 (ii)	R19	455 16 211 - 455 18 2	Moderately fresh agglomerate	-	-	00
7-Q-71	R19	49115"-49119"	Moderately fresh conglomerate	-	-	~
7-Q-70 ±	R19	491 ¹ 11"-492 ¹ 4"	Moderately fresh conglomerate	-	-	198
7-Q-69	R19	52512"-52516"	Moderately fresh co n glomerate	2 , 140	0.3	-
7-Q-68	R19	52715"-52719"	Moderately fresh conglomerate	- e	-	-
7-Q-75	R21	60110"-60112"	Moderately fresh tuff	· •••	_	
7-Q-74	R21	60112n-60116n	Moderately fresh tuff	9,230	0.9	-
7-Q-76 (i) (ii)	R22	5771711-5781511	Moderately fresh tuff or fine agglomerate	5,060 5,090	0.9 0.8	- -
7-Q-77 (i) (ii)\$¢\$	R22	54017"-54114"	Moderately fresh agglomerate	6 , 770	1.3	827
7-Q-78 (i) (ii)	R22	520' 0 ¹ n-520' 10'	Moderately fresh agglomerate	4 , 200	0.5	3 20
7-Q- 79	R22	49315"-498110"	Moderately fresh	-	.	
7-Q-80 (i)	≜ R22	32714"-32810"	agglomerate Moderately fresh tufi	600		- 458

This sample was badly fractured and not suitable for compression testing. Quality of material is indicated by the tensile strength.


12.12x 12.12x 12x

Tensile specimen fractured across diametric plane initially at 470 p.s.i. stress. Failed along fracture plane intersecting specimen at approximately 40° to longitudinal axis.

TABLE 3

DURABILITY TEST RESULTS

No. of Cycles			1		5	. 2	.0		47	
Sample. F	≀e t.	3/16"	3/4.u	3/16"	3/4 ⁿ	3/16"	3/4"	3/16"	3/4 ^{tt}	
7-Q-43		•99	•95	•98	•92	•95	. 87	•93	(.93)?	,
7-0-44	,	1.0	1.0	•99	1.0	•98	•94	•97	•90	
7-Q-45/46		•99	•98	•99	•97	•98 、	•95	•97	•93	
7-0-48/49/50		•99	•95	•99	•95	•98	•90	•96	•89	
7-9-54/55/56		•99	•92	•99	•91	. 96	•79	•93	•74	
No. of Cycles			1		2		0		31	****
Sample No.		3/16"	3/4 ¹¹	3/16"	3/4 ⁿ	3/16"	3/4"	3/16 ¹¹	3/4"	
7-Q-68,71,72,75	5 & '	79 •93	•91		-	•76	.67	.68	•57	
7-0-76,77,78 &	80	-		•95	•91	•89	.80	.81	•74	į
		The gr	rading	of the	origin	nal mate	erials	was as	follows.	
passing	•	1.1/2"	3/4 ^H	3/8"	1/4"	3/16"	No.7	No.14	No.25	
%	,	100	28	11 • 4	8.4	6.8	4.7	3•3	2.4	

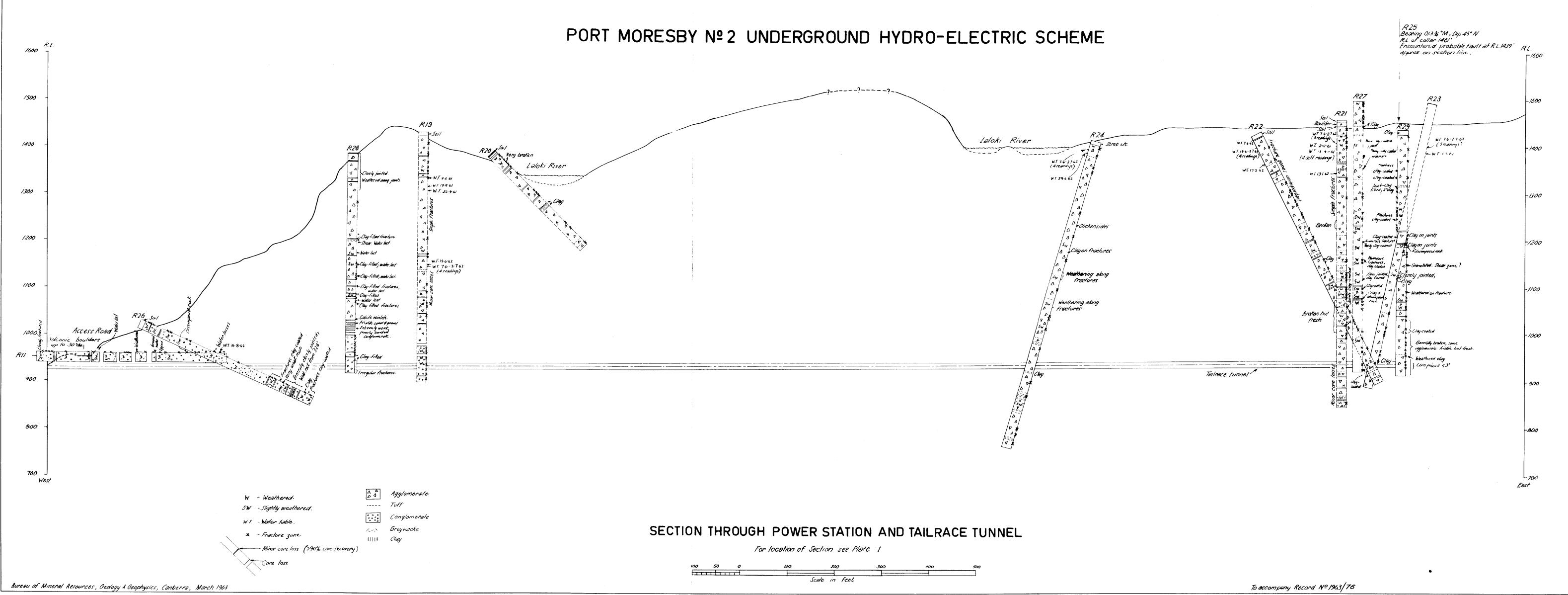
APPENDIX 4

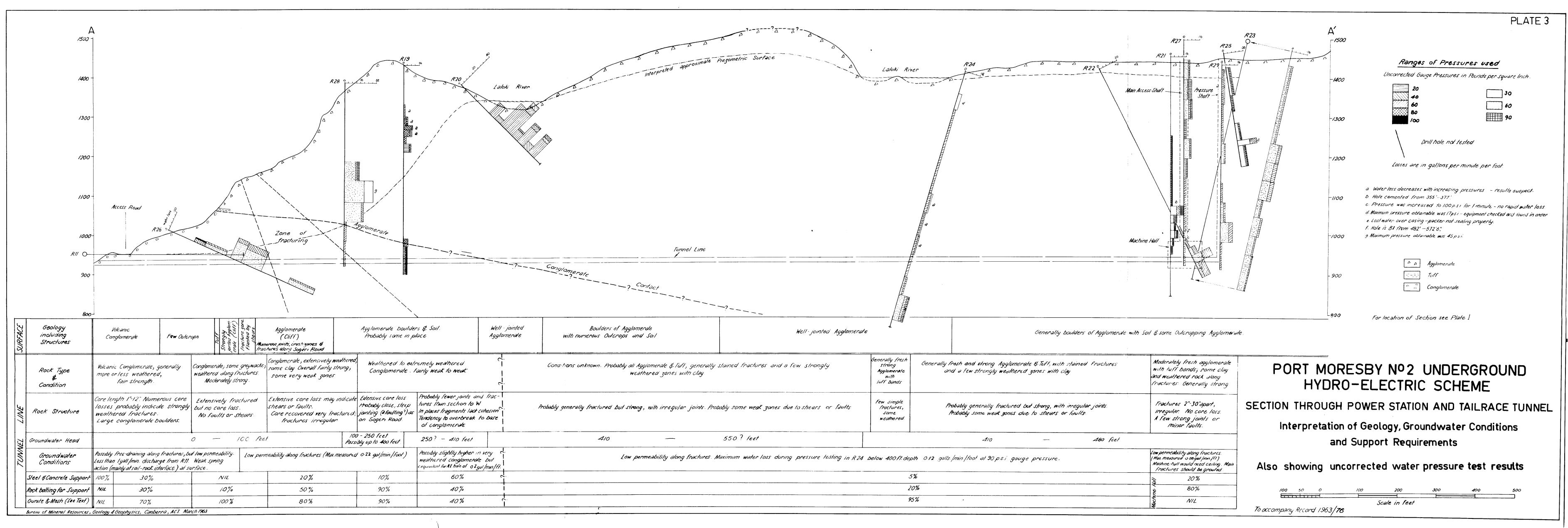
PETROLOGICAL DESCRIPTIONS

Six specimens of tuff and agglomerate were examined.

Specimens 1 and 2. Specimens of tuff collected near Trig

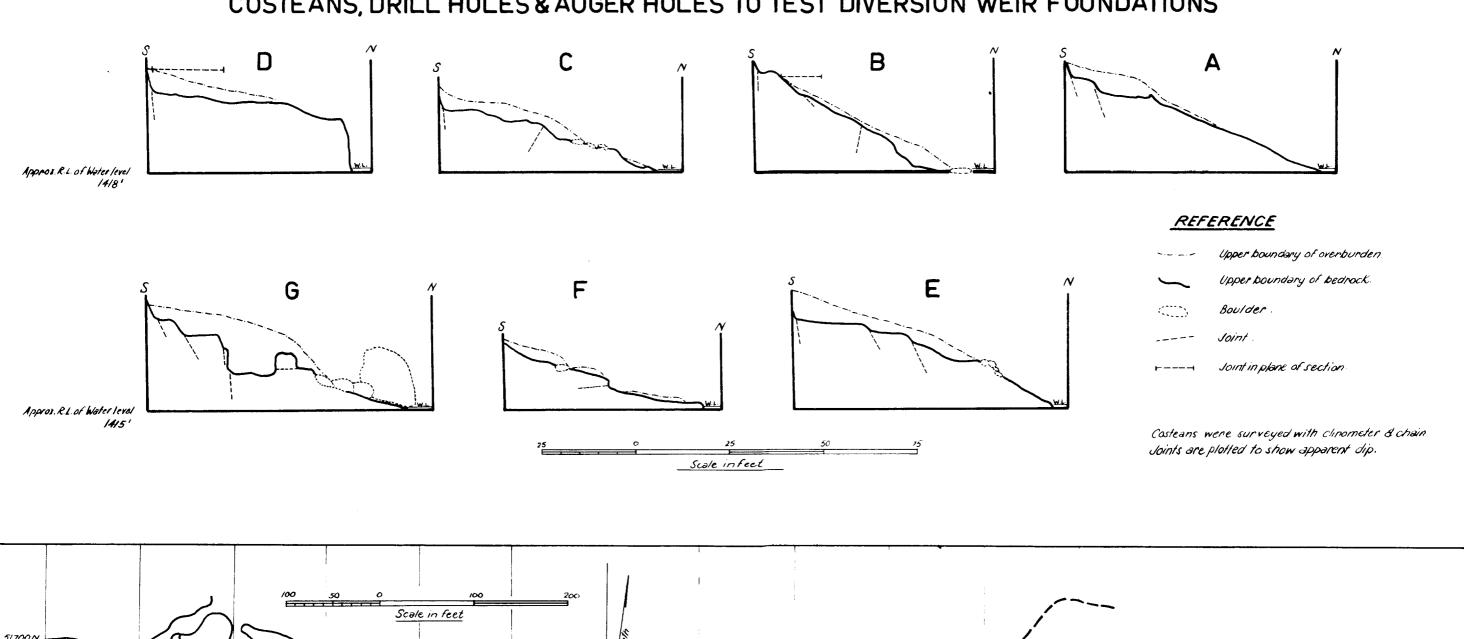
station R 13 on the left bank of the Laloki
River.

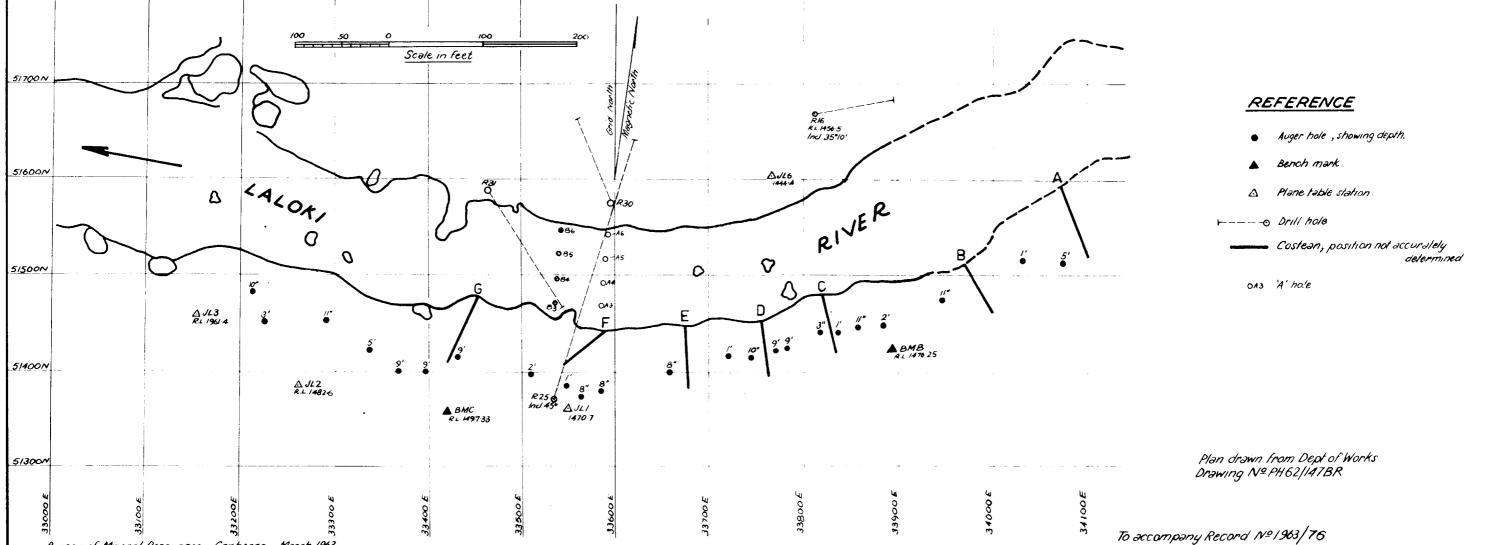

- 1. Granularity Phanerocrystalline with unsorted rock fragments and individual crystal grains. Particle size ranges between 4 mm and 0.05 mm.
- 2. Crystallinity hemihyaline vitric groundmass in which are set crystal grains and rock fragments.
 - 3. Composition a. Rock fragments: Red andesitic basalt with augite phenocrysts; grey andesitic basalt with augite phenocrysts.
 - b. Crystal grains: Lathshaped andesitic
 plagioclase and augite,
 generally euhedral to
 sub-hedral. Also
 magnetite and
 phlogopite.
 - c. Volcanic glass: Probably palagonite-greyish-brown and isotropic.
 - 4. Fabric-Overall texture is that of a volcanic breccia. Rock fragments exhibit flow textures where lath-shaped crystals of plagioclase are aligned (pilotaxitic); also some plagioclase laths are arranged concentrically about augite phenocrysts.
 - 5. Conclusion The specimens are of lithic, vitric, crystalline tuff.

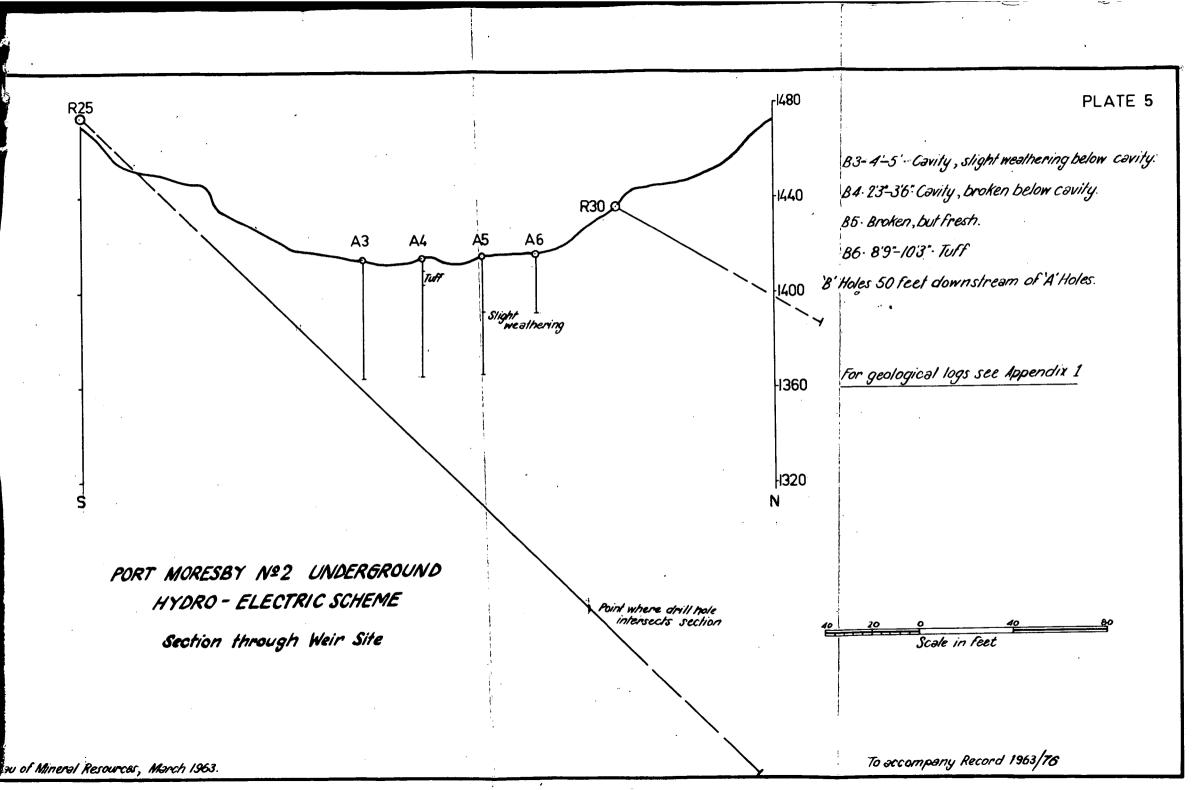

Specimens 3, 4, Random specimens of coarse-grained constituents of agglomerate.

The specimens are phenocrystalline to aphanitic. Most of the material is fine-grained porphyritic rock with augite and some olivine phenocrysts. The groundmass is hemicrystalline and consists of lath-shaped plagioclase and a minor amount of volcanic glass and magnetite.

The rock fragments are generally subidiomorphic to idiomorphic and some of them exhibit flow texture. In addition one specimen is vesicular.


The specimens examined, coarse components of agglomerate, are of basaltic andesite; some are vesicular.




PORT MORESBY Nº2 UNDERGROUND HYDRO-ELECTRIC SCHEME

COSTEANS, DRILL HOLES & AUGER HOLES TO TEST DIVERSION WEIR FOUNDATIONS

Bureau of Mineral Resources, Canberra, March 1963

