COMMONWEALTH OF AUSTRALIA

DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES GEOLOGY AND GEOPHYSICS

RECORDS:

1984/84

MISCELLANEOUS. CHEMICAL, PETROGRAPHIC, AND MINERAGRAPHIC INVESTIGATIONS CARRIED OUT IN THE GEOLOGICAL LABORATORY. JANUARY - JULY, 1964.

PART I

Compiled by

J.A. MacKenzie

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

MISCELLANEOUS CHEMICAL, PETROGRAPHIC, AND MINERAGRAPHIC ÁNVESTIGATIONS CARRIED OUT IN THE GEOLOGICAL LABORATORY JANUARY - DECEMBER 1964

Compiled by J.A. MacKenzic

Records 1964/84

INTRODUCTION

This Record is composed of reports on minor chemical, petrographic, and mineragraphic investigations carried out in the Geological Laboratory, Bureau of Mineral Resources, during the period January 1964 to December 1964. The Record is divided into two parts; the first deals with reports, covering the period January to mid-July 1964. The second part deals with reports covering the period mid-July to December 1964. In each part the reports are in chronological order.

The officers responsible for work in this Record are W.M.B. Roberts (Geologist, Class III), A.D. Haldane (Chemist, Class III), J.R. Beevers (Chemist, Class II), S.C. Goadby (Chemist, Class II), W.R. Morgan (Geologist, Class I), W. Oldershaw (Geologist, Class I), S. Baker (Chemist, Class I), E.J. Howard (Chemist, Class I), N.J. Marshall (Chemist, Class I), I.R. Pontifex (Geologist, Class I), N.W. Le Roux (Chemist, Class I).

THE INFORMATION CONTAINED IN THIS REPORT HAS BEEN OBTAINED BY THE DEPARTMENT OF NATIONAL DEVELOPMENT, AS PART OF THE POLICY OF THE COMMONWEALTH GOVERNMENT, TO ASSIST IN THE EXPLORATION AND DEVELOPMENT OF MINERAL RESOURCES. IT MAY FOT BE PUBLISHED IN ANY FORM OR USED IN A COMPANY PROSPECTUS WITHOUT THE PERMISSION IN WRITING OF THE DIRECTOR, BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS.

MISCELLANEOUS CHEMICAL, PETROGRAPHIC, AND MINERAGRAPHIC INVESTIGATIONS

CARRIED OUT IN THE GEOLOGICAL LABORATORY

JANUARY - JULY 1964

compiled by

J. A. MacKenzie.

Records 1964/84

CONTENTS

REPOR	RTS TIPLE	Page
1.	Spectrographic analysis of samples from Rum Jungle N.T by E.J. Howard	1
2.	Spectrographic analysis of geochemical samples from McArthur River N.T by E.J. Howard	6
3•	Spectrographic analysis of drill core samples from Union Reef gold field and Rum Jungle N.T by E. J. Howard	11
4. ⊿n	Acid insoluble residues - National Library site, Canberra - by N.W. Le Roux	12
5.	The petrography of specimens from the B.M.I. bore hole near Mugga Quarry, A.C.T by W.R. Morgan	13
6.	Estimation of copper on samples from Rum Jungle - by S. Baker	14
7•	Mineragraphic description and identification of ore samples from Ban Ban and Douglas Sheets N.T by I. R. Pontifex.	15
8.	Analysis of water samples - by S. Baker	17
-	The petrography of specimens from the Mesbit River- mouth, Coen area, north Queensland - by W.R. Morgan	18
10.	Mineralogical investigations of the heavy mineral sands from the Coen area, Queensland by I.R. Pontifex	20
111.	Laboratory examination of a white clayey sandstone from near Berrima, N.S.W by W. Oldershaw	22
12.	Estimation of phosphate on samples from Rum Jungle and Georgina Basin - by S. Baker	24
13.	Phosphate determination samples submitted by D. Woolley, Resident Geologist Alice Springs - by N.W. Le Roux	26
14.	Spectrochemical analysis of Rum Jungle granites - by A. D. Haldane	27
15.	Mineragraphic investigation of three samples from Union Reef, N.T. D.D.H.4, 190 ft. to 212 ft by I.R. Pentifex	29
16.	Mineragraphic investigation of pyritic sandstone from Taroom sheet, Queensland by - by I.R. Pontifer	31
17.	Mineragraphic Investigation of a ferruginous colite from Mundubbera Sheet, Queensland, - by I.R. Fortifex	32
18.	Spectrographic analysis of stream sediments from Mount Garnet Queensland - by A.D. Haldane	34
19.	Analysing of bore water, from Hall, Belconnen No. 10 - by	35

CONTENTS (CONT.)

	TITLE	Page
REPORTS	And a second sec	
20.	Spectrographic analysis of geochemical samples from Wabag New Guinea - by A.D. Haldane	35
21.	Spectrochemical analysis of samples from Rum Jungle Northern Territory by A.D. Haldane	36
≯ 22.	Spectrographic analysis of samples from Tennant Creek N.T by A.D. Haldane	40
23.	Spectrographic analysis of geochemical samples from Rum Jungle N.T by A.D. Haldane	42
24 .	Analysis of two water samples from the Captain's Flat area, New South Wales - by S. Baker	43
25.	Estimation of phosphate - by S. Baker	44
26.	Spectrographic analysis of samples from Rum Jungle N.T by A.D. Haldane	45
27.	Spectrochemical analysis of geochemical samples from Duchess Queensland - by A.D. Haldane	5 0
28.	Examination of proposed aggregate for the Tindal Airstrip N.T by W. Oldershaw	51
29.	Mineragraphic investigation of a specimen from No. 3 level Mount Victor Gold Mine, Kainantu area, New Guinea - by I.R. Pontifex	53
30.	Mineragraphic investigation of heavy mineral bands in a sandstone from the Springsure area, Queensland N.T Tby.I.R. Pontifex	56
31.	Mineralogical and chemical investigation of silica sand from 15 miles north of Cooktown Queensland - by I. R. Pontifex	57
32.	Mineragraphic investigation of mineralised Bitter Springs limestone, east of Orange Creek Station, Rodinga N.T by I.R. Pontifex	59
33.	Spectrochemical analysis of samples from Tennant Creek, N.T by A.D. Haldane	61
34•	Spectrochemical analysis of geochemical samples from Tennant Creek, N.T by A.D. Haldane	62
35•	Spectrochemical analysis of geochemical samples from Tennant Creek, N.T by A.D. Haldane	64
36.	Spectrochemical analysis of geochemical samples from Fenton Prospect, N.T by A.D. Haldane	65
37•	Spectrochemical analysis of geochemical samples from New Guinea - by A.D. Haldane	68
38.	Spectrochemical analysis of geochemical samples from Astrolabe, New Guinea - by A.D. Haldane	69
39•	Mineragraphic investigations of three dump samples from Mount Garnet Mine, north Queensland - by I.R. Pontifer	70
40.	Examination of evaporites in salt lake crust from the Kulgera 1:250,000 Sheet N.T by I.R. Pontifex	72
41.	Spectrographic analysis of samples from Rum Jungle, N.T by A.D. Haldane	73
* 24 ^A	X-ray diffraction analysis of three mineral samples from Charters Towers Area, Queensland by S.C. Goadby	43

(iii)

CONTENTS (CONT.)

		Page
REPORT	TITLE	
42.	Spectrographic analysis of samples from Rum Jungle, N.T by A.D. Haldane	76
43•	Spectrochemical analysis of samples from Rum Jungle, N.T by A.D. Haldane	81
44•	Estimation of lead on core samples from Area 55, Rum Jungle, N.T by S. Baker	84
45•	Estimation of copper on samples from Rum Jungle - by S. Baker	85
46.	Estimation of copper on core samples from Area 55, Rum Jungle - by S. Baker	86
47•	Estimation of copper and lead on core samples D.G. 17, 24, 25, 30 and 31, from Rum Jungle - by S. Baker	87
48.	Analysis of water samples from the A.C.T by S. Baker	89
49•	Spectrographic analysis of samples from Tennant Creek - by A.D. Haldane	91
50.	Olivine basalt from the April 1964, eruption of Manam Valley, New Guinea - by W.R. Morgan	95
51.	Spectrographic analysis of samples from Rum Jungle, N.T by A.D. Haldane	96 -
52• .	Spectrographic analysis of samples from Tennant Creek, N.T by A.D. Haldane	102
53•	Copper assays on samples from the Rum Jungle area, N.T by J.R. Beevers	104
54•	Spectrographic analysis of samples from Coratippra, N.T by A.D. Haldane	105
⁻ 55•	Spectrographic analysis of samples from Kalgoorlie, W.A by A.D. Haldane	106
56.	Mineragraphic description and determination of ore minerals in a mineralised dolerite from Ban Ban Sheet, N.T by I.R. Pontifex	110
57•	Phosphate analysis of samples from the Lake Amadeus, and Frew River area of the Northern Territory - by S.C. Goadby	112
58.	Analysis of lava flow from Manam Volcano T.P.N.G by S. Baker	113
59•	Identification of a metal specimen from Pila Pila, T.P.N.G by I.R. Pontifex	114
60.	Identification of fibrous material from Lake Stinear Antarctica - by I.R. Pontifex	115
61.	Analysis of a sample of suspected Baddeleyite from Cairns, Queensland by W.M.B. Roberts	116
62.	Mineragraphic investigation of a specimen from New Guinea submitted to Green and Co. Pty. Ltd. Rabaul, - by I. R. Pontifex	116
63.	Mineralogical identification of minerals in mica schists from Mulga Park Station, Ayers Rock Sheet, N.T by I.R. Pontifex	117
64•	Mineragraphic investigation of two garnet gneisses from islands near Fold Island, Antarctica, - by I.R. Pontifex	119

.

CONTENTS (CONT.)

		FBRE
REPORT	<u>TITLE</u>	
65.	Mineralogical investigation of eight mineralised specimens from Union Reefs, Pine Creek, N.T by I. R. Pontifex	121
66,	Analysis of core samples from Rum Jungle - by S. Baker	126
67.	Arsenic determinations on samples submitted by S. Yeaman, - by N.W. Le Roux	127
68.	Analysis of water samples from Ranken area, N.T by N.W. Le Roux	128
69.	X-Ray spectrochemical analysis of auger drill samples from the Mount Fitch area of Rum Jungle - by S.Goadby	129
70.	Petrographic description of three basalt specimens from damsite A, Lawer Warangoi River, New Britain - by W. Oldershaw	136
71.	Copper assays on samples from Rum Jungle area, N.T by J.R. Beevers	1 39
72.	Estimation of copper on core samples from Rum Jungle by S. Baker	142
73	Andesite from borehole TAV. 1, Rabaul, New Britain by W.R. Morgan	144
74	Dolerite from Loloki Copper Smelter, T.P.N.G by W.R. Morgan	145

SPECTROGRAPHIC ANALYSIS OF SAMPLES FROM RUM JUNGLE N.T.

bу

E.J. Howard

This report gives the results obtained during week ending 20th December 1963, from the spectrographic analysis of geochemical samples from Run Jungle N.T.

The samples were submitted by P. Pritchard.

The following results are expressed in parts per million.

Area 44

Area 44								•
Samples No.	Depth	Ni	Co	Cu	V	Mo	Pb	Remarks
320 N/60 0E	12-43			No	Resu	ı1t	,	·
320 N/602 E	9-27	*******		No	Resu	ılt—		
320N/604E	9-30	80	30	20	50	a	20	
320N/606E	9-43	30	40	25	50	а	50	•
320N/608E	6-40	25	30	25	50	Ł	а	
320N/610E	9 - 42	100	20	50	150	a	10	
320N/612E	2-40	40	20	25	100	a.1	10	
320N/614E	12-40	60	20	50	150	a	20	
320N/616E	12-40	100	20	25	300	a	500~	
320N/618E	3-33	30	12	25	300	\$	100	
320N/620E	9-40	40	20	50	200	'a	200	
320N/622E 320N/624E 324N/600E	9-43 12-40 10-41	40 30 15	15 20 15	30 25 25	200 200 50	a 1 15	150 150 10	
324N/602E	15-40		······································	No	Resu	1t		
324N/604E	10-40	60	40	50	100	a	а	
324N/606E	5-40	30	30	50	100	a	15	
324N/608E	10-40	40	30	50	50	a	10	
324N/610E	10-40	60	25	50	200	а	10	
324N/612E	10-40	60	20	40	200	8.	20	
324N/6 1 4E	7 1 -40	80	30	40	300	a	100	
324N/620E	9-37	60	20	50	300	a	70	
324N/622E		60	20	50	200	a	50	
324N/624E	12- 33	80	30	150	70	a	50	•
328N/600E	6-40	30	20	150	100	5	300	
328N/602E	9 -1 6	20	20	25	50	10	50	•
328N/604E	-17	20	20	50	70	5	70	
328N/606E	6-40	20	20	40	70	a	50	
328N/608E	15- 43	40	20	100	70	5	500	
328N/610E	3-12	30	30	40	70	5	100	
328N/612E	3-42	20	20	50	300	5	70	
328 N/ 614E	9-43	30	20	40	300	a	200	
								the state of the s

Sample No.	Depth	<u>Ni</u>	Co	Cu	V	Mo	Pb	Remarks
328N/616E	6-42	30	30	40	300	5	500	
328N/618E	6-43	40	20	25	200	а	70	
328N/620E	9-36	30	20	40	150	a	100	
328N/622E	12 - 30	30	20	25	150	a	50	
328N/624E	15-30	80	20	40	200	а	70	
346N/606E	9-60	150	30	50	200	a	1500	
346N/608E	18-60	80	30	40	150	5	200	
346N/610E	9 - 60	60	80	100	150	. 5	100	•
352N/606E	6-60	80	20	50	300	а	50	
352N/607E	12-48	40	10	25	200	5	70	
352N/608E	6-45	30	20	40	200	5	100	
352N/609E	9-48	80	20	25	300	a	70	
352N/610E	9-38	40	20	200	300	5	70	
354N/606E	12-97	40	15	25	200	5	100	
354N/607E	9-60	80	20	100	300	7	150	
354N/608E	12-42	80	20	50	300	5	30	
354N/609E	15- 45	80	60	300	300	10	70	
354N/610E	12-60	80	20	300	200	7	100	
Area 55B								
26N/1W	12-55	40	15	25	50	а	20	
26 N/ 2W	12-60	- 80	30	50	10	а	20	
26N/3W	2- 35	30	12	40	30	а	20	
26N/4W	6-12	60	30	70	150	7	50	
26N/5W	21-60	5-	5-	. 10	30	a	20	
27N/2W	30-60	80	20	1.0	50	5	10	
27N/3W	9-17		No	Resu	լե			
27N/4W	18-50	20	5	15	20	5	10	,
27N/5W	18-90	80	20	20	30	5	20	
28N/4W	0- 9		No	Resu:	lt			
28N/5W	6-10		No	Resul	 lt			
Dolerite Ri								
72N/160W	15-70		No	Resul	1t			
72N/162W	15-40	12	15	20	30	а	50	
<u> Λrea 44</u>				•				
324N/616E	10-40	80	20	25	200	а	500	
324N/618E	6-42	30	20	25	200	5	70	
332N/600E	5-31	5-	5-	- 15	30	a	20	
332N/602E	5-29	5-	5-	- 10	20	a	20	
332N/604E	10-34		Nc	Res	alt—			
332N/606E	7 월 -40	20	40	25	100	а	70	
332N/608E	10-40	100	80	200	100	5	10	••
332N/610E	10-40	80	20	150	200	5	30	
332N/612E	10-40	60	40		300	7	150	

		₹.						
Sample No.	Depth	Ni	Co	Cu	V	Mo	Pb	Remarks
332N/614E	5-40	80	30	100	200	7	200	
332N/616E	5-36	30	40	25	100	5	100	
332N/618E	5-22	40	15	25	200	а	100	
332N/620E	7 ½ −23	30	15	20	150	а	50	
332N/622E	7 1 -29	30	10	25	150	a	70	
332N/624 E	10-31	80	15	50	300	5	30	
336N/600E	12-42	40	30	20	70	а	10	
336N/602E	3 - 25	5	5-	15	70	7	30	
336N/604E	12-42	5	5-	10	20	a	10	Sn(30)
336N/606E	10-40	20	20	50	150	а	500	
336N/608E	6-41	30	15	20	50	5	20	
336N/610E	6-42	100	20	100	300	a	30	
336N/61 2 E	6-42	2 0	15	40	200	5	100	
336N/614E	6-42	80	15	70	200	а	700	
336N/616E	6-40	100	30	50	200	a	500	
336N/618E	7 1 2-26	3 0	20	20	200	a	. 70	
336N/6 2 0E	7 1 -20	40	15	15	200	a	200	
336N/622E	5-17	20	10	20	150	а	20	
336N/624E	9-36	20	12	25	100	a	30	
342N/600E	10-40	15	20	15	50	8.	20	
342N/602E	10-35	10	15	15	50	а	20	
342N/604E	10-33	1 0	15	15	100	a	50	
342N/606E	10-35	20	12	25	200	5	150	
344N/600E	9-42	20	20	25	150	a	20	•
344N/602E	3-40	15	15	40	20	5	70	
344N/604E	6–30	20	15	20	30	а	50	
344N/606E	6-44	.20	10	25	200	7	100	,
344N/608E	18-42	12	10	20	150	a	50	
344N/610E	12-40	30	20	50	50	a	150	
344N/612E	6-36	5	5-	50	150	a	50	
344N/614E	12-25	40	15	2 0	100	a	150	
344N/616E	9-41	20	15	20	100	a	150	
344N/618E	12-30	40	15	15	150	a	100	
344N/620E	9-25	30	10	20	200	a	10	
346N/599E	10-32	20	15	20	50	a	50	
348N/600E	10-34	15	20	15	50	a	200	
348N/602E	7 2 -37	20	20	20	20	a	2000	
348N/604E	6-40	30	30	200		a	700	
348 N/612E	25-35	30	2 0	40	100	5	100	
348N/614E	10-30	30	5	25	150	10	100	
348N/616E	10-36	20	5	15	150	a	100	
348N/618E	12½-33	30	10	10	100	a 2 0	200	
348N/620E	10-25	60	20	25	150	20	50	

		4	<i>t</i>					
								f :
							•	
Sample No.	Depth	Ni	Co	Cu	<u> </u>	Mo	Pb	Remarks
352N /620E	12-24	40	30	50	200	a	50	
352N/622E	12-24	60	20	70	300	5	50	
352N/624E	, 12–20	80	20	50	500	∢ á	50	
Dolerite Ri	.dge East							
64N/154E	6-42	150	80	70	200	a	a	
64N/158W	9-29	100	30	50	70	5	10	
64N/162W	30-40	40	20	70	300	a	20	
64N/166W	6-25	60	10	100	500	30	20	
64N/170W	21-35	150	80	50	200	a	а	
65N/174W	18-29	5 0	30	50	100	5	20	
65N/178W	24-35	20	1 5	50	200	5	30	
68N/158W	18-40	150	60	70	100	a	20	
68N/162W	18-36	40	15	50	200	7	30	
68N/ 166W	9 - 33	.40	15	70	300	20	20	
68N/170W	15-49		-No R	esul	+ <u></u>			
72N/166W	15-33	5	15	20	70	а	30	
76N/162W	10-27	5	20	20	50	10	30	
76N/166W	17 2 -44	40	1 5	50	200	10	20	
Area 44								
346N/592E	12-40	40	40	50	100	a	200	
346N/593E		<u> </u>	-No R	esul	t			
346N/594E	12-41	40	40	40	70	а	200	
346N/595E	12-33	60	30	50	70	а	200	
346N/596E	1:3-41	30	20	40	100	a	200	
346N/597E	10-30	30	30	25	50	a	200	
346N/598E	12-25	30	30	25	70	а	200	
346N/601E	12-36	15	20	25	50	а	300	
346N/607E	18- 45	20	20	40	200	а	200	
346/609E	12-50	30	10	40	200	5	150	
348N/592E	12-30	30	60	25	30	a	300	
348N/593E	6-27	20	20	20	100	a	20	
348N/594E	12-40	30	20	10	30	a	20	
348N/595E	6-20	30	30	50	70	a	300	
348N/596E	6–11	20	20	20	30	a	100	
348N/597E	9 –1 9	20	30	40	70	а	200	
348N/598E	12-28	20	30	25	50	а	700	
348N/599E	12-36	30	30	40	150	5	70	
348N/601E	6-31	40	20	40	150	а	300	
348N/603E	12-41	20	15	100	150	a	300	
348N/606E	21–60	60	20	40	200	a	500	
348N/607E	27-42	20	15	20		а	50	
348N/608E	18–60	20	20	40	100	a	100	

Sample No.	Depth	Ni	Со	Cu	V	Mo	Pb	Remarks
348N/609E	24-60	20	15	25	70	a	150	
348N/610E	12-60	30	20	50	150	೩	100	
350N/595E	15- 32	20	20	10	10	a	50	
350N/597E	12-36	20	20	15	30	a	500	
350N/599E	9-33	20	20	50	70	а	200	
350N/601E	9-30	20	30	10	50	5	200	
350N/603E	6-30	20	15	50	150	а	500	
350N/606E	15-60	30	15	20	150	a	500	
350N/607E	12-60	30	15	25	100	a	150	
350N/608E	12-60	30	15	25	150	а	30	
350N/609E	9-60	20	15	100	150	a	100	
352N/598E	12-40	30	20	25	70	a	100	
352N/599E	12-32	1 5	15	20	150	a	70	
352N/601E	12-32	20	30	20	50	5 '	200	
352N/603E	12-40	60	30	20	100	5	200	
Sediment San	nples Mt Fito	<u>ch</u>						
010000		5	12	10	5	а	10	Sn(10)
010001		5	12	7	5-	á	10	
010002		5	12	5	5-	a	10	
010003		5-	10	2	5-	ä	a	
0100 04		5-	5	2-	- 5-	ā · ·	á	
010005		5-	10	2	5~	ā	a	
010006		5	12	, 10	5-	á	10	
010008		10	15	10	5-	a	2 0	
0100:09		5-	5	5	5-	a.	10	
010010		5-	5	5	5	á	а	
010011		1 0	15	15	10	á	10	
010013		1 5	30	25	10	ä	30	
010016		5	12	10	5-	á	10	
010018		5 -	10	10	5-	ä	a	
010019		5	12	15	5	ä	10	
010020		5	12	10	5	à	10	
010022		5-	10	7	10	a	10	

Plate Nos. 644-669, 676-678.

Report No. 2

7th January, 1964

SPECTROGRAPHIC ANALYSIS OF GEOCHEMICAL SAMPLES FROM MCARTHUR RIVER, N.T.

bу

E.J. HOWARD

Semiquantitative estimations were made of the trace metal content of geochemical samples from McArthur River N.T.

The samples were collected by Carpentaria Exploration Company.

The following results are expressed in parts per million.

HOMESTEAD

Sample No.	Ni	Co	Cu	V	Pb	Remarks
D-6-Upper	5-	10	5	5-	a	
D-6-Lower	5-	10	5	5	а	
D-16-Upper	5-	10	5	5	a	•
D-16-Lower	5-	5	5	5	a	
D-26-Upper	5-	10	10	10	а	
D-26-Lower	5	15	10	30	10	
D-28-Upper	5-	10	· 5	10	а	
D-28-Lower	5-	10	10	30	a	•
D-32-Upper	5	15	10	50	10	•
D-32-Lower	5 -	10	5	5	a	
D-34-Upper	5-	10	5	5	a	
D-34-Lower	5-	12	10	30	а	
D-36-Upper	5	12	10	50	10	
D-36-Lower	5	12	15	50	a	
D-38-Upper	5	10	10	30	а	
D-38-Lower	5-	5	15	15	а	
D-48-Upper	5-	10	10	50	a	
D-48-Lower	5-	7	10	30	а	
E-30-Lower	5	12	15	50	10	,
E-30-Upper	. 5	10	15	30	a	
E-34-Upper	5	10	1 2	- 50	а	
E-34-Lower	5-	10	10	20	ຄ	
E-42-Uppor	5-	10	7	20	a	
E-42-Lower	5-	7	5	30	а	
F-30-Upper	5	10	10	20	а	
F-30-Lower	5-	10	12	20	a	
I-16-Upper	5	. 10	10	30	a	
I-16-Lower	5-	10	. 5	50	a	
I-80-Uppor	5	12	10	30	10	

		•			٠٠	
Sample No. I-80-Lower	Ni 5-	Co 7	Cu 10	₹ 20	Pb	Remarks
R-76-Upper	5 -	7	10	10	a a	
R-76-Lower	5	7	7	20	а	
S-76-Upper	5 -	10	10	30	a	
S-76-Lower	5 	5	12	10	а	
A-4	5 -	5-	2	7	a	
A-8	5	10	7	20	а	
A-12	5-	5	5	5-	а	
A-16	5 -	10	7	30	10	
AA-4	5-	10	5	20	10	
8-AA	5	10	5	10	а	
AA-12	5-	10	5	20	а	
AA16	5 -	10	7	5-	а	
B-4	5-	5	2	5	10	
B - 8	5~	10	2	10	а	
B-12	5-	10	5	10	а	
B-16	5-	5-	2	5 -	a	
BB-4	5 -	10	5	20	а	
BB-8	5	5	7	5-	a	
BB-12	5-	12	7	10	а	
BB-16	5-	10	5	5	а	
CC-4	5-	5	5	10	20	
CC-8	·5 -	10	5	10	10	
CC-12	5	12	7	1 0	а	
CC-16	5-	12	7	10	10	
DD-4	5-	5	5	10	а	
DD-6	5 -	5	5	50	а	
DD-8	5-	5	5	5-	а	
DD-10	5	12	7	50	10	
DD-12	5-	5	5	5-	а	
DD-14	5-	12	5	20	200	
DD-16	5-	5	2	10	а	
EE-8	5-	10	5	10	а	·
EE-10	5	5	. 2	10	20	
EE-12	5	10	2	20	200	
EE-14	5	10	5	5	50	
EE-16	5-	12	5	5	20	
I-12	5 -	10	2-	5-	а	
I -1 6	5-	10	5	10	20	
I-20	5	10	5	10	а	
I-24	5	.: 5	5	10	а	

3.

THENA PROSPL	CT					
Sample No.	Ni	Co	Cu	Λ	Pb	Remarks
A-8-South	5	15	10	10	30	
B-4 South	5-	10	10	5-	a	
B-8 South	5	10	20	5-	а	
C-4 South	10	15	25	10	30	
A-4 South	5	12	30	20	10	
C-4 South	5-	12	15	20	20	
D-8 South	5	20	15	20	20	
D-4 South	5	15	10	5	10	
C-8 South	5	12	10	5	10	
E-8 South	5	20	10	5	30	
F-4 South	5-	12	10	5-	10	
F-8 South	5-	12	10	5-	а	
H-12 South	5-	5-	2-	5-	10	
BOKO AREA						
A-104	5	15	10	10	20	
A-108	5-	10	5	5	а	
A-112	5	12	10	5	20	
A-116	5	10	10	10	300	
AA-104	50	12	10	5-	20	
AA-108	5	10	10	10	20	
AA112	5	12	10	10	70	
AA-116	5	10	2	5-	200	
B-104	5	15	10	10	50	
B-108	5-	10	5	10	20	
B-112	5	12	10	5-	20	
B-116	5-	5	5	5-	а	
BB-104	5	12	5	5-	20	
BB-108	5	10	5	5-	20	
BB-112	5-	5	5	5	а	
BB-116	5	12	5	10	20	
C-104	5	10	15	5	20	
C-108	7	12	15	10	50	
C-112	5-	10	5	5	20	
C-116	5 -	10	10	5 -	20	
CC-0	5	12	10	10	30	
CC-4	7	15	10	20	50	
CC-8	5-	10	5	5-	5 0	
D-104	5	12	10	10	70	
D-108	5-	. 5	5	5-	а	
D-112	5-	10	5	10	20	
D-116	5 -	10	10	5-	50	

4	

Sample No.	Ni	Со	Cu	V	Pb
DD-O	5	12	10	5	70
DD-4	5 -	10	· 5	5-	20
DD-8	5-	10	5	5	a
E-104	5	12	10	10	30
E-108	5	10	10	10	20
E-112	5	10	10	5	20
E-116	5	10	10	5 -	10
F-104	5	12	5	10	70
F-108	5-	12	10	10	20
F-112	5-	10	5	5	20
F-116	5-	10	5	5-	10
G-104	5	10	15	5-	30
G-108	5-	12	5	10	50
G-112	5-	10	10	10	20
G-116	5-	12	10	10	20
H-8	5	10	10	10	30
H-104	5-	5	5	5	20
H-108	5	12	10	10	30
H-112	5-	10	10	10	30
H-116	5-	10	5	5-	10

MITCHELL YARD

Sample No.	Ni	Со	Cu	V	Pb
A-O	5-	10	5	5	a
A-4	5 -	12	10	10	а
A-8	5	10	5	5	а
A-12	5-	5-	2-	5 -	а
A-16	5-	1 0	5	5	а
A-20	5-	5	5	5-	а
A-24	5-	10	2	5-	а
A-28	5 -	5	2-	5 -	а
A-32	5-	10	5	10	а
A-36	5-	10	2	5.	а
C-O	5	5	2	5-	а
C-4	5-	5	5	5	а
C-8	5	5	10	5	a

う・

Sample No.	Ni	Co	Cu	Λ	Pb
C-12	5-	10	5	10	a
C 16	5-	5 🕳	2	5 _	а
C-2S	5-	7	2	10	а
C-32	5-	7	5	20	а
C-36	5 -	10	7	20	а
E-O	5-	10	3	10	а
E-4	5-	7	5	10	а
E-8	5-	10	3	5	а
E-12	5	5	2-	5	а
E-16	5 -	7	5	5	a
E-20	5-	5-	5	5	a
E-24	5-	5	3 .	5	a
E-28	5-	10	5	10	а
E-32	5-	10	20	15	а
E-36	5-	5	2	5-	a
GO	5-	5	3	5	a
G-4	5-	5	7	5-	а
G-8	5-	7	5	5	а
G-12	5-	5	5	5-	а
G-16	5 -	5	5	5	а
G-20	5-	5	5	5	а
G-24	5-	7	7	5	а
G-28	5-	12	5	10	ឧ
G-32	5-	7	5	5	а
G-36	5 -	12	7	10	а
C- 20	5-	10	5	5	а
C-24	5-	5	5	5	а

Mo, Sn, Ba, P were sought but not detected in any sample.

Plate Nos. 640, 642 to 649.

77

^{&#}x27;a' - not detected

^{2- -} less than 2ppm.

Report No.3

13th January, 1964.

SPECTROGRAPHIC ANALYSIS OF DRILL CORE SAMPLES FROM UNION REEF GOLD FIELD AND RUM JUNGLE N.T.

bу

E.J. Howard

Sixteen samples from Drill Core DDH 3, Union Reef and four composite samples of drill cuttings from Rum Jungle were submitted by J.F. Ivanac for spectrographic analysis:

The following results were obtained:

Drill No.	Depth (ft)	Ni	Co	· Cu	v	Mo	Pb
RD 79	0-103-5'	150	200	500	150	200	100
CD 116	95-1651	150	150	100	200	100	100
	165-2151	300	200	200	300	70	150
CD 120	20-115	150	200	200	100	200	50
UR DDH 3	10'	10	10	20	50	ຄ	a
	201	10	10	20	50	5	30
	30'	10	10	5	50	5	10
	40'	10	12	10	50	5	30
	501	10	20	20	70	а	200
	60'	12	20	20	70	а	200
	701	12	20	25	70	a	200
	80 '	10	20	25	70	a	20
	90'	10	. 15	20	70	5	50
	1001	10	12	15	70	Ę	100
	1101	12	12	10	50	ઘ	а
	120'	15	12	5	100	a	10
	130'	10	15	5	50	а	50
	140'	15	15	10 -	100	а	20
	150 '	20	20	50	70	a	200
	163'	15	15	5	50	а	10

Silver, gold and arsenic were sought but not detected. All results are expressed in ppm.

Lab Serial No. 1306. Spec Plate Nos 688.689 REPORT No. 4

13thJanuary, 1964 130ACT/4

ACID INSOLUBLE RESIDUES - NATIONAL LIBRARY SITE, CANBERRA.

by

N.W. Le Roux

These are the results of an analysis carried out on five samples of core from the National Library Site, Canberra, submitted by E.J. Best.

The samples were finely ground and attacked with cold 2N NCl for a period of sixty hours. The insoluble residues were then filtered, dried at 110° and weighed.

	RESULTS	
Sample No.	Percent	Mean Percent
2/116	63 . 8 65 . 4	64.6
4/67	68.6 68.4	68,5
2/124	82 . 8 81 . 4	82.1
4/63	83.0 82.6	82.8
7/63	59.1 58.2	58.7

Serial Number 1414.

REPORT NO. 4

File 170N/4 13th January, 1964

CONDUCTIVITY AND PH OF LAKE GEORGE WATERS.

by

S. Baker

Following are results for pH and Conductivity of a water sample from Lake George, taken on 7/1/64.

Conductivity ($T = 25^{\circ}C$)

2600 micromhos/cm.

рΗ

8.8

Serial No.1425

Report No. 5

File No. 30th January, 1964.

THE PETROGRAPHY OF SPECIMENS FROM THE B.M.I. BOREHOLE, NEAR MUGGA QUARRY, A.C.T.

bу

W.R. Morgan

The specimens are core samples of a porphyritic igneous rock obtained from a diamond drill hole put down by Blue Metal Industries, Ltd., at a site one mile south-southeast of Mugga Quarry, A.C.T. The specimens were submitted by D.E. Gardner.

R.17366. This core is from 71 to 72 feet in the drill hole. In hand specimen it is seen to have a hard, dark grey groundmass that encloses numerous large phenocrysts that measure up to 8 mm. diameter, and which consist mostly of quartz and white feldspar; some crystals of pink feldspar and a forro-magnesian mineral can be seen.

In thin section (13016) the rock is seen to be a strongly altered micro-granodiorite porphyry. The phenocrysts consist of quartz, altered feldspar, and altered (?) hornblende. Quartz is subhedral to euhedral and is, in places, embayed. Some crystals have strongly strained zones within them. Feldspar is very strongly altered to carbonate, chlorite, and societe; unaltered plagioclase is albite. The ferro-magnesian mineral is completely pseudomorphed by iron oxide, lencoxene, and smectite; before alteration it was probably an amphibole. It occurs as prismatic to acicular crystals that commonly show some flow-orientation around the larger phenocrysts.

The groundmass has an average grain-size of 0.02 mm., and intergrown quartz grains that enclose acicular crystals of pseudomorphed amphibole and fine iron oxide dust. A few crystals of zircon were noted.

R.17367. This sample is from between 75 feet 9 inches and 70 feet 3 inches in the drill hole. The hand specimen is very similar in appearance to R.17366, except that the matrix is slightly darker in colour. The thin section (13017) shows that the rock is mineralogically similar to R.17366, except that the plagioclase that remains unaltered is probably labradorite in composition, and that some potash feldspar is present. The phenocrysts are rimmed by concentrations of iron exide dust. The groundmass consists of somewhat intergrown quartz grains together with some interstitial sericite and iron exide dust.

Remarks: The specimens are both of a strongly altered, silicified extrusive or intrusive rock; neither of them are tuffs. They have a finer-grained groundmass than is usual in the Mugga Porphyry, but could represent a chilled marginal facies of the intrusion.

Report No. 6

January 31st, 1964

Estimation of Copper on Samples from Rum Jungle

bу

S. Baker

Following are results for the estimation of copper on samples from Rum Jungle, submitted by P. Pritchard.

DG 27	Percent Copper
122'6" - 128'6" (Core)	13.02
1226'6" - 128'6" (fines)	12.98
DG 24	
250'11" - 251'7" Prim. sulphide zone	7.84
350' - 355' (A) Section of Core with Chrysocolla Approx. 5"	5. 24
350' - 355' (B) Section of Core with Manganese and Chalcocite Approx, 10"	0.52
355-360 (A) 2' with Chrysocolla	3.50
Samples from Outcrop at Tamblyn's Shaft, Mt. Fitch	0.75

Serial No. 1258, 1378

Mineragraphic description and identification of ore specimens from Ban Ban and Douglas Sheets N.T.

bу

I.R. Pontifex

Samples submitted by J. Barclay 27.8.63.

Field No. 145611

Locality: 5 miles N.W. of Ban Ban homestead, Pine Creek N.T. Ore minerals identified, galena, gold, secondary iron oxides, secondary lead mineral.

Field occurrence. Barclay records that this specimen is associated with a mineralised dolerite situated about ½ mile N.E. of the Burnside Granite. He states that macroscopic lead is a rarity and that the main sulphides are pyrrhotite and minor chalcopyrite. To be of economic significance this deposit would necessarily need to contain such metals as nickel or cobalt.

Macro description. Coarsely crystalline galena is dispersed in irregular masses in massive quartz and it constitutes about 5% of the specimen. Individual masses measure up to 1" across but generally they are less than ½" in maximum dimension. The quartz contains abundant voids, most of which are coated by secondary iron oxides, others are lined by crystalline quartz.

Micro description. Idiomorphic galena is distributed at random through the section. This mineral is altered around its grain boundaries and this has produced a corona usually about ½ MM. wide made up of colloform bands which grade imperceptively into the quartz gangue. The bands nearest the galena contain fine remnant grains of this mineral which impart an irregular corroded-looking outline to the galena. Spectrographic analysis of these bands revealed that the major element present is lead, on this basis they are considered to consist mainly of a secondary lead mineral derived from galena by processes of supergene alteration. Skeletal and cellular masses of secondary iron oxides fill voids in the quartz. The structures they form do not suggest that they represent a gossan after galena.

Minor-accessory amounts of extremely fine grained gold (observed at X600) are dispersed through the quartz and limonite matrix. No gold is associated with the galena. No minerals of Cu, Co or Ni are present in the section examined.

Spectrographic Analyses

Three samples of this specimen were analysed on the X-ray spectrograph by S. Goadby for trace amounts of Cu, Co and Ni, these were:

- 1. The alteration corona around galena. This was done to help identify this mineral and to investigate the possibility of a concentration of these elements on the galena in the form of a bloom.
- 2. A concentrate prepared from isolated mineralised patches in the quartz.
 - 3. The polished section described above. The results of these analyses were:
- 1. The alteration corona contained mainly lead with relatively less iron and minor trace amounts of copper, and nickel.
- 2. The concentrate contained mainly lead, major trace of copper, trace of cobalt and minor trace of nickel.
- 3. The polished section contained mainly lead, trace of copper, minor trace of cobalt and nickel.

2.

It is unusual that Cu, Co or Ni occur as trace impurities in galena, therefore they must be present in the matrix of this specimen. They could not however be assigned to any specific mineral and it is impossible to estimate their significance to the economic geology of this deposit on the basis of the examination of this one specimen.

Field No. 145610

Locality: 20 miles west of Stuart Highway on the Douglas 1 mile sheet. Ore minerals. pyrite, marcasite, covellite, ?enargite.

Macro description. Pyrite and marcasite occur together in fine grained aggregates and in discrete crystals through milky-white massive quartz.

Micro description. Marcasite constitutes about 80% of the ore minerals, it forms irregular masses which contain abundant voids suggesting that it has been extensively leached. Pyrite forms about 10% of the ore minerals, irregular grains of this mineral are scattered generally within the core of the marcasite mass. Some pyrite grains grade imperceptively into marcasite, others form mutual boundaries with marcasite without any transgression of one with the other. Covellite makes up about 5% of the ore minerals and forms highly irregular masses and veins localised within interstices of marcasite and rarely pyrite. The maximum dimension of the covellite masses is 0.4 mms. generally however they measure about 0.2 mms. A grain of possibly enargite, surrounded by covellite was detected at 600X magnification.

<u>Discussion</u>. Pyrite is probably of primary origin. The relationships of the iron sulphides suggest that the marcasite is derived from pyrite by the process of supergene alteration.

Covellite is the only mineral of economic potential however its origin and therefore its significance cannot be determined from this one specimen. Usually covellite is derived from the alteration of primary copper minerals in the zone of secondary enrichment. In this section the covellite has apparently been deposited by supergene agencies but two modes of origin can be interpreted both of which have a different bearing on further investigation of copper mineralisation at this locality.

- a. The covellite has completely replaced pre-existing primary copper minerals in situ. No primary copper minerals were positively identified but the possible presence of enargite supports this hypothesis.
- b. The covellite has been introduced by supergene solutions derived from a primary source some distant from this locality. The almost exclusive association of covellite and supergene, leached marcasite suggests this.

No definite conclusion can be given.

File 45N/1

Report No. 3

February 6th, 1964.

Analysis of Water Samples

ъу

S. Baker

Following are results for the analysis of water samples, submitted by G.M. Burton.

	Bellevale No. 2 (Yass) (January 1964)	Bellevale No. 4 (Yass) (January 1964)	Lake George 5/2/64
Conductivity	649	5490	2750
рH	7.6	7.3	8.0
Cl (p.p.m.)	55 (1.55)	735 (20.73)	
so ₄ "	46 (0.96)	2083 (43.37)	
нсоз "	260 (4.26)	604 (9.90)	
Ca "	55 (2.74)	489 (24.40)	
Mg "	29 (2.38)	484 (39.80)	
Na "	39 (1.70)	220 (9.57)	
K "	< 0.3	3	
Sr "	< 0.2	.::, 5	
T.D.S. (p.p.m.)	350	4400	

figures in brackets refer to m.e./1.

Serial No. 1432, 1448

Report No. 9

18th February, 1964.

The Petrography of Specimens from the Nesbit River Mouth, Coen Area, North Queensland.

bу

W.R. Morgan.

The four specimens described in this report were submitted by K.G. Lucas for petrographic examination, and were collected by C. Gibson of Clutha Development from a locality 1 mile morth of the Nesbit River Mouth, 40 miles north of Coen, Cape York Peninsula.

R.16880 (Field No. LB203A) Garnotiferous quartzo-feldspathic granofels.

The hand specimen is a creamish-pink rock that has the appearance of being a coarse-grained, layered arkosic grit. In some layers, however, a few large crystals, measuring up to 2 cm. long are present; these have random orientation.

In thin section (12260), the rock has a metamorphic granoblastic texture; grain-sizes range from 0.5 mm. in the fine layers to about 1.5 mm. in the coarser layers. The rock consists of slightly intergrown grains of quartz (25%), microline (35%) and sodic plagioclase (40% - the percentages are very rough estimates). Small amounts of biotite and one or two small perphyroblasts of isotropic, colourless garnet are present. The large perphyroblasts observed in the hand specimen consist of sodic plagioclase and microline.

R. 16881 (Field No. LB203B) Mctasomatized ? dolerito.

The hand specimen is a fine-to medium-grained, dark greenish-groy rock, containing very irregular quartz veins.

The thin section (12261) shows the rock to consist mostly of strongly scribitized intermediate plagiculase, recrystallized, colourless clinopyrexene, and small amounts of probable clivine. Very irregular, cavity-like veins contain quartz (showing strong straining) and epidote. A few thin veins contain prohnite. Some accessory sphene, pleochroic from pale brown to pale fox-brown, was noted.

R. 16882 (Field No. LB203C). Garnetiferous quartzo-feldspathic granofels.

The hand specimen is of a pale creamish-grey, medium-grained, apparently gneissic quartzo-feldspathic rock. A few streaks of fine brown mica can be seen.

In thin section (12262) the rock is seen to have an inequigranular granoblastic texture, and to consist of roughly equal quantities of microcline, quartz, and sodic plagicalase, together with very small amounts of bictite and garnet. The bictite forms small flakes that have a rough preferred orientation which is parallel to a slight elongation shown by the quartz and feldspar grains. Over most of the rock, the grain-sizes range between 0.1 to 1.0 mm. However, a layered effect is given by some coarse bands, about 2.5 mm. thick, consisting mostly of slightly elongated, crystalloblastic grains of quartz and microcline (with small amounts of plagicalase), and in which the grain-size is about 2 mm. The bands are parallel to the mica lineation, and to the grain elongationia the coarse bands and the finer-grained material.

R.16883 (Field No. LB203D). Garnetiferous Biotite-muscovite Alkali granite.

The hand specimen is of a medium- to coarse-grained acid ignoous rock that shows a slight foliation.

In thin section (12663) the rock is seen to be xenomorphic and inequigranular, the grain-sizes ranging between 0.5 mm. and 1 mm. Plagicclase (albite) is subtabular, and also forms the few phenocrysts that are present. Quartz and microcline-perthite are granular, tending to be interstitial, with quartz enclosing the potash feldspar. Muscovite and biotite form subhedral to anhedral flakes. A few idiomorphic crystals of colourless, isctropic garnet are present; those are slightly altered to iron oxide. Some opaque iron oxide is also present.

Remarks.

R.16883 appears to be an unaltered acid igneous rock. Specimens R.16880 and R.16882 are granoblastic quartzo-feldspathic rocks that could be of igneous or sedimentary origin. R.16881 is an altered basic igneous rock.

At the time of submission it was suggested that R.16880 and R.16882 are metamorphosed sediments. Evidence from petrographic work is inconclusive. However, some points are worth noting. The apparent layering in both specimens could represent relic sedimentary bedding, relic transposed bedding, or relic slip planes from a sheared sedimentary or igneous rock. In R.16882, grain elengation and mica lineation are parallel to the layering, suggesting that the layers are related to structural deformation.

Mineralogically, the two rocks are of granitic composition, suggesting that they were, originally either acid igneous rocks, or ackoses. Both specimens centain garnet, so that thin netame rphic grade is probably at least amphibiolite. The presence of garnet rises another problems the possible relationship of these specimens to the garnetiferous granite represented by R.16883. Any solutions to this one would depend on more detailed field work and petrographic examinations in the area concerned.

Little can be said on the motasomatized delerite. The recrystallization of the pyroxene suggests a high grade of metamorphism, or else an early anhydrous metamorphism, otherwise alteration to an amphibole would have taken place. However, it is hard to understand why the metasomatism that resulted in sericitization of placioclase, and emplacement of quartz and prehnite veins, did not produce amphibolization of the pyroxene.

Report No. /O

File 120Q/14 19th February, 1964

MINERALOGICAL INVESTIGATIONS OF TWO HEAVY MINERAL SANDS FROM THE COEN AREA, QUEENSLAND

by

I.R. Pontifex.

The samples were submitted by K.G. Lucas on 22/10/63 for the determination of the approximate proportions of constituent minerals.

Field No. LB.86

Occurrence:

A beach heavy mineral concentrated from the mouth of Breakfast Creek north of Port Stewart on the Ebagoola 4-mile Sheet. The approximate weight percentages of minerals in this sand are:

Light fraction (mainly quartz, some feldspar) 39
Ilmenite 55
Garnet (almandite) 3
Others 3

Method of Analysis: Following is a brief description of the methods of separation and analysis of this sand.

- 1. The heavy mineral fraction was separated from the quartz-feldspar fraction by filtering through Bromoform.
- 2. The heavy minerals were separated according to their magnetic susceptibilities on the Frantz isodynamic separator. The slope was set at 24° and the tilt at 12°. Three fractions were obtained.
- 3. Each fraction was analysed by S. Goadby on the X-Ray spectograph for Sn and Ti
- 4. Each fraction was checked for radioactivity.
- 5. The component grains of each fraction were examined microscopically in R.I. oils and in polished sections. Two X-Ray powder diffraction photographs were taken.

A summary of the results of the examination of the heavy fraction is tabulated below:

Frantz magnetic fractions at:	Approx. Wt. %	Minerals Present	Spectrographic Radioactivity determinations			
0.2 amps	75	mainly ilmenite access. garnet	abundant Ti,Fe no Sn.	background		
0.35 amps	18	mainly ilmenite 7-10% garnet access.?monazite	abundant Ti, Fe, no Sn.	background		
1.3 amps	7	Mainly monazite, ilmenite, garnet zircon, access. tourmaline, rutile,?andalusite	abundant, Ti, Fe, no Sn.	300 counts per min. greater than background		

Some ilmenite grains are partly coated by alteration products, presumably leucoxene. The magnetic properties of the garnet suggests that it consists mainly of the iron rich variety, almandite. The identity of the ilmenite and monazite were checked by X-Ray powder photographs.

Field No. L.B.88

Occurrence: A river heavy mineral concentrate from the Archer River crossing, 40 miles north of Goen on the Goen 4-mile sheet. Tin is reported up-stream from this locality. The approximate weight percentage of minerals in this sand are:

Light fraction (mainly quartz, some feldspar) 23
Ilmenite 65
Monazite 4
Garnet (almandite) 2
Zircon 3
Others (including cassiterite) 3

The methods of separation and analysis of this sand were identical to those described for sample L.B.86. A summary of the results of the examination is tabulated below:

Frantz magnetic fractions at:	Approx. Wt.%	Minerals percent	X-ray Spectrographic determinations	Radioactivity
0. 2 amps	48	mainly ilmenite minor access. garnet.	abundant Ti, Fe trace Sn.	background
0.35 amps	35	mainly ilmenite access.garnet, olivine	abundant Ti, Fe trace Sn.	background
1.3	7	mainly monazite, minor ilmenite, tourmaline, access.zircon, ?cassiterite, rutile		450 counts per min.greater than back- ground
non-magnetic fraction	9	mainly zircon, ilmenite, cassiterite, minor garnet, tourmaline, monazite	essential elements Ti, Sn. (Zr not determined)	50 counts per min greater than background

The occurrence of ilmenite and garnet in most of the fractions separated by the isodynamic separator is anomalous. It is assumed that this is the result of variations in the iron content in these minerals. No inclusions of iron oxides were observed in the ilmenite grains in polished section. Some of the ilmenite grains are partly coated by alteration products, presumably leucoxene. In the two last magnetic fractions some of the ilmenite is almost completely replaced by a secondary alteration product, part of which appears to be rutile.

Report No. //

1876/1

21st Fobruary, 1964.

Laboratory Examination of a White Clayey Sandstone from Near Borrima, N.S.W.

ру

W. Oldershaw

Mr. J. Hartwell of Compbelltown submitted samples of a white clayey sandstone for examination to determine its suitability for use as a building stone. The samples were examined under the microscope and subjected to various mechanical tests to determine the specific gravity, porosity, co-officient of saturation and crushing strengths (see description of tests and results.)

This report refers only to the specimens submitted. The laboratory gives no undertaking that the specimens are representative of the deposits from which they were collected.

The sample (R17062) is a fine-grained equigranular clayey sandstone. It is an off-white rock with a few scattered flakes of glistening white mica and black flakes of biotite. There are a few minute speeks of limenite and brown iron stains. The sample has a faint grey feathery marking, actually micro current-bedding with foresets up to one inch long. The rock darkons in colour to pale grey on wetting and the current-bedding becomes quite prominent.

Petrography

Under the microscope the sample was seen to consist of closely packed, sub-rounded and irregularly shaped grains of quartz, from 0.2 to 0.05 mm. across with a majority having a diameter of 0.1 mm. set in a sparse interstitial clay matrix of illite, scricite and kaolin which comprises 15 - 20 per cent of the rock.

The grains of quartz are closely packed and are in contact with contiguous grains. There are no rims of secondary quartz, but from the close fit of many contiguous grains and their straight margins, it is evident that there has been some solution and redistribution of silica. The quartz grains appear to have been weakly welded together, but no intricate sutured contacts were seen such as occur in the Gosford sandstones. In places the flakes of illite and sericite are intergrown with the margins of the quartz and along some grain boundaries. The clay minerals show little iron staining.

There are some crystals of zircon, rounded grains of limonite, zircon and tourmaline, irregularly shaped gr ins of limonite and flakes of mica and biotite scattered through the rock.

Physical Properties

The sample is a dense, compact, very fine-grained clayey sandstone. When dry it has a pleasing off-white colour with a faint unobtrusive grey marking. When wet the rock darkens and the marking becomes quite prominent. The sample cuts well and takes a sharp edge. It is impossible to rub grains off or break edges off by hand.

The bulk density of the rock varied little on the three samples measured. The perosity is low and ranges from only 12 to 14 per cent (see table of results.)

the coefficient of saturation is quite low and varies with the orientation of the samples. Samples D1, W1, D3 and W3 were immersed in water with the bedding vertical and the rising water penetrated them faster and more thoroughly than samples D2 and W2 which were placed in water with their bedding horizontal.

The graph shows the results obtained by the Building Research Station when the perosity of some well known building stones was platted against their coefficient of saturation and compared with their known durability. Sp 17062 lies close to the boundary separating sound stones from poor stones. However, the performance of three cubes of the sample subjected to 15 cycles of saturation in sedium sulphate solution and recrystallisated was quite remarkable. The cubes lost only 0.3 per cent of their weight and the edges of the cube were as sharp at the end of the test as at the beginning. This sulphate test is an accolerated weathering test. The results show that the stone should be quite resistant to weathering to the disruptive effects of frost action and of daily and seasonal temperature changes.

The low coefficient of saturation and the low porosity also suggests that the rock should be quite resistant to weathering, to frost action and to attack by a coastal atmosphere. The sample was not attacked by acids and appeared to contain no soluble salts. Thus it would not seem to be susceptible to rapid attack by acid, industrial or city atmospheres. The minute iron stains may spread on weathering, andthe darkening in colour when wet may be a disadvantage, but it may be possible to inhibit these changes by coating the rock with a waterproof silicone paint.

The samples have a high crushing strength when dry (more than twice the 5,000 psi recommended by the American Public Building Service) which diminishes by only 38 to 45 per cent when the rock is saturated with water.

Estimation of Phosphate on Samples from Rum Jungle and Georgina Basin

рy

S. Baker

Following are the results obtained for the estimation of phosphate on 53 core samples from DG 32, DG 33, and 2 composite phosphate samples from Rum Jungle also 4 miscellaneous samples from the Georgina Basix.

	DG 32 (perc	ent P ₂ 0 ₅)		DG	33 (percen	t P ₂ 0 ₅)
201-251	6.3	165'-170'	6.6	0-15'	Less than	1.0
25'-30'	17.0	170'-175'	1.5	15'-20'	11	1.0
30'-35'	18.0	175'-180'	10.0	201-251	H	1.0
351-401	18.0	1801-1851	23.0	251-301		12.0
40'-45'	6.0	185'-190'	14.0	30'-35'	•	16.0
451-501	13.0	190'-195'	4.0	35'-40'		15.0
501-551	23.0	145'-1200'	10.0	40'-45'6"		7.0
551-601	25.0	2001-2051	1.3	4516"-501		4.7
601-651	10.0	•		501-551		13.0
651-701	4.7	,		55'-60'		9.0
701-751	18.6	;		60'-65'		10.0
75'-80'	17.0)		65'-70'		3.0
80'-85'	less than 1.0)		75'-80'		3.0
851-901	" 1.0			80'-85'		3.0
901-951	" 1.0)		85'-86'		3.0
95'-100'	" 1.0)		86'-90'	Less than	1.0
1001-1051	" 1.0)				
1051-4101	" 1.0)				
110'-115'	" 1.0)				
115'-120'	" 1.0)			•	
120'-125'	" 1.0)				
125'-130'	" 1.C					
1 3 0'-135'	" 1.0					
135'-140'	3.0)			,	
140'-145'	10.0)				
145'-150'	3.0)				
150' - 155'	2.0)				
155'-160'	2.0)				
160'-165'	12.0)				

2.

				Pe	rcent	P20	<u>5</u>		L	oss on	ignition
Composi	ite Sampl	e I		;	22.5					8.7%	
11	11	I (ig	nited)) :	24.8						
11	1)	II			33.8					3.0%	
16	11	II (ig	nited)		34.2						
Clarke	Sandston	ie, Bona	parte	Gulf	2024	ı	less	than	1.0		
n	11		**	**	2C		Ħ	11	1.0		
R.G.S.	[. Georgi	na Basi	n				11	rı	1.0		
R6050 V	/ictoria	River G	roup				11	11	1.0		

Serial No. 1459, 1463, 1464

27th February'64 64 NT/1

Report No./3

PHOSPHATE DETERMINATION

ру

N.W. Le Roux

These are the results of determinations carried out on samples submitted by D. Woolley, Resident Geologist, Alice Springs. The samples were selected by him after systematic testing of all water bore samples held in the Alice Springs office. The results were obtained colorimetrically.

RESULTS

BORE	INTERVAL	% P ₂ 0 ₅
F 53/2 -11	301-336	0.2
F 53/7 -58	200–210)	2.0
	240 – 250{	3.5
	250–260{	3.9
	329 – 340{	0.2
	370-380)	0.5
F 53/11 -60	90')	0.3
	130' }	0.2
F 53/12 – 66	101–107)	0.1
	1 73 – 180{	0.2
	334 – 345{	0.2
	345-350	0.2

Serial Number 1433

Report No. 14

28th February, 1964

Spectrochemical Analysis of Rum Jungle Granites.

by
A.D. Haldane

The following results have been obtained for the spectrochemical analysis of outcrop samples from the Rum Jungle Granite Complex collected by M. Rhodes. All results are expressed in parts per million.

Sample No.	Ni	Co	Cu	· V	Мо	Pb	Remarks
2A-14-6	5	5 -	2-	5-	a	70	
3 - 92 - 2	5 5	ار 10	10	20	5	50 50	
4-02-1	5 -	5 -	2-	20 5 	5 5	20	
4-02-1 4-02-1A	20	ر 15	2-	-ر 50		5 0	
5-50-22	20 5 -	12	15	50 50	a	10	
5-50-10	5 -		12-	10	a.	15	
5-52-12	5 -	5 - 5 -	: 2-	5 -	a	15	
5-56-10	5 -	5 -	2-	5 -	5	50	
5-58-2	5 -	10	2-	20	a.	20	
5-62-3	ار 10	10	2-	10	5	20	
6 <u>-</u> 80-1	5 -	5 -	5	5 -	15	100	
6-80-2	5 5	5 -	2 -	5 -	a.	100	
6-84-2		ر 10	15	20	a	20	
6-84-3	5 -			5 0	a	20	
6-84-5	5 -	10 15	5 2 -	30	a. 8.	15	
6-86-5	5 -	15 5	5	5 -	a	50	
7-10-13	5 - 5-	5 5	2-	5 -	a	50 50	
7-12-3	5	5 -	2-	5	a	50	
7-12-13	5 -	5 -	2-	5 	a a	70	
7-16-2	30	5 -	2	5-	a	20	
7-16-16		5 -	2-	5 -	7	50	
7-18-8	5 - 5	5 -	15		5	100	
7-18-9			15	5 - 10	a.	20	
9-36-34	10 5-	15 5–	2-	5 -	a.	a	•
10-66-4	5 5	20	25	100	a	15	
10-66-7	5 -	15	رے 20	100	5	15	
10-66-23	5 -	5	10	·5-	5	50	
10-68-9	5 -	10	10	30	5	70	Sn (10)
7-20-11	5 -	5	5	20	a	50	(10)
9-30-12	5 -	5	2	10	a	100	Sn (10)
9-36-4	10	10	15	30	5	50	(10)
9-36-10	5 	30	2-	300	100	50	
11-70-6	5 5	5 -	2 -	5 -	a	30	
11-72-22	<i>5</i>	5 5	2-	5 5	10	100	
11-72-23	5	5-	2	5 -	20	100	
11-72-24	5 -	ر 15	2	60	a	20	
11-14-4		1)	~	00	u	20	

Sample No.	Ni	Co	Cu	V	Mo	Pb	Romarks	
11-74-35	5-	5-	2	5	5	50		
10-68-20	5	5-	2	5-	10	20		
10-70-5	5-	5	5	5-	300	100	Sn (10)	
10-70-9	10	5	2-	5	20	100		
11-70-3	5-	5	2-	5	5	30	Sn (10)	
12-20-6	5-	5	2-	20	a	20	Sn (20)	
12-20-18	5-	5-	2-	5	a	150		
16-68-3	5-	5-	2	5	5	100		
11-74-36	5-	5-	2-	5-	5	70	Sn (10)	
11-76-19	20	5	2-	5-	5	100	Sn (10)	
12-16-2	5	5-	2-	5	5	100	Sn (10)	
12-18-6	5	5-	2	5-	10	70		

Beryllium and phosphorus were sought but not detected in any sample.

Plate Nos. 697,698.

^{&#}x27;5-' = less than 5.

^{&#}x27;a' - not detected.

REPORT Nº 18

167/NTS/1

Mineragraphic Investigation of three samples from Union Reef, N.T. D.D.H. 4, 190 ft. to 212 ft.

by

I.R. Pontifex

The samples were submitted by J. Shields. 21/10/63.

Field No. 195371.

Core depth. 192' 6" to 194' 7". Assayed 10 dwts. Au per ton.

Minerals identified. Hematite, hydrated iron oxide, pyrite, gold, quartz.

Macro description. Massive dark brown hydrated iron oxide contains abundant irregular leached cavities and is cut at random by veins and stringers of milky quartz.

Micro description. The iron oxide mass consists of extremely irregular corroded looking skeletal hematite which ramifies and grades imperceptibly into hydrated iron oxide. The mass contains abundant cavities which are commonly lined by finely botryoidal hematite. In some parts a ghost like quadrangular texture is evident and several cavities have well developed walls of iron oxide which are characteristic of gossanous box-works after pyrite. One hematite-hydrated iron oxide quadrangular face is striated suggesting that it is a pseudomorph after pyrite.

The quartz veins carry accessory amounts of unaltered fine <u>pyrite</u> euhedra, the maximum dimension of these grains is 0.08 mms. Quadrangular cavities in the quartz which measure up to 3 mms. are filled with cellular hydrated iron oxides which suggests that pre-existing relatively coarse grained pyrite has been completely replaced.

Gold occurs as fine grains and rarely as dendritic patches in the quartz and in the iron oxide mass. The maximum grain size of the gold is 0.02 mms. across.

Field No. 195372

Core depth 212'2" to 212'3"

Ore minerals identified. Galena, pyrite, arsenopyrite.

Macro description: White vein quartz contains a leached irregular mass of galena, minor amounts of secondary lead minerals and accessory pyrite cubes.

Micro description: Irregular masses of galena up to 1 cm. wide are dispersed at random through a quartz gangue. The galena is commonly associated with a wine-red vitreous mineral which crushes to an amber powder, it has at least one good cleavage and some of its crystal faces are striated. This mineral was identified as fluorite by X-ray diffraction. These two minerals are confined to the same veins in the quartz and their mutual boundaries are sharply defined.

In some places galens contains irregular zones of an amorphous material which appears to be a secondary product derived from the alteration of the lead sulphide.

Individual euhedra of arsenopyrite are dispersed through the quartz gangue in accessory abundance. These measure up to 0.7 mms. in maximum dimension. Where galena comes in contact with arsenopyrite it moulds around and enters embayments within them. Minor accessory crystals of pyrite are dispersed through the quartz gangue. In some places pyrite is intimately associated with fluorite and composite grains consisting of both minerals are completely enclosed by galena.

Field No. 195373

Core depth 212'4" to 212'6"

Ore minerals identified. Arsenopyrite, galena, pyrite.

Country rock classification. Mineralised sheared greywacke.

Macro description: White vein quartz abuts against a grey-green sheared siltstone. A cellular pocket in the quartz contains accessory amounts of fine grained galena, arsenopyrite and several cubes of pyrite. The country rock carries laths of arsenopyrite, these measure about 3 mms. long, 1 mm. wide and they are randomly orientated.

Micro description: A study of the polished section revealed no significant associations which are not evident in the hand specimen. In thin section the country rock exhibits a heterogeneous mixture of inherent quartz grains, part altered felspar grains and clumps of chlorite all of which are of siltstone size. These components are distributed through a sericitic, chloritic matrix which constitutes 80% of the rock. The quartz grains are angular and are made up of devitrified glass fragments, clear and cloudy grains and some coarsely crystalline grains. Elongate coarse components and sericite wisps in the matrix have a generalised common orientation which imparts a well defined foliation to the rock.

Arsenopyrite euhedra are generally associated by fine allotriomorphic granular quartz which appears to have localised in low pressure areas which presumably developed adjacent to these euhedra during deformation of the country rock. This phenomenon suggests that the arsenopyrite was in the country rock pre-shearing.

The massive white quartz is cloudy and highly strained, it has a coarse allotriomorphic granular aggregate texture. This carries arsenopyrite, galena and pyrite and possibly this was also introduced before the shearing of the country rock.

February 28th, 1964.

Lab. Serial No. 1259.

106Q/22

Mineragraphic Investigation of pyritic sandstone from Taroom Sheet, Queensland

Ъу

I.R. Pontifex

The sample was submitted by C. Gregory 24/10/63.

Field No. T825. Outcrop sample.

Identification. Quartz sandstone impregnated with pyrite.

Macro description. Grey, coarse grained, friable sandstone thoroughly impregnated with pyrite and possibly marcasite.

Micro description. The quartz grains have an average size of about 0.8 mms. across, they are subrounded to angular and in polished section they exhibit an apparent uniform composition. The periphery of each grain is slightly corroded. The intersticies between the grains are filled with small quartz fragments and iron sulphide.

The iron sulphide occurs in discontinuous stringers and isolated irregular veins, it is identified as <u>pyrite</u> however the majority of it commonly exhibits a weak but distinct anisotropism which is characteristic of marcasite. This phenomenon may be the result of its formation at lower temperatures than normal primary pyrite.

The optical properties and the mode of occurrence of this sulphide suggest that it is pyrite of supergene origin which has impregnated the sandstone after the accumulation of the quartz grains.

Pyrite in the exterior weathered crust has been completely altered to secondary iron oxides, the pyrite becomes progressively less altered as the distance from this crust increases toward the centre of the specimen.

No other opaque minerals are present.

March 2nd, 1964.

Lab serial No. 1280.

APPENDIX A

Mineragraphic Investigation of a Ferruginous Oolite from Mundubbera Sheet, Queensland

bу

I.R. Pontifex

The sample was submitted by C. Gregory 24/10/63.

Field No. T686. Outcrop sample.

Minerals identified. Hydrated iron oxide, quartz, hematite, pyrite. Approximate Fe grade. 45% Fe.

Macro description. The rock is essentially a homogeneous semi-indurated aggregate of limonite colites. Dark brown irregular silicified bands are roughly parallel throughout, these vary in thickness from 0.5 mms. to 3 mms. Thin siliceous veins occur at random through the rock.

Micro description. The entire section consists of an aggregate of limonite colites of both elliptical and spherical shape, these range in diameter from 0.3 mms. to 0.8 mms but generally they measure about 0.6 mms. across. Concentric layers are evident throughout the limonite which constitutes the bulk of each colite, these however are poorly defined probably because of differential alteration of the original material and also because of the distribution of irregular but concentrically arranged leach cavities in the colites. The outer crust of each colite is generally not present in its entirety but where it is intact it is well defined, it consists essentially of hydrated iron oxide and attains a maximum thickness of 0.015 mms.

The leach cavities within the colites are commonly lined by finely crystalline siliceous material and amorphous iron oxide. Interstices between the colites are also filled with siliceous material and hydrated iron oxides, these form a weak binding cement. These components have been distributed through the aggregate after the formation of the colites, probably by means of supergene agencies.

In the dark brown silicified bands the colites have been thoroughly impregnated, almost completely replaced, by extremely fine crypto-crystalline silica simulating iron rich jasper.

Throughout the aggregate, exsolution-type needles of hematite occur in minor abundance in some oclites, they are about 0.003 mms. wide and extend across the diameter of the host oclite. These needles have a generalised common orientation almost perpendicular to the siliceous bands. The presence of these bodies is anomalous and their significance was not apparent.

Fine grains of pyrite, 0.002 mms. across are distributed at random through the aggregate in accessory abundance.

No other minerals are present.

Genesis. The mode of origin of this rock can not be conclusively determined from one specimen. The oblites may have been deposited originally as limonite pellets as they now exist. Colites of this type however are not particularly common. Considering the mode of occurrence of this sample and the abundant evidence of supergene weathering in it it is thought more probable that it represents a completely oxidised colite deposit of pre-existing iron minerals such as hematite, magnetite or chamosite. No evidence of primary colites of this nature was observed however.

Approximate grade. The percent Fe content was not determined by any quantitative analytical technique. An approximation of this value can be estimated from the percent Fe in hydrated iron oxide and the amount of this mineral in the specimen.

Although the composition of hydrated iron oxide is variable the average percent Fe content given by Dana and Rutley is 60%.

Hydrated iron oxide makes up about 80% of the specimen.

Therefore the approximate grade of this rock is 45% Fe. Silica is the dominant impurity.

March 2nd, 1964.

Lab serial No. 1280.

Report No. 18

File 198Q/6 11th March, 1964

SPECTROGRAPHIC ANALYSIS OF STREAM SEDIMENTS FROM MOUNT GARNET. QUEENSLAND.

bу

A.D. Haldane

Semiquantitative estimations were made of the trace metal content of stream sodiment samples from Mount Garnet, Queensland. The samples were submitted by K.Yates. All results are expressed in parts per million.

Sample No.	Ni	Co	Cu	V	Мо	Sn	Pb	Remarks
Sample No. MG/29 34 3/101 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 MG6/4: 84 4/113 85 86 87 88 89 90 91 92 93 94 4/115 95 96	Ni	Co 555555555555555555555555555555555555	40 150 100 150 150 150 150 150 150 150 15	V 30 70 55 55 55 55 55 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	Mo aaaa000055a077555755aaaaaaaaaaaa	\$n 1500 20 a 100 1000 1000 200 100 200 100 200 200 2	Pb 150 200 70 150 300 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 100 100 100 10 10 10	Remarks
97 1/23 98	5- 5-	5 12	15 20 7 0	10 15	a a	50 200	10 20	
99 2/49 100 101 102 103	5- 5- 5- 5- 5- 5-	10 5 - 10	100 70 50 100 100	15 5- 5	a a a a	200 300 50 100 150	10 50 50 a a	
6/51 104 105	5- 5-	5 10 5- 5-	10 40	10 5- 5	a a a	200 400	200 200	(Be10)

a - sought but not detected.

Plate Nos.674-675

Report No. 19

ANALYSING OF BORE WATER

by

S.Baker

Following are results for the analysis of a sample of bore water from Hall, Belconnen No.10, taken on February 17th, 1964.

	p.p.m.	m.l./litre
Chloride (Cl)	90	2.5
	less than 2	•
Sulphate (SO ₄) Bicarbonate (HCO ₃)	610	10.0
Calcium (Ca)	72	3.6
Magnesium (Mg)	62	5•1
Sodium (Ni)	91	4.0
T.D.S.	640	
pН		7•3
Conductivity		1030 micromhos/cm

Serial No.1462

Report No. 19920

File 120/PNG/8 11th March, 1964

SPECTROGRAPHIC ANALYSIS OF GEOCHEMICAL SAMPLES FROM WABAG - NEW GUINEA.

by

A.D. Haldane

Semiquantitative estimations were made of the trace metal content of seven (7) geochemical samples from the Wale River, Wabag, T.N.G. The samples were submitted by F.E.Dekker. All results are expressed in parts per million.

Sample No.	Ni	Co	Cu	V	Мо	Рb	Remarks
F89a	6	20	50	200	_	20	
	5-	20	50	200	a	30	
F89b	100	60	25	200	a	a,	
F89c	20	30	50	200	a	10	
F266	5 -	5	40	100	5	300	
F267	20	15	5	100	a	70	
F269	5 -	15	10	200	a	50	
F273	10	10	15	50	5	300	

Be and P were sought but not detected in any sample.

Plate No.716

March, 1964

SPECTROCHEMICAL ANALYSIS OF SAMPLES FROM RUM JUNGLE NORTHERN TERRITORY.

bу A.D. Haldane.

The following samples have been previously analysed spectro-chemically, but no results were obtained. By using an alternative arcing proceedure the following results were obtained. All results are expressed in parts per million.

Sample	No. Depth Feet.	Ni	Со	Cu	٧	Мо	Pb	Remarks
5223	16	500	200	1000	30	10	a	
5229	B.O.H.	2000	1500	3000	150	10	a	
5240	2-4	500	200	500	70	7	a	
5241	0-2	1500	1000	5000	50	10	10	Bc (10)
5242	2-4	2000	2000	5000	150	20	50	
5243	в.О.Н.	1500	2000	5000	150	10	10	
5235	в.о.н.	2000	2000+	1000	150	20	8.	
5236	ff	80	150	2000	20	5	a	
5241	11	1000	1000	5000	20	20	50	Be(10)
5239	Ħ	2000	1000	5000+	150	10	700	Be(15)
5243	0_8	1500	1000	2000	100	20	10	
5244	в.О.Н.	2000	2000	500	300	100	150	
5254	11	1500	2000+	1500	10	15	a	Be(5)
5255		NO	RESULT					
5256	***	1000	500	1000	10	5	a	
5261	11	700	60	500	200	5	a	
5285	H	200	100	500	10	100	a	Be(10)
5314	11	100	60	10	200	20	a	
5320		NO	RESULT					
5324		NO	RESULT					
5325	В.О.Н.	NO	RESULT					
5328	11	500	.500	1500	100 -	100	а	Bo(10)
4120	**	20	12	50	200	15	а	
4242	BULK	1000	2000	5000+	100	10	3000	Be(10)
5033	B.O.H.	1000	2000	3000	100	15	а	
5089	H	NO	RESULT					
5091	11	ИО	RESULT					
5095	11	500	500	5000+	20	10	а	Be(10)
5097	n	700	500	1000	50	5	а	
5043	ii .	700	1000	2000	100	10	a	
4485	Special	20	12	5	5-	5	a	•
5049	6-12	500	500	2000	5	10	а	Bc(10)
5049	12 -1 8	200	500	3000	10	10	a	Be(5)
5084	B.O.H.	500	500	1500	150	15	a	
							2	2/

Samplo	No. Depth Feet	Ni	Со	Cu	٧.	Мо	Pb	Remarks
5085	В.О.Н.	1000	1000	5000	200	20	a	
4532	6-20	500	150	500	300	50	a	
4530	BULK	500	300	50	1000	a	a	Be(10)
4568	11		NO RESI	ULT				
429N/1	19E/5019 B.O.	н.	no resi	JLT				
427N/1	19–5E "		NO RESI	JLT				
5021	B.O.H.	1000	500	1500	150	10	a	Be(💋)
5022	10-40		NO RESI	ULT				
5043	8-90		NO RESI	ULT				
5044	12-48	200	100	500	50	15	a	Bo(10)
5078	в.О.Н.	1500	500	3000	50	20	a	Be(10)
5079	11	-	NO RESI	ULT	•			
5090	II		NO RES					
5098	H	300	300	5000	5	5	a	Bo(20)
5104	11		no resu	•				` '
5108	11		no resu					
5122	11	500	100	 5000+	10	20	a	
5122	10-40	•	no resu	•	, -		-	
5123	6–36		no resu					
5127	в.о.н.	500	\$ 30	3000	20	10	a	
5127	4–40	•	no resu					
5128	В.О.Н.		no resu					
	No.2) B.O.H.		NO RESU					
5128	6–29		no resu					
5129	8–36		no resu					
5409	в.о.н.	100	30	3000	50	a	500	
5434	6–14	500	200	1000	50	10	3000	Bc(10)
5435	6–34	700	200	1000	100	15	5000	Bc(10)
5436	20-28	700	200	5000+	500	20	2000	• • •
5450	8-28	1000	200	3000	100	5	a	Bc(10)
5453	14-28	30	60	100	50	5 -	a.	
5459	30-40	1000	700	1000	10	20	3000	Bc(10)
5488	16-28	50	30	70	50	5-	a	20(10)
5490	10-22	20	60	50	50	10	a	
5537	4-20	200	100	20	50	5-	a	
5538	4 – 20 12 – 28	10	30	15	200	5 -	a	
5539	16-28	12	30	20	20	5	a	Be(30)
5561	6 -1 2	12	30	10	20	5	a	_3(30)
5563	10-28	30	30	5	10	5	a	Bo(30)
466 1	6-35	700	150	200	50	ر 10	a	Be(20)
5133	8 – 28	200	100	2000	100	5 -	a	20(20)
5133 5137	8 – 22	300	80	2000	100	10	a	Bc(10)
	10-28	1000	500	5000	10	20	a	Bc(10)
5147 5150	6-28	1000	500	5000	50	20	a	20(20)
5150 5140	4-28	300	200	700	10	5	a	Bo (1 0)
5149	.4-20	300	200	100	10	,	u	DG(10)

Sample No.	Depth feet	Ni	Co	Cu	V	Мо	Pb	Romarks
5151	2-28	700	1000	5000+	200	300	8.	
5153	4-22	1000	1000	5000	10	5 0	2.	Bo(20)
5155	4-18	500	200	5000°	5	10	a	Bc(20)
5154	6-28	300	300	1500	10	15	a	
5156	4-28	300	100	1500	10	10	a	
5157	8-22	100	200	1000	10	20	a	Bo(10)
5158	8-22		NO RESU	LT				
5600	10-24	20	60	50	500	5	a	
5650	8-28	30	15	10	20	5	a	Bc(20)
5657	2-10	30	20	10	20	5	a	Be(10)
R55 B's								
30N/6W	Bulk	300	100	500	20	10	a	Bo(20)
30N/10W	71		NO RESU	L T				
42N/4W	B.O.H.	200	30	15	10	5	a	
44N/00	Bulk		NO RESU					
44N/2W	11	50 0	200	50	300	15	a.	
44N/4W	tt	300	60	70	150	10	a	
5169	6-22	300	500	5000	50	20	a	
MOUNT FITC		•		-	-			
5182	 14-16	150	100	1000	200	20	a	
5192	6–28	100	500	500	20	50	a	
5195	В.О.Н.	30	15	25	15	10	a	Bc(10)
RUM JUNGLE	~							
5199	8_10	60	30	100	5	10	a	Bo(10)
5787	12-28	200	60	1000	5	20	a	Bo(10)
5789	2-10	3 00	200	1000	50	15	a	Bc(10)
5796	4-10		NO RESU	LT				
5797	19-16	200	100	100	10	10	a	Bo(10)
5804	4-16	100	60	200	10	10	a	
5870	14 -1 :8	200	500	1500	20	15	а	Bc(10)
5811	14-28	300	500	1000	200	30	a	Bo(10)
5812	8-12	20	20	70	10	5	a	
5814	20-28	200	100	700	20	15	а	Bo(5)
5816	12-14	150	20	50	50	5	a	Bo(5)
5824	8-18	300	500	1000	5 0	20	a	Bc(10)
5825	6-28	500	150	500	70	50	a	
5831	10-28	300	60	100	50	5 0	a	
5832	12-28	150	100	500	50	20	a	Be(20)
5835	6–10	20	20	50	20	5	a	
5844	18-28	150	40	40	10	10	a	Be(10)
5853	18-28	150	100	200	10	10	a	
5899	2-4	30	15	70	100	5	a	
5902	2-10	20	12	25	100	5	a	

Sample No.	Depth (feet)	Ni	Со	Cu	V	Мо	Pb	Romarks
5912	6-16	20	30	50	100	5	a	
5990	4-12	20	30	50	100	10	a	
7094	10-28	20	12	15	20	5-	a,	
7192	16-22	30	12	10	200	5	a	
7249	14-16	5	20	50	500	20	a	
7251	4-16	20	15	25	200	7	a	
7252	14-16	5	12	50	500	15	a,	
7257	12-16	40	100	50	5	5 -	a	
7265	8 – 16	10	5	10	300	10	a	
7268	10-16	5-	10	10	300	10	a	
7269	14-16	15	30	15	100	5.	a	
7270	10-16	20	30	25	5 00	15	a	
7271	14-16	150	30	20	5-	5 -	a	Be(10)
7279	4-12	60	10	25	50	5	a	
7283	10-16		no res	ULT				
7286	12-16	10	5	15	70	5	a	
7298	4-16	25	60	5	50	5	a	
7304	14-16	100	200	20	50	5 -	a	
7307	8-16	10	5-	10	70	5	a	
7325	14-16	12	12	10	100	5	a	
7338	4-16	10	5-	10	50	5-	a	
7340	8-16	5	5-	10	20	5	a	
7341	12 - 16	5	5	10	40	5	8,	
7355	14-16	15	5	10	50	5-	Э.	
7356	12-16	30	20	15	100	7	a	
320N/600E	12-43		NO RES	ULT				
320N/602E	9-27	60	30	5	5-	5-	a	
324N/602E	15-40	60	15	10	5	5-	a	Be(5)
27N/3W	9-17	12	15	20	10	5 -	a	
28N/4W	0-9	20	15	25	40	5	a	
28n/5w	6-10	30	60	25	100	10	a	
72N/160W	15-70	15	30	20	50	5 -	a	
332N/604E	10-34	5-	5-	10	50	5-	а	
68N/170E	5-49	15	12	15	5 0	5-	a	

Phosphorus was sought but not detected in any sample.

Plate Nos.699 - 711.

^{5- =} less than 5. 5000+ = greater than 5000

a . = not detected B.O.H. = bottom of hole.

REPORT No. & &

File 18.March, 1964

SPECTROGRAPHIC ANALYSIS OF SAMPLESFROM TENNANT CREEK NORTHERN TERRITORY.

Ъy

A.D. Haldane

Semiquantitative estimations were made of the trace metal content of geochemical samples of auger cuttings from Golden Forty area, Tennant Creek, Northern Territory. All results are expressed in parts per million.

Co-ords.	Depth feet	Ni	Co	Cu	٧	Мс	Pb	Remarks
2W/4s	0-6	5	12	200	50	15	5	Tr.Bi
	12-18	5	12	50	50	5	5	
	18-24	5 - -	15	100	100	10	5	Tr.Bi
2W/4.5s	0-6	5	20	200	100	10	5	
	6–12	5	10	25	20	10	a,	
	12-18	5-	5	25	50	5	a	
	18-24	5-	5	50	50	5	a	
	24-30	5	10	25	50	5	a	
	30-36	5	5	20	50	5	a	
2W/5s	0-6	5-	10	25	50	5	5	
	6-12	5-	10	50	20	5	5	
	12-18	5-	10	70	20	5	5	
	18-24	5	12	70	50	10	10	
	24-30	5-	12	50	50	5	5	
	30-36	5-	10	100	50	5	a	
	36-42	5-	5	50	20	5	a	
2W/5.5s	0-6	5-	5	50	20	5	20	
	6-12	5 -	10	100	20	5	20	
2W/6.5s	0-6	5-	20	100	20	15	500	TrBi
	6-12	5-	20	50	20	10	700	
	12-18	5	20	50	20	5	1000	
	18-24	5-	15	150	20	10	700	${\tt TrBi}$
	24-30	5-	10	25	50	5	500	
	30-36	5-	15	50	50	5	700	
	36 – 42	5	20	70	50	5	1000	Be(5)
2W/7 a	0-6	5 	10	50	50	5	50	
	6-12	5-	5	20	50	5	200	
	12-18	5	5	15	50	5	500	
	18-24	5	12	70	150	10	2000	
	24-30	5	20	50	100	10	5000	
	30-36	5	12	.50	150	10	1500	
	36-42	10	12	70	100	10	1500	
	42-48	10	10	100	150	10	1500	

Co-ords.	Depth feet.	Ni	Со	Cu	٧	Мо	Pb	Remarks.
		• •		:_			,	
2W/8s	0-6	5	10	100	150	10	700	
	6-12	5	12	200	150	10	1000	
	12-18	5	12	200	200	10	1000	
	18-24	5	12	100	200	12	1000	
	24-30	5	12	100	100	12	1000	
	30-36	5	12	70	200	10	1000	
6W/4s	2-6	10	10	70	200	10	20	
	6-12	5	10	50	100	10	a	
	12-18	5 -	10	70	150	5	a,	
6W/5s	0-6	10	10	70	200	10	a	
	6-12	10	10	50	100	10	a	
	12-18	10	10	50	150	10	a	
	18-24	10	10	100	150	5	a	
6W/5.5s	0-6	5	10	100	200	10	20 .	
	6- 12	10	10	70	100	10	a	
	12-18	10	10	70	50	5	a	
	18-24	10	10	70	100	5	a	
	24-30	10	5	100	150	5	a	
	30-36	5	10	50	200	5	a	
	36-42	5-	10	15	50	5	a,	
6W/6s	0-6	5	15	50	50	10	a	
	6-12	5	15	50	100	5	a	
	12-15	5 -	15	50	100	5	a	
6W/6.5s	0.6	12	12	30	100	5	a	
	6-12	10	10	15	100	5	a	
	12-18	5	5	20	100	5	a	
	18-24	5	10	20	100	5	a	
6W/7s	0-6(A)	10	12	25	150	10	20	
	0 - 6(B)	5	12	25	100	5	a	
	6-12	10	10	15	100	5	a	
	12-18	5-	10	20	. 50	5	a	
6W/7.5s	6-12	5	5	50	100	5	a	
	12-18	5	5	50	100	5	a	
	18-24	5 -	5	20	50	5	a	
	24-30	5-	5	15	100	5	a	
6W/8s	2-6	5	12	20	50	5	30	
	6 -1 2	5	5	15	50	5	50	
	12-18	5	5	25	100	5	70	
	18-24	5-	5	20	100	5	70	

Sn and P were sought but not detected in any sample, a = not detected. tr = detected at trace level.

Plate Nos.725 - 727.

SPECTROGRAPHIC ANALYSIS OF GEOCHEMICAL SAMPLES FROM RUM JUNGLE, NORTHERN TERRITORY.

by A.D. Haldane.

Semiquantitative estimations were made of the trace metal contents of geochemical samples from R.D.H. R142, Mount Fitch, Rum Jungle, N.T. The samples were submitted by P.Pritchard. All results are expressed in parts per million.

R.142 Depth (Feet).	Ni	Со	Cu	V	Мо	Pb	Remarks
0-5	500	200	5000+	5	20	100	(Bc. 10)
5-10	200	200	5000+	5-	20	30	(Be. 10)
10-15	1000	500	5000+	150	9 0	a	(P present
15-20	500	200	5000+	10	50	30	(Be.5)
20-25	200	150	5000+	5-	20	5-	(Be.10)
25-30	400	400	5000+	25	50	70	(FrProsent)
30-35	200	200	5000+	10	30	50	(Be. 10/Present
35-40	700	700	5000+÷	200	200	a	(Sn. 20) prese
40-45	700	400	5000+	20	100	a	(Sn. 10)
45-50	400	150	5000+	5	20	20	(PPresent *)
50-55	400	100	5000+	10	15	30	(P present)
55-60	400	100	5000+	10	50	70	(P present)
60-65	400	100	5000+	10	20	á	,
65-70	200	50	4000	100	5	. 8	
70 - 75	200	80	2000	100	5	5	
75–80	400	100	2000	400	10	a,	
80-85	200	40	1000	100	a	5	
85–90	200	60	1000	100	a	a	
90-95	400	60	4000	50	a	a	
95–100	200	100	5000+	5-	a	5	(Be.5)
100-105	200	100	5000+	5-	a	5	(Bo.5)
105–110	500	200	5000+	100	5	a	, ,,
110-115	200	500	4000	20	5	5	
115-120	100	80	4000	20	5	5	
120-125	100	60	5000+	20	20	5	
125-130	100	150	2000	10	a	a	(Be. 10)
130-135	400	100	4000	59	5	a	
135-140	400	100	4000	30	15	a	
140-145	100	150	5000	20	2ରୁ	a	
145-150	100	80	2000	\$ 0	10	a	
150-155	100	100	2 00	5 0	10	a	
155–160 160–165	100 60	100 150	700 1000	10	15 <u>.</u>	a. a.	(Be. 10
165-170	80	60	50	50	野 野 10	a	(-34.0
170-175	60		500	2 0	16	a	
175–180 180 185	100 100	80 80	50 5 ୭ ୫	50 50	10 10	a	(Bo.5)
180 – 185 185–190	100 80	100	700	5 0	<u>5</u>	ය. ඩ	(100-7)
190-195	60	80	5000 +		1Q	a	

Report No. 24

File No.
19th March, 1964

ANALYSIS OF TWO WATER SAMPLES FROM THE CAPTIN'S FLAT AREA, NEW SOUTH WALES.

bу

S. Baker.

About ten water samples taken during the geochemical survey of Captain's Flat in 1961-62, showed an anomalous zinc content.

During February, 1964, after a two to three month period of little rain, two water samples from the Foxlow and Gourlay-Hickey anomalies were collected for analysis. The Foxlow sample shows an unusual chemical composition, not only in the presence of zinc, but also because of its exceptionally low pH value and high sulphate to chloride ratio.

	Foxlow.	Gourlay-Hickey
Conductivity (micro ohms:/cm	1790	300
pН	2.9	6.2
Sulphate (SO ₄) p.p.m.	940	79
Chloride (Cl) "	25	18
Calcium (Ca) "	18	11
Magnesium (Mg) "	136	13
Sodium (Na) "	173	91
Zinc (Zn) "	13	0.2
Ratio SO ₄		
Cl	37.6	4.4

Report No. 24 A

File.
19thMarch.1964

X-RAY DIFFRACTION ANALYSIS OF THREE MINIMAL SAMPLES FROM THE CHARTERS TOWERS AREA OF QUEENSLAND.

Ъу

S.C. Goadby.

Three mineral samples were submitted by Λ -G-L-PAINE for identification by X-Ray powder diffraction.

1. : . OPPT: thin vein of ? sphalerite in pale grey siliceous metavolcanic rock.

The material is sphalerite.

- 2. IR.3.99CT : white earthy material. The material is magnesite.
- 3. 16.3 99CT. : three small floaters in creek. The material is barytes.

Laboratory reference - 1472.

REPORTHO 25

File 106/Q/4 63/292

8B

March 26, 1964.

ESTIMATION OF PHOSPHATE

 ${\tt By}$

S. Baker

Following are results for the determination of Phosphate on samples bubmitted by A.R. Jensen and R. Bryan.

FIELD NO.		PER CENT P 205
T 166	Mundubberra, Run 2, Photo Pt. 166	1.0
155/19	Port Campbell No. J. Well 5018'-5020'	less than 1.0
155/21	Port Campbell No. 1 Well 5223'-5225'	" 1.0
161/7	Port Campbell No. 2 Well 1923'-1925'	" 1.0
161/13	" " " 7685'-7687'	" 1.0

Serial No. 1448, 1490.

Report No. 26.

File No. 64NT/1

Spectrographic Analysis of Samples from Rum Jungle

bу

A.D. Haldane

Semiquantitative estimations were made of the trace metal content of cores samples from D.G.9, D.G.24, D.G.27, D.G.30, and D.G. 31, from Rum Jungle, N.T. The samples were submitted by P. Pritchard.

All results are expressed in parts per million.

Didi, accided area man canging	D.G.9	"Geolsec"	area.	Rum	Jungle
--------------------------------	-------	-----------	-------	-----	--------

								•••	
đ	lept	h	Ni	Co	Cu	V	Mo	P	Remarks
		19110"	10	5-	5	5-	5-	p	
19'10"	' -	221	12	5-	5-	5-	5-	р	
221	_	2413"	60	5-	5 -	5-	5-	р	
24'3"	_	261	60	10	5-	5-	5 -	p	
261		291	100	5	5	5 -	5 -	p	
291	_	33'6"	80	5	5-	5-	5-	p	
3316"	_	351	30	12	15	5	5-	p	
351	-	401	60	12	15	5	10	р	
401	_	45 1	60	5	5-	5-	10	p	
45 '	_	501	60	5	5-	5	5-	p	
501	_	55 t	100	5 -	5 -	5-	5 -	p	
551		57 '	80	5 -	5-	5-	5	p.	
57 t	_	621	80	5	5 -	5	5-	p	
621	_	67'	60	5	5-	10	5	p	
67 '	-	6912"	60	5	5-	5	5-	p	
6912"	-	74'	60	5	5 -	5-	5-	p	
741	-	77'3"	40	5	5-	10	5-	р	
77'3"	_	301	30	5-	5 -	20	5 -	p	
80 1	-	851	30	5	5-	20	5-	р	
85 '	_	901	40	5	5	20	5-	p	
901	_	931	60	5	5-	20	5-	p	
931		981	100	10	5-	20	5-	p	
981	_	103 '	100	10	5-	20	5-	p	
1031	_	10517"	20	10	5-	20	5-	p	
105'7"	_	1101	100	10	5 -	50	5-	p	
1101		1151	40	5	5-	50	5 -	p	
1151	-	1201	60	5-	5-	20	5-	p	
1201	_	122110"	60	5	5 -	50	5-	p	

đ	lepth	Ni	Co	Cu	v	Мо	P	Romarks
1221101	- 124'2"	40	5-	5-	100	5-	р	
124'2"	- 1281	40	5	5-	100	5-	p	
1231	- 129¹	60	5-	5-	70	5	p	
1291	- 134 ¹	60	5-	5	100	5-	p	
1341	- 1391	30	5 -	5	50	5-	p	
1391	- 141'	30	5-	5-	100	5–	р	
141'	- 145 t	60	5-	5	5-	5 –	a	
145 '	- 1501	80	5	5	5-	5-	a.	
1501	- 155 '	60	5	5	5 -	5-	a	
155 1	- 159'5"	100	5	5	5	5-	р	
159'5"	- 165¹	100	5	10	40	5-	p	
1651	- 1701	60	5	10	70	5 –	р	
1701	- 174'6"	80	5-	5-	50	5-	р	
174'6"	- 1801	5	5	5-	- 5ن	5	p	
1801	- 1851	5	5-	15	50	10	p	
1051	- 190'	5	10	15	40	10	p	
1901	- 195¹	5-	5	10	50	5-	p	
1951	- 2001	5 - -	5 -	10	50	5	p	
2001	- 205'	5 -	5-	10	100	5-	p	
2051	- 2101	5-	5 -	10	50	5	p	
2101	- 215'	5	10	5-	20	5	p	
215'	- 2201	5	10	5-	50	5-	p	
2201	- 2251	5	12	5-	20	5 -	p	
2251	- 227'9"	5	5–	5 -	.5	5 -	p	
22719"	- 2321	100	5	5	20	5-	p	
2321	- 237 ¹ 11 ⁿ	80	5-	5-	50	5-	p	
237 ' 11"	- 2401	5 -	5-	5	100	5-	a	
2401	- 245 t	5-	5-	5	100	5	p	
245	- 2501	10	5-	5-	150	5 –	a	
2501	- 2551	5	5-	5-	100	5-	р	
255'	- 2601	10	5	5-	100	5-	р	
2601	- 2651	5	5-	5	70	5	p	
2651	- 2701	60	10	5 -	50	5-	a	•
2701	- 275 *	5	10	5	40	5-	р	
275'	- 2801	5	5 -	5-	100	5	p	
2801	- 2051	5-	5-	5	100	5-	a	
2051	- 290'	5-	5-	5	70	5-	a	
2901	- 29313"	60	5-	5-	10	5-	a.	
29313"	- 295'	60	10	5-	10	5-	a	
295 1	- 3001	60	5	5-	40	5-	a	
3001	- 3051	60	10	5 -	40	5-	a	
3051	- 3101	3 0	5-	5	20	5-	a,	

,.

depth		Ni	Co	Cu	Λ	Mo	P	Remarks	3
310' - 31	5 t	60	5	5 -	40	5-	a		
315' - 320) †	60	10	5 –	20	5-	a		
3201 - 325	51	60	10	5 -	20	a,	a		
325' - 330)1	60	10	5 -	10	a	a		
3301 - 335	51	60	10	5-	10	೩	a,		
335' - 340) 1	100	12	5-	10	10	a.		
340' - 34	5 t	100	10	5-	10	15	a		
345' - 35	11	30	10	5-	20	20	a,		
351' - 35!	51	10	5	5-	5 0	5	a		
355' - 35 9) t	12	5	5.	100	10	a		
359' - 360)19"	60	5	5	10	5-	a.		
36019" - 36	316"	5-	5-	5-	1 0	10	a		
363'6" - 36	112"	12	5-	5-	50	5 0	a		
364 1211 - 36	51611	5	5-	5 -	70	. 20	p		
365'6" - 370)†	60	1 0	5 -	20	5	a.		
370' - 37	51	30	10	5-	10	10	a.		
3751 - 386) †	40	1 0	5-	20	10	a		
3801 - 38	51	20	5	5-	20	5	a		
385' - 396)†	30	10	5-	50	5	a		
3901 - 399	51	200	12	5	5-	5	a		
395' - 39	513"	100	12	5 	5-	10	a.		
396'3" - 39	713"		No Re	sult					
397'3" - 40.)1	60	15	5-	50	10	a		
4001 - 40	1'9"	30	20	5 -	20	50	р		
401'9" - 40	51	30	15	5 -	20	5. -	p		
405' - 410) 1	40	15	5-	30	a	a		
4101 - 414	11811	5	12	5-	50	10	р		
414'8" - 419)1	60	15	5-	20	5-	p		
419' - 42	216"	80	15	5-	5	a.	a		
D.G. 24, Mt.	Fitch, Rum	Jungle	•						
1501 - 155	G' (clay)	2000	500	1000	20	10	a	(Pb50)	(Bo10)
150' - 155	(core)	500	200	1000	5-	10	a	(Pb50)	
155' - 160	' (clay)		No :	Result					
155' - 160)' (core)	1000	400	2000	5	10	a,	(Pb50)	
160' - 169	o' (clay)	1000	500	2000	5	50	a	(Pb50)	
160' - 16	o' (core	200	150	1500	5-	5	a		
165' - 179) t	400	150	700	5-	5	a		
170' - 175	o' (clay	500	500	1000	5-	10	a	(Be10)	(Pb10)
1701 - 175	o' (core)	200	100	500	5-	5	a		
175' - 180) †	400	150	700	5-	5	а		
180' - 189	; 1	1000	200	700	5-	10	a		

. . .

4.

de	epth	Ni	Co	Cu	V	Мо	P	Remarks
1851	- 1901	400	100	700	5 -	10	a	
1901	- 195 '	400	200	700	5 –	10	a	
195'	- 2001	400	200	700	5-	5	a	
2001	- 205' (clay)	100	1000	2000	5	5	a	
2001	- 205' (core)	500	200	1000	5-	5	a	
2051	- 210' (clay)	1000	500	30 ου	5-	5	a	
2051	- 210' (core)	150	100	700	5-	5	а	
2101	- 221'6" (A)	700	500	5000+	5-	10	a	Manganiferous sec.
2101	- 221'6" (B)	400	150	700	5 -	5	а	(Pb5)
221'6"	- 225'	1000	150	500	5-	5	a	
2251	– 230† .	400	150	700	5-	5	a	(Pb10)
2301	- 235¹	200	100	500	5-	a,	a	
2351	- 240'	500	150	500	5-	10	a	
2401	- 245 t	400	100	700	5-	a	a	
245 t	- 250'11"	20	15	100	5-	a	а	
251'7"	- 255 t	50	60	100	5-	a	а	
255 '	- 260'	30	20	100	5-	a	a	
2601	- 265'	200	60	500	5 -	a	a	
271'	- 273¹	400	200	1000	5 -	10	a	
3301	- 331 ^t ·	400	200	1500	5-	10	а	
34317"	- 3501	2000+	2000	5000+	5	10	a	(Pb10)
3501	- 355'(C)	2000+	2000+	5000+	10	5	a	(Pb 5)
355'	- 360'(B)	2000+	2000+	5000+	10	10	a	
3601	- 361 ^t	200	100	2000	100	10	a	
361'	- 374' (core)	1000	500	5000	100	5	a	
361'	- 374' (clay)	1000	2000+	5000+	100	5	а	
3781	- 3821	500	2000	5000+	20	10	a	
3821	- 409'6"	500	2000	5000+	100	10	а	
40916"	- 415' (core)	200	150	5000+	20	10	a	(Pb 5)
40916"	- 415' (clay)	400	200	2000	20	5	a	
415	- 423'6" (core)	30	60	200	50	10	a	(Pb 5)
415	- 423'6" (clay)	60	100	500	50	5	a	
423 6"	-	10	15	200	20	10	a	
	- 430' (core)	200	100	1500	50	5	a	(Pb 5)
423'6"	- 430' (clay)	200	200	4000	5 0	5	a	
D.G. 27	.•							
851	- 9216"	2000	2000+	5000+	50	10	a	(Pb10, Be10)
122'6"	- 128'6"	2000	500	5000+	50	50	a.	(Pb10, Be20)

d	epth	Ni	Co	Cu	Λ	Мо	Pb	Remarks
D.G. 3	<u>o</u> .	•						
585 '	- 5901	100	60	700	5-	5-	a	
5901	- 595¹	1000	2000	5000+	150	5	100	
595'	- 600'	700	2000	5000+	100	5	100	
6001	- 6051	200	150	1500	50	- 10	50	
605!	- 6101	150	80	20 0	5 -	10	10	
6101	- 6151	200	200	5000	5-	5-	10	
6151	- 6201	700	1000	1500	5 -	5∸	10	
6201	- 625 1	200	200	500	5-	5-	a	
D.G. 3	<u>1</u> .							
65 1	± 70 i	2 00	200	500	700	20	10	(Sn10)
701	- 75 ¹	150	150	1000	500	5	10	(Sn10)
75 '	- 801	400	500	5000+	150	20	10	
801	- 851	500	500	5000+	200	5	10	(Sn10)
1151	- 120°	100	100	50	100	150	5	
1201	- 125 ¹	150	60	10	200	150	5	
7201	- 7251	30	100	100	5-	5-	a	

p = Present but value not estimated

a = sought but not dedected

plate Nos. 712 - 716 and 723 - 725 and 729

REPORTNO 27

SPECTROCHEMICAL ANALYSIS OF GEOCHEMICAL SAMPLES

FROM DUCHESS QUEENSLAND

 $\mathbf{B}\mathbf{Y}$

A.D. HALDANE

Semiquantitative estimations were made of the trace metal content of samples from the Labour Victory mine and the Maraposa Valley.

The samples were submitted by A.L. Mather.

All results are expressed in parts per million.

			_					
Sample No. Labour Victo	ry <u>Ni</u>	<u>Co</u>	<u>Zn</u>	Cu	<u>v</u>	Мо	<u>Sn</u>	<u>Pb</u>
011047	15	30	100	200	200	10	a	10
011048	15	30		100	200	10	a	5
011049	15	30	100	200	200	10	a	5
011032	5	5–	100	500	200	10	a	5
011033	10	30		70	200	5	a	5
011034	5	30		100	150	a	a	5
011035	5-	30		70	200	a	a	10
011036	5	30		100	200	a	a	10
011037	5	30		70	100	5	a	5
011038	10	30		70	150	5	a	5
011039	10	30		70	150	5	a	5
011040	10	30		70	150	5	a	5
011041	10	30		100	200	5	a	5
011042	10	25		100	150	5	a	5
011043	10	30		100	150	5	a	5
011044	5	20		70	200	5	a	10
011045	10	30		70	150	5	8.	5 -
011046	10	30		100	150	5	8.	5 `
Maraposa Val	ley							
011030	5	40	100	500	500	15	a	8.
011031	5	40	500	200	200	20	a	8.
011025	5	40	1000	300	300	50	a	a
011026	5	40	500	500	300	20	a.	a
011027	5	40	700	500	70	30	8.	8.
011028	5	60	500	400	200	10	a	a
011029	5	` 60	700	500	300	20	a	a

P was sought but not detected in any sample Zn detection limit 100 ppm.

Plate Nos. 516 257 730, 731.

Examination of proposed aggregate for the Tindal Airstrip N.T.

bу

W. Oldershaw

Sp 149869

R17562

TS 13794

The specimen is a granular grey rock composed of small black crystals of augite, 2 mm. long, set in a white matrix (stained green in places) comprising 50-60 percent of the rock. The weathered surface has been stained red and the mafic minerals leached out.

Under the microscope the rock is seen to consist of corroded crystals of augite and euhedral crystals of feldspar set in a matrix of graphically intergrown quartz and orthoclase.

The augite exhibits well marked exsolution lamellae herringbone pattern. Some crystals have been altered to fibrous hornblende and chlorite along their margins and some have rims of granular and massive hornblende.

The feldspar phenocrysts consist of highly altered euhedral crystals of andesine. Most of them now consist of aggregates of sericite flakes, zoisite and limonite dust.

The matrix of the rock is a distinctive graphic intergrowth of quartz and orthoclase. In places the intergrowths comprise coronas surrounding cores of euhedral quartz and orthoclase. There are interstitial patches of sericite and penninite. Apatite and ilmenite are accessory.

The rock is a highly altered porphyritic quartz - hornblende - augite - microdiorite (a markfieldite or a micromangerite).

This rock would normally be suitable for concrete aggregate for it is coarsely crystalline and contains no unstable minerals. Its high content of lime would tend to neutralise any high alkali cement. However, the rock is very altered and may contain too many soft flaky minerals, chlorite and sericite, which reduce the strength of the rock and in addition could produce a "dirty" aggregate on crushing and weaken the cement bond. Because of the presence of the deleterious minerals it is recommended that the aggregate be subjected to routine laboratory testing before use in concrete.

Sp 149897

R 17563

TS 13795

The specimen consists of fragments of white chert set in a matrix of red chert. The rock is hard (hardness 7), glassy and has a prominent conchoidal fracture along which it tends to flake off.

Under the microscope the rock is seen to consist of fragments of microcrystalline silica, some crowded with limonite dust, set in a matrix of microcrystalline silica. There are few patches of coarsely crystalline quartz and of chalcedony.

The rock would be a hard, compact, uniform aggregate, but tends to be flaky. The smooth conchoidal fracture surfaces afford little grip to any matrix, especially bitumen. The chert would probably react with a high alkali cement; it is recommended that it be subjected to routine laboratory tests in concrete, especially for expansive reaction with alkali cements.

REPORT Nº 29.

10th April, 1964. 198PNG/1

Mineragraphic investigation of a specimen from No.3 level Mount Victor Gold Mine, Kainantu area, New Guinea

bу

I.R. Pontifex

Sample submitted by R.G. Horne, 14th February, 1964. Field No. RH48.

Ore minerals identified. Magnetite, pyrite, chalcopyrite, enargite, tennantite, hematite, chalcocite, covellite.

Assay recorded by Horne. Au 1.86 dwt/ton. Ag 2.32 dwt/ton.

Cu ore grade. 0.1% Cu (X-ray spectrograph determination).

Conclusions. The Mount Victor lode is a magnatic-segregation type ore body derived from the hanging wall rock, the Elendora porphyry. (Dow 1963).

In this specimen magnetite is the host rock for a related group of epigenetic hydrothermal sulphides. Pyrite is the most abundant sulphide, it carries inclusions of tennantite and enargite and was introduced into the magnetite before the associated chalcopyrite.

No gold or silver minerals were detected.

The mode of occurrence of the Au and Ag found by assay was not conclusively determined. The presence of tennantite in pyrite may be important in this regard since this mineral commonly contains significant amounts of Ag and Au; also pyrite may contain sub microscopic Au in solid solution of in colloidal form.

The relationships and associations of hematite, chalcocite and covellite indicate the incipient stages of supergene exidation of the ore at the locality of this specimen.

The results of this investigation considered together with the field geology derive several implications which may be significant to future mineral search in this area. These are discussed at the end of this report.

Fiold occurrence. The lode geology of the Mount Victor prospect is recorded by Dow (1959) and Dow and Plane (1963). The observations made by these authors are from the oxidised zone of the lode and apparently no information from the primary zone was available at the time of their investigation.

The prospect consists of a forruginous quartz lode on a contact between Mount Victor Granodiorite (foot wall) and Elendora Porphyry (hanging wall). The lode is oxidised and consists of iron stained friable quartz, it includes large masses of limonite up to 15 ft. across, these contain magnetite and hematite.

The limonite masses have resulted from the oxidation of pre-existing primary magnetite and pyrite. Secondary enrichment has played a large part in concentrating the gold which occurs free and ranges in fineness from 800 to 830 fine.

The oxidised lode contains 60,000 tons of ore of about 6 dwts Au/ton. The lode grades downwards into propylitised andesite porphyry which contains over 50% pyrite which carries about 0.5 dwt Au/ton.

Macro description

Abundant irregular veins and patches of pyrite are distributed at random through massive finely granular magnetite. The maximum thickness of these veins is 5 mms. Accessory amounts of pale green talc are associated with the sulphide veins and some small patches of talc occur alone in the magnetite.

Micro description.

Eighty percent of the specimen is <u>magnetite</u> which occurs in a fine grained granular aggregate containing abundant interstitial voids. The outside boundary of the magnetite grains consists of a narrow corona of <u>hematite</u> (observed at X450) and an irregular network of hematite through the magnetite aggregate is an expression of these coronas surrounding the composite grains.

Pyrite has been introduced into the magnetite, partly filling voids and cutting at random through the host mineral; it commonly encloses magnetite grains. The pyrite carries minor accessory inclusions of two minerals, these are roughly elliptical and measure up to 0.13 mms. in maximum dimension but their average is 0.015 mms. Generally these inclusions are completely enclosed in pyrite but some are localised at the periphery of the pyrite masses; in places they are associated with chalcopyrite.

One mineral is pinkish brown (in oil much darker), it has a distinct reflective pleochroism and a strong anisotropism exhibiting shades of grey, violet and yellow. The other mineral has a bluish grey-green color and is isotropic.

A positive identification of these inclusions is difficult because of their small size, however their optical properties and rare association with chalcopyrite suggest that they are enargite and tennantite respectively.

Irregular masses of chalcopyrite up to 0.15 mms across are associated with pyrite, these also occur independently, partly filling voids in magnetite. The texture relationships in this ore indicate that chalcopyrite was introduced into the magnetite after pyrite. Commonly chalcopyrite grades imperceptively into irregular alteration coronas of chalcocite and covellite. Some grains are completely unaltered, some are wholly replaced by the secondary copper sulphides.

Implications. Since this is apparently the first time copper mineralisation has been detected in the Mount Victor lode it is suggested that additional specimens from the ore are microscopically examined (if possible from a greater depth than No.3 level) to help establish the abundance, distribution and relationships of the copper minerals. Also specimens of the Elendora porphyry parent rock should be examined for Cu, Au and Ag minerals with the aim of investigating the genesis of the ore.

According to Dow (1963) the Elendora porphyry (and its equivalent) is the source rock for other Au and Cu mineralisation in the Kainantu mineral province, accordingly, studies of these occurrences could be conducted.

The mineralogical correlation between each prospect may establish significant facts regarding the composition, origin and possible extensions of the known prospects which could form the basis of geochemical or other prospecting in this area.

References; DOW, D.B. "Geological Report Mount Victor Prospect, E.P.L.37. Keinantu, T.N.G." B.M.R. Record 1959/27.

DOW, D.B. and PLANE, M.D. "The Geology of the Kainentu Gold Fields". B.M.R. Record 1963/64.

REPORTNO 30

10th April, 1964. 106Q/19

Mineragraphic investigation of heavy mineral bands in a sandstone from the Springsure area, Queensland.

Ъу

I.R. Pontifex

Sample submitted by R.G. Mollan for the identification of opaque mineral grains.

Location. Springsure 1:250,000 sheet, $1\frac{3}{4}$ miles S.W. of "Treswell".

Field No. SP 343/2

Opaque minerals identified. Hematite, limonite, pyrite, ?gold.

Macro description. Buff, light brown, dirty silty sandstone contains irregular dark mineral bands measuring up to 5 mms. thick. These bands are parallel to the bedding.

Micro description. Opague grains are disseminated throughout the silt-sand matrix of this rock but they are relatively concentrated in bands evident in the land specimen. These grains consist of leached remnant cores of detrital hematite which are surrounded and cut by irregular zones of limonite. The limonite has derived from the pre-existing hematite grains probably by the process of supergene exidation and generally it has almost completely replaced the original iron exide.

During this alteration process some of the limenite has migrated from the iron oxide grains along adjacent intergranular boundaries within the sediment matrix. It is possible that the iron oxide grains originally consisted of magnetite and that the hematite and limenite are subsequent oxidation products of this mineral. No remnant grains of magnetite were observed however. Grains of pyrite up to 0.03 mms. across are disseminated through the matrix in minor accessory abundance.

Several extremely fine grains of possible gold were observed at 800 x magnification. These were too small for a positive identification.

Lab. reference. 1293.

File 120Q/4 April 14,^1964.

Mineralogical and Chemical investigation of silica sand from 15 miles north of Cooktown, Queensland.

Ъy

I. R. Pontifex.

Three samples were submitted by K.G. Lucas for determination of mineralogical impurities pertaining to glass sand. The properties pertaining to a fracking sand were also considered. Location, 15 miles north of Cooktown: wind blown (blowout) dunes.

Field Nos. LB 195, LB 196, LB 197.

CONCLUSIONS. The Chemical analysis revealed greater than 99% SiO, in each sample. The x-ray spectrograph found less than 0.036% Fe in each. Mineralogically the sand contains greater than 97.5% quartz grains of an average diameter of 0.175 mms.

Assuming the samples are representative this sand has the attributes of a high quality glass sand. It is too fine grained for use as a fracking sand.

GLASS SAND REQUIREMENTS. The mineralogical specifications of a glass sand given by Bates in "Geology of the Industrial Rocks and Minerals" (1960) are as follows:-

For optical glass 99% silica
For container glass 95% silica
Maximum iron impurity 0.06%
Maximum Cr & Co impurity, approx. 0.0002%
Maximum Al content (in felspar) 4%
Grainsize: between 30 mesh (0.5 mms) and 150 mesh (0.104 mms)

The grains should be clear, i.e., no coating or inclusions.

ANALYTICAL RESULTS.

1. Mineralogy. All three samples have essentially the same composition. They are white but contain minor accessory amounts of dark grains. The sand is well sorted, the grains are sub-rounded to angular and have an average maximum dimension of 0.175 mms.

Under the binocular microscope about 90% of the grains appear clear, in thin section however, up to 80% of these are found to carry minor accessory amounts of opaque, dust and needle like inclusions. The inclusions are mainly iron oxides and minor rutile.

The binocular microscope examination reveals 10% cloudy grains and these simulate grains of folspur. In this section the majority are found to be crypto-crystalline quartz probably detrital grains of chert or fine grained quartzite. The sample contains less than 2% K felspar and no plagiculase. Some of the cloudy grains have an excess of opaque inclusions. The cloudiness is an inherent characteristis of these grains: but some also have a superficial coating of clay.

The mineralogical composition of each sample is given in the following table.

Constituent	LB 195	LB 196	LB 197
WE% quartz grains (assume 2% felspa WE% K felspar grains Wt% Magnetic impurities	r) 97.88 less than 2% less n 0.12	97.79 than 2% le	97.81 ss than?% 0.19
Magnetic impurities	Magnetic, tourmaline pyroxene, epidote, z		ite, ilmenite,
WT% 30 mesh 150 mesh WT% 150 mesh WT% heavy minerals 150 mesh	99.81 0.19 0.07	99.65 0.35 0.09	99•75 0•25 0•11

2. Chemistry

The samples were analysed for total percent SiO₂ by Dr. R. Beevers. Two samples of each specimen were analysed. The results are:

	LB195	LB 196	LB 197
%\$i02	99•59	99 . 66	99.23
%Si0 ₂	99•60	-	99.20

An analysis for Fo, Co, Cr, and K impurities in unseparated material of each sample was carried out by S. Gosdby by X-ray spectrograph. The results are:

	LB 195	LB 196	LB 197
% Fo % Co % Cr % K	0.015	0.035	0.035
% Co		not detected	
% Cr	faint trace	faint trace	faint trace
% K	0.015	0.038	0.031

METHODS OF ANALYSIS AND COMMENTS

- 1. The iron bearing grains were separated by passing the sample through a Frantz separator which was set to remove grains of minimum magnetic susceptibility. The magnetic fraction was assumed to contain most of the Fe contamination of the sand. Minerals in the magnetic fraction were identified under a binocular microscope.
- 2. Thin sections were made of the non-magnetic fraction of each sample. Almost every grain examined was quartz, no plagicalse was detected, about 5% of the sample appeared to be detrital chert, less than 2% orthoclase was present. Most of the quartz grains contained microscopically fine opaque inclusions.
- 3. To check the K felspar content the non-magnetic fraction was mixed with a bromoform-acetone solution designed to float K felspar and sink quartz. Less than 2% of the total of each specimen floated.
- 4. The thin sections were coated with sodium-cobalti-nitrate which stains K felspar. Less than 2% of the grains in the sections were stained.
 - 5. Each sand was sieved by a 30 mesh sieve (0.5 mms) and a 150 meshsieve (0.104 mms) to determine the percent of undesirable coarse and fine grains. A relative abundance of dark, heavy grains appeared in the fine fraction.
- 6. The fine fraction (< 150 mesh) was separated by heavy liquids to determine the percent of heavy mineral impurities which could be separated by sieving. The heavy mineral assemblage is essentially the same as that found in the magnetic fraction from the Frantz separator.

The relative proportion of heavies obtained by magnetic separation and by sieving indicate that the majority of heavy mineral grain impurities occur in the undesirable fines and that they can be removed by sieving.

7. The samples analysed by the X-ray spectrograph were powdered to ensure the detection of the maximum amount of impuritism. In particular it was necessary to release the opaque inclusions in the quartz grains since no accurate estimation of these can be given from the mineralogical examination.

The estimation of K content was done to check the possible presence of K felspar previously undetected in the mineralogical examination.

PROPERTIES REGARDING FRACKING SAND.

One of the most essential properties of a sand for fracking or proping in oil reservoirs is that the grain size is of 2.0 to 60 mesh size. (i.e. 0.35 mms to 0.251 mms) but it is even more desirable if the sand is of 20 to 40 mesh size.

All the grains in each sample under investigation pass the 60 mesh sieve which renders them too fine for use as a fracking sand.

Laboratory Reference 1248.

REPORTH°32

File 120 EO/14

Mineragraphic investigation of mineralised Bitter Springs Limestone, east of Orange Creek Station, Rodinga N.T.

Ъу

I. R. Pontifex

opaque

Sample submitted by P. Cook for identification of minerals Location. Eight miles east of Orange Creek homestead. Field No. HY 301.

CONCLUSIONS AND GENESIS This rock is a crystalline limestone containing roughly parallel bands of botryoidal limenite (with minor manganese hydroxide) and disseminated grains of psilomelane. The psilomelane contains detectable amounts of Cu.

The origin of these minerals is difficult to interpret from this one specimen however the mode of occurrence of the limonite suggests that it was deposited by supergene agencies probably introduced after the crystallisation of the limestone.

The distribution of the Mn mineral grains suggests that they may be inherent components of the limestone, however some supergene deposition of the Mn hydroxide has taken place contemporaneous with that of the Fe hydroxides.

Psilonelane is most commonly found as a secondary product of supergene origin and replacement deposits in calcareous or dolomitic rocks formed by meteoric waters may be of large extent. (Dana)

In this specimen probably both the Fe and Mn derived from a common supergene origin and the Fe and Mn minerals have been separately removed and concentrated during weathering.

MACRO DESCRIPTION Medium grained marble contains irregular parallel layers up to 1 cm. wide of rust brown botryoidal limonite. On the weathered surface individual nodules exhibit irregular colloform banding and commonly the external crust has a shiny irridescent tarnished appearance. Discrete angular grains of a manganese mineral measuring up to 2 mms. across are dispersed through the marble separate from the limonite.

MICRO DESCRIPTION Thin section: the non opaque matrix consists entirely of an allotriomorphic granular aggregate of calcite. Small blebs of <u>quartz</u> border part of the periphery of some limonite concretions. Some of the limonite concretions are fractured and the fractures have been filled with crystalline calcite.

Polished section: the limonite macro layers seen in the hand specimen consist of intricately colloform-banded <u>limonite</u>. Individual bands of limonite are generally about 0.005 mms. wide. The outermost band of each limonite concretion, adjacent to the calcite matrix consists of <u>psilomelane</u>. This outer band measures up to 0.15 mms. wide, the inner side of it follows the colloform limonite banding, the outer side is irregular and fine acicular needles of psilomelane project at random from it into the calcite. Rarely bands of psilomelane occur in the limonite concretions, some bands have the optical properties of Fe and Mn hydroxides and these probably consist of an admixture of both minerals. Such a mixed product is termed <u>ferrian</u>.

The dark manganese mineral grains in the marble consist entirely of psilomelane which exhibits a very fine felted ice flower texture.

Minor accessory amounts of fine brassy grains measuring about 0.005 mms. across are disseminated through the limonite layers. This mineral was too fine to positively identify however it is probably pyrite.

SPECTROGRAPHIC ANALYSIS. An x-ray spectrographic analysis was carried out by S. Goodby for Ba, Cu and Co on two different fractions of the rock, these were:-

- 1. the limonite bands,
- 2. psilomelane grains.

The analysis for Ba was done to confirm the identification of psilomelane. (This mineral contains up to 16% Ba). The Ba content in the limonite fraction was within background detection limits. In the psilomelane grains, Ba is present in abundance relative to background.

The analysis for Cu revealed only background quantities in the limenite bands, in psilomelane Cu is present in slightly greater amounts than detected in background but it is not an essential element of this mineral.

No Cu minerals were observed in this rock which would account for this relatively high Cu content. It is common however that hydrous manganese oxides contain admixtures of various elements including Cu and Co and this is considered to be the mode of occurrence of the Cu detected in this specimen.

The analysis for Co revealed only background amounts in both fractions.

Lab. Reference 1479 April 14, 1964.

Report No. 33.

File No.

17/4/64

Spectrochemical Analysis of Samples from Tennant Creek, N.T.

by

A.D. Haldane

The following results have been obtained for the semiquantitative spectrochemical analysis of samples from Nobles Nob, Peko, and Orlando Mines. The samples were submitted by A.L. Mather.

All results are expressed in parts per million.

Sample No. Nobles Nob	N i	Co	Cu	V	Мо	Sn	Pb	Remarks	
011001	5	40	200	20	300	a	a	Zn 500	
011002	300	30	100	5	200	а	a	Zn 100	
011003	300	30	70	10	15	a	50	Zn 100	
011004	300	30	30	20	15	а	а	Zn 100	
011005	30	20	50	150	5	а	5	Zn 100	
011006	60	15	5	5 0	5	a	5	Zn 100	
011007	80	7	100	50	5	a	5	Zn 100	
011008	30	20	7	150	5	a	5	Zn 100	
Peko Cores									
011009	12	200	1500	20	10	a	а	Zn 300	
011010	20	20	20	100	5	a	5		
011011	40	30	15	100	5	a	10		
011012	60	20	25	50	10	а	10		
Orlando									
011013	12	15	5-	150	5	а	a		
011014	5-	300	5000+	20	5	а	50	Zn 500	Bi
011015	5-	150	5000	5	5	a	1500	Zn 5000	
011016	70	100	500	5-	5	а	1000	Zn 700	
011017	10	12	100	150	5	5	50	Zn 100	
011018	10	500	5000+	200	70	a	100	Zn 700	
011019	30	40	200	150	5	a	100	Zn 100	
011020	30	40	200	15 0	5	a	a		
011021	30	100	4000	150	10	a	a	Zn 400	
011022	100	80	1500	100	10	a	10	Zn 200	
011023	60	2000+	5000++	20	10	a	500	Zn 300	
011024	30	200	2000	30	5	a	а	Zn 300	

P was sought but not detected in any sample.

Plate Nos. 728, 729, 746

SPECTROCHEMICAL ANALYSIS OF GEOCHEMICAL SAMPLES

FROM TENNANT CREEK N.T.

BY

A.D. HALDANE

Semiquantitative estimations were made of the trace metal content of geochemical samples from Golden 40 prospect Tennant Creek N.T.

The samples were submitted by A.L. Mather as part of an orientation survey.

All results are expressed in parts per million.

Sample No.	Depth (ft.)	<u>N1</u>	Co	Cu	<u>v</u>	Мо	Pb	Remarks
6W/00s	52 BOH	5-	5	20	20	5	5	
/0.5s	52 BOH	5-	5	10	30	5-	a	
/1.0s	52 BOH	5-	5	10	10	5	5	
/1.5s	52 BOH	5-	5-	15	30	5-	5	
/2.0s	40 BOH	5-	5	5	30	5-	5	(Sn 5)
2•5s	28 "	5-	5	5	50	5	a	•
3.0s	46 "	5-	5	15	50	5-	a	
3.5s	18 "	5-	5	15	20	5-	8.	
4.0s	16 "	5	5	15	50	5-	a	
4.5s	12 "	5-	5	10	50	5-	a	
5.0s	22 "	5	5	80	50	5-	a	
5•5s	0 - 4	5	10	20	50	5-	5	
5•5s	40 BOH	5	12	80	10	5-	a	
6.0s	16 "	5-	5	15	20	5-	a	
6.5s	22 "	5	5-	15	20	5–	a	
7.0s	16 "	5	5-	15	30	5-	a	
7.5s	28 "	5-	5	50	30	5-	5	
8.0s	22 "	5-	5	10	40	5-	100	
8.5s	34 "	5-	5-	10	50	5-	100	
9.0s	40 "	5	5-	15	50	5-	70	
9•5s	52 "	5	5-	50	50	5-	50	
10.0s	20 "	5	5	15	40	2	50	
10.5s	44 "	5-	5	15	40	2	50	
11.0s	34 "	5	5-	20	30	2	50	
11.5s	40 "	5	15	25	25	10	100	4
12.0s	40 "	5	5	20	30	15	50	(Zn 100)
2W/ 00	52 "	5	5	10	50	5	5	
1.0s	16 "	5–	5	10	50	5	5	
1.5s	10 "	5	5	10	20	7	a.	
2.0s	22 "	5	5	20	30	7	a	
2.5s	22 "	5-	5	70	50	5	5	ı
3.0s	40 "	5 -	5	50	50	7	5	
3•5s	46 "	5 -	5	100	30	5	5	
4.0s	52 "	5	10	70	50	7	5	
•			2.552	2.1		٠		
	a garage							

Sample No.	Depth (It.)	<u>Ni</u>	Ċo	Cu	<u>v</u>	Mo	P.b	Remarks
2W/4.∋̃s	39 вон	5-	5	50	50	10	5	
5.0s	34 "	5-	12	100	50	5	5	
5.5s	16 "	10	12	100	30	10	20	
€,0s	22 "	10	150	500	10	10	5000	(Zn 100)
6.5s	52 "	5-	30	100	30	5	1000	
7.0s	40 "	5	10	70	20	5	700	
7.5s	52 "	5	12	25	20	2	1000	
8.0s	46 "	5-	12	50	50	5	1000	
8.5s	51 "	5-	10	50	20	2	700	
9.0s	52 "	5	12	25	30	2	700	
9.5 s	52 "	5	5	25	30	2	300	
10.0s	46 "	5	5	25	50	2	100	•
11.5s	44 "	5	5	25	50	2	100	

P and Bi sought but not detected.

Plate Nos. 736, 737.

SPECTROCHEMICAL ANALYSIS OF GEOCHEMICAL SAMPLES FROM TENNANT CREEK N.T.

BY A.D. HALDANE

Semiquantitative estimations were made of the trace metal content of 10 auger samples from Mary Lane Prospect, Tennant Creek. The samples were submitted by A.L. Mather.

All results are expressed in parts per million.

Grid Reff.	Ni	Co	<u>Cu</u>	<u>v</u>	Mo	Pb
149E/10s	10	15	30	100	5	10
149.5E/9.5s	5	20	50	50	5	a
149•5E/10s	5-	10	100	50	5	700
149.5E/10.5s	5-	10	100	50	5	50
150E/9.5s	5	15	50	50	5	20
150E/10.5s	5-	5	50	20	5	a
150.5E/9.5s	5-	5	50	50	5	a
150.5E/10.5s(1)	5-	5	10	20	5	a
150.5E/10.5s(2)	5	5	10	5-	5	a
151E/10s	5	15	25	20	5	a.

Zn, Bi, P were sought but not detected in any sample.

Plate No. 744

RERORINº 36

20/4/64

SPECTROCHEMICAL ANALYSIS OF GEOCHEMICAL SAMPLES FROM FENTON PROSPECT N.T. BY A.D. HALDANE

Semiquantitative estimations were made of the trace metal content of soil samples from United Uranium, Fenton Prospect.

The samples were submitted by A.L. Mather.

All results are expressed in parts per million.

0	C1	37.	•	7	•	••		_		
Grid Reff	Sample No.	<u>Ni</u>	Co	<u>7m</u>	<u>Cu</u>	<u>v</u>	Mo	<u>Sn</u>	<u>Pb</u>	Remarks
400s/ 00	F10	10	12	100	100	200	10	a.	20	
120E	11	10	60	100	100	20	10	a	5	
120W	12	10	15	100	200	200	10	a	5	
800s/ 00	13	12	15	100	150	200	12	a	70	
120W	14	10	20	100	100	200	10	a	20	
1200s/125W	15	20	40	100 •	500	200	10	a	20	
160E	16	30	60		150	150	5	a	20	
1600s/ 00	17	5	12	100	150	200	50	a	40	
210W	18	5	15	100	100	100	10	a	20	
165E	19	40	60		150	200	5	a	100	
2000s/ 00	20	5	12	100	150	500	10	a	50	
270W	21	5	30	100	100	200	10	a	20	
210E	22	10	60		100	100	10	a	20	
2400s/ 00	23	30	60		200	400	10	a	5-	
220E	25	12	60	100	70	100	5	a	5	
2800s/ 00	26	5	10		100	150	10	a	10	
186W	27	5	12		10	20	5	10	5	
160E	28	10	20		50	50	5	a	10	
3200s/ 00	29	10	20		100	150	10	10	10	
3600s/ 00	30	12	40		1000	200	10	'nО	5	
180E	31	5	12		25	50	5–	100	5	
4000s/ 00	32	10	30		15	100	5	700	5	
240W	33	5	10		50	20	5	50	5	
165E	34	5-	10		25	20	5	20	10	
4300s/ 00	35	5	10		50	20	5	10	5	
180W	36	5	5		15	5	5-	40	5	
4000s/13 6 E	37	5	5		15	5	5-	5-	5	
4800s/18 0 E	38	10	12		15	20	5	10	5	
150W	39	5	5		15	5	5-	70	5	
360W	40	5-	5		25	10	5-	50	5-	
5200s/ 00	41	5-	5		10	10	5 <u>-</u>	50	5	
220E	42	5-	15		10	20	5-	20	5-	
5600s/ 00	43	5 <u>-</u>	5		10	20	5	50	5 -	
185E	44	5	5-		5-	20	5	5	5 -	
315W	45	5	5		5 0	20	5 <u>-</u>	50	<i>5</i> -	
J. J	77	,	,		ن	20	_) U	-	

Grid Reff	Sample No.	Ni	Co	Z_{ii}	Cu	<u>v</u>	Мо	<u>Sn</u>	Ph	Domonies
6000s/ CC	F46	5	5		10	20	5-	70		Remarks
2102	47	5	10		5		5 <u>-</u>	a	5-	
6400a/	48	5	10		10	20	5 -	50		
1200s/ 00	52	30	60		100	50	5-	a	20	
4800s/ 00	53	5	12		15	20	5	50		
8000s/ 00	54	60	60		70	150	10	100	•	10)
2104	55	12	15		15	50	10	70	5	, ,
400N/ :)0	56	5	15		70	40	10	10		
100E	57	12	30		100	40	10	10	70	
70W	58	10	20		100	50	15	10	20	
800N/00	59	10	15		70	50	10	5	10	
250E	60	10	30		50	15	5	10	20	
125W	61	12	30		100	150	10	10	20	
1200N/ 00	62	12	150		50	50	5	5	8.	
300W	63	60	30		400	400	15	10	10	
200011/00	64	5	12		50	200	15	10	50	
170E	65	10	12		70	100	10	5	50	
. 200W	66	5-	10		10	20	10	5	a	•
2400N/00	67	12	15		100	200	10	5	100	
200E	68	80	80		50	150	5	10	50	
150W	69	10	30		50	150	5	5	50	
2800N/ 00	70	20	30		100	150	10	10	100	
130W	71	12	20		100	200	10	10	100	
250W	72	60	60		50	200	5	10	100	
3000N/ 00	73	5	15		50	20	5	5	50	
3600N/ 00	74	10	12		70	200	15	5	50	
4000N/ 00	75	10	15		100	200	10	5	70	
120W	76	5-	40		50	200	10	a	200	
150E 5200N/120W	77	12	30		50	100	5	8.	100	
180E	79 80	12	30		100	200	15	a	10	
5600N/ 00	81	10 12	30		70	20	10	a	5	
7200N/ 00	82	20	20 30		100	300	15	а	20	
100W	83	30	30		200	300	15	a	20	
120E	84	15	20		100	400 200	20	8.	70	
7600N/ 00	85	15	30		100	200	10 10	a	20	
100W	86	20	30		100	200	10	a	100 100	
130E	87	20	60		100	100	5	a.	1000	
8800N/ 00	88	5-	15		200	400	20	a 1 a	50	
, 140W	89	5	20		70	400	15	a	200	
150E	90	10	15		100	200	10	a, a,	10	
9200N/ 00	91	10	30		100	200	15	a, &	20	
180W	92	10	60		100	300	10	a.	10	
	-		-		, - •	2-2	, -	•	, •	

Grid Reff	Sample No.	Ni	Co	$\sum_{i=1}^{n}\mathbf{n}_{i}$	Cu	V	Mo	<u>Sn</u>	<u>Pb</u>	Remarks
1200	F93	5	12		100	100	5	a	50	
9600N/ ^	94	12	12		300	300	30	a	100	
1304	95	5-	12		100	300	20	a	150	
7 50E	96	10	40		100	100	10	a	20	
10000N/ 00	97	12	20		300	300	20	a	100	
1,90W	98	5-	30		70	300	10	a.	200	
1103	99	10	20		100	100	5	8.	100	
12400N/ 00	100	5	20		70	500	15	a	10	
110W	101	5	15		50	300	10	a.	10	
180E	102	20	30		100	100	10	8.	5	

a = Sought but not detected

Plate Nos. 732 - 735

SPECTROCHEMICAL ANALYSIS OF GEOCHEMICAL SAMPLES

FROM NEW GUINEA

<u>BY</u>

A.D. HALDANE

Semiquantitative estimations were made of the trace metal content of geochemical samples submitted by A. Mather, from Port Moresby - Rigo.

All results are expressed in parts per million.

Sample No.	<u>Ni</u>	<u>Co</u>	Cu	<u>v</u>	Мо	Sn	Pb	Remarks
Rock Samples			.		•	•		
010006	P	P	P	P	P	P	a	Manganese ore
010007	100	100	100	500	5-	8.	5	
010008	5	6 Q :	200	20	10	a	5	
010009	150	100	50	500	5-	a	5	
010010	30	60	70	500	5-	a	a	
010011	5-	150	100	1000	5-	a	a	
010012	5	100	10	500	5-	a	a	
010013	5-	30	15	200	5	a	10	
010014	5-	30	15	300	5	a	10	
Gossan Sample	8							
010015	P	P	P	P	P	P	8,	Manganese ore
010016	5-	60	500	20	10	a	a	·
010017	5	5	500	5	20	a	a	
010001	5	12	1000	200	10	a	5	
010003	5-	10	200	5	100	a	a	
010054	5	5	5000+	200	500	8.	5000+	(Zn 500) Bi present
010075	5	5-	1500	5-	200	a	5000+	(Zn 500)
Mineralised R	lock Sar	mples						·
010018	5–	5	5000+	100	10	a	20	(Zn 200)
010019	5	150	5000+	5-	500	a	1000	
010020	5-	150	5000+	5-	100	300	5000+	(Zn 5000+)
010021	5	15	5000+	# 500	5	a	10	(Zn 200)
010022	40	60	5000+	200	5	a	10	(Zn 1000)
010023	5-	5	5000+	100	5	a	·5	
010053	5-	5	5000+	5-:1	1.000	700	1000	(Zn 1%+)
Soil Samples								
010061	20	30	300	150	5	2.	a	(Zn 100)
010062	20	60	150	150	5	a	a	
010063	30	60	300	200	5	a.	a	
010064	30	20	100	150	5	a	5	
010065	60	30	500	150	5	a	5	
010066	20	30	1500	100	20	10	100	(Zn 500)
010067	5	20	1000	100	5	a	50	(Zn 700)
010002	5-	5	1500	20	150	500	1000	(Zn 200)
010068	10	30	70	150	5	a	5	

P = Present but value not estimated

a = Sought but not detected Plate Nos. 730-732

SPECTROCHEMICAL ANALYSIS OF GEOCHEMICAL SAMPLES FROM

ASTROLABE, NEW GUINEA

BY

A.D. HALDANE

Semiquantitative estimations were made of the trace metal content of 27 samples from Astrolabe, New Guinea. The samples were submitted by $A_{\circ}L_{\circ}$ Mather.

All results are expressed in parts per million.

Sample No.	<u>Ni</u>	Co	<u>Cu</u>	<u>v</u>	Mo	<u>Pb</u>	Remarks
010005	60	60	150	200	5	a	
010055	150	80	150	500	5 -	a	
010056	30	30	100	100	5	5	
010057	40	60	200	300	5	5	
010058	30	40	150	300	5	100	(Sn 150)
010059	30	20	70	150	5	5	
010060	20	30	100	200	5	5	(Sn 5)
010069S	20	30	500	300	5	20	
0100715	40	40	70	150	5	5	(Sn 15)
0100725	150	80	150	300	5-	5	
0100738	200	80	200	400	5	a	
01007.4S	80	80	300	400	5	8.	
010076	15	30	50	500	5-	5	
010078	20	40	70	300	5	a	
010080	10	30	50	300	5	a	
010083	60	60	70	400	5-	8.	
010086	30	80	70	600	5	a	(Sn 5)
010089	60	40	40	500	5	a	
010090	10	40	70	500	5	a	
010092	10	20	40	200	5-	5	
010094	15	20	60	100	5	5	
010095	30	50	70	400	5-	a	
010096	30	40	70	300	5-	a	
010097	60	50	.70	150	5-	a	
010098	15	40	70	300	5-	a	
010099	15	25	50	500	5-	a	
010100	15	12	100	150	5-	a	

Bi, P, Zn were sought but not detected in any sample.

REDORTN°39

File 198/Q5. 22/4/64

MINERAGRAPHIC INVESTIGATIONS OF THREE DUMP SPECIMENS FROM MOUNT GARNET MINE. N.Q'LD.

by

I.R. Pontifex.

Samples submitted by K. Yates for identification of the ore minerals and to check for the presence of galena.

Locality - Dump of Mount Garnet (Copper) Mine, one quarter of a mile south of Mount Garnet. N.Q.

Conclusions:

The ore minerals in this suite of specimens are chalcopyrite, sphalerite, pyrrhotite, pyrite and magnetite. In each specimen the sphalerite, chalcopyrite and pyrrhotite exhibit exsolution characteristics which indicate that these minerals derived from a common hydrothermal solid-solution and crystallised at about 400°C .

Pyrite, present in two of the specimens, was introduced earlier in the paragenesis than the above mentioned sulphide complex.

Brecciated quartz-magnetite is host-rock to the sulphide minerals in ore specimen, a calc-silicate rock is host to the sulphides in another.

No galena was observed in any specimen.

Field No.1

Ore minerals and approximate proportions. Magnetite 40%; sphalerite 40%; pyrrhotite 1%; chalcopyrite 0.5%; pyrite 1%.

Micro description: Throughout the section <u>magnetite</u> occurs in highly irregular masses which contain abundant voids and fractures, most of which are filled with quartz.

Spaces within the quartz-magnetite have been filled by irregular masses of <u>sphalerite</u> with the result that the entire rock consists of a complex intergrowth of quartz-magnetite and sphalerite. Accessory amounts of <u>pyrite</u> grains up to 0.05 mms. across are associated with the quartz within the magnetite.

The sphalerite contains minor accessory amounts of fine exsolution blob like bodies of chalcopyrite and pyrrhotite. The chalcopyrite bodies have a maximum size of 0.05 mms. across but generally they measure about :0.001 mms. Some of these are distributed along the crystallographic axes of the sphalerite, however, the majority have an apparent random distribution which produces an amulsion texture through the host. Narrow veins of chalcopyrite border the periphery of some sphalerite grains

The pyrrhotite bodies are less wide spread than the chalcopyrite, these are commonly elliptical and measure up to 0.03 mms. across. Pyrrhotite rarely borders sphalerite grains. Several composite grains of pyrrhotite and chalcopyrite are also enclosed by sphalerite.

Field No.2

The ore minerals in this specimen consist mainly of irregular veins and stringers of <u>pyrrhotite</u> (5%) and intimately related <u>chalcopyrite</u> (1%); these veins are associated with a grey-green calc silicate rock. Several veins of <u>sphalerite</u> 0.02 mms. wide carry extremely fine exsolution bodies of chalcopyrite and pyrrhotite.

One grain of <u>pyrite</u> in quartz is fractured long its cleavage planes, these fractures are partly filled by pyrrhotite.

The sulphide minerals almost exclusively follow the intergranular boundaries of the crystalline silicate matrix but they do not enter voids within or replace the components of the host-rock. These relationships suggest that the ere minerals were present during the crystallisation of the host rock.

(continued on p. 72)

Field No. K.30.

Locality: Salt lake north of Migura Well, Kulgera Sheet; N.T.

The composition of this sample is summarised in the following table. The methods of analysis which produced these results are described later in this report.

Radicals detected in the flame photometer; mainly Na, also K, Ca, Mg, Sr. Radicals detected chemically, abundant Cl, minor SO₄, less than 1 ppm. B.

Component fractions	Wt%	Composition and minerals found by x-ray and petrologically	Probable mineral equivalents in salt crust specimens.		
Fraction soluble in H ₂ O	70.45	NaCl halite.	halite.		
Fraction insoluble in H ₂ O, soluble in HCl	4.11	CaSO ₄ anhydrite	anhydrite or gypsum		
Fraction insoluble in H ₂ O, insoluble in HCl	25.50	sand, clay, limonite.	-		

The K, Mg and Sr probably from admixtures with the halite and gypsum.

Mothods of Analysis.

- 1. The samples were analysed in the flame photometer by S.Baker for the elements, Na, K, Ca, Mg and Sr.
- 2. N.Le Roux chemically analysed the samplew semi-quantitatively for the Cland SO₄ radical and quantitative; y for the B content.
- 3. A mineralogical examination of the evaporite components was conducted on the basis of the selective solubility of evaporite minerals in $\rm H_2O$ and $\rm HCl$.
- 4. The fraction soluble in H_2O and the fraction soluble in HCI but insoluble in H_2O were separated from their respective solvents by filtration and subsequent evaporation.
- 5. The composition of a random sample of each residue was determined from an x-ray powder diffraction pattern photograph.
- 6. A random sample of each residue was examined petrologically to determine the possible presence of more than one mineral in that fraction.

Laboratory Serial No. 1026A.

Field No.3

This rock consists of chalcopyrite (45%), pyrrhotite (35%), sphalerite (5%), alteration products (5%).

The ore minerals are leached; sphalerite shows the most extensive alteration and is commonly accompanied by limonite; chalcopyrite is selectively leached along crystallographic axial planes.

Chalcopyrite and pyrrhotite occur in irregular masses with mutual interlocking boundaries. Some pyrrhotite is localised along the periphery of chalcopyrite masses, commonly adjacent to sphalerite.

Sphalerite shows an almost exclusive association with chalcopyrite although some small blebs are disseminated through pyrrhotite. Irregular bleb like masses of sphalerite up to 0.5 mms. across occur as inclusions in chalcopyrite and vein like masses border the periphery of some chalcopyrite grains. Some of the sphalerite contains minor amounts of disseminated extremely fine exsolution blebs of chalcopyrite.

File. 120NT/20. 27th April, 1964.

EXAMINATION OF EVAPORITES IN SALT LAKE CRUST FROM THE KULGERA 1:250,000 SHEET, NORTHERN TERRITORY.

REPORT Nº 40

Ъу

Samples submitted by A.T. Wells for the determination of various evaporite components.

Field No.K.8

Locality: Pulcura Well, Kulgera Sheet, Northern Territory.

The composition of this sample is summarised in the following table. The methods of analysis which produced these results are described later in this report.

Radicals detected in the flame photometer; mainly Na, also K, Ca, Mg, Sr.

Radicals detected chemically; abundant SO4, minor Cl, less than 1 ppm. B.

Component fractions. Wt% Composition and minerals Probable mineral found by X-ray and equivalents in salt petrologically. crust specimen. Fraction soluble Na₂ SO₄ (90%) Thenardite or 48.12 in H₂O Thenardite mirabilite. Halite. NaCl (10%) Halite Halite. Fraction insoluble CaSO₄ Anhydrite Anhydrite or in H₂O, soluble in gypsum. HC1 1.46 Fraction insoluble Quartz-sand, clay, in H2O, insoluble limonite. 50.41 in HCl.

The K, Mg and Sr detected by the flame photometer, probably form admixtures with the evaporite minerals since trace amounts of these elements can substitute for Na and Ca.

Continued on \$.71.

REPORTNº 41.

12th May, 1964.

Spectrographic Analysis of Samples from Rum Jungle, N.T.

bу

A.D. Haldane

This report gives the results from analysis of core samples from D.D.H. A2, A3 and D690 Area 55. The samples were submitted by P. Pritchard.

All results are expressed in parts per million.

D.D.H.	A2	Ni	Co	Zn	Cu	V	Mo	Pb	Remarks
107'6"	- 109'6"	150	30	200	150	150	10	1500	
3181	- 3201	500	500	1500	300	500	a	2000	
151'	- 153 16",	1000	2000	1500	5000+	500	15	5000	
1501	- 1511	700	60	500	5000+	20	10	5000	(\mathtt{PTr})
1481	- 150'	100	60	1000	150	500	a	5000	(\mathtt{PTr})
1291	- 131'	300	60	500	1000	300	10	5000	(\mathtt{PTr})
1271	- 1291	300	60	200	1000	400	10	1000	
1241	- 127	100	20	1000	700	100	a	2000	(Sn, 20)
1231	- 124 ^t	300	60	2000	1500	50	10	5000	
105'6"	- 10716"	500	150	500	1500	50	20	5000	
102'6"	- 105'6"	200	60	500	2000	150	15	5000	(Sn, 30)
10016"	- 10216"	150	30	100	1000	500	10	2000	
9816"	- 100 6"	60	12	100	5000+	700	5	5000	
9616"	- 9816"	100	30	100	5000	500	15	5000+	
94'6"	- 9616"	30	15	a	5000+	700	a	5000+	(\mathtt{PTr})
92'6"	- 94¹6"	60	30	а	5000+	1000	10	5000+	(\mathtt{PTr})
841	- 86'6"	100	100	a	700	500	a	5000+	(\mathtt{PTr})
8216"	- 84'	150	60	a	200	500	15	5000	(PTr)
801	- 8216 ^m	30	30	a	500	700	50	5000+	(\mathtt{PTr})
77'6"	- 801	30	30	a.	200	700	70	5000	(\mathtt{PTr})
751	- 7716"	12	20	a.	150	500	80	5000+	(\mathtt{PTr})
72'6"	- 75'	15	20	a	200	500	80	5000+	(PTr)
701	- 7216"	15	20	a	200	500	100	5000+	(PTr)

D.D.H.	12	Ni	Co	Zn	Cu	Λ	Мо	ър	Komarks
671	. - 70†	5	10	a	150	50 0	70	5000+	(\mathtt{PTr})
631	- 671	5-	5	a	70	500	15	5000+	(\mathtt{PTr})
601	- 631	5-	5-	a	70	400	5	1000	(PTr)
57 '	- 60t	5-	5-	a	70	500	15	2000	(PTr)
501	- 53 [†]	5-	5	a	7 0	500	50	500	(PTr)
481	- 501	5	5-	e.	70	700	70	700	(\mathtt{PTr})
401	- 48 ¹	5-	5	a	50	500	70	1000	(PTr)
341	- 401	5-	. 5	a	50	500	100	500	(PTr)
301	- 341	12	12	a	100	500	150	1000	(PTr)
261	- 301	12	15	a	100	700	70	1000	(\mathtt{PTr})
241	- 26 ¹	60	30	100	200	300	100	2000	(\mathtt{PTr})
221	- 24'	60	60	200	400	300	20	2000	(\mathtt{PTr})
201	- 221	20	20	a	100	500	20	700	(\mathtt{PTr})
D.D.H.	Ą3								
461311	- 4719"	5 	15	a	1000	500	10	50 00	
691	- 721	40	20	a	5000+	700	20	5000+	
68†	- 721	20	20	a	2000	500	15	5000+	
721	- 831	40.	20	a	5000+	600	15	5000+	
149'6"	- 1521	2000	500	3000	5000	1000	300	5000+	•
2181	- 2201	1000	1500	3000	1000	300	a	5000	
2221	- 2251	700	1000	3000	70	500	a	100	
2251	- 2291	700	1000	3000	500	500	a	5000+	
2291	- 2301	500	500	1000	200	500	20	3000	
25016"	- 255!	3 00	200	700	300	300	a	5000	
2601	- 264'	7 00	1000	a	2000	6 00	5	5000+	
3071	- 3101	400	1000	a	100	500	5	1000	
3101	- 31216"	500	200	a	100	500	a	100	
312'6"	- 315'6"	700	300	ವಿ	70	700	10	500	
31516"	- 3181	600	500	700	100	500	a	200	
32416"	- 3281	1000	1000	1000	100	500	70	3000	
3651	- 3681	2000	700	a	100	300	5	1000	
3611	- 3631	200	150	a	1000	100	50	150	
3351	- 3401	100	150	a	1000	10	30	1000	(Sn, 200)
331'6"	- 335 t	300	150	a	70	400	15	1000	
3281	- 331'6"	700	500	a	100	400	ವಿ	1000	
214'6"	- 219¹	1000	1000	3000	1000	400	5	5000	
368 †	- 373'6"	60	100	a	500	50	5	200	
37316"	- 3781	60	200	a	500	20	10	20 0	
3781	- 3861	80	150	a	150	50	20	70	
101	- 12 [†]	20	20	a	1000	1000	100	5000+	
121	- 141	15	20	a	500	500	5	5000+	
141	- 16¹	15	30	а	1000	500	20	5000+	
161	- 18!	10	15	a	700	700	10	5000+	
205 1	- 210¹	400	1000	3000	1000	300	50	1000	

р.р.н. Д	3	Ni	Co	Zn	Cu	v	Mo	₽b	Romarks
181	- 20 t	12	2 0	a	300	500	5	5000+	
201	- 221	5	10	a.	500	500	70	5000+	
221	- 241	10	10	a	700	500	5	5000+	
241	- 26†	5	10	a.	700	700	20	5000+	
261	- 281	5	10	8	700	700	50	5000+	
231	- 301	5	10	a,	700	500	10	5000+	•
301	- 331611	5	10	a.	700	500	10	5000+	
331611	- 38'	10	12	8.	1000	500	5	5000+	(Sn, 10)
381	- 4319"	10	12	8.	1000	50 0	20	5000+	
43*	- 4613"	10	15	a	1500	500	10	5000+	
12116"	- 1261611	2000	2000+	3000	5000+	500	50	5000++	
13116"	- 1341	2000	2000+	5000	5000+	500	20	5000++	
2191	- 2221	700	2000	2000	700	3 00	a	5000	
176	- 1811	700	500	5000	200	300	10	1000	
1811	- 1851	300	500	2000	100	300	a	700	•
1851	- 1901	300	500	2000	10 0	300	a	200	
1901	- 1951	300	300	200 0	2 00	300	a.	100	
1951	- 2001	300	30 0	1000	100	400	a	500	
2001	- 2031	300	300	1500	150	3 00	a	1000	
203 *	- 2051	300	500	1500	200	500	a	3000	
205	- 2101	200	700	15 00	150	400	a.	1500	
2101	- 214'6"	7,00	700	2000	500	500	a	5000	
1121	- 116¹	700	500	3000	3000	200	15 0	5000	
1161	- 117'	550	1000	3000	5000	300	100	5000+	
1171	- 121'6"	700	500	4000	5000+	500	50	5000+	
126'6"	- 13116"	700	1000	4000	5000+	400	70	5000+	
135 '	- 13916"	200 0	2000+	5000	5000+	300	30	5000+	
13916"	- 144'	2000	2000	5000	5000+	500	30	5000+	
1461	- 149'6"	700	500	2000	5000	500	70	5000+	
2301	- 233'	150	200	1500	200	300	15	2000	
2331	- 235 t	150	200	1000	100	300	3 0	2000	
235 1	- 237 ¹	.200	300	1000	100	300	a,	500	
2371	- 240'5"	200	300	1000	100	500	a	150	
24016"	- 242'	300	500	1000	200	500	10	1000	
2421	- 246.16"	500	1000	1000	300	400	15	5000	
246'6"	- 25016"	1000	1000	500	1000	400	15	5000+	
1081	- 10916"	300	200	700	4000	500	150	5000+	
D690	0016	20				-ر مرسو	. .		
801	- 8216"	20	15	100	70 0	5 00	15	1000	
2216"	- 25 ¹	100	30 30	100	300	2 00	10	1000	
1101	- 11216"	30	30 00	100	5000	500	20	500	
9716"	- 100 ¹	30 	20	100	150	700	50	1000	

Be was sought but not dotected in any sample plate Nos. 751 and 752, 756-758

Spectrographic Analysis of Samples from Rum Jungle, N.T.

bу

A.D. Haldane

This report gives the results from analysis of core samples from C.D. 155, 158, 162, 163, 165, 168, 169, 172, 173 and 174. The samples were submitted by P. Pritchard.

All results are expressed in parts per million.

C.D.	155		Ni	Co	Zn	Cu	Λ	Mo	Pb	Remarks
. 201		251	300	150	а	700	500	a	1000	
25 '	-	301	200	150	а	800	1000	a	1000	
301	٠ ــ	351	300	150	a	800	500	a	1000	
35 '	_	401	200	300	a	1000	1000	5	2000	
401	_	45 '	150	100	a	1000	300	5	300	
45'	_	501	300	500	a.	1500	300	10	200	
501		551	200	200	a	1000	200	7	200	
55 '	· –	601	200	200	а	1000	200	7	100	
601	***	651	400	100	a	700	200	10	200	
65 '		701	300	200	a	1500	200	7	200	
701	· -	75 '	500	500	a	2000	300	7	500	
75 †	_	801	500	300	a	2000	500	10	700	
801		851	200	100	а	1000	200	7	100	
851	٠ ـ	901	500	300	a	2000	300	5	100	
901	-	95 '	300	300	a	1500	200	5	200	
951		1001	400	500	a	3000	300	5	200	
1001	-	1051	500	500	a	5000	200	5	700	
1051	-	1101	500	700	a	5000+	300	7	500	
1101		115'	400	1000	a	5000	200	5	700	
115'	; -	1201	500	1000	a	5000+	200	7	1000	
1201		125 1	500	1000	a	5000+	200	10	2000	
125	_	1301	1000	2000	.a.	5000+	200	10	2000	
C.D.	158									
15'		201	100	60	a	700	10	20	500	(Sn, 30)
201	-	25 1	100	60	a '	700	20	20	500	
25 '		301	100	60	а	1000	5-	5	700	
301	-	35 '	500	1000	a	1500	5	15	5000+	
351	, -	40 °	500	1000	а	3000	5	10	5000	~
401		45 '	500	1000	500	5000	10	15	5000	(Be, 10)

		٠.	• •							
C.D.	158		Ni	Co	Zn	Cu	Λ	Mo	Pb	Remarks
50 1		55 '	1000	1000	1500	5000+	20	10	1500	(Be, 20)
55 '		601	2000	2000	2000	5000	30	10	1000	(Be, 20)
601	-	65 f	2000	2000	2000	5000	20	10	700	(Be, 20)
651	_	701	1000	1000	2000	5000	5-	5	700 .	(Be, 20)
701	-	75 †	2000	1500	700	5000	40	15	700	(Be, 10)
801	-	851	700	500	700	1000	10	15	50	
851	-	901	400	400	200	1000	10	10	50	
95 i		1001	500	300	300	1000	50	10	70	
100	-	105 '	1000	1000	1000	2000	20	10	100	
C.D.	162									
55 '	***	601	150	80	a	700	700	15	5000+	
601	-	65 '	80	100	a	500	1000	20	5000+	
65 1		701	80	80	a	400	1000	20	5000+	(Sn, 20)
701	-	75 '	100	100	а	1000	500	15	5000+	
751		801	150	150	a	1500	700	70	5000+	
801	-	85 '	300	200	a	1500	700	20	5000+	
15 t	•••	201	200	100	a	1000	700	15	5000+	
201	_	25 ¹	80	60	a	1500	1000	15	5000+	
301		351	30	20	a	1000	500	10	5000+	
351	_	401	60	60	а	7 00	500	20	5000+	
401	_	45 '	6 0	100	a .	700	700	15	5000+	
50 1	_	55 ¹	30	150	а	700	700	20	5000+	
851	_	901	500	150	a	1500	700	15	5000+	
901	_	95 '	300	150	700	1500	500	15	5000+	
95 '	-	1001	300	150	700	1500	500	15	5000+	
1001		1051	500	150	200	1500	400	10	5000+	
1051	-	1101	400	200	.300	1500	500	15	5000+	
1101		1151	400	150	500	1500	400	5	5000+	
115	-	1201	500	200	500	3000	500	20	5000+	
1201	-	125 1	500	200	700	3000	500	20	5000+	•
1251	-	1301	700	300	2000	5000	500	30	5000+	
1301	-	1351	2000+	700	2000	5000+	700	20	5000+	
135 [†]		1401	2000+	7⊍0	1500	5000	500	20	5000+	
145 '	_	150 !	1000	700	1000	1500	500	15	5000+	
1501	-	155	2000+	2000+	4000	700	500	15	5000+	
155 '		1601	2000	20.00	1500	1000	700	30	5000+	
1601	-	1651	2000	2000	700	1000	500	20	5000+	
1651	-	1701	2000+	2000+	1000	1000	500	50	5000+	
1701	-	1751	2000	1000	1000	1000	400	15	2000	
1701		175	2000+	1000	10 0 0	1500	400	15	5000	
1751	_	1801	2000	1000	1%	1500	400	15	4000	
1801		185 '	2000+	1500	1%	700	500	20	5000	

C.D.	162	Ni	Co	Zn	Cu	Λ.	Mo	Рb	Remarks
1851	- 190	1 2000+	1000	500	500	500	70	1500	
1901	- 195	1500	700	1000	500	500	15	5000+	
195	- 200	t 2000	1500	1500	5000	700	200	5000	
2001	- 205	1 2000	700	1000	1500	400	500	5000	
2051	- 210	1 2000	500	100	1500	500	50	5000	
2101	- 215	1 2000	1000	200	4000	400	400	3000	
2151	- 220	2000+	2000	500	5000+	500	_ 30	2000	
2201	- 225	2000	1500	1000	5000+	200	300	1000	
C.D.	163								
351	- 40	1000	1000	a	500	500	a,	100	(Sn, 20)
401	- 45	700	4მს	a,	500	100	300	50	
501	- 55	1000	1000	а	700	200	20	2Ü	
55 ¹	- 60	' 700	500	a	1000	50	15	a	
601	- 65	1000	1000	200	1500	200	10	a	
651	- 70	700	1000	a	1000	150	10	a	
701	- 75	' 500	500	a,	700	200	20	20	
C.D.	165								
1651	- 170	300	500	a	5000	500	20	5000+	(Sn, 20)
2101	- 215	600	500	а	50004	500	10	5000	(Sn, 10)
2151	- 220	500	500	a	4000	500	10	2000	(Sn, 10)
2201	- 225	500	300	а	1500	500	10	2000	(Sn, 10)
225'	- 230	500	300	a	1000	500	10	1000	(Sn, 20)
2301	- 235	400	300	a	2000	500	15	1000	(Sn, 10)
2351	- 240	400	500	a	1000	500	5	500	(Sn, 10)
2401	- 245	1000	2000	a	700,	500	5	2000	(Sn, 10)
245'	- 250	1000	2000	а	500	1000	10	1000	(Sn, 15)
C.D.									
201	– 25		60	ಒ	1500	700	20	5000+	
501	 55		150	500	2000	700	20	5000+	
55 '	– 60		100	500	1500	1000	20	5000∔	
601	- 65		60	a	1000	500	20	5000+	(Sn, 10)
651	- 70		100	a	15 00	500	30	5000+	
701	- 75	_	100	500	1500	500	10	5000+	
751	- 80		200	1000	2000	500	10	5000+	
801	- 85		200	700	1500	300	10	5000+	
85'	- 90	-	500	500	2000	500	50	5000+	
901	- 95		500	700	5000	500	15	5000+	
951	- 100		1000	1000	5000	700	50	5000+	
1001	- 105	-	1000	500	4000	300	30	5000+	
105 '		•	500	500 5 00	2000	500	20	5000+	
1101	- 115"	1000	2000	500	3000	400	20	5000+	

C.D.	168		Ni	Co	Zn	Cu	v	Mo	Pb	Remarks
1201	•	125'	2000	2000	700	5000+	500	20	5000+	
1251	-	1301	2000	2000	700	4000	500	20	5000+	
1301	-	135 1	1000	2 000	700	3000	500	10	5000+	
1351		140*	1000	2000	700	2000	400	15	5000+	
1401	-	145 1	1000	2000	500	3000	300	15	5000+	
145'	-	1501	1000	1500	700	4000	400	10	5000+	
1501		155'	1000	1500	500	4000	500	15	5000+	
1551		1601	1000	1000	500	4000	300	10	5000+	
1601	-	1681	1000	1000	400	5000	700	10	5000+	
1701	-	175	1000	2000	500	5000	400	10	5000+	
1751	-	180	2000	2000	700	50004	400	10	5000+	
1801	-	185 [†]	2000	2000	700	5000	500	70	5000+	
G.D.	169									
151	-	201	15	10	a	50	2000+	10	70	
201	***	251	20	12	a	25	2000+	10	100	
25'	-	30 t	30	12	a	50	2000+	10	70	
301	<u> </u>	351	100	20	a	100	2000+	70	100	
401	-	45 '	100	12	a.	70	400	15	100	
451	-	501	30	15	a	15	200	10	50	
501	-	55'	30	10	a	20	300	10	50	
55'	-	60 '	30	10	a	10	,300	10	20	
60 t		65 '	15	5	a	10	300	10	20	
701	-	75'	20	10	a	10	150	10	200	
751		801	20	5	a	15	150	10	a	
801	_	851	20	5	a	10	100	5	a.	
901	-	951	30	10	а	10	150	20	50	
951		1001	30	10	a	5	200	50	a	
1001		1051	60	5	'a.	15	20	10	a	
1051		1101	60	10	a	25	15	10	a	
1101		115'	100	20	a	2.0	100	20	:a	(Sn, 15)
115'		1201	100	20	a,	15	150	5	a	(Sn, 10)
1251		1301	150	30	a	25	20	10	a	
1301		1351	200	20	a	25	20	10	a	
135†		140'	200	30	3	4.7	50	10	a	
1401		1451	200	40	<i>2.</i>	4E	}00 ::50	15	a	
1451		1501	150	30 60	a,	45 ac	150	10	a	/a
1501		1551	150	60 60	a	15	150	10	a	(Sn, 10)
155 ' 160 '		160' 165'	150	60 60	a	10	200	10	a,	(Sn, 5)
85 †	·	90'	100	60 40	a	5	200	5	a	(Sn, 10)
1651		90' 170'	20	10	a,	10	200	5	a.	(Sn, 5)
			100	30	a	10	100	10	a	(Sn, 10)
1701	•••	1721	100	30	a	10	150	5	a	(Sn, 10)

5•

C.D.	172		Ni	Co	Zn	Cu	V	Мо	Pb	Remarks
501	_	551	100	50	a	200	50	5	100	•
55 '	-	601	200	100	a	500	500	a	100	
601		75'	200	100	a	700	500	a	100	
65 '	_	701	200	60	a	7 00	300	15	100	
701	_	751	150	60	a.	300	300	a	100	
751	_	801	150	80	a	200	500	a	50	
801	_	85 1	200	100	a	200	500	a	50	•
85 t		901	400	200	a	300	300	10	a	
901	-	95 '	500	200	a	iou	200	15	a	
95 '	_	1001	500	200	a	200	200	15	a	
1001	_	1051	300	200	a	1000	200	10	a,	
C.D.	173									
301	-	35 '	200	60	೩	50	500	a	10	(Sn, 10, PTr)
35 1	-	401	150	100	a.	20	200	a	10	(Sn, 10, PTr)
401	·	45 '	100	60	a.	70	400	5	5	(\mathtt{PTr})
45 1	_	501	200	100	a.	70	400	20	a	
501	_	55!	150	30	a.	25	100	5	a	
55 '	_	601	200	30	a.	20	100	10	a	
60 t	_	65'	150	30	a	25	150	10	a	
651	_	691	20	12	a	5	5	a	a	
C.D.	174									
101	. –	151	150	50	a	300	500	20	100	
151		201	100	30	a	200	300	15	10	
201	-	25 '	150	400	a	200	200	25	20	
25 '	_	301	200	200	a	100	100	15	20	
301	_	351	300	150	a	50	50	5	20	

Plate Nos. 758 - 762 and 764 - 766

REPORTNº 43

May, 1964.

Spectrochemical Analysis of Samples from Rum Jungle, N.T.

bу

A.D. Haldano

Semiquantitative estimations were made of the trace metal content of core samples from Area 55 Rum Jungle. The samples were submitted by P. Pritchard.

All results are expressed in parts per million.

	D.D.H.	A.	1	Ni	Co	Cu	V	Мо	Pb	Romarks
	2641	-	2651	2000	1500	50	10	5	а	(Zn2000, Sn5)
	25716"	-	264'(1)	300	200	100	300	a	50	(Zn200)
	25716"	-	264'(2)	500	500	100	500	100	70	(Zn200)
	255†	-	2561	800	500	50	200	5	a	(Zn300)
	2 2 5 ¹	-	22716"	150	80	200	300	150	3000	(Zn100)
	2231		225 1	200	80	500	500	а	2000	(Zn300, Sn10)
•	22016"	-	2231	300	80	70	300	15	50	(Zn100)
	217'6"	-	22016"	300	150	200	300	5	1000	(Zn200, Sn20)
•	214	-	217'6"	500	200	100	500	15	100	(Zn200)
	2101		212'6"	2000	1000	100	500	150	50	(Zn100)
	185 '		1881	300	100	70	500	8,	1000	(Zn100, Sn10)
	180'6"	-	185'	1500	500	300	300	20	3000	(Zn1000, Sn10,PTr)
	1621		166'6"(1)	20	20	1000	700	ವಿ	5000+	(Zn100, Sn20, PTr)
	162'	-	166'6"(2)	30	30	1500	700	a	5000+	(Zn200, Sn20,PTr)
	1581	-	1621	30	150	700	700	a	5000+	(Zn200, Sn20,PTr)
	1541	-	158 '	6 0	30	1000	700	a	5000+	(Zn200, Sn10)
	151'6"		154'	200	30 0	1500	70 0	20	5000+	(Zn400, Sn50)
	1491		151'6"	60	100	1500	1000	a	5000+	(Zn400, Sn70)
	1461		149'	250	150	2000	1000	a	5000+	(Zn200, Sn50)
		-	146'6"	100	15	5000+	1000	a	5000+	(Sn200, Sn50)
			118'6"	100	30	500	500	10	5000+	(Zn100, Sn10)
	•	-	881	150	20	700	500	5	5000	(Zn200, Sn5)
	- 2	-	-1	300	30	2000	500	5	5000	(Zn200, Sn5)
	8216"		85 '	300	60	2000	3 00	5	5000+	(Zn500)
	371'6"		• •	500	500	5000+	100	10	200	(Zn500, Sn10)
	3691			200	100	5000	50	200	1000	(Zn100)
	36616"		•	200	100	5000+	100	5	700	(Sn10)
=	362'6"		-	500	300	5000+	300	5-	1000	
	359'6"			300	150	3000	100	200	700	
.k :	357'	- 3	359'6"	200	60	40 00	5	10	700	

D.D.H. A1	Ni	Co	Cu	V	Мо	Pb	Remarks
354'6" - 357'	1000	150	4000	5	10	700	·
353' - 354'6"	500	200	5000+	5~	10	7 00	
345' - 348'	300	150	5000+	5-	15	1500	
342'4" - 345'(1)	300	150	5000+	5-	15	1000	
339'2" - 342'4"	200	200	5000+	5-	15	600	
338'6" - 340'6"	200	150	5000+	5-	10	100	
336'6" - 338'6"	100	60	5000+	5-	10	500	
335'6" - 339'2"(1)	200	200	5000 (5	15	2000	
335'6" - 339'2"(2)	200	100	5000+	5-	20	200	
334 ¹ 4" - 336 ¹ 6"	200	60	1000	5-	30	500	
333† - 335†6"	150	80	1500	5	20	1000	
331'6" - 333'	2 00	150	1500	5-	10	700	
329' - 331'6"	200	60	1500	5-	20	700	
324 ' - 326'	300	300	5000+	5-	15	600	
320'6" - 322'	400	200	3000	100	15	2000	
310' - 312'	200	80	1000	5-	10	200	
72" - 74'	5 00	100	1500	700	200	5000	
34' - 37'	200	60	1000	2000	150	5000+	
374'6" - 375'6"	500	500	5000+	150	15	100	(Zn500)
371' - 374'6"	700	1000	5000+	5	15	200	(Zn500)
370'6" - 371'6"	300	500	5000+	50	5	700	(Zn1000, Sn10)
364' - 366'6"	200	150	5000+	150 .	5	20 0	(Zn100, Sn10)
351 ' - 353'	300	200	5000+	5-	20	700	
348' - 351'	300	200	50 00	5-	15	1000	
342'4" - 345'(2)	300	300	5000+	5-	15	1000	
332' - 334'4"	300	100	5000	5 	15	3000	(Zn100)
329' - 332'	200	80	4000	5-	20	2000	(Zn100)
326' - 329'	200	80	4000	5-	15	7 00	
327' - 329'	200	60	2000	5	10	700	
325' - 327'	300	100	5 000 +	5-	15	500	
323' - 325'	300	100	5000+	5-	10	300	
322' - 324'	200	300	5000+	5	15	700	
321' - 323'	400	300	1500	5-	20	1500	
318'6" - 320'6"	500	200	2000	5-	10	1500	
316'6" - 318'6"	300	150	1000	50	20	5000+	(Zn100)
314'6" - 316'6"	500	1000	5000+	30	40	1500	(Zn200)
312' - 314'6"	300	400	2000	20	10	1500	(Zn100)
308' - 310'6"	150	100	5000	5	10	1000	
301' - 304'	700	300	5000+	100	100	3000	(Zn500)
283'6" - 286'	400	300	70	300	100	5000	(Zn100)
298' - 301'	200	200	3000	300	15	150	(Zn300, Sn10)
281' - 283'6"	500	200	70	50 0	150	5000+	(Zn100, Sn10)

D.D.H.	A 1		Ni	Co	Cu	Λ	Мо	Рb	Romarks
761	-	781	300	100	2000	300	10	5000	(Zn500)
741	-	761	15 0	30	1000	150	15	5000	(Zn100)
701	_	72'	200	30	1000	200	20	5000	(Zn100)
67'6"	-	701	1000	150	5000	400	100	5000+	(Zn700)
65 '	-	6716"	150	60	1500	150	150	5000	(Zn200)
37 '	-	391	100	60	1000	1000	50	5000+	(Zn100)

Be was sought but not detected in any sample Plate Nos. 749 - 751 and 753

REPORT Nº 44

May, 1964.

Estimation of lead on Core Samples from Area 55, Rum Jungle

ру

S. Baker

Following are results for the determination of load on core samples from Area 55.

D.D.H.	A	<u>l</u> .	por co	ent lead	$D_{\bullet}I$	<u>н.</u>	<u> 12</u>		per	cent	load
8216"	-	851	0.	.20	63	1	-	671		0.29	
85 '	-	871	0.	. 20	67	1		701		0.35	
871	-	881	0.	.29	70	t	-	7216"		0.54	
1161	_	11816"	0.	.39	72	16!	_	75'		0.50	
144 ^t	-	1461611	٥.	.77	75	t		77'6"		0.33	
1461	-	1491	0.	.56	77	1611	•	801		0.33	
149 1	_	151'6"	0.	. 16	80	t	-	8216"		0.39	
_151 '	-	1541	0.	.18	82	16"	-	84'		0.62	
1541	-	1581	1.	2	84	t	-	8616"		0.25	
158 '	-	1621	2.	4	92	1		94'6"		0.93	
1621	_	166' (1)	1.	0	94	'6"		961		1.1	
1621	-	166' (2)	5•	0							

Report No. 45

May, 1964.

Estimation of Copper on Samples from Rum Jungle

Ъу

S. Baker

Following are results for the estimation of copper on samples from Rum Jungle, submitted by P. Pritchard.

C.D. 162	Per Cent Copper
125' - 130'	0.45
130' - 135'	0.55
135' - 140'	0.65
195' - 200'	0.27
210' - 215'	0.45
215' - 220'	1.24
C.D. 168	Per Cent Copper
901 - 951	0.40
95' - 100'	0.46
100' - 105'	0.28
1201 - 1251	0.62
125' - 130'	0.52
145' - 150'	0.52
150' - 155'	0.48
155' - 160'	0.50
160' - 168'	0.57
170' - 175'	0.47
175' - 180'	0.47
1801 - 1851	0.70

REDORTH 46

May, 1964.

Estimation of Copper on Core Samples from Area 55, Rum Jungle

by '

S. Baker

Following are results for the determination of copper on core samples as AI from Area 55, Rum Jungle.

			per cent Copper
301 '	_	304'6"	0.78
3081	-	31016"	0.28
312	-	31416"	0.41
31416"	_	31616"	0.42
31616"	-	31816"	0.31
31816"		32016"	0.23
3211	_	3231	0. 56
3221		3241	0.87
3231	_	3251	0.94
3251	****	3271	1.1
3261	_	3291	0.70
327 t		3291	0.22
3291	-	3321	0.29
3321	_	334'4"	0.34
34214"	_	345'(2)	1•5
348'		3511	0.29
351'		3531	0.60
3641	_	36616"	0.94
370'6"	-	371'6"	0.72
373'	_	37416"	0.65
3741611	-	37516"	0.87

Estimation of Copper and Lead on Core Samples D.G.17, 24, 25, 30 and 31 from Rum Jungle.

bу

S. Baker

Following are results for the determination of Copper and Lead on Core Samples from Rum Jungle, N.T. Note D.G.17 has been assayed previously for Pb by X-ray fluorescence analysis and those results are unreliable and should be discarded.

D.G.17	per cent Lead			per cent Load
3' - 7'	1.9	911	- 95½'	2.1
7' - 9'	0.37	100 1	- 103'	0.56
9' - 13'	0.39	1031	- 103½1	1.4
13' - 16'	0.58	103 ' 4"	- 1091	0.54
17' - 21'	1.2	116'	- 121 ^t	1.4
21호' - 26'	2.2	1211	- 127°	1.2
26' - 31'	2.2		•	
31' - 36'	0.75			
41' - 46'	0.73			
46' - 50'	0. 48			
50' - 54 ^½ '	0.52			
54½' - 57'	0.79			
57' - 62'	2.3			
62' - 64'	7.0			
641 - 661	. 3•5			
$66\frac{1}{2}$ ' - $67\frac{1}{2}$ '	3.5			
67' - 71'	1.8			
71 ¹ / ₂ ' - 76 ¹ / ₂ '	0.68			
76' - 80'	1.0			
80'6" - 84'6"	0.68			
$84\frac{1}{2}$ ' - $87\frac{3}{4}$ '	1.6			
874 - 91'	2.3			•
D.G. 24	Recovery		per cent	Copper
348'7" - 349'6"	9"		0.52	
349'6" - 353'	11"		0.8	
3531 - 3541611	1"		0.40	
354'6" - 356' (1)	8 <u>1</u> ॥		0.81	black siliceous rock
354'6" - 356' (2)	4 <u>1</u> ॥		8.1	brown siliceous rock
356' - 357'4"	1"		0.73	
357'4" - 358'4"	12"		0.95	

D.G.25		Recovery	per cent	Copper
3613" -	371		0.20	
37' -	3914"		0.20	
39¹4n -	411		0.12	
411 -	4215"		0.35	
42'5" -	43 '		0.30	
43' -	4416"		0.15	
4416" -	4714"		0.1	
6516" -	701 (1)	15"	0.74	brown clay
6516" -	70' (2)	14"	0.70	black clay
65'6" -	70' (3)	2"	0.45	brown clay
141' -	144*		0.25	
D.G. 30				
75' -	801		0.68	
801 -	851		0.91	٠
655' -	660†		4.2	
D.G. 31				
590' -	595'		1.7	
595' -	6001		1.2	
610'	615'		0.50	

Report No. 48

May, 1964

Analysis of Water Samples from the A.C.T.

bу

S. Baker

Following are results for the analysis of Water Samples from the A.C.T., submitted by J.M. Burton.

Field No.	Sugerloaf W1 L5	Sugerloaf BA X3	Springfield W1 L7	Narrangullen BA X4	Narrangullen BB X5
Conductivity	400	1250	2130	2000	2080
pΗ	6.5	7.3	7•3	7.2	7.2
Cl p.p.m.	31 (0.87)	12 (0.34)	247 (6.96)	135 (3.80)	135 (3.80)
ио 3			not detected		
SO4 p.p.m.	64 (1.33)	148 (3.08)	32 (0.66)	280 (5.83)	284 (5.91)
HCO, p.p.m.	37 (0.60)	470 (7.70)	543 (8.90)	397 (6.50)	390 (6.40)
Ca p.p.m.	14 (0.70)	126 (6.29)	136 (6.79)	162 (8.08)	162 (8.08)
Mg p.p.m.	8 (0.66)	21 (1.73)	79 (6.50)	28 (2.30)	30 (2.47)
Na p.p.m.	33 (1.43)	72 (3.13)	75 (3.26)	130 (5.65)	130 (5.65)
K	less than 3	less than 3	less than 3	4	5
T.D.S.(180°C)	180	610	855	960	950
Field No.	Narrangullen BC. L14	Greendale	Butmaroo Creek L3	Murrumbateman I X6	Iurallo Creek L31
Conductivity	3850	810	714	264	1120
рH	7•3	7.6	7.3	7•1	7 • 4
Cl p.p.m.	405 (11.4)	50 (1.41)	112 (3.16)	40 (1.13)	225 (6.34)
S04 p.p.m.	756 (15.7)	8 (0.17)	3 (0.06)	less than 3	43 (0.89)
HCO3 p.p.m.	488 (8.00)	460 (7.54)	276 (4.52)	104 (1.70)	287 (4.70)
Ca p.p.m.	333 (16.6)	56 (2 . 79)	38 (1.89)	6 (0.30)	52 (2 . 59)
Mg p.p.m.	94 (7•73)	45 (3.70)	35 (2.88)	5 (0.41)	53 (4.36)
Na p.p.m.	248 (10.8)	64 (2.78)	70 (3.05)	49 (2.13)	116 (5.05)
K p.p.m.	7.	less than 3	less than 3	less than 3	less than 3
T.D.S.(180°C)	2100	460	405	160	640

	Conductivity $(T = 25^{\circ}C)$
Paddy's River 23/2/64	100
Mountain Creek 6/3/64	265
Mullion Creek 6/3/64	88
Lake George 6/4/64	3100

Results in brackets refer to m. equ./litre. Serial No. 1504 - 1505 - 1506 Report No. 49.

File No. 153NT/4

May, 1964.

Spectrographic Analysis of Samples from Tennant Creek

bу

A.D. Haldane

This report gives the results from analysis of goochemical samples from Explorer 13 prospect. The samples were submitted by P.G. Dunn.

All results are expressed in parts per million.

Ex 13 Holo 1 (feet)	Ni	Co	Cu	٧	Мо	Pb	Remarks
258 – 268	20	25	5	150	5	70	
268 – 278	30	20	5-	150	5	50	
278 – 288	25	20	10	100	5	50	
288 – 298	20	25	5-	150	7	10	
298 - 308	30	20	15	100	5	20	
308 - 318	20	20	20	50	5	20	
318 - 328	30	20	10	70	7	10	
328 - 338	25	25	5	50	5	10	
338 - 348	30	20	10	100	5	20	•
348 – 358	40	20	10	50	7	10	
358 – 368	60	25	15	100	7	20	
368 - 378	15	20	5	50	5	20	
378 - 388	60	20	20	30	5	20	
388 – 398	30	20	15	50	5	10	
398 – 408	60	20	15	50	7	20	
408 - 418	60	20	15	50	5	20	
418 - 428	40	20	10	50	7	20	
428 - 438	80	20	25	20	7	10	
438 - 448	60	15	25	50	7	10	
448 - 458	60	15	50	50	5	100	
458 – 468	30	15	10	100	5	20	
468 - 478	60	20	25	100	5	20	
478 - 488	80	20	25	50	5	10	
488 – 498	80	15	25	100	5	10	
498 - 508	40	20	10	150	5	10	
508 - 518	150	20	20	150	10	20	
518 - 528	200	30	70	100	10	20	

Ex 13 Hole 1 (foot)	Ni	Со	Cu	V	Мо	Pb	Remark	8
528 - 538	100	20	15	150	5	10		
538 – 548	150	20	70	100	10	10		
548 – 558	150	30	700	100	5	5		
558 – 568	40	20	15	150	5	5		
568 - 578	60	20	15	150	5	10		
578 – 588	60	20	10	150	5	10		
588 - 598	30	25	70	150	5	20	Tr Bi	
598 - 608	40	20	10	150	5	10		
608 - 618	100	20	25	100	10	10		
618 - 628	100	20	20	100	5	10		
628 – 638	60	25	10	150	5	10		
638 - 648	100	20	25	100	7	5		
648 - 658	60	15	15	150	5	20		
658 – 660	03	15	20	100	5	30		
668 - 678	20	20	5	100	5	10		
678 - 688	60	20	10	100	7	5		
6 ටට – 69 ට	40	20	15	150	5	10		
698 – 708	40	20	10	100	5	10	•	
708 - 718	60	15	10	150	5	. 5		
7 1 8 - 728	30	20	15	100	5	5		
723 - 738	60	15	15	100	10	5		
738 - 748	60	15	50	20	5	10		
748 - 758	20	15	10	50	5	5		
758 – 76 8	60	15	15	50	5	5 -		
763 - 778	80	15	25	50	5	5		
778 – 788	30	15	10	150	5	5		
788 – 798	30	20	10	100	15	5		
79 8 – 3 0 8	15	15	10	100	5	5-		
808 - 818	100	12	100	20	5	5		
818 - 828	15	15	5-	50	5	5		
8 2 8 – 8 3 8	12	12	5	50	5	5		
3 38 – 848	12	15	5-	100	5-	5 -		
3 4 8 – 85 8	20	15	50	100	5	5		
8 5 8 - 8 6 8	15	15	5-	100	5	5		
368 – 378	15	15	5	70	5	5 -		
3 7 8 - 338	10	15	5-	50	5	5		
388 – 8 9 8	15	15	5-	50	5	5-		
898 - 908	20	12	10	20	5	10		
908 - 918	20	15	5~	50	5	5-		
918 - 928	12	20	70	70	5	5-		
928 - 938	15	30	15	50	5	5-		
938 - 948	20	40	3000	20	50	5-	Tr Bi	

Ex 13 Holo 1 (feet)	Ni	Со	Cu	V	Мо	Pb	Remarks
943 – 953	25	30	50	20	50	5	
95 8 – 968	20	30	15	5 ა	15	5~	Tr Bi
968 - 978	30	30	15	10	20	5-	
97 3 – 988	10	25	7	20	5	a	
9 88 – 998	30	60	25	10	10	ಒ	
998 - 1008	50	150	500	5-	5	a	
1008 - 1018	30	60	50	5-	5	a	
1018 - 1028	30	30	20	5-	20	a	
1028 - 1038	10	30	2	5 -	5	a	
1038 - 1048	10	20	5	20	5	a	
1048 - 1058	12	೦೦	3000	20	10	50	(Zn 100) Bi
1058 - 1068	20	20	10	5 -	10	a	
1068 - 1078	5	30	500	5	1000	20	(Zn 300) Bi.
1078 - 1088	10	40	25	5	300	60	(Zn 200) Bi
1088 - 1098	20	40	5000+	5	500	700	(Zn 200) Bi
1098 - 1108	20	40	100	5	10	a	
1108 - 1118	12	15	10	10	5	a	
1118 - 1128	15	12	10	40	5	a.	
1128 - 1138	12	. 12	5	40	5-	a	
1138 – 1148	15	12	15	50	5	a.	
1148 - 1158	15	12	5	30	5	a.	
1158 – 1168	20	15	5	50	5-	a	
1168 – 117 8	20	12	15	50	5	a	
1178 - 1188	20	15	15	3∪	5	a,	
1188 – 1198	15	15	10	50	5	a.	
1198 – 1203	20	12	10	50	5	a,	
1208 – 121 8	30	15	25	50	5	a	
121ರ 🗕 122ರ	60	20	30	70	10	10	
122ට – 1235	30	20	10	150	10	a	
1238 – 1248	30	20	10	100	10	5	
1248 – 1258	40	20	10	100	5	a	
1258 – 1268	5 ^ن	20	10	150	5	a	
1268 – 1278	15	15	5	150	5	a	
1278 - 1288	40	25	10	150	5	a	
1 2 88 – 1298	60	15	15	100	7	а	
1298 - 1308	30	20	5	150	5	a	
1308 - 1318	30	20	10	100	5	a	
1318 – 1328	30	15	20	50	10	a	
1328 – 1338	20	15	7	50	5	a	
1338 - 1348	60	20	15	.7 0	5	a	
1348 - 1358	50	15	10	150	5	a.	
135 8 - 136 8	20	20	5	150	5	a	

-

Ex 13 Hole 1 (feet)	Ni	Со	Cu	V.	Мо	Pb.	Remarks
1368 - 1378	30	15	10	100	5	5	•
1370 - 1388	40	20	5-	15 0	5-	a	
1388 - 1398	30	20	7	150	5-	5	
13 98 – 1408	60	20	15	100	5	a	
140 0 - 141 0	30	15	10	100	5	a	
1418 - 1428	25	15	5	70	5	a	
1423 - 1438	3 0	15	10	50	5	a	
1438 - 1448	30	20	5	50	5	a,	
1448 - 1458	60	15	15	100	7	5	
1458 - 1463	30	20	10	150	5	a	
1468 - 1478	60	20	15	100	7	a	
1470 - 1488	30	20	20	100	5	a	
1488 – 1498	30	15	10	150	5	a	
1498 - 1508	30	15	5-	70	5	a	
1503 - 151 3	30	15	20	5ú	7	10	
1518 – 1528	60	15	15	100	5	a	
1528 - 1538	20	15	5	100	5	a	
1533 - 1548	30	15	5	150	5	10	
1548 - 1558	25	15	10	150	5	10	
1558 - 1568	25	15	5-	150	5	1 0	
1568 - 1578	20	15	5 -	70	5	2 U	
1578 - 1588	40	40	1 0	100	5	10	

Phosphorus was sought but not detected in any sample

a - not detected

Plate No. 739 - 744

REPORTN° 50

206PNG/8

May, 1964.

Olivine Basalt from the April, 1964, Eruption of Manam Volcano,

New Guinea

bу

W.R. Morgan

The specimen, R.17706, was collected by C.D. Branch from the snout of an advancing lava flow in the south-east avalanche valley of Manam Valley.

Thin section shows the lava to be seriate porphyritic, the phenocrysts ranging in size from 2.5 mm. down to the average groundmass grain-size of 0.015 mm. The phenocrysts form about 20 to 25% of the rock, and consist of plagiculase, augite, and clivine.

Plagic clase phenocrysts form tabular to sub-tabular crystals that show slight zoning on their margins. Many occur as parallel and interpenetrant growths. Their composition is about An 85, zoned to labradorite. Augite forms pale green, euhedral prismatic crystals. Olivine occurs as colcurless, prismatic crystals with rounded margins; many clivine crystals are surrounded by a very thin rim of pale green granular clinepyroxene grains.

Groundmass crystals have random crientation, and are formed to tabular, commonly pellucid crystals of plagicclase, prismetic augite and probable hypersthene, together with octahedral black iron exide. All the crystals are enclosed in a dark brown, somewhat altered glass that forms about 25% of the rock.

A few cognate xenoliths are present. Some consist of clusters of slightly intergrown grains of augite; others are similar, but also contain granular clivine. Another is formed of anhedral clivine grains sub-cphitically enclosing small laths of plagicalese. The diameters of these inclusions are about 1 to 1.5 mm. and the average size of the grains within them is about 0.3 mm.

A very rough estimate of the percentage of minerals present is: plagicclase: 40, augite and (?) hypersthene: 25, glass: 25, olivine: 5, black iron oxide: 5.

The specimen is a porphyritic olivine basalt which, generally spoaking, is typical of Manam Volcano. The main difference between this sample and specimens from the 1957 eruption is the presence of phenocrystic hypersthene in the latter.

REPORT Nº 51

June, 1964.

Spectrographic Analysis of Samples from Rum Jungle N.T.

bу

A.D. Haldane

This report gives the results from analysis of samples from C.D. 174, C.D. 176, D.D.H. 726, D.D.H. 59A3, D. 582, D. 708 and D. 729.

C.D.	174		Ni	Co	Cu	V	Mo	Pb	Remarks
35 '	-	40 1	300	100	50	50	5	50	
401	-	45 '	100	40	50	10	5	20	
45 '		501	500	100	100	20	5	10	
501	-	55'	300	80	100	50	50	10	
551	-	58 '	200	30	50	5	70	a	
C.D.	176								
1351	-	140 t	2000	500	1000	400	100	10	
115	-	120 1	300	200	100	150	20	100	
1101	-	115'	300	200	200	20	20	70	
1051	-	1101	400	200	100	50	50	100	
1001	-	1051	500	150	200	150	15	50	
95 '	-	1001	300	150	200	5 0	20	20	
85 1	-	901	200	150	200	50	10	200	(Zn, 200)
801	-	85 ¹	400	200	200	100	10	100	(Zn, 200)
75 1	-	801	300	200	100	20	10	50	
65 '		701	400	150	100	150	10	20	
55†	-	60¹	300	150	100	200	10	15	
45 '		501	50 0	200	100	300	10	5	
D.D.I	H. 72	<u> 26</u>							
2551		2701	5000	2000	2000	50	30	700	(Zn, 500)
25016	5" -	255 '	700	500	2000	200	5	500	(Zn, 100)
2501	-	255 '	2000	1000	1500	20	10	200	(Zn, 1000)
244	-	248 '	2000+	2000+	5000+	200	10	2000	(Zn, 1000)
240°	•••	244	1000	500	1500	200	a	1000	
2191	-	2221	1000	1000	100	200	500	100	
2161		2191	2000	2000	2000	20	50	200	(Zn, 500)
1416	5" -	19'	15	12	500	500	ಒ	2000	(Sn, 20)
3616	5" -	3716"	60	10	100	20	5	500	
51'	-	521	60	10	100	5-	10	700	

D.D.H. 726	Ni	Co	Cu	V	Mo	Pb	Remarks
55' - '57'	60	10	100	• 5	10	1000	
70' - 72'	60	20	500	5 -	10	700	
72' - 75'	60	5	50	5-	10	100	
79' - 83'	60	10	100	5	10	200	
9919" - 1011	30	12	500	700	a	300	(Sn, 100)
1081 - 1131	30	12	300	1000	a	100	(Sn, 70)
157' - 159'	200	150	500	500	10	70	(Sn, 20)
16016" - 16416"	100	30	200	1000	a	100	(Sn, 20)
1781 - 18176"	100	80	100	500	a	50	(Sn, 20)
181'6" - 186'	2001	100	70	700	8.	50	(Sn, 10)
190' - 195'	200	100	700	700	8	100	
195† - 198†	400	100	100	500	a	100	(Sn, 10)
205'6" - 209'	500	200	500	700	a	500	(Sn, 10)
231 - 2619"	300	50	2000	1000	100	5000	(Zn, 500, Sn, 10)
291 - 331911	100	12	100	50	10	500	
39'6" - '44'	60	12	100	50	10	1000	
47' - 51'	60	5	100	5-	10	100	
52¹ - 55¹	60	5	150	5	10	500	
571 - 6016"	60	. 15	100	5	10	100	
6016" - 641	60	12	200	50	10	1000	
641 - 6616"	50	5	100	5-	10	200	
66'6" - 70'	60	12	100	5	10	200	
87' - 91'6"	80	15	700	100	10	1000	
91'6" - 95'6"	10 0	10	200	200	10	100	
9516" - 9919"	80	60	1000	500	5	2000	(Sn, 20)
75' - 79'	60	10	100	10	5	200	
101' - 105'	100	100	500	1000	a	1000	(Sn, 100)
105' - 108'	200	200	1500	700	a	100	(Sn, 50)
1081 - 1131	20	15	300	700	a	190	(Sn, 70)
117' - 119'	150	60	500	500	a	100	(Sn, 50)
119' - 125'6"	100	30	400	500	a	100	(Sn, 20)
129'6" - 131'6"	60	30	400	1000	a	200	(Sn, 20)
131'6" - 136'	100	60	300	700	a	100	(Sn, 10)
136' - 138'	100	100	500	700	a	100	(Sn, 20)
1381 - 1401	200	100	500	500	a	150	(Sn, 20)
140' - 143'6"	200	60	500	700	೩	200	(Sn, 20)
143'6" - 147'6"	300	10Ö	500	700	a	200	(Sn, 20)
159' - 160'6"	150	60	300	1000	a	200	(Sn, 20)
15216" - 1571	200	100	400	1000	a	100	(Sn, 20)
17316" - 1781	200	100	2000	500	a	100	(Sn, 10)
186' - 190'	300	150	100	700	a	150	
1981 - 2001	400	200	100	500	a	50	
2001 - 20116"	300	150	100	1000	೩	100	(Sn, 10)

D.D.H. 726	Ni	Co	Cu	V	Mo	Pb	Remarks
209' - 213'	1000	400	500	500	10	200	
213' - 216'	1000	500	1000	200	15	100	(Zn, 200)
222' - 226'	1000	500	1000	100	20	1000	(Zn, 500)
22916" - 23416"	500	400	1500	200	8.	100	
248' - 250'6"	1000	1000	5000+	200	15	1000	(Zn, 5000, Sn, 20)
D.D.H. 59 A3						•	
264' - 265'	400	1000	100	500	a,	100	
2651 - 26916"	500	2000	70	500	50	200	
269'6" - 274'	400	1000	100	500	20	100	
274" - 278'6"	400	1000	100	500	20	1000	
29016" - 2951	700	1000	100	700	50	5000	(Zn, 1000)
295' - 297'	1000	1000	100	700	a.	5000+	(Zn, 2000)
2971 - 29816"	500	500	70	700	15	1000	(Sn, 10)
29816" - 3011	700	500	150	700	10	2000	(Sn, 10)
121'6" - 126'6"	1000	500	5000+	300	50	5000+	(Zn, 3000)
1521 - 15516"	1000	700	5000+	500	20	5000+	(Zn, 3000)
15516" - 1591	1000	700	5000	500	. 80	5000+	(Zn, 3000)
159' - 162'	1000	1000	2000	300	10	5000+	(Zn, 5000)
255' - 260'	700	1000	100	300	5	700	(Zn, 1000)
27816" - 2821	700	2000	300	300	5	5000	(Zn, 5000)
282' - 286'	1000	2000	100	300	50	2000	(Zn, 700)
2861 - 29016"	1000	2000	100	500	100	1000	
3011 - 30416"	700	2000	500	500	10	2000	(Sn, 10)
304'6" - 307'	500	1500	200	500	50	1500	(Sn, 10)
3201 - 32416"	500	700	200	500	50	2000	(Zn, 5000, Sn, 5)
3631 - 3641	100	100	3000	50	5	100	
D. 582							
110' - 112'6"	200	100	100	100	20	a	(Sn, 10)
112'6" - 115'	200	20	70	150	10	5	
125' - 128'	700	200	500	500	a	a	
D. 708							
2301 - 2321	200	200	20	1000	a	50	(Sn, 50)
232' - 234'6"	400	200	50	1000	a	50	(Sn, 10)
234'6" - 236'6"	400	200	50	500	a	50	(Sn, 10)
236'6" - 238'6"	400	200	50	500	a	50	(Sn, 10)
238' - 241'	300	200	100	500	a	50	
241' - 244'	200	200	100	1000	a	50	(Sn, 5)
244' - 246'	400	200	500	700	a	50	(Sn, 5)
246' - 247'6"	150	100	200	700	a.	50	
247'6" - 249'6"	200	150	200	1000	a	50	(Sn, 5)
249'6" - 251'6"	300	150	200	700	a	100	(Sn, 5)

D. 708			Ni	Co	Cu	V	Мо	Pb	Remarks
251'	_	253 '	500	300	1500	700	a	100	(Sn, 5)
2531		254'6"	400	400	700	1000	8.	100	(Sn, 5)
2541		256'6"	300	200	500	1000	a	100	(Sn, 5)
25616"			300	200	400	700	a	100	(Sn, 5)
-		262'	500	200	500	700	a	70	(Sn, 5)
2621		264	300	200	500	700	a	100	. ,
264'		265 6"	200	150	200	700	a	100	
265.16"		-	500	400	400	500	a	100	
26716"	_	26916"	1000	500	500	500	a	70	(Sn, 5)
27116"		273'6"	700	500	500	500	a	100	
273'6"		276'6"	400	200	500	5 00	a	200	
27616"	-	2801	600	300	5000	500	a,	200	
2021611	_	2051	300	500	700	1000	8.	100	(Sn, 20)
2051	-	2071	300	500	500	1000	a.	100	(Sn, 20)
2181	_	22016"	200	200	50	1000	a	50	(Sn, 20)
2221611	-	22416"	200	200	70	1000	a	70	(Sn, 20)
224'6"	-	2261	300	200	25	1000	8.	100	(Sn, 20)
207	_	2091	200	150	700	1000	a	7 0	(Sn, 20)
2091	-	2121	200	500	70	1000	a	70	(Sn, 50)
2121	_	213'6"	150	200	15	1000	a.	50	(Sn, 50)
213 6"	_	215 6"	150	150	25	1000	a	50	(Sn, 70)
215'6"	•	2181	200	150	25	1000	a	50	(Sn, 50)
58 '	-	61'6"	100	30	1000	300	20	5000	(Sn, 10)
6116"	-	64 ¹	150	60	1000	300	20	5000+	
64 *		66 '	60	15	700	300	20	5000+	
661	-	68 *	100	15	1000	300	20	5000+	(Sn, 10)
681	-	711	60	15	500	300	10	5000	(Sn, 10)
711	-	74	100	20	700	300	10	5000	
741	-	77 '	60	15	500	150	10	5000	•
77*	-	831	150	60	500	5 - -	10	200	
83'	-	861	150	12	500	5 -	10	200	
861	-	901	100	10	200	5 -	5	50	
901	-	921	150	10	200	5-	7	50	
921		951	200	200	1000	5-	10	50	
951 981	_	981	100 60	20	700	5 	7	70	
1011		101'		12	200	150	10	200	
1031		1051	150 150	12 60	200 4000	5 -	10	200	
105'		1071	150	20	1000 500	5 - 5 -	15 10	100 50	
1071		1101	200	20	300	5 -	10 10		
1101		1121	200	100	1000	5 	10	50 10	
1121		1161	200	60	700	100	15	200	
, , _			200	-	100	100	し	200	

, 5∙

D. 708	Ni	Co	Cu	v	Mo	Pb	Remarks
116' - 119'	150	60.	500 -	70 0	5-	200	
119' - 120'6"	200	30	400	500	10	100	
12016" - 1221	200	30	400	,500	10	50	
1221 - 1261	60	60	150	700	15	500	(Sn, 10)
126' - 129'	200	20	200	700	5	100	(Sn, 10)
129' - 132'	500	20	500	20	10	50	
132' - 136'	300	60	1000	300	10	50	(Sn, 20)
136* - 140*	30	20	50	300	5	50	(Sn, 50)
140' - 143'6"	500	100	1000	1000	5	70	(Sn, 50)
143'6" - 146'6"	200	20	1000	500	5	50	(Sn, 50)
146' - 149'	500	150	1000	500	5	100	(Sn, 50)
149'6" - 151'	2000	1000	500	500	15	100	(Zn, 1000, Sn, 50)
151' - 154'	500	200	500	1000	10	100	(Sn, 100)
1541 - 15616"	200	60	700	1000	10	100	(Sn, 70)
15616" - 1591	500	100	500	1000	15	150	(Sn, 50)
1591 - 1611	200	60	200	1000	5	100	(Sn, 70)
161' - 163'	150	30	100	1000	5	50	(Sn, 70)
163' - 165'	200	60	200	1000	5 :	50	(Sn, 70)
165' - 167'	500	150	500	700	7	50	(Sn, 50)
167' - 169'	300	200	50 0	1000	10	50	
169' - 172'	300	200	500	1000	10	70	(Sn, 5)
172' - 173'	400	300	1000	1000	10	70	(Sn, 5)
173' - 175'	200	200	1000	1000	a	`20	(Sn, 5-)
1751 - 17716"	200	200	1500	700	a	50	(Sn, 5)
17716" - 1801	300	150	300	1000	a	50	(Sn, 5)
1801 - 18216"	60	60	500	1000	. a	50	(Sn, 50)
182'6" - 185'	200	200	1000	1000	a	70	(Sn, 20)
185' - 187'6"	100	100	1000	1000	a	50	(Sn, 50)
187'6" - 190'	30	20	50	1000	a	50	(Sn, 20)
1901 - 19216"	30	30	100	1000	a	50	(Sn, 20)
192'6" - 195'	20	60	100	1000	a	70	(Sn, 20)
195' - 197'	30	60	100	1500	a	70	(Sn, 20)
197' - 200'	30	60	150	1000	a	50	(Sn, 20)
2001 - 202'6"	60	150	200	1000	a	70	(Sn, 20)
22016" - 22216"	500	300	200	500	a.	20	(Sn, 50)
226' - 228'	100	150	5	700	5	20	(Sn, 50)
2281 - 2301	200	200	100	500	a	200	(Sn, 50)
2801 - 2821611	400	150	5000+	500	5	100	(Sn, 5)
28216" - 28416"	500	100	500	200	5	50	

D. 729	Ni	Co	Cu	V	Mo	Pb	Remarks
32'6" - 35'	100	200	100	200	5	50	

Be and P were sought but not detected in any sample

Plate Nos. 767 - 770 and 772 - 776.

REPORTNº 52

June, 1964.

Spectrographic Analysis of Samples from Tennant Creek, N.T.

Ъу

A.D. Haldane

This report gives the results from analysis of geochemical samples from the Aeromagnetic Ridge Orientation Survey. The samples were submitted by I. Pontifex.

All results are expressed in parts per million.

Grid Co-ords.	Ni	Co	Cu	V	Mo	Pb	Remarks
21N/00E 0 - 10'	5-	10	15	200	10	5	
10'- 16'	5-	12	5	100	8.	5	•
A 161- 221	5-	12	5	200	5	5	
B 16'- 22'	5-	12	15	200	5	5	
00N/32E 0 - 7'	5-	15	15	100	5	10	
7'- 16'	5-	10	10	100	5	a	
A 16'- 28'	5-	10	5	150	5	a	
B 16'-28'	5-	10	10	150	5	a	
28N/28E 1'- 2'	5-	12	25	100	5	10	
21 121	5-	15	25	200	5	10	
12'- 24'	5-	12	15	200	15	a	
24'- 30'	5-	5	5	100	7	a	
A 301- 341	5	5	10	200	7	a	
B 30'- 34'	5	10	5	150	7	8	
15N/60E 0 - 10'	5-	12	15	100	7	a	
10'- 16'	5-	12	15	150	10	а	
16'- 20'	· 5–	12	10	200	10	а	
201- 261	5	30	5-	200	5	a	
A 26'- 28'	5-	10	5-	200	5	a	
B 261- 281	5-	10	25	200	5	a	
4 N/16E 0 - 6	5-	12	25	150	5	a	
6'- 14'	5	10	5	200	5	a	
A 141- 221	5	5	5	100	5	a.	
B 14'- 22'	5⊶	5	15	100	5	8.	
21N/36E 0 - 16'	5	15	20	150	5	a.	
16'- 18'	5	12	10	200	7	a	
18'- 22'	5	12	10	150	7	a.	
22¹- 32¹	5	10	5-	150	5	a.	
32 '- 34'	5	10	5	150	5	a,	
A 34'- 38'	5	10	5	200	5	a.	
B 34'- 38'	5	10	20	150	5	a	

2.

Grid Co-ords.	Ni	Co	Cu	V	Mo	Pb	Remarks
39N/28E 0 - 2'	5	12	25	100	10	a.	
20'- 14'	5	12	25	100	7	a	
14'- 28'	5	12	15	150	7	a	
28 1- 321	5	10	5 -	150	5	a	
A 321- 341	5	10	5	150	5	a	
B 32'- 34'	5	10	10	150	5	a	
28N/48E 0 - 2'	5	12	25	100	7	a	
2'- 16'	5	12	15	100	5	a	
16'- 20'	5	15	25	200	5	a	
201- 261	5	12	5-	100	5	a	
A 26'- 28'	5	10	5-	150	5	a	
B 261- 281	5-	12	15	150	7	೩	
38N/56E 0'- 2'	5	12	15	100	7	a	
2'- 12'	5	12	15	150	5	a	
121-161	5	12	20	300	10	a	
16'- 20'	5	15	10	200	5	a	
20'- 22'	5	12	10	200	5	a	
A 22'- 24'	5	12	5-	100	5	15	
B 22'- 24'	5	12	15	200	5	15	

Zn, Sn, Be, P and Bi were sought but were not detected in any samples.

Plate Nos. 781 - 783.

COPPER ASSAYS

bу

J. R. Beevers

The following are copper assays on Samples from the Rum Jungle area, Northern Territory, submitted by P. Pritchard.

Sample No.	% Cu
Al 324' - 326' Al 335'6" - 339'2" (1) Al 336'6" - 338'6" Al 338'6" - 340'6" Al 339'2" - 342'4" Al 342'4" - 345' Al 353' - 354'6" Al 353' - 359'6" Al 362'6" - 369' Al 369' - 370'6" Al 371'6" - 373'	1.42 0.19 0.63 0.22 1.44 1.37 0.52 0.80 0.38 0.26 0.26 0.26 0.26 0.26 0.43
DDH 59A3 69' - 72' DDH 59A3 72' - 83' DDH 59A3 109' - 112' DDH 58A3 112' - 116' DDH 59A3 116' - 117' DDH 59A3 121'6" - 126'6" DDH 59A3 121'6" - 131'6" DDH 59A3 131'6" - 134' DDH 59A3 134' - 135' DDH 59A3 135' - 139'6" DDH 59A3 139'6" - 144' DDH 59A3 146' - 149'6" DDH 59A3 146' - 152' DDH 59A3 152' - 155'6" DDH 59A3 155'6" - 159'	0.43 0.37 0.44 0.43 0.47 0.71 0.72 0.99 0.85 0.68 0.76 0.61 0.46 0.58 0.58 0.57
CD 155 100' - 105' CD 155 105' - 110' CD 155 110' - 115' CD 155 115' - 120' CD 155 120' - 125' CD 155 125' - 130'	0.27 0.46 0.30 0.55 0.49 0.67
CD 158 40' - 45' CD 158 50' - 55' CD 158 55' - 60' CD 158 60' - 65' CD 158 65' - 70' CD 158 70' - 75' CD 162 220 - 225' CD 165 165 - 170' CD 165 210' - 215' CD 165 215' - 220' DDH 726 237'6" - 240' DDH 726 244' - 248' DDH 726 248' - 250'6 D 582 276'6" - 280'	0.43 0.78 0.61 0.37 0.41 0.17 0.51 0.27 0.33 0.24 0.74 0.49 0.54 0.32

REPORTN° 54

June, 1964.

Spectrographic Analysis of Samples from Ooratippra, N.T.

Ъу

A.D. Haldane

This report gives the results of analysis of dark grey and black shale from the stratigraphic hole B.M.R. 13 being drilled at Ooratippra. The Samples were submitted by D. Woolley.

All results are expressed in parts per million.

B.M.R. 13	Ni	Co	Cu	V	Pb	Romarks
2501 - 2601	10	20	25	150	a	
270' - 280'	12	20	5	500	a	
2801 - 2901	12	20	10	300	a	
440' - 450'	5	12	10	100	a	
470' - 480'	15	30	25	300	. 10	
5201 - 5301	15	20	20	300	5	
560' - 570'	15	20	15	50	10	(Mo, 50)
570' - 580'	5	12	15	50	a	
6001 - 6101	5	12	15	50	10	
6201 - 6301	10	20	100	200	a	
1010' - 1020'	10	30	50	300	5	
1030' - 1040'	20	60	50	300	5	
1055' - 1060'	15	15	10	300	a	
1140' - 1150'	20	30	10	50	5	
1610' - 1620'	5	20	20	200	10	
1620' - 1630'	5	12	15	50	50	(Mo, 50)

Sn, Zn and P were sought but not detected in any sample

Plate No. 789

REPORTNº55.

June, 1964.

Spectrographic Analysis of Samples from Kalgoorlie, W.A.

by
A.D. Haldane

This report gives the results from analysis of samples from N.C.G.F. Kalgoorlie. The samples were submitted by N. Le Roux.

All results are expressed in parts per million.

Sample No.	Ni	Co	Cu	V	Mo	Pb	Remar	ks
I 011019	12	5-	50	300	15	20		
н 011038	30	12	15	200	5	5		
1 Lake View & Star	5	30	30	200	20	a		
2 Gold Mines Kal.	12	30	30	200	7	a		
011009	12	12	15	50	5-	10		
011018	100	40	25	150	5	10		
011020	30	10	25	100	5-	10		
011021	30	10	25	100	5-	15		
011022	60	12	30	100	5	20		
011023	40	10	50	100	10	10		
011024	30	5	50	100	5	a		
011025	5	12	15	20	5	a į		
011026	15	10	20	200	5	5		
011027	100	15	30	200	10	5	(Zn,	100)
011028	200	30	25	100	a.	5		
011029	30	12	25	200	10	a	(Zn,	100)
011030	20	10	10	100	5	a		
011031	100	12	15	100	5	a		
011032	20	5	10	200	5-	20		
011033	100	12	20	100	5	a	(Zn,	100)
011034	60	5	25	200	5	5	(Zn,	100
011035	30	5	15	200	10	5		
011036	20	10	20	100	10	10		
011037	12	5	15	100	5	10		
011039	12	5	15	100	5~	5		
011040	60	12	20	100	5-	5		
011041	60	10	25	200	10	a	(Zn,	200)
011042	100	10	15	100	5-	a	(Zn,	100)

Sample No.	Ni	Co	Cu	V	Mo	Pb	Remarks
011043	80	10	25	300	10	100	
011044	60	10	25	200	10	20	
011045	100	12	20	300	10	20	
011046	300	20	50	200	15	5	
011047	30	10	25	150	5	5	
011048	15	5-	20	200	10	a	
Great Boulder	10	60	100	500	15	a	
North Kalgoorlie	15	60	100	500	20	100	
011063 18' - 21'	500	60	50	700	10	a	
011064 6' - 9'	500	100	100	500	10	a	
011065 12' - 15'	150	10	25	400	10	a.	
011066 21' - 24'	15	5	20	150	5	a	•
011067 15161-1716"	15	5-	15	300	7	a.	
011068 12° - 13'6"	12	5-	25	200	7	a	
011069 91 111	30	5	50	500	15	a	
011070 31 - 61	30	12	7 5	300	5	a	
011071 31 - 61	20	10	75	400	5	10	
011072 3' - 5'6"	30	12	50	400	5	10	
011073 9' - 11'	60	12	50	200	5	10	
011074 15' - 18'	10	12	20	500	5	a	
011075 6' - 9'	20	5	50	300	8.	a	
011076 6' - 9'	10	5-	50	300	10	20	
011077 61 - 91	30	5	75	200	10	20	
011078 3' - 6'	5	5	15	100	10	10	
011079 3' - 6'	2000	150	75	200	5	a	
011080 121 - 151	1000	60	25	300	5	a	
011081 6' - 9'	1000	100	75	200	5	a	
011082 31 - 61	400	60	100	400	10	a	
011083 121 - 151	100	30	50	300	10	a	
011084 6' - 9'	100	15	25 .	150	5	a	
011085 9t - 12t	100	30	25	300	5	a	
011086 716"- 91	10	10	50	100	10	10	
011087 31 - 61	30	12	70	300	10	10	
011088 31 - 61	60	20	70	300	5	10	
011089 31 - 61	80	15	50	500	a	a	
011090 91 - 121	30	20	50	300	5	a	
011091 3' - 6'	100	12	50	500	5	a	
011092 01 - 31	200	15	100	400	а	20	
011093 0' - 4'	1000	100	70	400	a	a.	

Sample No.	Ni	Co	Cu	v	Мо	Pb	Romarks
011094 6 -	9¹ 500	100	100	400	a	a	
011095 3' -	5 ¹ 1000	200	50	200	a	8.	
011096 31 -	51 200	20	70	500	3.	a	
011097 7' -	91 300	30	50	500	15	a.	
011098 6 ^t -	91 200	15	50	300	10	10	
011099 9' -	11' 400	20	70	500	10	a.	
011000 01 -	3† 60	15	50	400	a	10	
011001 31 -	61 150	30	50	400	a	10	
011002 6t -	9 ^t 100	20	50	500	a	10	
011003 9 ^t -	121 150	12	50	500	a	8.	
011004 12' -	151 60	12	5 0	500	10	a.	
011005 15' -	181 60	12	50	400	10	a	
011006 181 -	21' 60	10	50	400	5	a	
011007 221 -	6" 60	10	50	400	10	a	
011100 31 -	6 ° 60	12	50	400	10	10	
011101 41 61 -	716" 15	5	25	200	10	10	(Sn, 50)
011102 31 -	6 t 30	15	75	200	10	10	(Sn, 20)
011103 4' 6"	7'6" 30	15	50	300	10	10	(Sn, 50)
011104 3' -	6† 20	20	100	500	5	e.	(Sn, 200)
011105 11 5" -	1'8" 5	20	50	300	7	a	
011106	60	25	50	300	5	10	(Sn, 200)
011107 61 -	9° 100	10	50	300	10	10	(Sn, 5)
011108 3' -	61 100	20	200	500	5	20	(Sn, 5)
011109 1' 6" -	416" 500	60	75	200	a	5	
011110	700	100	100	200	a	5	
011111 61 -	91 700	100	100	300	10	a	
011112 6' -	91 700	100	50	200	5	e.	(Sn, 20)
011113 21 -	5! 15	10	15	300	5	5	(Sn, 20)
011114 1' 6" -	4'6" 15	10	50	400	10	5	
011115 5'6" -	81 100	12	50	200	10	5	
011116 61 -	91 150	2)	50	200	5	10	
011117 6 -	716" 100	2:0	50	300	5	5	
011050 61 -	91 100	15	25	500	10	a,	
011051 6 ^t -	91 30	5	25	500	15	a	
011052 1' 5" -	11811 60	10	50	500	10	a	
011053 91 -	112" 60	12	50	200	10	5	
011008 0' -	31 100	20	100	200	5	5	
011010 6' -	9 ^t 12	10	10	200	5	20	
011011 91 -	12¹ 10	5	25	200	5	70	
011012 121 -	15 ' 5	5	25	200	7	70	

•

4.

Sample :	No.	Ni	Co	Cu	V	Mo	Pb	Remarks
011013	15' - 18'	5	5	15	200	7	100	
011014	18' - 21'	5-	5-	5	20 0	7	70	
011015	21' - 24'	5-	5	5	150	7	100	
011016	24' - 27'	5-	5	50	100	7	100	
011017	27' - 30°	5	5	100	100	7	100	
011054	3' - 6'	30	12	25	500	10	20	
011055	01 - 31	30	12	100	500	5	20	
011056	121 - 151	100	30	100	500	5	5	
011057	15† – 18†	60	15	75	500	5	e.	
011058	27' - 30'	20	5	15	400	10	a,	
011059	15 ¹ - 18¹	60	5-	50	500	10	a.	
011060	9" - 10"3"	100	5	50	500	10	೩	
011061	3† - 4†3"	100	15	75	400	10	a	
011062	12 [†] - 15 [†]	1000	100	100	500	10	a	

Be and P were sought but not detected in any sample

Plate Nos. 768, 769, 771, 773, 783 - 786.

JUNE 26 1964

MINERAGRAPHIC DESCRIPTION AND DETERMINATION OF ORE MINERALS

IN A MINERALISED DOLERITE FROM BAN BAN SHEET, N.T.

рy

I.R. Pontifex

Samples submitted by J. Barclay

Field No. 145613

Locality. 4 miles N.W. of Ban Ban homestead, Pine Creek, N.T. Ore minerals identified, pyrrhotite, pyrite, chalcopyrite. Rock type. Pyroxenite.

Field occurrence. This specimen is associated withan extensive mineralised dolerite situated about ½ mile N.E. of the Burnside Granite. Macroscopic lead is a rarity in this rock, the main sulphides are pyrrhetite and minor chalcopyrite. To be of economic potential this rock would necessarily need to contain such metals as nickel or cobalt.

Macro description. This is a dense massive grey-green rock with a light brown pitted weathered surface. The rock is fractured and epigenetic quartz fills between breccia fragments and along veins. Irregular pyrrhotite grains make up 3-5% of the rock, some of these are associated with quartz and some with a dark green material filling fractures.

Thin section description. The finely crystalline matrix consists predominantly of pyroxene. It contains localised patches of coarsely crystalline pyroxene and is cut by veins of pyroxene and prehnite. The opaque minerals are commonly associated with this vein material.

Augite makes up 85% of the section. Throughout the rock small patches of chlorite, amphibole and calcite are intimately related with the augite, and these are alteration products derived from it. Accessory amounts of fine euhedral sphene have a sporadic distribution through the rock.

Veins up to 0.5 mms. wide filled with <u>prehnite</u>, augite and rarely quartz cut the pyroxene matrix.

On a mineralogical basis this rock is classified as a pyroxenite.

Polished section description. Isolated pyrrhotite grains ranging up to 2 mms. across are randomly distributed through the section. Pyrrhotite makes up about 5% of the section.

Minor pyrite is associated with pyrrhotite generally in areas of the section adjacent to epigenetic quartz veins. One grain of pyrrhotite is intruded by a pyrite bleb 0.35 mms. across and the periphery of the same grain has a alteration corona of pyrite which is physically continuous with the pyrrhotite core. In other parts of the section isolated anhedral pyrite grains occur adjacent to pyrrhotite grains near quartz.

Minor accessory grains of chalcopyrite up to 0.03 mms. across occur near pyrite and quartz; generally these are isolated, however one grain of pyrrhotite is partly enclosed by a narrow border of chalcopyrite.

Pyrite and chalcopyrite make up less than 0.5% of the section.

X-ray spectrographic analysis. A semi quantitative X-ray spectrochemical analysis for Co, Ni, Cu, Pb and Zn by S. Goadby proved these elements were present only in trace quantities.

Conclusions. This specimen is a pyroxinite containing about 5% pyrrhetite and less than 0.5% pyrite and chalcopyrite. The pyrrhetite is an inherent mineral of the pyroxinite, formed in cavities of the host rock during the final stages of crystallisation together with prehnite and vein pyroxene.

The pyrite and chalcopyrite were introduced after the pyrrhotite, possibly these minerals are genetically related to epigenetic quartz which was formed later than the pyroxinite.

Spectrographic analysis for Co, Ni, Cu, Pb and Zn indicate that the amounts present have no economic significance.

Since this rock represents an extensive mineralised dolerite the analysis of one grab sample is not considered adequate to assess the economic potential of the entire rock unit. Depending on field indications of possibly significant mineralisation it is suggested that further samples should be analysed spectrographically and that any which contain important amounts of economic elements could be examined mineralogically.

PHOSPHATE ANALYSIS OF SAMPLES FROM THE LAKE AMADEUS AND FREW RIVER AREAS OF THE NORTHERN TERRITORY.

bу

S.C. Goad by.

A series of samples were submitted by J.Barrie for quantitative $P_2\theta_5$ determination.

I. S1 samples from Johnny Creek headwater.

	Depth (inches)	% P ₂ 0 ₅
1.	0 - 18 18 - 23	0.3 2.6
3.	23 - 36	0.7
4.	36 - 48	2.0
5. 6.	48 - 60	0.9
6.	60 – 65	4.6
7•	65 - 73	0.4
8.	73 – 75	4.2
9•	75 - 90	0.9
10.	90 - 93	₽.7
11.	93 - 105	2.2
12.	14' - 14'6"	0.5
13.	231 - 2316"	0.3
14.	3716"- 3719"	0.3
15.	9216"- 931	8,5
16.	102'6"- 103'6"	0.4
17.	10316"- 10414"	0.85
18.	104'4"- 104'10"	0.5
19.	104'6"- 104'9"	1.2
20.	104'10- 105'2"	0.8
21.	105'2"- 105'6"	5•4
22.	105'6"- 106'2"	1.0
23.	10612"- 10812"	0.6
24.	10812"- 10815"	1.8

II. S2 samples from Carmichael Crag.

Samples	
1 3	7.5 8.2
4	0.3
5	4.3
6	0.1
7	8.0
14	5.2
15	9.8
16	14.0

III. S3/4. sample from S.Flank of George Gill Range. $P_2O_5 = 13.7\%$

IV. S4. samples from Inindie Bore area.

Sample	%P2 ⁰ 5
1	3.3
2	0.5
3	8.2
4	2.3

V. Sample from B.M.R. 13, Free River area, unwashed cutting 2955 - 2960

- (a) Before extraction with toluene 2.1 % P₂0₅
- (b) After extraction with toluene 1.8 % !

Lab.Reference 1534 & 1537. 30th Juhe, 1964.

REPORTNº 58

June, 1964.

Analysis of Lava Flow from Manam Volcano, T.P.N.G.

bу

S. Baker

Following are the results for the analysis of a new lava flow on Manam, submitted by G.A. Taylor.

	Percent
SiO ₂	51.10
Al ₂ o ₃	1.6.65
Fe ₂ 0 ₃	4.98
FeO	4.90
CaO	10.60
MgO	6.80
Na ₂ O	4.25
K ₂ O	0.88
MnO	0.16
TiO ₂	0.58
P ₂ 0 ₅	0.19
H ₂ O (110°C)	Nil
Loss on ignition	Nill
Total	100.19

Serial No. 1514

IDENTIFICATION OF A METAL SPECIMEN FROM PILA PILA, T.P.N.G.

by

I.R. Pontifex

Sample submitted by C.D. Branch 22/5/64.

Location 1 mile N. of Pila Pila between road and coast 1:250,000 Sheet, SB56-2 Gazelle Peninsula.

Field No. P.P.1.

Field Description. Silvery metal with iridescent tornish.

Possibly slag from time of Japanese occupation.

Laboratory Identification. An X-ray diffraction pattern and a scan on the X-ray spectorgraph by S. Goadby indicated that this metal is a <u>ferro-silicon alloy</u>.

Rabaul File 3-5-1 Lab. Ref. 1520 25th June, 1964.

REPORTNº60

July, 1964.

Identification of fibrous material from Lake Stinear

<u>Antarctica</u>

bу

I.R. Pontifex

The Sample was submitted by J. Mc Leod.

Specimen No. D63482

Locality. Lake Stinear, Antarctica.

Identification. Siliceous sponge spicules.

The fibrous material is made up of siliceous capillary type bodies which measure up to 8 cms. long about 0.025 mms. wide and have an inner cavity diameter of about 0.005 mms. Most of the spicules are broken however, some were present as complete entities of which at least three different types were recognised, these are :

- (a) Straight or slightly curved and tapered to a point at each end. These are classified as monoaxons.
- (b) Spicules with 4 axes. One main tube gives rise to 3 divergent, relatively shorter rays. These are tetraxons.
- (c) From one end of some monoaxons, 2 or 3 divergent barb like hooks curve back toward their base. The inner cavity follows these structures accordingly; these are also classified as tetraxons.

Fragments of other micro-organism hard parts are contained within the fibrous mat.

An X-ray diffraction photo indicated that the material was amorphous and various chemical tests proved that it was silica.

The structure and composition of those "fibres" indicates that they are spicules (or megasoleres) which constituted the main skeletal framework of an original sponge, probably of the class <u>Demospongia</u>. (Moore Lalicker and Fisher).

ANALYSIS OF A SAMPLE OF SUSPECTED BADDELEYITE FROM

CAIRNS, QUEENSLAND.

bу

W.M.B. Roberts

The sample, a fine-grained, homogenous, fairly friable material, thought to be baddeleyite was submitted for examination by K.X. Croese, of Cairns. Patches of hydrated iron oxide were observed in some of the large fragments; other than these, microscopic examination showed it to be composed entirely of one mineral.

X-ray spectrochemical analysis showed no zirconium or alumina in the sample, and a full silicate analysis by the same method gave the composition of the material as 99.7% SiO₂ and about 0.2% Fe.

Mineragraphic investigation of a specimen from New Guinea

submitted to Green and Co. Pty. Ltd. Rabaul.

REPORTNO62

bу

I.R. Pontifex

Sample submitted by Green and Co. Ltd., Rabaul.

Locality. Not given.

Ore minerals identified. Pyrite, hematite, magnetite.

This specimen consists of massive, brecciated white vein quartz which carries minor amounts of <u>pyrite</u> and accessory <u>hematite</u>. In polished section the pyrite is observed to be weakly anisotropic suggesting that it is slightly altered to <u>marcasite</u>. The hematite generally surrounds fine skeletal cores of <u>magnetite</u> indicating that the hematite is derived by oxidation of the pre-existing magnetite.

ARPORT Nº 63

July, 1964.

120/NT/1

Mineralogical identification of minerals in mica schists from Mulga Park Station, Ayers Rock Sheet, N.T.

by

I.R. Pontifex

The samples were submitted by D. Forman.

Field No. AR143a

Locality. South of Kelly Hills, Mulga Park Station; Ayers Rock 1:250,000 Sheet, N.T.

Rock type, almandine-lepidolite schist.

This rock is a mica quartz schist which contains randomly dispersed, hard, dark green knots which measure up to 1 cm. across.

Several of the knots were isolated for investigation, their mineral components were crushed, examined microscopically and analysed by means of X-ray diffraction.

The microscopic examination indicated that the knots are essentially garnet, and more specifically, the iron rich variety almandine. This mineral contains minor amounts of fine magnetite inclusions. Fragments of the schist adhering to the garnet were identified as lepidolite and quartz. The X-ray diffraction pattern confirmed the identification of garnet.

The clear pale green color of this mineral is unusual for almandine, accordingly the mineral was analysed on the X-ray spectrograph by S. Goadby to determine the possible presence of anomalous elements. This study revealed that iron and manganese are abundant, these are to be expected in garnet since these elements readily substitute for each other in this mineral. The only other elements which were present is slightly greater than background values are barium and strontium.

Field No. A.R. 143b

Locality. South of Kelly Hills, Mulga Park Station; Ayers Rock Sheet, N.T.

Rock type, Tourmaline-hematite-mica schist.

This rock is a mica schist containing ruby red needle-like crystals and small augens of a metallic mineral.

The red crystals were identified microscopically and by X-ray diffraction as tourmaline. The color of the crystals indicates that they are the variety rubollite.

The metallic minoral was identified as hematite.

Field No.A.R.142

Locality. South of Kelly Hills.

This is a mineralised amphibolite which was submitted for gold assay.

The specimen is too small for a gold assay. The sample however, was analysed by A.D. Haldane on the optical emission spectrograph; no gold could be detected, although the optical spectrograph would not be sensitive enough to detect the lower concentrations of gold that could still be economic.

July, 1964.

Mineragraphic Investigation of two garnet gneisses from islands near Fold Island, Antarctica

by

I.R. Pontifex

Samples submitted by D. Trail.

Field No. 11501

Location. Large island about 3 miles south of south coast of Fold Island, Kempland.

Petrology. This rock has been described at A.M.D.L. (Report MP942-62 May 1963) as a biotite-orthoclase-quartz-plagic clase-hypersthene-garnet rock. "Opaques are commonly associated with ferromagnesian minerals".

Mineragraphy. The cre minerals identified were chalcopyrite, pyrite, ilmenite, sphalerite, marcasite.

The section examined consists mainly of a coarse massive aggregate of garnet, the component grains are extensively brecciated. Fine grains of <u>pyrite</u> which measure up to 0.1 mm. across are disseminated through the section, these make up about 2% of the rock. Generally pyrite occurs between garnet grains and in fractures within these grains apparently associated with ferromagnesian minerals. Some of the pyrite grades imperceptively into <u>marcasite</u>. Rarely extremely fine isolated blebs of pyrite are distributed along crystallographic planes of the garnet.

Chalcopyrite makes up less than 1% of the section, this mineral is generally associated with pyrite. Some discrete chalcopyrite grains occur in fine cracks within garnet and some are present as exsolution type inclusions in this mineral.

Ilmenite and sphalerite together form about 3% of the section, these occur as irregular grains throughout the brecciated aggregate, associated with ferromagnesian minerals and as fine needle like inclusions in garnet. In the irregular grains ilmenite occurs both as broad lamellae and as irregular inclusions in the sphalerite host. This mineral also occurs as discrete grains. These ilmenite-sphalerite grains are commonly associated with pyrite and chalcopyrite.

The inclusions of ilmenite and sphalerite in garnet are observed as fine needles up to 0.25 mms. long and 0.008 mms. wide, these are oriented along crystallographic planes of the host. Ilmenite is the most abundant of these two minerals in this form. Both ilmenite and sphalerite are rarely associated with needles of pyrite and chalcopyrite which have a similar occurrence in the same host garnets.

Mineral genesis. The spatial relationships of the ore minerals indicate that they are genetically related. The localisation of ore minerals along garnet crystallographic planes indicates that they were present during the formation of the garnet.

The same minerals localised in fractures, associated with ferromagnesian minerals between garnet fragments, suggests that brecciation occurred after the crystallization of the garnet and during this event the ferromagnesians were mobilised and this facilitated a redistribution of these on ore minerals.

Spectrographic analysis. The specimen was analysed by S. Goadby on the X-ray spectrograph. Values of greater than back ground were found for the following elements:

Fe, Mn, Cu, Zn, Ni, Rb, Ba.

Iron is present in relatively great abundance, the amounts of the other elements in the rock however are probably less than about 0.1%.

The Fe is accounted for in garnet, ferro-magnesian minerals and the ore minerals. Mn is probably derived from the garnet. Cu and Zn are presumably derived from chalcopyrite and sphalerite respectively. The origin of the Ni, Rb and Ba is unaccounted for by the mineralogical investigation at this stage.

Field No. 11509

Location. East coast of a small square island, 3 miles south of Fold Island.

Petrology. The specimen is a brecciated massive aggregate of garnet with pyroxene, apatite, quartz and felspar. (A.M.D.L. report MP942-62, May 1963).

Mineragraphy. The ore minerals identified were, ilmenite, sphalerite, pyrite.

Irregular grains of <u>ilmenite</u> are disseminated through the section, these measure up to 1mm. across and occur in fractures between garnet grains. They constitute about 2% of the rock. Minor accessory grains of <u>sphalorito</u> are associated with some ilmenite. Minor accessory ilmenite bleb and needle like inclusions up to 0.03 mms. long and 0.003 mms. wide occur in garnet, these are commonly distributed along crystallographic planes of garnet.

Spectrographic analysis. An X-ray spectrographic analysis of this specimen by S. Goadby revealed that the following elements are present in amounts greater than background values, Fe, Mn, Rb, and to a lesser extent Cu and Zn. With the exception of Fe, these elements are present in quantities less than about 0.1%. On a mineralogical basis Fe is readily accounted for, Mn is probably derived from the garnet and Zn from sphalerite. Although no copper minerals were identified, the mineralogy of specimen 11501 suggests that minor accessory amounts of copper sulphide may be expected in this specimen. The Rb is not accounted for.

File 167/NTS/1/4
July, 1964.

AFPORTN°65

Mineralogical Investigation of eight mineralised specimens from Union Reefs, Pine Creek, N.T.

рy

I.R. Pontifex

The samples were submitted by J. Shields. They include:

2 specimens of core from D.D.H. 7
3 " " " D.D.H. 8
1 " " " D.D.H. 9
1 " " D.D.H. 10
1 specimen of mineralised dolerite from 120N, 23W.

Conclusions

The drill core specimens consist of strongly sheared and foliated greywackes and chlorite schists. These rocks have been intruded, commonly along foliation planes, by a quartz-carbonate gangue which carries accessory amounts of pyrite, marcasite, chalcopyrite, and arsenopyrite. These minerals have a common hydrothermal origin. Iron oxide grains appear to be inherent components of the greywacke country rock.

The author was not informed of any field relationships between the ore mineralisation and the mineralised dolerite outcrop. On a mineralogical basis however, it appears that this dolerite could be the source rock of the sulphide mineralisation in this area.

Descriptions

D.D.H. No. 7; 596' to 596'6"

Field No. 195393

Rock type : sheared sericite greywacke.

Ore minerals present : pyrite.

Marco. This is a grey-green medium grained sheared rock cut by massive white quartz which carries pyrite, irregular patches of chlorite and a carbonate mineral. The core is broken along slickensided foliation planes.

Thin section. The rock consists of a heterogeneous mixture of sub-angular grains of stressed quartz, chert, weathered felspar and opaque minerals, generally of silt size. Several zircon grains are also present. These components are distributed through a chlorite-sericite matrix which constitutes 70% of the rock. The chlorite and sericite flakes in the matrix have a generalised common orientation which imparts a foliation to the rock.

Thin veins of epigenetic quartz cut the rock at random, these are commonly associated with fine clumps of chlorite.

Polished section. Massive epigenetic quartz carries irregular masses of pyrite up to 10 mms. across, made up of an aggregate of sub-hedral pyrite grains. The quartz also carries irregular inclusions of chlorite schist, some shred like bodies of this material have a common orientation, and were probably aligned during the introduction of the quartz.

D.D.H. No. 7; 636'6" to 637'

Field No. 195394

Rock type : sheared greywacke.

Ore minerals present: pyrite, marcasite, arsenopyrite, hematite, chalcopyrite.

Marco. This is a sheared grey-green chloritic rock cut by irregular roughly parallel veins of white quartz and calcite. The veins carry accessory pyrite.

Thin section. A heterogeneous mixture of silt size angular and sub-angular fragments of various types of quartz and minor amounts of felspar are dispersed through a fine grained matrix of similar composition with the addition of some sericite and chlorite. Shred like sericite stringers have a generalised parallel crientation. Isolated patches of coarsely crystalline carbonate throughout the matrix may be part of the original sediment or may have been introduced into the greywacke with the other vein material.

All the components are stressed. Elongate areas of quartz have crystallised adjacent to, and on the same sides of several opaque grains, obviously having been localised in strain free areas on their low pressure sides Quartz of this type almost surrounds some opaque grains indicating a rotation of the stress directions during the deformation of this rock.

Minor quartz veins cut the section.

Polished section. Pyrite makes up about 3% of the section, it occurs in irregular masses up to 2 mms. across associated with epigenetic quartz. Some of the pyrite grades imperceptively into marcasite.

Anhedral <u>arsenopyrite</u> (2% of the section) and hematite (1% of the section) are disseminated through the greywacke. These two minerals are apparently unrelated to the quartz vein.

Narrow veins of clear quartz (1 mm. wide) cut the massive white quartz. These narrow veins have the relationships of a second generation quartz and they carry accessory amounts of chalcopyrite.

D.D.H. No. 9; 369'8"

Field No. 195395

Rock type : quartz and dolomite intruding chlorite schist.

Ore minerals present: pyrite, marcasite, chalcopyrite, arsenopyrite, sphalorite, ilmanite.

Marco. A coarsely crystalline dolomite and quartz rock cuts a dark green massive chlorite schist.

Thin section. The intrusive material consists of a coarsely crystalline granular aggregate of dolomite and quertz containing veins which are filled with coarsely crystalline apherulitic chlorite. The adjacent rock is a silicified chlorite schist.

Polished section. The intrusive material carries accessory amounts of pyrite, marcasite, arsenopyrite, chalcopyrite and ilmanite. Pyrite occurs in irregular patches and commonly grades imperceptively into marcasite. Near the contact of dolomite and the schist anhydral pyrite exhibits a folded lamellae texture suggesting that this mineral was deformed as the result of flow stresses which were active during introduction of the host vein.

Isolated grains of chalcopyrite 0.16 mms. long and 0.08 mms. wide are disseminated through the dolomite together with small grains of pyrite and arsenopyrite. Anhedral arsenopyrite grains occur at the contact of quartz and schist and fine grains of this mineral are disseminated through the schist.

Fine grains of <u>sphalerite</u> are disseminated through both vein and gangue material. These make up less than 1% of the section.

D.D.H. No. 10: 349

Field No. 195396

Rock type : white quartz.

This specimen consists of a coarse allotriomorphic granular aggregate of quartz. Rare thin veins of sericite and chlorite occur along quartz grain contacts.

D.D.H. No. 8: 524'

Field No. 195397

Rock type : chloritic slate intruded by quartz.

Ore minerals : pyrite

Thin section. The rock is made up of a heterogeneous complex of allot-riomorphic granular quartz and chloritic, sericitic schistose slate.

4.

Polished section. The quartz veins in the schist carry minor accessory amounts of pyrite grains which measure up to 0.05 mms. across.

D.D.H. No. 8; 536'3"

Field No. 195398

Rock type : quartz intruding silicified chlorite schist

Ore minerals: pyrite, marcasite

Marco. White quartz veins 2 mms. wide occur along the foliation plane of a dark green silicified chlorite schist.

The quartz carries shreds of chlorite and minor patches of pyrite.

Thin section. The vein intruding the schist consists essentially of a coarse allotricmorphic granular aggregate of quartz. The vein carries irregular patches of dolomite and accessory opaque minerals. The schist is made up of interfingering lenses and shreds of fine chlorite and sericite.

<u>Polished section</u>. The patches of pyrite are made up of an aggregate of brecciated subhedral pyrite grains. Some of these merge imperceptively into marcasite. Rarely marcasite occurs as discrete grains.

D.D.H. No. 8, 538'9"

Field No. 195399

Rock type : Quartz and calcite aggregate

Ore Minerals present : pyrite, marcasite, chalcopyrite

Thin section. This specimen consists of a coarsely crystalline aggregate of quartz and calcite which carries accessory amounts of opaque minerals. The opaque minerals show no preferential association with quartz or calcite.

Polished section. Massive white vein quartz carries irregular patches of <u>pyrite</u> and stringers of chlorite. Pyrite occurs in small aggregates of subhedral brecciated grains. Rarely minor accessory amounts of <u>chalcopyrite</u> accompany the pyrite. Some of the pyrite grades into <u>marcasite</u>.

Outcrop specimen.

Field No. not given

Location Union Reefs. 120N, 23W.

Rock type : albite-dolerite

Ore Minerals: chalcopyrite, pyrite, magnetite chalcocite

Macro. Dark green medium grained crystalline rock cut by a vein 5 mm. wide containing pink felspar. Accessory pyrite is disseminated through the rock.

Thin section. This specimen is a crystalline aggregate of biotite, albite, chlorite, pyroxene and accessory tremolite, calcite, apatite and quartz. Albite and biotite are the most abundant minerals. The albite is cloudy, severely strained and contains abundant inclusions of pyroxene, biotite and chlorite. Biotite laths range in size up to 1.5 mms. long. Invariably biotite surrounds pyroxene grains and it is itself altered to chlorite. Much of the biotite forms pseudomorphs after pyroxene. These relationships indicate that extensive metasomatic alteration of the original pyroxene and biotite has taken place.

The pyroxene, bictite, chlorite, tremolite, calcite combination suggests that the rock is a metamorphosed dolerite. The abundance of albite however is anomalous for a dolerite and it seems that the rock has been contaminated by albite, possibly during its introduction or during a phase of the metasomatic, alteration. These two events may have been contemporaneous.

Polished section. Accessory amounts of subhedral pyrite and irregular grains of chalcopyrite and magnetite are disseminated through the section. Pyrite makes up about 2% of the rock, chalcopyrite about 1%. Near the weathered surface chalcopyrite grains are replaced around their peripherics by narrow alteration rims of chalcocite. The ore minerals show no preferential associations.

Analysis of Core Samples from Rum Jungle

bу

S. Baker

Following are results for the analysis of Core Samples from Rum Jungle, submitted by P. Pritchard.

All results are expressed in percent.

D.D. 726		Ni	Co	Zn	Cu	Pb
2161	- 219¹	0.15	0.04	0.50		0.1
244 °	- 2481	0,16	0.06	0.50		0.50
D.G. 17		·		•		
8416"	- 87'9"	1.20	0.80	0.32		1.80
8719"	- 91°	0.50	0.19	0.07		2.50
911	- 9516"	0.50	0.40	0.07		2.30
9516"	- 100 t	1.20	0.85	0.05		0,22
1001	- 103	0.75	0.85	0.05		0.70
D.D.H. 5	<u>9A1</u>					
341	- 371			0.14	0.08	0.92
37 ¹	- 391			0.006	0.08	0.72
65 '	- 6716"			0.62	0.08	0.24
671611	- 701			0.05	0.24	0.86
701	- 72°			0.01	0.07	0.27
721	- 74°	• •	1 4	0.02	0.11	0.36
74'	- 761			0.02	0.13	0.60
76 '	- 781		•	0.06	0.40	0.36
1441	- 146'6"			0.006	1.32	0.68
2811	- 283 ¹ 6 ¹¹			0.03	0.02	0.80
28316"	- 286 ¹			0.02	0.02	0.50
3291	- 33116"			0.01	0.26	0.10
33116"	- 333'			0.006	0.16	0.10
.′333 ¹	- 33516"		•	0.005	0.11	0.10
333 4"	- 33616"	*		0.004	0.05	0.10
3591	- 362'6"			0.03	0.40	0.10

REPORTNº 67

ARSENIC DETERMINATIONS

bу

N.W. Le Roux

These are the results of arsenic determinations carried out on samples submitted by S. Yeaman. The results were obtained by the Gutzeit method.

	RESULTS		
Sample	As p	.p.m.	
0060216		15	
0060217A		25	
0060217B		25	
0060217C		10	
0060217D		5	
0060218A		30	
0060218B		15	
00602180		20	
0060219A		3	
0060219B	less than	3	
0060219C		3	
0060231	less than	3	

Serial No. 1553

REPORT Nº 68

21st July, 1964 120/NT/14

ANALYSIS OF WATER SAMPLES FROM RANKEN AREA

bу

N.W. Le Roux

These are the results of the analysis of bore water samples submitted by M.A. Randall.

ma	/	٦
me	/	L

Sample No.	55 ₃₀₅	55/ ₄₁₀	56/312	56 ₃₇₅	57/ ₃₁₂	573 ₆₅	
Cl	1.61	0.42	6.08	0.50	2.54	1.01	
нсо ₃ _	4.05	3.49	3.68	4.32	2,57	3.41	
SiO3=	0.26	0.45	0.32	0.47	0.32	0.55	
so ₄ ²	1.84	1.17	5.30	0.70	6.89	1.68	
F	0.08	0.06	0.05	0.04	0.04	0.04	
№ 3	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	
BO ₂ -	0.012	0.023	<0.012	<0.012	<0.012	< 0.012	
Ca ⁺ +	2.49	2.04	3.35	2.32	4.72	3.02	
Mg++	3.41	2.88	3.70	3.08	3.77	2.68	
Na ⁺	2.37	0.70	8.78	0.83	3.91	1.24	
		P.]	P.M				
TDS (180	°C) 420	242	927	297	769	352	
CONDUCTI	VITY 768	514	1543	563	1153	640	
pН	7.3	8.0	7.3	7.8	7.5	8.0	
Cl-	57.6	14.9	216.0	17.8	90.2	35.8	
HCO ₃	247	213	225	264	157	208	
SiO_3^{3} =	10	17	12	18	12	21	
so ₄ ≝	88.1	56.0	254.5	33.4	331.0	80.6	
F ⁻	1.6	1.1	0.9	0.7	0.8	0.7	
NO ₃	<0.1	<0.1	40.1	<0.1	< 0.1	<0.1	
B	0.5	1.0	<0.5	< 0.5	<0.5	< 0.5	
Ca++	49.9	40.9	67.2	46.6	94.6	60.6	
Mg ⁺⁺	41.5	35.0	45.0	37.4	45.8	32.6	
Na ⁺	54.5	16.0	202.0	19.0	90.0	28.5	

Serial No. 1565

X-RAY SPECTROCHEMICAL ANALYSIS OF AUGER DRILL SAMPLES

FROM THE MOUNT FITCH AREA OF RUN JUNGLE

bу

S.C. Goadby

A series of samples from auger drill holes in Mount Fitch Prospect, N.T., were submitted by P. Pritchard for copper assay.

	Hole No.	$\frac{\mathtt{Depth}}{\mathtt{ft}_{ullet}}$	Copper %
1.	5020	вон	0.15
2.	A5231	H	0.12
3•	A1375	6-20	0.25
4.	A5200	вон	0.63
5∙	A5012	11	0.28
6.	A7387	9-30	0.13
7•	5017	ВОН	0.17
8.	A7380	9- 26	0.35
9•	A5274	вон	0.49
10.	A5008	5 - 12 €	0.25
11.	A5093	вон	0.34
12.	A5316	H	0.16
13•	A5144	12-28	0.35
14.	A5272	вон	0.14
15•	A5275	n	2.70
16.	A7383	12-18	0.18
17•	A5216	6– 38	0.90
18.	£5321	вон	0.20
19•	45159	4-10	0.16
20.	4 5012	2 1 2-5	0.42
21.	A5040	BOH	0.59
22•	A5096	12	0.61
23.	A5128	H	0.45
24.	À5205	ff .	0.43
25.	A5124	10-40	0.62
26.	5104	ВОН	0.98
27•	5011	11	0.38
28.	45153	4-22	0.41
29.	A5151	2-28	0.79
30.	A5120	вон	0.79

	Hole No.	Depth ft.	Copper
31.	45085	вон	0.69
32.	£5089	Ħ	0.49
33•	A5182	14-16	0.10
34•	5043	8-90	0.82
35•	A5 200	8-40	0.59
36.	A5156	4-28	0.10
37•	à5128	6-28	0.40
38.	45149	4-28	0.79
39•	A5 3 28	ВОН	0.35
40.	A5154	6-28	0.41
41•	<i>i</i> .5126	8 – 26	0.20
42.	≜ 5131	10-28	0.31
43•	5229	BOH 40	0.45
44•	£5106	вон	0.63
45•	A5095	tt	0.87
46.	A5 108 (445N:	117E) "	0.05
47•	A5108(432N 8	118E) "	0.61
48.	A5032	Ħ	0.27
49•	4000	6–8	0.13
50.	11	8-10	0.08
51•	17	10-18	0.06
52.	17	18-28	0.06
53•	Ħ	28-38	0.10
54∙	11	6–38	0.09
55•	A4005	8–10	0.08
56.	n	10-12	0.08
57•	11	12-20	0.10
58.	11	20-26	0.07
59∙	11	26–36	0.08
60.	11	36–46	0.08
61.	11	46 - 56	0.10
62.	11	8 – 56	0.09
63.	£4010	14–16	0.06
64•	11	16–18	0.06
65•	11	18-28	0.05
66.	11	28–38	0.05
67.	11	38–48	0.05
68.	11	вон	0.05
69•	11	14-48	0.06

	Hole No.	Depth ft.	Copper %
70.	4015	8-10	0.10
71.	11	10-12	0.09
72.	11	12-22	0.06
73•	5008	вон	0.39
74.	5011	7 2 -40	0.58
75•	5042	16-66	0.30
76.	5077	вон	0.35
77.	5082	ff	0.35
78.	5083	Ħ	0.44
79•	5086	Ħ	0.77
80.	5088	Ħ	0,35
81.	5097	11	0.23
82.	11	6-60	0.37
83.	5103	вон	0.13
84.	5120	2-40	0.34
85•	5122	вон	1.27
86.	5123	11	0.44
87.	5125	6-40	2.00
88.	A5126	ВОН	0.63
89.	5129	8 – 36	0.31
90.	5134	14–28	0.19
91•	5136	14-20	0.33
92•	5205	Comp.	0•43
93•	45221	8-40	0.37
94•	5301	BOH	0.30
95∙	5330	77	0.11
96•	5756	8–26	0.70
97•	5022	10–40	0.31
98.	5043	BOH	0.27
99•	5033	lt .	0.50
100.	5078	11	0.37
101.	5100		0.11
102.	5106	6-40	0.65
103.	5126	вон	0.05
104.	5121	12-40	1.26
105.	5021	вон	0.29
106•	5122	10-40	1.28
107•	5123	6– 36	0•91
108.	5125	вон	0.72
109•	5127	4-40	0.51
110•	11	вон	0•31

Ð

	Hole No.	Depth ft.	Copper %
111.	5137	8-22	0.37
112•	5049	вон	0.26
113.	5150	6–28	0.30
114.	5157	8–22	0.28
115.	5158	8–22	0.41
116.	5155	4-8	0.21
117.	5169	6–22	0.32
118.	5241	0-2	0.22
119•	5243	0-8	0.16
120.	5243	вон	0.34
121•	5108	8–40	0.09
122•	5121	вон	1.38
123.	5021	n	0.62
124.	5035	11	0.14
125.	5086	12-20	0.79
126.	5090	вон	1•72
127.	4015	22-30	0.06
128.	11	30-38	0.07
129•		3846	0 .0 8
130.	11	46	0.08
131.	Ħ	10-46	0.08
132.	4020	8-10	0.14
133•	11	10-14	0.37
134•	וו	14-18	0.34
135•	ff	18-28	0.22
136.	11	28-36	0.22
137•	11	36 – 46	0.32
138•	11	46 - 52	3.31
139•	11	52-60	6.10
140•	11	ВОН	5.50
141.	4030	10-12	0.34
142•	11	12-14	0.52
143•	11	14-24	2.56
144•	11	24–32	2.36
145•	11	32–42	1.77
146.	n	10-52	2.02
147•	4035	6-8	0.34
148•	11	8-10	0.23
149•	11	10-20	0.10
150•	Ħ	20-30	0.18
151.	4025	6-8	0.44
152•	11	8–12	2.68
153•	11	12	4.61

	Hole No.	$\frac{ exttt{Depth}}{ exttt{ft}ullet}$	Copper %
154•	4025	20-30	3.41
155•	11	0-42	3•99
156.	11	42 - 54	3.98
157•	A4025	54-64	3.17
158.	fl	ВОН	3.47
159•	A4041	46	0.61
160.	n	68	0•94
161.	11	16-26	0.69
162.	11	26-36	0.78
163.	11	36-46	1.89
164.	11	46-56	1•94
165.	n	56-62	1.84
166.	Ħ	68-74	1•93
167.	11	4-74	1.77
168.	11	74	1.52
169.	A4035	6– 52	0.31
170.	11	30-40	0.27
171•	11	40-52	0.37
172.	A4045	4-6	0.57
173.	11	6–8	0.40
174.	n	8–12	0.95
175•	A4045	4-16	0.87
176.	11	12-16	1.25
177•	11	16	0.97
178.	A4050	10–20	0.81
179•	ff	1026	0.77
180.	11	20-26	0.77
181.	11	26	0.48
182.	44055	8-10	0.71
183•	n	10-20	1.85
184.	71	20-30	2.29
185.	11	8-42	2.19
186.	44060	8-10	2•45
187.	11	10-12	2.44
188.	11	12-22	2.76
189•	"	22-30	2.44
190•	11	8 - 38	2.63
191•	11	38	2.14
192.	h4065	8-10	0.80
193•	11	8-14	0.90
194•	71	14	0.65

•

	Hole No.	Depth ft.	Copper %
195•	<i>4</i> 4070	4-10	0.14
196.	11	4-16	0.22
197•	Ħ	10-12	0.21
198.	11	12-16	0.30
199•	11	вон	0.30
200.	4075	?	0.34
201.	4080	8-10	0,12
202.	11	10-18	0.12
203.	11	18	0.12
204,	4081	6– 8	0.09
205.	11	вон	0.14
206.	4082	52	1•15
207.	4083	6-18	0.64
208.	11	14-16	0.41
209•	tf	16-18	0.56
210.	11	6– 8	0.50
211.	4084	6– 8	0.09
212.	11	8-10	0.16
213.	tt	10-12	0.24
214.	û	12-22	0.63
215.	11	12-32	0.57
216.	Ħ	32	1.08
217•	Ħ	22-32	0.75
218.	4086	10-20	0.88
219•	4085	6– 8	0.07
220.	H	8-14	0.06
221.	ff	14-22	0.08
222.	4086	20-30	1•31
223.	17	30-40	1.43
224•	11	40-48	0.96
225•	11	48–54	0•94
226.	11	54	0,60
227•	11	10-54	1.26
228.	4087	4-8	3•23
229.	ft	4-12	3.39
230.	11	8-12	3•53
231.	Ħ	12	2.79

	Hole No.	$\frac{ exttt{Depth}}{ exttt{ft}_ullet}$	Copper %
232•	4088	10-14	1.58
233•	Ħ	14-24	2.71
234•	11	24-32	2.07
235•	t1	10-48	3.97
236.	11	32-40	1-28
237•	11	40-48	1.83
238.	11	48	2•59
239•	4089	12-16	0.23
240•	11	16 26	0.21
241•	17	26-34	0,25
242.	fl	18-42	0.33
243•	11	34-42	1.64
244•	11"	42	2.12
245•	4090	12-20	0.06
246.	1 7	12-28	0.05
247•	11	20-28	0.06
248.	19	28	0.05
249•	4091	16-24	0.06
250.	tt	24-32	0.06
251.	**	32-42	0.06
252.	11	16-52	0.11
253•	91	42 - 52	0.14
254.	4092	8-14	0.65
255•	ŧŧ	16–24	0.15
256.	tt	16-42	0.26
257•	tt	24-32	0.13
258.	11	32-42	0.43
259.	11	42	1.07
260.	4093	18-28	0.22
261.	tt	28-38	0.38
262.	11	38 - 48	0.72
263.	11	18-48	0.59
264•	ti	48	0.48
265•	4094	4–8	0.05
266•	Ħ	4-12	0.05
267•	11	8-12	0.05
268.	tt	12	0.05

REPORTNº 70

PETROGRAPHIC DESCRIPTION OF THREE BASALT SPECIMENS FROM DAMSITE A,

LOWER WARANGOI RIVER, NEW BRITAIN

bу

W. Oldershaw

The following petrographic descriptions are of there basalt specimens from the Warangoi River which were submitted by Dr. E.K. Carter.

R. 17701

TS. 14001

FN. CA.

Porphyritic Vesicular Augite Basalt

The specimen is a porous granular rock composed of white crystals of feldspar and olive green crystals of augite set in a dark grey vesicular matrix. There is no shearing or foliation, and the rock has a rough irregular fracture. The rock has a bulk specific gravity of 2.57 which compared to the specific gravity of 2.73 of solid basalt shows it to have a porosity of 6 percent. This porosity is high for a basalt and is due to the vesicular matrix.

Under the microscope, the rock is seen to consist of phenocrysts of plagicclase and augite 1 to 2 mm. across, comprising 60 percent of the rock, set in a matrix of small laths of plagicclase and grains of magnetite with interstitial brown basaltic glass.

The phenocrysts of plagicclase consist of euhedral crystals of labradorite, most of which are well zoned and show growth lines. Some phenocrysts consist of two interpenetrant euhedral crystals in the form of a cross. Many of the crystals are strongly zoned from cores of labradorite to margins of oligoclase. The growth lines are marked by inclusions of dust and basalt glass along the old crystal faces. The laths of plagicclase in the groundmass consist of euhedral crystals of labradorite-andesine about 0.1 mm. long.

The mafic minerals, augite and magnetite, occur in groups. The augite consists of fresh, roughly prismatic crystals, some of which are slightly leached and corroded around their margins.

The matrix of the rock consists of minute laths of fresh plagicclase, minute octahedra of magnetite which comprise about 6 percent of the matrix, and interstitial brown basaltic glass which comprises about 10 percent of the matrix.

The specimen is a porous granular rock with numerous vesicles. The vesicles are empty and unlined. There is no foliation or shearing. The rock is fresh and shows no sign of weathering or alteration. The rock has a specific gravity of 2.57 which is less than the specific gravity of 2.73 for solid basalts and is due to the vesicles which comprise 6 percent of the rock. These vesicles would greatly reduce its strength. Ten percent of the matrix consists of hasaltic glass, but this is not known to be deletrious.

2.

R. 17702 TS. 14002 F. CB

Porphyritic Vesicular Augite Basalt

The specimen is a porous crystalline rock with a few crystals of white feldspar and olive-green augite, 1-2 mm. across, set in a dark grey vesicular groundmass. There is no shearing or foliation and the rock has a rough hackly fracture. The rock has a bulk specific gravity of 2.57. This is less than the specific gravity of most basalts (2.73) and is due to the vesicles which comprise 6 percent of the rock.

Under the microscope the rock is seen to consist of euhedral crystals of plagicclase, comprising 60 percent of the rock, and groups of roughly prismatic crystals of augite set in a very fine-grained matrix of minute laths of plagicclase, octahedra of magnetite and sparse interstitial basaltic glass.

The phenocrysts of foldspar consist of euhedral, strongly zoned crystals of plagicclase with bytownite-labradorite cores and oligoclase margins. The crystals contain bands of inclusions of dust, gas vugs and pods of basaltic glass along the growth lines marking old crystal faces.

The mafic minerals - augite, magnetite and a little clivine - occur in groups. The augite shows little alteration and litt corresion.

The matrix of the rock is finor-grained and darker than in specimen R. 17701 and consists of minute laths of plagioclase and octahedra of magnetite set in a sparse brown basaltic glass.

Most of the numerous vesicles in this rock are lined with a thin layer (0.1 mm. thick) of a pale brown, non-pleochroic, highly birefrigent collectrom mineral, parts of which show a layered structure and parts show an aggregate structure.

Some of the smaller vesicles are full of this mineral. It appears to be one of the montmorillonite group of clay minerals and was probably formed by deuteric alteration of the basaltic glass in the matrix around the vesicles.

The specimen is a porous vesicular rock. There is no foliation or shearing. The rock is fresh and shows no signs of weathering and only a little alteration. The numerous vesicles in the rock account for its high porosity of 6 percent and would tend to reduce its strength. The basaltic glass around some of the vesicles has been altered to montmorillonite. This is one of the "swelling clays", but as it only forms a thin lining to the larger vesicles and fills a few of the smaller vesicles, it comprises about one percent of the rock and its effect would be quite small.

<u>R. 17703</u> <u>TS. 14003</u> FN. CC

Augito Basalt

The specimen is a compact crystalline black rock with a few crystals of grey feldspar, black augite, and small pods of brown clay minerals scattered through it. The sample has a rough hackly fracture. No shear planes, joints or foliation were found. The sample has a specific gravity of 2.67 and a porosity of 1 percent. The sample is not weathered or stained.

Under the microscope, the rock is seen to consist of cuhedral and subhedral phenocrysts of plagicclase, which form 60 percent of the rock, and a few prisms of augite and a few grains of magnetite set in a fine-grained matrix of minute laths and prisms of plagicclase and octahedra of magnetite.

â

The phenocrysts of plagicclase are strongly zoned and consist of bytownite-labradorite with oligoclase margins. The cores of the phenocrysts are crowded with inclusions of groundmass, part altered to clay, magnetite and dust, but the marginal zones are clear. Some of the growth lines are marked by bands of inclusions. Some grains are cut by parallel cracks, a few of which are filled with a brown clay.

The mafic minerals - augite and magnetite, occur in clots. The augite forms euhedral to subhedral prisms and shows no alteration.

The matrix of the rock consists of minute laths and prisms of plagioclase (0.05 mm. long) and octahedra of magnetite. The magnetite comprises 10 percent of the matrix. There are a few small vesicles comprising 1 percent of the rock which contain a brown, banded colleform, highly birefrigent mineral which is probably nontronite, one of the montmorillonite groups of clay minerals. The matrix in a few places has been altered to irrogularly shaped masses of brown montmorillonite. There are a few veinlets filled with brown clay.

The rock is a hard compact augite basalt. It contains few vesicles and there is no foliation or shearing. The rock is not weathered and the minerals show no alteration. In a few places, comprising less than 1 percent of the rock, the glassy part of the matrix has broken down into one of the montmorillonitic group of clays.

Copper Assays

by

J.R. Beevers

The following are assays for copper on samples submitted by P. Pritchard from the Rum Jungle area, N.T.

		Sample		% Cu
R.	134	201 -	251	1.6
	17	20 ¹ -	25 ' ^B	•67
	11	20 t -	30†	∙ 51
	11	30' -	351	. 23
	n	35' -	401	•47
	*1	40' -	45 1	•39
	11	45' -	501	•33
	11	501 -	551	•37
	11	55' -	601	• 26
	11	60' -	651	•23
	11	65' -	701	•22
	17	70' -	751	•22
	11	75† -	801	•42
	111	801 -	85!	. 20
	11	85' -	901	•13
	11	90' -	95 '	•11
	ti	90 ¹ -	1001	•46
	11	1001 -	1051	•51
	17	105' -	1101	1.80
	11	1151 -	1201	•79
R_{ullet}	136	0' -	5' _B	•68
	11	01 -	51 ^B	•56
	tt	5 ' -	101	•35
	11	10' -	15'	•55
	11	10¹ -	15 ' ^B	•61
	11	20' -	25 1	•72
	11	25' -	30 t	•63
	Ħ	30' -	35'	•51
	11	35' -	401	•67
	1)	40' -	451	•56
	f1	45' -	50°	•54
	11	501 -		•51
	11	55' -		• 55
	11	601 -	651	•78

		Somple		% Gu
ח	136	Sample 65 -	701	•72
R.	130	-	-	. 68
	"	70' -	75'	•46
	11	75' -	801	
	"	90' -	951	•47 •53
5		••	1001	
R.	138	0' -	51	•69 •75
	", 11	51 -	101	•66
	11	15' -	201	•73
	"	20' - 25' -	25' 30'	• 50
	"	301 -	35!	•68
	11	35! -	40 '	•74
	11	40' -	45 '	•68
R.	140	01 -	4) · 5 !	•45
T.	140	51 -	ر 101	•58
	11	10' -	15'	.87
	11	15' -	201	•93
	tt	201 -	25 1	•45
	Ħ	25' -	301	. 48
	17	301 -	351	•37
	11	351 -	401	•93
	11	45' -	501	1•14
	ŧŧ	501 -	55 '	•89
	11	55' -	601	•38
	11	60' -	651	•30
	11	651 -	701	•17
	fl	70' -	75 '	•84
	Ħ	75' -	801	•57
	11	801 -	851	•59
	11	851 -	901	•34
	11	901 -	951	•37
	11	951 -	1001	2•4
	11	1001 -	1051	•94
	11	105' -	1101	•64
	11	110' -	1151	•65
	11	115' -	1201	•64
	17	1201 -	1251	•51
R.	165	75' -	801	•32
	11	801 -	85 '	•28
	**	90' -	951	•37
	Ħ	95' -	1001	•72
	11	105' -		•92
	11	1101 -	1151	•41

		Sample		% Cu
R.	167	0,† -	5 t	•26
	it	5 † -		•46
	Ħ	5¹ -		•28
	11	5¹ -	101°C	•22
	iı	10' -	151	•36
	17	15' -	20 1	•33
	tf	20! -	25 1	•34
	11	25' -	301	•20
	TT	30' -	35 ¹	•70
	17	35 ¹ . –	40 t	•17
	11	401 -	45 '	•49
	11	45' -	501	•37
	Ħ	50 ' -	55 ¹	1.03
	11	55 ' -	601	•99
	11	60' -	65 '	•50
	11	651 -	70'	•22
	Ħ	701 -	75'	1.3
	11	75 ' -	80 '	•24
	11	801 -	851	•17
	11	85' -	90'	•68
	Ħ	90' -	95 ¹	•22
	ff	95 ' -	1001	• 27

Estimation of Copper on Core Samples from Rum Jungle.

bу

S. Baker

Following are results for the estimation of copper on core samples from Rum Jungle:-

D.D.H. DG17 Area 55, Rum Jungle

Interval	Core	Recovery %	Copper %
3'- 7'	42"	88	0.2
7'-21'6"	126"	72	less than 0.1
21'6"-26'	48"	89	0.2
26' -31'	54"	90	0.3
31' -36'	46"	77	0.3
36' -41'	48 º	80	no sample
41' -46'	31"	52	0.3
46' -50')	60"	59	O•4
50' -54'6")			0.7
54'6"-57'	14"	48	0.5
57' -62'	50"	83	0.6
62' -64' }	4 (** 1)	0.5	1.0
64' -66'6" }	45 "	83	0.5
66'6"-67'6")			0.5
67'6"-71'	53"	98	0.3
71'6"-76'6"	37"	62	0.4
76'6"-80'6"	32"	67	0.8
8016"-8416"	48 "	89	0.4
84'6"-87'9"	31"	80	0.6
8719"-97"	29"	74	4.2 abundant sulphides
91' -95'6"	48"	89	4.2 abundant sulphides
95'6"-100'	37"	69	7.4 abundant sulphides
1001 -1031	27"	75	10.0 abundant sulphides
103' -103'6")	۷,	12	0.6
103'6-109')	57"	79	0.2
109' -112'6"	38"	90	0.2 trace of sulphides
			1.0 abundant sulphides
112'6"-116' 116' -121' 121' -127'	32" 27" 35"	76 45 58	0.4 abundant sulphides 8.8 abundant sulphides
	37	, ,	1.5 abundant sulphides
)	31"	65	
128' -131')			1.2 trace of sulphides

Note: Core recovered from the intervals 100'-103' and 103'-109' were logged as 57" and 27" respectively as the first recovery is obviously incorrect and the second somewhat lower than average the core figures have been transposed in the above table.

D.G. 24 Mount Fitch, Rum Jungle

Interval	Core	Recovery %	Copper	%
210' -221'6"	96"	70	<0.1	Mn rich section 0.6
250'11"-255'	34"	72	1.9	8" x 7.8, Rem nil
34817" -3501	12"	71	0.5	
350' -355'	26 출 "	44	1.4	$4\frac{1}{2}$ "x 5.2, Rem 0.7
355' -360'	36"	60	2.5	24"x 3.5, Rem 0.6
361' -374'	101"	64	0.4	
404'6" -409'6"	. 8"	13	0.3	
40916" -4151	43 호 "	66	0,2	core fragments 0.7

D.D.H.'s	DG	27,	DG	30,	DG	31,	Mount	Fitch,	Rum	Jungle
Interva	l		Cor	re :	Reco	very	7%	Copper	%	

DG 27 85' -92'6" 122'6"-128'6"	42" not rec	47 corded	0.5 in log 13.0	clay 1.5 clay 13.0
DG 30 590' -595'	21" approx.	70	1.3	cavity 591'-593'6"
595' -600' DG 31	43" approx.	72	0.9	
75' - 80') 80' - 85')	78"	67	0.4 0.6	

R.D.H. Depth	R	•	Mount	Fitch,	Rum epth	_	Copper	%
0- 51		1	.2	95'	-100)1	0.6	
5' - 10	•	1.9		1001	-105'		0.3	
10'-15	1	2.1		1051	-110¹		0.6	
15'-20	1	1.8		1101	-115'		0,2	
201-251		2	.0	4	•			
25'-30'		3.3		1201	-125	51	0.5	
301-351		2	8.					
351-401		4.7		1301	-135 [†]		0.5	
401-45	1	2	2.3	1351	-140)1	0.5	
45'-50	•	5	.9	1401	-145	5 t	0.6	
50 '- 55	1	4	•9					
55 '- 60	1	4	0	1901	-195	5 1	0.9	
601-65	1	1	• 4					

Report No. 73

July, 1964.

Andesite from Borehole TAV. 1, Rabaul,

New Britain.

bу

W.R. Morgan

The specimen, R.16888, was submitted by C.B. Branch for petrological examination. The hand specimen is a pinkish-grey, fine-grained sparsely porphyritic lava that is cut by parallel, white veins, 5 to 10 mm. apart, and about 1 to 2 mm. thick. In a zone about 0.5 mm. thick either side of the veins, the lava is oxidized.

In thin section, the phenocrysts are seen to range up to 2mm. long, and to form about 5% of the rock. Plagicclase phenocrysts are tabular and, in places, clustered; they have a composition of about An 25-40. Pale green augite, and rather less common colourless hypersthene, phenocrysts form slightly embayed and rounded prismatic crystals that are, in places, intergrown with magnetite; some pyroxene crystals are slightly altered to hydrated iron oxide particularly where they are olose to the veins noted in hand specimen.

The groundmass is holocrystalline, and consists mostly of flow-oriented to sub-variolitic, fairly sodic plagicclase microlites that measure 0.02 mm. long by 0.006 mm. wide. Some granular pyroxene grains, 0.003 mm. diameter, and small amounts of octahedral magnetite, are present.

The veins are composed of granular to elongated crystals of a zeolite, possibly phillipsite.

198 PNG/1

REPORT NO.74

9th January, 1964.

Delerite from Loloki Copper Smelter, T.P.N.G.

ру

W.R. Morgan

The sample (R.17289) was submitted for petrographic examination by B.P. Walpole. In hand specimen, it is seen to be a dark greenish-grey, medium-grained dolerite whose constituent crystals show a fairly well-defined preferred orientation. The rock is cut by thin, irregular veins.

The thin section (12849) shows the rock to be a strongly altered dolerite. Plagioclase laths measure about 2 mm. long and 0.6 mm. wide, and are flow-oriented. In many places the plagioclase is strongly altered to kaolin, together with some chlorite and quartz. Augite grains measure about 1.3 mm. in diameter, and mostly form colourless prismatic crystals; some, however, fill interstices between plagioclase laths. In some places, augite is partly replaced by actinolite and chlorite. Probable olivine is represented by a few chlorite pseudomorphs. Grains of an opaque mineral were shown by polished section to he magnetic containing exsolved lamellae of ilmenite on octahedral planes. Magnetite crystals have fretted margins.

A rough estimate of the percentages of minerals present is: - plagioclase (and its alteration products): 70; augite (together with actinolite and chlorite): 20-25; magnetite: 5-10. The pseudomorphed (?) olivine is present in accessory quantities only.

The rock is cut by thin veins containing fine, granular epidote.

