DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES GEOLOGY AND GEOPHYSICS

RECORDS:

1966/97

008510

GEOCHEMICAL INVESTIGATIONS IN THE KALGOORLIE AREA; WESTERN AUSTRALIA. PROGRESS REPORT

Ъу

N.W. Le Roux

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

ALSTRUTED. GEOCHEMICAL INVESTIGATIONS IN THE KALGOORLIE AREA, WESTERN AUSTRALIA. PROGRESS REPORT

ру

N.W. Le Roux

Records: 1966/97

CONTENTS

	Page No.
SUMMARY	1
INTRODUCTION	1
SOIL, TOPOGRAPHY, VEGETATION AND CLIMATE	2
PREVIOUS WORK	2
GENERAL GEOLOGY	2
SAMPLING PROCEDURE	2
ANALYTICAL PROCEDURES AND RESULTS	2
DETAILS OF MINERALIZATION	4
ELEMENTS ASSOCIATED WITH ORE	6
DISCUSSION	6
CONCLUSIONS	7
RECOMMENDATIONS	8
ACKNOWLEDGEMENTS	8
REFERENCES	9 '

TABLES

- I : Golden Horseshoe Sample Details and Analytical Results.
- II: Lake View Lode Sample Details and Analytical Results.
- III : Federal Lode Sample Details and Analytical Results.
- IV : Hamilton No. 3 West Branch Sample Details and Analytical Results.
- : Hamilton Cross Lode Sample Details and Analytical Results.
- VI : Eastern Lode System Sample Details and Analytical Results.
- VII: Sleeping Beauty Lode Sample Details and Analytical Results. VIII: Slippery Gimlet Lode Sample Details and Analytical Results.
- IX : Gimlet South Lode Sample Details and Analytical Results.
- : New Area Sample Details and Analytical Results.
- XI : Information Available for Samples.
- XII : Average Values for Elements.

SECTI ONS

- : Golden Horseshoe
- : Lake View Lode
- : Federal No. 6
- : Hamilton No. 3 West Lode
- : Hamilton Cross Lode
- : 4500°S
- : Ora Banda Traverses

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

FIGURES

1 2	8	Golden Horseshoe 1400' level Golden Horseshoe 1400' level	V, Cu, As Co, Ni
3 4		Lake View Lode Federal Lode	V, Cu, Co, As, Ni
5		Federal Lode	V, Cu, Co Ni, As
6	:	Hamilton No. 3 West Lode	V, Cu, Co, As, Ni
7	:	Hamilton Cross Lode	V, Cu, Ni
8		Hamilton Cross Lode	Co, As
9		W.M.C. Section Map 4500'S Nos. 615-74	V, Cu, Co, Ni
10		W.M.C. Section Map 4500'S Nos. 615-74	As
11		W.M.C. Section Map 4500'S Nos. 137-196	Co, As, Ni
12		W.M.C. Section Map 4500'S Nos. 137-196	V, Cu
13		W.M.C. Section Map 4500'S Nos. 94-240	V, Co, Ni
14		W.M.C. Section Map 4500'S Nos. 94-240	Cu, As
15		W.M.C. Section Map 4500'S Nos. 622-312	V, Cu, As
16		W.M.C. Section Map 4500'S Nos. 622-312	Ni, Co
17 18	8	W.M.C. Section Map. 4500'S Nos. 791-809	V, Co, Cu, As
19		W.M.C. Section Map 4500'S Nos. 791-809	Ni W N: G
20		Sleeping Beauty Lode + 82 mesh	V, Ni, Co
21		Sleeping Beauty Lode - 82 mesh Slippery Gimlet	Cu, As
22		Gimlet South	V, Ni, Cu, As, Co
23		New Area - Ora Banda	V, Ni, Cu, As, Co
	-		V, C u, Ni, C o, As

-SUMMARY

This interim report sets down the results of work carried out to date on trace element studies in the Kalgoorlie area. Most of the samples analysed are from subsurface rocks. The analyses for arsenic, copper, cobalt, nickel and vanadium are presented in graphical and tabular form. Arsenic appears to be the only one of these five elements associated directly with the gold mineralisation. Some future approaches to the overall programme are discussed.

INTRODUCTION

The purpose of this record is to set down the results of preliminary geochemical studies of the trace elements associated with and surrounding gold-bearing lodes in the Kalgoorlie area Western Australia. Events leading to the initiation of this programme are outlined by Pontifex & Le Roux (1965).

The samples used for the work were submitted by Western Mining Corporation, Kalgoorlie, and were collected from the various mining companies in the area viz. Great Boulder, Gold Mines of Kalgoorlie and Lake View and Star. The mines of these companies are situated in the twin townships of Kalgoorlie and Boulder. Other samples submitted were obtained from Western Mining Corporation's leases near Ora Banda, 36 miles northwest of Kalgoorlie township. The locations of the various mining leases are given by Finucane, (1965).

SOIL, TOPOGRAPHY, VEGETATION AND CLIMATE

The area is flat-lying with red clay soil and few rock outcrops. The vegetation consists mainly of salt bush and light timber. It experiences an 8 inch - 10 inch rainfall and a mean annual temperature range of 40°F - 92°F.

PREVIOUS WORK

Trace element studies have been carried out in individual areas by Western Mining Corporation but results are unpublished.

GENERAL GEOLOGY

The most recent contributions to the geology of the Kalgoorlie Goldfield are Haycraft (1965), Woodall (1965), Finucane (1964, 1965) and Wells (1964).

SAMPLING PROCEDURE

With the exception of Ora Banda samples, which are representative of soil 6" - 12" below the surface, the samples were all taken from underground. Some are chip samples taken across lodes exposed in underground workings, others are derived from drill-core from underground drilling, and were collected by mine geologists and crushed prior to delivery to the Bureau of Mineral Resources. Duplicates of most of these samples are held by Western Mining Corporation. The Bureau has retained portions of all the samples submitted.

ANALYTICAL PROCEDURES AND RESULTS

The methods used were:-

a) Emission Spectrography b) Colorimetric

a ... Emission spectrography

The instrument used was a large Hilger Quartz Spectrograph operated under the supervision of A.D. Haldane. Briefly, the procedure adopted was as follows:— The soil samples were oven dried at about 105°C and ground by hand to pass through an eighty mesh sieve. After preheating the samples to 500°C, they were loaded into hollow electrodes and arced to completion. Most of the samples were diluted 1:1 with pure washed silica sand to help the arcing behaviour. The resulting spectra were photographed and the location and intensities of the lines compared against standard plates.

Details:-

Plate type N50

Arc length 6mm

Arc current 10 amps

Slit 8 micron by 2mm

Development 2½ minutes at 68°F

Developer hydroquinone/sodium carbonate

Range 3600-2480 angstrom

Electrodes 14206 + ½" C

b) Colorimetric

Arsenic was determined using a modified Gutzeit method. (Sandell 1959).

0.2g of crushed sample (-100 mesh) was fused with 2.0g of potassium hydroxide in a nickel crucible. The contents of the crucible were transferred to a 100ml conical flask with water and concentrated hydrochloric acid. 14 ml of the following solution were added:-

After placing a mercuric chloride paper in the Gutzeit head, 3.0g of zinc (low in arsenic) was added and the head placed on the flask.

The stains on the paper due to the reaction of the liberated arsine were compared with standard colours.

Some checks were carried out using the Meteropoly Molybdenum Blue Method (Sandell, 1959).

It was originally intended that the Direct Reading Emission Spectrograph would be used to analyse the samples for about thirty trace elements. However, the instrument was not in operation when the results were required so the list of elements was amended and alternative methods had to be used.

The results are tabulated in Tables I to X and the relevant sectional maps are shown in Sections 1-7. The results have also been plotted on three cycle, semi-logarithmic paper and are shown in Figures 1-23.

DETAILS OF MINERALIZATION

A survey of the literature and studies of polished sections by I. Pontifex (B.M.R.) showed that the following minerals have been identified in Kalgoorlie ore.

Telluride minerals (in approximate order of abundance)

Calaverite AuTe

Coloradoite HgTe

Petzite Ag, AuTe

Sylvanite AuAgTe

and in subordinate abundance:

Krennerite AuTe

Hessite Ag, Te

Altaite PbTe

Melonite NiTe,

Weissite Cu2Te

Nagyagite Au(Pb, Sb, Te)8

Tetradymite Bi, Te, S

Native tellurium Te

Tellurbismuth Bi2Te3

Associated metallic minerals

Native gold Au

Pyrite FeS

Arsenopyrite FeAsS

Fahl ore (argentiferous copper sulphide)

Bournonite 2Pb Cu₂S Sb₂S₃

Enargite Cu₂S 4CuS (AsSb)₂ S₃

Jamesonite 4PbS FeS 3Sb₂S₃

Stibnite Sb₂S₃

Galena PbS

Sphalerite ZnS

Chalcopyrite Cu₂S Fe₂S₃

Tetrahedrite 5 Cu₂S 2 (CuFe)S 2Sb₂S₃

Hematite Fe₂0₃

Scheelite $CaO^{-}WO_{3}$ (commonly with some Co)

Loellingite (Fe, Co, Ni) As₂

Magnetite Fe₃0₄

The following list of non-metallic minerals which are associated with the Kalgoorlie ore is geven by Lindgren (1906).

Fluorite CaF₂

Rutile TiO₂

Calcite CaCO3

Dolomite Ca(Mg, Fe) (CO3)2

Siderite FeCO3

Ankerite $Ca (Fe^{2+}, Mg, Mn) (CO_3)_2$

Sericite hydrated K, Al, silicate

Chlorite hydrated Fe, Mg, Al, silicate

Albite Na, Al silicate

Tourmaline Na, Fe, B, Al silicate

Silica is also present

Simpson (1902) gives various chemical analyses of Kalgoorlie minerals

Calaverite AuTe₂

Ag 0.5-4.8% Cu 0.63% Se 1.13%

Goldschmidtite

Au Ag Te

Ag Cu Se 9.76% 0.32% 0.2%

Petzite

(Au Ag)₂ Te

Hg 2.2**6%**

Cu 0.20% Se 1.45% Sb

Kalgoorlite Au₂ Ag₆ Hg Te₆

Hg 10.86%

Coolgardite

 $(Au Ag Hg)_2 Te_3$

Hg 3•70%

Cu ↑ 88% Sb

Enargite

Cu₃ AsS₄

3 4

Au Ag).12**%** 0.22

Te₃

Cu Zn 41.69% 2.68%

As 16.87**%** Sb 4.30%

Te 0.05%

Coloradoite Hg,

Но Д

Hg Au Ag Te 50.40% trace 0.12% 49.48%

ELEMENTS ASSOCIATED WITH THE ORE

From the lists above it appears that the following trace elements should be associated with the ore: Au, Ag, Te, Pb, Cu, Sb, Hg, Ni, Zn, As, Bi, W, Co and B.

In addition it is suggested that vanadium is associated with the gold mineralisation. Simpson (1902) quotes roscoelite, a vanadium mica, as being a secondary mineral in the lodes. He gives the vanadium content as 27.11% V_2O_3 . Maclaren (1908) also reports roscoelite.

No molybdenum mineral is reported in the literature nor has any been observed in the mine workings. However, an underground sample from the Hamilton No. 3 West Branch (Table IV) has a molybdenum value greater than $1000~p \cdot p \cdot m$.

Results show that molybdenum, tungsten, silver, antimony, mercury and arsenic occur in greater concentrations in mill-feeds than in country rocks.

Tellurium has not been placed in this latter list although thirteen telluride minerals have been reported (see page 4). The analytical methods used to date have not been sensitive enough to show a difference between the tellurium content of mill feed and country rock.

The following elements therefore appear to be associated with the ore: Au, Ag, Te, Fe, Pb, Cu, Sb, Hg, Ni, Zn, As, Bi, W, Co, B, V and Mo.

DISCUSSION

Of the five elements considered in detail in this investigation (arsenic, cobalt, copper, nickel and vanadium), arsenic appears to be the only one showing a direct relationship with the gold mineralization. Primary dispersion is erratic. Arsenic values range from virtually zero to several hundred parts per million and the fall-off from peak values to background values takes place over varying distances even in the same rock type. The background value for arsenic in unmineralized Golden Mile Dolerite is about 20 p.p.m. (Table XII). In the Lake View Lode (Fig. 3) where the peak value is about 500 ppm, the fall to 20 ppm takes place in 50 feet; the rock is Golden Mile Dolerite. In Hamilton No. 3 West Branch the rock is again Golden Mile Dolerite but the fall-off from 200 ppm to 20 ppm takes place over 10 feet. A preview of soil to bed-rock relationship for arsenic is given by the results obtained from the analysis of the Ora Banda samples (Tables VII-X, Figs. 19-23). These samples, representative of the soil 6" to 12" below the surface, have anomalous arsenic dispersions covering hundreds of feet. It would seem from this limited evidence that arsenic is a good indicator for gold mineralization. It must be noted that no results have been obtained $ar{ extsf{for}}$ underground samples from Ora Banda or $extsf{soil}$ samples from Kalgoorlie.

Copper, vanadium, nickel and cobalt do not show significant concentrations near the gold lodes. For most of the samples studied, rock type (dolerite, basalt), grainsize (fine, medium etc.), degree of bleaching, shearing, mineral content, (ilmenite, leucoxene, epidote etc.) are known. All or some of these factors could contribute to the migration effects of the element being studied and must be considered. Choosing one element, two

traverses and some thirty known facts about the sample, it is a feasible exercise to seek some common factors as reasons for a high concentration of the element. When five elements, fourteen traverses and about thirty-five factors (Table XI) are all taken into consideration, not only are deductions from such a diversity of facts very difficult but the compilation of these facts so that they are quickly retrievable also presents a problem. One way to store the information to ensure that it is quickly retrievable is in a punch-card system. This would also make the correlation of the variable factors easier.

Reference has been made (page 6) to a molybdenum value of greater than 1000 ppm. Molybdenum does not appear to migrate very far from the lode. A sample nine inches across strike from the lode contains 70 ppm molybdenum, while at six feet the molybdenum value has fallen to less than 1 ppm. The only other molybdenum occurrence found is in the Eastern Lode System (Table VI). Sample number B.M.R. 011269, W.M.C. 129 has 5 ppm molybdenum. This sample is 200 feet from a major gold lode.

One aspect of the geology which has been suggested by Western Mining Corporation and confirmed by the chemical results is that the Golden Mile Dolerite is a differentiated sill. The Horseshoe traverse (Figs. 1 and 2) which spans the basalt-dolerite junction shows definite zones in the dolerite where vanadium and nickel in particular are concentrated or depleted. This is also evident in Figs. 11 and 12 and Fig. 13. The maximum value for vanadium occurs about 1100 feet from the basalt-dolerite boundary in both Figs. 12 and 1, Sections 6 and 1. This maximum value is followed in each case by a depletion in vanadium to 3 ppm within 200 feet of the maximum value. Similarly nickel has a maximum value of 150 ppm about 100 feet from the boundary in Figs. 2 and 13, Sections 1 and 6 and in Figs. 2 and 11, Section 1 and 6 decreases to zero at about 1400 feet from the dolerite-basalt boundary. This kind of fractionation is well documented in the literature Goldschmidt, 1954, McDougall, 1963, Rankama, 1950. The chemical evidence supports mineralogical evidence obtained by R. Woodall and G. Travis (pers. comm.) of Western Mining Corporation.

Table XII shows the average concentrations of the various elements in the different rock types, and the order of magnitude of these average values. The general order is:

There is an exchange of position between nickel and arsenic in the Golden Mile Dolerite. These higher arsenic values are possibly due to more gold deposits in the dolerite than basalt.

CONCLUSIONS

GENERAL

Studies to date indicate that arsenic is the only element clearly associated with the gold mineralization.

Elemental variations support the mineralogical evidence obtained by Woodall and Travis of Western Mining Corporation for "zoning", in the Golden Mile Dolerite.

RECOMMENDATIONS

As one aspect of this work is to obtain information on element(s) which could be used for geochemical prospecting in a Kalgoorlie-type area it is suggested that the following elements be determined in both the primary zone and soil samples.

Au, Ag, Cu, Sb, Hg, As, W, B, V, Mo and Te.

Until analytical results have been obtained for such elements as Sb, Hg, W, B, and Te, it is difficult to draw conclusions as to what importance to place on any given elements in the list.

Thirteen telluride minerals from Kalgoorlie are shown (page 4) and it is obviously important to determine the distribution of tellurium. A method is being developed in the B.M.R. geological laboratory (Marshall, 1965) with which it is hoped a detection limit of 0.2 ppm in the solid will be obtained. Baxter (1964) reports a background in the Cripple Creek area, Colorado, of 0.5 ppm tellurium. An analysis of a sample taken over a mineralised area showed 12.5 ppm tellurium.

Mercury is another element where the detection limit of the analytical method needs to be low. According to Williston (1964) a detection limit of well under 1 ppm needs to be achieved. Instruments are in use, based on the principle of atomic absorption for which a sensitivity of 1 part per billion (1 in 10) is claimed. These instruments are not commercially available as yet.

Another problem to be kept in mind for future work is that of determining a suitable sub-surface depth for soil sampling. This will need to be below the surface contamination of old workings, slime dumps, old mills, windborne dust etc., which abound in the area.

A system of information storage, such as a simple punch-card system is needed because of the number of parameters involved in the interpretation of the results.

ACKNOWLEDGEMENTS

I should like to acknowledge the helpful discussions with members of the B.M.R. laboratory, especially I.R. Pontifex, also the staff of Western Mining Corporation, Great Boulder Mines Ltd., Gold Mines of Kalgoorlie and Lake View and Star.

REFERENCES

R.A. BAXTER & S.E. POET, 1964 - Geochemical prospecting, Mines Magazine, Sept. 1964, p.27.

K.J. FINUCANE, 1964 - Ore penetration into Calc Schist on the Kalgoorlie Goldfield - Proc. A.I.M.M. No. 211, p. 49.

K.J. FINUCANE, 1965 - Ore distribution and lode structures in the Kalgoorlie Goldfield - Geology of Australian Ore Deposits, 2nd Edition, p.80.

M. GOLDSCHMIDT, 1954 - Geochemistry, Clarendon Press.

J.A. HAYCRAFT, 1965 - Ore bodies in the Mt. Charlotte-Hannans North Area, Kalgoorlie. Proc. A.I.M.M. No. 213, p. 49.

N.W. Le ROUX, 1965 - Geochemical Investigations in the Kalgoorlie and Norseman Areas, Western Australia. Bur.

Min. Res. Aust. Rec. 1966/96 unpubl.

W. LINDGREN, 1906 - Metasomatic processes in the Gold Deposits of Western Australia. Econ. Geol. Vol. 1, No. 534, pp. 530-544.

J.M. MACLAREN, 1908 - Gold, its geological occurrence and geographical distribution. London, Mining Journal, p. 404.

N.J. MARSHALL, 1965 - Multi-Element Solvent Extraction in Atomic Absorption Analysis - B.M.R. Record 1965/150 unpubl.

I. McDOUGALL & J.F. LOVERING, 1963 - Fractionation of Cr, Ni, Co and Cu in a Differentiated Dolerite - Granophyre Sequence at Red Hill, Tasmania - J. Geol. Soc. Aust. V.10, Part 2.

I.R. PONTIFEX & N.W. Le ROUX, 1965 - Visit to Kalgoorlie and Norseman Goldfields by N.W. Le Roux & I.R. Pontifex, July, 1965. Bur. Min. Resour. Aust. Rec. 1965/172 (unpubl.)

K. RANKAMA & G. SAHAMA, 1950 - Geochemistry, Univ. of Chicago Press.

E.B. SANDELL, 1959 - Colorimetric Determination of Traces of Metals, Third Edition.

E.S. SIMPSON, 1902 - Bull. Geol. Surv. W.A. No. 6.

A.A. WELLS, 1964 - Western Lode Structures and Southward Extensions on the Boulder Mining Belt - Proc. A.I.M.M. No. 211, p. 181.

S.H. WILLISTON, 1964 - The Mercury Halo Method of Exploration - Eng. and Min. J. V165 No. 5, p. 98.

R. WOODALL, 1965 - Structure of the Kalgoorlie Goldfield - Geology of Australian Ore deposits, 2nd Edition, p. 71.

GOLDEN HORSESHOE

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

W.M.C. No.	B.M.R. No.	Description	Ni	Co	Cu	V	As	Other elements
2533	011954	Bleached P.B.	20	30	40	100	13	
2532	011953	Chloritic & bleached P.B.	40	30	30	150	45	
2531	011952	11	50	30	50	150	13	
2530	011951	H 11	60	30	30	150	17	
2529	011950	H H	40	40	30	150	15	
2440	011949	Bleached P.B.	30	40	30	150	20	
2439	011948	11	30	30	40	150	15	
2438	011947	11	30	30	40	200	13	
2437	011946	11	40	30	40	200	15	
2436	011945	II .	40	30	30	200	25	
2435	011944	Chloritic P.B.	50	40	50	200	17	
2434	011943	# 	50	30	30	200	13	
2433	011942	11 () -1.2 (G.M.D.	40 50	30	30 50	150	50 1	
2396	011941	fg lx (sparse) chl. G.M.D.	50 80	30 30	50 80	150 100	4	
2395	011940	mg lx (sparse) G.M.D. more basic than usual	150	30 40	50 50	100	35 1 0	
2394	011939	· · · · · · · · · · · · · · · · · · ·	80	30	80	100	32	
2393	011938	Chloritized amphibolite with sparse f-mg lx	100		50	150	45	
2392	011937	(G.M.D.	50	40 30	50 50	150	13	
2391	011936	fg and mg lx (sparse) chl. G.M.D. m-cg lx chl. G.M.D.	20	30 30	40	150	10	
239 0 2389	011935	mg chl.G.M.D. with sparse lx aggregates	20	40	50	200	7	
2322	011934 011933	mg cur. a.w.p. wron sharse ix aggregates	30·	40	50	200	20	
2321	011932	mg lx ahl. G.M.D.	15	30	50	200	17	
2320	011931	II 17 GILL. G.M.D.	10	30	50	100	10	
2319	011930	11	12	20	30	60	17	
2318	011929	mg chl.G.M.D. with sparse lx aggregates	15	20	80	150	45	
2317	011928	ii	15	30	80	200	13	
2316	011927	f-mg lx chl. G.M.D.	15	40	80	200	30	
2315	011926	"	20	40	50	200	32	
2314	011925		10	40	100	200	17	
2313	011924	f-mg il ⇒lx chl. G.M.D.	20	20	30	60	2.5	
2312	011923	mg il chl. G.M.D.	15	70	150	700	20	
2311	011922	mg il, epi, amp. G.M.D.	10	70	200	700	7	
2310	011921	· · · · · · · · · · · · · · · · · · ·	10	50	150	700	7	
2309	011920	f-mg il, -epi, chl. G.M.D.	5	50	100	700	11	
2308	011919	f-mg il chl. G.M.D.	a	50	2	700	2.5	
2307	011918		a	70	30	500	7	
2305	011917	11 t)	a	100	100	400	25	
2304 2302	011916	•	a	80	40	200	32 25	
2301	011915	f-mg il chl.G.M.D., with a crude variolitic	a	70	40	200	25	
2300	011914 011913	" texture	a	70	40	60	32	
		·	a	50	40	5	30	A.
2578	011955	Bleached mg il -> 1x G.M.D.	5	15	2-	5-	9	
2579	011956	Weakly bleached mg il G.M.D.	5 -	20	5	5-	15	
2580	011957	Bleached mg il G.M.D.	5	25	15	5	30	
2581	011958	mg il chl. G.M.D.	5	20	5	30	22	
2582	011959	mg il lx 'ophitic' chl. G.M.D.	10	30	50	300	27	
2583	011960	mg lx 'ophitic' chl. G.M.D.	5	30	20	200	22	
2584	011961	Bleached mg lx G.M.D.	5	30	10	150	30	
2585 2586	011962	mg lx 'ophitic' chl. G.M.D.	10	40	40	200	37	
2586 2587	011963	**	10	40	30	200	30	
2588	011964	Bleached mg lx G.M.D.	10	30	30	200	17	
2589	011965	mg lx (ophitic' chl. G.M.D.	10	30	40	150m	3 Q	
2590 2590	011966	mg lx chl. G.M.D.	10	30	20	200	37	
£)30	011967	mg lx 'ophitic' chl. G.M.D.	10	30	40	200	35	

ABBREVIATIONS USED IN SAMPLE DESCRIPTIONS

Abbreviation
chl. G.M.D.
wkly. blchd. G.M.D. S/B G.M.D.
Blchd. G.M.D.
H/B G.M.D.
chl. P.B.
Blchd. P.B.
il
lx
il → lx
Epi
amph.

Full Terminology

Chloritic Golden Mile Dolerite
Weakly bleached Golden Mile Dolerite
Semi-bleached Golden Mile Dolerite
Bleached Golden Mile Dolerite
Highly bleached Golden Mile Dolerite
Chloritic Paringa Basalt
Bleached Paringa Basalt
ilmenitic
Leucoxenitic
Ilmenite altering to leucoxene
Epidotic
Amphibolitic

Average Grain size of Ilmenite or Leucoxene

fg Fine grained (£0-25 mm)
f-mg Fine-medium grained (0.25-1.0 mm)
mg Medium grained (1.0-3.0 mm)
m-cg Medium-coarse grained (3.0 -5.0 mm)

TABLE II.

LAKE VIEW LODE

SAMPLE DETAILS AND ANALYTICAL RESULTS (p.p.m.)

Lode: Lake View Lode.

Sample No's. W.M.C. 17074 - 112. : B.M.R. 011873-911.

Location:

Perseverance Shaft, No.10 Level.

Remarks:

All samples were collected along the south wall of the crosscut, using the western boundary of the main lode channel as a Datum. The main lode channels a Datum. The main lode channel extends from $0-8\frac{1}{2}$ feet east of Datum, with other lode seams from $12\frac{1}{2}-13\frac{1}{2}$ feet, east and 16-17 feet east. The lode material is highly bleached well mineralized (f.g. pyrite), sheared and siliceous G.M.D., with some quartz and quartz-carbonate veins.

Grade:

In this area the average grade was 7 dwts over an average stoping width of 15 feet.

	W.M.C.No.	B.M.R.No.	Location (feet)	Width (ins.)	Description	Ni	Co	Cu	V	As	Other eleme	nts
	17074	011873	0-2 E	24	Highly bleached weakly sheared and sericitic well mineralized (f.g.pyrite) m-cg lx G.M.D.	10	25	30	400	400	Ag	
		•		0.4	Some silica and quartz-carbonate veining.	7	25	50	400	200	Au A	Ag
	17075	011874	2 –4E	24	Do. to 17074, but more siliceous	5 -	20	40	300	150	Ag	
	17076	011875	4-6 E	24	11 11	5-	20	40	300	300	Ag	
	17077	011876	6-8 E	24 24	m-cg lx G.M.D. Some fragments weakly bleached	5-	20	40	200	200	${f A}{f g}$	
	17078	011877	8 –10E	24	and weakly mineralized (f.g.pyrite) with some quartz-carbonate veining.							
	47070	011878	10 – 12]E	30	S/B -weakly bleached m-cg lx 'ophitic' G.M.D.	5-	20	40	200	200	Ag	
	17079 17080	011879	12 2 -13 25	12	H/B, moderately sheared well mineralized	5-	25	40	300	400	Ag	
	17000	011019	122-1324	,-	(f.g. pyrite) siliceous G.M.D.	_			000	450	A	
	17081	011880	13 2 −16 E	30	Weakly bleached - S/B m-cg lx G.M.D. Some fragments weakly sheared (sericitic).	5-	25	50	200	150	Ag	
	17082	011881	16 –17 E	12	H/B, moderately sheared (sericitic), siliceous well mineralized G.M.D.(f.g. pyrite)	5	25	50	400	150	Ag	
	17083	011882	17 –18E	12	S/B - weakly bleached m-cg lx G.M.D. Some veining (pyritic) and weak shearing.	5 -	20	40	200	167		
	17084	011883	18 – 20 E	24	II II	5-	20	40	200	50		
	17085	011884	20 – 22 E	24	" "	5-	20	70	200	333	A ~	
	17086	011885	22 – 24 E	24	Weakly sheared m-cg lx Chl.G.M.D. Some frag- ments bleached with a fair amount of f-mg. pyrite.	5	25	70	200	500	Ag	
	17087	011886	24 – 26 E	24	Weakly sheared and weakly bleavhed G.M.D. Some quartz-carbonate veining and minor fg	5-	20	50	200	30		
	17088	011887	26 -28 E	24	pyrite. Weakly sheared and weakly bleached G.M.D. Some quartz-carbonate veining and minor fg pyrite to 17087	5 -	20	40	200	45		
	17089	011888	28 -30 E	2	do to 17087	5	20	40	200	40		
	17090	011889	0 -2W	24	Weakly bleached -S/B weakly sheared m-cg lx G.M.D. with some pyrite around minor quartz-	5	20	35	200	200		
	47004	011800	2 4197	24	carbonate veins. do. to 091, but no pyrite or veining	5	20	35	200	50		
	17091	011 890 01 1891	2 -4W 4 -6W	24 24	do.	10	50	50	300	50 60		
	17092	011891	4 -8 W	24	do.	10	30	50	300	50		
-	17093 17094	011893	8-10W	24	Weakly sheared m-cg lx chl.G.M.D.	10	30	70	200	40		
	17094	011894	10-12W	24	m-cg lx 'Ophitic' Chl. G.M.D.	7	30	60	300	40		
	17096	011895	12-14W	24	Weakly sheared weakly bleached mg cg lx G.M.D.	5	30	60	300	45		
-	17097	011896	14-16W	24	m-cg lx 'Ophitic' Chl. G.M.D.	10	40	60	200	60		
	17098	011897	16-18W	24	do	5	30	60	200	50		
	17099	011898	18-20W	24	do	5	30	80	200	40		
	17100	011899	20-22 W	24	do	5	35	60	300	40		
	17101	011900	22-24 W	24	do	5	25	60	300	40		
	17102	011901	24-26 W	24	do	5	50	70	300	40		
	17103	011902	26-28 W	24	do	10	40	80	300	30		
	17104	011903	28-30W	24	do	7	30	80	200	25		
	17105	011904	30-32 W	24	đo	Ϋ́	30	70	200	25		
	17106	011905	32-36W	48	đo	10	35	80	200			
	17107	011906	36-40 W	48	Weakly sheared semi-bleached m-cg lx G.M.D. with some pyritic quartz veins and abundant fg magnetite.	5	20	60	200			
	17108	011907	40-44₩	48	do to 1.7107	5	20	50	200	20		
	17109	011908	44-48 W	48	Fragments of unbleached, semi-bleached and highly bleached (some pyrite) m-cg lx G.M.D.	5	20	50	200			
	17110	011909	48-52₩		m-cg lx ophitic Chl. G.M.D.	7	30	80	200			
	17111	011910	52-56 W		do	10	30	60	200			
	17112	011911	56-60W		do	7	30	70	200	20		
	-	-										

TABLE III

FEDERAL LODE

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

Lode: Federal Lode Sample No's. W.M.C. 17113 - 17151. B.M.R. No's.011968-12006

Location: Block "45" No.6 Level

Remarks:: A this section the lode consists of a series of mineralized seams up to 18" wide extending over the stope width of 12 feet. The eastern wall of the stope is bounded by a strong shear dipping 70 w, and this was used as the datum for sample locations. Those samples from 10' - 55'E and 12' - 47'W were taken from diamond drill holes XF14 and XF13, and those from 0' - 12'W from the stope backs, approximately 20' north and 20' above the drill holes. In this area the wall rock is bleached Paringa Basalt and the lode is confined to a zone of flow - top brecciation extending from o-12W and

Grade:

Approximate grade of the area is 5 dwts/ton.

	W.M.C.No.	B.M.R. No.	Location (feet)	Width (ins.)	Description	Ni	. Clo	Cu	V	As	Other e	lements	
	17113	011968	XF14 10 - 12E	24	Bleached Paringa Basalt (Blchd PB)	30	30	50	150	15			
	17114	011969	12 – 14E	24	Blohd PB with minor carb veins	30	30	40	200	15			
	17115	0119 7 0	14 - 16 E	24	do.	50	30	50	150	15			•
	17116	011971	16-17- 17 * 10 E	22	do	50	30	40	150	20			
					17'10" - 19'4" missing - narrow weakly mineralized seams, assayed trace.	70 7	-^	70	150	20			
	17117	011972	19 4"- 22E	32	Blchd PB, minor chl. and carb veins								
	17118	011973	22 - 25 E	36	do	30	30	40	150	20			
			,	•	25-25'9" missing - weakly minlsed.carb seam @ 25', assayed trace.	30	30	40	. 150	15			
	117119	011974	25 '9"- 28 E	27	Blochd PB, minor chl, and qtz-carb veins.								
	117120	011979	28 – 31 E	36	do	25	30	40	100	5			
	117121	011976	31 - 34 E	36	do	25	30	40	150	15			
	117122	01157 7	34 - 37 E	36 36	do	25	30	40	150	15			
	117423	011978	37 - 40E	36	do	30	30	40	100	15			
	117424	011979	40 - 45'4"	64	do	25	30	30	100	15			
		_			45'4" - 45'10" missing - strong but weakly minlsed seam @ 35'6", assayed trace	30	30	40	100	15			
	17125	011980	45 ' 10"-50 E	50	Blchd PB, minor chl. and qtz-carb veins								
	17126	011981	50' - 55 E	60	do	30	30	40	100	10			
			XF13			30	30	40	100	10			
	17127	011982	12 - 14W	24	٠. د	0.0							
	17128	011983	14 - 16W	24	do do	20	30	30	100	15			
	17129	011984	16 - 18W	24	do	20	30	40	100	15			
	17130	011985	18 - 20 W	24	do	20	30	30	150	15			
	17131	011986	20 - 22W	24	do	25	30	40	150	15			
	17132	011987	22 – 25 W	36	Tuffaceous and brecciated blchd PB.	20	20	30	130	15			
	17133	011988	25 – 28 W	36	Blond PB with appearance similar to white	25	20	40	150	15			
			,	35	bleached porphyry. 28' - 28'10" missing - weakly mineralized	15	20	30	150	10			
					flow tap breccia, assayed trace.								
	17134	011989	28'10"- 32W	38	Blchd PB, minor qutz-carb.veins	4 5	20	٥.	400	20			
	17135	011990	321- 35W	36	do	15 1 2	20 20	25	100	30			
		011991	35' - 38 W	36	do	20	20	30	100	15			
		011992	38' - 41W	36	do	20	20	30 40	100	15			
		011993	41° - 44W	36	do	20	20	40	100	25			
-		011994	44 - 47W	36	đo	20	30	40 20	100	15			
		011995	0 – 2 W	24	Bleached PB., brecciated	25	30	30	150	10			
		011996	2 - 3'8"W	20	do	30	30	40	100 150	10 10			
-	17142	011997	3*8"- 4'W	4	Moderately minlsed (fg pyrite) and sheared	20	30	30	150	40			
					(sericitic) blond PB with qtz-carb veins (from mmlsed shear dipping 45°W)	- y		JU	1)0	49		~ Z	
	17143	011998	4 - 6W	24	Bleached and brecciated PB with several	20	30	30	150	1 5			
	17111	044000	<i>(</i> 0		narrow mineralised seams (very minor shearing)	+9	20	שע	1)0	#7			
		011999	6 - 8 W	24	Blchd and brecciated PB, moderately minlsed. from $6\frac{1}{2}-7\frac{1}{2}$ W (no shearing)	20	30	40	200	30		Ag	
	17145	012000	8 - 9 2 ₩	18	Silicified, moderately mineralised weakly blond PB, terminated at 9'6" by an oblique	30	30	50	200	40		Ag	
		012001	9'6"-12'W	30	weak fault dipping 70°W (see plan).	•-		-					
	7147	012002	0 - 2E	24	Chloritic blond PB (flow top breccia. Blond and brecciated PB	30	30	30	150	15			
	7148	012003	2 - 4E	24		30	20	40	100	20			
		012004	4 - 66	24	do	30	30	40	100	15			
		012005	6 - 8 E	24	do Blohd PB.	30	30	30	150	15			
		012006	8 - 10 E	-4	blend PB.	30	30	30	100	15			
						20	30	30	100	5			

TABLE IV

HAMILTON No.3 WEST BRANCH

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

Lode: Hamilton No.3 West Branch.

Sample No's. W.M.C. 17001-029 and 17113. B.M.R. 011800-29 and 011912

Location: Hamilton Shaft, No.28 Level.

At this section through the lode abundant free Au is visible in a 1" wide siliceous vein. The country rock for 9 inc. each side of this vein is bleached moderately sheared and moderately mineralized (f-mg pyrite)

G.M.D. Moderate shearing with only minor bleaching extends for a further 2'3" each side of these bleached and mineralized zones. All samples were collected along the north wall of the crosscut using the

siliceous vein as a Datum.

Grade: Face assays in the area 30 ft.north and 50 ft. south of the crosscur averaged 17.5 dwts over a width of 72 inches.

	W.M.C.Nos.	B.M.R. Nos.	Location (feet)	Width (ins.)	Description	Ni	Co	Cu	V	As	Other elements
	17001	011800	9" - 3½''W	33	Moderately sheared weakly bleached m-cg il "Ophitic" chl.Q.D.G.Minor quartz carb. veins.	7	40	70	300	20	
	17002	011801	0 - 9'' w	9	(Excluding 17003) H/B moderately sheared and mineralized (fg pyrite) m-cg lx G.M.D. A little tourmaline present on some of the sericitic shear planes.	10	40	100	300	200	Mo(70), Sm(10) 10,
	17003	011802	-	1"	f.g. grey silica with streaks of silica and fg. magnetite (?). Abundant free Au.	5	30	150	300	60	Mo (1000+) Sn(10) Ag, Am, Pb(10)
	17113	011912	9 - 9"E	9"	(Excluding 17003). Do to 17002	5	30	50	300	250	Mo(25)
	17004	011803	9" - 3'E	27"	m-cg il moderately sheared (sericitic) QLDG	5 5	30	40	300	30	Mo(5)
	17005	011804	3 - 5E	24 "	m-cg il lx G.M.D. weakly sheared with minor blebs of pyrite.	7	40	40	300	20	Sn (50)
	17006	011805	5 - 7E	24"	m-cg/Chl. G.W.D. /lx.	7	40	15	300	25	Mo(10), Sm(20)
	17007	011806	7 - 9 E	24"	m-cg lx Chl.G.M.D. ('ophitic texture') Some fragments weakly bleached and sheared with small quartz-carbonate veins.	7	40	40	300	25	Sn(20)
	17008	011807	9 - 11E	24"	m-cg. il 'ophitic' Chl. G.M.D.	5	30	50	200	20	S n(10)
	17009	011808	11 - 13 E	24"	m-cg. il Chl. G.M.D.	5	40	40	300	30	S n(20)
	17010	011809	13 - 15E	24"	m-cg. il Chl. G.M.D.	5	30	40	300	30	Sn(10)
	17011		15 - 17E	24"	m-cg. il Chl. G.M.D.	5	30	40	300	25	
	17012	011811	17 - 19E	24"	m-cg. lx Chl.G.M.D. weakly sheared and veined	7	40	70	300	30	
	17013	011812	19 - 21 E	24"	m-cg. lx Chl.G.M.D. Minor pyrite and veining	g10	40	40	300	20	
	17014		21 - 23E	24"	m-cg. lx Cgl. G.M.D. Minor pyrite and "	5 -	30	40	200	20	
	17015	011814	23 - 25 E	24"	m-cg. lx Chl. G.M.D. Minor pyrite and "	5 –	30	50	200	45	
	17016	011815	25 – 27 E	24"	m-cg. lx Chl. G.M.D. Minor pyrite and "	5 –	20	70	300	45	
	17017	011816	27 – 29 E	24"	m-cg.lx Chl. Q.D.G. moderately sheared with a fair amount of any pyrite and qyz. veins.	5	40	300	150		
	17018	Φ11817	29 - 31 E	24"	do. to 17017	5	50	500	150	45	
	17019	011818	31 - 33E	24"	mg il Chl.G.M.D. moderately sheared	5	50	50	200	40	
	17020		33 - 37 E	48"	mg il 'ophitic' Chl.G.M.D.	10	40	40	300	15	
	17021	_	37 - 41 E	48"	mg lx 'Ophitic' Chl.G.M.D.	5	40	40	300	10	
	17022	_	41 - 45 E	48"	do.	10	40	40	300	10	
-	17023	_	45 – 49 E	48"	S/B m-cg il 'Ophitic' G.M.D.	5	30	40	300	20	
	17024	_	49 - 53 E		m-cg il 'ophitic' Chl.G.M.D. Some frag- ments weakly bleached and weakly sheared.	10	30	40	250	25	
***	17025		53 - 5 7€	48"	S/B m-cg il G.M.D.	12	30	40	200	30	
	17026		57 – 61 E	48"	Weakly bleached m-cg il 'Ophitic' G.M.D.	10	30	40	200	25	
	17027		61 – 65 E	48"	do.	10	30	12	300	25	
	17028		65 – 69 E	48"	do	5	20	2-	300	20	
	17029	011828	69 – 73 E	48"	do	5	20	30	200	20	

HAMILTON CROSS LODE

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

Location: Hamilton Cross Lode. Sample No's. W.M.C. 17030 - 073. B.M.R. 011829 - 72.

Location: Hamilton Shaft, No.24 Level.

Remarks: At this section the lode is weakly mineralized and consists of 6 inches of banded silica and carbonate, centred around a strong control shear. Moderately sheared and bleached G.M.D. with a fair amount of fg pyrite extends 15 inches west of the main control shear, but there is no bleaching or mineralization immediately east of the control shear. All samples were

taken along the south wall of the crosscut, using the control shear as a Datum.

Over a strike distance of 170 feet (50 feet north and 120 feet south of the crosscut) face assays averaged 6.5 dwts over a width of 72 inches.

	Sam W.M.C. No.	nple No's. B.M.R. No.	Location (feet)	Width (ins.		Ni	Co	Cu	v	As	Other elements
	17030	011829	3" E - 3"W	6	Strongly sheared siliceous lode material with carbonate and weak fg pyrite mineralization.	10	20	70	150	100	Ag
	17031	011830	3" −18"₩	15	Bleached moderately sheared f-mg lx G.M.D. with a little tourmaline on sericitic shear planes.	20	25	50	700	500	Ag
	17032	011831	18"- 4"W	30	f-mg lx weakly bleached G.M.D. Variolitic texture.	20	20	40	150	20	
	17033	011832	4 - 6'W	24	f-mg lx S/B G.M.D. Poor variolitic texture.	20	25	50	150	20	
	17034	011833	6 - 8°W	24	S/B f-mg lx G.M.D. with a crude variolitic texture	20	25	30	150	20	
	17035	011834	8 - 10°W	24	do to 17034	`20	20	40	200	20	
	17036	011835	10 - 12 W	24	f-mg lx chl.G.M.D. weakly sheared	12	30	50	200	20	
	17037	011836	12 - 14 W	24	f-mg lx chl.G.M.D.with a variolitic texture	15	20	30	200		
	17038	011837	14 - 16'W	24	do to 17037					25	
	17039	011838	16 - 18'W	24	do to 17037	20	25	40	150	20	
	17040	011839	18 - 20°W	24	mg lx 'ophitic' chl. G.M.D.	20	25	50	200	25	
	17041	011840	20 - 22 W	•		20	30	10	200	30	
	17042	·		24	mg lx 'ophitic' chl. G.M.D. Some fragments sheared	20	30	10	150	30	
		011841	22 - 24 W	24	mg il chl.G.M.D. Some small quartz-carb. veins.	30	30	40	200	40	
	17043	011842	24 - 26°W	24	mg il > lx chl. G.M.D., semi-bleached and weakly sheared.	15	30	7ر	200	30	
	17044	011843	26 – 28 W	24	do.	20	30	50	200	30	
	17045	011844	28 – 30 W	24	do	30	30	50	350	25	
	17046	011845	30 - 34°W	48	mg lx 'ophitic' chl. G.M.D.	30	30	100	200	30	Ag
	17047 17048	011846	34 - 38 W	48	S/B mg lx G.M.D.	30	40	70	300	200	Ag
		011847	38 - 42 W	48	S/B mg lx G.M.D.	25	40	100	200	35	Ag
	1 7 0493	C011848	_	4	4" well carbonatised shear, dipping 60°W. Some quartz and f-mg pyrite	10	20	10	150	25	Ag
	17050	011849	42 - 46°W	44	(Excluding 17049) mg il lx weakly bleached and weakly sheared G.M.D.	30	30	50	200	60	Ag Ag
	17051	011850	46 - 50'W	48	S/B mg il lx G.M.D.	15	30	30	300	40	
	17052	011851	50 - 54 W	48	S/B mg > lx G.M.D. with small qtzcarb.veins	20	30	40	300	40	
	1-7053	011852	54 - 58'\	48	mg lx 'ophitic' chl. G.M.D.	15	35	40	300		
	17054	011853	58 - 62°W	48	do	12	30	40	200	10	
	17055	011854	62 - 72 W	120	do	15	30			15	
-	17056	011855	72 - 82 W	120	do	20	30 30	40	200	20	
	17057	011856	3" - 2'E	21	Weakly sheared f-mg lx chl. G.M.D. with very	40	40	50 30	200	20	
	17058	011857	21 - 41E	34	minor fg pyrite. Poor variolitic texture. f-mg lx chl. G.M.D. with a variolitic texture		,		300	40	
-	17059	011858	4 - 6E	24	do	30	2 0	35	200	40	
	17060	011859	6 – 815	24	do	20	30	30	200	20	
	17061	011860	8 - 10E	24		40	30	10	200	20	
	17062	011861	10 - 12 E	24	do, weakly bleached f-mg lx chl.G.M.D. variolitic texture. Minor	30 30	30 40	15 5 0	200 200	20 15	
	17063	011862	12 - 14 E	24	pyrite						
	17064	011863	14 - 16E	24	do	30	35	50	200	15	
	17065	011864		_	mg lx 'ophitic' chl. G.M.D. Some fragments weakly sheared and veined (quartz-carbonate)	30	30	50	200	15	
	17066	011865	16 - 18 E	24	mg lx S/B G.M.D. moderstely sheared	20	30	50	200	15	
	17067	011866	18 - 20 E	24	do	30		50	150	15	
	17068		20 - 22 E	24	do	20	30 25	70	150	10	
	17069	011867	22 - 24 E	24	mg lx weakly bleached G.M.D.	30	30	50	150	25	
	17070	011868 011869	24 - 26 E	24	do	30	30	60	200	10	
	17071		26 - 28 E	24	do	30	30	50	200	10	
		011870	28 - 30 E	24	do. weakly bleached and sheared	40	30	50 50	200	25	
	17072	011871	30 - 34 E	24	f-mg lx chl. G.M.D. variolitic texture	30	25	30	150	15	
	17073	011872	34 - 38 E	24	do	30	30	10	150	10	

TABLE VI

EASTERN LODE SYSTEM

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

All samples are either - (a) Chloritic, Golden Mile Dolerite, or (b) Chloritic, Paringa Basalt. The grain size and degree of bleaching varies. This is indicated in the tabulation. The approximate mineral composition of the various rock types are as follows -

Golden Mile Dolerite: Chloritic, unbleached - chlorite 30%. Altered plagioclase 30% (Mixture of albite, epidote, chlorite and sericite ± carbonite).

carbonate 25% (mainly ankerite ± calcite and siderite)

Quartz 10%. Ilmenite or leucoxene 5%.

As above, but with little or no chlorite and more sericite, Chloritic, bleached carbonate + more albite and quartz.

Mineralogically very similar to the Golden Mile Dolerite. On average, probably contains Paringa Basalt:

less ilmenite and leucoxene.
4500S on Gold Mines of Kalgoorlie Ltd. co-ordinates. Military Grid Ref. 1190500yN (lat.30°47'S). 452000yE (long.121°30'E). Location:

Location:	4500 S on Gold	Mines of Kalgoorli	ie Ltd. co	ordinates. Military Grid Ref. 1190500yl	V (lat.30)	47'S).	452000	у в (10:	ng.121	30'E).
Sam W.M.C. No.	nple No's. B.M.R. No.	Location (feet)	Mesh	Description	Ni	:Co	Cu	Λ	As	Other elements
64 74	011200 201	S.K. 15 level S.K. 4 level	-1 00 -2 00	GMD (bl) cg. f-mg	5 - 25	35 30	30 50	5 200	35 50	
75	202	S.K. 4 level	- 200	" mg.	25	30	40	200	35	
76	203	S.K. 4 level	-200	" bl. cg.	25	20	50	150	35	
94	204	Ent. 23 level	-200	" unbl. f-mg.	10	60	80	500	50	
125	205	S.K. 15 level	- 200	" " f-mg." (Abbreviations use	5- -d: 5-	40 20	60 40	60 5-	40 25	
126 127	206 207		-200 -200	" " mg. (Abbreviations use " bl. mg.	ed: 5- 5-	30	15	5-	20	
128	208	11	- 200	" (bl) mg. G.M.D.	5-	20	40	5-	30	
131	209	tt .	- 200	" " m-cg. Golden Mile Dole	erite 10	40	50	300	30	
132	210	!! !!	- 200	" bl mg. P.B. Paringa Base	alt 5	40 40	50 70	400 400	150 25	
133 134	<u>2</u> 11 212	11	-200 -200	" unbl. m-cg. bl. bleached	a.	20	10	5 -	15	
135	213	11	<u>-</u> 200	" " mg. (bl) semi bleach		20	2-	· 5 -	15	
136	214	11	- 200	m-og.	5-	30	25	5	15	
137	215	11 11	- 200	" " m-cg. unbl. unbleached	5- 1 5- 1 5- 5- 5-	20	2 <u>-</u> 20	· 5 -	20 20	
138 193	216 217	11	-200 -100	" " m-cg. fg. fine grained unbl. f-mg.	d 5-	30 50	12	40	20	
194	218	11	- 200	" " f-mg. f-mg. fine to	5-	60	100	60	50	
195	219	11	-100	" " f-mg. medium gra	ined 5-	60	30	150	40	
196	220	11	- 200	" (bl) f-mg. mg medium grai	ned 5-	50 50	15	150 60	25 20	
197 240	221 222	Ent. 23 level	-200 -100	" unbl. f-mg. P.B. bl. fg. m-cg medium to	20	30	30 40	100	10	
241	223	"	-100	" f-mg. coarse gra		30	40	100	5	
242	224	11	-200	" " fg. cg coarse grai	ned) 30	30	50	120	20	
243 244	225 226	II II	-100	" unbl. fg. GMD " fg.	40 80	30 35	60 30	150 150	25 10	Ag
245	2 2 7	tt	-100 -200	" f-mg.	80	20	50	100	15	Ag
246	228	11	- 200	" " f-mg.	80	50	80	150	50	Ag
247	229	11	-200 10 0	" f-mg. " f-mg.	30	30	70	150	25	$\mathbf{A}\mathbf{g}$
2 48 306	230 231	N.N.B.8 level	-200	P.B. bl. fg.	5 - 30	40 30	30 50	400 150	40 15	Ag Ag
308	232	tt	-100	" "fg.	40	25	40	150	40	4 5
312	233 234	"	- 200	" " fg.	50 40	30 30	40 50	200 200	10 10	
314 316	234 235	11 11	-1 00 -1 00	" " fg.	40	30 30	50 50	150	10	
327	236	11	-100 -100	" " fg. " " fg.	40	30	40	60	10	
330	237	Ent.23 level	- 200	" " fg.	30	20	35	200	25	
607	238	S.K.4 level	-100	GMD unbl. mg.	15 10	30 30	50 40	200 200	20 20	
608 · 609	239 240	. 11	-200 -100	nt mg	12	30	35	200	30	
610	241	11	-100	" mg. " mg.	15	40	80	200	30	$\mathtt{A}\mathtt{g}$
611	242	11	- 200	" " cg.	12	20	50	200	20	Ag
612 613	243 244	11 11	-100	" mg.	12 15	25 30	60 40	200 200	25 25	Ag
614	245	n	-100 -100	" " mg. " " mg.	12	30	35	200	40	
615	246	11	-100	" bl. mg.	12	30	40	200	20	
616 617	247 248	N.N.B. 8 level	-200	P.B. bl. fg.	30 80	30 40	40 40	100 150	15 25	
618	2 4 0 2 4 9		-200 -2 00	GMD " fg. " (bl) fg.	30	25	40	100	10	
619	250	11	-200	P.B. bl. fg.	30	20	2-	- 150	15	
620 621 622 624 625 626 628	251 252	11 11	- 200	" " fg	60 50	50 40	40 60	200 200	75 30 50 50 50 50 50 50 50 50 50 50 50 50 50	
622	253	11	-200 -200	" fg.	30	30	2-	- 150 200	30	
624 625	254 255	S.K" 4 level	-200 -200	GMD. (bl) mg.	15 20	40 40	30 100	200 200	25 50	
626	256	II 11	-100 -200	n n me-ce.	15	30	100 100 70	300	45	
629	258	 #1	-100 -100	" " cg.	20	30	70	200 200	40	
629 630 701	251 253 2534 2556 2558 2559 260 261	11	- 100	" " mg.	60 50 30 15 20 15 20 30 25 30	40 40 30 25 30 30 30	70 40	200 200 150	20	
793	261	D.D.H. SD2	-200 -100	P.B. bl. fg.	25	20	30 40 30	150 150	5 5	
796 708	262 263	P1	-200 -200	" " fg. " <u>" fg</u> .	30 30	30 30 30 30 30 30 30	30 40	100 150	5	
800	264 264	11	-100	" " fg. " " fg.	30	3 ŏ	50	150 150	5 5	
805 808	265 266	11 11	- 200	" " fg.	50 40	30 30	50 50	150 150	5	
809	267	#	-100 -200	" " fg.	30 30 50 40 40 12	žŏ	40 50 50 50 15	150 150 150 100	25	
791 793 796 798 800 805 808 809 627 129 130	263 264 265 266 267 268 269 270	S.K.4 level S1K. 15 level	-200 -200	GMD " mg. "unbl. f-mg.	12 5 -	30 30	15 20	100 5 -	2Ó 10	Mo 5 ppm.
130	270	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 200	" (bl.) mg.	5 -	20	2	5-	15	—σ) hhm•
		4	.•	•					. ,	

TABLE VII.

SLEEPING BEAUTY LODE

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

- 1. Samples are representative of soil 6" 12" sub surface and have been collected at fifty-foot intervals along a traverse line over a known lode,
- 2. The host rock of the auriferous lode is a fine-grained porphyritic basalt with oligoclase, phenocrysts up to $1\frac{1}{2}$ imches across lode material consists of altered porphyritic basalt with thin stringers of quartz, pyrite, pyrrhotite (rare) and calcite.
- 3. Maximum width of lode is ten feet.
- 4. Lode is at 150N.

Sample W.M.C. No.	Numbers B.M.R. No.	Mesh Fraction	Distance from Traverse Datum	Sample Description.	Ni	Co	Cu	V	As	Remarks
S.B. 1	011316	_ 82	.00		40	15	50	100	25	
2	317	11	50N		40	15	40	100	25	
3	318	11	, 100N		50	20	40	100	50	
4	319	17	150N		50	20	40	100	200	
5	320	11	200 N		80	20	50	150	200	
6	32 1	11	, 250N	All samples red-brown	70	20	50	100	200	
7	322	11	300N	leem with We misslites	100	30	100	200	100	
8	323	11	350N	loam with Fe pisolites	80	25	80	200	50	
9	324	11	400N	and lateritic fragments.	60	25	70	150	25	
10	325	n	450N		50	25	50	150	40	
11	326	11	500 n		40	20	40	60	20	
12	327	Ħ	550N		50	20	50	100	20	
S.B. 1	328	+ "	00		30	20	80	300	60	
2	329	Ħ	50 N		60	20	100	300	40	
3	330	11	1 OON		50	15	40	200	60	
4	331	11	150N		60	15	70	200	500	
5	332	11	200 N		100	20	100	300	400	
6	333	11	250N		50	15	50	150	300	
7	334	11	300N		100	15	60	700	300	
8	335	11	350N		'80	20	70	200	60	
9	336	11	400N		150	20	100	500	150	
10	337	11	450N		50	20	50	200	40	
11	338	77	500 N		100	20	100	500	40	
12	011339	11	550N		30	15	70	250	60	

TABLE VIII SLIPPERY GIMLET LODE

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

- 1. Samples are representative of soil 6" 12" sub surface and have been collected at 50 foot intervals along a traverse line over a known lode.
- 2. The host rock of the auriferous lode is a fine-grained porphyritic basalt with oligoclase phenocrysts up to 1½ inches across. Lode material consists of altered porphyritic basalt with thin stringers of quartz, pyrite, pyrrhotite (rare) and calcite.
- 3. Traces of arsenopyrite reported.
- 4. Lode position is at 00 (traverse datum)

369304	011340	_82	25N		300	30	70	100	20	
306	341	11	75N		300	30	50	100	25	
307	271	11	100N		400	30	40	60	25	
309	272	11	150N		200	30	30	50	10	
311	273	81	200 N		150 -	20	30		15	
313	274	11	250 N	A33	200	30	40	100	40	The second secon
314	342	11	275N	All samples deep	300	30	40	100	20	
316	275	11	350N	red-brown loam	200	30	50	100	15	
317	276	11	400 N		100	25	40	100	20	Pb 50 ppm.
318	277	17	450N	with Fe pisolites.	50	15	35	60	25	- 2)
319	278	11	500 N		30	12	20	60	20	
330	279	11	25 S		200	30	30	80	60	
332	280	11	75 8		300	30	50	80	15	
333	343	11	100 S		300	30	60	100	20	
334	281	11			300	30	50	100	15	
335	282	**	1 2 5 S		250	30	50	100	20	
337	202		150 S		=)0	J U)0	100	20	

TABLE IX.

GIMLET SOUTH LODE

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

- 1. Samples are representative of soil 6" 12" subsurface and have been collected at 50-foot intervals along a traverse line over a known lode.
- phenocrysts

 2. The host rock of the auriferous lode is a fine-grained porphyritic basalt with oligoclase up to 12 inches across. Lode material consists of altered porphyritic basalt with thin stringers of quartz, pyrite, pyrrhotite (rare) and calcite.
- 3. This lode is up to 80 feet wide in productive areas.
- 4. Lode position is approximately 1350S.

W.M.C. No.	le Nos. B.M.R. No	Mesh o. Fraction	Distance from Traverse Datum.	Sample Description.	Ni	Co	Cu	V	As	Remarks.
1-101	011283	- 82	950 s		50	15	40	150	25	
1-102	284	11	1000 S		50	15	40	60	25	
1-103	285	tt	1050 S	A77	80	20	35	100	25	
1-104	286	tt	1100 S	All samples red	50	20	40	150	40	
1-105	287	tt	1150 S	loam with fe pisolites;	50	15	35	100	45	
1-106	288	11	1200 S	-8+ latanitia	40	15	30	70	35	
1-107	289	11	1250 S	often lateritic.	30	15	30	80	30	
1–108	290	11	1300 S		30	15	20	70	25	
1-109	291	ŧŧ	1350 S		30	15	20	80	80	
1-110	292	11	1400 S		50	15	49	100	30	
1-111	293	11	1450 S		50	20	30	100	25	
1-112	294	11	1500 S		50	15	30	125	25	

TABLE X

NEW AREA

SAMPLE DETAILS AND ANALYTICAL RESULTS (P.P.M.)

- 1. Samples are representative of soil 6" 12" sub-surface and have been collected at 50-foot intervals.
- 2. The area is well exposed but theme appears to be no surface expression of gold mineralization.

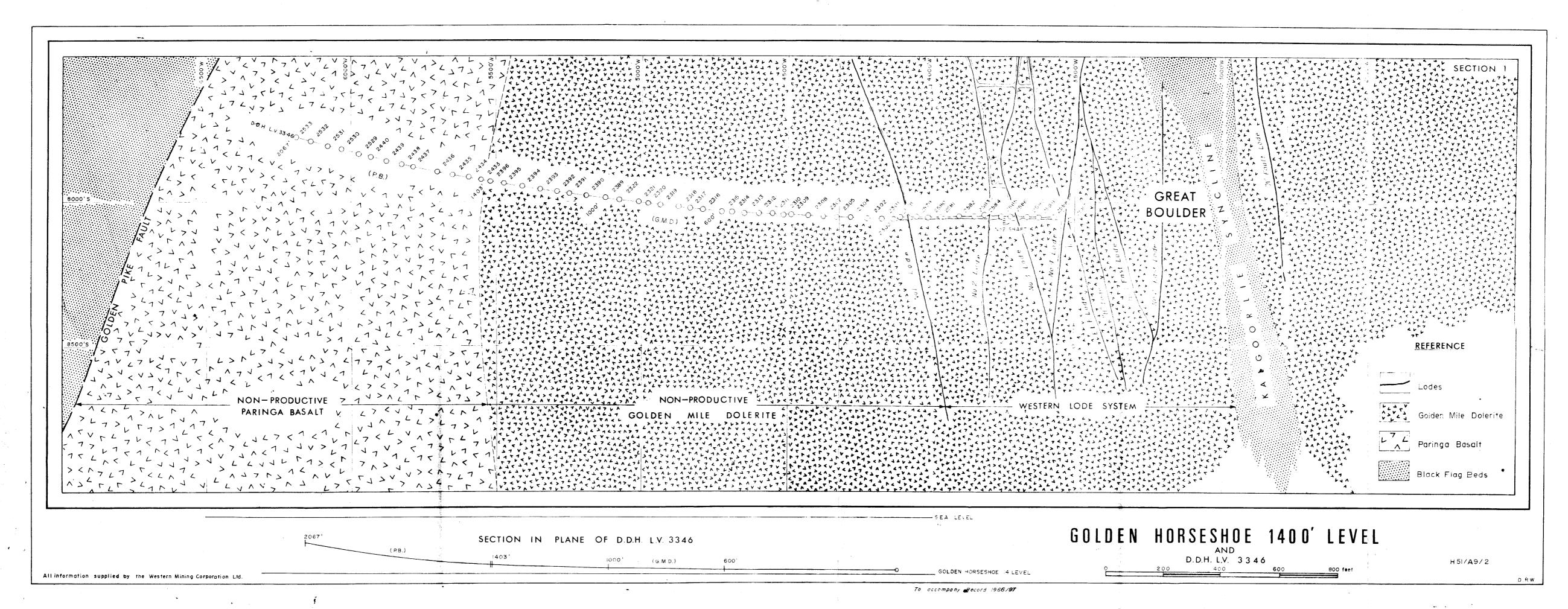
1-211	011295	- 82	2000N		30	12	40	100	15	
212	296	11	2050 N		5 0	20	50	150	15	
213	297	11	2100N		30	15	50	150	25	
214	298	ŧt	2150N	ATT	50	15	70	200	25	
215	299	ŧŧ	2200N	All samples	50	15	70	200	25	
216	300	tt	2250 N	lateritic soils.	70	15	80	200	25	
217	301	11	2300N		30	15	50	150	25	
218	302	11	2350N		30	12	40	150	25	
219	303	11	2400N		5 0	15	50	150	15	
220	304	11	2450 N		50	15	50	150	50	
221	305	11	2500 n		30	12	50	150	25	
- 222	306	H	2550 N		30	15	40	100	20	
223	307	11	2600N		30	15	30	100	20	
224	308	11	2650N		30	20	30	100	15	
225	309	11	2700N		30	20	30	100	15	
226	310	11	2750 N		5 0	15	40	100	15	
227	311	81	2800N		4 0	20	50	100	15	
228	312	11	2850 n		5 0	20	50	150	10	
229	313	11	2900 N		30	15	50	150	10	
230	314	**	2950 N		4 0	15	50	150	10	
231	315	Ħ	3000 N		30	10	30	30	10	

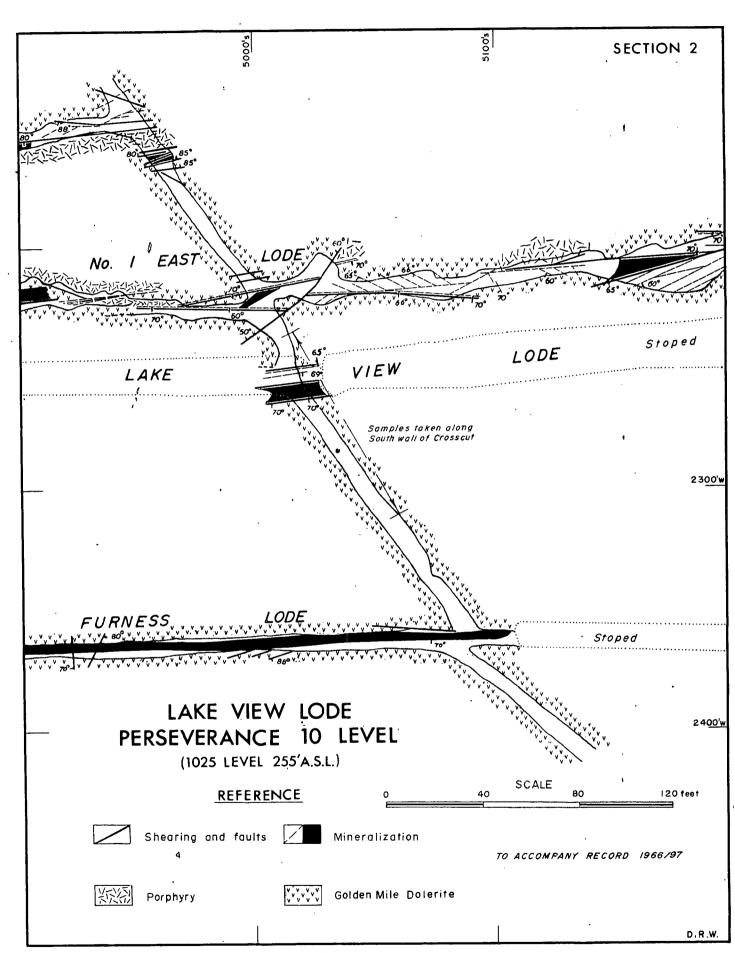
TABLE XI

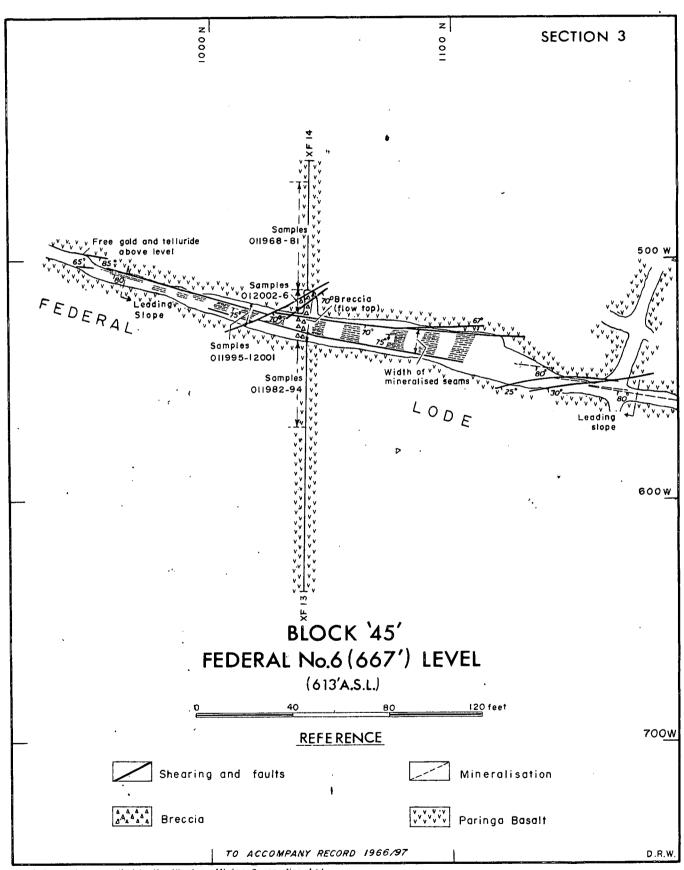
INFORMATION AVAILABLE FOR SAMPLES

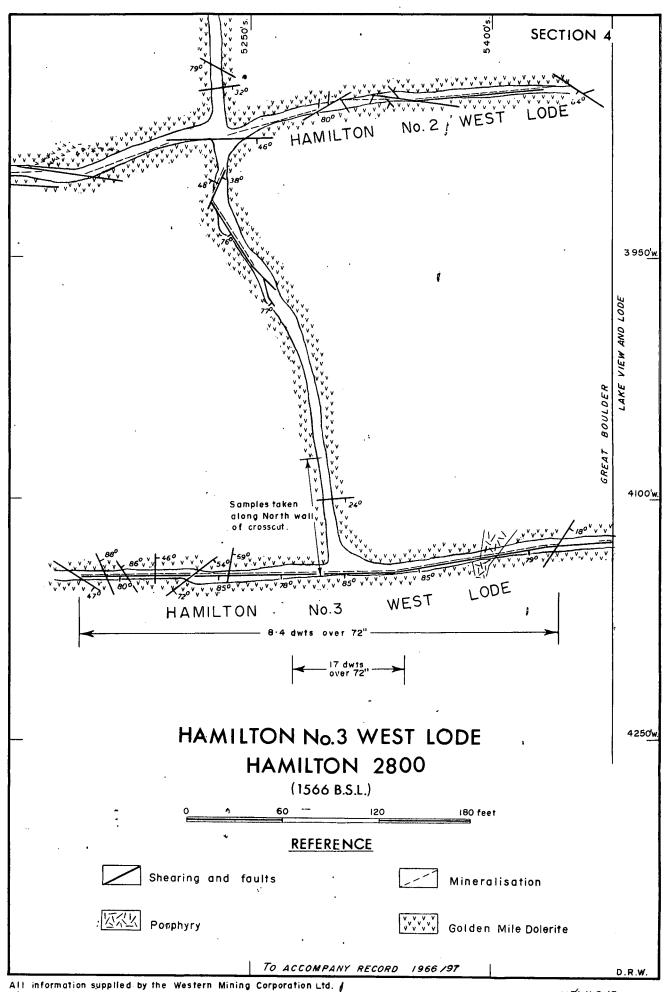
Sample Numbers
Copper
Non-oxidised Zone
Medium to coarse-grained
Semi bleached
Unsheared
Sercitic
Carbonates
Nickel

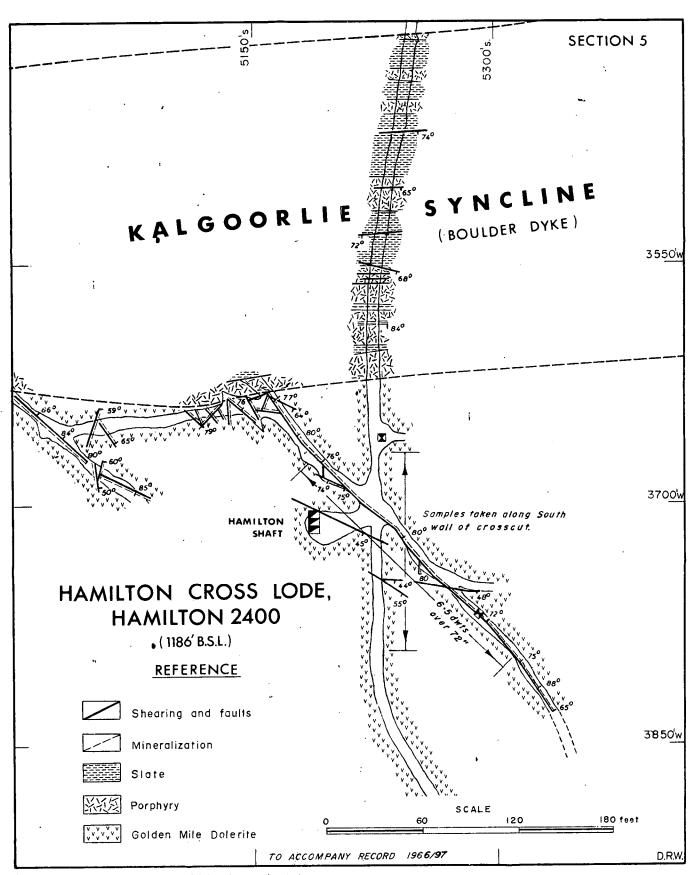
Arsenic
Paringa Basalt
Fine-grained
Coarse-grained
Unbleached
Ophitic
Pyritic
Free gold

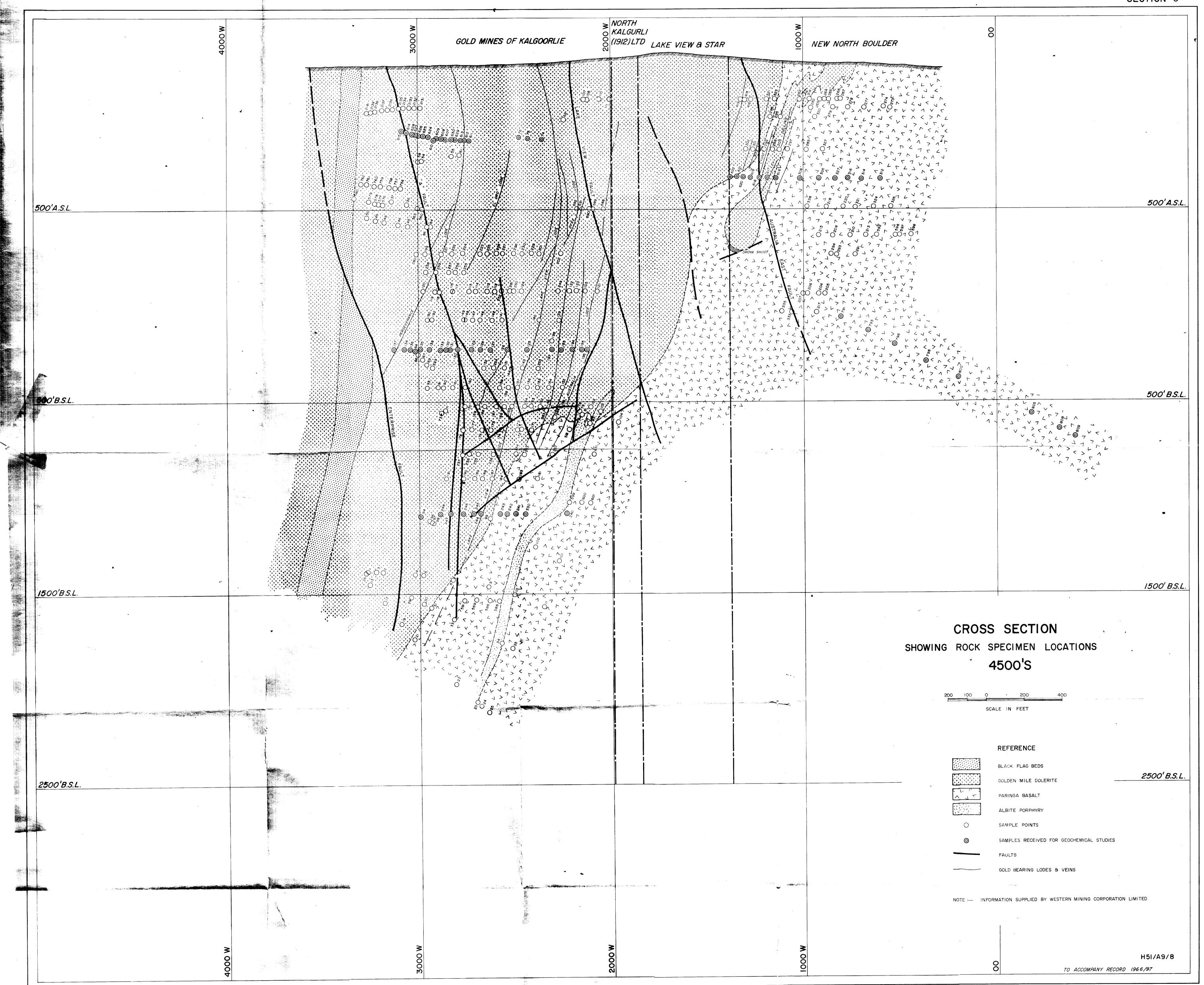

Distance from gold

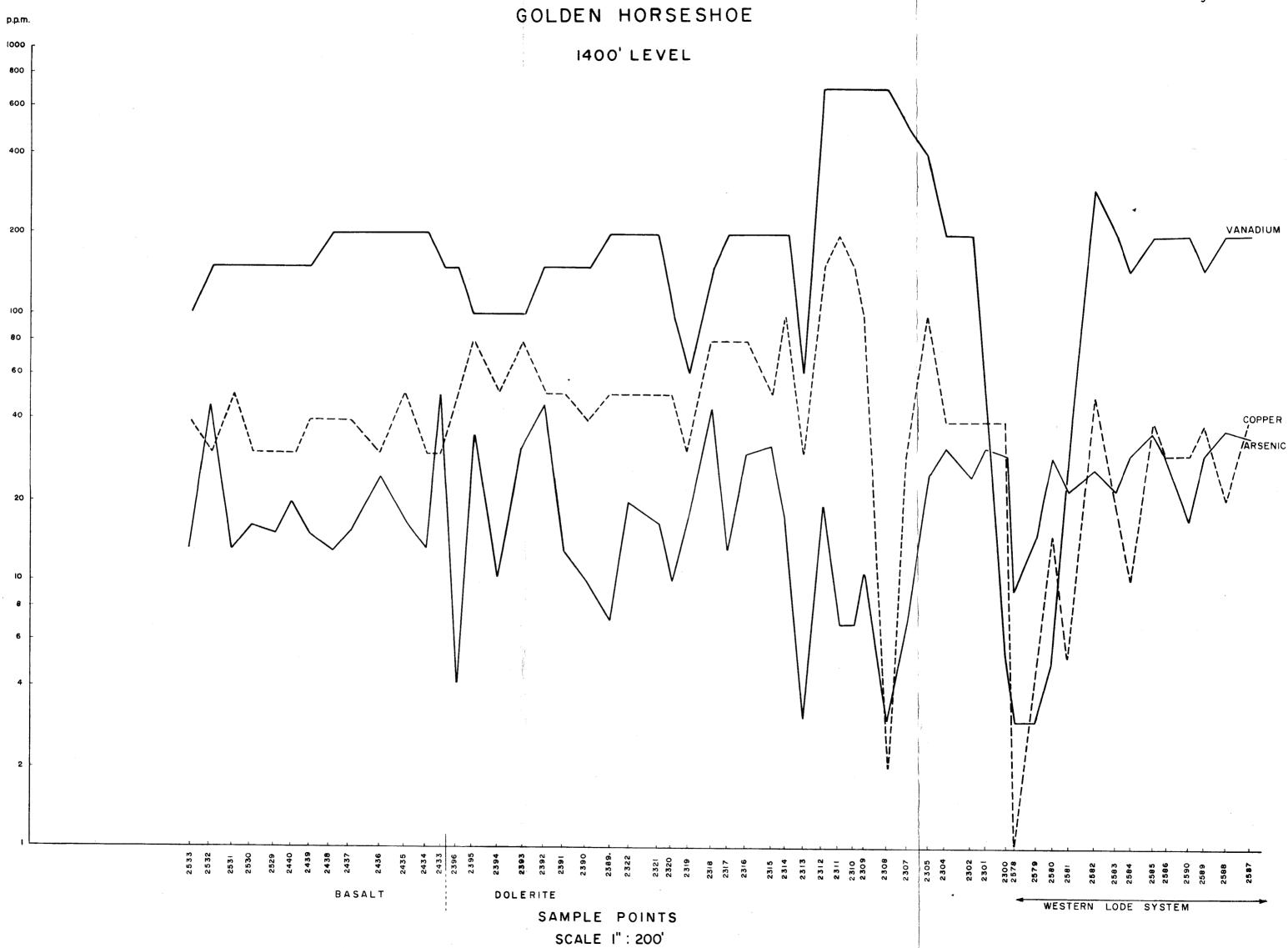

Vanadium
Golden Mile Dolerite
Fine to medium grained
Highly bleached
Sheared
Ilmenitic
Epidotic
Tourmaline

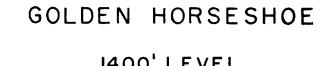

Cobalt
Oxidised Zone
Medium grained
Bleached
Moderately sheared
Leucoxinitic
Amphibolitic
Silica

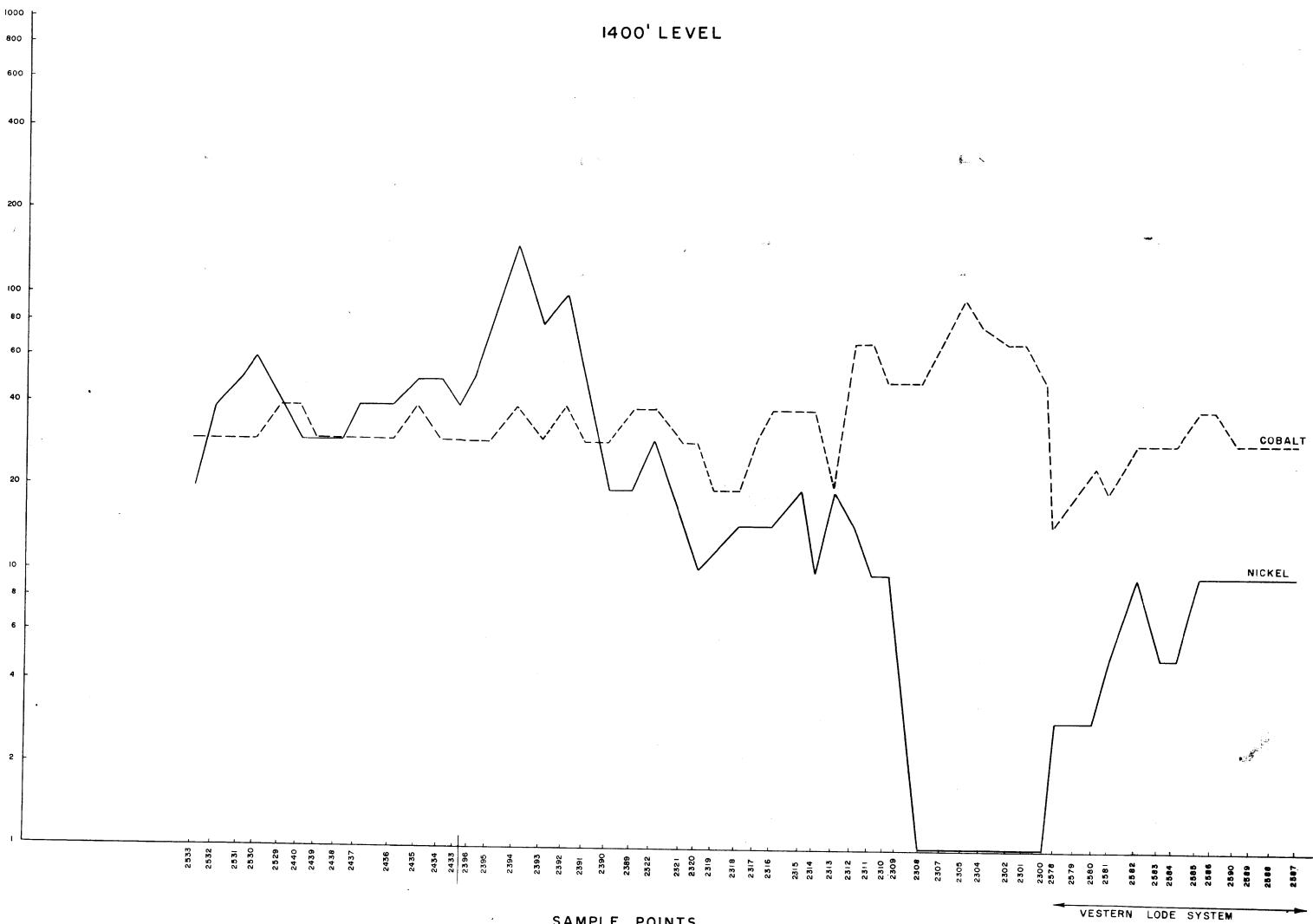

TABLE XII AVERAGE VALUES FOR ELEMEBTS (P.P.M.)


Paringa Basalt Paringa Basalt Paringa Basalt Paringa Basalt Paringa Basalt Paringa Basalt			W.M.C. No.	LOCATION	As	Ni	Co	Cu	V	ORDER OF MAGNITUDE					
		t Lt Lt	791-809 312-622 243-240 2433-2533 17113-17151	E.Lode E.Lode E.Lode Golden Horseshoe Federal Lode	5 24 17 21 16	34 40 29 40 26	29 31 28 32 28	38 37 45 36 36	144 155 1 34 165 133	V V V V	Cu Ni Cu Ni Cu	Ni Cu Ni Cu	Co Co Co Ni	As As As As	
				Mean	17	34	30	38	146	V	Cu	Bi	Co	As	
	Golden Mile I Golden Mile Golden Mile Golden Mile Golden Mile Golden Mile Golden Mile Golden Mile Golden Mile Golden Mile	olei	94-244 615-74 137-196 2396-2578 2579-2587 2396-2587 17001-17029 17074-17112 17030-17073 617-618	E.Lode E.Lode E.Lode Colden Horsehoe Golden Horsehoe Lode Area Golden Horsehoe Total Samples Hamilton No.3.West Branch Lake View Hamilton Cross E.Lode	19	47 16 5- 25 8 20 7 6 24 55	39 29 35 44 30 40 34 27 29 32	57 52 31 65 25 53 71 55 43 40	242 197 83 251 153 223 265 243 212 125	V V V V V V V	Cu Co Cu Co Cu Cu Ni	Ni As Cu Co As Cu As	Co As Ni Cu Ni Co Co	As Ni As Ni As Ni Ni Ni	
				Mean	37	21	34	49	199	v	Cu	As	Co	Ni	
	Soil Soil Soil Soil		369304-369335 1-101 to 1-11 S.B.1 to S.B. 1-211 to 1-23	2 Gimlet South 12 Sleeping Beauty	23 34 80 19	224 47 59 40	27 16 21 16	43 33 55 48	83 99 126 135	Ni V V V	V Ni As Cu	Cu As Ni Ni Cu	Co Cu Cu As	As Co Co Co	

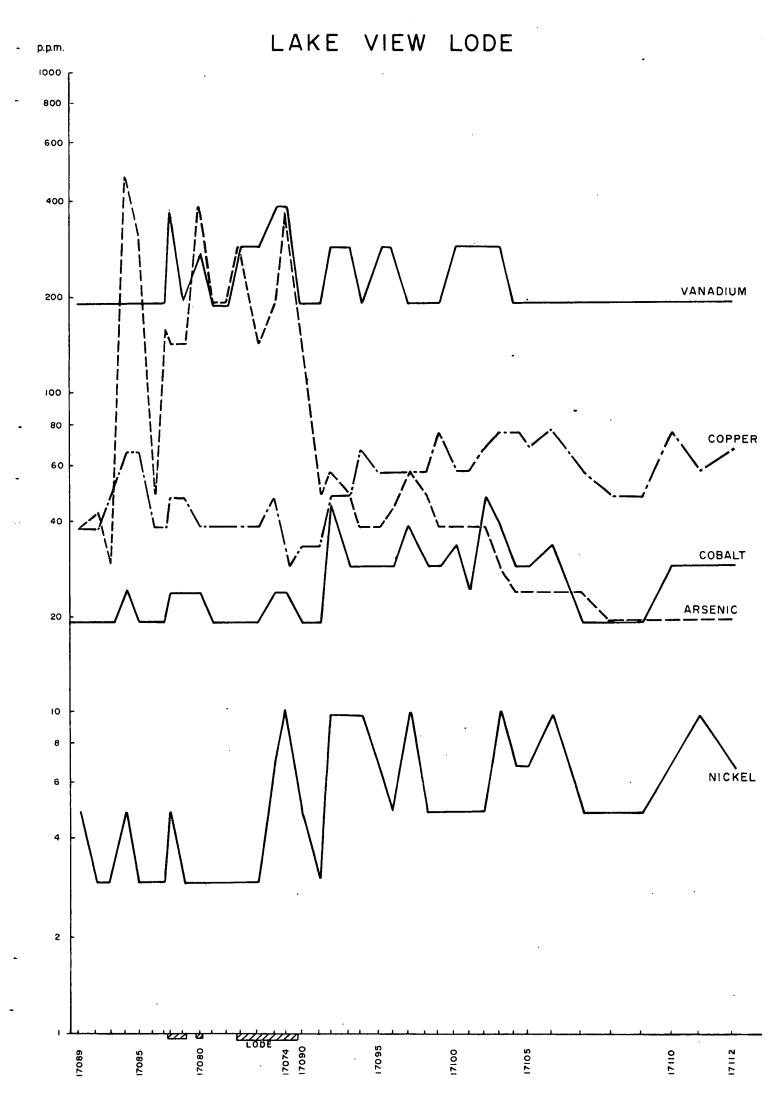


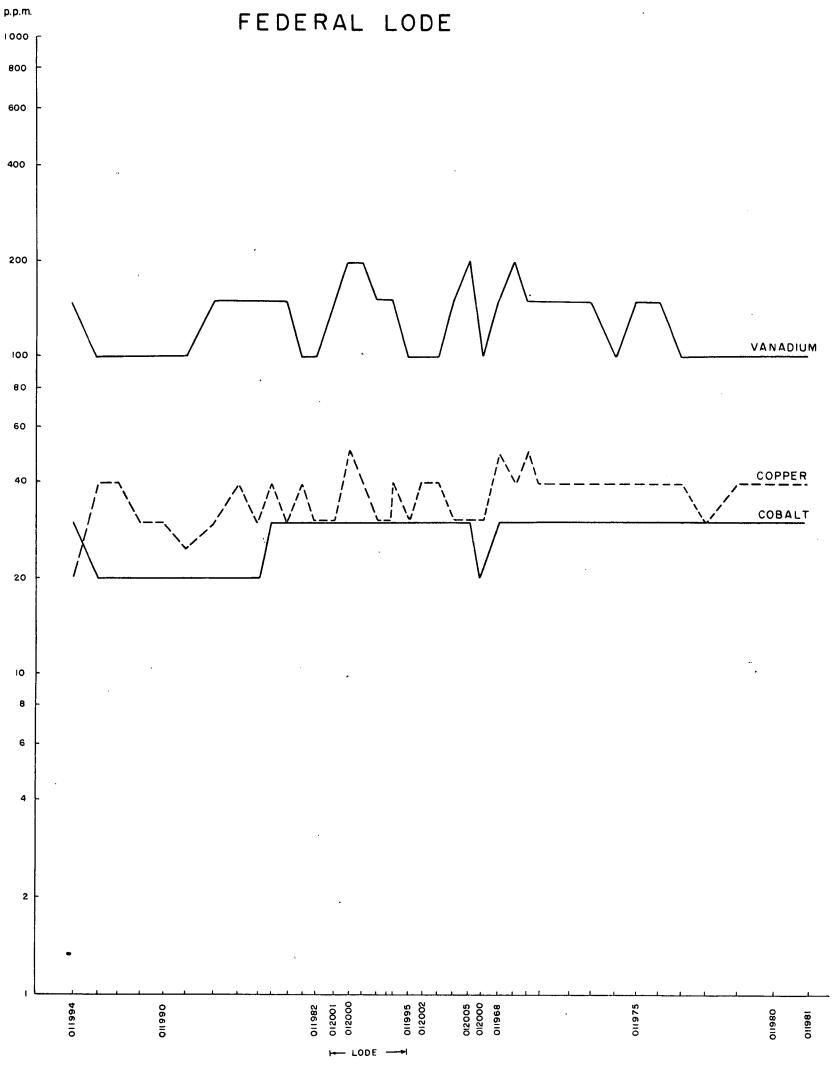

 ΔH information supplied by Western Mining Corporation Ltd.



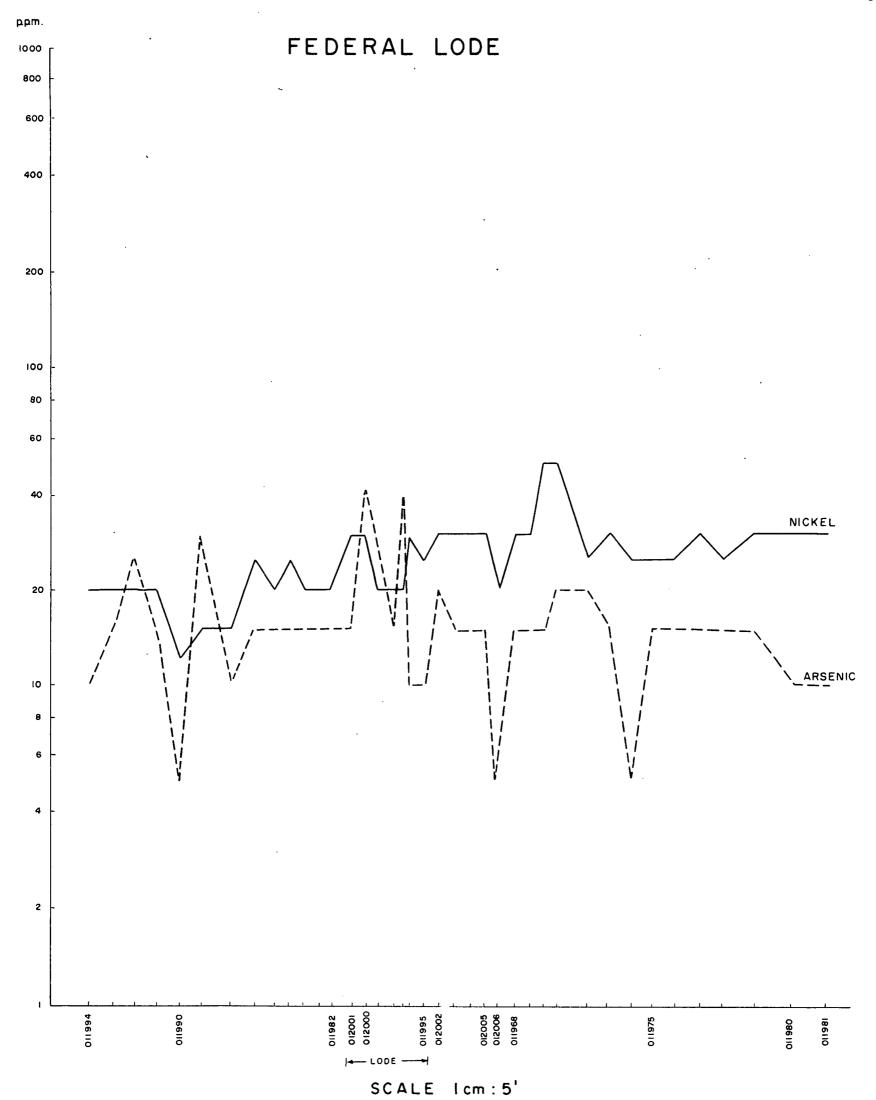


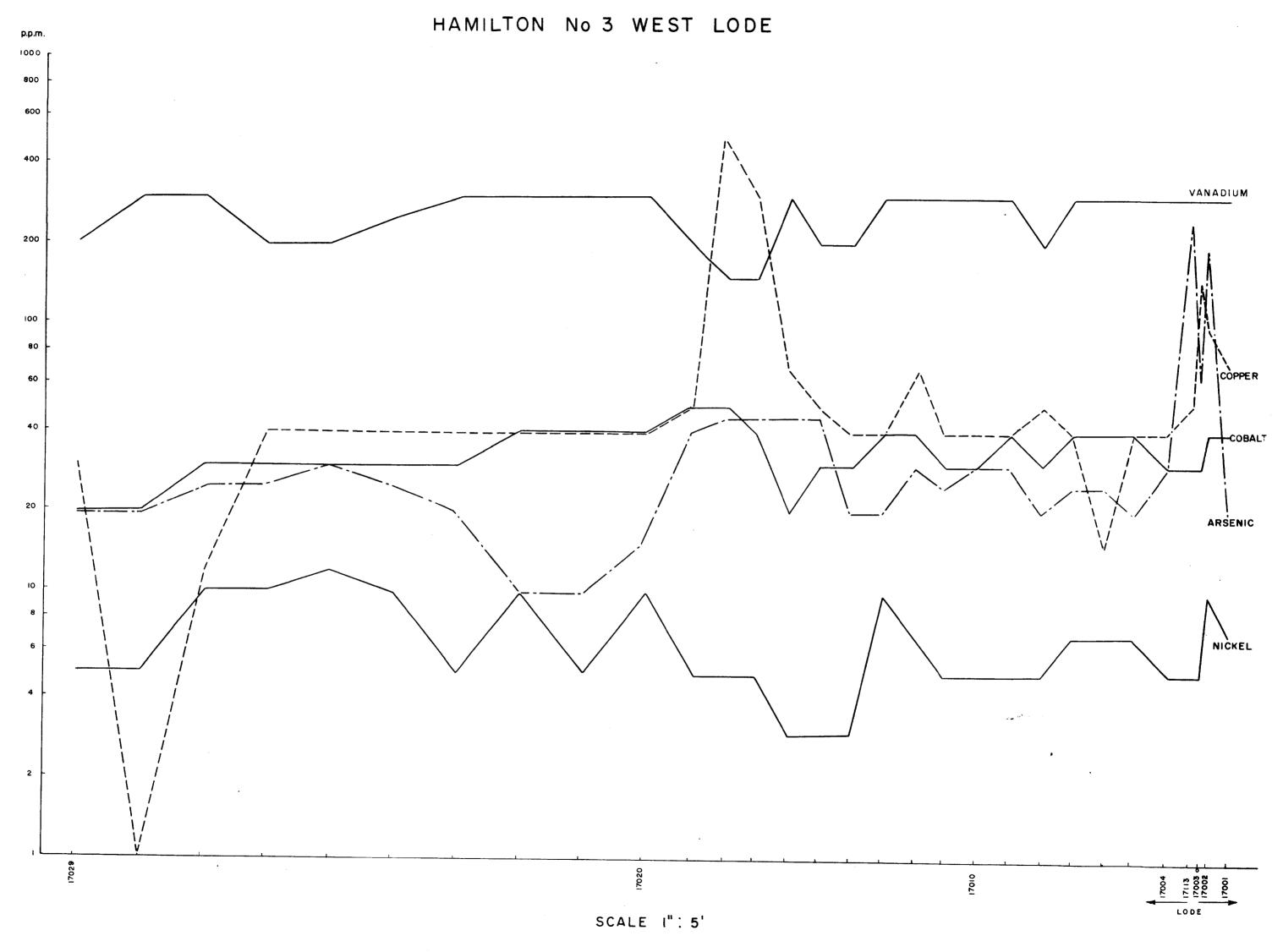
H51/A/1

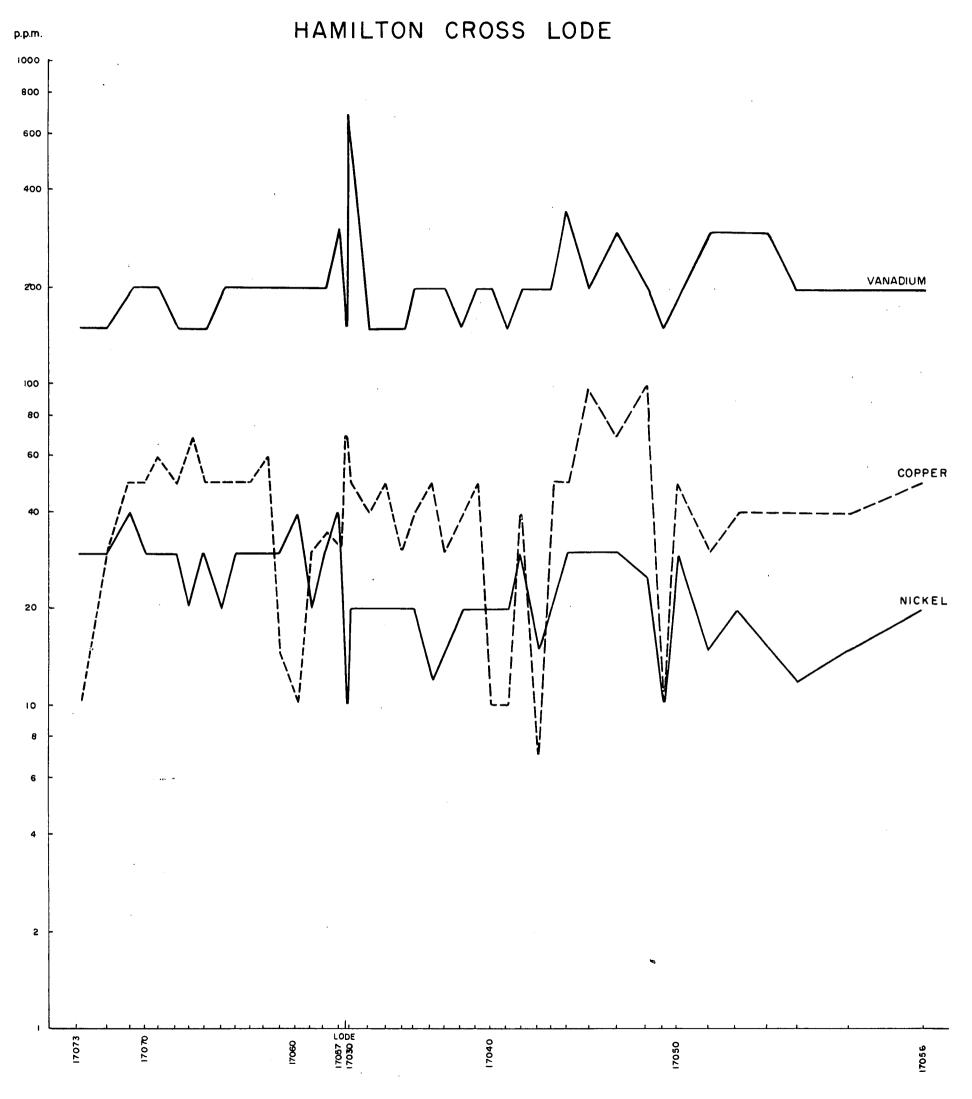

To accompany Record 1966/97

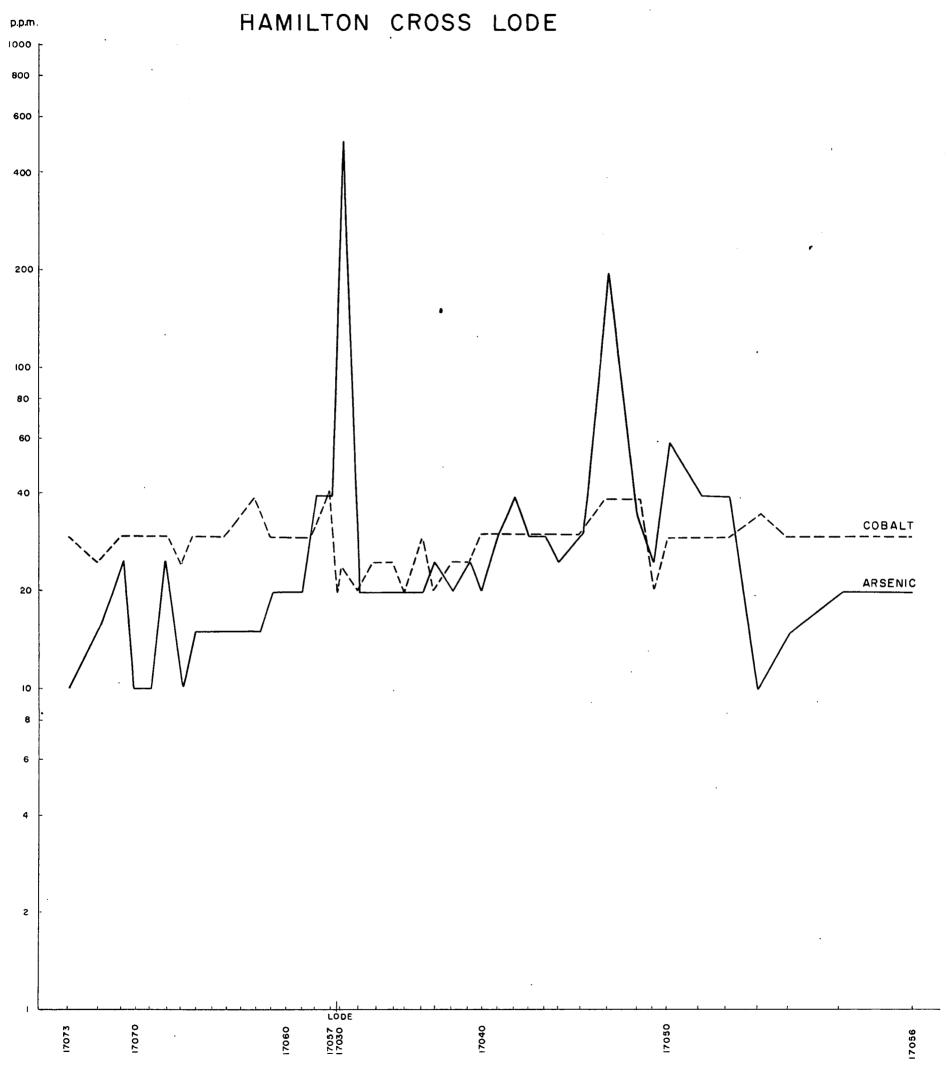


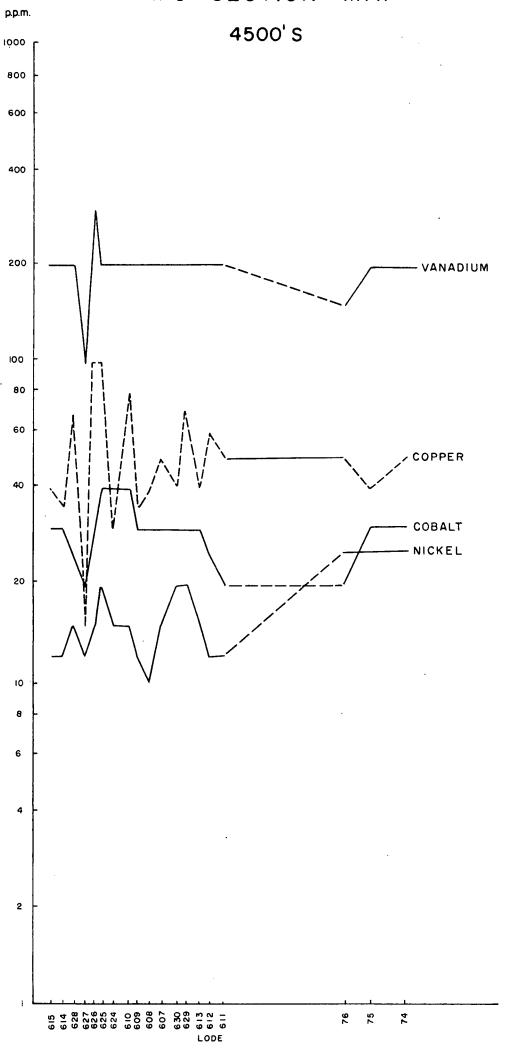
SAMPLE POINTS SCALE I": 200'


p.p.m.



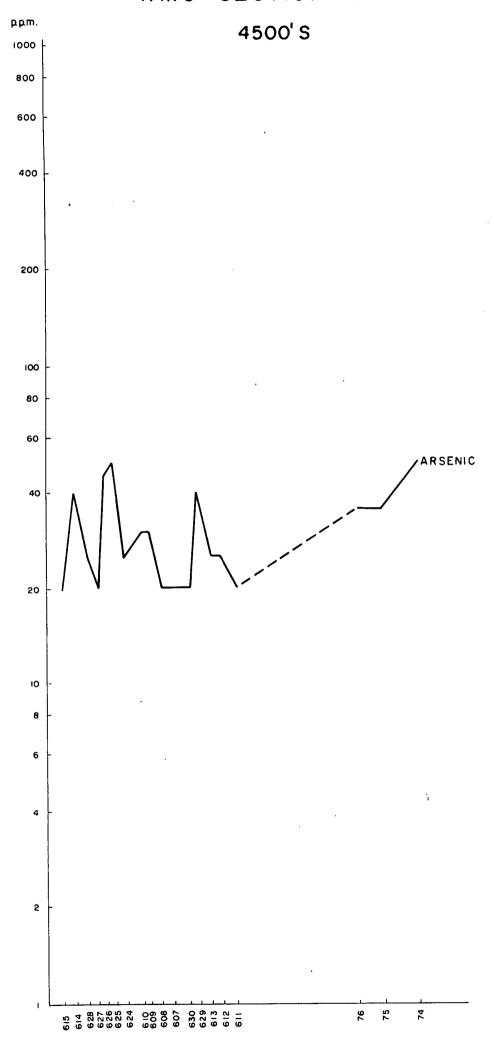

SCALE Icm: 5'


SCALE | cm : 5'

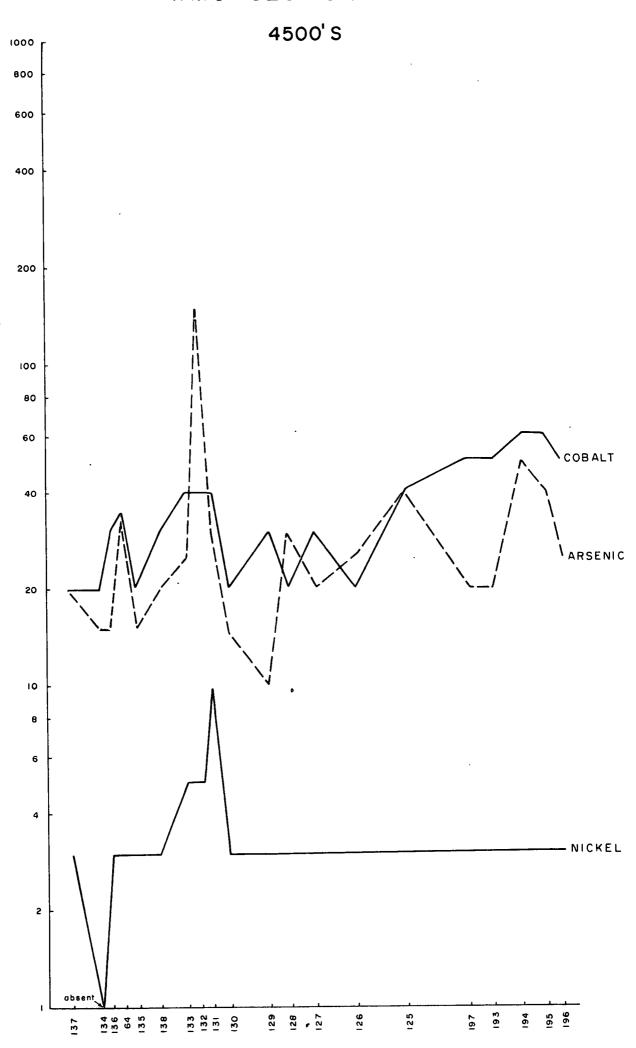


SCALE | cm : 5'

SCALE | cm : 5'

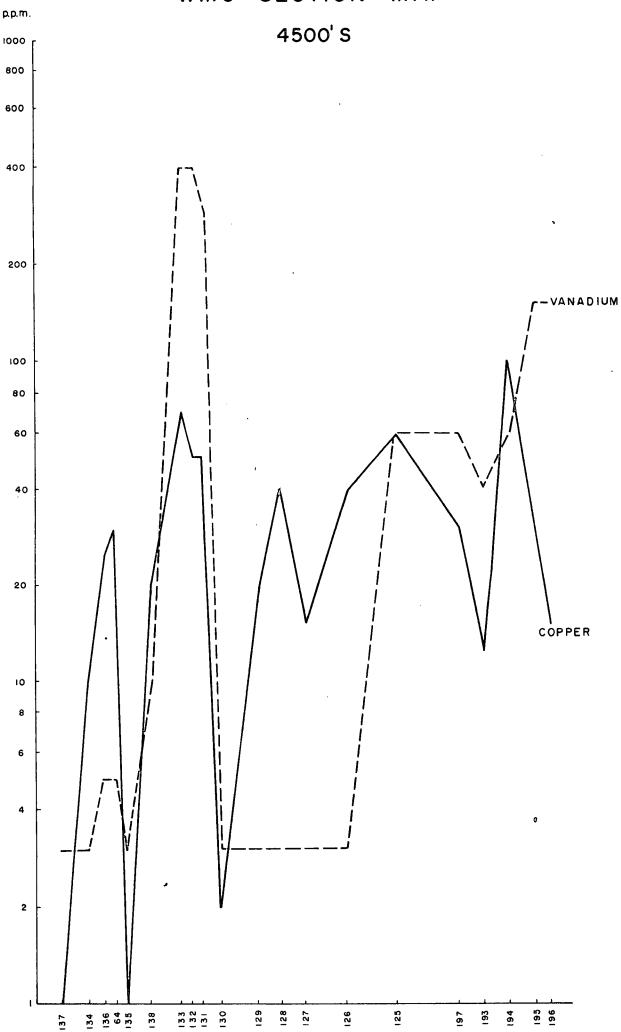


SAMPLE POINTS


SCALE I": 200'

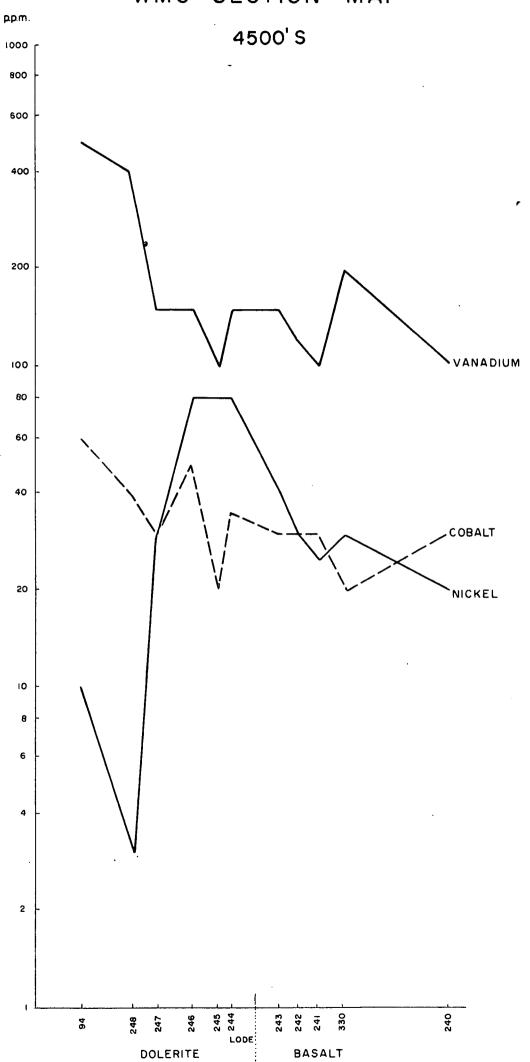
WMC SECTION MAP

SAMPLE POINTS SCALE I": 200'

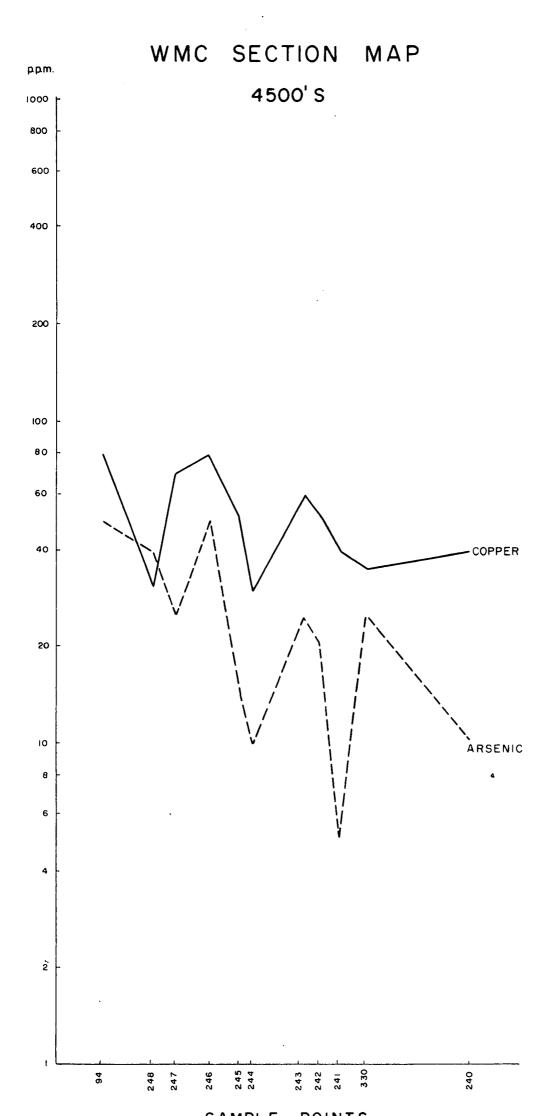

WMC SECTION MAP

SAMPLE POINTS

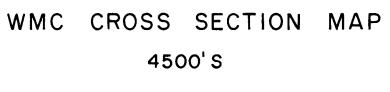
SCALE 1": 200'



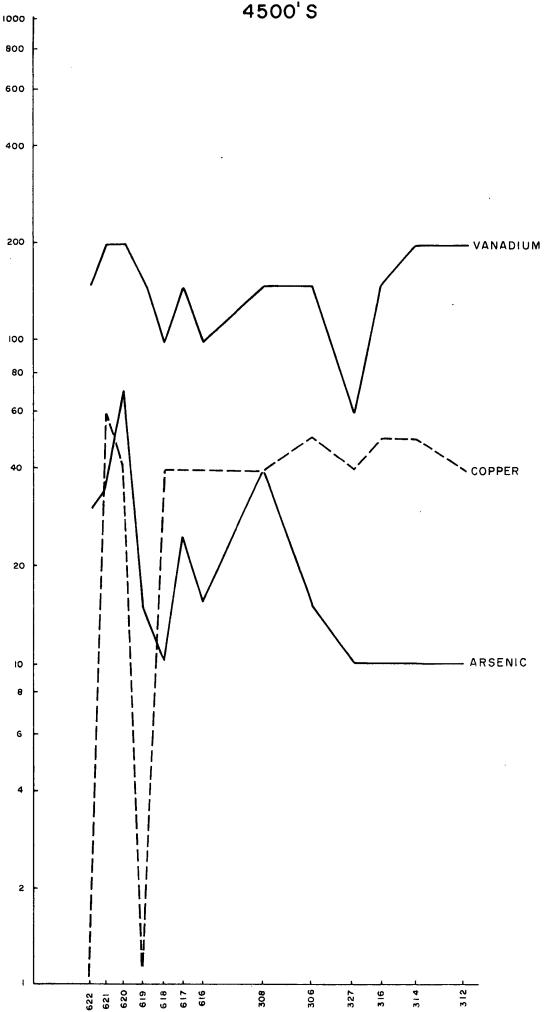
SAMPLE POINTS


SCALE I": 200

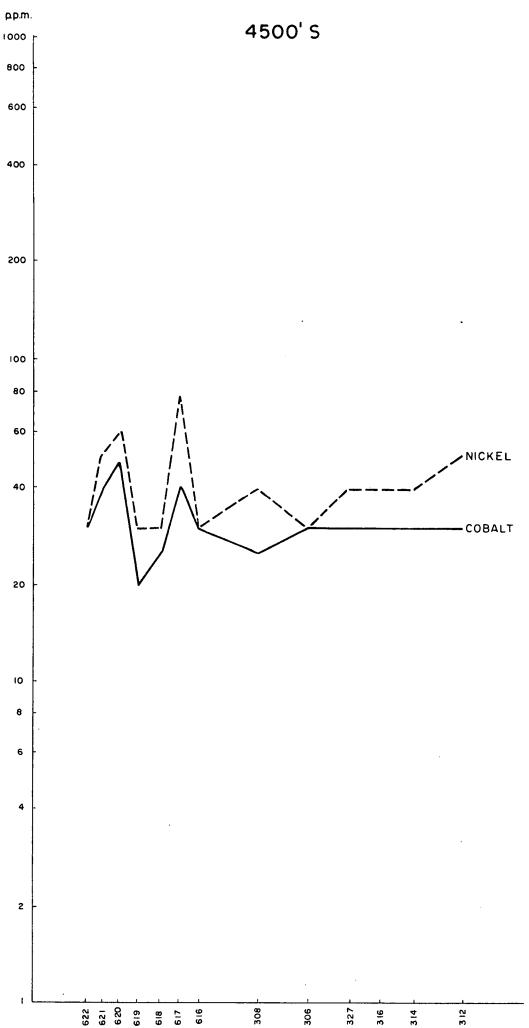
WMC SECTION MAP



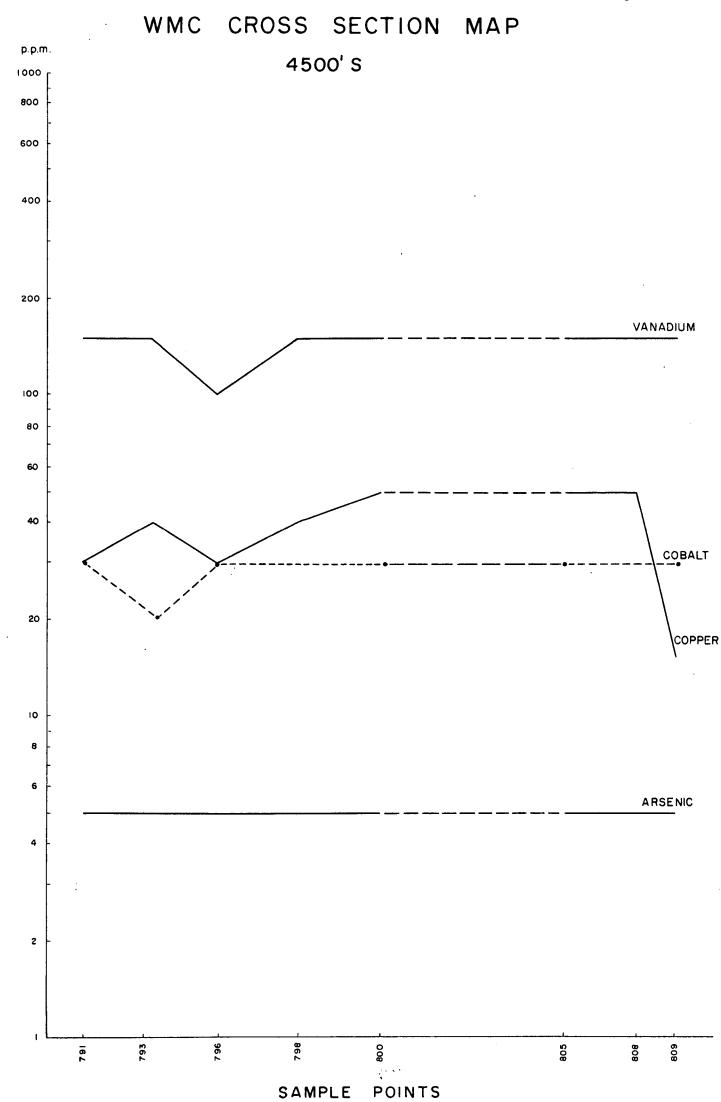
SAMPLE POINTS


SCALE I": 200'
To accompany Record 1966/97

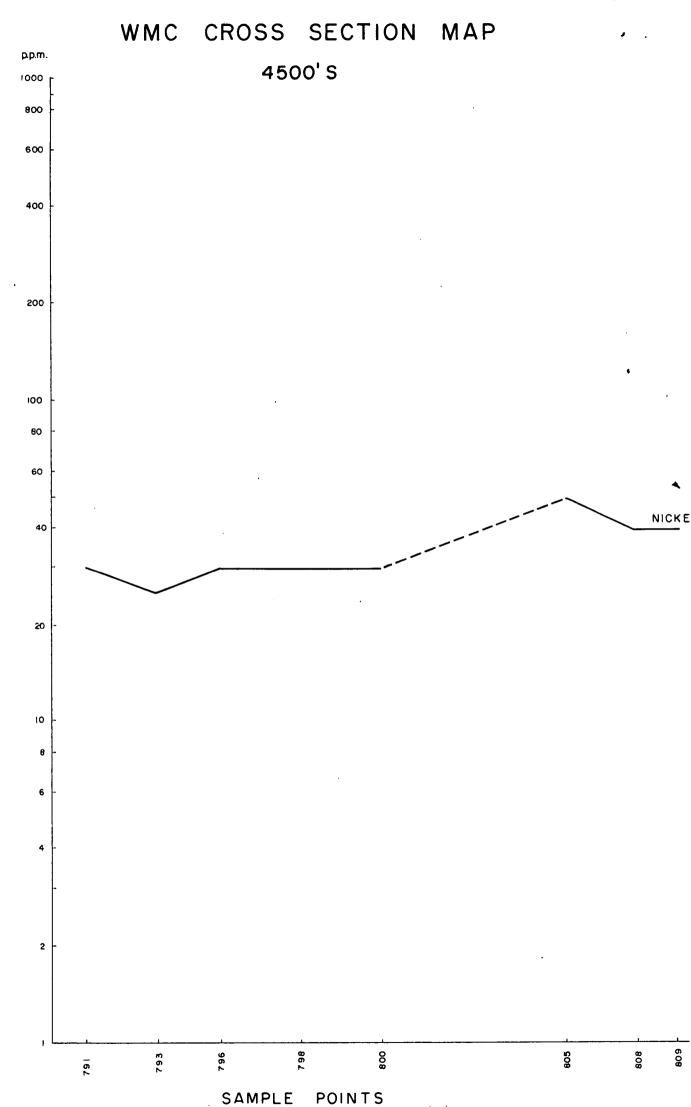
SAMPLE POINTS SCALE I": 200



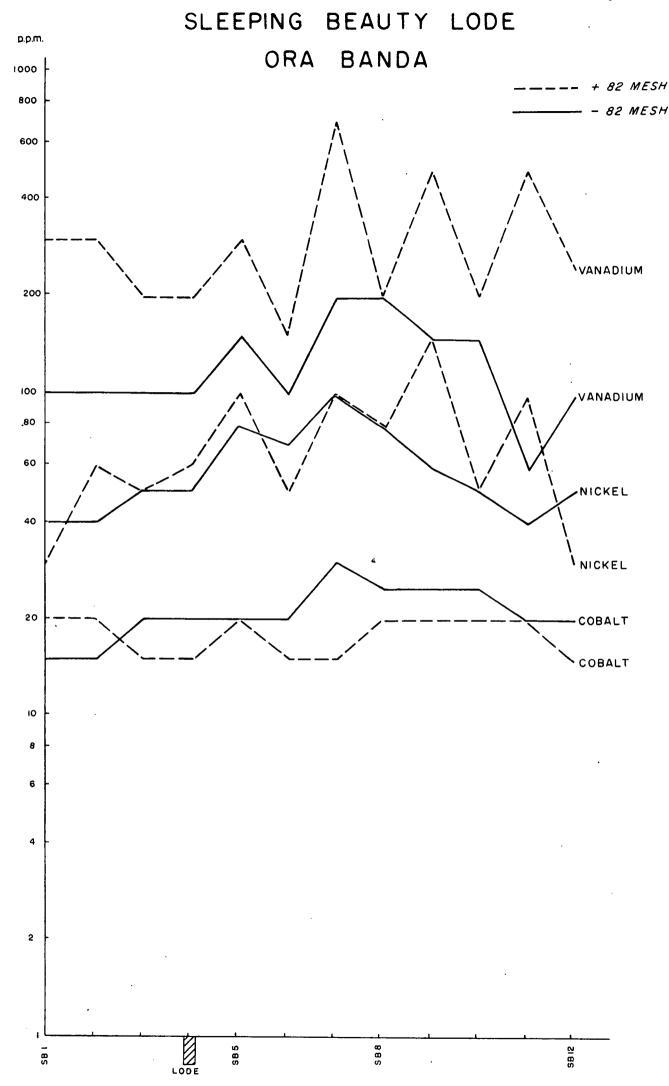
p.p.m.

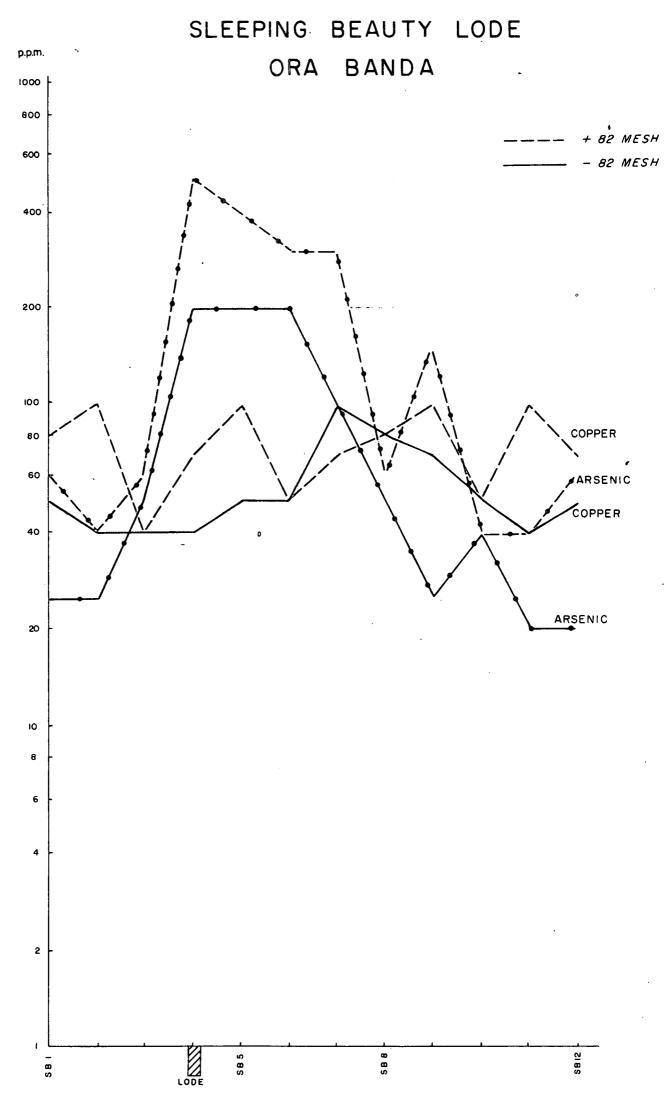

SAMPLE POINTS SCALE I": 200'

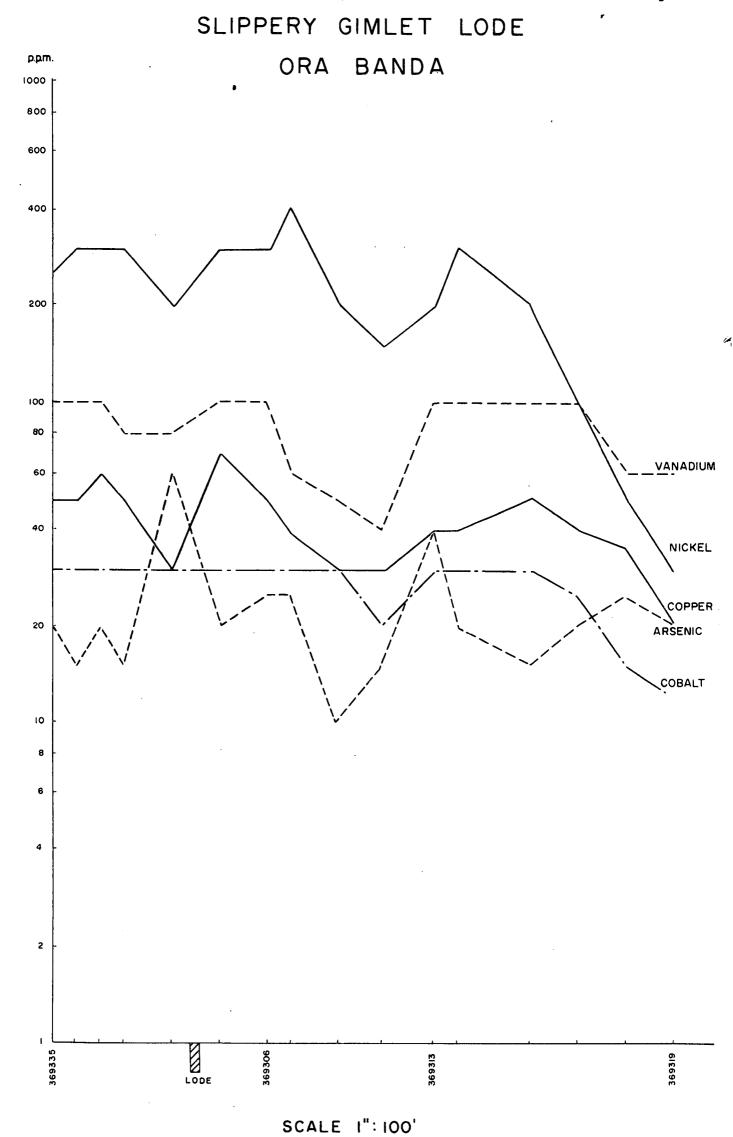
WMC CROSS SECTION MAP



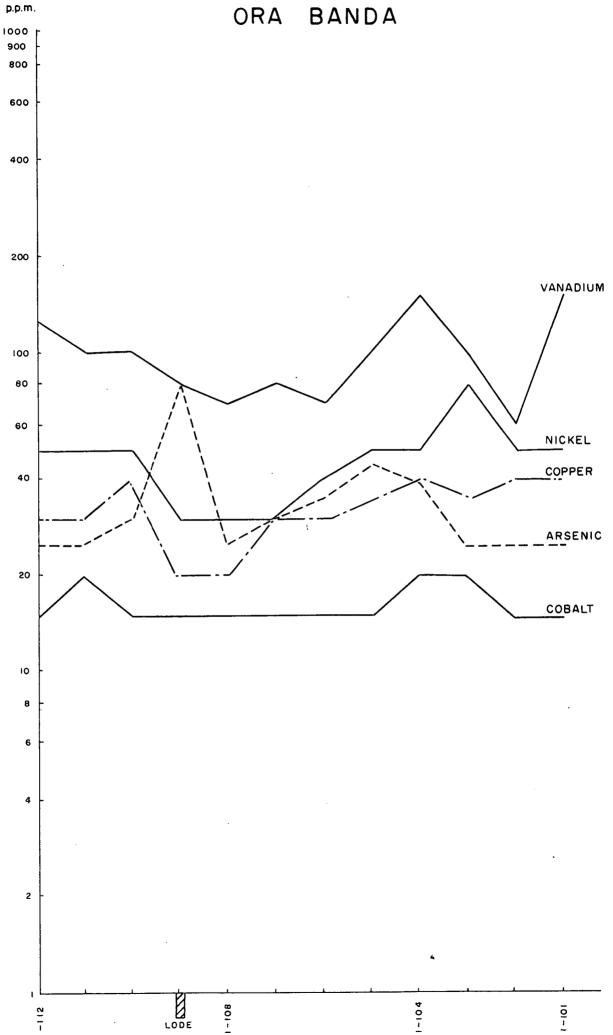
SAMPLE POINTS


SCALE |": 200'

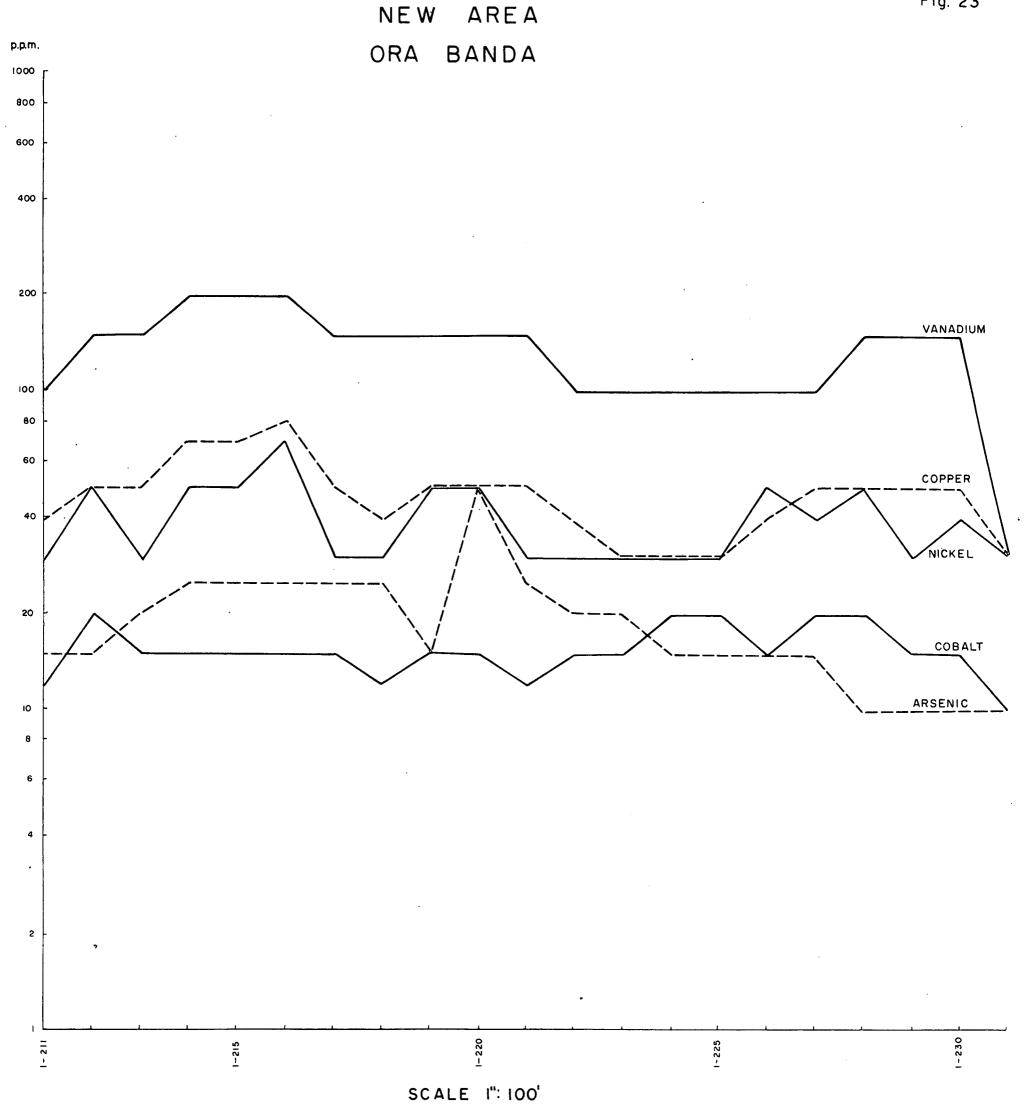

SCALE I": 200'


SCALE I": 200'


SCALE |":100'



SCALE 1": 100'


To accompany Record 1966/97

SCALE I": 100'

