66/128 3

COMMONWEALTH OF AUSTRALIA

TED.

BUREAU OF MINERAL RESOURCES GEOLOGY AND GEOPHYSICS

RECORDS:

1966/128

CHEMICAL INVESTIGATIONS DURING THE YEAR 1958

compiled by

E. Woodhead

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

Compiled by

E. Woodhead

RECORDS 1966/128

INTRODUCTION

The Record consists of Reports completed by the chemical personnel of the Bureau Laboratory during 1958. The Reports are in chronological order.

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

CHEMICAL INVESTIGATIONS DURING THE YEAR, 1958.

JANUARY - DECEMBER

1966/128

Report	TITLE	Pag
1.	Assays on five manganese ores from Balfour Downs. W.A. by J.R. Beevers	1
2.	Analysis of a water sample from Coolarmon Ponds Creek, by S. Baker	2
3•	Partial analysis of a rock sample from T.P.N.G. by S. Baker	3
4.	Water content of five rock samples. by S. Baker	4
5•	Analysis of two rock specimens from the Arnhem Bay area, Northern Territory. by J.R. Beevers	4
6.	Analysis of a water sample. by S. Baker	5
7.	Analysis of limestone shales. by 5. Baker	5
8	Analysis of a sample of bore water from the Division of Soils by S. Baker	3 .
9	Analysis of four soil samples from the Didana Range. New Guinea. by A.McClure	6
10.	Analysis of Dolomitic limestone from the Georgina Basin area, Queensland. by J.R. Beevers	7
11.	Analysis of laterite soils Paddys Creek area, North Queensland. by J.R. Beevers	8
12.	Analysis of sails from the Gray Creek area, of North Queensland. by J.R. Beevers	10
13.	Analysis of granite samples. by S. Baker	11
14.	Analysis of seven rock samples from Duchess, North West Queensland. by S.Baker	11
15.	Analysis of laterite deposits, Paddys Creek area, Morthern Queensland. hy J.R. Beevers	12
16.	Analysis of a sample of bore water from Hall, A.C.T. by S. Baker	13
17.	Analysis of six rock samples. by S. Baker	14.
18.	Analysis of sick rockesamples. by S.Baker	15
19.	Analysis of six rock samples. by S. Baker	16
20.	Analysis of a water sample from Hall. A.C.T. by S. Baker	17
21.	Analysis of three limestone samples. by S.Baker	17
22.	Analysis of a drill core from the Waterhouse No.2 Prospect,	18

(ii) Contents

	Report No.	TITIE			rage
	23	Analysis of radioactive ore samples,	by J.	R.Beevers	18
	24	Analysis of six rock samples	by S.	Baker	19
	25	Chemical analysis of six rock samples	by S.	Baker	20
	26	Analysis of a sample of banded limeston Boulia area, Queensland.		m McClure	21
	27	Nickel assay on a peridotite breccia	by S.	Baker	21
	28	Analysis of a sample of bore water from Narrabundah. A.C.T.		Baker	22
	29	Analysis of four manganese ore samples from Calvert Hills.N.T.		Baker	22
	30	Analysis of a glauconite sandstone sam	ple. b	y A.McClure	23
	31	Analysis of phosphate samples from the Solomon Islands.	by A.	McClure	23
	32	Analysis of phosphate samples from the Solomon Islands	by A.	McClure	24
	33	Phosphate determinations on samples from the Solomon Islands.		Baker	24
	34	Analysis of phosphate samples from the Solomon Islands	by A.	McClure	25
	35	Analysis of two water samples	by S.	Baker	25
	36	Phosphate determination on samples from the Solomon Islands.		Baker	26
	37	Carbon dioxide determination of three behavior shale samples from the Deakin Pit.		. Baker	26
	38	Determination of carbon dioxide content of four shale samples		Baker	27
	39	Analysis of lateritic soil samples	by S.	Baker	27
	40	Analysis of water samples from the A.C.	T. by	W.J.Thomas	28
	41	Carbon dioxide content of a brick shale	_	le. Baker	28
•	42	Analysis of bore water sample from "The Bungendore. N.S.W.		ey" J.Thomas	28
	43	Analysis of manganese ore. Samples from Balfour Downs. W.A.		Baker	29
	44	Lithium analysis on samples from Fergus Island, Papua - New Guinea.		Baker	29
,	45	Phosphate analysis of three phosphate samples from Darwin. N.T.	by S.	Baker	4 30
•	46	Determination of sulphate and potassium on four samples from T.P.N.G.		Baker	30
	47	Analysis of samples from the Namoona ar Northern Territory		J.Thomas	31
4	48	Analysis of water sample from A.C.T.	by W.	J. Thomas	31
4	49 ,	Analysis of water sample from Copper Mine, Hall. A.C.T.	by W.	J.Thomas	32
	50 .	Analysis of a water sample from Piney Creek, Stromlo. A.C.T.	by W.	J.Thomas	32

Contents

Ī	Report No.	<u> Title</u>			Pa	age
	51	Analysis of water sample from Lake George.	bу	w.J.	Phomas	33
2	52	Analysis of a water sample from Michelago. I.	bу	W.J.	Thomas	33
5	53	Analysis of a water sample from Michelago 2.	bу	W.J.	Thomas	34
5	54	Analysis of a water sample from Lanyan 2, Williamsdale.	ъу	W.J.1	l'homas	34
5	55	Analysis of a water sample from Hall 3, near "Fairview" Hall.	by	w.J.	Thomas	35
5	56	Analysis of a water sample from "Wattle Park" Hall. A.C.T.		w.J.1	Phomas	35
5	57	Analysis of a water sample from Surveyors Hill Hall. A.C.T.	•	w.J.	Thomas	36
5	58	Analysis of a water sample from City 1. Jerrabomberra Avenue.	by	w.j.1	Chomas	36
*9	59	Analysis of a water sample from St. Margarets Port Moresby.	ъу	w.j.	Thomas	37
6	50	Analysis of a water sample from Wallal Downs. Canning Basin		w.J.1	Phomas	37
6	51	Analysis of two rock samples from T.P.N.G.	bу	S. Ba	aker	38
€	2	Analysis of rock samples from the Newcastle Range, Queensland.	bу	S. Ba	ker	38
6	3	Determination of chromium and iron content of two magnetic concentrates from T.P.N.		S.Be	ker	39
6	4	Analysis of rock samples from the Newcastle Range. Queensland.	by	S. Ba	ker	39
6	5	Analysis of manganese ores from Ripon Hills, W.A.	bу	W.J.T	homas!	40
6	6	Analysis of manganese ores from Ripon Hills W.A.	bу	W.J.T	homas	41
6	7	Analaysis of water samples from A.P.C. New Gu	ine	a. ii	ı '	42

ASSAYS ON FIVE MANGANESE ORES FROM BALFOUR DOWNS, WEST AUSTRALIA.

bу

J. R. Beevers

The figures previously given for assays on five manganese ores from Balfour Downs, W.A., have been checked and the results given by three different and independent methods are tabulated side by side with the original.

Sample No.	H ₂ 0-	Mn by FeSO ₄ persui- phate	Mn by As ₂ 0 ₃ persul- phate	Mn by Bismu- thate	Mn by Color- imetric	Fe ₂ 0 ₃	SiO ₂	н ₂ 0+
3345	0.5	34.1	32.6	33.5	34.5	20.7	8.2	11.3
3346	0.8	33.0	35.5	37.2	37.5	18.3	7.1	12.4
3347	1.1	33.1	34.8	38.7	37.5	18.3	7.0	13.3
3348	1.0	36.2	35.8	38.2	36.5	19.9	7.0	13.2
3349	8.0	32.9	33.5	33.6	34.5	20.7	8.1	12.0

The ammonium persulphate used in the persulphate oxidation methods is very unstable, and in the presence of moisture rapidly deteriorates in efficiency. It was found that the laboratory reagent used in the above persulphate oxidations was inferior in quality and this would account for the slightly lower figure by the persulphate oxidation methods.

However, the above fitures for percentage manganese are ostensibly of the same order and whichever set of figures is taken, none even approaches 50 - 55% Mn as might have been expected from previous information.

Lab.Nos.181~185

ANALYSIS OF A WATER SAMPLE FROM COOLARMON PONDS CREEK

bу

S. Baker

Following are the results for the analysis of a sample of water ex Coolarmon Ponds Creek submitted by S.E.R. Cameron.

Total Solids	920	p.p.m.
Sulphates (as SO3)	159	n Az
Calcium (as CaO)	105	41
Magnesium (as, MgO)	108	11
Chloride (as Ce)	305	u
рН	7.6	

Lab. No. 57/227

13th January, 1958 198PNG/1

PARTIAL ANALYSIS OF A ROCK SAMPLE FROM TERRITORY OF PAPUA AND NEW GUINEA.

by

S. Baker

The sample No. P.27, was submitted by J.E. Thompson, on December 24th, 1957. (Ref. G.1000).

Manganese (as MnO ₂)	58.6% (previously reported as 57.4%).
Iron & Aluminium (Fe ₂ 0 ₃ and Ae ₂ 0 ₃)	8.1%
Moisture (105 ^O G)	3. <i>2%</i>
Combined water	12.1%
Silica (as SiO ₁)	12.4%

In addition to the above, qualitative tests indicated the pressure of lime, magnesia and some sodium and carbonate.

From the above it can be concluded that the manganese content of the sample submitted is 37% and not of the order of 57% as anticipated by J.E. Thompson.

Lab.No.57/204

14th January, 1958 1980/2

WATER CONTENT OF FIVE ROCK SAMPLES

by

S. Baker

Following are the results for the water determination on five rock samples submitted by K_{\bullet} Walker.

Sample No.	-н ₂ 0 (105 ⁰ s)	+Н ₂ O(850 ^O G)	
7945	0.05%	1.33%	-
8000	not detected	0 . 55%	
9578 в	not detected	0.34%	
7902	not detected	0.66%	
7911	0.21%	1.41%	

Lab.No.57/228-232

Report No.5

20th January, 1958

ANALYSIS OF TWO ROCK SPECIMENS FROM THE ARNHEM BAY AREA. N.T.

bу

J.R. Beevers

Two specimens were recently submitted for analysis by E.Gardner from the Arnhem Bay area of Northern Territory. The first of these samples was a ferruginous sandstone (B7663) and the other a kaolinised shale (B7667). Results of full analyses are -

	В 7663		в7667
H ₂ 0-	n.d.		0.69
H ₂ O+	7.04		13.56
Sic,	45.16		46.00
Fe ₂ O ₃	40.96		1.34
A1 ₂ 0 ₃	6.22		36.25
TiO ₂	0.60		3.20
MnO	Trace		Nil
CaO	0.17	{	0.12
MgO	Trace		Trace
\$	0.08		0.10
P ₂ O ₅	0.25		0.03

Lab.Nos.58/239-240

24th January, 1958 97G/2

ANALYSIS OF WATER SAMPLE

Ву

S. Baker

Following are the results for the analysis of a water sample from the Sonospheric Prediction Station, Mount Stromlo, submitted by $W.J.\ Perry.$

Suspended Matter	80 p.p.m.
Total Dissolved Solids	238 p.p.m.
Silica (as SiO ₂)	32 p.p.m.
Iron & Aluminium Oxide	
$(\text{Fe}_2^{0}_3 + \text{Al}_2^{0}_3)$	14 p.p.m.
Calcium (as CaO)	5.6 p.p.m.
Magnesium (as MgO)	20.3 p.p.m.
Chloride (as Cl)	18.4 p.p.m.
Carbonate (as CO3)	nil
Bicarbonate (as HCO3)	169. p.p.m.
рН	7.1

Lab.No.58/241

Report No.7.

24th January, 1958

ANALYSIS OF LIMESTONE SHALES

bу

S. Baker

Following are the results for the analysis of eight limestone shales submitted by $W.J.\ Perry.$

Sample No.	
D.1, 2, 3	0.67% caco ₃
D.4, 5, 6	0.90% "
D.7 - 8	not detected
D. 9	0.01% CaCO3
D.10	0.03%
D.11	0.03%
D.12	0.1% "
D.13	not detected

ANALYSIS OF A SAMPLE OF BORE WATER FROM THE DIVISION OF SOILS

bу

S. Baker

Following are the results for the analysis of a sample of bore water from the Division of Soils, submitted by G. Burton.

Total dissolved solids	1220	p.p.m.
Sulphate (as SO ₃)	47	11
Silicon (as SiO ₂)	20	Ħ
Chloride (as C1)	312	19
Iron, Aluminia		
(as Fe ₂ 0 + Al ₂ 0 ₃)	6	10
Calcium (as CaO)	215	
Magnesia (as MgO)	98	11
Carbonate	Ņ	il
Bicarbonate (as HCO3)	325	p.p.m.
Hq	7	۰0 "

Lab.No.58/242

Report No.9.

10th February, 1958 63PNG/1

ANALYSIS OF FOUR SOIL SAMPLES FROM THE DIDANA RANGE, NEW GUINEA.

The results of the analyses of four soil samples from the Didana Range East of the Musa River, New Guinea, submitted by geologist, J.E. Thompson, are as follows:

Sample No.	SiO ₂	Fe	Ni	Co	
Wakicki No.1 (nickel only)	ons	820	1.12%		
Wakioki Nc.3 (nickel only)	æ	co	1.36%	_	
Wakioki No.2 (7 feet)	40,00%	17.45%	1.33%	nil	
Wakioki No.2 (4 feet)	51.60%	9.23%	0.81%	nil	

Report No.10.

17th February, 1958. 106Q/7.

ANALYSIS OF DOLOMITIC LIMESTONE FROM THE GEORGINA BASIN AREA, QUEENSLAND.

bу

J.R. Beevers

Nine specimens of dolomitic limestone from the Georgina Basin area, Queensland, were recently submitted for analysis by J. Casey. A partial analysis resulted as follows:

Ref.No.	Insol in		Ratio %CaCO ₃		
	2N. HC 1%	Fe ₂ 0 ₃ %	CaCO ₃ %	MgCO ₃ %	%MgCO ₃
В 535	16.50	0.97	43.23	38•90	1.11
B 515 M	2.23	0.14	95•23	-	-
B 525	18.51	0.03	72.73		•
B 534	17.19	0.03	48.73	33•44	1.46
В 516	5•95	0.02	91.73	con-	••
₩ 22	1.07	0.09	54.23	45•54	1.19
B.132	4.24	0.10	52.23	41.59	1.26
G 14	1.03	0.40	53.20	43.84	1.21
В 510 Ъ	12.21	0.07	82.23	-	-

Lab. Nos. 58/381-389

ANALYSIS OF LATERITE SOILS, PADDY'S CREEK ATEA. NORTH QUEENSLAND.

by

J.R. Beevers

A collection of laterite and lateritic soils collected during the 1957 field season in the Paddy's Creek Area of North Queensland, by D.A. White, have been assayed for Ni and Co on the polarograph with the following results:

	Sample No	. Туре	Ni%	C 0%
	and the second section of the section of t			
•	A	Outcrop	Trace	Trace
	C	80	0.11	0,22
	E .	19	0.10	0.21
	G	11	0.06	0.11
	I	19	0.11	0 .1 5
	, K	, H ¹	Trace	${ t Trace}$
	M	19	0.12	Trace
	0	9.9	0.09	0.07
	P	11	Trace	Trace
	Q	Soil	0.07	${ t Trace}$
	Q R	Serpentine	0.08	Trace
	S	Serpentine	0.08	Trace
I	A	Outcrop	Trace	Not detected
	C	19	11	Trace
	E G	11	10	0.08
	G	19	0.06	0.04
	I		0.09	0 . 05
	M	89	0.10	0.09
	J	From Creek Bed	0.09	0.07
	K	19	0.14	Trace
	0	Outcrop	0.09	Trace
	Q	#Q	0.07	0.03
	R	18	0.06	0.04
	X	19	0.18	Trace
	S	Soil	0.14	Trace
II	A	Outcrop	0.10	0.09
	C	1919 ;	0.07	Trace
	E	9.0	0.10	0.10
	G	88	0.10	0.08
	I	11	0.06	0.08
	K	8.8	Trace	Trace
	M	Soil	0.27	Not detected
V	1	Surface soil	0.25	Trace
	7	Depth 4	0.33	Trace
	2	Surface soil	0.26	Not detected
	2	Depth 4	0.33	Not detected
	4	Surface soil	0.19	0.05
		Depth 4'	0.18	0.07
	5	Surface soil	0.26	Trace
	5	Deptch 4'	0.28	Trace
	7	Surface soil	0.12	Not detected
	7	Depth 4	0.14	Trace
	4 5 7 7 9	Surface soil	0.26	0.08
	9	Depth 4	0.24	Trace

Lab.Report No.11. (Cont.)

	Sample N	о. Туре	Ni%	C <i>%</i>
IV (Cont.	.) 10	Surface so	il 0.26	Not detected
11 (00110)	10	Depth 4'	0.20	Trace
	12	Surface soi		Not detected
	12	Depth 4	0.19	Trace
• •	14	Surface so		Trace
	14	Depth 4'	0.24	Trace
	16	Surface soi		Trace
	16	Depth 4	0.32	Trace
	16	Outcrop	0.22	Trace
	17	Surface soi		0.07
	18.	Surface soi	•	Trace
	18		0.28	Trace
	20	Depth 4t	0.20	
		Outcrop		Not detected
	23	Outcrop	0.34	Not detected
	24	Outcrop	0.33	Trace
	25	Outcrop	0.14	Trace
٧	1	Outcrop	0.14	Trace
	2	Outcrop	0.18	Not detected
	3	Outcrop	0.12	Trace -
	3 4 5 6	Outcrop	0.17	Trace
	5	Outcrop	0.42	Not detected
	6	Outcrop	0.20	Not detected
	8	Outcrop	0.20	Trace
	10	Outcrop	0.10	Not detected
VI	0	Surface soi	il 0.09	Trace
	0	Depth 4 ^t	0.11	Trace
	1	Surface soi		Trace
	1	Depth 4 ^t	0.13	Trace
		Surface soi		Trace
	3	Depth 4'	0.08	0.08
	3 3 4 5	Surface soi		Not detected
	5	Surface soi	-	Not detected
	-	Depth 4'	0.04	Not detected
	5 6 6	Surface soi		Trace
	6	Depth 4	0.05	Not detected
	8	Surface soi		Not detected
	8	Depth 4	0.08	Trace
	9	Surface soi		0.05
	9	Depth 4	0.13	Not detected
	10	Surface soi		Trace
	10	Depth 4	0.12	Trace
	11	Surface soi		0.06
	11	Depth 4	0.18	Trace
VII	A	Outcrop	° 0 . 06	0.08
	В	Outcrop	0.08	0.23
	Č	Outcrop	0.07	0.10
	•		2001	∪ ⊕ 1 ∪

Lab.Nos. 58/271-360

ANALYSIS OF SOILS FROM THE GRAY CREEK AREA OF NORTH QUEENSLAND.

bу

J.R. Beevers

Some laterite soils and adjacent rock types from the Gray Creek area of North Queensland, submitted by D. Green have recently been assayed for Ni and Co. Following are the results:

Ref. No.	Туре	Ni%	C <i>o</i> %
D.G.1	Pisolitic Rock	0.09	Trace
D.G. 2	10	0.09	11
D.G. 3	10	0.18	11
D.G. 4	11	0.21	11
D.G. 5	H	0.09	n
D.G. 6	Laterite Soil	0.11	11
D.G. 7	19	0.06	ti .
D.G. 8	10	0.10	11
D.G. 9	90	0.12	11
D.G.10	9.0	0.04	11
D.G.11	t P	0.14	n
D.G.12	11	0.06	11
D.G.13	19	0.07	11
D.G.14		0.11	0.05
D.G.15	19	0.05	Trace
D.G.16	99	0.03	n
D.G.17	90	0.11	0.06
D.G.18	Serpentine	0.20	Trace
D.G.19	10	0.20	0.08
D.G. 20	Leached Serpentine	0.09	0.06
D.G. 21	Soil	0.19	0.06
D.G. 22	Serpentine	0.12	Trace
D.G. 23	11	0.09	11
D.G. 24	Actinolite Schist	Not detected	Not detected

Lab. Nos. 58/247-270

Report No.13.

19th February, 1958

ANALYSIS OF GRANITE SAMPLES

by

S. Baker

Following are the results for the analysis of six samples of granite submitted by B. Walpole.

Lab.No.	58/371	58/372	58/373	58/374	58/375	58/376
Field No.	B.3276	B.3277	B.3280	B•3285	B.3286	B•4009
SiO ₂	67.90	70.14	73.24	60.40	70.40	68.41
FeO ²	3.20	1.24	0.71	2.84	1,26	2.15
Fe ₂ O ₃	0.63	1.27	0.88	1.99	1.57	1.32
TiO ₂	0.40	0.25	0.20	0.35	0.34	0.33
Al ₂ O ₃	15.81	15.70	13.96	17.21	15.18	17.26
CaO	1.78	0.90	0.70	4.02	1.53	0.56
MgO	0.86	1.26	0.68	3.60	1.16	0.96
MnO2	0.08	0.05	0.08	0.04	0.05	0.05
P ₂ O ₅	0.16	0.20	0.45	0.08	0.16	0.09
K ₂ O	4.19	4.20	4.90	4.70	3.84	4.37
NO 2O	3.16	3.28	3.23	3.24	3.39	3.31
H ₂ O(-) H ₂ O(+)	0.02 0.91	0.02 0.92	0.05 0.37	0.04	0.03	nil 0.85
Total	99.09	99•43	99•45	99•43	99•64	99•66

Lab.No.58/371-376.

Report No.14

21st February, 1958 198Q/2

ANALYSIS OF SEVEN ROCK SAMPLES FROM DUCHESS, NORTH WEST QUEENSLAND.

bу

S. Baker

Following are the corrected results for the analysis of seven rock samples taken near Duchess, N.W. Queensland, by K. Walker.

Sample No.	P ₂ 0 ₅	Na ₂ O	K ₂ 0	SiO ₂	A1 ₂ 0 ₃	
2867 9531 2129a 9595 coarse 7748 R3260 9595 fine	0.07% 0.10" 0.13" 0.07" 0.08" 0.18" 0.05	1.98% 2.65% 2.91" 2.50" 1.40" 2.94" 2.56	0.47% 1.96% 0.85" 0.55" 0.49" 2.73" 0.55	49•90% 50•87" - - - -	- 14•48% - - - -	

Lab.No. 57/109-115.

Report No.15.

25th February, 1958 84Q/3.

ANALYSIS OF LATERITE DEPOTISTS PADDYS CREEK AREA. NORTHERN QUEENSLAND

bу

J.R.Beevers

Laterite deposits are formed over Serpentine in the Paddys Creek area, Northern Queensland. Here two types of laterite are represented:

- 1. Pisolitic laterite
- 2. Vesicular laterite

The pisolitic laterite is the more abundant and is represented by specimens A. B. C.D. and J. The pisolites contain iron and are embedded in a ferruginous or clayey matrix. The pisolites vary in size from about 1/32" in diameter (specimen J) to about 1/2" diameter (specimen C). specimens A, B & D, having intermediate sizes.

The Vesicular laterites are represented by specimens E, F, G, and H and generally consist of encrusted irregular channels which are probably filled with ferruginous and clayey material.

The above descriptions were supplied by D. White. Assays for Ni and Co on the specimens resulted:

	Ni%	C%
A B Pisolitic D	0.13 0.06 0.12 0.50	Trace 0.16 Trace 0.33
E	0.27 0.28 0.11 0.22	Trace Trace Not detected Trace
J Pisolitic	0.48	Trace

The specimen D had a relatively high assay for Ni and Co and a full analysis was therefore carried out on the specimen to determine its exact composition.

Specimen D.	H_0+	12.57 %
•	s f0 ₂	20.92 %
	A1,0,	13.59 %
	$Fe_{2}^{2}0_{3}^{3}$	48.92 %
	TiO	0.19 %
•	cr ₂ ō ₃	1.27 %
	MnŌ	1.87 %
•	Ni 2	0.50 %
	Co	0.33 %
	v ₂ o ₅	Shown to be present by X-ray
4.	, 45 ,	Data but only present in very
		small quantity.

Lab.Nos. 58/361-370

Report No.16.

5th March, 1958. 130ACT/1.

ANALYSIS OF A SAMPLE OF BORE WATER FROM HALL. A.C.T.

bу

S. Baker

Following are the results for the analysis of a sample of bore water ex "Charnwood", Hall, A.C.T. (Lake George 052538) submitted by G. Burton.

18.4	p.p.m.
3.6	11
145	11
124	11
106	11
76	H ₃
577	11
41	11
10	11
6.8	II
	3.6 145 124 106 76 577 41

Lab. No.58/396

ANALYSIS OF SIX ROCK SAMPLES

bу

S. Baker

The samples were submitted by B.P. Walpole and their localities are as follows:

- No.1133 Cullen Granite, Edith Creek Crossing on Stuart Highway. P53/9 Mount Todd.
 - B3279 Burton Creek Granite, five miles west of Finniss River Crossing. (Pt.1, Photo 380675, Run 11, Tumbling Waters).
 - 4220 Mount Goyder Syenite two miles S.S.E. of Mount Bundey Homestead (Mount Bundey 1:mile Sheet).
 - 3273 Hermit Hill Granite thirty miles south-west of Daly River, along Daly River- Port Keats track.

 (Muldiva Creek 1-mile Sheet).
 - 3283 Cullen Granite quarter mile wesr of Goodparla track,

 1 mile passed the turn off. D52/8 Table Top.
 - 3290 Mount Bundey Granite three miles north-east of old Battery in Mount Bundey Creek. (Mount Bundey 1-mile Sheet).

Lab.No. Sample No.	58/392 1133	58/391 B3279	58/390 4220	58/393 32 7 3	58/394 3283	58/395 3290	
% SiO ₂	72.94	71.58	59.76	73.58	71.30	71.16	
% FeO.	2.10	1.49	1.52	0.98	1.43	1.09	
% Fe ₂ 0 ₃	0.51	0.39	5.38	0.76	1.19	1.59	
% Al ₂ O ₃	13.70	15.48	16.56	14.16	14.57	13.82	
% TiO ₂	0.03	0.10	0.15	0.05	0.08	0.09	
% MnO	0.04	0.03	0.09	0.02	0.06	0.03	
% CaO	0.66	1.78	2.14	0.82	0.76	1.45	
% MgO	1.08	0.92	2.44	0.73	0.69	1.23	•
% K ₂ 0	4.93	3.66	5.52	4.42	5.68	5.05	
% Na ₂ 0	2.54	4.03	4.98	3.29	3.13	3.71	
% P ₂ 05	0.09	0.07	0.10	0.09	0.08	0.07	
% н_0 (-)	0.04	nil	nil	0.03	nil	nil	
% H ₂ O (+)	0.90	0.86	0.94	0.88	0.87	0.58	
% Total	99•56	100.39	99 • <u>5</u> 8	99.81	99.86	99•87	

Lab. No.58/390-395

Lab. Report No.18.

14th March, 1958. 198NT/1

ANALYSIS OF SIX ROCK SAMPLES

bу

S. Baker

are as f	_	were subm	itted by B.	P. Walpole a	and their lo	ocalities
B 1135	Nanambu	Granite: Na	anambu Cree	km Mount Bro	ookman 1-mil	e Sheet.
В 3272	Allia Cr	eek Granit)			
B 3289	Tumbling	Waters Gra		of Goodwill	Mine, Moun	t Tolmer
B 4325	Shoebrid	ge Granite	. Mount Sh	oebridge Stu	art Highway	r •
B 3275	Burnside	Granite.	$2\frac{1}{2}$ miles N	.N.W. of Bro	ocks Siding.	
			Burn	side 1 - Mi]	Le Sheet.	
В 3278	Fenton G	ranite.		ast of south erary 1-mile		ton air strip
Lab. No. Field No	58/408 • B3289	58/406 B4325	58/407 В3278	58/409 B3272	58/480 B3275	58/411 B1135
% SiO ₂	74.68	70.42	72.82	60.30	71.96	69.00
% A1 ₂ 0 ₃	14.56	14.02	14.03	19.27	13.87	16.05
% Fe ₂ 0 ₃	1. 58,	0.73	0.91	0.73	0.41	0.78
% FeO	0.37	1.55	1.83	5.66	1.35	1.09
% MgO	0.33	1.29	0.79	1.61	0.68	0.94
% Ca0	0.48	1.63	0.87	3.54	1.07	1.25
% Na ₂ 0	4.77	3.34	2.76	2.33	3.50	3.66
% K ₂ 0	2.30	6.06	5.18	3•73	5.68	6.32
% н ₂ 04 [*]	0.39	0.98	0.71	1.30	0.61	0.32
% H ₂ O+950	o°C -	1.21	1.03	1.53	-	-
% H ₂ O (-)) Nil	0.02	nil	0.03	nil	nil
% TiO ₂	0.05	0.25	0.30	0.85	0.30	0.20
% P ₂ 0 ₅	0.05	0.10	0.07	0.12	0.07	0.10
% MnO	0.04	0.08	0.05	0.07	0.05	0.03
% Total	99.60	100.47	100.32	99•54	99•55	99•74

Lab. No. 58/406-411.

^{*} Loss on ignitition 600°C.

Report No.19.

24th March. 1966. 198NT/1

ANALYSIS OF SIX ROCK SAMPLES

bу

S. Baker

The samples were submitted by B.P. Walpole and their localities are as follows:

are as	follows:
1135	Nanambu Granite. Nanambu Creek, Mount Brookman 1- mile Sheet.
3272	Allia Creek Granite
3289	Tumbling Waters Granite. East of Goodwill Mine, Mount Tolmer 1 - mile Sheet.
4325	Shoe bridge Granite. Mount Shoebridge Stuart Highway.
3275	Burnside Granite. $2\frac{1}{2}$ miles N.N.W. of Brocks Siding. Burnside 1-mile Sheet.
3278	Fenton Granite. $2\frac{1}{2}$ miles east of south end of Fenton air strip. Tipperary 1-Mile Sheet.

Lab. No. Field No.	58/408 B3289	58/406 P4325	58/407 B3278	58/409 B3272	58/410 B3275	58/411 B1135
% SiO,	74.68	70.42	72.82	60.30	71.96	69.00
% Al ₂ 03	14.56	14.02	14.03	19.27	13.87	16.05
% Fe ₂ 0 ₃	1.58	0.73	0.91	0.73	0.41	0.78
% FeO	0.37	1.55	1.83	5.66	1.35	1. 09
% MgO	. 0.33	1.29	0.79	1.61	0.68	0.94
% CaO	0.48	1.63	0.87	3.54	1.07	1.25
% Na ₂ 0	4.77	3.34	2.76	2.33	3.50	3.66
% K ₂ O	2.30	6.06	5.18	3.73	5.68	6.32
% N ₂ 0+*	0.39	0.98	0.71	1.30	0.61	0.32
% H ₂ O -	nil	0.02	nil	0.03	nil	nil
% TiO,	0.05	0.25	0.30	0.85	0.30	0.20
% P ₂ 0 ₅	0.05	0.10	0.07	0.12	0.07	0.10
% MnO	0.04	0.08	0.05	0.07	0.05	0.03
% Total	99.60	100.47	100.32	99.54	99•55	99•74

^{*} Loss on ignition 600° C.

Lab. No.58/406-411.

ANALYSIS OF A WATER SAMPLE FROM HALL. A.C.T.

by S. Baker

Following are the results for the analysis of a water sample ex "Brookland", Hall, A.C.T., submitted by G. Burton.

Milliequivalents/litre.

Total dissolved solids	300 p.p.m.	-
Sulphate	not detected	-
Chloride (Cl)	110 p.p.m.	3.11
Silica (SiO ₂)	14.0 p.p.m.	
Iron + Aluminia $(\text{Fe}_2^{0}_3 + \text{Al}_2^{0}_3)$	7.0 "	-
Lime (CaO)	45.5 "	1.62
Magnesia (MgO)	43.6. "	2.16
Sodium (Na)	31.0 "	1.35
Potassium (K)	5.0 "	0.12
Bicarbonate $(HCO_{\overline{3}})$	200 "	3.28
рH	6.4	-

Lab.No. 58/997.

Report No.21

25th March. 1958

ANALYSIS OF THREE LIMESTONE SAMPLES

bу

S. Baker

Following are the results for the analysis of three samples of limestone submitted by G. Thomas.

	ď	MAC I	F.17.195	F.17.197	
Insoluble m	aterial	7.74%	12.08%	3.16%	
CaCO3		49.04%	34.22%	52.24%	
Mgco3		39.74%	47.51%	43.81%	
mo1. Ratio	MgCO ₃	1.03	0.60	0.99	

Lab. No.58/403-405

Report No.22.

27th March. 1966. 84NT/B-10.

ANALYSIS OF A DRILL CORE FROM THE WATERHOUSE NO.2 PROSPECT. N. TERRITORY.

bу

J.R. Beevers

A drill core submitted by the Geophysical Section from the Waterhouse No.2 prospect, N.T. has been assayed for various minerals with the following results:

Ash on Air Dried Sample. 91.6%

Major elements: Fe 5.26%
S 3.47%

Minor elements: Cu 460 p.p.m.
Pb 140 "
Zn 920 "
Ni 74 "
Co Not detected

Lab. No.58/425

Report No.23

1st April, 1958 84G/1

ANALYSIS OF RADIOACTIVE ORE SAMPLES

рy

J.R. Beevers

Some radioactive ore samples submitted by B.Walpole have recently been analysed for uranium content on the polarograph. The thorium content has been determined gravimetrically.

Sample No.	υ0 ₂	ThO2	Pb	
В 7728	65 .7%	0.16%	-	
В 7729	86.4%	0.08%	6 . 22%	
В 7730	81.0%	0.20%	-	

Lab. Nos. 57/160, 161, 162

ANALYSIS OF SIX ROCK SAMPLES

bv

S. Baker

The samples were submitted by B.P. Walpole and their localities are as follows:

3968 - McKinlay Granite, Burrundie, Run 2, Photo 75, Pt.1.

3970 - McKinlay Granite, Burrundie, Run 2, Photo 75, Pt.3.

3975 - Price's Spring Granite, Burrundie, Run 1, Photo 54, Pt. 5.

3281 - Rum Jungle Granite, west of Railway Track, three-quarters of a mile from Fitch Track.

4324 - Waterhouse Granite, 3 miles south-west of Stapleton Homestead.

4621 - Burton Creek Granite , Fog Bay, Run 2, Photo 5093, Pt. 1.

Lab. No. Field No.	58/429 3968	58/427 39 7 0	58/432 3975	58/428 B3281	58/431 B4324	58/430 B4621
SiO ₂	67.04	67.72	69.92	69.62	72.61	73•51
A1 ₂ 0 ₃	16.42	15.51	15.08	14.35	14.20	14.49
Fe ₂ O ₃	0.29	0.96	0.91	1.09	0.56	0.53
FeO	2.61	2.58	2.20	2,20	0.93	0.96
MgO	0.96	1.09	1.14	1.40	1.00	1.05
CaO	. 1.91	1.51	1.64	₽ •80	0.42	1.17
Na ₂ O	3.07	3.05	2.65	2.67	3.29	2.97
K ₂ 0	5.31	5•37	5 . 18	6.19	5•43	3.98
_	tion1.40	1.08	0.77	0.23	0.84	0.53
H ₂ O (105°C)	0.02	0.03	nil	0.04	nil	nil
TiO,	0.50	0.48	0.45	0.61	0.15	0.21
P ₂ 0 ₅	0.22	0.19	0.18	0.25	0.05	0.04
MnO	0.10	0.09	0.05	0.04	0.03	0.02
Total	99.85	99.66	100.17	99•49	99•51	99•46

Lab. No. 58/427-432

23rd April, 1958 198NT/1

CHEMICAL ANALYSIS OF SIX ROCK SAMPLES

by

S. Baker

The samples were submitted by B.P. Walpole. and their localities are as follows:

Granodiorite B 2997 - Hermit Hill Complex - Muldiva Creek.

Granodiorite B 2973 - Litchfield Granite - Mount Litchfield South, on old road.

Granite B 3274 - Litchfield Granite

Microgranite B 3288 - Middle Creek Granite - Mount Evelyn 1 mile Sheet.

Lencoadamellite 3915 - Nanambu Granite - Alligator River, Run 1, Photo 5007.

Adamellite 3999 - Shoebridge Granite - Tipperary. Run 1. Photo 5047.

Point 3.

Lab. No. Field No.	58/433. B2973	58/435 B3274	58/434 3915	58/436 3999	58/437 B2997	58/438 B3288
% SiO ₂	74.00	75.00	76.86	70.88	68.20	75•26
% Al ₂ 0 ₃	14.06	13.71	12.39	15.00	16.53	12.05
% Fe ₂ 0 ₃	1.28	0.87	0.96	1.80	1.27	1.40
% FeO	1.29	0.37	0.36	0.89	3.10	1.18
% MgO	0:41	0.27	0.13	0.74	1.47	0.20
% CàO	2.28	0.64	0.79	1.27	2.12	0.58
% Na ₂ 0	4.35	2.23	2.44	3.29	2.01	2.97
% к 20	1.26	5.81	5.43	4.48	4.11	5.31
% H ₂ O (105 ^O C) nil	nil	nil	nil	0.01	nil
% loss on ignition	n 0.35	0.68	0.50	0.75	0.66	0.48
% TiO,	0.22	0.10	0017	0.26	0.47	0.07
% P ₂ 0 ₅	0.03	0.03	0.02	0.03	0.01	0.04
% MnO	0.03	0.04	0.02	0.03	0.07	0.02
Total	99.56	99•75	99•97	99•42	100.03	99•56

Lab.No. 58/433-438

29th April, 1966. 106Q/7

ANALYSIS OF A SAMPLE OF BANDED LIMESTONE FROM THE BOULLA AREA, QUEENSLAND.

bу

A. McClure

Following is the result of the analysis of a sample of banded limestone from the Boulia area, Queensland. This was recently submitted by R.R. Vine.

Sample No. B.261

	I (igni	nsolubles ted at 8000°)	CaCO ₃	MgCO ₃	Loss at 105°C	
Light	band	8.00%	90.36%	1.5%	0.06%	
Brown	band	9.96%	79.67%	8.58%	0.12%	,

Report No27

29th April, 1958. 198PNG/1

NICKEL ASSAY ON A PERIDOTITE BRECCIA

bу

S. Baker

Following is the result for the determination of nickel on a sample of Peridotite breccia weighing approximately 300 g., submitted by J.E. Thompson.

Field No.	Locality	Ni	
P. 146	Eastern end of Didana Range, Northern District, Didana.	0.71%	

Lab.No. 58/440

1st May, 1966. 45ACT

ANALYSIS OF A SAMPLE OF BORE WATER FROM NARRABUNDAH. A.C.T.

by

S.BBaker

Following are the results for the analysis of a sample of bore water from Mr. G. Pini, Narrabundah, submitted by $J_{\rm i}$. Burton.

·	·	Milliequ./litre
Total solids	390 p.p.m.	-
SiO ₂	17.2 "	-
Iron & Alumina	•	
$(\text{Fe}_2^{0}_3 + \text{Al}_2^{0}_3)$	2.0 "	~
CaO	66.4 "	2.35
MgO	37.0 "	1.84
Na	32.6 "	1.42
K	3.0 "	0.08
Bicarbonate (HCO3)	260. "	4.26
Cl	46.0 "	1.30
РЩ	6.6	-

Lab.No.58/441

Report No. 29

9th May, 1958

ANALYSIS	OF	FOUR	MANGANESE	ORE	SAMPLES
FROM	CALV	ERT I	HILL.	N.T.	.

bу

S. Baker

Following are the results for the analysis of four samples of a manganese ore from Calvert Hill, N.T. submitted by J.Firman.

Sample No.	9026	9027	9028	9029	
Manganese (Mn)	32.9%	31.0%	29.9%	38 .5%	

Lab. No. 58/442-445

ANALYSIS OF A GLAUCONITE SANDSTONE SAMPLE

bу

A. McClure

A sample of glauconitic sandstone (No.1403) collected by J.B.Firman in the Settlement Creek Valley, Calvert Hills area, Northern Territory, was submitted by W. Dallwitz for potash and phosphate analysis. The results obtained are:

K₂O P₂O₅

Report No.31

27th May, 1958

ANALYSIS OF PHOSPHATE SAMPLES FROM THE SOLOMON ISLANDS.

bу

A. McClure

Phosphate samples from the Solomon Islands have been analysed, with the following results:

Sample No.	P ₂ 0 ₅ %	Sample No.	P ₂ 0 ₅ %	
N3C	25.0	G8B	28.6	,
G3B	0.7	GW3E	25.1	
G2B	0.4	GW3C	25.0	
G7E	31.3	GW5A	21.9	
MW3F	33.2	Nlob	16.7	
K5A	21.6	N4A	24.4	
M4B	25.9	GW4A	25•4	
G7D	25.4	Н7В	22.3	
G 7 B	24.8	AZA	18.4	
N3D	35.2	к6в	19.4	
A5B	29.1	GW5C	21.4	
G_8C	34.2	K8C	34.6	
G11F	24•3	GW3D	25.2	
G11D	23.0	G5C	7.7	
G1OD	34.4	Н5В	25.6	
H2C	1.7	GW5B	21.9	
K7A	19.7	NIOA	17.2	
K,1 OA	24.1	•		

All samples were dried at 110°C.

::

ANALYSIS OF PHOSPHATE SAMPLES FROM THE SOLOMON ISLANDS.

bу

A. McClure

Following are the results of the phosphate analysis of some samples from the Solomon Islands:

Sample No.	P ₂ 0 ₅
К4В	23.3%
M5B	24.2%
N9B	26.0%
G6D	0. <i>6%</i>
GW 6B	24.4%
G3A	4.4%
N8C	34•9%
MW5A	0.5%
N1OC	17.9%
N9C	33 . 3%
G-1OB	24.7%
N3A	22.8%
G11E	24 <i>6%</i>
N4B	26.4%
N3B	24.5%
G11C	22.0%
G11G	24.4%
N1OD	16.7%
N7B	29.2%
N9A	24.1%
G2A	17.1%
G12B	0.4%
GW3A	20.8%
G5B	19.0%

All samples were dried at 110°C before weighing.

Report No.33

30th May, 1958

PHOSPHATE DETERMINATIONS ON SAMPLES FROM THE SOLOMON ISLANDS.

by A. McClure Following are results for phosphate determinations on samples from the Solomon Islands. All results refer to samples dried at 110°C.

Sample No.	P ₂ 0 ₅ %	Sample No.	P ₂ 0 ₅ %
NW2D	27.6	M4C	33.7
P2C	24.8	N3B	26.1
MW2C	26.1	M3A	24.1
G9A	36.9	N8B	28.7
G11A	20.0	G9B	26.1
M4A	24.8	G9D	35.6
N5B	26.0	G4B	less than 0.5
MW3E	24.9	D5A	24.3
P3A	26.0	A4B	25 . 6
H5A	25.8	G4A	7.4
N6A	26.5	G8D	18.4
K9A	26.2	нбв	27.3
K11A	12.1	G1QE	36 . 9
K10B	15.8	G1N2A	17.3
G6A	11.5	GW2B	11.3
H2B	17.3	K4A	8.5
K11B	13.4	GW2C	12.6
G₩3F	17.8	G11A	12.1

30th May, 1958.

ANALYSIS OF PHOSPHATE SAMPLES FROM THE SOLOMON ISLANDS.

by

A. McClure

The following results are for the phosphate analysis of twenty-four samples from the Solomon Islands

Sample No,	P ₂ 0 ₅ %	Sample No.	P ₂ 0 ₅ %	
G7F	39•2	P2A	23.3	•
A5C	30.2	MW3C	26.2	
H4A	23.8	A3 B	25. 6	
H7A	20•9	н6А	24.8	
P2B	24.6	K9D	26.8	
G10E	37•9	GW4C	35•1	
MW3B	25.8	A3A	24.8	
H5C	26 . 5	A4D	26.0	
₽2D	25. 5	A2B	19.3	
A4E	26.4	K8B	32 <u>•</u> 4	
Kloc	27.0	н6С	26•4	
G5A	19.4	K12A	15•2	

All samples were drued at 110°C.

Lab. No.58/448

Report No.35

2nd June, 1958

ANALYSIS OF TWO WATER SAMPLES

by

S. Baker

Following are the results for the analysis of two water samples submitted by G.M. Burton.

-	No.2		No.3	
Dissolved solids Silicon (SiO ₂) Iron + alluminia	940 p.p.m. 32 " 7 "		290 p.p.m. 69 " 4 "	
Calcium (Ca)	80.7 " (3.9	5 milliequiv/	26.2 " (1.28	milligramme/
		litre)		litre.
Magnesium (Mg)	46.3 " (3.8	1 ")	10.8 " (0.88	"
Sodium (Na)	173. " (7.5		25.8 " (1.1	11 5
Potassium (K)	3 " (0.0	3 ")	1. " (0.03	"
Chlorine (C1)	321 " (9.0	5 ")	26.6 " (0.75	₹
Bicarbonate	396 " (6.5	")	165. " (2.70	").
pН	7.1		7.3	·

Note: Sample No.2 ex Mr.Hyles' Bore, Gulla. Sample No.3 ex Mr.J.J. Goslett's Bore.

Lab. No. 58/446, 447.

PHOSPHATE DETERMINATION ON SAMPLES FROM THE SOLOMON ISLANDS.

bу

S. Baker

Following are the results for the phosphate determination on samples submitted from the Solomon Islands.

Sample No.	P ₂ 05%	Sample No.	P ₂ 0 ₅ %	
K6A	18•4	G10A	19.1	
K11C	23.6	Р4В	21.0	
MW3A	22.6	иĠв	28.6	
GW6A	18.2	G9A	19.1	
K8A	22.8	G7G	21.5	
H2A	20•.6	P2F	17.3	
K11E	23.6	MW2B	23.4	
M5A	21.7	K9C	23.0	
P5C	27.1	G10G	23.2	
A3C	24.9	P2E	22.6	
H4B	23.6	к9В	22.6	
MW2A	23.9	P4A	22.1	
H1A	21.7	GW 6B	16.9	
M3C	24.5	G7A	20.8	
P5D	32.1	M5C	22.3	
K11D	22.1	A4C	21.5	
нза	21.0	N5A	22.1	
GW4B	31.7	G9C	23.4	
N7A	20.8	G12A	12.1	
K12B	17.1	A4F	23.6	
G6B	24.3	MW3D	24.1	
H7G	17.8	G11B	19.7	
N8A	19.5	G8A	22.1	
P5B	25.8	∙ N 5C	25.1	
	•	A4A	20.8	
		A5A	20.6	
Lab.No. 58/448	•			

Report No.37

12th June, 1966.

CARBON DIOXIDE DETERMINATION OF THREE BRICK 130ACT/1 SHALE SAMPLES FROM THE DEAKIN PIT.

bу

S.Baker

Following are results for carbon dioxide determination on samples of Brick Shale from the Deakin Pit, submitted by D.E. Gardner.

22nd July, 1958

DETERMINATION OF CARBON DIOXIDE CONTENT OF FOUR SHALE SAMPLES

bу

S. Baker

Following are the results for the carbondioxide determination on samples of shale submitted by D.E. Gardner.

Sample	Percent CO ₂
. I	0.9
IA.	5.8 10.9

Lab. No.58/464

Report No.39

28th July, 1958

ANALYSIS OF LATERITIC SOIL SAMPLES

bу

S.Baker

In accordance with J.E. Thompson's request, six samples of lateritic soil were analysed for nickel so as to compare the results obtained with those of Mr.Macfarlane. It is considered that the agreement obtained is satisfactory.

Sample No.		Percen	t Ni
	25, 3' - 6'	0.82	(0.84)*
H .	61 - 91		(0.82) (1.24) (2.02)
11	91 - 121	1.17	(1.24)
11	12' - 15'	1.76	(2.02)
11	15! - 18!	1.86	
11	181 - 211	2.64	(2.58)

* The results in brackets are those of Mr.Macfarlane.

Lab. No. 58/462

28th July, 1958

ANALYSIS OF WATER SAMPLES FROM THE A.C.T.

45ACT/1.

by

W.J. Thomas

The samples were submitted by E.G. Wilson.

·	Sample 1.	Sample 2.
Dissolved solids (105°C)	ppm. m.e./1 2025	ppm. m.e./1 878
Calcium	218 10.9	147 7.4
Magnesium	146 12.1	52 4.3
Sodium	226 10.0	⊕ã″ 69 3.0
Bicarbonate	646 10.8	∷486 8 . 1
Sulphate	490 10.9	86 1. 8
Chlorine	413 11.4	161 4.6
pН	7.27	7.48
58/460 58/461	No.1 Hall: R. No.2 Gunghalin	Brown. Cavanagh.

Report No.47

14th August, 1958

CARBON DIOXIDE CONTENT OF A BRICK SHALE SAMPLE

by

S. Baker

A sample of brick shale subnitted by D.E. Gardner contained 0.05% carbon dioxide.

Lab. No. 58/467.

Report No.42.

22nd August, 1958 45ACT/1.

ANALYSIS OF A BORE WATER SAMPLE FROM "THE VALLEY", BUNGENDORE. N.S.W.

bу

W.J. Thomas

Following are the results of the analyses of a water sample submitted by G.M. Burton.

Dissolved solid (105°C).	272 p.p.m.	Milli equiv/litre
Calcium	1 9	0.95
Magnesium	12	1.00
Sodium	64	2.78
Chlorine	94	2.65
Bicarbonate	90	1.50
Sulphate	33	0.69
pH .	7.2	

The sample is from F.H. Braund's bore, "The Valley" Bungendore. Lab.No.58/465

25th August, 1958. 58W/1

ANALYSIS OF MANGANESE ORE. SAMPLES FROM BALFOUR DOWNS. W. A.

bу

S. Baker

Following are the results for the analysis of samples of manganese ore submitted by L.de la Hunty, Balfour Downs, Western Australia.

Sample No.	Percent Manganese (as N	īа)
98401	45•3	
98403	50.3	
98404	38.2	
98405	40.9	
98406	36.8	
98407	43•1	
98409	44.5	
98409	40•9	
98410	38.2	
98412	38.7	
98413	35 . 7	
98414	39•0	•
98415	36 . 5	
98416	42.3	
98417	38 <u>.</u> 7	
98418	30•2	
98419	41,7	
98420 (shales)	13.2	
98421 (shales)	13.2	

2. On a further four samples containing a fair amount of soil of the $+\frac{1}{4}$ inch mesh fraction was assayed for manganese.

Sample No.	$+\frac{1}{4}$ inch mesh fraction	Per cent Manganese	
98402 98411 98422 98423	3% of total sample. 73% " 26.5% " 37.5% "	36.2 17.3 36.8 24.2	

Lab.No.58/470-492.

Report No.44.

29th August, 1958 131G/1

LITHIUM ANALYSIS ON SAMPLES FROM FERGUSSON ISLAND,
PAPUA - NEW GUINEA.

bу

S. Baker

Following are results for lithium determination on two water samples and one solid sample, submitted by G.Kretzschmar from Fergusson Island - Papua New Guinea, Section 'Amali-Amali' No.1 area, Fagalulu.

			Lithium	(as Li)
Water samp	ole, bottle 1,		0.33	p.p.m.
n	bottle 4,	5•	5•	p.p.m.
Solid samp	ole		10.	p.p.m.

15th September, 1958 64NT/1

PHOSPHATE ANALYSIS ON THREE PHOSPHATE SAMPLES FROM DARWIN. N.TERRITORY.

bу

S. Baker

Following are results for phosphate determination on three samples, submitted by N.J. Mackay, Darwin.

Sample No.	Percent P ₂ 0 ₅
2612	4.0
2620	not detected
2627	10.1

Lab. No.58/507.

Report No.46

18th September, 1958 38PNG/1

DETERMINATION OF SULPHATE AND POTASSIUM ON FOUR SAMPLES FROM T.P.N.G.

bу

S. Baker

Following are the results for determination of sulphur and potassium on samples submitted by N. Hirsch and K. Verweal.

Sample No.	Percent sulphur
1	97.0
2	83.0
3	50∙0
4	32.0

Sample No.3 was described as "Kalium' contained 1.0% potassium.

Apart from the sulphur present, sample No.4 is essentially water-soluble. The agueous solution obtained contains a fair amount of iron-sulphate.

Lab.No.58/508.

ANALYSIS OF SAMPLES FROM THE NAMOONA AREA, NORTHERN TERRITORY.

bу

W.J. Thomas

Geochemical samples from the North Grid, Anomaly B, Mamoona Land Prospects, N.T., submitted by W.N. Thomas, Enterprise Exploration Co.Pty.Ltd., were analysed for lead with the following results.

Sample No.	Pb p.p.m.	Sample No.	Pb p.p.m.
32211	110	32231	350
12	120	32	220
13	2400	33	1600
14	220	34	200
15	150	. 35	140
16	110	36 .	180
17	100	.37	500
18	500	38	230
19	1000	39	180
32220	330	32240	280
21	1500	41	170
22	460	. 42	No sample
- 23	780	43	80
24	240	44 45	250
25	120	45	530
26	310	46	340
27	380	47	310
28	360	48	720
29	850	49	160
32230	200		

Report No.48

21st October. 1958

ANALYSIS OF WATER SAMPLE FROM A.C.T.

45ACT/1

bу

W.J. Thomas

The results of the analysis of a water sample from Hall 1, R.H.Brown, Hall, submitted by E.G. Wilson on 22/8/58, are as follows:

Total solids (105°C)	1968 р.р	. M.	Milli equivalents/litre
Calcium	262 "		13.1
Magnesium	154 "		12.9
Sodium	146 "		6.3
Chloride	390 "		11.0
Sulphate	495 "		10.3
Bicarbonate	654 "		10.9
рH	7.3		•

Copper not detected.

ANALYSIS OF WATER SAMPLE FROM COPPER MINE, HALL. A.C.T.

bу

W.J. Thomas

The results of the analysis of a water sample from Copper Mine, Hall, was submitted by E.G. Wilson on 21/8/58, are as follows:

Total solids (105°C)	89 p	.p.m.	Milli equivalents/litre
Calcium	12	11	0.6
Magnesium	5	11	0.4
Sodium	4	11	0.2
Chloride	3	11	0.1
Sulphate	24.	11	0.5
Bircarbonate	18	11	0.4
рН 6.4			
Copper	2.	11	,

Lab.No.58/494

Report No.50

22nd October, 1958

ANALYSIS OF A WATER SAMPLE FROM PINEY CREEK, STROMLO. A.C.T.

byW.J. Thomas

The results of the analysis of a water sample from Stromlo 1, R.B.C. Tanner, Piney Creek, submitted by E.G. Wilson on 26th August, 1958, are as follows:

Total solids (105°)	1470 p.p.m	Milli equivalents/litre
Calcium	214 "	10.7
Magnesium	me99 "	muir 8.3 ~ ~
Sodium	. 47 "	or 2.0
Chloride	276 "	7.8
Sulphate	169· "	3•5
Bicarbonate	6 6 0 "	11.0 aic
Дq	6.7	Alassi da Salah

Lab.No.58/495

22nd October, 1958 45ACT/1

ANALYSIS OF WATER SAMPLE FROM LAKE GEORGE

by

W.J. Thomas

The results of the analysis of a water sample from Lake George 302628 Read, submitted by E.G. Wilson on 29/8/58, are as follows:

Total solids (105°C)	1230 p.p	o.m. Milli equivalents/litre
Calcium	77 "	3.8
Magnesium	65 "	5.4
Sodium	293 "	12.7
${ t Chloride}$	392 "	11.0
Sulphate	65 "	1.4
Bicarbonate	600 "	10.0
PΗ	7.3	

Lab. No.58/494

Report No. 52

23rd October, 1958 45ACT/1

ANALYSIS OF A WATER SAMPLE FROM MICHELAGO I

bу

W.J. Thomas

The results of the analysis of a water sample from Michelago 1, T.Lawler, "Rock Forrest", submitted by E.G. Wilson on 19/8/58, are as follows:

Total solids (105°C)	1054 p.p.m.	Milli equivalents/litre
Calcium	164 "	8.2
Magnesium	56 "	4.7
Sodium	150 "	6.5
Chloride	234 "	6.4
Sulphate	19 "	0.4
Bicarbonate	738 "	12.3
Нα	7.2	

Lab. No.58/496

23rd October, 1958 45ACT/1

ANALYSIS OF A WATER SAMPLE FROM MICHELAGO 2.

Ъу

W.J. Thomas

The results of the analysis of a water sample from Michelago,; T.Lawler, off Cooma Road, Michelago, submitted by E.G. Wilson on 19/8/58 are as follows:

Total solids (105°C)	765 p.p.m.	Milli equivalents/litre
Calcium	112 "	.5 . 6
Magnesium	60 🕫	.5.6 5. 0
Sodium	46	2.0
Chloride	138	3.9
Sulphate	11 "	0.2
Bicarbonate	504 "	8.4
Нq	7.8	·

Lab.No.58/497

Report No.54.

23rd October, 1958 45ACT/1.

ANALYSIS OF A WATER SAMPLE FROM LANYAN 2. WILLLAMSDALE

bу

W.J. Thomas

The results of the analysis of a water sample from Lanyan 2, B. Moore, "Burroburroo" Williamsdale, submitted by E.G.Wilson on 19/8/58, are as follows:

Total solids (105°C)	1980 р.р.ш.	Milli equivalents/litre
Calcium	208 "	10.4
Magnesium	117 "	9.8
Sodium	197 "	8.6
Chloride	574 "	16.2
Sulphate		- '
Bicarbonate	744 "	12.4
pН	7.2	

Lab.No.58/498

23rd October, 1958 45ACT/1

ANALYSIS OF A WATER SAMPLE FROM HALL 3. NEAR "FAIRVIEW" HALL.

bу

W.J. Thomas

The results of the analysis of a water sample from Hall 3, M.Southwell, near "Fairview", Hall, submitted by E.G.Wilson, on 20/8/58, are as follows:

Total solids (105°C).	3832 p	·p·m·	Milli equivalents/litre
Calcium	527	12	26.3
Magnesium	284	tt	23.7
Sodium	130	Ħ	5•7
Chloride	500	11	14.1
Sulphate	1465	11	30.5
Bicarbonate	648	11	10.8
pН	7.0		

Lab.No.58/499

Report No.56

23rd October, 1958 45ACT/1.

ANALYSIS OF A WATER SAMPLE FROM "WATTLE PARK", HALL

bу

W.J. Thomas

The results of the analysis of a water sample from S.J.Southwell, "Wattle Park", Hall, submitted by E.G.Wilson on 20/8/58, are as follows:

Total solids (105°C)	1499	p.p.m.	Milli equivalents/litre
Calcium	203	38	10.1
Magnesium	112	80	9.3
Sodium	145	11	6.3
${ t Chloride}$	432	11	12.2
Sulphate	98	11	2.0
Bicarbonate	702	11	11.7
pH 7.3			·

Lab.No.58/540

23rd October, 1958

ANALYSIS OF A WATER SAMPLE FROM SURVEYORS HILL.

bу

W.J. Thomas

The results of the analysis of a water sample from Hall 6, J.J. Goslett, Surveyors Hill, Hall, submitted by E.G. Wilson on 20/8/58, are as follows:

Total dissolved solids (105°C).	375 p.p.m.	Milli equivalents/litre
Calcium	67 p.p.m.	3•4
Magnesium	26 "	2.2
Sodium	33 "	1.4
Chloride	30 "	0.8
Sulphate	13 "	0.3
Bicarbonate	330 "	5•5
pH 7.3		

Lab. Nc.58/501

Report No.58

23rd October, 1958 45ACT/1

ANALYSIS OF A WATER SAMPLE FROM CITY 1. JERRABOMBERRA AVENUE.

рy

W.J. Thomas

The results of the analysis of a water sample from City 1, H.V. Fitzhardinge, Jerrabomberra Avenue, submitted on 29/8/58, by E.G. Wilson, are as follows:

Total solids (105°)	293	p.p.m.	Milli equivalents/litre
Calcium	34	19	1.7
Magnesium	20	11	1.7
Sodium	37	18	1.6
Chloride	32	11	0.9
Sulphate	18	19	0.4
Bicarbonate	216	12	3.6
pH 7.8			•

Lab.Nc.58/344

28th October, 1958 45PNG/1

ANALYSIS OF A WATER SAMPLE FROM ST.MARGARETS HOSPITAL. PORT MORESBY.

by

W.J. Thomas

The results of the analysis of a water sample from St.Margarets Hospital, Port Moresby, submitted by W.R. Lyster on 9th September, 1958, are as follows:

Total solids (105°C)		130	p.p.m.	Mille equivalents/litre
Calcium		16	11	0.8
Magnesium		8	19	0.7
Sodium		10	11	0.4
Bicarbonate		72	11	1.2
Sulphate		18	11	0.4
Chloride		8	11	0.2
Nitrate		not dete	ected	
pН	7.8			

Lab. No.58/506

Report No. 601

28th October, 1958

ANALYSIS OF A WATER SAMPLE FROM WALLAL DOWNS, CANNING BASIN

bу

W.J. Thomas

The results of the analysis of a water sample from Wallal Downs, Canning Basin, B.M.R.4 submitted by M.Pulley as part of the Stratigraphic Drilling Programme 1958 are as follows:

Total solids (105°C)	1023 p.p.m.	Mille equivalents/litre
Calcium	47 "	2•4
Magnesium	31 "	2.6
Sodium	22 7 "	10.0
Bicarbonate	78 "	1.3
Sulphate	103 "	2.1
Chloride	402 "	11.3
Nitrate	not detected	
pH 7.3	•	

Lab. No.58/521

ANALYSIS OF TWO ROCK SAMPLES FROM T.P.N.G.

Ъу

S. Baker

Following are results for the analysis of two rock samples submitted by J.E. Thompson.

Sample No.	P. 195	P.196
SiO	53 .7 8	33.0
Al ₂ 6 ₃	2.36	2.04
$A1_26_3$ Fe_20_3 $Fe0$	5.09	7.92
FeŌ ^o	2.95	1.06
MgO	34.64	44.37
CaO	0.05	0.10
Na ₂ 0	0.70	0.65
\mathbf{K}_{2} 0	0.12	0.11
н ₂ 0 (105°С)	0.03	0.34
Löss on igneition (1000°C)	0 .9 7	10.90
TiO ₂	0.10	0.10
TiO ₂ P ₂ O ₅	0.03	0.04
MnO	0.07	0.05
Ni (Chromatographic)	0.01	0.15
Cr	0.10	not detected
Total	100.89	100.68

Lab. 58/512, 513

Report No.62

10th November, 1958

ANALYSIS OF ROCK SAMPLES FROM THE NEWCASTLE RANGE. QUEENSLAND.

bу

S. Baker

Following are the results for the analysis of rock samples from the Newcastle Range, Queensland, submitted by ${\tt C.}$ Branch.

Sample No.	B255	B282	В289	B272	B4128	В274.
SiO	73.38	74.72	74.06	74.48	70.40	75.66
SiO A1 ₂ O ₃ Fe ₂ O ₃ FeO	12.17	9.96	12.80	14.80	16.95	14.29
Fe ₂ 0 ₃	2.80	3.50	1.86	1.05	1.00	0.06
FeŌ	0.41	1.36	0.90	0.46	0.31	0.40
MgO	0.72	0.45	0 <i>。</i> 38	0.08	0.12	0.10
CaO	0.60	0.70	1.00	0.99	1.40	0.47
Na ₂ 0	3.39	3.60	3 . 92	4.40	6.06	4.67
K_2^{-0}	4.99	4.55	4.93	2.44	2.10	2.97
Na_{2}^{0} K_{2}^{0} H_{2}^{0} (105°)	0.11	0.17	0.05	0.01	0.06	0.11
Loss on igni	tion	·				
Loss on igni	0.72	0.72	0.60	0.83	0.81	0.55
TiO _O	0.19	0.11	0.12	0.01	0.20	0.01
P_00^2	0.02	0.06	0.02	0.01	0.05	0.03
TiO ₂ P ₂ O ₅ MnO ⁵	0.04	0.07	0.03	0.08	0.06	0.09
Total	99•54	99•97	100.67	99.64	99.52	99•41

Lab.No.58/514, 515, 517, 518, 519, 520.

198PNG/1

DETERMINATION OF CHROMIUM AND IRON CONTENT OF TWO MAGNETIC CONCENTRATES FROM T.P.N.G.

bу

S. Baker

Following are results for chromium and iron determination on magnetic concentrates of two samples submitted by J. Thomspon.

Sample No.	^{Cr} 2 ^O 3	Fe ₂ ⁰ ₃		
201 A	58 .7%	17.8%		
201 B	56 .9%	23.8%		

Lab. No. 58/528, 529

Report No.64

26th November, 1958

ANALYSIS OF ROCK SAMPLE FROM THE NEWCASTLE RANGE. QUEENSLAND.

by S. Baker

Following are the results for the analysis of a rock sample from the Newcastle Range, Queensland, submitted by C. Branch.

Sample No. B 2	<u>93</u> •
SiO ₂ Al ₂ O ₃ Fe 2O ₃ Fe 2O ₃ MgO CaO Na ₂ O K ₂ O H ₂ O (105°C) loss on ignition at 1000°C (excluding cO ₂) CO ₂ TiO ₂ MnO SO ₄ Cr ₂ O ₃ P ₂ O ₅	4.83 %
Total	99•55

Lab.No. 58/516

26th November, 1958 58W/1

ANALYSIS OF MANGANESE ORES FROM RIPON HILLS. W. A.

by W.J. Thomas

The results of the analysis of manganese ores from Ripon Hills, Western Australia, submitted by L.de la Hunty, are as follows:

Sample No.	% Manganese (as Mn).
98464	44.0
65	35•4
66	3.8
67	31.6
68	21.9
69	20.01
70	42.7
71	35•2
72	15.1
73	32.7
74	45.2
75	50.0
76	determination not required
77	47.2
,	
77	47.2
77 78	47°2 44°2
77 78 79	47.2 44.2 30.9
77 78 79 80	47.2 44.2 30.9 20.2
77 78 79 80 81	47.2 44.2 30.9 20.2 43.8
77 78 79 80 81 82	47.2 44.2 30.9 20.2 43.8 16.9
77 78 79 80 81 82	47.2 44.2 30.9 20.2 43.8 16.9 29.0
77 78 79 80 81 82 83	47.2 44.2 30.9 20.2 43.8 16.9 29.0 42.2
77 78 79 80 81 82 83 • 84	47.2 44.2 30.9 20.2 43.8 16.9 29.0 42.2 45.2
77 78 79 80 81 82 83 84 85	47.2 44.2 30.9 20.2 43.8 16.9 29.0 42.2 45.2 30.0

Lab.No.58/537

ANALYSIS OF MANGANESE ORES FROM RIPON HILLS WESTERN AUSTRALIA.

by

W.J. Thomas

The results of the analyses of manganese ores, from Ripon Hills, West Australia, submitted by L.de la Hunty, are as follows:

%	Manganese	(as Mn)	% Maj	nganese	(as Mn)
	98489	16.5		1327	31.6
	90	2 7. 5		1328	37.7
	91	35•2		1329	17.6
	92	18.2		1330	22.6
	93	29.2		1331	20.4
	95	24.8		1332	36.3
	98500	53.0		1333 -	50.0
	1301	39•3		1334	34•9
	1302	49.0		1335	28.9
	1303	38.5		1337	38.9
	1304	32•4		1338	41.2
	1305	49.8		1339	35.2
	1306	28.4		1340	32.2
	1307	58.0		1342	41.8
	1308	- 52•3		1343	31.9
	1309	37.7		1344	31.9
	1310	less than 10%		1345	33.1
	1312	49•5		1346	33.4
	1313	51.5 56.3		1347	34.6
	1314	56 . 3		1348	38.9 19.1
	1315 1316	35•3 44•4		1349 1350	19.1 36.7
	1318	32.6		1351	23.4
	1319	31.9		1352	33.0
	1320	40.5		1353	16.1
	1321	33.7		1355	56.8
	1322	26.2		1357	54 • 7
	1324	29.7		1358	62.4
	13 2 5	31.4			
	1326	40.2			

ANALYSIS OF WATER SAMPLES FROM A.P.C. NEW GUINEA.

by

W.J. Thomas

The results of the analysis of water samples from A.P.C. New Guinea (Puri No.1), submitted by M. Konecki, are as follows:

- 1. Well: A.P.C. Puri No.1
 Drill stem test No.1
 Interval tested 8471-8897'
 Sample collected from drill pipe 3.
 30 stands above retaining value.
- 2. Well: A.P.C. Puri No.1
 Drill stem test No.3
 Interval tested 7450-7551'
 Sample collected from base
 of drill pipe.
- 3. Well; A.P.C. Puri No.1
 Drill stem test No.4
 Interval tested 7450-7750'
 Sample collected from drill pipe,
 immediately above retaining value.

1.	Total solids	(105°C)	64,400	p.p.m.	Milli equivalents/litre
	Calcium		686	11	34.5
	Magnesium		104	11	8.7
	Sodium		23.380	19	1016.5
	Iron		310		5.6
	Bicarbonate		3,000	19	50.6
	Chloride		36,040	. 11	1015.0
	Sulphate		484	13	9.3
	р	6.9	404		7 . 5
	рш				
2.	Total solids	(105°c)	73,700	u j	
	Calcium	(10)	1,150	19	5 7 •5
	Magnesium		221	11	18.4
	Sodium		29,180	10	1268.8
	Iron		181	19	3.2
	Bicarbonate		2,100	19	35.0
	Chloride		45,625	**	1285.0
	Sulphate		1,395	19	29.1
	рН	6.8	. 9377		2,01
	-				
3.	Total solids	(105°C)	49,500	10	
J •	Calcium	()	514	65	25 •7
	Magnesium		78	28	6.5
	Sodium		16,600	80	721.7
	Iron		73	19	1.3
	Bicarbonate		1,400	19	23.3
	Chloride		25,335	11	713.7
	Sulphate		858	00	17.9
	рН	5.9	-,-		. 1 - 2

All of the samples are highly discoloured by organic matter which is not extracted then shaken with immiscible solvents.