
66/151

COMMONWEALTH OF AUSTRALIA

DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES GEOLOGY AND GEOPHYSICS

RECORDS:

1966/151

CHEMICAL INVESTIGATIONS DURING THE YEAR 1960

Compiled by

E. Woodhead

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

CHEMICAL INVESTIGATIONS DURING THE YEAR 1960

Compiled by

E. Woodhead.

RECORDS 1966/151

The Record consists of reports completed by the chemical personnel of the Bureau Laboratory, during 1960. The reports are in chronological order.

The information contained in this report has been obtained by the Department of National Development, as part of the policy of the Commonwealth Government, to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

CHEMICAL INVESTIGATIONS DURING THE YEAR 1960

RECORDS 1966/151

He bor o	Contents	· <u></u> 1	age
1.	Chemical analysis of a rock sample for age determination.	by A.McClure	1
2.	Chemical analysis of a rock sample for age determination	by A.McClure	1
3	Analysis of two diatomite samples	by A. McClure	2
4.	Chemical analysis of a rock sample for age determination.	by A. McClure	2
5•	Chemical analysis of a rock sample for age determination	by A.McClure	3
6.	Chemical analysis of a rock sample for age determination	by A. McClure	3
7.	Chemical analysis of a rock sample for age determination.	by A. McClure	4
8.	Chemical analysis of a rock sample for age determination.	by A.McClure	4.
9.	Chemical analysis of a rock sample for age determination.	by A.McClure	5•
10.	Chemical analysis of a rock sample for age determination	by A.McClure	5
11.	Water analysis on brines from Antarctica	by A,McClure	6.
12.	Analysis of a bore water sample from "The Kurrajong". N.S.W.	by D.A.Anderso	10
13.	Analysis of a water sample from Spirit Hill No.1 Bore.	by D.A.Anderso	_n 10
14.	Analysis of five water samples.	by S.Baker	11
15.	Partial analysis of a lateritic profile from Kokoda. N.G.	by S.Baker	12
16.	Analysis of a water sample from the Molonglo River.	by S.Baker	12
17.	Analysis of a sample of bore water from Royalla 1.	by S. Baker	13
18.	Analysis of a sample of bore water from Queanbeyan 1.	by S. Baker	13.
19.	Analysis of a bore water sample from Royalla 4.	by S. Baker	14
20.	Copper assays on some rock samples.	by A.McClure	14.
21.	Particle analysis of a sample of river grave	l. A.D.Haldane.	15
22	Partial analysis of three rock samples from Queensland	by S. Baker	15

Report	Contents		Page
23.	Analysis of two linestone samples	by S.Baker.	16
24•	Analysis of bauxite samples.	by A.McClure	16
25•	Analysis of five samples for manganese, from Perth. W.A.	by S.Baker	17.
26.	Silicate analysis of some miscellaneous rock samples.	by A.McClure	18
27.	Analysis of soil samples from Rabaul.	by A.McClure	19
28.	Analysis of ten water samples	by D.A.Anderso	n 20
29.	Analysis of a bore water sample from Bore 3 The Valley. Bungendore.	by A.McClure	21
30.	Sulphur assay on a pyritic aggregate	by S.Baker	21
31.	Report on brine and other samples from Antarctica.	by A.D.Haldan	e ²²
32 ′	Analysis of a cordierite concentrate	by A.McClure	27
33•	Analysis of a specimen of Jarasite rock.	by A. McClure	27
34•	Chemical analysis of a rock sample for age determination.	by S. Baker	28
35•	Chemical analysis of a rock sample for age determination.	by S.Baker	28
36.	Chemical analysis of a rock sample for age determination.	by S. Baker	29
37•	Chemical analysis of a rock sample for age determination	by S.Baker	29
38.	Chemical analysis of a rock sample for age determination.	by S. Baker	30
39.	Chemical analysis of a rock sample for age determination	by S.Baker	30
40.	Chemical analysis of a rock sample for age determination.	by S.Baker	31
41 。	Chemical analysis of a rock sample for age determination.	by S. Baker	31
42	Chemical analysis of a rock sample for age determination.	by S.Baker.	32
43•	Analysis of a water sample from Thangoo. by	y D.A.Anderson	32
44•	Analysis of a water sample from Manton by	D.A.Anderson	33.
45.•	Analysis of phosphate samples from Tuvuca Island. Fiji. by	A.McClure	33•`
46.	Analysis of a sulphide sample from Australia Blue Metal Quarry, A.C.T. by	n A.McClure	<u>3</u> 4
47•	Manganese analysis of nodules from Tuvuca Island by	A.McClure	34•

(iii) Contents

	Contents		
Report.			Page
48.	Analysis of a water sample from a water well, Eyre No.1.	by D.A.Anderso	n 35.
49•	Chemical analysis of a rock sample for age determination.	by A.McClure	35•
50.	Chemical analysis of a rock sample for age determination.	by A.McClure	36
· 5 1	Chemical analysis of a rock sample for age determination.	by A.McClure	36
52.	Chemical analysis of a rock sample for age determination.	by A.McClure	37•
53•	Chemical analysis of a rock sample for age determination.	by A.McClure	37•
54•	Chemical analysis of a rock sample for age determination.	by A.McClure	38
55•	Chemical analysis of a rock sample for age determination.	by A.McClure	38
56 .	Chemical analysis of a rock sample for age determination.	by A.McClure	39.
57•	Chemical analysis of a rock sample for age determination.	by A.McClure	39
58.	Chemical analysis of a rock sample for age determination.	by A.McClure	40
59•	Chemical analysis of a rock sample for age determination.	by A.McClure	40
60.	Chemical analysis of a rock sample for age determination.	by A.McClure	41.
61.	Analysis of a sample of Tephroite from Wilkes Station, Antarctica.	by S.Baker.	41.
62.	Partial analysis of aluminous clay samples.	by S. Baker	42.
63.	Analysis for copper of three samples from Pine Creek. N.T.	by S. Baker.	42.
64.	Analysis for copper of a sample from Mary Kathleen. Q'ld.	by S.Baker	43
65.		by S.Baker	43.
66.	Chemical analysis of a rock samples for age determination	by S.Baker	44
67.	Chemical analysis of a rock sample for age determination	by S. Baker	44•
68.	Chemical analysis of a rock sample for age determination.	by S. Baker	45
69.	Chemical analysis of a rock sample for age determination	by S.Baker	45•
70.	Chemical analysis of a rock sample for age determination.	by S. Baker	46.

		Contents			1	
	Report				<u>P</u>	age
	70	Chemical analysis of a rock sample for age determination.	bу	s.	Baker	46.
	71.	Analysis of a bore water sample from Belconnen 6.	by	D.A	A.Ander	46'. son
	72.	Analysis of a sample of bore water from Belconnen 6.	bу	D.A	A.Ander	47. son
	73.	Analysis of three biotite concentrates.	bу	s.	Baker	47.
	74.	Chemical analysis of a rock sample for age determination.	bу	s.E	Baker	48
	75.	Analysis of a bore water sample from Williamsdale 1.	bу	S.I	Baker	48.
	76.	Analysis of a bore water sample.	bу	s.	Baker	49.
	77•	Analysis of a sample of bore water.	bу	s.	Baker	49
	78.	Analysis of a bore water sample.	bу	s.	Baker	50.
	80.	Analysis of a sample of bore water.	bу	s.	Baker	51
	81.	Analysis of a sample of bore water.	bу	s.	Baker	51 ·
	82.		-		Baker	52
	83.		,		Baker	52.
	84.		-		Baker	53.
	85.	Analysis of a sample of calcareous conglomerate			₩	
			by:	s.	Baker	53•
	86.	Partial analysis of ten gossan samples.	bу	s.	Baker	54•
	87.	Analysis of two water samples.	bу	D.A	.Ander	=54·
	88.	Partial analysis of sample from Mount Isa,Q'ld.	рy	s.	Baker	55•
	89.	Analysis of a sample of iron ore taken near Paddy's River. A.C.T.	by	s.	Baker	55
	90.	Partial analysis of a core sample from Ruddygore No.1 Bore, Queensland.	by	s.	Baker	56
	91.	Analysis of a sample of copper ore taken near Paddy's River. A.C.T.	by	· s.	Baker	56.
	92.	Analysis of a sample of salt from Angus Down.N.	Г.	s.	Baker	56.
	93•	Analysis of a manganese ore from Bailey's Creek Queensland.		· s.	Baker	57.
	94•	Analysis of three iron ore samples from Hundred of Goyder. N.T.	by	· s.	Baker	57 <u>•</u>
	95₁	Copper assay on a sample of schist from W.A.	ъу	s.	Baker	58.
	96.	Analysis of a sample of iron ore.	ъу	s.	Baker	58.
	97•	Analysis of an aqueous saline mud extract.	ъу	s.	Baker	59•
	98.	Analysis of five evaporites from W.A.	Ъу	s.	Baker	59•
	99•	Analysis of a water sample.	ъу	s.	Baker	60.
1	00.	Analysis of two water samples.	bу	· S.	Baker	60.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

bу

A. McClure

The sample No.E53/8/2 was submitted by C. Bennett of Broken Hill Pty Co.Ltd., in August, 1959. Locality: Northern Territory. Calvert Hills, Pandanus Creek Area. Results are as follows:

	67.29
	14.78
	1.20
	3.18
	1.91
4. 4. 6	2.76 3.08
1. Page 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
	4.11
v	0.04
	1.25
19 11. pr	0.49
	0.08
*	0.01
	100.18

Lab. No.60/822.

Report No. 2.

January, 1960.

Ma

a.r.

)r ::

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

by A. McClure
The sample No H51/13/149 was submitted by E.J. Malone, August, 1959. Locality, Western Australia. Sheet, H/51/13. Results are as follows:

SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₀ / MgOa CaO Na ₂ O K ₂ O H ₂ O (105°) H ₂ O + TiO ₂ P ₂ O ₅	73.56, 12.85 1.71 1.33 0.71 Re- 1.57 3.39 4.32 0.05 0.36 0.36 0.38 0.01
MnO	0.01
Total	100,25

Lab. No. 60/824.

7th January, 1960. 107N/1

. , ;

ANALYSIS OF TWO DIATOMITE SAMPLES

bу

A. McClure

Two samples were submitted by W.S. McColl, of Sydney.

Locations: Sample No.1. Malcha Gundle, N.S.W.,

Sample No.2 Paling Yard Creek, Cargo Road, Bowan Down. N.S.W.

Results:	•		Sample 1.	W.i.	Sample 2.
		SiO ₂	81,68	•	79.77
	3003	A1203	7.98	3	³ 4.94
	ant ji	Fe ₂ 0 ₃	1.09	i. Ura	1.01
		CaO	0.32		0.26
		MgO	0.00	. 1	0.00
		Na ₂₀	0.18	•	0.24
	z 1.,	K ₂ 0	0.34		0.23
		Mn0	0.02		°0,01
		\mathtt{TiO}_2	0.36		0.15
		P ₂ 0 ₅	0.00		0.00
		Loss 105 ⁰	2.73		7.16
		Loss 1000°	5 •7 3		6.23
		Total	100,43%		100.00%

Report No.4.

January. 1960.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

рy

A. McClure

Sample No. H51/13/151 was submitted by E.J. Malone, in August, 1959. Locality, Western Australia. Sheet. H51/13. The results are -

SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₀ O MgO CaO Na ₂ O K ₂ O H ₂ O (105°) H ₂ O + TiO ₂ P ₂ O ₅ MnO	71.56 14.72 1.75 1.32 0.50 1.46 3.65 4.79 0.03 0.32 0.42 0.07 0.05
Total	100.64.

Lab. No. 60/823.

January, 1960.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

bу

A. McClure.

Sample No. E55/13/2 was submitted by C. Branch, in September, 1958. Locality: Queensland, Sheet, Clarke River, Run 4, Photo 5155.
Quod. C. X 3.17: Y.1.66. Diag. 3.56.

Results are as follows:

SiO ₂	72.63
Al ₂ Ō ₃	14.38
Fe_2O_3	1.08
FeŌ	0.96
MgO	0.43
CaO	1.94
Na ₂ Ó	4.10
, κ ⁵ ο	3.54
H ₂ O (105°)	0.04
Н_0	0.62
Tío ₂ †	0.14
P ₂ 0 ₅	0;03
MnO	0.08
Total	99.97.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LabaNo.: 60/830.

Report No.6

January, 1960.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

bу

A. McClure.

Sample Np E55/9/10 was submitted by C. Branch, in September, 1958. Locality: Queensland. Sheet, Einasleigh. Run 12, Photo 5089. Results are as follows:

$\begin{array}{c} \mathtt{SiO}_2 \\ \mathtt{Al}_2 \mathtt{O}_3 \\ \mathtt{Fe}_2 \mathtt{O}_3 \end{array}$	72.34 13.84 0.82
FeO MgO CaO Na2O K2O + H2O (105°) H2O TiO2 P2O5 MnO	2.29 0.71 2.02 3.33 3.69 0.05 0.62 0.24 0.03 0.06
Total	100.04

Lab. No. 60/826.

mb .

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

bу

A. McClure

Sample No. E55/9/5 was submitted by C. Franch in September, 1958. Locality: Queensland, Sheet: Einasleigh. Run 15, Photo 5047.

Quad O X 1.64, Y 2.14. Diag. 2.70.

Results are as follows:

SiO ₂	71.70
Al ₂ Õ ₃	14.76
Fe_2O_3	0.64
FeŌ	2.08
MgO	0.88
CaO	2.86
Na ₂ 0	3.62
к 20	2.54
H ₂ 0 (105°)	0.02
H ₂ O +	0.56
TiO ₂	* 0.23
P ₂ 0 ₅	0.03
MnO	0.08
Total	100,00

Lab. No. 60/828.

Report No.8.

January, 1960.

· ·

26.40

76

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

Ъу

A.McClure

Sample No. E54/12/8 was submitted by C. Branch, in September, 1958. Locality: Queensland, Sheet, Georgetown. Run 12. Photo 5077.
Quod P.P. XO YO Diag O.
Results are as fellows:

Ì.	Total	100.08
	MnO	0.01
	P ₂ 0 ₅	0.02
	TiO ₂	0.02
	H ₂ O +	0.41
	H ₂ O (105 ^O)	0.00
	к ₂ ō	3•94
etellia.	Na ₂ o	4.05
54 	CaO	1.13
	MgO	0.16
	FeO S	0.40
سده چرعنجم	Fe ₂ 0 ₃	0.87.7
4.	$^{\mathrm{AI}_{2}\bar{0}_{3}}$	14.01
	SiO ₂	75.06
	•	

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

by:

A. McClure

Sample No. E54/12/3 was submitted by C. Branch in September, 1958. Locality: Queensland, Sheet, Georgetown. Run 4, Photo 5153. Quad B X 3.22 Y 3.18. Diag. 4.54

Results are as follows:

SiO ₂	73.79
Al ₂ ō ₃	15,28
Fe ₂ O ₃	0.62
FeŌ	1.21
MgO	0.42
CaO	1.83
Na_{20}	4.86
K ₂ 0	2.06
H_2^{-0} (105°)	0.02
H ₂ O +	0.42
TiO ₂	0.12
P ₂ 0 ₅	0.03
Mno	0.04
Total	100.70

Lab. No.60/827.

Report No.10.

January, 1960.

CH	EMICAL	ANALYSIS DI		ROCK INATIO		FOR	AGE
	*:	· /e	by	,	. 87		.n

A.McClure

Locality: Queensland, Sheet: Georgetown. Run 3. Photo 5107, Quad C X 1.38. Y 0.91. Diag. 1.66. Sample No. E54/12/5 was submitted by C. Branch, in September 1958.

Results are as follows:

SiO ₂	71.82
Al ₂ Ō3	14.09
Fe ₂ 03	0.75
FeŌ	1.32
MgO	0.45
CaO	1.38
$Na_{2}O$	2•5 7
к ₂ б	6.61
н ₂ 0 (105°)	0.02
H ₂ 0 +	0.93
Tī02	0.19
P ₂ 0 ₅	0.03
Mño ²	0.04
Total	100.20.

Lab. 60/829

WATER ANALYSIS ON BRINES FROM ANTARCTICA

by

.A. McClure

The following are analytical results for brines from the Vestfold Hills, Antarctica; and for seawater also from Antarctica. The samples were submitted by I.R. McLeod.

Club Lake

Ion	Collected	23•9•59•	Collected	5.1.60	Collected	1.2.60.
	gm/litre	me/litre	gm/litre	me/litre	gm/litre	me/litre
Na+ K+ Ca++ Mg++	78•4 3•69 2•074 14•50	3409 94.4 103.7 1192.0	78•4 3•69 2•108 14•62	3409 94.4 105.4 1202	78.4 3.66 2.121 14.61	3409 93.8 106.1 1202
Sum of Cation		4799-1		4810.8		4810.9
C1' SO'' HCO'3	167.0 2.658 0.204	4704 55•4 3•54	168.0 2.683 2.204	4732 55•9 3•34	167.8 2.691 0.204	4726 56.1 3.34
		4762.7		4791.2	,	4785.4
Salts	ated salts. 268.526		269.705		269•496	
180 ⁰ Br'	264 . 92 0 . 704	en and the second secon	267.44 0.708	To see the second second	268.12 0.715	-
				2		1
Ion	Collected gm/litre		Deep Lake Collected gm/litre		Collected gm/litre	1.2.60. me/litre
Na ⁺ K ⁺ Ca ⁺⁺ Mg ⁺⁺	76.4 3.79 2.260 15.00	3322 96.9 113.0 1234	70.8 3.52 2.070 13.67	3078 90.0 103.5 1124	74.8 3.74 2.205 15.02	3252 95.6 110.3 1235
Sum of Cation	· ·	4665.9		4395.5	<u>.</u> ¥†	4692.9
ci' so" ₄ Hco;	167.4 2.724 0.254	4715 56.8 4.16	155.6 2.526 0.238	4383 52.6 3.90	166.8 2.716 0.252	4699 56.6 4.13
Sum of Anions	•	4775•9		4449•5	•	4759•7
Calcul total			248•424		265.513	
Salts 180°	270.80		251.48	en e	264.36	
Br'	0.561		0.534		0.565.	

Surface Seawater

Ion Western edge of Dibble Glacier Lewis Isla Tongue, Wilkes Coast, Antarctica. Bay, Wilke

Lewis Island Anchorage, Davis Bay, Wilkes Coast, Antarctica.

****	gm/litre	me/litre		gm/litre	me/litre
Na [†] K' Ca ⁺⁺ Mg ⁺⁺	10.72 0.397 0.413 1.30	466.1 10.15 20.65 107.		10.72 0.394 0.414 1.30	466.1 10.08 20.70 107
Sum of Cations		593.90			593.88
ci, so ₄ hco ₃	19.528 2.744 0.141	550.1 57.17 2.31		19.544 2.753 0.141	550.5 57.35 2.31
Sum of Anions		609.58	•		610.16
Calculated total salts	eg e .		·		
	35.243			35.266	
Salts at	35.758			35.736	· ·
Br	0.0696			0.0696	

Lake	Dingle

Collected	15/11/59	Collected 5/1/60		Collected 1/2/60.		
gm/litre	me/litre	gm/litre	me/litre	gm/litre	me/litre	
1.04 1.016 4.535	1404 26.6 50.8 373.2	60.8 1.97 2.024 8.810	2643.5 50.4 101.2 724.5	60 1,97 2,024 8,886	2609 50.4 101.2 730.9	
	1854.6		3519.6		3491.5	
64.0 2.354 0.074	1794 49.0 1.21	124.0 2.625 0.163	3496 54•7 2•67	124.5 2.617 0.165	3507 54•5 2•70	
,	1844.2		3553•4		3564.2	
ted		,			·	
105.319		200.392	-	200.162.	_	
104. 52		201 •92		200.80	<u></u>	
0.207		0.403	:	0.402	,	
	gm/litre 32.30 1.04 1.016 4.535 64.0 2.354 0.074 ted 105.319	32.30 1404 1.04 26.6 1.016 50.8 4.535 373.2 1854.6 64.0 1794 2.354 49.0 0.074 1.21 1844.2 ted 105.319	gm/litre me/litre gm/litre 32.30	gm/litre me/litre gm/litre me/litre 32.30	gm/litre me/litre gm/litre me/litre gm/litre 32.30	

Report No.11. (Cont.)

Lake Stinear

Ion	Collect	ed 30/8/59	Collected 5/1/60		Collecte	d 1/2/60
	gm/litr	e me/litre	gm/litre	me/litre	gm/litre	me/litre
Na [†] K [†] Ca ^{+†} Mg ⁺⁺	72.2 2.37 2.021 10.373	3139 60.5 101.1 853.1	68.4 2.30 2.091 9.89	2974 58.8 104.5 813.4	68.4 2.30 2.10 9.924	2974 58.8 105. 816.2
Sum of Cations	147.7	4153.7	140.4	3950.7	140.7	3954.0
HCO 3	2.543 0.184	53 3.02	2.477 0.176	51.6 2.88	2.477 0.171	51.6 2.80
Sum of Anions		4216.0		4009.5		4017.4
Calculate total salts.	ed :53 237•391	The second secon	225.734	ti No Reservat	226.072	unitation
Salts at	236.08	u di sa shi what wasen	225.72		227.64	,
Br	0.486		0.461		0.461.	

Meltwater Lake. Davis Island Vincennes Bay, Knox Coast.

Ion	gm/litre		me/litre	r.	
Na ⁺ K ⁺	0.135 0.0037	·	5.87		* ****
Ca++ Mg++	0.01 0.02		0.50		Mark.
Sum of Cations	$\mathcal{S}_{n-1,n} = \mathcal{S}_{n-1,n}$		8.10	*• 1	
CI, SO,	0.280 0.064	· · · · · · · · · · · · · · · · · · ·	7.90 1.333		
HCO ₃	0.007	ř,	0.11		
and the second second			9.333		
Sum of Anions			949,0 44C+ 0-1		
Calculated total salts	0.520	en e			<i>i</i> .
Salts at	0.514				
3					

Report No.11.

Lake 27 metres east of Club Lake. 25/11/59.

Ion	gm/litre	m	ne/litre		
Na ⁺	16.60		722	-	
K +	2.40	, ,	61.4	:	
Ca ⁺⁺ Mg ⁺⁺	0.501 2.37		25 . 05 194 . 9	.	
Sum of Cations		1	003.35	•	
ci	35.46	1	000		
so" ₄	1.121		23.35	•	
HCO'3	0.079		1.294		
Sum of Anions		1	024.644		
Calculated	58.531				
total salts			•		
Salts at 180°	57 . 56				

Clear Lake 1/2/60.

Ion	gm/litre	me/litre
Na ⁺	2.320	108.7
K ⁺ Ca ⁺⁺ Mg ⁺⁺	0.032 0.0306 0.35	0.8 1.53 28.80
Sum of Cations		139,83
cı'	4.67	131.60
so" 4	0.465	9.687
HCO ³	0.346	5.67
Sum of Anions		146,957
Calculated total salts	8.189	·
Salts at	8.442.	
Br'	0,0121.	

Note. Powerful smell of H2S when bottle was opened.

ANALYSIS OF A BORE WATER SAMPLE FROM "THE KURRAJONG". N.W.W

by

D.A. Anderson

The following chemical results were obtained for a sample of water collected from a bore at "The Kurrajong", Weir, N.S.W., by E.G. Wilson on 25th January, 1960.

1	Parts per	milli
. GRANG MATERIAL	million	equivalent/litre
Sodium (as Na)	36	1.6
Potassium (as K)	, 2	0.1
Calcium (as Ca)	109	5.5
Magnesium (as Mg)	74	6.1
		13.3
Chloride (as Cl)	70	2.0
Sulphate (as SO _A)	27	0.6
Carbonate (as CO3)	nil.	nil
Bicarbonate (as HCO3)	705	11. 5
,		14.1
Total Soluble Salts (180°C)	746	
Conductivity at 25°C	1140 micromho	
Reaction pH = 7.15	,	
Bottle Ref. No. L3.		

Report No.13.

12th February. 1960.

ANALYSIS OF A WATER SAMPLE FROM SPIRIT HILL NO. 1. BORE

by

D.A.Anderson

The following chemical results were obtained for a sample of water collected from Spirit Hill No.1 Bore at 2,261 feet. The sample was submitted by M.Konecki on behalf of Westralian Oil. Sample (1) quantity of oil on the surface which was extracted with benzene before analysis.

•	Parts per	million		equivalents litre
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	(1) 31 39 48 21	(2) 38 34 48 21	(1) 1.5 3.2 2.1 0.5	(2) 1.9 2.8 2.1 0.5
			7.3	7.3
Chloride (C1) Sulphate (SO ₄) Carbonate (CO ₃) Bicarbonate (HCO ₃)	15 1 58 305	17 5 58 285	0.4 1.9 5.0	0.5 0.1 1.9 4.7
Total Soluble Salts (180°C) Conductivity at 25°C Reaction pH =	362 730 (1) 8.3	332 620(2) m 8.4	7.3 icromho	7.2

ANALYSIS OF FIVE WATER SAMPLES

by

S. Baker

Following are results for the analysis of five water samples, submitted by M. Konecki.

	Sample	A	Innamincka	No.1	439	90 - 9400
		B .	11	D.S.T.	No.6.	6810-20 6830-50 6855-65 6875-95.
	. 10	C	11	D.S.T.	No.7	4495-5515
	11	D	11	D.S.T.	No.8	5040-55
	i ii	E	18	D.S.T.	No.9	4775-95
p.p.m.	A		В	C	D	E
Na ⁺	1968		2700	1930	2300	2300
K+	37		65	44	56	58
Mg ⁺⁺⁺	1.	.2	3.6	1.2	1.1	1.1
Ca ⁺⁺	48		48	37	43	43
Fe ⁺⁺⁺	312		22	87	89	136
S10 ₂	ູ190	,	120	38	250	110
C1	1546		3210	1600	1813	1820
SO-	438		160	220	480	545
co ₃ ⁴ -	459		nil	nil	476	120
HCO 3	1540		1720	2150	1940	1490
Dissolved - Solids	6300		7060	5500	7160	7020
рH	9•	57	8.37	8.27	9.78	

Note: (1) All samples contained a considerable amount of suspended material, which was filtered off prior to analysis.

(s) Sample A had a distinct fishy odour.

22nd February, 1960.

PARTIAL ANALYSIS OF A LATERITIC PROFILE FROM KOKODA. N.G.

bу

S. Baker

Following are results for the partial analysis of a lateritic profile, from Kokoda, Headwaters Okawu Creek, submitted by J.E.Thompson.

Sample	Fe ₂ 0 ₃	A1 ₂ 0 ₃	TiO ₂	н ₂ о (100 [°] с).	······································
0+31	7.59%	25.26%	0.17%	12.5%	
3-61	10.0	24.13	0.29	13.1	
691	9.8	23.62	0.22	12.9	
9-121	12.1	ີ 25.0	0.30	13.9	
12-151	11.3	19.43	0.27	2.5	
	•		4		

Lab.No.60/871.

Report No.16.

1st March. 1960

 ${\mathcal A}_{\mathcal A}$

ANALYSIS OF A WATER SAMPLE FROM THE MOLONGLO RIVER.

Ъy

S. Baker

Following are the results of the analysis of Molonglo River water taken at Corkhills on 3/2/60.

	Ca ⁺⁺ p.	p.m.		10	(0.5)
.*	Mg++	ų ,		6	(0.5)
	Na ⁺	11		14.	(0.61)
· 5·	K + Gre	99	37	. 2	(0.04)
•	Sr ⁺⁺	10		0.3	(0.006)
;	Cl ·	H,	- **	26	(0.73)
	so- ₄	11		not "	detected
	HCO-3	88		49	(0.80)
	pH	11		8.	3
Conductiv	ity at 23°	c		216 m	icromho

Note: Figures in brackets denote milliequivalent per litre.

Lab. No.60/872

Report No. 17

1st March, 1960 45ACT/1

ANALYSIS OF A SAMPLE OF BORE WATER FROM ROYALLA I.

bу

S. Baker

Following are the results for the analysis of a bore water sample, from Royalla I, (Mr. J.R. Wells, "Mount Pleasant"), taken on February 3rd, 1960.

Ca ⁺⁺	p.p.m.	6	(0.29)
Mg ⁺⁺	**	7	(0.57)
Na ⁺	H	24	(1.04)
K+	19	. 1	(0.02)
Sr ⁺⁺	11	0. 5	(0.01)
Cl_	11	40	(1.13)
so	19	not	detected
нсо-	11	60	(1.0)
Hq	**	7.2	. •
t 23°C		222	micromho

Conductivity at 23°C

Note: Figures in brackets refer to milliequivalent per litre.

Lab. No.60/872

Report No.18.

ire. St 1st March, 1960. 45ACT/1

(e)

ANALYSIS OF A SAMPLE OF BORE WATER FROM QUEANBEYAN I.

bу

S. Baker

Following are the results for the analysis of a bore water sample from Queanbeyan I, (Mr. P. Moore +Jerrabomberra") taken on February 3rd, 1960.

Ca ⁺⁺ p.p.m.	185	(9.23)
Mg ⁺⁺ "	76	(6.25)
Na to the state of	123	(5.35)
K ⁺ "		(0.07)
Sr ⁺⁺ "	3	(0.06)
Cl ⁻ "	270	(7.61)°
so "	5 7	(1.19)
нсб-	713	(11.7)
рН	- 81	
0.30-		

Conductivity at 23°C 1920 micrombo

Note: Figures in brackets are milliequivalent per litre. Lab.No.60/872

ANALYSIS OF A BORE WATER SAMPLE FROM ROYALLA 4.

bу

S. Baker

Following are the results for the analysis of a bore water sample, from Royalla 4, (Mr. G. Gibbs, "Roselawn", Queanbeyan, taken on February 3rd. 1960.

Ca ⁺⁺ p.p.m.	30	(1.5)
Mg ⁺⁺ "	31	(2.55)
Na+ "	44	(1.91)
K+ "	3	(0.07)
Sr ⁺⁺ "	1.	(0.02)
Cl- "	60	(1.69)
S0 4	not d	etected
HCO- "	250	(4.1)
РH	7•4	
0. 1	506 .	

Conductivity at 23°C 526 micrombo

Note: Figures in brackets are milliequivalent per litre. Lab.No.60/872.

Report No.20.

3rd March, 1960

COPPER ASSAYS ON SOME ROCK SAMPLES

by

A. McClure

The following results are for copper analyses on rocks submitted by C. Branch.

Mewcastle Range area.		Ruddygore Area		
Sample No.	Copper, p.p.m.	Sample No.	Copper.p.p.m.	
B258	22	A346	14	
B259	28	A347	24	
B261	20	A348	32	
B266	22	A349	18	
B273	18	A350	28	
B282	48	A351	24	
B283	20	A352	760	
B286	34	A353	. 22	
B288	38	A355	20	
B295	22	A356	22 ·	
97451	26			

Report No.21.

4th March, 1966.

PARTICLE-SIZE ANALYSIS OF A SAMPLE OF RIVER GRAVEL.

bу

A.D. Haldane

At the request of the Department of the Interior, Building Section a particle size analysis was carried out on a sample of river gravel intended for use as concrete aggregate. The following results were obtained.

Sieve aperture	%retained on
0.250 "	51.3
0.131	6.6
0.064	6.5
04034	5.0
0.016	22.9
0.007	5•8
0.004	0.6
0.002	0.8
Base	0.5
	100.0
•	

The material retained on the 0.25 in. sieve had a maximum size corresponding to a 3 inch square mesh. Subdivision of this fracture could not be carried out as there are no sieves greater than 0.25 inch available.

The above analysis gives the following aggregate composition -

57 <i>•9</i> %
34.4%
7.2%
0.5%
•

Report Nog22.

14th March. 1960.

PARTIAL ANALYSIS OF THREE ROCK SAMPLES FROM QUEENSLAND.

Ъý

S. Baker

Following are results for the partial analysis of three samples submitted by M.A. Reynolds.

Sample 🦸	<u>Tambo</u>	Q 1d	2 miles E. of Arrabury,
	18a	18ъ	Queensland.
SiO ₂ percent Fe ₂ O ₃ "	69.9	69.2	71.2
Fe₂Ō₃ "	4.43	6.23	6.41
A1203 " T103 "	15.4	13.5	10.89
Tio2 "	1.1	0.97	1.0

All results refer to the samples dried to constant weight at 105°C.

Notes by M.A. Reynolds: Tambo 18a, 18b, samples were collected from the top of a section exposed in a scarp in the western part of Gartmore Station; the exposure is near the netting fence $5\frac{1}{2}$ miles by track from the homestead.

18a: Top 5 feet of section where outcrop is brick-red, coarsely granular to finely brecciated porcellanitic rock;

18b: from upper part of underlying 20 feet of mottled brick-red and light-coloured brecciated porcellanitic rock. 2 miles east of Arrabury Homestead. Samples from red ferruginised zone 3 feet thick below bed of calcareous tufa up to 10 feet thick in bed and banks of Arrabury Creek.

Lab.No.60/879.

ANALYSIS OF TWO LIMESTONE SAMPLES

by

S. Baker

Following are results for the analysis of two limestone samples submitted by M.A. Reynolds.

Sample	6IL Millungera	Exley
SiO ₂	2.36	2.79
CaCO ₃	90.5	90.1
MgCo3	3.1	3.9
$^{\text{Fe}_20}_{\text{Al}_{20_3}}$	0.70	0.60
A1 ₂₀ 3	1.40	-
Mn	0.70	0.10
H ₂ 0 (105 ⁰)	0.40	1.10

Lab. No.60/881

Report Wo.24.

31st March. 1960

ANALYSIS OF BAUXITE SAMPLES

bу

A. McClure

The analyses are on potential bauxites submitted and collected by G.A. Taylor in Rabaul. Samples are from the Baininga area: Location 41200, 853900 U.S. Army Provisional Map, Ataliklikun S415-E.15145/15.

Sample	Moisture	(Insol	ubles (i	n H ₂ SO ₁)	Soluble	es (in H ₂	so ₁)		Total
	on air dry sample (105°)	SiO ₂	A1 ₂ 0 ₃		Avail- able Al ₂ 0 ₃	Fe ₂ 0 ₃	TiO ₂	Loss on ightion (1000°)	
Soft yellow rock	28.06	33.58	9•45	1.13	27.96	10.80	1.56	15.52	99 . 28
Soft yellow rock	26.58	33.10	10.40	1.01	26.28	10.94	1.73	15.63	99.09
Grey clay	19.33	34.80	9.47	0.11	37.88	6.34	1.59	18.32	99.51

Results are calculated on a moisture free basis and summation does not include moisture found at 105°.

The sample of grey clay has an interesting content of alumina and warrants further examination.

Report No.25.

1st. April, 1960.

ANALYSIS OF FIVE SAMPLES FOR MANGANESE FROM W.A.

bу

S. Baker

Following are the results for the determination of manganese on five samples, which were forwarded by the Geological Survey of Western Australia. As can be seen, there is good agreement between our results and those obtained at the Government Laboratory of Western Australia.

Sample No.	B.M.R.	Govt.Chem.Lab. W.A.
15131/59	0.64% Mn	0.65% Mn
319/60	1.20 "	0.87 "
15118/59	0.80 "	0.83 "
15113/59	0.16 "	0.15 "
15109/59	0.20 "	0.16 "

Lab. No. 60/505

SILICATE ANALYSIS OF SOME MISCELLANEOUS ROCK SAMPLES.

by:

A. McClure

Results are for analyses of samples submitted by M. Reynolds.

Sample No.	Locality	sio ₂	A1 ₂ 0 ₃	Fe ₂ 03	FeO	CaO L	VigO	Na ₂ 0	K ₂ 0	TiO ₂	P ₂ 0 ₅	Mn0	co ₂	So ₃ Less	Less	Total
ROM2 Efflorescence	1 mile sheet	26.40	7.07	/1.18	n.d	33.00 1	1.05	0.84	1.26	0.36	0.03	0.02	22.20	n ₀ .d 0.50		100.69
	1¼ m.S.of Nareeten			. 100	. 'r ai		٠.		elda.							
S244 Spring Deposit	Springvale/ Warra-Creek	· 5.55	4.29	0.82	n.d.	45.90 3	3.32	1.02	0.41	0.10	0.03	0.07	33.16	5 n.d.0.49	38.50	100.50
1589 Evaporite	Machattie/ L.Machattie 4-m. sheet ld tank N.side of L	10.74	3.38	1.03	n.d.	24.02	0.87	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	35.16. 16.91	7.59	99.72
Limestone	Millungera/Wombat Springs.4-mile Sheet.5 m. S.of Pelham Montara Br.	15.96	5.01	3.00	n.d.	38.82 1	1.20	0,71	0.34	0.26	0.13	0.13	27.60	n.d. 1.32	32.62	99.50
ROM4 Clay coarse fraction	Roma/Gingerboy 1.m.sheet. 22. ш.N.of Roma	55 . 26	17.85	2.52	0.18	1.61 1	1.94	0.90	0.40	0.52	0.02	0.01	n.d.	n.d.12.08	6.53	99.82
ROM4 Clay	11 11	51.09	21.94	2.13	0.21	1.69 1	80.	0.88	0.59	0.28	0.04	0.02	n.d.	n.d.10.50	8.19	99•36

n.d. = not determined. Note: loss at 1000°C includes CO2; therefore CO2 figure is not included in total.

ANALYSIS OF SOIL SAMPLES FROM RABAUL.

by

A. McClure

The following results are for analysis of soil samples, submitted by J_{\bullet} Barrie from Rabaul.

Location of samples - Mandres Plantation - Tevalue River Area, New Guinea.

Airphotos Nos. 42, 43 & 44 of Missionn576.

(Refer to map attached to Barrie's minute of 16th December, 1959, File 78G.1.)
Lab. Nos. 60/884 - 60/908;

Sample	No.	SiO ₂	A12 ⁰ 3	Fe ₂ 0 ₃	Ca0	MgO	Loss 105	Loss 1000	Total.
60/884	B11	50.60	17.02	6.65	2.80	1.30	5.82	12.32	96.51
885	B12	50.70	16.44	7.05	3.03	1,24	7.06	11.34	96.86
886	B13	61.55	16.38	6.44	3.49	1.72	1.32	3.72	94.62
887	B14	52.95	18.98	7.94	2.98	1,05	6.51	6.87	97.28
889	B15 -	63.10	16.04	5.58	3.09	1.41	1.30	3.92	94•44
60/890	B16	60.50	17.00	5•72	2.72	1.35	2.36	5.70	95 • 35
891	B17	58.68	17.18	7.82	3.52	1.67	2.25	4.10	95.22
892	B18	51.55	- 18.96	6.56	2,88	1.19	6.94	9.51	97•59
893	B19	55•5 5	17.29	9•45	3•53	1.81	3.82	5•94	97•39
894	B20	56.20	17.34	7.54	2.82	1.45	5•55	6.89	97•79
895	B22	60.75	15.71	7.11	3•33	1.43	2,91	4.34	95.58
896	B23	58.15	16.74	8.34	2.85	1.71	3•94	5•96	97.69
897	B24	56.12	16.59	10.83	2.43	1.94	3.61	6.07	97•59
898	B25	50 <u>,0</u> 0	18.25	12.33	2.48	2.23	5•56	7.22	98.07
899	B26	52.53	16.38	11.50	3.18	1.55	5•40	6.30	96.84
60/900	B27	52.61	18.45	10.83	2.11	1.88	4•57	7.61	98.06
901	B28	53.30	17.80	9•18	2.70	1.97	6.95	7.06	98.96
902	B29	54.88	16.44	11.36	2.79	1.97	1.92	8.98	98.34
903	B30A	52.58	19.31	10.43	1.88	1.23	6.22	7.52	99.87
904	B30B	63.09	16.46	5.74	3•75	1.47	1.04	-3.32	94.87
905	B30C	52.58	17.56	9.94	2.13	1.65	6.59	7.32	97•77
906	B31	51.63	17.98	9.22	2.12	1.32	6.00	9.16	97.43
907	B32A	53.50	18.56	10.31	1.73	1.63	5.87	7.12	98.72
908	1 832B	53.64	17.74	9.26	2.42	1.72	6.34	7.35	98.47

Sample No.

D.A.Anderson

The following results are for water analysis carried out on samples from the following locations, submitted by M.C. Konecki. Sample

- 1. From Betoota 1 DST No.1 3542' 3563'
- 2. From last tank filled before well shut in at 12.30 a.m. 6/1/60 DST No.4 5656' - 5666' Port Campbell No.1.
 3. From Port Campbell No.1 at 7.30; 3/1/60
- 4. From DST No.3 5695' 5701' fluid sample from 2421 feet.
- 5. From just above Packer 5681 feet at DST No.3.
- 6. From 4780! Packed at 5681! DST No. 3 5695! 5701!.
- 7. From 1010' Packed at 5681' DST No.3 5695' 5701'.
- 8. From flare line at 2.45 p.m. DST No.4.
 9. From flare line at 1.30 p.m. 2/1/60, DST 4, Mines Department.
 10. From Betoota No.1 Queensland. DST 3, 4779' 4801'.

ppm-me/litre ppm-me/litre.ppm-me/litre ppm-m/litre

Na ⁺ 1420 62.0 4200 183.0 8000 348.0 6100 265.0 6370 277.0 K ⁺ 38 1.0 73 1.9 130 3.4 126 3.2 130 3.4 120 3.4 120 3.2 10.0 126 3.2 10.0 12		D Dritt-	ane\ TT AT	, pp4 -	me/orror	e • P. Pir - II	RITIOTE	phm-m	TT0TC	hhm-me\	11016.
SO=4 55 1.1 46 1 122 2.6 95 2.0 85 1.8 CO_3=	Ca ⁺⁺ Mg ⁺⁺	38 15 5	1.0 0.8 0.4	73 45	1.9 2.3 5.8	130 70	3.4 3.5 5.0	126 63	3.2 3.2 4.6	130 70	3•4 3•5 5•4
HCO3 1620 26.5 2820 46 6700 111.0 4100 67.5 4130 67.5 Total 64.2 201 358.6 279.5 290.3 Conductivity at 5900 micromho 17900 microhmo 27000m/mho 2400 0mho 2400 mho 2400 mho 2400 mho 2400 mho 2400 0mho 2400 mho 24	so=4		_								
ivity at 5900 micromho 17900 microhmo 27000m/mho 24000mho 24°C pH at 24°C 8.3 7.8 7.85 8.00 7.85 Total solids at 180°C 4090 11,828 18,000 ppm 16,320 ppm 17,151 ppm Sample No. 6 7 8 9 10 ppm-me/litre.ppm-me/ltr. ppm/me/ltre. ppm-me/ltre. ppm-me/ltre. Na ⁺ 4300 196.0 6000 261.0 860 37.5 380 16.5 1440 62.6 K ⁺ 106 2.7 134 3.5 41 1.0 25 0.6 30 0.8 Ca ⁺⁺ 35 1.8 13 0.7 35 1.8 95 4.8 20 1.0 Mg ⁺⁺ 55 4.6 53 4.4 12 1.0 17 1.4 4 0.3 Total ⁺ - 205.1 - 269.6 - 41.3 - 23.3 - 64.7 Cl ⁻ 4919 138 7814 220.0 610 17.1 469 13.3 1630 46.0 SO ⁻ 4 241 5.1 95 2.0 83 1.7 86 1.8 56 1.2 CO ⁻ 3	нсб ₃	1620	26.5	- 2820	46	- 6700		4100		4130	67.5
Total solids at 180°C 4090 11,828 18,000 ppm 16,320 ppm 17,151 ppm Sample No. 6 7 8 9 10 ppm-me/ltre. ppm/me/ltre. ppm/me/ltre. ppm-me/ltre. Na ⁺ 4300 196.0 6000 261.0 860 37.5 380 16.5 1440 62.6 K 106 2.7 134 3.5 41 1.0 25 0.6 30 0.8 Ca 35 1.8 13 0.7 35 1.8 95 4.8 20 1.0 Mg++ 55 4.6 53 4.4 12 1.0 17 1.4 4 0.3 Total+ - 205.1 - 269.6 - 41.3 - 23.3 - 64.7 Cl 4919 138 7814 220.0 610 17.1 469 13.3 1630 46.0 SO-4 241 5.1 95 2.0 83 1.7 86 1.8 56 1.2 CO-3	ivity at 24 ⁰ C		1 7	,		-	,				
Na	pHat 24°C Total soli	.ds								٠	
Ca ⁺⁺ 35 1.8 13 0.7 35 1.8 95 4.8 20 1.0 Mg ⁺⁺ 55 4.6 53 4.4 12 1.0 17 1.4 4 0.3 Total ⁺ - 205.1 - 269.6 - 41.3 - 23.3 - 64.7 Cl ⁻ 4919 138 7814 220.0 610 17.1 469 13.3 1630 46.0 S0 ⁻ 4 241 5.1 95 2.0 83 1.7 86 1.8 56 1.2 C0 ⁻ 3	Sample No.	ppm-n									
C1	Ca ⁺⁺ Mg ⁺⁺	106 35 55	2.7 1.8 4.6	134 13 53	3.5 0.7 4.4	41 35 12	1.0 1.8 1.0	25 95 17	0.6 4.8 1.4	30 20	0.8 1.0 0.3
HCO ⁻ ₃ 4350 71.5 4310 71.0 1710 28.0 840 13.8 1043 17.2 Total 214.6 - 293.0 - 46.8 - 28.9 - 64.4 Conductivity at 24°C 17,300 mho 26.100 mho 4340 mho 3200 mho 6400 mho pH at 24°C 7.7 7.83 7.65 7.1 7.75 Total Solids at 40.050 mm 47.016 mm 2330 mm 46.4 mm 4306 mm	so=4		5.1				1.7		1.8		•
at 24°C 17,300 mho 26.100 mho 4340 mho 3200 mho 6400 mho pH at 24°C 7.7 7.83 7.65 7.1 7.75 Total Solids at 40.050 mm 47.046 mm 2330 mm 4664 mm	HCO-3	4350	71.5				28.0		13.8	1043	
Solids at 40.050 47.04(2220 4664 4206	at 24°C pH at 24°C	17.									
	Solids at	12,	950 ppm	17,2	216ppm	3330	ppm	166	4 ppm	4326	5 ppm.

Report No.29.

7th April, 1960.

ANALYSIS OF A BORE WATER SAMPLE FROM BORE 3. THE VALLEY, BUNGENDORE.

bу

A. McClure

The following results are for the heavy metals content of a bore water sample submitted by G. Burton.

Location: Bore 3 of Mr. F.N. Braund, The Valley, Bungendore. N.S.W.

Sample No.L7.

Copper

0.03 ppm.

Zinc

0.5 "

Lead

Not detected.

Report No.30

9th May, 1960.

SULPHUR ASSAY ON A PYRITIC AGGREGATE

bу

S. Baker

A sample of pyritic aggregate (7/8") from A.B.M. Quarry, Federal Highway, submitted by Mr. W. West, was analysed for sulphur with the following results.

Total sulphur 0.47% (Calculated as FeS₂ 0.89%).

Lab. No.60/920.

Report No.31.

REPORT ON BRINE AND OTHER SAMPLES FROM ANTARCTICA.

by

: c

A.D. Haldane.

The following samples collected in Antarctica were submitted for analysis:

Lake Dingle, Vestfold Hills, 5 samples of brine collected over the period

19/4/57 to 23/12/58.

Lake Stinear, Vestfold Hills,5 samples of brine collected over the period 14/3/57 to 23/12/58.

2 samples of brine collected over the period Club Lake, Vestfold Hills -28/9/57 to 2/1/58.

Deep Lake, Vestfold Hills -5 samples of brine collected over the period 19/4/57 to 30/1/58.

Davis Station Anchorage - seawater sample, 17/2/59.

Beaver Lake, Prince Charles Mountains - 2 samples of water welling up through rafted zone and 2 samples of ice (as water) collected on 24/10/58 and 2/11/58.

Deep Lake, Vestfold Hills - soil sample taken 20 feet above the lake level.

Analyses for the major constituents were made by S. Baker, W.J. Thomas and A. McClure. The results obtained are shown in Table 1. The difference resulting from the ionic balance of anions and cations has been attributed entirely to errors in the determination of sodium and is shown in Table 1 as "Na correction". The values for the concentrations of the various ions are those actually determined. The "Na correction" is given to avoid residuals in calculations based on the original data and with the exception of one sample from Lake Dingle is less than 1% of the total. That is, the sum of the analytical errors of all determinations is less than 1% of the sum of the ions determined. The average composition of seawater was given by Dittmar is included for comparison.

Table 2 shows the composition of the samples calculated as a percentage of the total dissolved solids and gives a direct comparison of all samples independent of the concentration. In these and all other calculations the corrected value for sodium is used.

Considering the brine samples from Lake Dingle, Lake Stinear, Club Lake, and Deep Lake, it will be seen that although there is some variation in the concentration of the brines from a given lake, the composition is remarkably constant. Further Lake Dingle and Lake Stinear show a marked similarity in composition as do Club Lake and Deep Lake. However, the two groups are quite distinct in respect to both concentration and composition. This grouping is further demonstrated by the bromide concentration and Cl/Br ratio shown in Table 3.

It is possible that there is some seasonal variation in concentration of the brines. However, the data available are insufficient to clearly establish any such trends.

The seawater sample from Davis shows close agreement with Dittmar's average composition of seawater. The slightly higher percentage of sulphate and correspondingly lower chloride is in accord with the view that seawater in the arctic zones is enriched in sulphate.

From the data in Tables 2 and 3 for the two samples from Beaver Lake it is obvious that both these are diluted seawater. The dilution ratios are 31.1 for the sample collected on 24/10/58 and 22.7 for that of 2/11/58 assuming pure water as diluent. The analyses of the water obtained from the ice samples taken at Deep Lake show an extremely low salt content, because of this no significance can be attached to the results for the individual ions.

Analysis of the water soluble salts obtained from the soil sample taken above Deep Lake shows a composition closely approximating that of the Deep Lake brine, while the high total soluble salt content of 12.2% indicates saturation of the soils with brine at some time. It is also evicent that no leaching has taken place subsequent to exposure of the brine saturated soil. Water percolating through a soil such as this would rapidly become saturated with sodium chloride, the major component of the soluble salts, while remaining unsaturated with respect to the more readily soluble magnesium salts. This would lead to differential solution of the components giving a product depleted in magnesium. At the same time the relatively insoluble calcium sulphate would remain as a residue so that the soluble salts would become enriched in calcium. The observed results do not support this.

It is impossible for the present soluble salt content to be the result of the accumulation of salts from the evaporation of sea spray as these would then have the same percentage composition as sea water. Further, leaching of a saline deposit formed in this way would give a residue containing sodium chloride with a high proportion of calcium sulphate and practically no magnesium. This not in accord with the analytical results.

In order to compare the composition of the brines with that of seawater the individual results for each source have been averaged and are shown in Table 4.

In the concentration of sea water by evaporation bromide does not appear in the salts separating out before the final stages of the evaporation. In brine samples it is possible to assume that there has been no loss of the bromide ion, Potassium behaves similarly but may appear as complex salts in the solid phase before the final stages of concentration depending largely on the temperature of evaporation.

Assuming then that there is no loss of bromide ion it is possible to calculate the factor by which sea water has been concentrated to produce the present brines and at the same time determine the nature of the salts which have been deposited in the process. This has been done in Table 4. The concentrations of the ions are given in milli-equivalents/litre so that combination of anions and cations can be made directly.

The main feature of Table 4 relating to concentration and salt deposition are as follows:

	Concentration Ratio.	Deposited	Amount g/litre of brine.
Lake Dingle	6.8	Na ₂ SO ₄	4.4
Lake Stinear	7.8	Na ₂ SO ₄	53
Club Lake	11.0	Na ₂ SO ₄	67
		NaCl	74
Deep Lake	11.0	Na_2SO_4	70
· .		NaCl	73

The amount above is the quantity deposited when a volume of sea water equal to the concentration ratio in litres: is reduced to 1 litre.

In addition to the salts shown above small amounts of calcium carbonate and sulphate, have been deposited. The approximate values are calcium carbonate 0.8 to 1.5 g/litre and calcium sulphate (as gypsum) 2 -8 g/litre of brine.

The agreement between the determined concentration of potassium in the brine and the expected value calculated from seawater is good, giving further support to the calculation of the concentration ratios as reasonably accurate estimates.

The determined values for magnesium in the brines are consistently higher than the calculated values suggesting that the calculated concentration ratios are too low. However, magnesium is one of the less satisfactory determinations in the presence of large excess of sodium and an error of 6% in the determination of magnesium would fully account for the differences. In view of this and that the calculations are not claimed to have a high order of accuracy but are average values, the concentration ratios based on bromine are retained. Equating the magnesium values would increase the concentration ratios by only 6%, if the possibility of systematic analytical errors is ignored.

It is concluded that the present brines have arisen by the evaporation of water from seawater with sodium sulphate alone or with sodium chloride being deposited in the process.

%(air dry)

0.12

Sample	Date	Ca Sr	Mg	Na	K	нсо3	so ₄	Cl, Br.	Na Corr.	Total	T.S.S. 120°C	T.S.S. 180°C
Brine, ex	19/4/57	2.1	10.0	68.8	2.2.	0.3	2.9	138.0	-0.3	224.0	•	
Lake Dingle	27/6/57	2.1	9.9	70.8	2.2	0.3	2.8	138.0	-2.3	223.8		ь
Vestfield Hills	28/9/57	1.9	8.9	55.1	1.9	0.3	2.5	109.8	-2.8	177.6	•••	₩
	4/1/58	2.4	9.7	62.9	2.2	0.4	2.9	140.1	+7.1	227.7		6
•	23/12/58	2.0	8.7	62 <i>。</i> 1	2.0	0.2	2.9	124.2	nil	202.1	217.1	202.6
rine ex -	14/3/57	2.1	10.5	74.8	2.3	0.3	2.8	152.2	+1.7	246.7		
ake Stinear	26/6/57	2.0	9.8	74.8	2.4	0.4	2.6	150.0	+1.8	243.8		-
estfold Hills	28/9/57	2.0	10.6	72.8	1.9	0.4	2.7	149.3	+2.0	241.7	***	-
	2/1/58	2.1	10.8	68.9	2.4	0.4	2.8	142.1	4 3.6	230.1		
1	23/12/58	2.2	10.1	72.6	2.4	0.3	2.9	146.5	+0.7	237.7	255•9	239.3
rine ex Club	28/9/57	2.0	14.6	74.8	3.7	0.4	2.7	163.5	+0.6	262.2	-	ю.
ake, Vest.Hills		1.9	14.9	78.7	3.8	0.3	2.9	167.0	-1.4	268 .1	<u>3</u> 8	-
rine ex -	19/4/57	2.1	15.4	76.9	13.9	0.3	2.7	170.0	+0.9	272.2	-	
eep Lake	28/9/57	2.2	15.3	72.8	3.8	0.4	2.9	164.0	+1.5	262.9	-	-
estfold Hills	2/1/58	3.0	14.8	74.7	3.7	0.4	2.8	162.0	-1.7	259•7	•	_
	23/12/58	2.3	14.0	74.5	3.8	0.3	3.2	161.6	+0.5	260.2	283.6	262.1
	30/1/59	2.2	14.8	76.4	3.9	0.3	3.1	167.0	+0.7	268.4	291.3	269.9
eawater, Davis	17/2/59	0.40	1.28	10.67	0 34	0.19	2.73	19.08	+0.02	34.71	36.75	35•13
eawater average		0.41	1.30	10.81	0.39	0.14	2.71	19.47	nil	35.23	- · · · · · · · · · · · · · · · · · · ·	35.31
ater ex Beaver	L.24/10/58	0.012	0.032	0.343	0.010	0.006	0.086	0.626	nil	1.115	- `:	√ ⇔
rince Charles M	t. 2/11/58	0.016	0.044	0.470	0.010	0.008	0.130	0.850	nil	1.528	. . .	_
ce ex	Normal	-0.1 ppm		0.003	0.002	nil	0.004	0.004	-	69	_	***
eaver Lake	"Blue"	-0.1 ppm		0.002	0.001	nil	0.004	0.002	-		<u> </u>	***

0.12

0.17

0.19

7.47

12.19.

Total

3.29

0.83

	<u>T/</u>	ABLE 2.	Percenta	ge composi	tion of	soluble sa	lts as % of	the sum of	the ions.		
Sample	Date	Ca, Sr	Mg	Na	K	нсо3	so ₄	Cl, Br.	Ions g/litre	s.g. ^{20/} 30	Sp. Cond.
Brine ex	19/4/57	0.9	4.5	30.6	1.0	0.1	1.3	61.6	224.0		
Lake Dingle	27/6/57	0.9	4.4	30.6	1.0	0.1.	1.3	61.7	223.8		
Vestfold Hills	28/9/57	1.1	5•0	29.4	1.1	0.2	1.4	61 . 8	177.6		
	4/1/58	- 1.0	34.3	30.7	1.0	0.2	1.3	61.5	227.7		· E
· · · · · · · · · · · · · · · · · · ·	23/12/58	1.0	4.3	30.7	1.0	0.1	1.4	61.5	202.1	1.136	1.60x10 ⁵
Brine ex	14/3/57	0.9	4.3	31.0	0.9	0.1	1.1	61.7	246.7		
Lake Stinear	14/3/57 26/6/57	0.8	4.0	31.4	1.0	0.2	1.1	61.5	243.8		
Vestfold Hills	28/9/57	0.8	4.4	30.9	0.8	0.2	1.1	61.8	241.7		
	2/1/58	0.9	4.7	30.2	1.0	0.2	1.2	6 1.8	230.1		
	23/12/58	0.9	4.3	30.9	1.0	0.1	1.2	61.6	237.7	1.167	1.75×10 ⁵
Brine ex Club L.	28/9/57	0.8	5.6	28.7	1.4	0.2	1.0	62.3	262,2		
Vestfold Hills	2/1/58	0.7	5.6	28.8	1.4	0.1	1.1	62.3	268.1		
Brine ex	19/4/57	0.8	5•7	28.6	1.4	0.1	1.0	62.4	272.2		
Deep Lake	28/9/57	0.8	5.8	28.3	1.4	0.1	1.1	62.4	262.9		
Vestfold Hills	2/1/58	1.2	5•7	28.1	1.4	0.1	1.1	62.4	259•7		. .
Ì	23/12/58	0.9	5.4	28.8	1.5	0.1	1.2	62.1	260.2	1.171	1.72x105
	30/1/59	0.8	5.5	28.8	1.4	0.1	1.2	62.2	268.4	1.174	1.72x10 ²
Seawater Davis	17/2/59	1.1	3 .7	30.7	1.0	0.5	7•9	55.0	34.71	1.021	4.25x10 ⁴
" average	Dittmar	1.1	3.7	30.7	1.1	0.4	7.7	55•3	35.23	1.024	
Water ex Beaver	L.24/10/58	1.1	2.9	30 .7	0.9	0.6	7•7	56.1	1.115		1.83x10 ³
Prince Charles M		1.0	2.9	30.8	0.7	0.5	8.5	55.6	1.528		2.45x10 ³
Ice ex Beaver L.	Normal "Blue"	Calculat	ion of %	composition	n not war	ranted					31 26
Soil, Deep Lake	-	1.0	6.8	27.0	1.0	1.4	1.6	61.2	12.2%		

Sp. Cond. - Specific conductivity in micro-mho at 20°C.

TABLE 3. Browide Content and Cl/Br Ratio of Brines.

	Br. g/l	Cl/Br g/l
23/12/58	0.44	283
23/12/58	0.52	284
23/12/58	0.72	223
30/1/59	0.80	219
17/2/59	0.67	282
	23/12/58 23/12/58 23/12/58 30/1/59	23/12/58 0.44 23/12/58 0.52 23/12/58 0.72 30/1/59 0.80

	TABLE 4.	Averag	ge composit	ion of brines	s and conce	entration	ratio.				
Sample		Ca Sr	Mg	Na	K	HCO3	so ₄	Cl Br	Total	$\operatorname{\mathtt{Br}}^{\operatorname{d}}$	Cone ⁿ ratio
Lake Dingle Vestfold Hills	g/litre m.e./litre Deawater x 6.81 Excess m.e./litre	2.10 105 135 35	9•44 776 717 -ve	64.28 2795 3160 365	2.10 54 59 5	0.30 5 21 16	2.80 58 388 330	130.03 3675 3664 11	211.05	0.46 5.75 5.75 nil	6.81
Lake Stinear Vestfold Hills	g/litre m.e./litre Seawater x 7.80 Excess m.e./litre	2.08 104 154 50	10.36 853 821 -ve	74.14 3224 3620 404	2.28 58 68 10	0.36 6 24 18	2 .7 6 57 444 387	148.02 4163 4197 34	240.00	0.53 6.59 6.59 nil	7.80
Club Lake Vestfold Hills	g/litre m.e./litre Seawater x 11.0 Excess m.e./litre	1.95 98 218 210	14.75 1213 1159 - v e	76•25 3316 5106 1 7 90	3.75 96 96 nil	0.35 6 34 28	2.80 58 623 565	165.25 4661 5919 1258	265•10	n.d.	11.0
Deep Lake Vestfold Hills	g/litre m.e./litre Seawater x 10.97 Excess m.e./litre	2.36 118 217 99	14.86 1222 1156 -ve	75.44 3280 5090 1810	3.80 9 7 95	0.34 6 34 28	2•94 61 624 563	164 . 92 4652 5 903 1 251	264.66	0.74 9.27 9.27 nil	10.97
Seawater ex Davis	g/litre m,e,/litre	0.40 19.8	1.28 105.2	10.69 464.4	0.34 8.7	0.19 3.1	2.73 56.9	19.08 538.1	34.71	0.067 0.845	-

n.d. : not determined.

-ve : negative.

Br corrd: Br by analysis corrected to mean total of the ions.

m.e./litre: Milli-equivalents per litre.

Report No.32.

16th May, 1960.

ANALYSIS OF A CORDIERITE CONCENTRATE

bу

A.McClure

The analysis of a Cordierite concentrate gave the following results. The analysis was done at the request of E.K. Carter.

Field No. 3772. Location, Cloncurry, Run 11A. Photo 5016, pt.7.

Quad	C,	X - 0.35,	Y - 0.03,	Diag.	0.35.
		Lab.No.921.	SiO2	64.80%	
			Al ₂ O ₃	17.67	
			F eŌ	4.97	
			CAO	0.00	
			Mgo	7•95	
			Ma ₂ 0	0.87	
			ik ₂ Ō	1.05	
		v	Loss 1000	0.00	
			Loss 1000°	2.91	
. 1			Total	100,22	

Notes: 1. All the iron is calculated as ferrous oxide.

- 2. Concentrate was prepared by Dr.K. Walker, as follows:
 - (a) handpicked crystals of cordierite.

(b) crushed to pass 150 mesh,

c) magnetite removed with a hand magnet,

(d) concentration of cordierite by three flotations with bromaform and centrifuging.

Estimated impurities less than 1%.

Lab. No.60/921.

Report No.33.

É. ...

13th May, 1960. 106W/4.

nà:

. ()

ANALYSIS OF A SPECIMEN OF JARASITE ROCK.

by

A. McClure.

Analysis of a specimen of Jarasite gave the following results; analysis was requested by W. Dallwitz, and the rock was collected by M.A.Condon. Sample No. G234. Location, Moogooree, W.A., Pt.C27, Photo 147, Run 2.

Coyrie Formation 3- 5 feet above base.

SiO ₂	14 . 82%
Ai ₂ O ₃	14.67
Fe ₂ 03	24.63
CaŌ	0.00
MgO	0.41
Na ₂ 0	0.60
к ₂ ² 0	7.16
so-3	24.42
Loss 105	0.78
Loss 1000 ⁰	36.40
Total	99•47

The summation does not include the SO₃ figure. Lab. No.922.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

bу

S. Baker

The following results are for Sample No. E55/6/1, submitted by C. Branch, October, 1958.

Locality: Imnisfail, Queensland. Run 3, Photo 5149. Quad C x 1.95, Y 1.16, Diag. 2.80.

SiO ₂	71.60
Al ₂ o ₃	15.43
Fe ₂ 0 ₃	0.75
FeO	2,00
MgO	1.00
CaO	2.58
Nao	3.92
к ₂ б	1.26
H ₂ O (105°)	0.07
H ₂ 0 +	0.54
TiO ₂	0.09
P ₂ 0 ₅	0.05
MnO	0.16
Total	99•45

Lab. No.60/933.

Report No.35.

В 15 . AF

 $f \in \mathfrak{D}$

l;

...

 $\{-\widetilde{E}_{2}\}$

... DD 3

May 1960.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

9.72t

N. L.Y

P₂0₅

MnO

m

bу

 $\mathcal{F}_{\mathcal{F}}$

S. Baker

The following results are for sample No.E55/5/12, submitted by C.Branch, October, 1958. Locality: Atherton, Queensland, Run 6, Photo 5169. Quad.B. x 1.14 y 0.40.

Diag. 1.20. 75.20 SiO2 Al₂5 Fe₂0₃ 12.73 0.07 FeŌ 1.48 MgQ 0.60 CaO 1:34 Na₂0 3.39 к₂б 4.42 H₂0 (105°) 0.05 H₂0 + 0.44 TiO2 0.05

99.91.

0.10

0.04

Total

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

bу

S. Baker

The following analysis is for sample No.E/55/5/9 submitted by C. Branch, in October, 1958. Locality, Atherton Queensland, Run 3. Photo 5123, Quda.C. x 1.41 Y 1.87. Diag. 2.35.

65•34
16.94
1.50
3.85
2.40
2.35
3 . 60
2.02
0.08
1.03
0.11
0.03
0.16
99.41.

Lab. No. 60/935.

Report No.37.

-1

May 1960.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE

bу

04.16 25.16T

S. Baker

The following analysis is for Sample E55/1/2 submitted by C. Branch, September, 1958. Locality Mossman, Queensland. 4,-mile sheet. (Near Mareeba township two miles west of township in Granite Creek near Dimbulah/Mareeba Road Crossing).

SiO ₂	73.02
3A1203	14.32
Fe_2O_3	0.41
FeO J	1.81
MgO	0.80
CaO	2.02
Na ₂ 0	2.76
ͺĸ _Ͽ ō	-3.92
H ₂ 0 (105°)	nil
н ₂ 0 +	0.67
TiO,	0.11
P ₂ 0 ₅	0.07
MnO	0.08-
Total	99.99

Lab. No.60/926.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

by

S. Baker

The following analysis is for sample No.E55/1/1, which was submitted by C. Branch, in September, 1958. Locality, Mossman 4-mile Sheet, at Mount Carbine.

SiO ₂	73.64
A1 ₂ 0 ₃	14.40
Fe ₂ 0 ₃	0.48
FeO	0.40
MgO	0.90
CaO	0.45
Na ₂ 0	4.56
K ₂ 0	3.79
H ₂ 0 (105°)	nil
H ₂ O +	0.84
TiO ₂	0.03
P205	0.07
MnO	0.10
Total	99.66

Lab. No.60/931.

Report No.39.

May 1960

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE
DETERMINATION

bу

S. Baker

The following results are for Sample E55/9/2, which was submitted by C. Branch, September, 1958. Locality, Einasleigh, Queensland. Run 5, Photo 5225, Quad A, x 0.50, Y 1.04, Diag. 1.16.

SiO ₂	74.30
Al ₂ Ō ₃	14.88
Fe ₂ 03	0.37
Ţeδ	0.07
NgO	,1 . 20 ^{°°}
"CàO	0.33
Na ₂ 0	3.52
·к ₂ ō	4:42
H_2^{-0} (105°)	0.08
H ₂ O +	0.51
TiO ₂	0.04
P ₂ 0 ₅ Mn0	0.03
MnO	0,04
Total	100.19

Lab.No.60/932

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

b.v

S.Baker

The following analysis is for Sample No. E55/13/6, which was submitted by C. Branch, September 1958. Locality - Clarke River, Queensland. Run 10, Photo 5139.

S; 0,	69.14
A1 ₂ 6 ₃	16.11
Fe ₂ 0 ₃	0.94
FeO	0.98
Mg0	1.00
CaO	2.46
Na ₂ 0	2.46 5.09
к ₂ ō	2.53
H ₂ O (105 ^O)	0.04
H ₂ 0 +	0.95
TiO ₂	0.06
P ₂ 0 ₅	0.09
MnO	0.09
Total	99.48

Lab. No.60/929.

Report No.41.

May 1960

177

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGEOD ACCORD

by

S. Baker

The following analysis is for sample No.F54/6/2, which was submitted by E.K.Carter, August, 1958. Locality Duchess, Queensland. Run 4A, Photo 5214. Quad A, x 1.45 Y 1.6, Diag. 2.175.

,	
SiO ₂	72.50
A1203	13.26
Fe ₂ O ₂	1.04
FeO J	2.24
MgO	1.000
CaO	0.67
Na ₂ O	2.97
, 'Κ'ο	5•33
\hat{H}_{2}^{2} 0 (105°)	0.03
н <mark>2</mark> 0 +	0.45
Tio2	0.10
P ₂ 0 ₅	0.06
Mno	0.15
Total	99.80

Lab.No. 60/930

Note: This is the third sample with the same sample number, received for analysis. The above analysis was undertaken on a small hand specimen.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

by

S. Baker

The following analysis is for sample No.K55/7/1, which was submitted by the Mines staff of Aberfoyle Mine, Tasmania.

SiO ₂	72.88
Al ₂ o ₃	14.69
$Fe_2^2O_3^2$	0.95
FeŌ	0.78
MgO	1.40
CaO	0.45
Na ₂ 0	1.58
к ₂ ō	2.40
н ₂ о (105°)	1.12
H ₂ O +	2.71
TiO,	0.04
P ₂ 0 ₅	0.04
MnO	0.37
Total	99.41

Lab. No. 60/934.

Report No.43

18th May, 1960

ANALYSIS OF A WATER SAMPLE FROM THANGOO

bу

D.A. Anderson

The following results are for the analysis of a water sample sumbitted by M.C.Konecki, from Thangoo 1A DST 1A 340 - 3672.

Bottle No.1.		ppm	me/litre
	Na +	3720	162
	K.	85 535	2 27
	Na K ⁺ Ca++ Mg++	88	7
			198
	cı-	6460	182
	C1 S04	360	. 8
	co'=	nil	-
	нсо- ₃	274	5
	Total	11,522	195.

Conductivity at 20°C pH at 20°C Total salts at 180°C 15,500 micro mhuo.

7.18

11.800 ppm.

Report No. 44.

18th May, 1960. 45ACT/1

ANALYSIS OF A WATER SAMPLE FROM MANTON GARAGE. YASS. N.S.W.

Me/litre

384

<u> 391</u>

775.

bу

D.A. Anderson

The following results are for the analysis of a water sample submitted by Mr.G. Burton, and taken from Manton Garage, Yass, by Pacific Boring Co.Pty.Ltd.

ppm

Nia ⁺ K ⁺	58 1		2.5
NIa ⁺ K ⁺ Ca++ Mg++	194 70	•	9.7 5.8
			18.0
c1 ⁻ s0= ₄ c0 3	133 320 nil		3.8 6.7 -
нсо ₃	474		7.8
Total	1259		18.3
Conductivity at pH at Total salts at	: 20°C	= 6.	60 micro mhuo .3 140 ppm.

Report No.45

Hardness -

2nd June, 1960 64G/1

ANALYSIS OF PHOSPHATE SAMPLES FROM TUVUCA ISLAND. FIJI

Temporary

Permanent

Total

bу

A. McClure

The following are the results of Phosphate Analysis on samples submitted by O. Warin. Sample location: Tuvuca Island - Fiji.

Field No.	Auger Hole	Depth	P ₂ 0 ₅ %	Field No.	Auger hole	Depth	P ₂ 0 ₅ %
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	M1 M1 M1 M1 M1 M2 M2a ST2 ST3 ST4 ST5 ST6 ST7 M8C M8f M8	8-20' 2' 20-24' 24-28' 28-32' 0 -20' 0 - 12' 8 - 20' 6' 4' 4' 4' 4' 4' 0 - 16' 0 - 9' 0 - 20' 0 - 18'	15.9 19.9 15.5 14.1 2.1 14.3 20.6 22.9 3.9 7.7 12.4 9.5 10.6 10.9	41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57	M8d M8d M8d M8e M7 M7b M7c M6 M6 M6 M6 M6 M6	0 -4' 4'-8' 8 -16' 16-18' 0 - 12' 0 - 16' 0 - 4' 4'- 8' 8 -12' 12 -16' 16 -19' 0 - 3' Southern Basin	5.6 7.8 7.9 6.9 7.9 6.9 7.0 8.2 8.3 7.4 0.1 5

Lab.No.924. The results are calculated on an oven dried (105°) basis.

Report No 46.

14th June, 1960

ANALYSIS OF A SULPHIDE SAMPLE FROM AUSTRALIAN BLUE METAL QUARRYA, A.C.T.

bу

A. McClure

A sukphide determonation on a sample of three-eighths $(\frac{3}{8}")$ of an inch Australian Blue Metal screenings from Mr. West, Department of Works Testing Laboratory, Barton, gave the following result:

Sulphide 0.73%

Sample location: Australian Blue Metal Quarry, A.C.T., Federal Highway, ten miles north of Canberra.

Lab. No.936.

Report No.47.

14th June, 1960. 64G/1

MANGANESE ANALYSIS OF NODULES FROM TUVUCA ISLAND. FIJI.

by

A. McClure

The following is the result of a manganese analysis on nodules submitted by 0. Warin.

Sample Location: Tuvuca Island, Fiji. (see Records 1960/60)

Field No.

Auger Hole

Mn0,%

58

M

7.05

Sample dried at 1050

Lab.No.925.

14th June, 1960

ANALYSIS OF A WATER SAMPLE FROM A WATER WELL. EYRE No.1.

bу

D.A.Anderson

The following are the results of a water analysis carried out on a sample submitted by M.C.Konecki from a Water Well, Eyre No.1.

Stratigraphy: 0 - 40' Pleistocene Shelly Limestone 40- 90' Wilson Bluff Limestone

Sample obtained from pump set at 80 feet in Wilson Bluff Limestone.

Analysis		p.p.m.	me/litre
	Na ⁺ K+ Ca ⁺⁺ Mg ⁺⁺	15,000 600 718 1,840	652 15 36 <u>153</u> 856
	c1 ⁻ so ₄ co ₃ hco ₃	28,100 3,710 - 250	790 77 - 4
		50,218	871

Conductivity at $20^{\circ}C$ = 52500 micro mhuo pH at $20^{\circ}C$ = 7.5 Total salts at $180^{\circ}C$ = 5.0400 p.p.m.

Report No. 49

June, 1960.

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

bу

A. McClure

The following analysis is for sample E54/12/1, which was submitted by C. Branch in September, 1958. The locality is Georgetown, Queensland, Run 13, Photo 5129. Quad A, X 040 Y1.05, Diag. 1.12.

SiO ₂	76.36
Al ₂ Ō ₃	13.41
Fe ₂ O ₃	0.27
FeÖ	0.83
MgO	0.05
CaO	0.88
Na ₂ O	3.34
K ² O	5.21
$H_2^20 (105^0)$	0.00
H ₂ O +	0.46
Tio ₂	0.03
P ₂ 0 ₅	0.03
MnO	0.05
Total	100.92

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

bу

A. McClure

The following analysis is for sample E54/12/6, submitted by C. Branch, September, 1958. Locality: Georgetown, Queensland, Run 5, Photo 5193, Quad B, X 1.66, Y 0.84. Diag. 1.85.

SiO ₂	74.80
^{A1} 2 ⁰ 3	13.61
Fe ₂ O ₃	0.09
FeO	1.30
MgO	0.53
ÇaO	1.67
Na ₂ 0	2.62
к ₂ ō	4.95
H ₂ 0 (105°)	0.09
H ₂ O +	0.70
TiO ₂	0.09
P ₂ 0 ₅	0.14
MnO	0.02
Total	100.61

Lab. No.60/810

Report No.51.

June 1960 '

CHEMICAL	ANALYSIS	OF A	ROCK	SAMPLE	FOR
÷.	AGE			ON	
b.	,			1 24 4 4 4	

by

A.McClure

The following analysis is for sample E54/12/10, submitted by C. Branch, in September, 1960. Location; Georgetown, Queensland. Run 3, Photo 5099. Quad C. X 3.86. Y 2.11, Diag. 4.40.

SiO ₂	70.48
A12 ⁰ 3	15.45
Fe ₂ 0 ₃	0.80
FeO	1.73
MgO	0.85
CaO	2,64
Na ₂ 0	4.58
к ₂ ō	2.52
H ₂ 0 (105°)	0.04
H ₂ O +	0.98
TiO ₂	0.15
P ₂ 0 ₅	0.21
MnO	0.06
Total	100.49

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

by

A. McClure

The following analysis is for sample E55/5/13 which was submitted by C. Branch, in October, 1958. Location: Atherton, Queensland. Run 6, Photo 5167, Quad. C. X 4.12 Y 0.78. Diag 1.36.

SiO ₂	75.56
Al ₂ 63	12.89
Fe ₂ O ₃	0.37
FeÖ	1.60
MgO	0.29
CaO	0.88
Na ₂ 0	2.76
к ₂ õ	4.95
H ₂ 0 (105°)	0.19
H ₂ O +	0.53
TiO ₂	0.12
P ₂ 0 ₅	0.07
MnÖ	0.01
Total	100.22

Lab. No.937

Report No.53

June 1960

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

bу

A. McClure

The following analysis is for Sample E55/9/13, submitted by C. Branch, in September, 1958. Locality: Einasleigh, Queensland, Run 4, Photo 5153, Quad. A, X 2.30. Y 1.46. Diag. 2.75.

SiO ₂	76.19
A1203	13.28
Fe_2^{203}	0.57
,FeO	0.50
MgO.	0;05
CaO	0.40
Na ₂ 0	3.93
κ ₂ ο	4.85
H ₂ 0 (105°)	0.13
H ₂ 0 +	0.58
Tio ₂	0.02
P ₂ 0 ₅	0.03
MnO	0.03
Total	100.56

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

A.McClure

The following analasis is for sample No.E55/9/11, submitted by C. Branch, September, 1958. Location: Einasleigh, Queensland. Run 3, Photo 5097, Quad. B. X 0.58, Y.0.85. Diag. 1.02.

	SiO ₂	78.18
	A1 ₂ 5 ₃	12.74
	Fe ₂ 0 ₃	0.51
*	MgO FeO	0.03 0.27
	Ca0	0.38
	Na ₂ 0	3.52
	к ₂ ō	4.40
	н ₂ 0 (105°)	0.07
	н ₂ о +	0.52
	TiO ₂	0.04
*	P ₂ 0 ₅	0.05:
	Total	100.73

Lab. No. 60/814

Report No.55.

June 1960

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

bу

A. McClure

The following analysis is for sample No.E55/5/7, submitted by C. Branch in October, 1958. Location: Atherton, Queensland. Run 6, Photo 5185. Quad D. X 1.19. Y 0.08. Diag. 1.20.

SiO ₂	73.84
Al ₂ ō ₃	13.72
Fe ² 03	0.83
FeO	1.49
MgO	0.56
CaO	1.58
Na ₂ 0	3.50
к ₂ б	4.26
H ₂ 0 (105°)	0.11
н ₂ 0 +	0, 32
Ti0 ₂	0.15
P ₂ 0 ₅	0.14
MnO	0.06
Total	100.56

Lab. No.939

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

A. McClure

The following analysis is for sample No.E55/5/6, submitted by C. Branch, in October 1958. Locality: Atherton, Queensland. Run 6. Photo 5185. Quad.D. X 3.44. Y 2.08. Diag. 4.02.

SiO ₂	66.76
Al ₂ 0 ₃	15:32
Fe ₂ 03	1.36
FeÖ	2.92
MgO	2.02
CaO	4.23
Na ₂ 0	3.11
к ₂ ō	3.22
н ₂ 0 (105 ⁰)	0.11
H ₂ O +	0.80
TiO ₂	0.29
P ₂ 0 ₅	0.17
MnO	0.10
Total	100.41

Lab.No.60/940

Report No.57

June 1960

CHEM	ICAL	ANALY	SIS	OF	A	ROCK	SAMPLE	FOR	AGE
	45'	រូកគ.្	DI	ŒΕ	RM	INATIO	NC		

... 84

A. McClure

The following analysis is for sample submitted by C. Branch, in October, 1958. Locality: Atherton, Queensland. Run 5, Photo 5145. Quad C. X 1.16. Y 2.79. Diag. 3.02.

SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe0 MgO CaO Na ₂ O K ₂ O H ₂ O (105°)	78.36 12.18 0.60 0.37 0.00 0.44 2.95 4.92 0.13
4	0.13
H ₂ O + TiO ₂	0.02
P ₂ 0 ₅	0.06
MnO	0.07
Total	100.72

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

V.O

A. McClure

The following analysis is for sample No.E55/9/4, submitted by C.Branch in September, 1958. Locality: Einesleigh, Queensland. Run 9, Photo 5149 Quad. D. X 1.94 Y 2.44. Diag. 3.10.

SiO ₂	70.48
Al ₂ o ₃	14.86
Fe ₂ 0 ₃	1.03
Fe0	2.12
MgO	1.13
CaO	2.90
Na ₂ O	3.14
K ₂ ō	3.40
H_2^{0} (105°)	0.07
H ₂ O +	0.81
TiO ₂	0.21
P ₂ 0 ₅	0.19
MnO	0.06
Total	100,40

Lab. No.60/813

Report No.59

June 1960

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

bу

A.McClure

The following analysis is for sample No.E55/9/3, submitted by C. Branch, September, 1958. Locality: Einasleigh, Queensland. Run 1, Photo 5079. Quad A. X 2.55, Y. 1.78. Diag. 3.40.

SiO ₂	´77•47
Al ₂ Ō ₃	12.38
Fe ₂ 0 ₃	0.92
FeO	0.67
MgO	0.03
CaO	0.36
Na ₂ 0	3.25
к ₂ б	4.61
H ₂ O (105 ^o)	0.09
H ₂ O +	0.52
Tio ₂	0.03
P ₂ 0 ₅	0.03
MnO	0.02
Total	100.38

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION.

by

A. McClure

The following is for analysis of sample No.E55/9/12, submitted by C. Branch, September, 1958. Locality; Einasleigh, Queensland. Run 1, Photo 5171.

SiO ₂	71.09
A1203	15.06
Fe ₂ 03	0.86
FeO	2.07
MgO	0.64
CaO	2.40
Na ₂ 0	4.02
к ₂ ō	3.05
H_2^{0} (105°)	0.11
H ₂ 0 +	0.32
TiO ₂	0.22
P ₂ 0 ₅	0.19
MnO	0.07
Total	100.10

Lab.No.60/938.

Report No.61

24th June. 1960.

ANALYSIS OF A SAMPLE OF TEPHROITE FROM WILKES STATION. ANTARCTICA.

by

S. Baker

Following are the results of an analysis of a sample of Tephroite from Wilkes Station, Antarctica, submitted by I. McLeod.

Sample No.	Iron (as Fe)	Manganese (as Mn)
Mc.19	1.91%	39.1%
MC • 17	1.51/0	37•170 ·

Lab.No.60/943.

Report No.62

13th July,1960. 87PNG/1

PARTIAL ANALYSIS OF ALUMINOUS CLAY SAMPLES

bу

S. Baker

Following are the results for the partial analysis of aluminous clay samples from New Hanover, submitted by J.E.Thompson. Results refer to the samples dried at 105°C .

Sample No.	SiO ₂	Fe ₂ 0 ₃	A12 ⁰ 3	TiO ₂	Ni
1 2 42 4b 7 8a 8b 10	24.2 33.7 38.1 20.0 23.5 21.3 20.0 31.3	14.4 17.3 13.1 18.5 19.8 24.6 22.7 21.4	40.7 30.3 30.8 38.7 36.5 34.6 37.4 32.3	0.3 0.3 0.25 0.4 1.0 1.0	0.14 0.08 0.15 0.09 0.10 0.14 0.12

Lab. No.60/945.

ReportNo.63

13th July. 1960. 50 NT/1

ANALYSIS FOR COPPER OF THREE SAMPLES FROM PINE CREEK. N.T.

bу

S. Baker

Following are the results for the estimation of copper on three samples from Pine Creek, Northern Territory, submitted by T. Quinlan.

Sample No.	percent Cu	Locality.
A .	21.3	Cullen Creek,
. B	26.8	23 miles south
C	1.12	of Pine Creek,

Lab. No.60/944.

Report No.64

14th July. 1960. 500/1

ANALYSIS FOR COPPER OF A SAMPLE FROM MARY KATHLEEN.

by

S. Baker

Following is the result for the determination of copper in a sample submitted by Mary Kathleen Uranium Ltd., Queensland.

Sample No.		per cent Copper
	0	
11191	**	6.35

Lab. No.60/951

Report No.65

July 1960

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

by

S. Baker

The following results are for analysis of Sample No/E55/13/5 submitted by C. Branch, September, 1958. Locality: Clarke River, Queensland. Run 15. Photo 5023. Quad D. X 1.35, Y 3.57. Diag. 3.84.

SiO ₂	66.18
A1203	18.04
Fe ₂ 0 ₃	1.02
FeO	2.53
MgO	1.02
CaO	2.88
Na ₂ O	5•44
Na ₂ 0 K ₂ 0	2.28
н ₂ 0 (105°)	0.02
H ₂ O +	0.75
TiO,	0.15
P ₂ 0 ₅	0.09
MnO	0.04
Total	100.44

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

Ъy

S. Baker

The following analysis is for sample E53/8/1, submitted by E.K. Carter, July 1958. Locality: Calvert Hills, Northern Territory, Run 12, Photo K 5283, Quad C, X 2.1 Y 0.97, Diag. 2.32.

FeO 2. MgO 0. CaO 2. Na ₂ O 4. K ₂ O 4. H ₂ O (105 ^O) 0. H ₂ O + 0. TiO ₂ P ₂ O ₅	90
Fe ^O ₃ 1. FeO 2. MgO 0. CaO 2. Na ₂ O 4. K ₂ O 4. H ₂ O (105°) 0. H ₂ O + 0. TiO ₂ 0.	93
FeO 2. MgO 0. CaO 2. Na ₂ O 4. K ₂ O 4. H ₂ O + 0. TiO ₂ P ₂ O ₅	63
MgO CaO 2. Na ₂ O 4. K ₂ O 4. H ₂ O (105°) 0. H ₂ O + 0. TiO ₂ P ₂ O ₅	58
$ Na_{2}^{0} $ $ K_{2}^{0} $ $ H_{2}^{0} $ $ (105^{0}) $ $ 0.0 $ $ H_{2}^{0} $ $ 0.0 $ $ TiO_{2} $ $ P_{2}^{0}O_{5} $	76
K_{2}^{0} H_{2}^{0} (105°) 0.0 H_{2}^{0} $+$ 0.0 TiO_{2} P_{2}^{0} 0.0	44
K ₂ 0 4 H ₂ 0 (105°) 0 H ₂ 0 + 0 TiO ₂ 0 P ₂ O ₅ 0	, 08
H ₂ 0 (105°) 0. H ₂ 0 + 0. Ti0 ₂ 0. P ₂ 0 ₅ 0.	30
H ₂ O + O ₄ TiO ₂ O ₄ P ₂ O ₅	.05
P ₂₀₅ 0,	79
P ₂₀₅ 0,	.17
	11
	.06
Total 99	80

Lab. No.60/948

Report 67

July 1960

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

by

S. Baker

The following analysis is for sample No.F54/2/7, submitted by E.K. Carter, 7th August, 1958. Locality: Cloncurry, Queensland. Run 14. Photo 5093, Quad B, X 3.075. Y 0.3 Diag 3.1.

	SiO ₂		59.56
	Alooa	•	20.20
	Fe ₂ O ₃		2.68
	ੂ Feo		2.99
P	MgO		2.20
	CaO		4.87
	Na ₂ 0		5 . 30
:	к _э о́		1.87
ž.	் ய _0 (10	5°)	0.09
3.	H ₂ 0 +		0.58
	Tio ₂		0.25
	P ₂ 0 ₅		0.07
	MnO		0.03
	Total		100.69

CHEMICAL ANAKYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

bу

S. Baker

The following analysis is for sample No. F54/1/4 submitted by E.K. Carter, 20th August, 1958. Locality: Mount Isa. Run 13, Photo 5425, Quad D X=0.50 Y-0.20. Diag. 0.60.

SiO ₂	60.28
A1 ₂ 0 ₃	18.06
Fe ₂ 0 ₃	2.39
FeO	3.91
MgO	1.83
CaO	3.46
Na 0	4.75
K ₂ 0	4.04
н ₂ 0 (105°)	0.07
H ₂ O +	0.63
TiO ₂	0,30
P ₂ 0 ₅	0.10
MnO	0.07
Total	99.89

Lab. No.60/949

Report No.69

July 1960

123

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

The following analysis is for sample No.F54/6/1 submitted by E.K. Carter, August, 1958. Locality: Duchess, Queensland. Run 2. Photo 5126, Quad. B. x 1.525 Y 1.975, Diag. 2.5.

SiO ₂	69.46
Al ₂ O ₃	14.61
2 Fe $_{2}^{2}$ O $_{3}^{3}$	1.76
FeŌ	1.98
$^{ m D}$ MgO	0.43
CaO	1.99
Na ₂ 0	3.98
K ₂ 0	4.77
1120 (105°)	0.03
н ₂ о +	0.61
TiO2	0.15
P ₂ 0 ₅	0.07
MnO	0.05
Total	99.89

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

b_y

S.Baker

The following analysis is for sample No. F54/6/6 submitted by E.K.Carter, 9th August, 1958. Locality; Duchess, Queensland. Run 3, Photo 5087, Quad B, $X_{-}2.5$, $Y_{-}0.2$, Diag. 2.55.

SiO ₂	72.92
Al ₂ Ō ₃	15.00
Fe ² 03	0.96
FeO	0.97
MgO	0.14
CaO	0.64
Na ₂ 0	3 .97
к ₂ ō	4.42
H ₂ 0 (105 ⁰)	0.06
H ₂ 0 +	0.61
TiO ₂	0.06
P ₂ 0 ₅	0.08
MnO	0.02
Total	99.85

Lab. No.60/947

Report No.71

22nd July, 1960

ANALYSIS OF A BORE WATER SAMPLE FROM BELCONNEN 6.

bу

D.A.Anderson

A water sample submitted by E.G.Wilson from Bore Belconnen 6 (C.S.I.R.O.) on 24th May, after four hours pumping, gave the following analytical results:

	p.p.m.	Me/litre	ga city version, a	p.p.m.	me/litre
Na ⁺ K+ Ca ⁺⁺ Mg ⁺⁺	84 2 8 139	3.6 - 0.4 11.4	NO-3 C1- SO ₄ CO ₃ HCO ₃ -	2 180 46 - 522	5.1 1.0 - 8.6
. :		15.4		<i>:</i>	14.7

Conductivity = 1175 / mho at 20°C pH at 20°C = 6.95
Total salts at 180°C = 800 p.p.m.

ANALYSIS OF A SAMPLE OF BORE WATER FROM BELCONNEN 6. A.C.T.

bу

D.A.Anderson

A water sample submitted by E.G.Wilson from Bore Belconnen 6 (C.S.I.R.O.) on 24th May, after four hours pumping, gave the following analytical results:

me/litre	1.004	p.p.m.	me/litre
3.6	ио-3	2	- · · · ·
	C1-	180	5.1
	4	46	1.0
4.0	CO ₃ ###	-	-
	HCO_3	522	8.6
15.5		. •	14.7
	3.6 7.1 4.8	me/litre 3.6 NO-3 C1- 7.1 4.8 C0-4 HCO-3	me/litre p.p.m. 3.6 NO-3 2 Cl- 180 7.1 SO-4 46 4.8 CO-3 HCO-3 522

Conductivity = 1175 /umho at 20° C pH at 20° C = 6.95Total salts at 180° C = 800° p.m.

Report No.73

Sandie.

9th August, 1960

ANALYSIS OF THREE BIOTITE CONCENTRATES

by

S. Baker

Following are the results for the analysis of three biotite concentrates, prepared for age-determination.

e ser e la la company company company and accompany and accompany and accompany and accompany and accompany and	E55/9/9	E55/9/5	F54/6/4
SiO ₂	36.29	35.26	34•75
A1 ₂ 5 ₃	12.73	12.05	12.17
Fe_2^{03} (1)	27.54	28.48	36.83
.MgO CaO Na ₂ O	8.52 0.59 0.67	9.71 0.27 0.46	2.87 1.17 0.55
к20	8.11	9.21	7.81
н ₂ 0 (105 ⁰)	nil	nil	nil
loss on ignition TiO ₂	2.84 2.12	2.19 1.81	1.42 1.96
Mn0 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.96 < 0.01	1.14 < 0.01	0.97 < 0.01
Bao	0.16	0.14	0.15

Note: (1) This represents the total Iron Content, irrespective of valency.

Locality:	E55/9/9	Einasleigh,	Queensland.	60/952 A
	E55/9/5	Einasleigh,	Queensland.	" B
	F54/6/4	Duchess,	Queensland,	" C

CHEMICAL ANALYSIS OF A ROCK SAMPLE FOR AGE DETERMINATION

by

S. Baker

The following analysis is for sample H54/7/1, submitted by Phillips Petroleum Co.Ltd. on 2nd February, 1960. Locality: Half a mile south of Tibooburra town.

SiO ₂	65	•62
Al ₂ Ō ₃	17	.00
Fe ₂ 0 ₃	. 1	.74
FeO	2	.71
MgO		.00
CaO	2	•45
Na ₂ 0		.14
K₂ō	2	•53
н ₂ 0 (105°)	0	.02
н_о +	· · O	98.
TiO ₂	0.	.25
P ₂ 0 ₅	. 0,	,05
MnO	0,	,14
Total	99	63

Lab. 60/955

Report No.75

8th September, 1960

ANALYSIS OF A BORE WATER SAMPLE FROM WILLIAMSDALE 1.

bу

S. Baker

Following are the results of an analysis of a sample of bore water taken on the property of M. Morrison, on August 5th, 1960. (Williamsdale I, Bottle No.L13.)

Total	Calcium (Magnesium Sodium Potassium Strontium Fluoride Borate	colids (TC1) e (HCO3) Ca) (Mg) (Na) (K) (Sr) (F)	l = 180°C)	7.5 1226 832 pp 132 " 383 " 226 " 155 " 40 " 1 " 0.05 0.3	(3.72) (6.27) (4/69) (7.73) (5.34) (1.74) (0.02) (0.02)	
	Nitrate	(NO^3)	not detected			

The figures in brackets refer to milliequivalents per litre.

ANALYSIS OF A BORE WATER SAMPLE

Ъy

S. Baker

Following are the results of an analysis of a sample of bofe water, taken on the property of M.Southwell, A.C.T., on July 29th, 1960. (Jeir 3, Bottle L9.)

Ηď			٠.	7.16			
Conductiv	ity / mho at 25°C			1886			
Total diss	solved solids (T =	180 ⁰ C)	1136	p.p.m.		
Chloride (•	254	11	(7.16))
Bicarbonat	te (HCO ₂)		•	970	11	(15.9)	Ì
- '	(SO_A)			28	11	(0.58))
Calcium ((Ca ⁴)			215	H	(10.7))
Magnesium	(Mg)		* *	119	. 11	(9.79))
Sodium	(Na)			79	11	(3.44))
Potassium	(K)			4	11	(0.08))
Strontium	(Sr)			i	11	(0.02))
Fluoride	(F)	less	s than	0.5		(/	
Borate	(B)		11	0.3			
Nitrate	(NO^3)	not	detected				
)						

The figures in brackets refer to milliequivalent per litre. Lab. No.60/953

Report No.77.

2nd. September.1960

ANALYSIS OF A SAMPLE OF BORE WATER

bу

S. Baker

Following are the results of an analysis of a sample of bore water (Lanyon No.4), taken at the property of M.Edlington, A.C.T. on July 14th, 1960. (Bottle No.1.)

```
7.26
Conductivity / mho at 25°C
                                                668
Total dissolved solids (T = 1809)
                                                406 p.p.m.
                                              ~ 104
Chloride (C1)
                                              242
               (HCO3)
Bicarbonate
Sulphate (SO<sub>4</sub>)
Calcium (Ca)<sup>4</sup>
                                                 16
                                                     11
                                                 13
                                                             1.62
Magnesium
                                                     11
                                                 28
Sodium (Na)
                                                 79
Potassium
             (K)
                                                            0.02
Strontium
             (Sr)
                                                     - 19
                                                            (0;02)
Fluoride
              (F)
                                less than
                                                  0405 "
Borate
              (B)
                                                  0.3
Nitrate
             (NO_3)
                                not detected
```

The figures in brackets refer to milliequivalents per litre.

Lab. No.60/953.

ANALYSIS OF A SAMPLE OF BORE WATER

· by

S. Baker

Following are the results of an analysis of a sample of bore water, taken on the property of J. Southwell, A.C.T. on July 4th, 1960. (Belconnen 3, Bottle No.L8.)

pН		7.42	ď	
Conductivity / mho at 25°C		1066		
Total dissolved solids (T =	180°C)	624	p.p.m.	
Chloride (C1)	•	107	n	(3.02)
Bicarbonate (HCO ₂)	•	182	11	(2.98)
Sulphate (SO ₄)		103	11	(2.14)
Calcium (Ca)		62	11	(3.09)
Magnesium (Mg)	7	47	11	(3.87)
Sodium (Na)		71	11	(3.09)
Potassium (K)		0.5	11	(0.01)
Strontium (Sr)		1.5	12	(0.03)
Fluoride (F)	less than	0.05		•
Borate (B)	11	0.3		
Nitrate (NO ₃) n	ot detected			

The figures in brackets refer to milliequivalents per litre.

Lab. No.60/953

Report No.79

rice

:81

8th September. 1960

 $)_{i}$

ANALYSIS OF A BORE WATER SAMPLE

bу

S. Baker

Following are the results of an analysis of a sample of Bore water, taken on the property of P. Moore, A.C.T. on August 5th 1960. (Queanbeyan No.1, Bottle L10).

Ηg		7.36			
Conductivity / mho at	25°C	2370			
Total dissolved solids	s (T = 180 ⁰ C)	1622	ppm.		
Chloride (C1)	**	306	î	(8.63)	
Bicarbonate (HCO2)	v ·	987	11	(16.1)	
Sulphate (SO _A)	•	70	"11	(1.45)	
Calcium (Ca)		245	_ i1	(12.2)	
Magnesium (Mg)		97	11	(7.97)	
Sodium (Na)		130	1.1	(5.65)	
Potassium (K)		· · · · · · · · · · · · · · · · · · ·	, H	(0.06)	
Strontium (Sr)	,	3	11	(0.06)	
Fluroide (F)	less than	0.05	11	,	
Borate (B)	11	0.3	11		
Nitrate (NO ₃)	not detected	_			

The figures in brackets refer to milliequivalent per litre.

Lab. No.60/953

Report No. 80

9th September, 1960

ANALYSIS OF A SAMPLE OF BORE WATER

bv

S. Baker

Following are the results of an analysis of a sample of bore water, taken on the property of Mr. Thornleigh, A.C.T., on July 14th, 1960. (Stromlo No.6, Bottle No.L6).

pН		_			7.22	2	
Conductiv:	ity / ^u mho :	at 25°C			526	•	
Total disa	solved sol	ids	*		308	p.p.m.	•
Chloride	(C1)		•		34	11	(0.96)
Bicarbona	te (HCO ₂)				300	11	(4.92)
Sulphate	$(so_{\lambda})^{-3}$			ŧ	7	Ħ	(0.14)
Calcium (Ca) ⁴				55	11	(2.74)
Magnesium	(Mg)	į .			21	11	(1.73)
Sodium	(Ma)				40	и	(1.74)
Potassium	(K)				0.5	- tt	(0.01)
Strontium	(Sr)			•	0.7	11	(0.01)
Fluoride	(F)	less than			0.05	5 "	•
Borate	(B)	11			03	11	
${f Nitrate}$	(NO ³)	11	not	det	ected	l ·	

The figures in brackets refer to milliequivalents per litre. Lab. No.60/953.

Report No.81.

9th September, 1960

mp.

ANALYSIS OF A SAMPLE OF BORE WATER.

bу

S. Baker

Following are the results of an analysis of a sample of bore water, taken on the property of E.Oldfield on July 14th. 1960. (Lanyon No.1, Bottle No.L5.)

pН		713	•	
Conductivity / umho at 25	°C	1840		
Total dissolved solids		1080 p	.p.m.	•
Chloride (C1)		360	11	(10.16)
Bicarbonate (HCO2)	. ;:	600	11 .	(9.98)
Sulphate (SO ₄)		19	u,	(0.39)
Calcium (Ca) 4		155		(7.6)
Magnesium (Mg)		73	II .	(6.0)
Sodium (Na)		161	11	(7.0)
Potassium (K)	•	. 3	11	(0.06)
Strontium (Sn)		2	11	(0.04)
Fluoride (F)	less than	0.05	11	•
Borate (B)	11	0.3	11	
Nitrate (NO ₂)	not d	etected		
)				

The figures in brackets refer to milliequivalents per litre.

ANALYSIS OF TWO SAMPLES OF BORE WATER

by

S. Baker

Following are the results of the analysis of two samples of bore water, taken on the property of R. Grace, A.C.T. on July 14th, 1960. (Bottle Nos. L3, L4.)

	Gı	ıngahli	<u>in 6</u> .		Gungahli	<u>n 7</u> .	•
pH		7.16		.,	7.0		
Conductivity / mho at 25°C		1360			2100		
Total dissolved solids $T = 180^{\circ}$	c) .	856	p.p.m		1560	p.r	o.m.
Chloride (C1)		183	- 11	(5.16)	320	11	(9.03)
Bicarbonate (HCO ₂)		500	11	(8.19)	630	12	(10.3)
Sulphate (SO ₄)	•	110	11	(2.28)	308	11	(6.39)
Calcium (Ca)4		101	11	(4.95)	196	17	(9.61)
Magnesium (Mg)		52	11	(4.28)	110	11	(9.05)
Sodium (Na)		157	11	(6 . 83)	169	11	(7.35)
Potassium (K)		1	11	(0.02)	. 2	11	(0.04)
Strontium (Sn)		· 2	11	(0.04)	3	11	(0.06)
Fluoride (F) less	than	0.05	11	less	than 0.5	Ħ	,
Borate (B)	1	0.3		11	0.3	11	,
Nitrate (NO_3)	not d	etecte	đ		not detec	ted	,

The figures in brackets refer to milliequivalents per litre.

Lab. No.60/953

Report No.83

9th September, 1960

ANALYSIS OF A SAMPLE OF BORE WATER

by

الدائديساند 💲

Following are the results of an analysis of a sample of bore water, taken on the property of L. Blewitt, A.C.T. on August 5th, 1960. (Lanyon 3, Bottle L11).

pH Conductivit	y / ^{ll} mho at	: 25 ⁰ C			7•54 [:] 1205 [:]		
Total disso	lved solid	ls (T =	= 180°C)		740 p	.p.m.	* 1
Chloride (01)				142	្មា	(4.0)
Bicarbonate	(HCO_2)		•		467	· tt	(7.65)
Sulphate	(SO ₄) ³				98	11	(2.03)
Calcium	(Ca)				113	tt	(5.64)
Magnesium	(Mg)				54 "	· 11-	(4.44)
Sodium	(Na)				88	11	(3.83)
Potassium	(K)		•		1	11.1	(0.02)
Strontium	(Sr)				. 1	11	(0.02)
Fluoride	(F)	less	than		0.05		,
Borate	(B)	11			0.3		•
Nitrate	(NO ³)			not	detec	ted	

The figures in brackets refer to milliequivalent per litre.

Lab. No.60/953

ANALYSIS OF A SAMPLE OF BORE WATER

bу

S. Baker

Following are the results of an analysis of a sample of bore water, taken on the property of J.Webb, A.C.T., on July 13th, 1960. (Uriarra No.1, Bottle No.L7).

Нq			7.0	8		
Conductivity ,	/umho at 25°C	ο.	245			
Total dissolve	ed solids (T = :	180°C)	124	p.p.m.		
Chloride (C1)	,		10	" ,	(0.28)	
	(HCO ₂)		130	H , , ,	(2.13.)
Sulphate (SO	`` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		. 9	H .	(0.19)	
Calcium (Ca	AL."	,	19	H,	(0.95)	
Magnesium (M	ý)		12	11	(0:99)	
Sodium (Na	ζ.		17	r. 11	(0.74)	
Potassium (K	S	F	1		(0.02)	
Strontium (S	r)	no	ot dete	cted		
٠,	•	ss than	10.05	p.p.m.	•	,
3	B) .	11	0.3	117		ļ
>	NO ₂)	not	detec	ted	•	
•	5 `					

The figures in brackets refer to milliequivalents per litre.

Lab. No. 60/953.

Report No.85.

14th September, 1960

ANALYSIS OF A SAMPLE OF CALCAREOUS CONGLOMERATE FROM MOUNT DATSON.

ъу

S. Baker

The following are results for the analysis of a sample of calcareous conglomerate from Mount Datson, Boulia (F54/10), submitted by G. Brown (B456).

SiO ₂		12.56	percent
Fe ₂ Õ ₃	•	1.14	11
CaO	·	46.70	11
K ₂ 0		, 0 • 40	H w
K ₂ 0 P ₂ 0 ₅		0.65	11
Co ₂	•	36.30	
Combined	water,		
organic	matter	1.67	11
MnO	•	0.18	_ !!
	Total	99.60	u j
A1 ₂ 0 ₂	less than	0.40	**
Na		0.10	H
MgÓ	ti .	0.20	11

All results refer to the sample dried at 106°C.

Lab. No.G54/60.

PARTIAL ANALYSIS OF TEN GOSSAN SAMPLES

by

S. Baker

Following are results for the partial analysis of ten gossan samples (Lake George, 128479) submitted by E.K. Carter.

Sample No.	Be ₂ 03	Cu	Zn	Pb
145114 145115 145117 145118 145119 145120 145122	94.5 % 76.6 % 91.3 % 82.4 % 86.2 % 87.5 % 86.8 %	4 p.p.m. 5 " 15 " 5 " 9 " 6 "	6 p.p.m. 8 " 15 " 4 " 6 " 20 " 10 "	3 p.plm. 7 " 8 " 4 " 3 " 6 "
145123 145124 145125	77.9 % 79.8 % 82.4 %	7 " 5 " 4 "	7 " 5 " 1 5 "	ess than 3 ppm. 3 ppm.

Lab. No.60/956

Report No.87

23rd September, 1960

ANALYSIS OF TWO WATER SAMPLES

ру

D.A. Anderson

The following results are for water analysis carried out on two samples submitted by E.G. Wilson from Stromlo 8, on the property of N. Love.

	•	L.12	Lo	14
_	ppm.	me/litre	ppm	me/litre_
Sodium (Na) Potassium (K)	108 3	4.7	118 2	5.1 -
Calcium (Ca) Magnesium (Mg)	174 117	8.7 9.7	188 139	9.4 11.5
Strontium (Sr)	- 1	` ==	- 1	-
•	e e	23.1		26.0
Chloride (Cl) Sulphate (SO,)	434 12	12.2 0.3	472 6	13.3 0.1
Carbonate (CO_3^4)	nil		nil	-
Bicarbonate (HCO ₃)	651	10.7	680	11.2
Nitrate (NO ₂) Nitrate(NO ₃)	0.8 0.8	-	nil 2	#a
_,		23.2		24.6
Ph Total salts (180°)		o.p.m.	6.9 1232 p .p.m	
Conductivity 25°C	2160	namho :	2450 jumho	•
Note:	L14 s	sampled $17/8/60$ sampled $31/8/60$ gallons in $7\frac{1}{2}$), taken after pun	ping.
·	4, 6			*

Lab. No.60/957

Report No.88.

28th October,1960

PARTIAL ANALYSIS OF SAMPLE FROM MOUNT ISA.

S. Baker

Following are the results for the analysis of five crushed gossan samples from Northern Leases, Mount Isa, Queensland, submitted by D.O. Zimmerman, Royal School of Mines, London.

		5770	5773	5777	5787	5 7 98	_
SiO ₂	%	43.85	7.75	3.67	1.18	2.05	
Fe ₂ O ₃	%	32.37	38.65	79.30	64.14	66.21	
Mn^{2-3}	%	5.20	17.25	0.02	0.68	0.02	
Cu	%	0.16	0.59	0.49	0.40	0.21	
$_{ m Zn}$	%	0.50	0.88	0.86	0.50	0.85	
Pb	%	3.20	7.74 (7.90)	0.22	1.78 (1.8	30) 0.57	
Co	%	0.03	0.12	0.02	0.03	0.005	

Method of analysis

Silica:

Trons:

gravimetric as SiO oxidation reduction titration

Manganese:

Colorimetric method for samples 5777. 5787, 5798. Pattison's method for samples 5770, 5773.

Pattison's method for samples

Copper, zinc:

Polarographic analysis, figures in brackets, refer

to gravimetric analysis as PbSO₄.

Cobalt:

Colorimetric method.

Lab. No.60/958.

Report No.89.

7th November. 94ACT/1

ANALYSIS OF A SAMPLE OF IRON ORE TAKEN NEAR PADDY'S RIVER

by

S. Baker

Following are the results for the analysis of a sample of Iron ore, taken near Paddy's Creek, A.C.T., by A.D. Haldane.

SiO ₂	4.63%
Iron (as Fe)	69.2 %
Gain on ignition	0.75 %

Lab. No.60/962.

Report No. 90

7th November, 1960

PARTIAL ANALYSIS OF A CORE SAMPLE FROM RUDDYGORE No.3 BORE, QUEENSLAND.

by

S. Baker

Following are the results for the partial analysis of a core sample from Ruddygore No.3 Bore (242 feet), Queensland, submitted by L.C. Noakes.

Copper, 0.40 percent. Lead: 0.15 percent. Zinc. 1.62 percent.

Lab. No.60/978.

Report No. 91.

8th November, 1960 50ACT/1

ANALYSIS OF A SAMPLE OF COPPER ORE TAKEN NEAR PADDY'S RIVER. A.C.T.

bу

S. Baker

The following result is for the assay of a sample of copper ore from Paddy's River, A.C.T., submitted by N.J. Canham, Braddon, A.C.T.

Copper 3.42 percent.

Lab. No.60/959.

Report No.92.

8th November, 1960

ANALYSIS OF A SAMPLE OF SALT FROM ANGUS DOWN STATION. N.T.

by:

S.Baker

As requested, three layers of a sample of salt from a lake south of Angus Down Station, Northern Territory, (Longitude 132 15, Latitude 25 10, submitted by Mr. H.F.King, Consolidated Zinc Company, were tested separately for carbonate, borate and potassium.

Potassium content in each layer is 0.01% (as K in sample dried at 105 C); carbonate and borate could mot be detected.

Report No. 93

8th November, 1960 120Q/6

ANALYSIS OF A MANGANESE ORE FROM BAILEYS CREEK. QUEENSLAND.

by

S. Baker

A sample of a manganese ore from Bailey's Creek, north of Daintree River, Queensland (E55/1) submitted by F.de Keyser, has been analysed with the following result.

Manganese (as Mn)

46.3 per cent.

Lab. No. 60/980.

Report No.94.

14th November, 1960 120NT/1

ANALYSIS OF THREE TRON ORE SAMPLES FROM THE HUNDRED OF GOYDER. N.T.

bу

S. Baker

Following are the results for the analysis of three samples of an iron ore submitted by P.R.Dunn from Section 961 in the Hundred of Goyder.

Sample	1	2	; 3
SiO ₂ %	2.39	1.79	5.07
Iron (as Fe) %	77.0	76.9	75.9
Loss on ignition %	0.40	1.40	0.67

Lab. No.60/983

Report No. 95.

22nd November, 1960 106W/5

COPPER ASSAY ON A SAMPLE OF SCHIST FROM WESTERN AUSTRALIA.

by

S. Baker

Following is the result for the estimation of copper in a sample of schist, submitted by A.T. Wells. (Scott, 1A/5835, Field No.S4M), from two miles south easy of Kathleen Range, Western Australia. The copper occurs as malachite in a quartz-biotite schist in the Dean Range, Metamorphics of (?) Proterozoic age.

Copper

2.3%

Lab. No.60/1001.

Report No.96

30th November, 1960

ANALYSIS OF A SAMPLE OF IRON ORE

b.y

S. Baker

Following are the results for the analysis of a sample of an iron ore submitted by Mr. Anderson, through Dr. H.G. Raggatt.

Silica (SiO₂) 8.2% Iron (Fe₂O₃) 79.2% Loss on ignition 8.68%

W.M.B.Roberts identified the ore as goethite.

Lab. No.60/981.

ANALYSIS OF AN AQUEOUS SALINE MUD EXTRACT

by

S. Baker

An aqueous extract prepared from a saline mud (Ayers Rock 4-mile, photo No.29. Curtain Springs area), submitted by the Resident Geologist, Alice Springs, has been analysed with the following results:

Chloride	(as Cl ⁻)	21.1%
Sulphate	(as SO ₄)	17.9%
Calcium	(as CCa 2+)	2.9%
Magnesium	(as·Mg ²⁺)	0.8%
Sodium	(as Na+)	18.0%
Borates	not	detected
Lithium		lt .
Nitrates		11
Potassium		11

Total water soluble salts. 60.7%

All results refer to the original sample dried to Constant Weight at $+110^{\circ}\text{C}_{\bullet}$

The insoluble residue had the following qualitative composition - major components Si, Fe, Al, Ca, Mg, K and Na; trace elements Sr, Ba, Cr, V, Ti, Mn, Co, Ni. Cu and Sn.

Lab No.60/1007. Field No.13/5.

Report No.98

30th November, 1960 106W/5.

ANALYSIS OF FIVE EVAPORITES FROM W.A.

by

S. Baker

Following are results for the analysis of the water soluble material of five samples of evaporites, submitted by A.T. Wells.

	R107	M65 M59A	M59B	M59C
C1	42.1 4 6.44 1	1.25 57.7 3.47 1.93	4•75 12•42	4.75 16.0
Ca ²⁺ % Mg ²⁺ %	0.24	2.24 0.40	4.57	6.41
Mg ²⁺ % Na+ %	0.53 £ 30.0 2	1.63 0.19 8.0 36.8	0.27 2.95	0.24 3 . 35
Total	79.31 8	6.59 97.02	24.96	30.75

Results refer to samples dried at +110°C.

÷;	Localities 4-mile Sheet	 Run/Photo	No.
R107 M65 M59A M59B M59C	Rawlinson Lake MacDonald "" "" "" "" "" "" "" "" "" "" "" "" ""	5/5672 9/5425 11/5324	W.A. W.A. W.A. W.A

Lab. No.60/1002-6.

13th December.1960 106G/13/62.

ANALYSIS OF A WATER SAMPLE

bу

S. Baker

The following results are for a water analysis on a sample submitted by F.Henry, from Union Kern A.O.S., Cabawin No.1 fluid from JFT No.1.

	p.p.m.	me/litre	
Sodium	629	27.3	
Potassium	13	0.3	
Calcium	15	0.8	
Magnesium	4	0.3	28.7.
Chloride	138	3.9	
Sulphate	51	1.1	
Carbonate	-	=	
Bicarbonate	1360	22.3	·· 27.3
Total dissolved salt Conductivity	s at 180°	1604 p.p 2300 jumi 7.9	
and the second s			

Lab. No.60/1010.

Report No. 100

13th Decemmer.1960 45ACT/1

ANALYSIS OF TWO WATER SAMPLES

by

S. Baker

The following are results of two analyses carried out on samples L8 and L13 collected and submitted by E.G.Wilson and G.Burton. Sample L8 is from Lake George at Gearys Trig. in 18 inches.of water. Sample L13 is from Lake Bathurst, southern end, 20 feet off-shore is 18 inches of water.

•	L.		L.13	
	p.p.m.	me/litre	p.p.m.	me/litre
Sodium Potassium Calcium Magnesium	417 5 23 33	18.1 0.1 1.2 2.7	200 18 16 30	8.7 0.5 0.8 2.5
Chloride Sulphate Carbonate Bicarbonate	589 75 - 266	16.6 1.6 - 4.4	313 17 29 165	8.8 0.4 1.0 2.8
		22.6		13.0
	tal salts at 1 inductivity 25 pH	80° C jumho	1286 p.p.m. 2270 umho 8.0	714 p.p.m. 1310 umho 9.3