
COMMONWEALTH OF AUSTRALIA

DEPARTMENT OF NATIONAL DEVELOPMENT

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD No. 1967/32

KERANG RESISTIVITY SURVEY,

VICTORIA 1964

by

P.E. MANN

The information contained in this report has been obtained by the Department of National Development as part of the policy of the Commonwealth Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

RECORD No. 1967/32

KERANG RESISTIVITY SURVEY,

VICTORIA 1964

by

P.E. MANN

The information contained in this report has been obtained by the Department of National Development as part of the policy of the Commonwealth Government to assist in the exploration and development of mineral resources. It may not be published in any form or use in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

CONTENTS

)age
	SUMMARY		-0-
1.	INTRODUCTI	ON	1
2.	GEOLOGY		1.
3.	METHODS	and the state of t	2
4.	RESULTS		6
5.	CONCLUSION	is	8
6.	REFERENCES		9
	:		· * · · · ·
APPE	NDIX 1. NDIX 2. NDIX 3.	Geological log of the Victorian Mines Department bore at the Kerang Agricultural Research Farm. Geological log of CSIRO piezometers on the Kerang Agricultural Research Farm and adjacent proper Geological logs of State Rivers and Water Suppromission boreholes	ang ties 1
APPE	NDIX 4.	Geological logs of BMR boreholes	19
APPE	NDIX 5.	Analysis of depth probes	<u> </u>
		ILLUSTRATIONS	
Figu	re 1.	Typical resistivity depth probe field curves (Drawing No. 154/B5-10)	
Fįgų	re 2,	Relation between rock resistivity, porosity, a resistivity of pore solution (G16=36)	<u>nd</u>
Figu	re 3.	Temperature correction diagram for resistivity (G16-35)	•

- Plate 1. Locality map, showing resistivity depth probe stations, bore holes, and geology (I54/B5-3)
- Plate 2. Ground water resistivity map (I54/B5-4)
- Plate 3. Formation resistivities at 10 ft depth (I54/B5-11)
- Plate 4. Formation resistivities at 20 ft depth (154/B5-12)
- Plate 5. Formation resistivities at 40 ft depth (I54/B5-13)
- Plate 6. Highest and lowest resistivities at depths of 20 ft or more (154/B5-14)
- Plate 7. Gamma ray log (154/B5-9)

SUMMARY

A resistivity survey was made in the Kerang irrigation district of Victoria at the request of the State Rivers and Water Supply Commission of Victoria in 1964. The results indicate that for shallow depths (10 to 30 ft) it is possible to distinguish clays from sandy clays or clayey sands with a chance of 2 in 3. At deeper levels it is not possible to distinguish a sandy formation saturated with salt water from a saline clay. However, it is possible to predict the ground water resistivity (or salinity) from resistivity depth probes; and salinities can be fairly accurately mapped.

A test of the gamma ray logging method showed it to be an excellent tool for logging cased boreholes, and for providing correlation between boreholes.

1. INTRODUCTION

In the Kerang irrigation district, Victoria, severe salting of the land for many years has caused a deterioration in pasture growth. Poor drainage (due to a high water table) prevents removal of salts introduced in irrigation during the summer months.

The State Rivers and Water Supply Commission of Victoria (SRWSC) is investigating methods to control the ground water level in order to reclaim salt affected areas. One method under consideration is to pump from shallow aquifers. Experiments made at the Kerang Agricultural Research Farm (Garland, 1963) showed that pasture and crops are improved if the water table is lowered.

In response to a request by the SRWSC, the Bureau of Mineral Resources made a resistivity survey to collect subsurface information. This information could then possibly be used to predict the presence of shallow aquifers, for a reclamation programme. Generally the SRWSC felt that any additional information on the complex subsurface problems of the area would be useful.

The approximate latitude and longitude of the centre of the surveyed area is 35°50'S and 144°00'E.

The geophysical party consisted of P.E. Mann (party leader and geophysicist) and K. Reine (driller). The SRWSC supplied four field assistants.

The co-operation of A. Coad, the SRWSC Irrigation Research Officer at Pyramid Hill, is gratefully acknowledged.

GEOLOGY

An interpretation of the geology of the area is given by Currey (1963). At Kerang the former Murray Valley is filled with river sediments consisting of clay loam and sandy gravel river deposits to a depth of about 600 ft. The present stream system is superimposed on the earlier alluvial drainage system, which is referred to as 'prior' system. A prior river which formed the main drainage channel of the area cuts across the northern part of the survey area (Plate 1). Climatic changes or orogenic movements caused a diversion of the prior river, a reduction in gradient of the river and its tributaries, and the formation of lakes. Coarser sediments of the prior river, covered with lake deposits of clay, silt, and fine sand, form shallow aquifers. Johnson's Swamp and Two Mile Swamp form remnants of these prior lakes.

Garland (1963) has mapped the probable depth to sand layers in the Kerang district from the results of a 'water jetting' drilling programme along the western edge of the prior river system.

The Victorian Mines Department has logged a deep bore at the Kerang Agricultural Research Farm (K.A.R.F.), approximately in the centre of the surveyed area (Plate 1). An abbreviated log is given in Appendix 1.

C.S.I.R.O. has drilled fifteen boreholes at K.A.R.F. and fifteen on properties adjacent to the K.A.R.F. Generally the boreholes, ranging from 15 to 65 ft, were stopped when they penetrated sand. The logs are given in Appendix 2.

Plate 1 shows the location of bores drilled by the SRWSC as part of an exploratory drilling programme in the southern part of the irrigation district (Coad, 1964). The bores have an average depth of 60 ft. Only on one occasion did a bore penetrate a well-defined aquifer proved by pumping tests: at site K28. The geological logs are given in Appendix 3.

Additional geological information is available from boreholes drilled by the BMR tractor-mounted 'Proline' drill. The driller's logs are given in Appendix 4. Boreholes were drilled at about 50% of the resistivity depth-probe stations. Generally the depths were about 54 ft; at stations 51, 99, and 111 the depth was increased to 72 ft.

3. METHODS

Resistivity

The principles and practice of the two resistivity methods, viz. depth probing and traversing are given by Parasnis (1962).

The instrument used was a 'Terrameter' resistivity meter manufactured by Aktiebolaget Elektrisk Malmletning. The instrument, producing a 6-c/s alternating current, proved reliable, was simple to operate, and generally gave readings with a Wenner electrode spacing of up to 300 ft, the maximum used for the survey. Because of the low ground resistance near the surface of the ground, the instrument had insufficient power to give a correct potential difference reading with electrode spacing greater than about 300 ft.

The survey was started with resistivity depth probes 1, 2, and 3 taken using the Schlumberger electrode configuration (Parasnis, 1962). However, because of the low ground resistances the separation of the potential electrodes had to be increased frequently to obtain reliable readings. The spacing between potential electrodes in the Wenner configuration is greater than in the Schlumberger configuration, and hence gives more accurate readings. Depth probes 1, 2, and 3 were repeated with the Wenner configuration, and subsequently this was the only configuration used. For the Wenner configuration the apparent resistivity is given by

$$R = 2\pi a \frac{\nabla}{T} = 2\pi a Ro$$

where R is the resistivity in ohm-metres

V is the measured potential difference in volts

I is the current in amperes

a is the electrode spacing in metres

Ro is the resistance in ohms

Figure 1 shows the standard method of plotting the resistivity field data on logarithmic graph paper. A convenient method of displaying resistivities and depths of the various layers is also shown in Figure 1.

One technique to interpret a field curve is to match the experimental curve with theoretically calculated three-layer curves, such as those published by Mooney and Wetzel (1956). However, few of the field curves could be matched with the three-layer curves, so all the field curves were analysed by matching with two-layer curves (Parasnis, 1962).

The resistivity interpretation of relatively thin layers is to a certain extent ambiguous, as may be observed by applying Hummel's or Maillet's principle (Andrew & Wiebenga, 1965). Thus, for a reliable quantitative interpretation it is necessary to use some depth control, given by drilling or seismic methods. The geological logs of drill holes put down by the SRWSC, CSIRO, Victorian Mines Department, and the BMR (Appendixes 1, 2, 3, & 4) were used to interpret the resistivity field data.

The resistivity of a rock depends on the resistivity of the rock matrix, the degree of saturation of the pores, and the resistivity of the fluid occupying the pore spaces in the rock. Generally the resistivity of the rock matrix is nearly infinite, and assuming that the rock pores are saturated with fluid, the following empirical relation can be used:

$$R_{f} = R_{w}/P^{m} = R_{w}F \qquad \dots \qquad (1,)$$

where R is the formation resistivity

 $\boldsymbol{R}_{_{\boldsymbol{W}}}$ is the resistivity of the pore solution

P is the porosity expressed as a fraction

F is the formation factor = $1/P^{m}$

m is the cementation constant ranging from about 1.3 to 2.2.

For convenience in computation, m is taken as 4/3, In unconsolidated rocks m = 1.3, in moderately cemented sandstones about 1.8, and in highly cemented sandstones 2.2. Figure 2 shows a graph of equation 1 for m = 1.3.

The formation resistivities R can be computed from the field observations, and the water resistivities have been measured at various bores.

The average water resistivity R was then computed from n samples:

$$R_{\text{wa}} = 1/n_1 \text{ (SUM } R_{\text{w}}) \qquad \dots (2)$$

and the average porosity was also computed for n_2 boreholes where water samples were taken:

$$P_{a} = \frac{1}{n} SUM (R_{w}/R_{f})^{3/4} \dots (3)$$

Values of $P = (R_w/R_f)^{3/4}$ greater than 0.6 were excluded. From equations 2 and 3, the average formation resistivity R_f can be computed by using equation 1.

It is known (Pettijohn, 1949) that clays (a well sorted material) have an appreciably higher porosity than coarse sandy clays or clayey sands, which are unsorted. At the same time it may be noted that the permeability of coarse, sandy clays or clayey sands is much higher than that of clays. Because of the higher porosity and generally higher salinity, it is usual for clays to have lower resistivity than sandy clay or clayey sand.

Equation (1) shows that formation resistivity is both a function of porosity and water resistivity (assuming m=4/3 to be constant). It may then be attempted:

(a) To predict the nature of the sediments from the resistivity data by comparing the observed formation resistivity with the computed 'average' resistivity R susing Rwa and Pa from equations 2 and 3. The formation resistivity average for each depth probe was not used because of the possible influence of near-surface irregularities and faulty instrument readings. Also by computing R from a large sample it is expected that irregularities are cancelled in the R value used as standard.

If R < R fa, the formation is predominantly clay.

If R > R fa, then the formation is predominantly a coarse, sandy clay or clayey sand. This comparison was carried out for depths of 10, 20, and 40 ft.

(b) To predict the resistivity of the groundwater from the resistivity data. To test this possibility, a comparison was made between a water resistivity contour plan and a contour plan giving the lowest formation resistivities for depths of 20 ft or more. If a similarity in pattern between the two plans exists, it may be safely assumed that a good correlation exists between formation resistivity and water resistivity for depths exceeding 20 ft.

Water resistivity

The resistivity of water samples from boreholes and wind-mills was measured with a cell connected to a d.c. resistance meter. The resistivity values were corrected for temperature to 20°C with the formula:

 $\log R_{20} = \log R_{t}$ - 0.9 (20-t)/100 (4) which is shown in Figure 3 (Dyson & Wiebenga, 1957). Some of the water resistivities at SRWSC bores were estimated from the total dissolved salt content S (in p.p.m.), using the relation (Guyod, 1964):

$$R_{w} = 5000/S$$
 (5)

Gammy ray logging

Gamma ray logging, utilising the natural radioactivity of rocks, can be used to identify and correlate sedimentary strata in boreholes. Clay and shale are generally more radioactive than sand so variations on the radioactive log generally correspond to lithological changes. Additional details on gamma-ray logging are given by Lynch (1962). A 500-ft Widco logger fitted with an Esterline-Angus recorder and a 1-inch diameter gamma-ray probe designed by the BMR was used. The probe consists of a scintillation crystal photomultiplier and preamplifier suspended in the borehole by a waterproof cable. The amplified pulses are counted and the count rate is displayed on the recorder as the probe is lowered or raised in the borehole. Because of instrumental failure only two holes were logged. A typical gamma-ray log is shown in Plate 7. The log shows a low count at a depth of about 37 ft. This is interpreted as a layer of sand or sandy clay from about 35 to 39 ft compared with other sections of the log where it is predominantly clay shown by the higher count.

Drilling

A 'Proline' auger drill $(3\frac{1}{2}$ -inch diameter) mounted on a Chamberlain tractor was used to drill boreholes up to 72 ft deep to check the nature of the near-surface unconsolidated formations and furnish ground water and mud samples for resistivity determinations.

4. RESULTS

Plate 1 is the locality map, showing the geology of the surveyed area, and the positions of the resistivity depth probes and boreholes.

Plate 2 shows the ground water resistivities measured on water samples from boreholes, or estimated from water salinities. Approximate resistivity contours are drawn. The 0.50-ohm-metre contour corresponds to a salinity of 10,000 p.p.m., and the 0.2 contour with 25,000 p.p.m., using equation 5.

Appendix 4 gives the geological logs of boreholes drilled by BMR personnel and Appendix 5 the analysis of resistivity depth probes.

Comparison of formation resistivities R with borehole logs

Following the procedures outlined above: (equation 2), the average water resistivity R $_{\rm wa}$ was determined as 0.28 ohm-metre from 144 samples. This corresponds to about 18,000 p.p.m. salinity.

Using equation 3, the average porosity $P_{\rm a}$ was determined as 0.38 from 105 determinations.

The substitution of the above values for P and R in equation 1 results in an average formation resistivity R of 1.8 ohm-metres. Following the procedure outlined above, this value is adopted as a boundary between higher resistivity, sandy clays or clayey sands, and the lower resistivity clays. Plates 3, 4, and 5 show where formation resistivities are lower or higher than 1.8 ohm-metres at depths of 10, 20, and 40 ft. To find out whether such information can be used to make lithological predictions, a comparison was made between predictions based on formation resistivities and drilling logs. Table 1 shows the result.

Table 1

Depth	Numbe:	r of predicti	Percentage of correct	
(ft)	Correct	Incorrect	Total	predictions
10	45	27	72	62
20	50	22	72	70
40	35	37	72	49

Table 1 shows that at depths of 40 ft there is less than an even chance that a prediction based on formation resistivity will be correct. There are probably two main reasons for this high failure rate at deeper levels:

- (a) The salinity of the ground water probably increases with depth and it is impossible to distinguish sandy material saturated with brine from saline clays.
- (b) A calibration test with the 'Terrameter' resistivity meter showed that resistance measurements of 0.005 ohm are 20% too high, and that resistances less than 0.005 ohm cannot be measured reliably (Wainwright, 1966). This means that with the low resistivities encountered at depth resistivity measurements with electrode spacings in excess of 200 ft are valueless.

Comparison between formation resistivity $\mathbf{R}_{\mathbf{f}}$ and groundwater resistivity $\mathbf{R}_{\mathbf{w}}$.

In Plate 6 are indicated by contours the location of areas with formation resistivities of higher than 3.0 ohm-metres and lower than 1.1 ohm-metres for depths of about 20 ft or more. There seems to be no obvious relation between the contours and the pattern shown in the geological map (Plate 1). However, the pattern of Plate 6 shows a great similarity with the pattern on the groundwater resistivity map (Plate 2). Areas where higher formation resistivities coincide with higher groundwater resistivities are located north and south of Johnsons Swamp and also near stations 77 and 110 in the north-west corner.

The high formation-resistivity overlying a very low formation resistivity near station 121 in the south is possibly caused by leakage from the fresh water channel (See Plate 4).

The patches of higher groundwater resistivities near stations 86, 38, 4, and 5 (Plate 2) cannot be explained. The water samples from the bores are possibly mixtures of ground water and fresh surface rain water.

The low formation resistivity belt between stations 120, 32, 117, and 116 (Plate 6) coincides closely with a similar low ground-water resistivity belt.

The lowest ground resistivities to the greatest depths occur around station 33 (0.8 ohm-metre to 30 ft, 0.5 ohm-metre to 100 ft). Physically this feature may be described as a saltwater sump.

Some of the low formation resistivities in the areas along the salt drains may have been caused by leakage from the drains. Summarising, in a depth range of about 10 to 70 ft, the average formation resistivity is 1.8 ohm-metre, the groundwater resistivity is 0.28 ohm-metre, hence the average salinity is 18,000 p.p.m. and the average porosity 38%. At shallow depths, from say 10 to 20 or 30 ft, formation resistivities can indicate with a certain degree of accuracy whether the sediments are clays or sandy clays (clayey sands). Partly this may be due to the higher permeability of sandy clays permitting surface water to mix with saline ground water. A good correlation exists between ground water resistivities measured from bore water samples and high or low formation resistivities at about 20 ft or deeper.

5. <u>CONCLUSIONS</u>

At depths of from 10 to 30 ft, resistivity depth probes can be used to predict whether formations are predominantly clay or sandy clay (clayey sands) with a chance of 2 in 3 of being correct.

At deeper levels this is not possible because of the overshadowing effect of saline conditions. The basic reason is that it is not possible to distinguish with resistivity measurements between a permeable sand, or gravel saturated with salt water, and an impermeable saline clay. However, it is possible to predict with a fair degree of accuracy the salinity of groundwater from resistivity depth probes for depths of 20 ft or more.

Gamma ray logging is an excellent technique to distinguish rock types in cased, shallow boreholes, and for correlation between boreholes.

In areas of saline water, resistivity meters capable of measuring resistances with an accuracy of \pm 0.001 ohm should be used if electrode spacings (Wenner configuration) of larger than 100 ft are desired.

6. REFERENCES

ANDREW, T. & WIEBENGA, W.A.	1965	Two-layer resistivity curves for the Wenner and Schlumberger electrode configurations, Bur. Min. Resour. Aust. Rec. 1965/18.
COAD, A.	1964	Results of the drilling survey to investigate the stratigraphy and underground water levels in part of the Kerang irrigation area. Research Investigations, State Rivers and Water Supply Commission (unpubl.).
CURREY, D.T.	1963	The prior river system of the Kerang irrigation area. <u>Geological Notes</u> , <u>State Rivers and Water Supply Commission</u> (unpubl.).
DYSON, D.F. & WIEBENGA, W.A.	1957	Final report on geophysical investigations of underground water, Alice Springs, NT 1956. Bur. Min. Resour. Aust. Rec. 1957/89 (unpubl.).
GARLAND, K.	1963	Distribution of sub-soil sand in the Kerang-Cohuna district. The Journal of Agriculture, Victoria 61, 507.
GUYOD, H.	1944	ELECTRICAL WELL LOGGING. HALIBURTON OIL WELL CEMENTING COMPANY.
LYNCH, E.J.	1962	FORMATION EVALUATION. HARPER & ROW, NEW YORK.
MOONEY, H.M. and WETZEL, W.W.	1956	THE POTENTIALS ABOUT A POINT ELECTRODE AND APPARENT RESISTIVITY CURVES FOR A TWO, THREE, AND FOUR-LAYER EARTH. Minneapolis, University of Minnesota Press.
PARASNIS, D.S.	1962	PRINCIPLES OF APPLIED GEOPHYSICS, Methuen, London.
PETTIJOHN, F.J.	1949	SEDIMENTARY ROCKS. HARPER & BROTHERS, NEW YORK.

WAINWRIGHT, M.

1966

Koo-wee-rup resistivity survey,
Victoria 1965. Bur. Min. Resour.
Aust. 1966/114 (unpubl.).

WIEBENGA, W.A.

1955

Geophysical investigations of water deposits, Western Aust. Bur. Min.
Resour Aust. Bull. 30.

APPENDIX 1

Geological log of the Victorian Mines Department bore at the Kerang Agricultural Research Farm

Data are extracted from a file held at the Reseach Farm office. The bore is 20ft from resistivity depth probe 61.

•	w.e.	
Depth	Abbreviat	ed log
(ft)	Colour	Material
0 - 10	Brown	Clay
10 - 36	Yellow grey	Sandy clay
36 - 48	Yellow grey	Gravelly silts, gravel
		and coarse sand
48 - 52	Yellow grey	Coarse sand
52 – 71	Yellow grey	Gravelly silt and gravel
71 - 92	Red brown	Gravelly clay
92 - 110	Grey	Clay
110 - 188	Yellow grey	Silt
188 – 280	Yellow and grey	Sand
280 - 330	Grey	Gravel and coarse sand
330 - 597	Grey	Fine sand with
·		carbonaceous material
597 - 640	Grey	Clay with dolomite

APPENDIX 2

Geological log of CSIRO piezometers on the Kerang Agricultural

Research Farm and adjacent properties

A. Piezometers on Kerang Agricultural Research Farm

. Piezometers on Ke	rang Agricultural Research Farm
Piezometer No.	1
0 - 3'	Dark red brown clay Lighter colour brown clay Yellow clay Hard yellow clay Softer yellow clay Sand
Piezometer No.	2
0 - 3° 3° - 19° 19° - 23° 23° - 26°	Dark brown clay Light yellow clay Fine brown sand Fine grey sand
Piezometer No.	3
0 - 12' 12' - 13' 13' - 39' 39' -	Brown clay Grey clay Brown clay Brown fine sand
Piezometer No.	4 (Resistivity depth probe 62)
0 - 3' 3' - 19' 19' -	Brown grey clay Brown and grey clay Sand
Piezometer No.	<u>5</u>
0 - 3° 3° - 8° 8° - 35° 35° -	Yellow grey clay Yellow grey heavy clay Yellow grey and brown clay (very tough) Coarse sand
Piezometer No.	<u>_6</u>
0 - 3° 3° - 12° 12° - 30° 30° - 37° 37° -	Yellow brown clay Yellow brown clay (soft) Yellow grey and brown clay (very tough) Brown grey clay (softer) Coarse brown sand
Piezometer No.	
0 - 3" 3" - 9' 9' - 34'	Yellow brown grey clay Grey brown grey clay (at 6 ft depth traces of gypsum) Mottled grey and brown clay (tough)
Piezometer No.	8 (Resistivity depth probe 44)
0 - 2' 2' - 18' 18' -	Brown clay Brown and grey clay Sand

Piezometer No. 9

Brown clay Yellow grey clay

Sand

Piezometer No. 10

0 4' 8' 11' 16' 22' 24' 28'		4* 8' 11' 16' 22' 24' 28' 36'	Red brown clay Yellow brown clay Brown clay Yellow brown clay Grey clay Grey brown clay Grey clay Yellow brown clay)) - Very hard
		47'	Grey sandy clay	
47".		48 †	Grey sand	
48'		52¹·	Sandy grey clay	
521	-	5 3 '	Brown clay	
53*	-	60 '	Grey clay	
60 '	_	63 '	Grey sand	

Piezometer No. 11

0"	- 4 °	Red brown clay
4 °	- 6'	Brown clay
6"	- 12 ^t	Yellow brown clay
12'	- 29 ^r	Yellow clay very hard with fine gravel
29 '	- 31'	Thin sand layers
31'	- 34 *	Brown clay
34 *	- 36'	Grey clay
36 '	. - 40'	Brown clay
40'	- 43 ¹	Grev and brown sand

Piezometer No. 12

0 *	_	4 *	Red brown clay
4'	_	8'	Brown clay
8"	-	12'	Yellow brown clay
12'	-	18 *	Grey yellow clay, very hard with fine gravel
18'	-	29 ' 6 '''	Yellow brown clay
		30'6 [™]	Brown sand
30'6	11_	38 '	Grey yellow clay
38 '	_	40 °	Grey sand
40'	_	45 '	Grey brown clay
45'		54 *	Brown and grey sandy clay - various layers
54'	_	56 *	Brown sand

0'	_	2'	Black brown clay
21	_	4. •	Red brown clay
4 *	_	8 *	Brown clay
8 *	_	22 '	Yellow brown clay
22	•	25 ' .	Grey clay
25"	-	26 *	Grey sand
26'		35 *	Grey brown clay
35 '	_	36 °	Grey clay
36 1	_	37'	Grey brown sandy clay
37'	_	39 '	Grey clay
39 '	-		Grey coarse sand

```
Piezometer No. 14
                          (Resistivity depth probe 60 between
                           piezometers 14 and 15)
   0 "
                     Black brown clay
            8!
   2*
                     Brown clay
   81
            19 1
                     Yellow brown clay (very hard)
   19"
            33"
                     Grey yellow clay
            40
   33"
                     Brown coarse sand
   Piezometer No. 15
                         (Resistivity depth probe 60 between piezometers
                         14 and 15)
   0 •
            21
                     Black brown clay
   2.1
                     Brown clay
   4 1
            8
                     Yellow brown clay
   81
            15"
                    Grey clay
Light brown clay
   151
            231
   231:
            26 1
                    Brown fine sand
B. Piezometers on adjacent properties
  Piezometer No. 16
  0
           4.1
                     Black brown clay
  4 .
           12'
                    Brown clay
  12"
           135
                    Yellow brown clay
           21 *
  13"
                    Grey brown clay
  21 *
           24!
                    Brown sand
  Piezometer No. 17
           21
                    Black brown clay
           4.
  2 *
                    Brown clay
  4 *
           6"
                    Yellow brown clay
  6"
           16'
                    Brown clay
  16'
           20 *
                    Brown sand
  Piezometer No.
                   <u>18</u>
  0'
           4 1
                    Black brown clay
           11'
                    Brown clay
  11 *
           22 *
                    Grey clay
  221
           27"
                   Light brown clay
  27'
           28 *
                   Dark brown clay
  28 *
           29 *
                   Brown fine sand
  29 *
                   Brown coarse sand
```

0'		2'	Black brown clay
21	-	5 '	Brown clay
5 * .	•••	14'	Brown fine sand
14'	· - -	16'	Grey sand
161	-	17 *	Brown coarse sand
17"		19 '	Brown fine sand
191	_	20'	Grey sand

```
Piezometer No. 20
```

```
.4.
01
                 Grey to grey brown clay
                 Brown clay with traces of sand (fairly soft
4 1
        13"
                                                      layer)
                 Brown very hard gravelly clay
        201
13'
20 *
        27 *
                 Grey brown clay
```

Grey brown sandy clay Grey brown fine sand

381 Brown coarse and fine sand

401 Grey brown fine sand 381

Piezometer No. 21

0" - 6"	Grey clay
6 ^m - 7 [*]	Brown clay
7* - 9*	Brown sandy clay
9' - 19'	Very hard brown clay with patches of gravel
19' - 21'	Soft layer of grey brown clay
21' - 30'	Hard grey brown clay
30' - 31'	Brown clay
31' - 35'	Grey brown clay
35 · - 39 ·	Light brown sandy clay
39' - 45'	Grey brown clay
45' - 46'6'	Fine and coarse grey sand
46 6 1 47 6 11	Brown clay
47'6"- 48'6"	Brown fine sand
48 6 4 50	Brown clay
50* - 56*	Grey brown clay
56* -	Fine brown sand
•	•

Piezometer No. 22

011			Grey brown clay
6 ¹¹¹	-	.5 *	Fairly soft brown and grey brown clay
5*	-	9 •	Hard brown gravelly clay
9 *	-	25 *	Very hard brown clay
25 *	_	35 *	Grey, brown and yellow clay (softer layers)
35 *			Grey brown clayey sand
36		37.°	Reddish brown clayey sand
371		40 *	Fine grey sand
40 *	_		Very coarse sand

Piezometer No. 23

0"		3°t	Reddish brown clay
3 *	<u> </u>	20 *	Brown clay, fairly hard
20 *	_	231	Softer grey brown clay
23*	-		Fine brown sand

Piezometer No. 24

Oir	_	5 †	Grey clay (fairly soft)
5 *	-	15*	Very hard brown grey clay
15*	·	18*	Softer brown grey clay
181	_	19"	Light brown sandy clay
19*	-		Light brown fine sand

0 ^{III}		_	Grey clay Brown clay) - Fairly soft
81		18*		
18' 19'	_	19'	Grey brown sandy Fine brown sand	Clay

Piezometer No. 26

0	_	1 *	Dark grey clay
1 *		6 '	Dark brown clay
6 '	_	7 '	Light brown clay
7 *	-	11'	Dark brown clay
11"	-	16'	Grey brown sandy clay
16'	-	20 *	Dark brown sandy clay.
20'	_	22'	Grey sandy clay
22'	-	26'	Dark brown sandy clay
261	_		Dark brown sand

Piezometer No. 27

O	_	2'	Dark grey clay
2 *	_	6 *	Dark brown clay
6 °	-	13"	Brown clay
131	-	22 *	Light brown clay
22 1	_	25 '	Dark brown clay
25'	-	32 '	Light brown clay
32'	_	33 '	Grey clay
33'	-	36'	Grey sandy clay
36'	-		Coarse sand

Piezometer No. 28

0	_	5 *	Red brown clay
	_	9'	Soft light brown clay
		14'	Very hard light brown clay
14'	-	18 '	Very hard light brown clay with fine gravel
181			Softer light brown clay
191		23'	Hard light brown clay
23"	-	25 '	Hard grey brown clay
25 *	-	27 '	Hard dark brown sandy clay
27'		32 t	Grey clay
32'	-	33 *	Dark brown clay
33'	_	36 °	Grey and light brown clay
36'	-	-	Coarse grey sand

Piezometer No. 29

0	_	4 ^e	Dark brown clay
4 '	_	8'	Light brown clay
8'	-	12'	Brown sandy clay
12'			Very hard yellow brown clay with fine gravel
17'	_	23 "	Very hard grey clay
23'		_ •	Softer grey clay
27 '	-	48 '	Very hard grey clay
48'	_	57 '	Hard fine grey sand
57'	-	63'	Grey coarse sand

0	_	4'	Red brown clay
4 *	~	8*	Brown clay
-		27 *	Very hard light brown clay
27 *			Very hard grey clay
281	_	37'	Light brown clay (a bit softer)
37 '	-	46 *	Very hard grey sandy clay
46'	_	58 '	Light brown sandy clay (hard like stone)
58'	_	66'	Reddish brown hard sand
66'	_		Red brown sand

APPENDIX 3

Geological logs of State Rivers and Water Supply Commission boreholes

Logs adapted and abbreviated from Coad(1964).

	·		
Borehole / resistivity depth probe	Depth (ft)	Material	Water salinity(p.p.m.)
к6	0-60	Clay	43,000
к8	0-47	Clay	13,000
	47-60	Sandy clay	
К9	0-47	Clay	57,500
	47-60	Sandy clay	
K10/79	9-47	Clay	53,000
	47-62	Sandy clay	
K11	0-28	Clay	47–500
1	28-46	Sandy clay	
	46-57	Sand	
	57-58	Sandy clay	
K14/63	0-60	Clay	26,500
K17/84	0-60	Clay	18,200
K18/58	0-49	Clay	3,850
	49 – 58	Sandy clay	
K20	0-42	Clay	37,000
	42-60	Sandy clay	
K21	0-47	Clay	4,000
	47/-60	Sandy clay	
K23	0-42	Clay	4,000
	42-56	Sandy clay	
. к24 / 59	0-48	Clay	43,500
	48-60	Sandy clay	·
K26-13	0-60	Clay	9,000
K27/12	0-60	Clay	
	35-41	Sandy clay	33,000
		.	i .

rehole / vity depth probe	Depth (ft)	Material	Water salinity(p.p.m.)
K28/11 (contd.)	35-36	Sandy clay	·
	36-46	Gravel	
·	46-49	Clay	
K29	0-60	Clay	18,000
К31	0-45	Clay	25,500
	45–60	Sandy clay	
K33	Geologi	cal log unava	ilable
K34	Geologi	.cal log unava	ilable
	K28/11 (contd.) K29 K31	wity depth probe (ft) K28/11 (contd.) 35-36 36-46 46-49 K29 0-60 K31 0-45 45-60 Geologi	K28/11 (contd.) 35-36 Sandy clay 36-46 Gravel 46-49 Clay Clay

APPENDIX 4

Geological logs of BMR boreholes

Geological logs of BMR boreholes					
Bore hole and resistivity depth probe	Depth ft	Material			
†	0 - 9 9 - 45 45 - 54	Clay Sandy clay Clay			
2	0 - 33 33 - 54	Clay Sandy clay			
3 5	0 - 30 30 - 54	Clay Sandy clay			
4	0 - 30 30 - 54	Clay Coarse sandy clay			
5	0 - 36 36 - 54	Clay Coarse sandy clay			
6	0 - 15 15 - 54	Clay Sandy clay			
7.	0 - 30 30 - 154	Clay Coarse sandy clay			
8	0 – 36 30 – 54	Clay Coarse sandy clay			
9	0 - 36 36 - 48 48 - 54	Clay Coarse sandy clay Clay			
10	0 - 30 30 - 54	Clay Sandy clay			
14	0 - 15 15 - 36 36 - 54	Clay Sandy clay Clay			
15	0 - 15 15 - 54	Clay Sandy clay			
16	0 - 54	Clay			

Bore hole and resistivity depth probe	Depth ft	Material
18	0 - 54	Clay
20	0 - 54	Clay
22	0 - 48 48 - 54	Clay Sandy clay
23	0 - 48 48 - 54	Clay Sandy clay
24	0 - 54	Clay
26	0 - 24. ? 24 - 54 ?	
27	0 <u>-</u> 24 24 <u>-</u> 54	Clay Sandy clay
28	0 - 24 24 - 54	Clay Coarse sandy clay and sandy clay
29	0 - 33 33 - 42 42 - 48 48 - 54	Clay Sandy clay Clay Sandy Clay
30	0 - 33 33 - 54	Clay Sandy clay
32	0 - 24 24 - 54	Clay Sandy clay
34	0 - 48 48 - 54	Clay Sandy clay
36	0 – 36 36 – 54	Clay Coarse sandy clay
37	0 - 42 42 - 54	Clay Sandy clay

Bore hole and	· ·	T
resistivity depth probe	Depth ft	Material
38	0 - 54	Clay
39	0 - 45 45 - 54	Clay
40	0 - 54	Clay
41	0 - 45 45 - 54	Clay Sandy clay
42	0 - 54	Clay
43	0 - 21 21 - 54	Clay Coarse sandy clay
46	0 - 39 39 - 54	Clay Coarse sandy clay
48	0 - 36 36 - 48 48 - 54	Clay Coarse sandy clay Clay
51	0 - 39 39 - 72	Clay Coarse sandy clay and sandy clay
52	0 - 36 36- 54	Clay Sandy clay
64	0 - 39 39 - 54	Clay Fine and coarse sand
65	0 - 45 45 - 54	Clay Coarse sandy clay
66	0 - 45 45 - 54	Clay Sandy clay
67	0 - 54	Clay
68	0 - 54	Clay

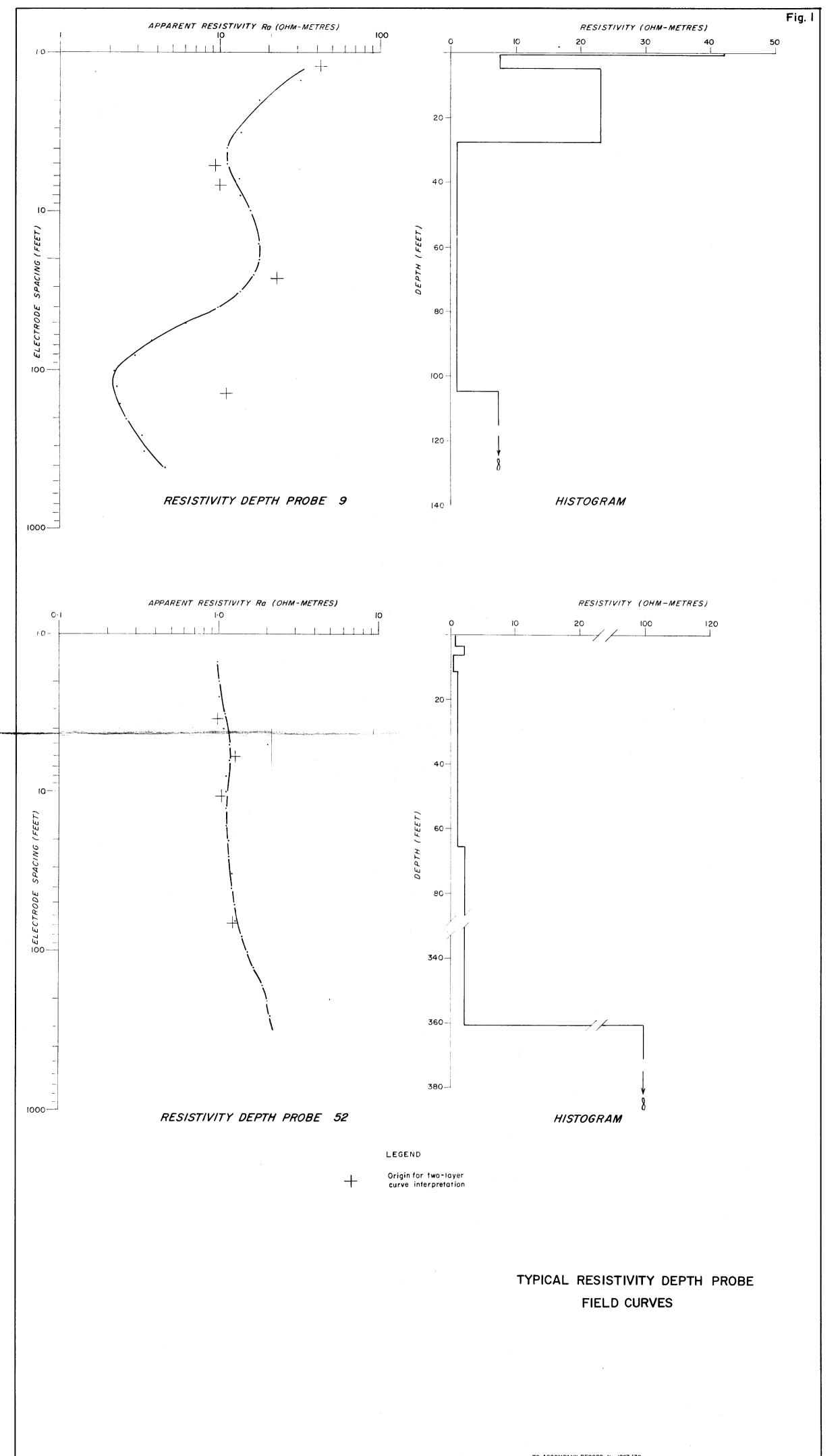
			22.
•			
	Bore hole and resistivity depth probe	Depth ft	Material
	69	0 = 54	Clay
	70	0 - 39 39 - 54	Clay Sandy clay
	71	0 - 27 27 - 54	Clay Sandy clay
	72	0 - 48 48 - 54	Clay Sandy clay
	74	0 - 45 45- 54	Clay Sandy clay
	75	0 – 33 33 – 54	Clay Sandy clay
	76	0 - 27 27 - 48 48 - 54	Clay Sandy clay Clay
	77/	0 - 45 45 - 54	Clay Coarse sandy clay
· '.	85	0 - 48 48 - 54	Clay Sandy clay
	86	0 - 36 36 - 54	Clay Sandy clay
	87	0 - 48 48 - 54	Clay Coarse sand clay
	91	0 - 24 24 - 54	Clay Sandy clay
	92	№0 – 27 27 – 54	Clay Coarse sandy clay and sandy clay
; 	94	0 - 51	Clay

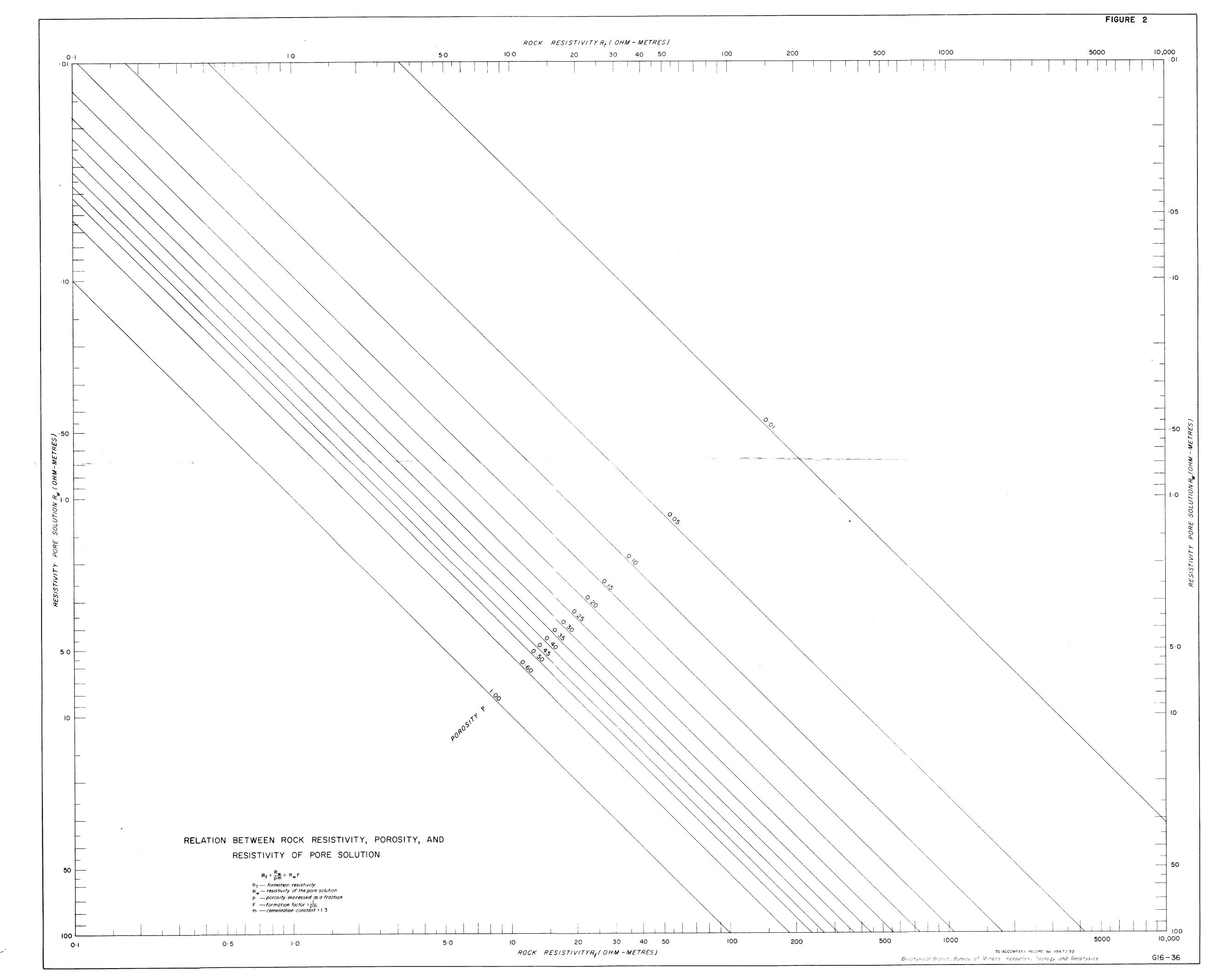
Bore hole and resistivity depth probe	Depth ft	Material
95	0 - 54	Clay
96	0 - 45 45 - 51 51 - 54	Clay Coarse sandy clay Clay
99	0 - 72	Clay
111	0 - 30 30 - 72	Clay Sandy clay
114	0 - 33 33 - 54	Clay Sandy clay
115	0- - 39 39 - 54	Clay Coarse sandy clay and sandy clay
116	0 - 24 24 - 54	Clay Fine and coarse sand

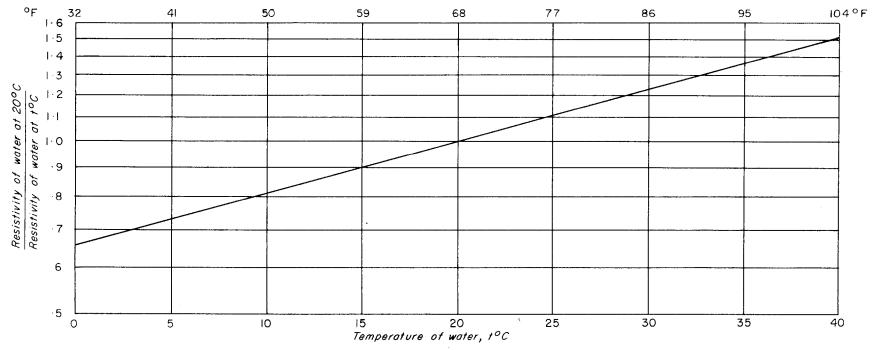
APPENDIX 5

Analysis of depth probes

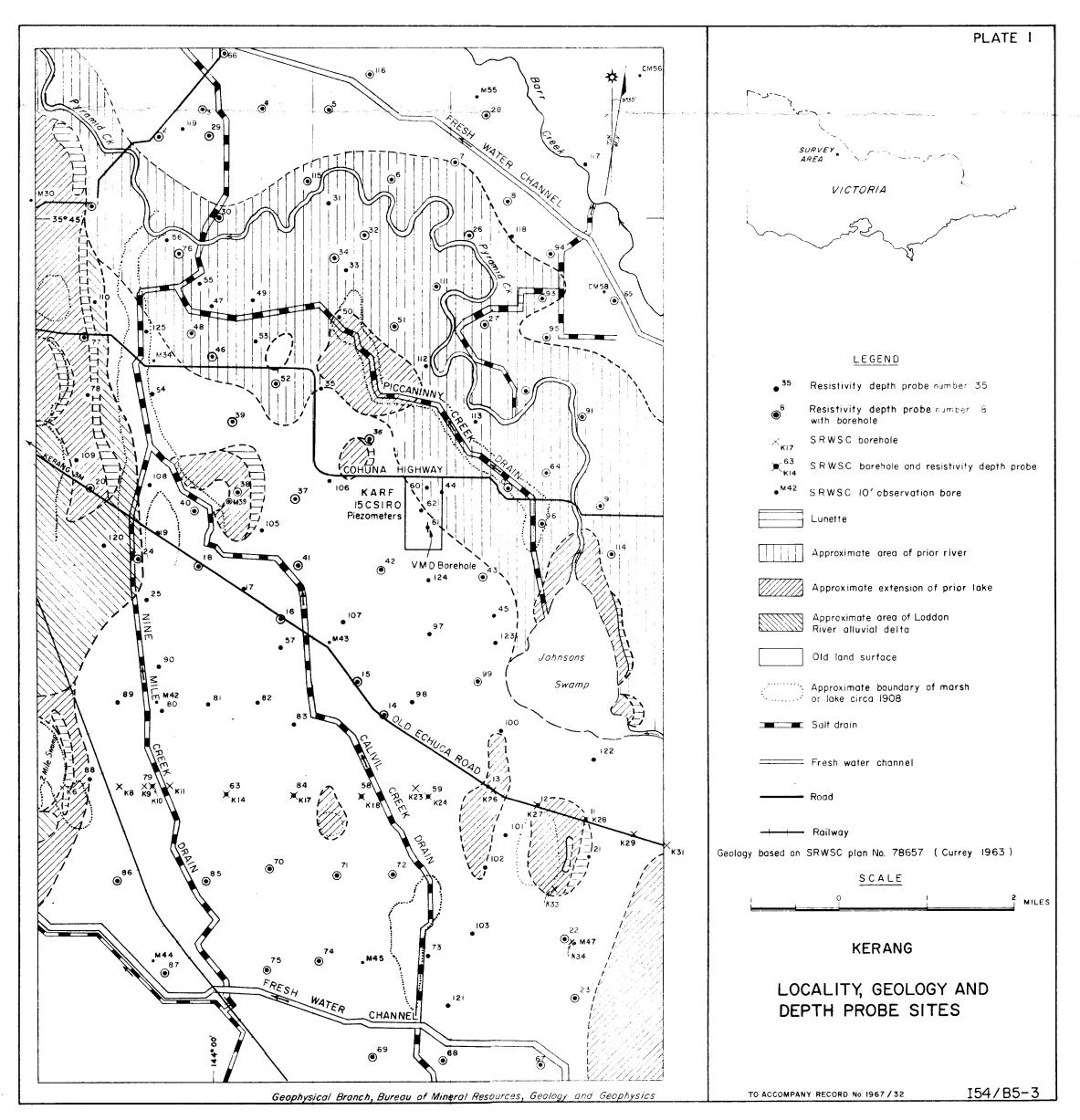
The resistivity field data listed below are to be read as follows:

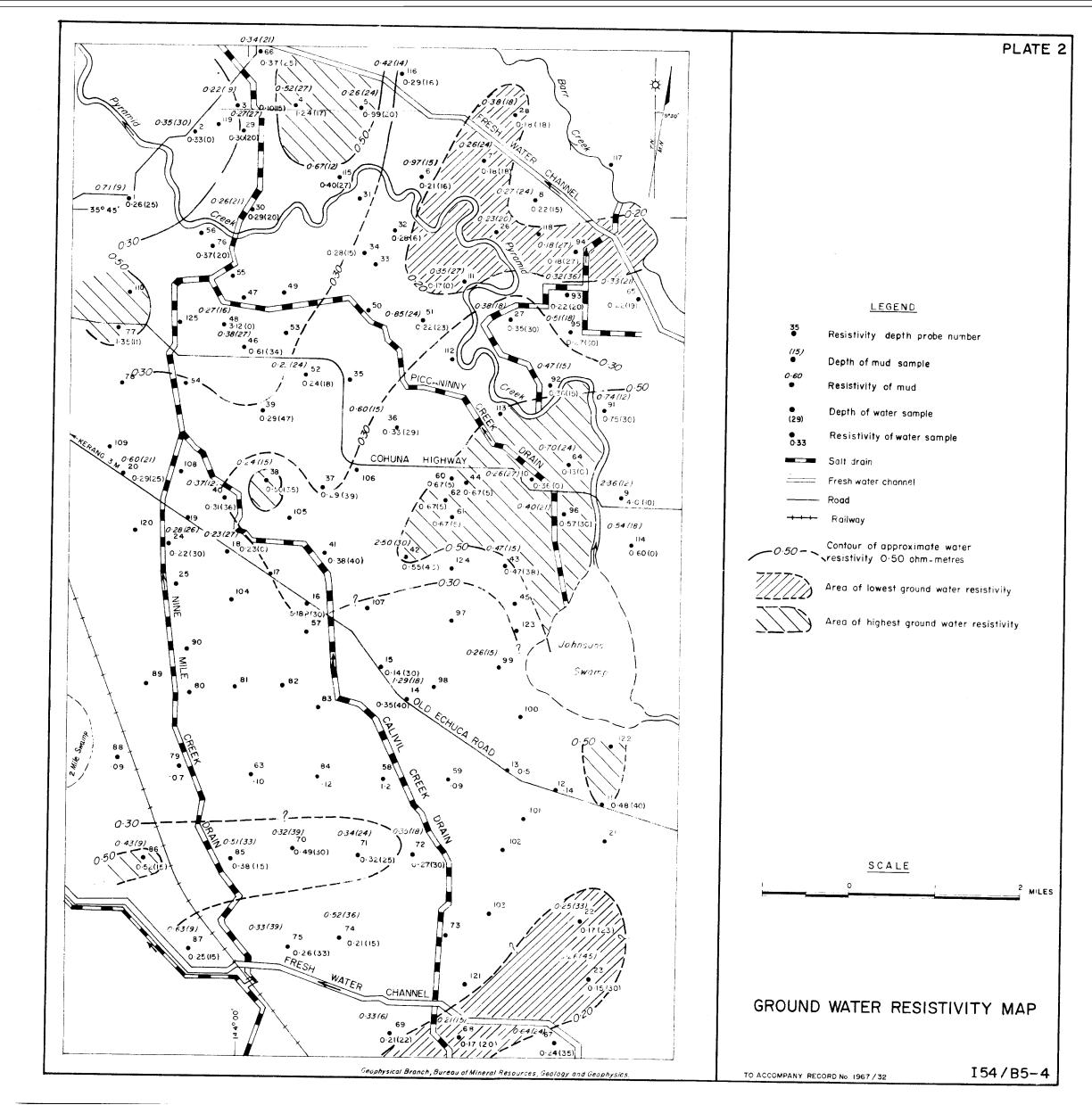

Resistivity depth probe number 1 has a resistivity of
2 ohm-metres to a depth of 1ft, 2.5 ohm-metres to 15ft,
1.2 ohm-metres to 56ft, etc.

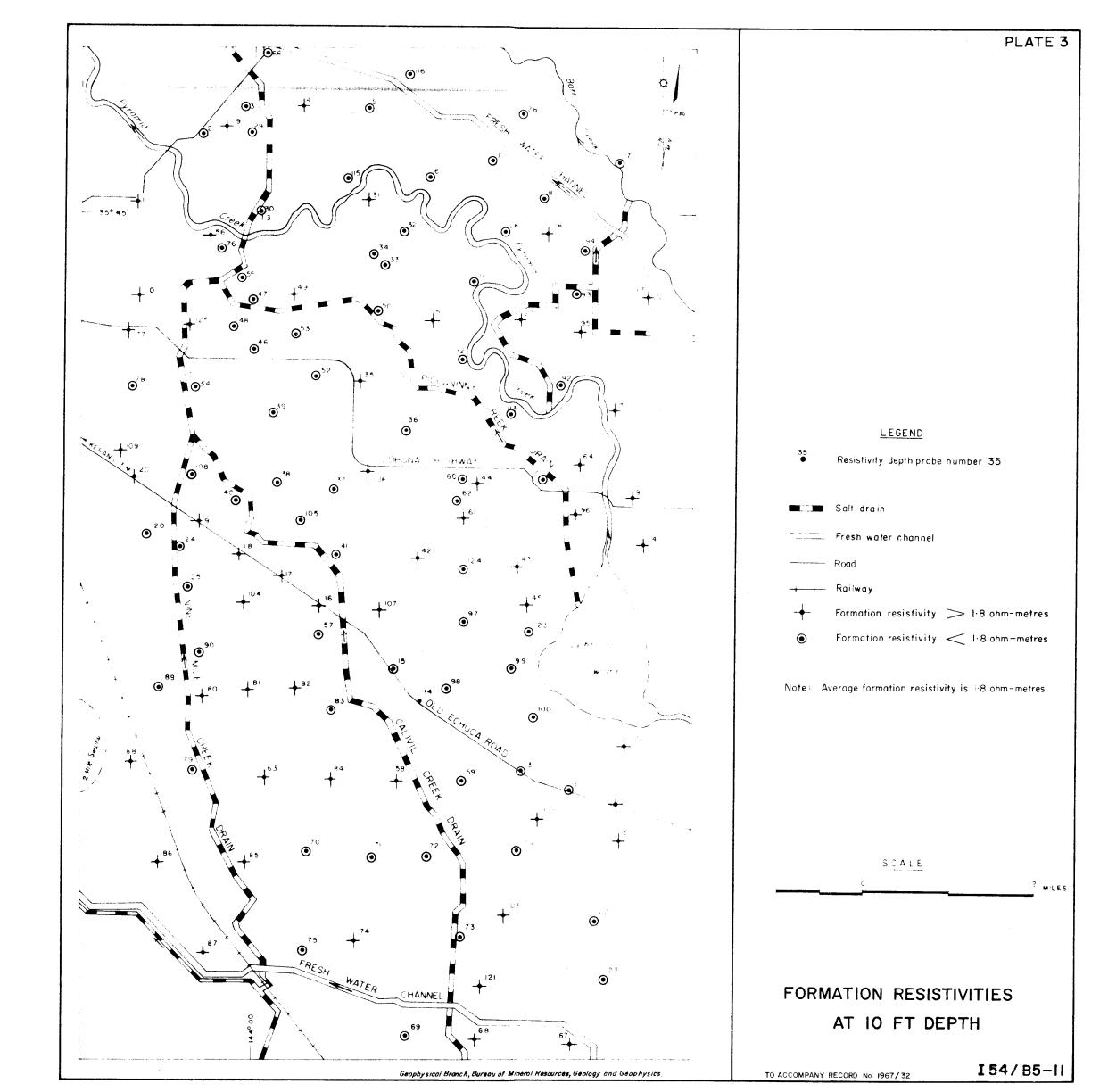

	2 Onm-metres to joit, etc.
Resistivity depth probe number	Resistivity field data resistivity (depth)
	2 (1), 2.5 (15),1.2 (56), 3.0 (250), 15
2	2 (12), 2.2 (14), 1.5 (32), 2.2 (160), 16
3	2.5 (1), 1.4 (24), 1.2 (70), 3.0 (240), 17
4	12 (1), 3.(3), 7 (13), 1.4 (90), 10
5	1.2 (2), 1.6 (80), 10
6	4 (2), 2.3 (8), 1.5 (80), 10
7/	3.4 (2), 1.3 (75), 8.5
8	3.0 (6), 1.2 (75), 8.0
9	42.0 (1), 7.5 (5), 23.0 (28), 1.0 (105) 7.5
10	1.0 (1), 0.8 (5), 1.3 (115) 10.0
11	3.5 (1), 5.5 (42), 1.5 (155), 25.0
12	1.3 (2), 1.6 (20), 1.3
13.	1.0 (2), 1.5 (25), 1.0 (48), 1.8
14	6.0 (2), 3.2 (14), 14.0 (19), 3.8
15	0.8 (2), 0.7 (6), 1.1 (46), 3.0
16	6.0 (2), 9.0 (28), 2.4
17	15.0 (2), 3.5 (9), 2.7 (170), 29.0
18	1.5 (2), 2.1 (14), 1.3 (135), 12.0
19	1.6 (2), 2.4 (17), 4.7 (35), 1.7 (100), 5.5
20	2.7 (2), 5.2 (13), 1.8 (175), 29.0
21	2.8 (3), 2.2 (7), 1.8 (140), 10.0
22	1.4 (3), 0.8 (38), 2.8
23	1.6 (2), 2.3 (4), 1.2 (70), 3.5
24	4.0 (2), 1.5 (115), 8.0
25	6.5 (2), 1.5 (5), 1.1 (90), 11.0
26	2.3 (2), 1.2 (7), 0.7 (90), 1.1 (240), 0.1
27	7.5 (3), 1.5 (9), 2.0 (25), 1.5 (103), 30
28	7.5 (3), 2.5 (8), 1.5 (93), 12.0
29	4.0 (2), 1.5 (110), 15.0
30	2.3 (3), 1.4 (120), 28.0
31	46.0 (1), 8.0 (4), 2.2 (19), 1.0 (105), 1.2
	2.2 (1), 6.5 (3), 1.3 (23), 1.6 (86), 0.2
	0.9 (2), 1.6 (7), 0.8 (29), 0.5 (103), 1.1
And the second s	6.0 (2), 4.5 (7), 1.3 (26), 0.8 (80), 6.0
35	1.0 (2), 4.0 (3), 1.0 (5), 3.0 (27), 1.0 (85), 3.0

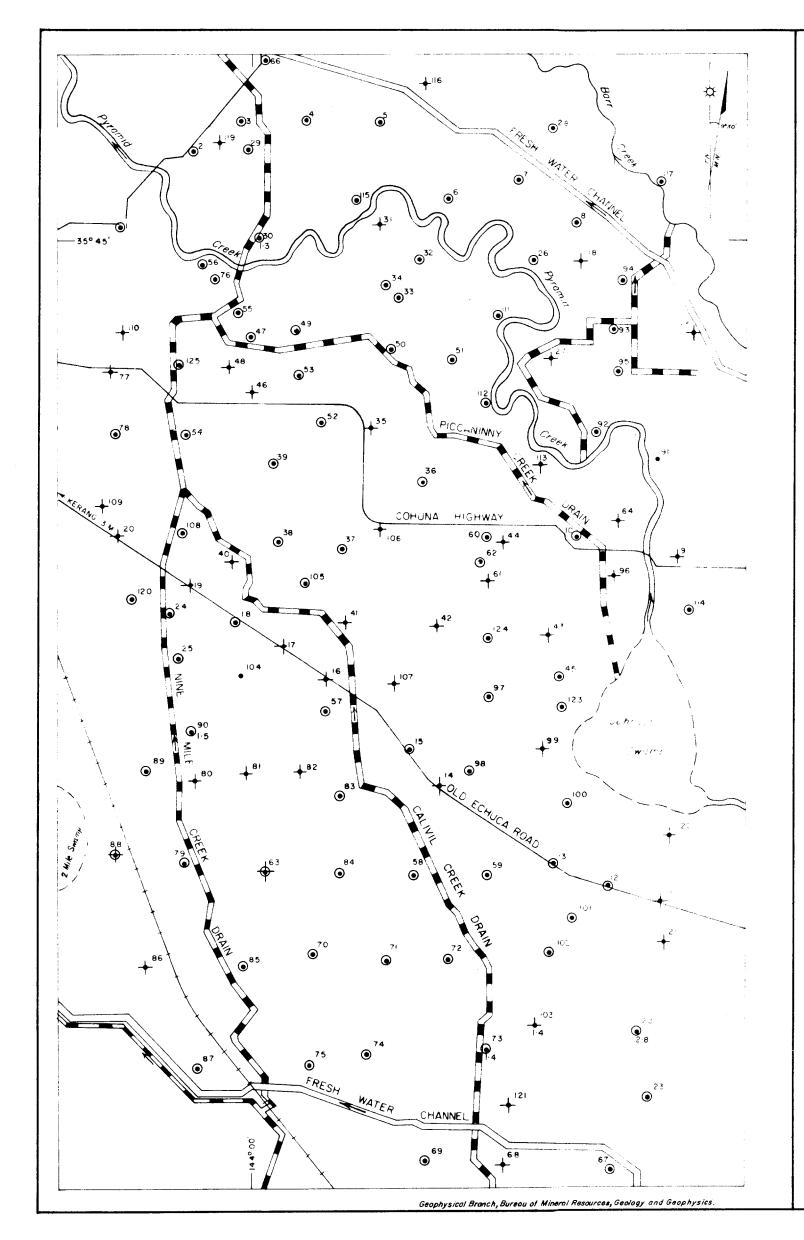

Resistivity	Resistivity field data
depth probe number	resistivity (depth)
36	6.5 (1), 3.5 (6), 1.5 (210), 5.0
37	1.3 (4), 1.8 (12), 0.7 (50), 1.9
38	0.8 (1), 1.1 (46), 3.5
39	6.5 (1), 3.2 (8), 1.7 (150), 6.0
40	2.0 (4), 3.0 (9), 1.5 (16), 2.2 (34), 1.7 (170), 8.0
41	1.5 (1), 1.1 (13), 1.9 (150), 6.0
42	3.5 (8), 1.9 (18), 27.0 (25), 1.5 (130), 5
43	15.0 (1), 6.5 (7.0), 2.5 (38), 1.2 (95), 11.0 (105), 2.5 (290), 17.0
44	4.0 (4), 6.0 (26), 1.2 (110), 12.0
45	3.5 (2), 5.2 (19), 1.2 (68), 2.5 (140), 1.2 (180), 10
46	6.5 (1), 2.9 (40), 1.4 (120), 3.0
47	2.4 (1), 1.4 (75), 6.0
48	4.5 (1), 2.5 (8), 1.4 (17), 2.2 (34), 1.3 (90), 6.0
49	4.5 (3), 1.3 (7.0), 6.0 (13), 1.2 (63), 8.2
50	0.8 (3), 1.2 (125), 3.0
51 ·	8.0 (1), 3.3 (8), 1.8 (36), 0.9 (120), 10 0.8 (3), 2.2 (6), 0.6 (11), 1.1 (65), 2.4 (360), 100
52	4.8 (2), 2.5 (5), 1.6 (180), 10
53	4.5 (3), 1.7 (10), 1.2 (154), 6
54	2.4 (1), 1.4 (44), 2.4 (290), 5.0
55 56	34.0 (1), 3.8 (2.0), 3.2 (14), 1.3 (140), 6.0
57	1.6 (2), 2.0 (6), 1.4 (190), 3.0
58	2.5 (2), 3.0 (16), 1.8 (180), 11.0
59	2.5 (1), 0.8 (2), 1.4 (10), 1.1 (80), 5.0
60	1.4 (20), 1.7 (41), 1.2 (63), 26 (110), 3.0
61	14 (1), 6.2 (7), 26 (8), 2.8 (14), 6.0 (65), 1.0 (85), 10
62	3.0 (1), 1.4 (9), 0.4 (12), 1.3 (80), 4.0
63	2.0 (1), 1.0 (7), 2.8 (20), 1.4 (70), 3.0 (300), 5.0
64	8.5 (2), 20 (6), 6.4 (16), 1.0 (170), 30
65	12 (1), 3.0 (3), 2.0 (14.0),40
. 66	8.0 (2), 20.0 (5), 1.5 (95), 9.0
67	7.0 (2), 1.6 (3), 3.5 (11), 1.1 (21), 1.6 (135), 10.0
68	1.4 (30), 3.2 (44), 0.4 (55), 4.0
69 .	2.9 (2), 1.3 (110), 13.5
70	1.2 (15), 1.6 (80), 5.0
71	3.6 (1), 1.9 (3), 1.5 (26), 2.2 (37), 1.3 (100), 9.0
72	6.0 (2), 3.2 (6), 1.4 (80), 7.0
73	3.2 (1), 2.1 (7), 1.3 (27), 2.3 (170), 13.0
74	4.8 (3), 3.6 (16), 1.7 (140), 5.0

Resistivity depth probe number	Resistivity field data resistivity (depth)
	5.0 (2), 1.7 (3), 1.2 (29), 1.0
76	2.5 (10), 1.6 (48), 4.2 (320), 34.0
77:	22.0 (1), 11.2 (3), 6.4 (6), 4.0 (40) 1.5 (96), 8.0
78	26.0 (1), 1.0 (53), 6.0
7 9	0.8 (6), 1.0 (36), 2.0
80	0.3 (1), 4.0 (27), 1.5 (48), 10
81	1.6 (2), 5.8 (15), 2.5 (96), 17
82 .	5.5 (1), 3.3 (8), 6.0 (22), 1.8 (170), 8
83	1.2 (1), 1.6 (4), 1.2 (18), 1.6 (190), 30
84	8.0 (1), 3.5 (17), 1.5 (68), 3.3
85	5.5 (1), 3.5 (6), 1.3 (34), 3.0
86	2.0 (65), 5.0
87	1.6 (160), 5.0
. 88	1.4 (2), 2.4 (6), 1.8 (180), 30
89	0.9 (2), 1.3 (17), 2.0 0.6 (2), 0.8 (145), 8.0
90 9 1	6.3 (1), 4.0 (25), 2.3
92	7.5 (1), 2.4 (8), 1.5 (105), 8.0
93	2.1 (4), 3.4 (8), 1.7 (41), 5.0 (240), 18.0
94	2.5 (2), 1.2 (5), 1.8 (7), 1.0 (28), 2.5 (115), 20.0
95	3.2 (1), 7.6 (3), 2.8 (14), 1.7 (68), 7.5 (200), 15.0
96	10.0 (2), 4.2 (7), 5.8 (17), 1.8 (95), 4.0
97	1.0 (10), 1.5 (52), 0.9
98	3.8 (1), 5.9 (8), 1.4 (100), 5.0
99	0.9 (1), 1.1 (17), 2.3 (120), 5.0
100	2.0 (4), 1.3 (50), 5.0
' 101	4.5 (1), 1.8 (5), 2.2 (34), 1.4 (113),10.0
102	2.2 (2), 1.4 (150), 9.0
103	2.8 (5), 2.2 (30), 1.4 (180), 10.0
105	0.9 (5), 1.1 (34), 2.5 (180), 11.0
106	7.2 (1.0), 4.3 (13), 1.9 (100), 6.0
107	1.5 (24), 2.0 (90), 10.0
108 109	2.0 (2), 1.1 (50), 2.0 26.0 (1), 60.0 (5.0), 11.3 (55), 15.5 (65), 14.0
110	6.0 (2), 7.2 (27), 2.5 (180), 6.0
111	3.5 (2), 1.5 (80), 7.0
112	6.5 (2), 1.9 (15), 1.5 (101), 7.0
113	16.0 (3), 5.4 (8), 2.5 (140), 6.0
114	3.0 (6), 2.5 (19), 1.5 (130), 15.0
115	20.0 (2), 3.6 (7), 1.6 (140), 35.0


Resistivity depth probe number	Resistivity field data resistivity (depth)
116	3.0 (2), 3.5 (9), 0.8 (11), 2.8 (38), 0.6 (55), 10.0
117/	5.5 (1), 1.8 (7), 1.0 (46), 3.2
118	5.0 (2), 2.9 (10), 3.5 (21), 0.7 (63), 10.0
119	1.5 (1), 2.0 (21), 1.2 (140), 12.0
120	2.9 (1), 1.9 (5), 0.5 (20), 1.4 (105), 7.0
121	2.9 (3), 5.2 (20), 0.8 (55), 5.0
122	1.0 (2), 1.3 (7), 1.8 (32), 3.6 (200), 9.0
123	2.2 (5), 1.1 (34), 2.2 (150), 4.3
124	3.6 (2), 1.2 (18), 1.9 (150), 16.0
125	9.3 (4), 1.0 (6), 3.0 (28), 1.4 (110), 15.0

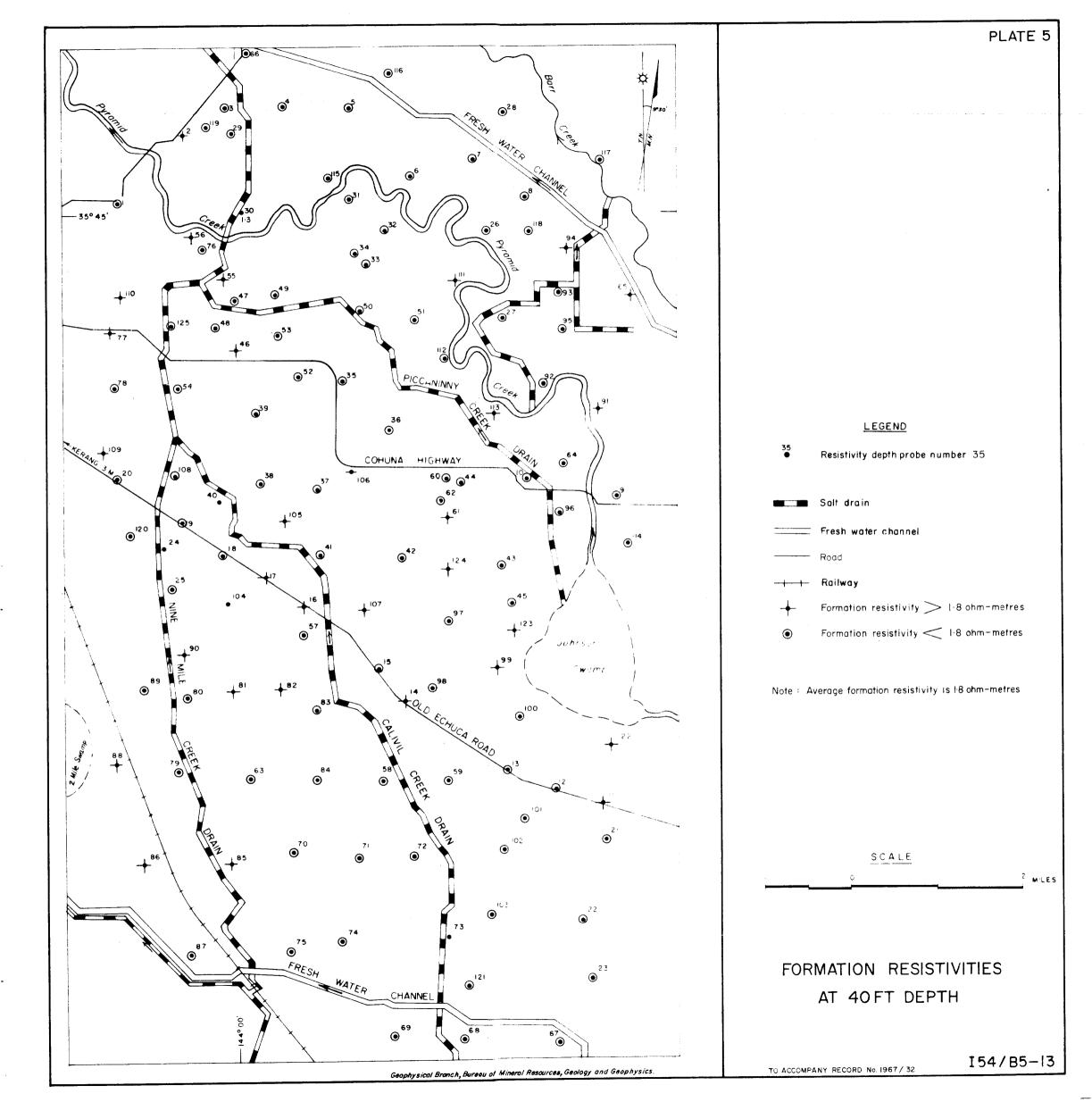


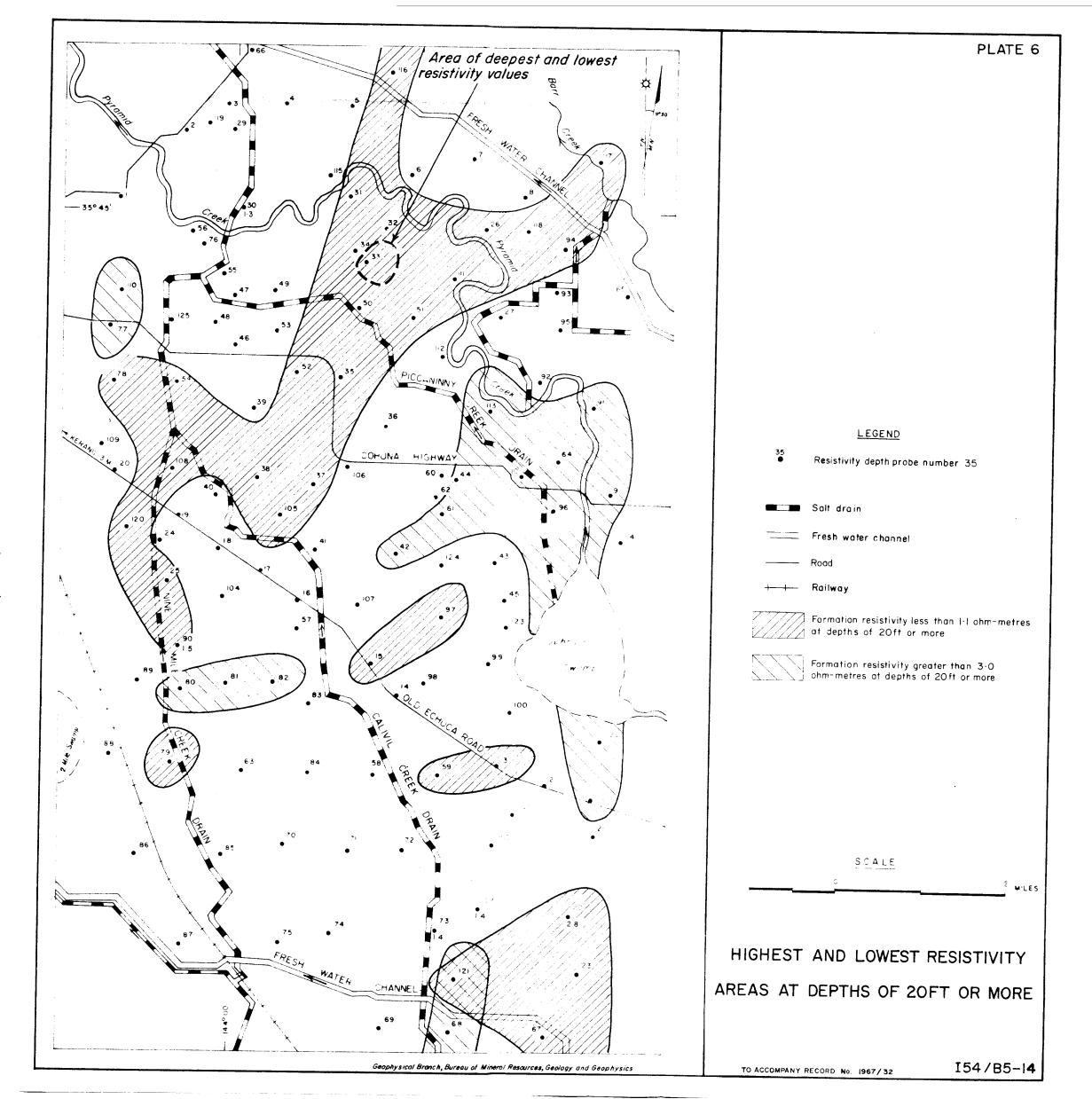


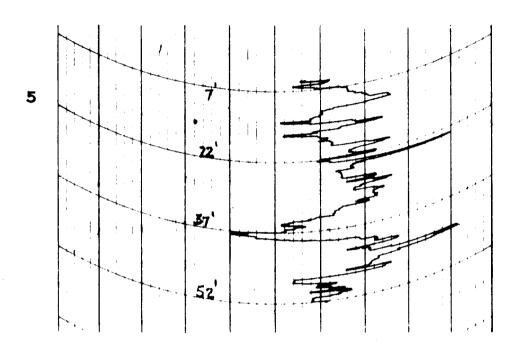

TEMPERATURE CORRECTION DIAGRAM FOR RESISTIVITY

1.161 JEGA-14

LEGEND


- Resistivity depth probe number 35
- Salt drain
- Fresh water channel
- Road
- Railway
 - Formation resistivity > 1-8 ohm-metres
- Formation resistivity < 1.8 ohm-metres


Note: Average formation resistivity is 1-8 ohm-metres


SCALE

FORMATION RESISTIVITIES AT 20 FT DEPTH

I54/B5-12

Area: KERANG

Time constant: 5 s

Date: 24/6/64

Counts per minute: 5 k

Bore hole: 37

Bore hole depth: 52 ft

Remarks: UNCASED HOLE 31 diameter

GAMMA RAY LOG