1968 18 COPY 3

DEPARTMENT OF NATIONAL DEVELOPMENT

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD No. 1968/18

COASTAL EROSION GEOPHYSICAL SURVEY OF THE GOLD COAST, QUEENSLAND 1967

by

G. CIFALI, G.HART, P.E. MANN, E.J. POLAK, and W.A. WIEBENGA

The information contained in this report has been obtained by the Department of National Development as part of the policy of the Commonwealth Government to assist in the exploration and development of mineral resources. It may not be published in any form or use in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

RECORD No. 1968/18

COASTAL EROSION GEOPHYSICAL SURVEY OF THE GOLD COAST, QUEENSLAND 1967

by

G. CIFALI, G.HART, P.E. MANN, E.J. POLAK, and W.A. WIEBENGA

The information contained in this report has been obtained by the Department of National Development as part of the policy of the Commonwealth Government to assist in the exploration and development of mineral resources. It may not be published in any form or use in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

CONTENTS

	,	
	:	Page
	SUMMARY	
1.	INTRODUCTION	1
2.	PHYSIOGRAPHY AND GEOLOGY	1
3.	TRAVERSES	3
4•	MARINE PROFILING	4
5•	SEISMIC REFRACTION TRAVERSES AT SEA	. 10
6.	SEISMIC REFRACTION TRAVERSES ON LAND	11
7.	SALINITY	13
8.	MAGNETIC METHOD	14
9.	TEMPERATURE	14
10.	REFERENCES	20
APPEN	DIX 1. Depths to bedrock (Drawing Nos. H	: [56/B5 - 25 , 26 , 27)
APPEN	DIX 2. Uncorrected near-surface temperaty	re values
		56/B5-23,24,22)
APPEN	DIX 3. Results of seismic refraction trav	verses at sea.
	ILLUSTRATIONS	€
Plate	1. Locality map (Drawing No. H56	/B5-14)
Plate	2. Traverses, sea-bed contours, and geological	рgy (H56/ B 5-20)
Plate	3. Bedrock depth contours (H56/B5-17)
Plate	4. Multiple reflections and geometrical of	orrections (H56/B5-21)
Plate	5. Sample 'Sonar Boomer' recording, 240-f	t depth scale (H56/B5-28)
Plate	6. Sample 'Sonar Boomer' recording, 600-f	t depth scale (H56/B5-29)
Plate	7. Beach seismic refraction cross-section	s (H56/B5-6)
Plate	8 Near-surface temperature distribution,	uncorrected (H56/B5-7)
Plate	9. Heating effect and traverse average ne temperatures	ar-surface (H56/B5-9)

- Plate 10. Near-surface temperature distribution, corrected for daily and hourly variations (H56/B5-10)
- Plate 11. Hourly and daily near-surface temperature variations (H56/B5-11)
- Plate 12. Vertical temperature variations (H56/B5-15)
- Plate 13. Sample temperature records (H56/B5-18)
- Plate 14. Thermistor probe circuit diagram and calibration curves (H56/B5-13)
- Plate 15. Cold upwelled water and eddy currents related to sea-bed contours (H56/B5-16)

1968/18

SUMMARY

During January and February 1967, a 'Sonar Boomer' survey was carried out by the Bureau of Mineral Resources (BMR) in conjunction with an echo sounder survey by the Co-ordinator-General's Department, Queensland.

With the 'Sonar Boomer', only one continuous sub-bottom reflector (bedrock) was recorded. Depths to bedrock were obtained for only about 60% of the total length of traverse in zones where reefs were notpresent. Reefs could be picked on the echo sounder records. Difficulties with noise in rough weather and with masking by multiples when in shallow water were mainly responsible for the incompleteness and imperfect reliability of the bedrock depth data. A contour map of the bedrock was produced, showing a surface similar in form to the sea-bed, but more irregular and dipping more steeply to the east.

Limited land and sea seismic refraction work was also carried out. The results are of interest in their own right and also are of assistance in the interpretation of the 'Sonar Boomer' data.

Sea temperatures were also measured along the traverses. To obtain a near-surface temperature pattern, corrections were applied, eliminating short-term influences. By assuming that under the influence of the Coriolis force, water moves along temperature contours, the temperature results were interpreted in terms of currents. At various places cooler well water comes to the surface. Measurements of vertical temperature distribution are discussed in relation with the near-surface temperature pattern. The occurrence of eddy currents and cooler well water can be predicted from a depth contour plan. The results of such a prediction seem to confirm, at least qualitatively, the validity of the current pattern deduced from the temperature survey.

1. INTRODUCTION

The small section of the Queensland coastline between Coolangatta and Southport known as the 'Gold Coast' have, over the last 30 years, developed into a major tourist centre of Australia. Large expensive hotels and motels and many private dwellings have been built close to the beach. This development has focused attention on the continual changes wrought by the inexorable forces of the ocean on the coastline. The general trend of natural processes has been the erosion of the beaches, although accretion in several areas has taken place during one or more years. Also, with the increase of population the problem of sewage disposal has arisen.

The Co-ordinator-General's Department of Queensland (C.O.G.) was asked by the Queensland Government to investigate all aspects of coastal hydraulics and morphology to provide the basic data for the design of major coastal engineering projects required to alleviate the erosion. In 1964, C.O.G. secured the services of overseas authorities from the Delft Hydraulics Laboratory, Delft, The Netherlands, to examine the problem and recommend the type of investigation required for the design and execution of remedial measures. The Chief Engineer of the Site Investigation Service of the Laboratory carried out an examination in 1965. A report prepared giving recommendations for a comprehensive coastal investigation lists inter alia ten disciplines.

In response to an application from C.O.G., the Bureau of Mineral Resources, Geology and Geophysics made a geophysical survey to determine sub-bottom structure, and collected salinity and temperature data of the coastal waters. All data collected would be given to the Delft Hydraulics Laboratory for further evaluation. The 'Sonar Boomer' reflection bottom-profiling method was used at sea. Some conventional seismic refraction shooting was done on the beaches and at sea. The work was done between 13th January and 4th March 1967 by a party consisting of E.J. Polak, party leader and geophysicist: G. Cifali and G. Hart, geophysicists; A. Radeski, technical officer; and D. Tarlinton, field assistant, P.E. Mann, geophysicist, took over as party leader on 5th February, and A. Radeski left the party on 11th February.

The 'Sonar Boomer', other recording equipment, and power supplies were housed on the C.O.G. 85-ft twin diesel launch M.V. SI BON, crewed by captain, marine engineer, and deckhand. Six field assistants from C.O.G. operated the 'Hydrodist' marine position-fixing equipment; two men at each remote station and two at the master station on the ship. Mr. B. McGrath, executive engineer of C.O.G. for the coastal erosion project, was liaison officer for the survey.

2. PHYSIOGRAPHY AND GEOLOGY

The Delft Hydraulics Laboratory did not recommend a comprehensive geological investigation of the area, although geological data are being continually used to interpret the present conditions and the effectiveness of future work proposals. An investigation may indicate unknown factors and their general effect on the coastal erosion.

Some information can be found in published geological maps and reports, viz. Beasley (1948), Gardner (1955), and Connah (1961). Surveys to study erosion and silting at Southport have been done by Connah (1946) and Brooks (1953).

Physiography

Coastal plains, one-half to three miles wide, extend over most of the area. These plains consist of swampy flats of sand, mud, peat, old dune ridges (vegetated), estuarine alluvium, and coastal dunes about 300 to 1200 feet wide. Up to twelve coastal dunes paralleling the coast have been recognised (e.g. at Broadbeach).

The coastal plains are cut by meanders of the Tweed and Nerang Rivers. Small creeks (Tallebudgera, Currumbin, and Flat Reck) also drain the coastal swamps.

A feature of the rivers is the sharp change in direction close to the ocean. The rivers approach the coast generally in an easterly direction, turn sharply, and discharge some miles northward.

Mountains form the western boundary of the coastal plains, and rock crops out as headlands at North and South Nobby, Coolangatta, Currumbin, Burleigh, and Point Danger. Hails (1964) interprets the headlands as submerged promontories. Between the headlands the beaches are in dynamic equilibrium. Submarine reefs have been found from sounding records and are known from local knowledge. Reefs are more extensive in the northern part of the area.

Geology

In the survey area the bedrock consists of the Nerangleigh-Fernvale Group (Belford, 1953) of Lower Palaeozoic age. The Group, probably of Silurian age, consists of sandstone, siltstone, and quartzite. At several places along the beach small outcrops were observed during survey work, for example at Flat Rock Creek, about 50 ft north of seismic spread S7. At this outcrop the beds strike approximately north-west and dip steeply to the east. Bedrock with about the same dip and strike was observed south of Tugun. However, no measurements were made on any outcrop. Some geology is shown in Plate 2.

Basalt of Tertiary age is widely distributed in southeastern Queensland (Soloman, 1964) and occurs as cappings on Burleigh and Point Danger headlands in the survey area. The known geology of the Moreton District suggests that basalt may be present in the subbottom. Cook Island and some nearby reefs are probably basalt.

The coastal region has been subjected to a series of eustatic movements from mid-Pleistocene to Recent times (Gardner, 1955). During this period sea level has varied from 100 ft above, to 250 ft below, the present level; i.e. the coastal plains and off-shore deposits have been both exposed and submerged. During emergence, the unconsolidated sediments have been rapidly eroded and deposited in what is now quite deep water.

The area now occupied by the plain has been built progressively seaward by river and marine deposition. The initial stages of infilling have been accomplished by rivers with greater discharges and sediment capacity than those of today. The large volume of material supplied to the off-shore zone was reworked and redeposited by littoral currents. A decrease in the activity of the rivers promoted deposition with sea level changes modifying this operation. Sediment (i.e. sand) transport into the area by the northerly off-shore current has been of enormous importance to the area.

3. TRAVERSES

The survey network suggested by Delft Hydraulics Laboratory to examine the submarine topography and bottom structure consists of fifty traverses, half a mile apart, approximately perpendicular to the coastline and extending about eight miles seaward. Shorter traverses were suggested for areas of sewage outfall. The BMR added five cross-traverses (Seismic 1, 2, 2A, 3, and 4). The survey area (see Plate 1) was confined to the coastline between Tweed Heads, New South Wales, and Southport, Queensland.

Cyclonic weather reduced the number of days suitable for operating the recording equipment as the launch was available only for a limited period. After gaining experience with the 'Sonar Boomer' system many of the earlier traverses were repeated. Altogether forty eight ordinary traverses and two outfall traverses (Eta 29 and 34A) were surveyed.

Positioning at sea was done with the 'Hydrodist' equipment; two units were on the ship and two units at selected land stations. C.O.G. had prepared, by computer, tables of the sets of distances from the land stations required to pilot a straight course. These distances were monitored continuously and read every 100 metres on traverse. Corrections to bring the ship back on course were determined by the navigator and applied by the captain. Every 100 metres the navigator impressed fiducial distance marks on all records by manually operating a simple electrical circuit. Several traverses could be covered by using the same land stations; other traverses required the positions of the land stations to be changed. The 'Hydrodist' equipment proved very accurate and any repreated traverse probably differs by not more than a few metres from the position of the original traverse. The traverses show small divergences from straight lines generally at their ends only.

Traverses perpendicular to the coast were sailed seaward or landward with echo sounder, 'Sonar Boomer,' and temperature systems operating simultaneously. Landward, the traverses were run to a navigable limit; seaward, the traverses were run until the ship lost contact with the land station or the end of the traverse was reached.

. .

Water depth was continuously recorded by an 'Elac' high-frequency echo sounder. Some reefs were detected by the echo sounder. Tidal corrections, obtained from continuous recording tide gauges along the coast, were applied to obtain the sea-bed elevation (Plate 2).

The first few traverses were run at about three knots. Later the speed was increased to six knots because it was then easier to keep on the traverse in the prevailing bad weather conditions.

For convenience, the notation OM 5;7000, meaning the 7000-metre mark (station) on traverse Omega 5, will be used.

4. MARINE PROFILING

Equipment

A description of the 'Sonar Boomer' system is given by Polak (1965). The equipment used corsisted of two power units Model 232, two capacitor banks Model 231, and a trigger unit. The spark gap in the trigger unit is triggered in synchronism with the rotation of the recorder helix. The capacitor banks discharge via the spark gap through the coil of a Model 236 transducer. The equipment was operated at full power, i.e. 1000 watt-seconds. Some experimenting with 500 watt-seconds was carried out but the results were worse than with full power. Pressure pulses in the water were detected by a hydrophone Model 262-G, a 2-inch diameter, 10-ft-long oil-filled hose containing the pressure sensitive element. Signals from the hydrophone were amplified and filtered in a Model 254 unit incorporating an 'Alden' wet paper, helical wire recorder.

Method

The transducer assembly was suspended amidships on the port side from a temporary rigid beam and pulled through the water by steel cable from a derrick.

Initially the suspension was rigid but later it was converted to a spring. This arrangement kept the aluminium transducer plate about three feet below the water surface and stopped the transducer from 'porpoising' when the ship rolled excessively. The hydrophone trailed astern on the port side. The hydrophone depth was about three feet and the distance between transducer and hydrophone was about 65 ft. The depth, separation, and the relative position of the hydrophone and transducer were varied to obtain the optimum operating conditions.

Records

Two sample 'Sonar Boomer' recordings are reproduced in Plates 5 and 6. The horizontal lines are timing lines impressed on the record at 10-millisecond intervals. On both plates the time scale is shown, giving the total travel time of the pulses. The vertical lines are distance marks manually impressed on the record by the navigator; they indicate successive 100-metre intervals along the traverses measured from the baseline.

A pressure pulse arriving at the hydrophone triggers the printing circuit and a dark mark is made on the record. Pressure pulses may originate from the hydrophone or from random sources such as the ship's propeller. Since the pulses from random sources are not synchronised with the sweeps of the helix, they do not give rise to continuous horizons. Continuous horizons arise mainly when pulses are reflected from continuous surfaces. The group of parallel traces near the top of the record is probably connected with the triggering of the spark gap. The group of traces starting about 14 ms down the record consists of arrivals from the transducer direct and reflected only at the water surface.

Generally the weather throughout the survey was poor. Strong south-east winds blew and seas were moderate to rough. Two periods of cyclonic weather were experienced. This survey showed that record quality deteriorated as the sea conditions worsened. Although different techniques were applied to maintain record quality in deteriorating weather, they were unsuccessful and several traverses were abandoned until the weather improved.

The depth scales available in the Model 254 recorder are not consonant with the water-depth encountered on the traverses. As the firing rate is governed by the number of power units used, only the 50-ms and 250-ms (240-ft and 600-ft) sweep speeds could be used. In-shore, sub-bottom structure was better displayed on the 50-ms time scale; where the water depth was greater than 100 ft the 250-ms time scale was more suitable.

To convert time sections to depth sections, the velocity of sound in the layers above a given boundary must be known or estimated. For water or water-saturated sediments the velocity is about 5ft/ms: i.e. a time of 5 ms is equivalent to a depth of about 25 ft. The velocity of harder or more consolidated material is greater and the equivalent depth will be greater.

Generally, sub-bottom reflections were poorly recorded and many traverses were repeated to eliminate recording faults.

Repetitions

A disadvantage of the equipment arises from the repetition on the record of continuous horizons that correspond to a single boundary.

The cutput wave train of the transducer is not a single pulse and has at least three main peaks (Hersey et al, 1960). The production of these is ascribed to the movement of the transducer plate, the collapse of cavitation bubbles produced at the back of the transducer plate, and the reflection of the pulses from the water surface. Ideally these pulses reflected at each boundary will give rise to two sets of pulses at the hydrophone, one direct, and one reflected from the water surface, to produce continuous horizons on the record. Alternatively, repetitions máy be caused by 'rattle' or 'ringing' of the filter stage in the recorder. Records taken in good weather conditions early in the survey, with low amplification of the hydrophone output, generally showed three continuous horizons

corresponding to the sea bed. Deeper boundaries were intermittently and poorly recorded. When the weather deteriorated, the transducer was run deeper to prevent it leaving the water and the receiver amplification was increased. The number of repetitions increased to six. The effect of repetitions is to conceal, at least partly, a boundary that is less than a certain depth below another. The thickness of the concealed zone depends on the seismic velocity of the layer and the number of repetitions. Interference of repetitions from the sea bed with those from the sub-bottom was troublesome on traverses Seismic 1 and 4, but generally not so troublesome on the Omega traverses. Boundaries determined on the Omega traverses were used to control interpretation of the Seismic traverses. Between traverse intersections it was sometimes possible to follow a boundary when the first arrival from the boundary was amongst repetitions of a shallower one (i.e. the sea bottom).

Multiples

Multiples, a common feature of recordings with 'Sonar Boomer', are signals which have undergone more than one reflection. The multiple most easily distinguished is that due to the reflection of a signal from the sea bottom to the water surface, back to the sea bottom, and then back again to the hydrophone. This multiple will normally be recorded with a travel time about twice that of the water-bottom reflection and therefore will show any bottom feature in exaggerated relief. Figure 1 of Plate 4 shows some of the many paths resulting in multiples. However, energy considerations limit the number of multiples recorded.

Multiples, normally easily recognised, may mask subbottom reflections. Figure 2 of Plate 4 can be used to predict the approximate arrival time of the first two water-bottom multiples from the water-bottom reflection travel-time, for a hydrophone-transducer spacing of 70 ft. This figure predicts that in shallow water, severe masking by multiples will take place; this was confirmed by the survey records. Usually multiples were weakly recorded, and were not of use in record interpretation.

Noise

Throughout the 'Sonar Boomer' work, noise was the greatest problem in the detection of reflected arrivals from sub-bottom discontinuities (signal). Since noise is synchronised neither with the sweeps of the recorder helix nor with the signal from a stationary surface, it does not give rise to continuous horizons on the record. However, hoise obscures the signal and often compels the use of undesirably low amplification of the hydrophone output. Noise sources may be classified as belonging to the sea, the ship, or the receiving system.

Sea noise was found to increase rapidly with wave height and probably increased with wave frequency also. For 2-ft waves, wave noise was negligible; for large waves (greater than 8 ft) it was excessive. It is to be expected that wave noise will increase towards

the coast owing to the breaking of the waves. This is not obvious on the records, probably because the receiver gain was decreased inshore when the signal became stronger to avoid the records being printed too darkly. It is possible that large waves or short-period waves are responsible for some signal-induced random noise by diffraction of the signal to the hydrophone. Reflection of signals from a wave to the hydrophone directly from the transducer is probably not possible.

Some noise, serious at times, was produced by the survey ship. Sources were the ships wake, propellers, and main diesels (all acoustic). Possibly, severe electrical noise was produced by a petrol-driven generator used intermittently to power the ship's refrigerator.

Noise from the ship's propeller and main diesels was probably unimportant owing to filter settings used in the receiving system: the ship's engine speed was approximately 20 rps, and that part of the spectrum below 200 c/s was filtered out in the receiving system.

When conditionswere bad, noise from the ship's wake was not so severe as that from other sources. However, when weather conditions were good, as in the earlier part of the survey, the noise of the wake may have predominated. Filters probably remove much of this noise.

Noise from the receiving system could be produced in the amplifiers but for practical purposes the hydrophone is probably the only part of the receiving system responsible for noise. Presumably this noise is caused by turbulent flow past the hydrophone body (although streamlined to minimise this) and by suspended solids striking the hydrophone. This noise increases rapidly with boat speed. In fact, it is recommended by the manufacturers, Edgerton, Germeshausen and Grier Inc, that the boat speed be kept as low as possible, preferably three knots or less.

Errors

As continuous monitoring of the ship's path was done by 'Hydrodist', error in positioning the boat on a traverse is considered negligible. Thus direct comparisons can be made between the original and subsequent records for any repeated traverse.

The error in determining the depth of different sub-bottom reflectors depends on the quality of the record and the velocity of the different layers. The nature of the 'Sonar Boomer' records at shallow depth, where there is considerable confusion caused by multiple reflections and by repetitions, is such that large errors may arise from an incorrect interpretation of the trace. This is particularly the case where no control is available. It was proposed to use refraction seismic control, but insufficient time and bad weather prevented this being done fully. Other errors in depth calculations can be placed on a more quantitative basis. The error in reading the time of a given trace would not be more than a half-millisecond, one millisecond being the maximum

thickness of the trace observed. Larger errors of the order of 2 ms will arise if a first repetition is interpreted as an initial trace. Errors also arise when incorrect estimates of velocity are made and depths are calculated from these estimates. Consider a layer of thickness $\mathbf{w} = \mathbf{v} \mathbf{t}$ where \mathbf{t} is the one-way travel time across the layer and \mathbf{v} is the velocity of seismic waves in it. Then the error dw in \mathbf{w} is given by

$$\frac{dw}{w} = \frac{dv}{v} + \frac{dt}{t}$$

As noted above, dt for a layer defined by two boundaries will be one millisecond. In practice the velocity ranges from about 4.8 to 5.3 ft/ms with occasional higher values. A velocity of 4.8 ft/ms was adopted for computation. Generally only one reflector was recorded and an estimate of the error in determining the depth of a deeper horizon is not developed here.

Interpretation

There is little published material on the interpretation of 'Sonar Boomer' records in shallow conditions and experience will help formulate the technique of interpretation. Some of the techniques evolved are described and may possibly be useful for the future.

A mean line was drawn across the record through the strongest trace of the repetitions of the bottom and the corresponding repetition of the first sub-bottom reflector. This procedure smooths the wave action and is simple for records with three repetitions only. Records taken in rough weather can be difficult to read because wave motion gives illusory dips to the continuous traces and consequently false structural features in the reflectors. Also, multiples may be bresent in critical places.

Over reef areas (zones where the sea-bottom is hard rock) the traces become jagged. A character change from records with smooth sedimentary bottom is obvious. The change was particularly noticeable on the echo sounder records which were, for this reason, used to give bedrock depths in reef areas.

On some records, the bedrock came close to the sea-bottom and was obscured by bottom repetitions, but the echo sounder gave no reef and only a slightly irregular sea-bottom. These zones are interpreted as very shallow bedrock.

In this report the term bedrock is used to indicate the only observed continuous sub-bottom reflector. The bedrock probably consists of weathered Nerangleigh-Fernvale Group or Tertiary basalt (Polak and Kevi, 1965) but any hard rock with seismic velocity well above 6000 ft/s could fit the interpretation.

On other traverses where no sub-bottom reflections were observed (and where recording quality was not the cause) clay probably grades into unweathered bedrock through an extensive transition zone

without sharp discontinuities, or the absorption of seismic waves is so great that no significant amount of energy reaches the hydrophone after reflection from the bedrock. Both effects may be present. On the records the sea bottom is taken to be the same as that identified from the echo sounder records.

Results

The known off-shore 'bedrock' depth data are given in Appendix 1. This table consists of depths (below State Datum), rounded off to the nearest foot, at each hundred-metre mark on sounding traverses of bedrock as given by (a) the 'Sonar Boomer', where a sub-bottom reflector was detected, and (b) the echo sounder, where 'reef' was detected. The depths to reef can be obtained from SC plan numbers 206A, 207, 208A, 209, and 210 of C.O.G. No information was obtained on outfall traverses. Plate 3 shows contours at 10-ft intervals of the depths given in Appendix 1.

Altogether, the 'Sonar Boomer' work was not nearly as successful as anticipated. This can be attributed to: (a) the bottom profiling system, which is really designed for much deeper work (e.g. off-shore oil exploration); (b) the conditions experienced during the survey (noise, bad weather, and the probable partial absence of sufficiently good seismic discontinuties); and (c) equipment breakdowns and malfunctions.

Where sub-bottom reflectors were not recognisable, it was probably due to one or more of the following reasons:

- (a) Water depth was less than about 30 ft (bottom multiples, always strong in shallow water, obscured the signal).
- (b) Noise was excessive (e.g. in bad weather)
- (c) The sub-bottom reflector was obscured by water bottom repetitions;
- (d) Reef was present
- (e) Suitable seismic discontinuities were absent
- (f) The attenuation of signal in the sub-bottom was too great.

Mainly because of these factors, the 'Sonar Boomer' gave depths to bedrock on only about 70% of the total length of traverse over sedimentary sea-bed. About 27% gives no values and about 3% is doubtful (See Appendix 1).

Despite the general low quality of the records, there is reason to believe that there is probably no main reflector of seismic energy of frequency 1Kc/s at depths in the range 60 to 100 ft below the sea bottom. The sediment thickness, or depth from sea bottom to bedrock, increases quite consistently seawards along traverses and a

maximum of 54 ft was encountered at the end of OM13. Nowhere is the bedrock seen to dip under 50 ft below the sea-bottom and then disappear owing to low signal amplitudes. Some of the signal amplitudes, for sediment thicknesses of 50 ft, are quite high. However, the nature of the sediment layer could be highly variable, except that the degree of consolidation must be fairly small.

Concerning the contouring of bedrock depths in Plate 3, the following points should be noted: (a) The contouring may be ambiguous, e.g. at OM6; 11000; (b) the reef areas near Cook Island and The Spit are either not contoured or contoured in a rather doubtful fashion, because of their irregularity.

Plate 3 shows that there is a marked similarity between the sea-bottom and the bedrock topographies. Bedrock contours, like sea-bed contours, show a trend similar to the coastline. The sediment thickness (unconsolidated) therefore increases mainly with distance from the coast. Also, bedrock gradient is, like the sea-bottom gradient, greatest near the coast and also at about seven miles east of Point Danger. However, bedrock topography is more irregular and the easterly dip is steeper than that of the sea-bed. Other features of the bedrock topography can be noted:

- (a) A small number of hills is present, e.g. the one 30 ft high at OM22;6000. These hills are probably not very significant owing to their limited areal extent and height.
- (b) Minor 'valleys' appear to be present, e.g. between OM 33;2000 and OM 33;5000. Owing to the inaccuracies, these may not all be real.
- (c) Overall, the bedrock topography is quite flat.
- (d) Major bedrock 'lows' appear to be absent.

It is possible that the pre-Quaternary basement topography is more irregular than that of the bedrock, owing to infilling by consolidated or partly consolidated alluvial, estuarine, littoral, or continental shelf deposits of, say, Pleistocene to Recent age.

5. SEISMIC REFRACTION TRAVERSES AT SEA

Method and equipment

Three refraction spreads were fired at sea: two on traverse Seismic 1 and one on traverse Omega 37. The shot-to-geophone layout is based on the method of differences (Heiland, 1946).

Twelve hydrophones attached to a buoyed cable were towed astern of the ship into position on a traverse. A weighted charge was placed overboard and fired below the ships stern, on the bottom or at an intermediate depth, when the ship stopped. The location and water

depth were determined by the 'Hydrodist' and echo sounder respectively. A reversed profile was obtained by shooting after reversing the ship's direction. By paying out the hydrophone cable, shot distances of 50 and 300 ft could be obtained. The error in position of the reversed spreads is considered negligible because of the accuracy of the 'Hydrodist' equipment and the straightness of the hydrophone cable. Because of time limitation, other spreads were not surveyed.

Hydrophones manufactured by Electro-Technical Laboratories were connected to a 12-channel recording system consisting of amplifiers and oscillograph manufactured by South-western Industrial Electronics.

Results

The results are given in Appendix 3. They show, at Seismic 1;2000 and OM 37;2200, the existence of a high velocity (11,000 ft/s) layer less than a few hundred feet below sea level. Unfortunately, for both traverses, the quality of the 'Sonar Boomer' record is poor, so that it is not possible to compare the two methods directly. However, adjacent traverses give useful information for comparisons. It appears that the high velocity layer is consistently far too deep to be identified with the 'Sonar Boomer' bedrock, which must be a shallower layer (of intermediate velocity).

6. SEISMIC REFRACTION TRAVERSES ON LAND

Methods and equipment

Cyclonic weather prevented ship-borne operations between 24th February and 2nd March. Refraction shooting at eleven locations (Plate 3) along the coastline was carried out in this period. Spreads were laid out on the beach several feet above the wave wash, approximately parallel to the water line. Geophones were buried in the sand, 60 ft apart. Strong wind, rain, heavy surf, and severe electrical interference produced a high noise level. It was not possible to improve the signal-to-noise ratio by using very large charges. Although each location was carefully selected, the beach is narrow and houses are built to the edge of the first dune. Small charges were used and the seismogram quality is poor. Nevertheless, the seismograms give useful approximate depths and velocities of refractors along the coastline.

A 12-channel seismograph manufactured by South-western Industrial Electronics was used with T.I.C. geophones having a natural frequency of 20 c/s to record the arrival of the longitudinal waves.

The seismic refraction method used was the method of differences (Heiland, 1946, p. 548). Close to the geophone spread charges were fired in-line and in the sand. At larger distances, charges were fired about 3 ft deep in the surf and about 200 ft off-line.

Unfortunately it was not possible to shoot refraction spreads perpendicular to the coast, to measure the bedrock dip in the easterly direction. In computing seismic results from the arrival times, it was

assumed that the easterly dip was zero. Considerable errors in velocity and depth of the deeper layer would result if, at the spread locations, this dip was large.

Results

The results are given in Plate 7. The numerous consistent features are summarised in Table 1.

TABLE 1
SUMMARY OF LAND REFRACTION RESULTS AND INTERPRETATION

<u> </u>		
Location (spread number)	Seismic velocity (ft/s)	Interpretation in geological terms
S4, S6, and S8	2000 to 3500	Sand, almost dry to nearly saturated
All but S6 and S10	4000 to 5700	Sand, water saturated
S8 and S10	5800 to	Semi-consolidated sediments or weathered rocks, saturated
S3, S4, S8, and S9	9000 to 12,500	Consolidated sediments or slightly weathered rock, saturated
S1 to S11	14,000 to 18,000	Unweathered 'basement' (igneous, sedimentary, or metamorphic)

The qualitative data in Plate 7 are reasonably reliable as far as they go. Probably, the layer of weathered bedrock (9000 to 12,500 ft/s) should be present at most locations rather than at four only. The 5800 to 6500-ft/s layer is probably either partly consolidated sediments or highly weathered bedrock. The high velocity layer (14,000 to 18,000 ft/s), present at all locations, is interpreted as unweathered pre-Pleistocene basement (probably Nerangleigh-Fernvale or Tertiary basalt).

Quantitatively, the data given in Plate 7 are poor. The error in unweathered bedrock depth may often be worse than 30%. Despite this and the paucity of in-shore 'Sonar Boomer' data, the 14,000-18,000-ft/s layer is, at nearly all locations, too deep to coincide with the 'Sonar Boomer' bedrock, if the latter is extrapolated to the spread locations. An exception is at Flat Rock Creek, where the weathered layer could be absent.

The 'Sonar Boomer' bedrock is therefore probably the layer below the 4000 to 5700-ft/s layer.

7. SALINITY

It was intended to record the near-surface salinity variations continuously along the traverses to infer the presence and nature of currents, if any. Measurement of the salinity variations of sea-water involved simultaneous recording of both resistivity and temperature at the same depth.

If S is the salinity, p the resistivity and T the temperature,

dS = -A dp -BdT

where A and B are positive constants.

In sea water (approximate salinity 30,000 p.p.m.; resistivity 0.2 ohm-metre; and temperature 25°C) it was desired to detect salinity variations as small as 100 p.p.m., resistivity to 0.0005 ohm-metre, and temperature to 0.1°C. Unfortunately the commercial resistivity meters taken on the survey proved too insensitive to detect the small variations of resistivity that probably existed.

A 1000-c/s a.c. recording bridge system to indicate resistivity variations as small as 0.0003 ohm-metre was designed and tested during the short time available for experimental work. In this design, variations of cell resistance change the amount of unbalance of the bridge, operated off balance, and the unbalance voltage is processed and recorded. Unfortunately, various factors, including the presence of bubbles and detritus in the sea water, electrode corrosion, and the effect of temperature changes on the circuit elements, prevented successful operation of the system. It was not possible to eliminate all these factors in the time available.

8. MAGNETIC METHOD

It was proposed to record total magnetic field along the traverses using an 'Elsec' proton magnetometer with the detector head in a towed 'fish'. The towed 'fish' was not imported in time to reach the survey. However, some experimental work, with a detector head attached to the ship's mast, was carried out. The digital output was recorded by a three-pen 'Devar' recorder but the operating conditions gave too high a noise level and the method was discontinued.

9. TEMPERATURE

Equipment

Sea water temperature was measured with a thermistor system designed by the BMR. The circuit diagram and calibration curves are given in Plate 14. Temperature measurements were continuously recorded by a Speedomax Recorder Type G, Model S, 60,000 Series manufactured by Leeds and Northrup.

Method

For the near-surface, constant-depth temperature measurements, a thermister probe was mounted on a 1-inch diameter pipe secured to the ship and used to draw water for salinity measurements. Comparisons between the BMR thermistor system, a non-recording thermistor system belonging to C.O.G., with probe mounted beside that of the BMR, and an alcohol in glass thermometer placed in the outflow from the salinity cell, were made regularly. The depth of the thermistor probe varied from about zero to 6 ft, but was mostly about 3 ft.

Vertical temperature variations were recorded mostly at the seaward end of traverses. A second BMR thermistor probe, sinker, and electrical cable as hand line were used.

Principles

In the interpretation of the data, the following principles were used:

- (a) The movement of sea-water and the interplay of currents produce a certain temperature distribution. Temperature can thus be used to deduce currents from thermal contours in much the same way as a tracer is used to observe the movement of water.
- (b) When currents at different temperatures come into contact, the higher temperature water (of lower density) tends to flow above the lower temperature water (of higher density).
- (c) Assuming that no other forces are interfering, currents in the sea are subject to the Coriolis force

due to the Earth's rotation (Sverdrup, Johnson, and Fleming, 1961, p. 433).

- (d) Assuming the correctness of principles (a), (b), and (c), it is possible to deduce qualitatively the near-surface current pattern from near-surface temperature contours. When a tongue of water is present in a cooler environment, in the southern hemisphere, the current tends to follow the contours counterclockwise. With a water tongue in a warmer environment, the current direction is clockwise along the contours (Sverdrup et al, p. 503)
- (e) The temperature pattern did not vary greatly during the period of the survey.
- (f) The average near-surface temperature of a traverse, at the time when in mid-traverse, equals the average of the <u>measured</u> near-surface temperatures, e.g. for OM49:

Tom 49 =
$$\sum_{i=1}^{N} t_{i} / N$$

where to is the measured temperature at regular intervals along OM49, and N the number of such measurements.

(g) The average near-surface temperatures of all traverses perpendicular to the coast are equal at a particular instant, viz.

$$T_{OM}$$
: T_{OM2} = T_{OM49} = T_{OM49}

Corrections

In the time variations of near-surface temperatures on normal days, the absorption of solar radiation is probably the dominant factor.

In detail, the near-surface temperatures are influenced by wind, humidity, water turbulence, and the hours of sunshine at different periods of the day. Estimating or measuring these various influences separately is a major task, outside the scope of this irvestigation. Hence, a method in which these short-period influences are lumped together was devised, and a total correction to eliminate these effects was computed for any time of the day, for every day that measurements were made. After applying the total correction to the individual temperature measurements, the resulting values were plotted and contoured (Plate 10). The resulting near-surface temperature pattern represents a kind of basic pattern in which the short-period influences are eliminated, and which in our case is supposed to be characteristic of the January/February period.

To compute the total correction (T.C.), use is made of principles (f) and (g) of the previous section.

T.C. for traverse OM K becomes:

$$T \cdot C \cdot_{OM \ K} = T - t_{OM \ K}$$

To obtain the temperature variation pattern the absolute value of T is not important. To make T.C. small and positive, T was chosen as 28°C .

Example from Plate 9, figure 4.

T.C. OM 49 =
$$28.0 - 24.8 = 3.2$$
°C
tom 49;8500 = 24.5 °C

Corrected temperature value at OM 49;8500 = to OM 49;8500

then t'OM 49;8500 =
t
OM 49;8500 + $^{T.C.}$ OM 49
= $^{24.5}$ + $^{3.2}$ = $^{27.7}$ C

Near-surface temperature results

Plate 8 is an isothermal contour plan of uncorrected near-surface temperatures as measured (they are also listed in Appendix 2). Features are formed by isotherms stretched parallel to the surveyed traverses, suggesting the need for corrections of short-term temperature/time variations, to obtain an intelligible pattern. An exception is the area between the Tweed River outlet and Palm Beach, which shows high gradients with a tongue-like pattern.

The high gradients form a boundary between two water messes; the temperature records over narrow zones show sharp fluctuations, indicating turbulent mixing.

Figures 1, 2, and 3 of Plate 9 each give values of measured near-surface temperature plotted against time of day. Figure 4 gives the average near-surface temperature of individual traverses.

Plate 10 is an isothermal contour plan of near-surface temperatures after applying T.C. to Plate 8.

Plate 11 gives the average hourly and average daily measured near-surface temperatures, and their time variation. These results were not used for T.C. However, the results are interesting because they illustrate roughly the short and long-period temperature fluctuations, which could be useful in planning future temperature surveys. Figure 1 gives the average temperature of individual traverses plotted against the time of day to which the average refers. Figure 2, giving the hourly variation, is obtained by averaging, for each hourly interval, the values given in Figure 1. Figure 3 represents much the same as Figure 2 but is obtained by a best fit 'drift' type of analysis of Figure 1 data. Figures 2 and 3 show that during the day the temperature time variation (near-surface) is small between 1300 and 1600 hours E.S.T., and therefore, on normal days, this period would be the most suitable in which to do near-surface temperature measurements.

Figure 4 gives the variation of daily average measured near-surface temperatures during the measuring period. The crosses give the uncorrected values for one day, obtained by averaging data from Plate 9, Figure 4. The dots represent the corrected values; before the values of one day are averaged they are corrected to what the value should be at 1400 hours by using Figure 3 of Plate 11.

The smooth line through the dots gives the approximate long-term variation. The figure clearly shows the influence of seasonal cyclones.

The aerial photograph, Tamborine Run 7, Q546-27 'National Mapping', was examined and, near the Spit and close to Surfers' Paradise, it was noted that:

- 1. The bearing of the ocean waves is north-east. As the waves approach the coast, the wave-front is refracted and becomes sub-parallel to it.
- 2. Adjacent to the beach three tongues of sediment transport are visible, apparently moving north.
- 3. In the top right-hand corner of the photograph, a curved line with an approximately north-west bearing marks the boundary between two currents.

From the near-surface temperature distribution (Plate 10), the following features may be noted:

At the Nerang River outlet cool river water flows eastward (along traverse OM 46) and south-eastward (following the 25.0°C contour line). The two currents are separated by warm ocean water moving westward (OM 41;12000 and 14000). Adjacent to the Spit, a cool water mass is located. Most likely, cool water has filtered from the Nerang River through the dunes.

On the abovementioned serial photograph (Tamborine Run 7, Q546-27) three sediment flows moving north were noticed within the cold water zone.

Further south, near OM 31;5000, a large eddy with warmer water in the centre has developed. A smaller eddy but with cooler water in the centre is located east from Tallebudgera Creek outlet.

Away from the coast, between OM 11;10000 and OM 22;12000, tongues of ocean water invade the cooler coastal water.

North-west and south-east from Point Danger is a cold water zone, which can possibly be explained as seepage water. Alternatively it could be cold oceanic well water. The boundary with warmer water is marked by a step-like temperature change.

East from the Tweed River a tongue of cool water represents the outflow of river water. The presence of up-welling cool oceanic water is indicated between OM 1;11000 and OM 3;12000.

Vertical temperature variation

Nine successful measurements of vertical temperature variation were made and their location (mostly at the seaward end of traverses) is shown in Plate 10. This part of the survey is considered as a preliminary investigation to check the existence of vertical temperature stratification near the coast.

Although weighted, the temperature probe and cable were usually deflected from the vertical by currents and ship's drift. Also, it was sometimes difficult to know when the probe had reached the bottom. Hence, the depth scale of the vertical temperature profiles (Plates 12 and 13) is not very reliable although accurate water depth measurements were made with the ship's echo-sounder.

On the original temperature records (Plate 13), 1-inch deflection corresponds to 8°C. Plate 12 shows the processed data plotted to show depth on a linear scale. The individual temperature/depth profiles are tied to the uncorrected near-surface temperature on the same day. It may be expected that short-period fluctuations in temperature are restricted to shallow depth.

The vertical temperature profiles show warm water overlying cooler water. It will be assumed that temperature reversals with depth do not occur in this area.

The influence of atmospheric conditions seems to be restricted to the top 20 feet, as may be observed at probes OM 6, OM 45 and OM 47. The probes may be grouped as follows:

(a) Probes OM 6 and OM 7: water of 24°C at 170 feet, and of 23°C at 190 feet, viz: cold water near the bottom.

- (b) OM 18. OM 20, and OM 21: relatively warmer water of 25 to 26°C at depths of about 150 and 170 feet near the bottom. A fairly large temperature decrease with depth of about 1.5° occurs between 110 and 150 feet.
- (c) Probes OM 43, OM 45, and OM 47: cold water of 23°C at depths of 160 to 180 feet, near the bottom.

Near-surface and vertical temperature variations combined

At OM 7; 15000 and OM 6; 15000, water of 24 °C is at 170 feet depth but comes close to the surface at OM 3; 12000. Therefore, the boundary between cooler and warmer water must be dipping steeply in a northerly direction.

North-east from Point Danger, at OM 22; 6000, cold water comes to the surface, but at OM 18; 12000, OM 20; 13000, and OM 21; 13000 the water is/relatively warm from surface to bottom (although there is a fairly large temperature decrease between 110 and 150 feet).

Hence, the somewhat incomplete pattern suggests that a mass of warm ocean water is pushing against, and is partly on top of, the colder coastal water. The surface boundary (water depth less than 20 feet) of this warmer water mass passes through OM 22; 13000, OM 21; 8000, OM 13; 4000, OM 7; 12000, and OM 4; 14000.

A similar situation may exist northwards but the vertical temperature variation data are too scarce for any definite conclusions to be drawn.

According to Leipper (1955), eddy currents and upwelling of cold water occur in places where current velocities vary within short distances. Particularly important in this respect are tidal currents in which the maximum current velocities vary with distance and water depth according the theeformula.

$$Vm = \underbrace{2 \mathbf{m} a \cdot x}_{h}$$

where a = tidal amplitude

b = tidal period

x = distance from the coast

h = water depth

Vm = maximum water velocity

For the Gold Coast in January and February, the formula is approximately:

Vm = 1.7 x/h ft/hr

For variations parallel to the coast:

 $Vm1 = 1.7 (x/h^2)$. dh ft/hr

where dh is the waterdepth variation

For variations along the depth contour line:

Vm2 = (1.7/h) dx ft/hr

where dx is the variation of distance from the coast.

If the depth contour lines are regular and parallel to the coast, dh and dx = 0, and hence Vm=0. However, if the contour lines are irregular because of valleys or hills in the sea-bottom, Vm1 and Vm2 could have appreciable values, resulting in eddy currents and upwelling water. Well water, which is presumably colder water, is associated with negative dh.

With the above theory the location of eddy currents and cold well water can be predicted.

Plate 15 shows the main eddy currents and well-water features of Plate 10 superimposed on a sea-bottom topography plan. The locations are approximately places where the depth contours show irregularities which could cause the formation of eddy currents and well water. This confirms that the method of processing the data and theory used in interpretation is at least qualitatively correct.

A good example is located northeast and southeast from Point Danger (Plate 10) where the depth contours in the zone adjacent to the beach converge around the cape. Following Leipper's arguments, this is also an area where eddy currents with well water can be formed; hence this could be the explanation for the cold water zone adjacent to the beach, stirred upwards from a lower level.

This temperature survey was not meant to be complete and was carried out during a 'Sonar Boomer' survey without additional cost, to test the practical value of the method in the area. For a more complete study, the observations should be extended over longer periods, more temperature/depth profiles should be measured, and the observations should be combined with studies of currents, including tidal currents.

10. REFERENCES

1948

BEASLEY, A.W.

Heavy mineral beach sands of southern Queensland. Proc. Roy. Soc. Qld., 59 (2). 100.

BELFORD, D.J.	1953	The Nerangleight Fernvale Group. Thesis Univ. of Qld. (unpubl.).
BROOKS, J.H.	1953	Stradbroke Island erosion and Broadwater silting, Southport. Qld.Govt.Min.J. 54.
CONNAH, T.H.	1946	Stradbroke Island erosion and Broadwater silting, Southport. Qld. Govt.Min.J. 47, 542
CONNAH, T.H.	1961	Beach sand heavy mineral deposits of Queensland. Geol.Survey Qld. Pub. 302.
GARDNER, D.E.	1955	Beach sand heavy mineral deposits of Eastern Australia. <u>Bur.Min.</u> Resour.Aust.Bull.28.
HAILS, J.R.	1964	The coastal depositional features of south-eastern Queensland. The Australian Geographer 9, 207.
HEILAND, C.A.	1946	Geophysical Exploration. Prentice-Hall Inc., New York.
HERSEY, J., EDGERTON, H., RAYMOND, S. and HAYWARD, G.	1960	Sonar uses in oceanography. Fall Instrument-Automation Conferences, Instrument Society of America Reprint 21.60,
LEIPPER, D.F.	1955	Sea temperature variations associated with tidal currents in stratified shallow water over an irregular location. J. Mat.Res., 13(4), 2340 - 252
POLAK, E.J.	1965	Lower Brisbane River Geophysical survey. <u>Bur Min.Res.Aus.Rec</u> . 1965/164.
POLAK, E.J. and KEVI, L.	1965	North Stradbroke Island geophysical survey for underground water, Queensland 1964. Bur.Min.Res.Aust. Rec. 1965/248.
SOLOMAN, P.J.	1964	The Mt. Warning shield volcano; a general geological and geomorphological study of the dissected shield. <u>U. of Q. Papers, Sept. of Geol.</u> , 5, 10.
SVERDRUP, H.V., JOHNSON, M.W., and FLEMING, R.J.	1961	THE OCEANS, Prentice Hall Inc., New York.

!	MARK	1	2	3	4	5	6	7	8	9 9	90% T	12	13	14	15	16	17	1 8	1 9	20	21	22	MARK
	100 200 300 400 500 600 700 800 900								- 87 88		- 62 73 87 96								- 60 65 76 78		<u>-</u> 54?	-	100 200 300 400 500 600 700 800 900
	1000 1100 1200 1300 1400 1500 1600 1700 1800	78? 76? 81?	R R R R R R	44 54 - 67 77					105 107 107 115 133 133? 134? 135?		111 - - 124 133 129 128 129		-	55 60					80 89 88 88 90 94 97 99	-	58? 62? 71? - 80 82 86 89 93	93 95 99 102	1000 1100 1200 1300 1400 1500 1600 1700 1800
	1900 2000 2100 2200 2300 2400 2500 2600 2700 2800	RRRRRRRRRRRR	-	95 101? 100? 102 - 107 106 - 105?		70			136? 142 144 145 145 146 146 147	-	129 130 - 142 143 144 146 148 152 153	- 75 80 82 92 -	84 85 84 85 89 101 107 108	65 66 68 73 81 95 93 99 102 104	- - 64 66 96				103 103 109 117 117 - 123 127 129	91? 93	93 95 97 98 100 102 104 110 113	108	1900 2000 2100 2200 2300 -2400 2500 2600 2700 2800
	3000 3100 3200 3300 3400 3500 3600 3700	R R R R R R R	117	91? 94? 10 5 ? 106? 100 103 111	- 68? 81? 90?	75 90	86 92 98 102 113 123 130 127	-	150 151 153 156 - 157 158 160	-	155 - 151 150 149 150 152 154	102 105 108 116 - 115 124 136 139	115 122 120 - - 128 129 133	108 110 114 113 113 119 116 123	100 109 113 118 114 120 120 121 122	77 91 90			131 - 138 142 145 146 148 149	107 116 117 118 119 - 122 123	115 117 118 119 121? 123 119? 121	115? 114 116 119 119 122 127	3000 3100 3200 3300 3400 3500 3600 3700
	3800 3900 4000 4100 4200 4300 4400 4500 4600	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	116 116 115 118 116 121 132 137?	117 118 117 - 124 125 125	112? 102? 108? 112 114 115 118 125	117 120 126 129 130 132 135 138 140	129 126 136 145?	146? 143? 144? 146? 143?	171 168 - 170	-	155 156 157 157 161 162 164 164	140 137 139 141 141 150 155 156	139 - - - 151 152 151	130 132 136 138 139 142 144 140 142	- 121 125 127 132 133 134	110 114 - - - 126 129	-		152 153 155 156 157 157 157 157	124 127 130 132 133 - 142 146 147	125 126 128 131 135 138 141 142 144	125 127? 129? 130? - - 144? 145	3800 3900 4000 4100 4200 4300 4400 4500 4600
	4700 4800 4900 5000 5100 5200 5300 5400 5500 5600	R 138 140 140 138 131 127 126?	140? - 127? 129 130 130 134 136 138 139	- 1	130	138 138 138 135 134 136 137 137	-	144 147 147 150? 148? 144? 142 141 141	170 165 164 165 166 169 170 170		165 168 - 177 178 - 180	158 158 158 156 156 156 156 157	156 160 158 - - - - -	143 144 147 149 152 156 157 160 161 163	137 140 141 143 146 147 148 151 154 156	132 135 137? 142 146 147 149 150? 149	131?	102 112 117 123 128	159 160 160 166 168 -	150 151 153 155 157 157 158 158	144 146 148 147 148 149 150 152	146 149 150 150 150 148 149 148 R	4700 4800 4900 5000 5100 5200 5300 5400 5500 5600
	5700 5800 5900 6000 6100 6200 6300 6400 6500	117 122 127 135 141 143 145 148? 152	138 128? - - 136 135	R 131 136 138 141	119? 124? 127?	140 143 144 145 144 143 143 145 148		143 144 145 146 147 148 152 153 154	175 177 180 180 179 181 179 182		180 181 - 178 179 - 185	153 150 147 150 152 156 160 165 168	170?	164 165 166 167 166 167 167 164 163	158 160 162 163 165 165 166 168 170	152 153 155 158 158 158 159 160 160	140 155 151 154 153	129 129 131 131 132 -	- - 169 167 164 167	160 160 167 160 - 162 164 164 164	150 149 150 151 154 157 158 160 161	R R R R 163?	5700 5800 5900 6000 6100 6200 6300 6400 6500
	6600 6700 6800 6900 7000 7100 7200 7300 -7400	154 157 160 161 161 164 166 169 174 176	136? 145? 146 156 162 167 167 174 182		146 154 149 148 146 R	150? 152 154 150 149 150 155 145	-	155 156 158 159 160 162 165 166 166	186 184 186 184? 188 188 188 185 184		180 179	170 174 173 168 174 177 175 175 175	-	164 165 166 168 165 165 172 - 178 181	170 171 172 173 174 174 176 177 178	159 159 161 - 165 - 172 173 174	152 157 161 159 156 161 163 163 165	-	167 168 171 174 174 176 175 177	168 169 170 170 170 172 174 172	162 163 168 169 170 171	164 165 166 168 - 170 170 170 169	6600 6700 6800 6900 7000 7100 7200 7300 7400 7500
	7600 7700 7800 7900 8000 8100 8200 8300 8400	179 180 184 184 187 192? 191 197	177 181 183 187 190 192 192	175 176 - - 178 182 184 188 190	R R R R 149 153 158 160	137 140 142 148 150 155 160 160	170 170 171 172 172 172 167 170 172	166 166 166 167 167 169 175 178 183	180 180 174 179 181 183 185 186 184		169? 173? 188 179 180	175 176 178 178 178 179 - 181 181	-	181 182 183 185 188 183 183 184 185	177 178 178 178 177 179 182 184 184	176 - 175 176 178 178 - 180	169 175 176 178 180 181 -	160 162 162 163 162	178 176 177 176 168? 176 170 180 181	170 170 172 - 172 173 174 179 178	169 170 171 172 174 176 177 179 181	166 166 - - 173 173 174 176 175	7600 7700 7800 7900 8000 8100 8200 8300 8400
	8500 8600 8700 8800 8900 9100 9200 9300	209? 209? 209 210 210	192 191 191 194 194 202 202 207 208	191 191 191 196 198 202 204 206 207	160 159 160 160 163 165 171 173 173	167 169 170 171 175 176 178 181 185	170 171 173 172 170 169 172 166 168 169	180 178 179 177 175 175 175 175 173 171?	185 190 192 195 201 205 207 206 204 206		186 - 191 192 195 198 201 203	183 185 182 183 184 190 189 182 181	197 196 198 197 199 201	186 186 187 188 189 190 190 190 189 192	185 185 186 186 188 188 190 191	182 - 181 184 185 - 185 185 185 184	178 179 180 181 182 183 183 177 178	165 165 - 171 172 172 173 174	183 184 185 186 186 187 187 187	178 178 174 180 179 178 180 181 181 181	179 177 177 179 180 180 181 181	174 176 179 180 181 181 183 184 185	8500 8600 8700 8800 8900 9100 9200 9300
	9400 9500 9600 9700 9800 9900 10000 10100 10200 10300	213? 215 216 219 224 225 226 229 229	208 212 214 216 - 221 222 223 225	207 209 212 212 213 213 215 217 218 226	175 179 180 181 186 187 188 188 190 191	187 188 189 189 189 190 191 195 193	172 176 174 176 184 181 180 181 183	164? R	210 211 219 220 220 223 225 229 230		207 212 216 220 225 225 227 226 227	188 189 188 206 202 202 191 192 193	202 203 204 205 202 200 200 201 203	194 194 195 197 198 201 203 203 204	191 192 193 194 194 191 190 190 191 195	185 187 188 188 191 192 193 194 194	182 183 183 184 186 189 190 191	174 175 176 178 179 180	188 188 189 189 189 189	182 183 184 185 185 186 186 186	181 182 182 183 185 187 188 190	-	9400 9500 9600 9700 9800 9900 10000 10100 10200 10300
10	10400 10500 10600 10700 10800 10900 11100 11200	230 233 231 233 230 231 235 236	237 238 237 236 238 228? 225	226 226 229 229 231 230 - 240? 245?	193 200 201 202 202 205 208 203 205	193 201 205 207 208 201 201 206 209	188 193 193 196 201 201 200 205 207	192	232 239 241 240 247 245 246 245 245		230 232 234 233 234 234 235 237	193 198 201 203 204 205 208 - 214	204 207 213 208 211 211 214 216 218	207 204 205 205 208 207 215 213 217	197 199 200 201 203 204 207 209 210	197 197 201 199? 198? 194 198 199 200	192 193 193 193 194 194 196 200	180? - 180? 180? 181? - 183?	-	187 187 188 189 189 190 193 194 196	191 191 192 192 192 195 197 198	183? 184 186 187 187 187	10400 10500 10600 10700 10800 10900 11000 11100 11200
D ACCOMPANY RECORD No. 1968/18	11300 11400 11500 11600 11700 11800 11900 12000 12100	238 237 236 236 236 237 235 234 238?	225 226 227 229 230 231 230 231	243?	206 208 213 220 226 225 225 226	209 210 221 224 225 227 228 231 232	211 211 216 219 220 220 222 223	205 - - - - 216? 218	248 257 261 264 265 266 267 267		241 246 - 241 244 244 246 247	214 210 214 217 218 218 217 215 216	218 218 220 223 224 220 220 220	216 215 215 214 216 214 -	210 211 211 212 213 213	204 205 207 207 207 209 210 212	201 202 202 201 200 200 199 204 208	185? - - - 191 191 192	207 207 207 207 -	198 198 198 197 199 200 202 202	198 198 198 197 196 198 200 200	185 186 188 188 188 188 187 187	11300 11400 11500 11600 11700 11800 11900 12000 12100
	12200 12300 12400 12500 12600 12700 12800 12900	238? 235 235 235 240 242 240 239	232 233 - 235 235 235 - 236	R	226 228 227 230 232 235 240 243	233 234 235 243 244 246 248 247	226 227 230 227 233 238 242 246	218? 224 226 227 230 232 234 235	268 269 - -		252 255 258 264 249	217 217 218 218 218 218 218 222 222	223 223 224 226 227 225 224 228 229	216 216 216 - 219 222 226 223 221	219	216 216 217 217 217 218 221 220 220	211 214 216 216 215 215 215 216	192 192 194 195 197 198 198 -	219	202 203 204 205 205	200 200 200 200 200 200 200 200 198	187, 189 190 192 192 192 194 195	12200 12300 12400 12500 12600 12700 12800 12900
	13100 13200 13300 13400 13500 13600 13700 13800 13900	244			247 246 247 250 252? 252 252 252 251 253	252 253 253 252 250 251 252 251 250	248 249 247 247 247 248 250 249	235					230	221	218	219 220 221	218 219 220 221 225	208 209 210 - 210 211 216				197	13100 13200 13300 13400 13500 13600 13700 13800 13900
рертн то	14100 14200 14300 14400 14500 14600 14700 14800 14900			•	255 257 253 255 - -	250 246? 249 253 255 259	252 252 251 252 254 256 257 257 258																14100 14200 14300 14400 14500 14600 14700 14800 14900
BEDROCK	15000 15100 15200 15300 15400				-	·	259 257 257 257 257																15000 15100 15200 15300 15400

APPENDIX | Sheet | of 3

H56/B5-25

	MARK 100 200 300 400	23	24	25	26	29	30	31	32	33	34	36	37	38	39	41	42	43	4 5	4 6	47	48	MARK 100 200 300 400
	500 600 700 800 900	<u></u>				57? 59			-	74	-			-	-								500 600 700 800 900 1000
	1100 1200 1300 1400 1500 1600 1700 1800	57 61 63 67 68 66 63 62				64 64 78 78 86 85 91?	81 86 90 92		83?	75 77 78 81 84 86 88 94	-	-	-		-								1200 1300 1400 1500 1600 1700 1800
-	2000 2100 2200 2300 2400	79 82 77 R	-			93 96 98 99 100?	95 98 100 102 104 106	60? 67? 81? 73? 84?	106 104 104 107	101		-	-	-	-	53? 54? 60? 62? 65? 68?	-						1900 2000 2100 2200 2300 2400
	2500 2600 2700 2800 2900 3000 3100	83 88 89 93 98 105	93 92 97 100	-		106? 106? 107 108 110 111		85? 100? 105?	107 109 109	115? 115 116 117 120	-	-	-	111?	-	72 77 84 88 90 94	-	1 1 1 1 1					2500 2600 2700 2800 2900 3000 3100
	3200 3300 3400 3500 3600 3700 3800	109 112 112 112 112 112 111	101 101 104 107 108 110 111	81 95 100 105 108 111 112	97?	116 122 123 125 127 128 130	107 108 110 113 114 119 121	102? 106? - 104 114 123 131	117 120 118 118 120 121	121 121 122 123 125 127 131	-	-	-	112? 113? - - - 129?	-	96 - 107 110 110 112	-	- - - R					3200 3300 3400 3500 3600 3700 3800
	3900 4000 4100 4200 4300 4400 4500	110 109 108 109 112 116 121	114 117 120 122 124 126 124	114 116 116 118 120 121 123	103 110 114 119 123 125 128	135 135 135	123 125 127 127 129 130 131	132 133 - 130 130 126 129?	123 125 125 126 126 127 128	133 137 139 142 143 145 147	120? 125; 127; 127; 130;	-	125? 127? 130?	129? 130? 130? -	-	111 111 113 113 114 115	- R -	R R R R					3900 4000 4100 4200 4300 4400 4500
	4600 4700 4800 4900 5000 5100 5200	124 128 136 134 134 137	126 127 128 130 130 132 137	123 124 125 126 128 129 131	130 130 132 134 135 135 135	136 136 137 140 144 147 148	131 132 132 132 134 138 141	122 124 127 128 128 129 132	131 133 134 136 138 140 143	149 150 153 154 154 - 156	129 129 - - 129 130	-	135? 136? - 138? - 139?	-	-	116 115 113 R	-	R	98? 105? -	- - 74? 88			4600 4700 4800 4900 5000 5100 5200
	5300 5400 5500 5600 5700 5800 5900	140 146 147 148 150 151 153	138 - 142 144 145 148	134 135 136 136 136 140 142	137 138 138 140 141 143 144	150 152 156 155 155 157 159	147 150 150 148 145 153 153	135 138 146 147 150 148 147	142 144 152 153 156 158 157	157 157 160 156 - 155 154	- - 146 147 147	-	139? 140? - 142?	-	-	-		R R R - R	- 105 110 113 110	90 95 97 98 99 100 102?	- 70 76 90 87	-	5300 5400 5500 5600 5700 5800 5900
	6000 6100 6200 6300 6400 6500 6600	155 156 155 153 154 153 160	150 147 145 144 146 147 149	145 148 150 155 156 157 154	143 144 144 143 145 146 146	159 160 160 162 165 165	153 154 155 161 165 165 166	143 144 151 152 153 154 158	158 158 160 162 164 165 166	155 155 155 158 158 156 156	153 151 153 154 154		140? 138? 136? 140?	R R		R R - - 142 148	R - R	R R R R	R R R R R	105 107 109	97 100 103 110 115 120 119	68 83 89 98 102 98	6000 6100 6200 6300 6400 6500 6600
	6700 6800 6900 7000 7100 7200 7300	161 163 164 166 166 166	151 154 159 161 163 161 165	154 154 154 160 162 163 166	150 150 150 151 152 153 154	165 169 170 170 170 169 169	167 170 173 171 173 173 174	160 160 160 163 165 167 168	168 168 168 168 167 167 166	157 162 165 170? 178 -	154 154 156 - 150 R	-	145? - 148? - 150?	-	-	145 141 141 140 143 144 145	-	-	R R R R	109 107 133 116 118 120 123	123 120 123 126 129 134 137	97 109 112 112 114 115 118	7000 7100 7200
	7400 7500 7600 7700 7800 7900	166 166 168 167 161 168	165 164 166 169 170 171	169 167 169?	156 159	170 170 162 167? 173 177	174 175 175	170 170 171 171 164 164	167 167 167 168	173 173 171 172 170 171	145 150 - 157 -	-	155 R R R	- - - - R		148 151 153 155 156 157	R R R	3	R R R	124 125 129 133 134 133	138 140 141 145 146 147	124 127 136 137 146 146	7400 7500 7600 7700 7800
	8100 8200 8300 8400 8500 8600 8700	171 161 150 149 145 149 158	172 172 173 174 172 173 177	-	165 167 167 166 166 166	179 182 181 178 175 175	176 175 173 173 173 173	156? 157? 161 -	168 168	173 176 179 179 180 179 130	-		-	RR	- R -	157	R R R R	RRR	R R - R R	140 140 143 146 145 R	150 149 148 146 142 140 R		8100 8200 8300
	8800 8900 9000 9100 9200 9300 9400	169 170 172 175 173 175 176	177 178 179 180 180 178 177	-	168 169 169 170 170 170	175 175 176 179 176 175 177	171 172 172 172 171 -	172 175 178 176 177 177	170 170 169 165 R R 168	181 182 - 181 176 170	175? 175? 175?			170? 171? 172?	R -	R R R R	R R R R R	R R R R R	- R R	142 148 150 153 155 157	147 148 149 149 152	146 147 145 148 150 152 157	8900 9000
	9500 9600 9700 9800 9900 10000 10100	175 176 176 178 179	177 178 179 180 179 180 180	168 169 171 172 173 174	170 168 169 168 167 169 171	179 179 179 180 183 180	175 175 173 174 174 176 178	177 178 179 179 178 179	169 169 170 173 173 173	157 R - 180? 179 179 180	179 180 180			172 173 175 175 177 176	R	R R R R R	R R R R	R R R R	R R R R	154 153 159 160 153 R	155 158 160 162 162 162	160 164 164 163 167	950 0 960 0
	10200 10300 10400 10500 10600 10700	178 179 178 178 180 178	180 179 179 180 180 180	174 175 176 176 177 176 178	172 172 171 171 172 172 173	176 175 176 176 176 178 183	180 180 179 180 179 178 178	177 177 177 178 173 173	171 172 175 175 178 180	179 180 181 181 182 182 182	- 181 181 182 182 183			- - - 177 187 187		R R R 155? 161? 166	RRR	R R	R R R R R	R R R R R R	162 161 159 R R 160 165	- - 161 167 169	10200 10300 10400 10500 10600 10700
TO A	10900 11000 11100 11200 11300 11400 11500	181 181 183 183 183	179 177 179 180 179 175 175	177 178 178 178 179 179 180	175 177 177 177 177 177 177	179 180 183 181 181 182 184	178 179 182 184 187 189	176 177 179 181 183 186 186	184 187 190 191 191 192 193	183 187 191 191 189 191	183 186 187 168 191 193 194			186 - 183 185 194 198 200	-	- - - 178 181	- R - 175 179 182	- R 166 172 175?	176? 176? 182? 178? 178?	165 163 166 169 171 171 172	165 167 168 166 164 161 R	173 178 169	10900 11000 11100 11200 11300 11400
ACCOMPANY RECORD No. 19	11600 11700 11800 11900 12000 12100 12200	182 184 184 177 178	175 175 176 178 178 178 178	181 180 178 178 179 180 180	177 178 178 178 178 179 179	185 - 187 185 189 192 194	190 190 191 193 195 196 197	187 189? 190 190 192 197 197	195	193 194 197 200 200 200 201	197 196 - 201 202 204 206			202 203 207 205 204 206 210	-	184 183 183 180 182 182 182	182 180 - 178 161 182 182	175 173 173 173 173 178 178 183	179? - R	165 174 175 166 R	177 178 180 180	158 171 171 167 166 168 172	11600 11700 11800 11900
968/18	12300 12400 12500	185 187 190 193	179 180 184 185 185	180 180 180 182 182	179 178 177 178 177 179 179	196 198 198 202 203 204 207	198 201 203 206 208 211 214	198 199 200? 200 200 202 207	200 210 210 210 213 213 214	202 202 203 203 203? 203? 204?	208 208 208 212 212 210			210 212 216 219 222 225 224		184 185 187 188 189 191	186 186 184	182 182 180 183 189 188 191	R R 183 195 183 R	R R R R R	183 183 184 185 182 180 179	176 176 177 177 177 178 177	1 1
	13000 13100 13200 13300 13400 13500 13600		,		178 178 178 179	209	214	212 214 216		204?	† - -			224 229?	-	189 194 198 198 196 194	189 191 192 192 196 197	193 192 191 191 190 189	R	R 175 181 180 184 185	175 174 176 177 178 177	179 180 177 178 176 176	13000 13100 13200 13300 13400 13500
	13700 13800 13900 14000 14100 14200				-											197 199 203 207 208 210 213	199 198 196 200 205 209 209	195 202 199 196 198 199 201	197? 202 207 201 202	184 185 186 187 189 187 188	180 184 187 187 186 186 190	187 187	13600 13700 13800 13900 14000 14100 14200
	14300 14400 14500 14600 14700 14800 14900															214 214 215	213 219	204 209 212 217 - 215 217	202 201 199 196 203 211 211	196 201 197 197 197 199 200	193 192 193 194 196 195 195	187 190 195 196 197 196	14300 14400 14500 14600 14700 14800 14900
	15000 15100 15200 15300 15400 15500 15600																	215	211	200	195 195 195 197	198 200 203 203	15000 15100 15200 15300 15400 15500 15600

1.54 - 38374 - 35

DEPTH TO BEDROCK

H56/B5-26

		SEIS IC	;	1	OMEGA		SEIS	MIC		i .	OMEGA		SEIS	AIC			SEIS	SMIC
£ARK	1	2	3	MARK	49	1	2	3	4	MARK	49	1	2	3	4	MARK	3	4
0 100 200 300 400 500 600 700 800 900	-	35? 51 42 59 70 76 82	- - - 68 69	6000 6100 6200 6300 6400 6500 6600 6700 6800 6900	-		175 173? 172 173 173 174 176 177 178 180	152 153 153 153 153 152 152 152 152 151		12000 12100 12200 12300 12400 12500 12600 12700 12800 12900	179 179 179 130 180 181 182 181 182 183	-	189 190 190 190 191 192 190 190 190	134 134 133 134 134 134 137 139 139		18000 18100 18200 18300 18400 18500 18600 18700 18800 18900	123 123 123 123 123 123 121 120	-
1000 1100 1200 1300 1400 1500 1600 1700 1300 1900	-	94 100 104 107 110 115 114 122 125 127	80 90 94 98 101 101 103 109 111	7000 7100 7200 7300 7400 7500 7600 7600 7800 7900	104 104 108 113 112 118 123	-	180 180 180 180 181 182 183 183 133 132	150 150 149 149 149 - - -		13000 13100 13200 13300 13400 13500 13600 13700 13800 13900	184 182 181 180 181 182 182 182 185 186	-	190 189 189 189 188 188 186 190 190	139 139 140 139 141 138 139 139 139		19000. 19100 19200 19300 19400 19500 19600 19700 19800 19900	-	
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900	-	134 135 136 133 139 142 143 144 145	113 117 116 117 118 120 119 119	8900 3100 8200 8300 8400 8500 8600 8700 8800 0000	125 118 121 127 128 124 137 143 147	-	182 194 184 184 182 182 182 182	142 142 - - - 140 139 139	-	14000 14100 14200 14300 14400 14500 14600 14700 14800 14900	188 191 192 191 190 190 190 190 190		188 135 188 138 187 186 185 187	137 140 140 139 139 138 138 138 136	3	20000 20100 20200 20300 20400 20500 20600 20700 20800 20900	-	The state of the s
3000 3100 3200 3300 3400 3500 3600 3700 3000 3900	-	147 149 151 154 154 155 156 158 159 160	126 127 127 128 128 128 130 131 132 132	9000 9100 9200 9300 9400 9500 9600 9700 9800 9900	157 159 160 161 160 156 155 154 155 156	-	183 182 183 183 184 184 184 185 185	139 139 139 139 141 141 141 142 141	-	15000 15100 15200 15300 15400 15500 15600 15700 15300 15900	190 190 181 190 190 190 192 192 193 192			130 133 135 136 130? 128 127 128 127 126	-	21000 21100 21200 21300 21400 21500 21600 21700 21800 21900	-	
4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5700 5800 5900		162 164 165 166 167 167 171 170? 171 172 173 173 174 173 174 175	134 136 138 137 137 139 140 145 147 149 150 151 150 151 152 152	10000 10100 10200 10300 10400 10500 10600 10700 10800 11900 11200 11300 11400 11500 11600 11700 11800 11900	160 161 169 171 171 169 169 172 171 173 173 176 178 180 178 177 177 177	-	184 185 185 185 186 186 187 187 187 189 189 189 189 189 189	140 140 139 138 131 135 135 135 136 136 136 136 136 136 136 137		16000 16100 16200 16300 16400 16500 16600 16700 16900 17100 17200 17300 17400 17500 17600 17700 17800 17900	192			128 123 120 123 125 124 120 119 118 118 117 118? 123 121 121 123	-	78? = DOUBTFUL VALUE R = REEF	DEPTHS IN FEET	APPENDIX

H56/B5-27

100 200 300 400 500 600	1 in	2 out	2 in	3 in	4 out	5 in	6 in	6 out	6 in	7 out	8 out	9 out	10 in	12 out	13 in	14 out	15 in	16 out	17 in	18 out	19 in	MARK
200 300 400 500											I									'		
300 400 500																						100 200
500													25 .7								25.6	300 400
											25.6		25.6 25.5								25.2	
70 0 800											17		25.6									700 800
900 1000 1100	25.3		25.1								11		11								25.3	900 1000 1100
1200	25.2 25.3 25.5	25.8	11 11 ·	26.5							25.7		**		21.3							1200 1300
1400 1500	25.6 25.7	25.8		26.8							**		25.5		21.5							1400 1500
1600 1700	11		24.9	26.3							17		11			21.4						1600
1800 1900 2000	25.8 25.9	25,8	11 11	26.6 26.0							17		11		22.0	21.8					25. 2	1800 1900 2000
2100	25.8 25.9	" 25 .9	** **	20.0				,			11		25.6	21.6		22.0					"	2 1 0 0 2200
2300 2400	17	11	25.0								11		25.5	21.5	22.1	22.2					11 11	2 3 00 2 4 00
2600	26.0	25.8	25.2	26.5	24.0	25.4 25.5	25 5	2 5 7			11	24.9	1	21.4		22.4					11	2500 2600 2700
2700 2600 2900	;1 ;1	11	25.3	26.5 26.0	25.0	" 25.6	25.5	25.8			19	11	11	21.6 21.8		22.7	23.3				11	2800 2900_
3000	25.1	11	17		25.1	25.3	,,	25.9	·		11	11	11	22.0 22.1	22.8	11	23.5				25.1	3000 3100
3200 3300	11	"	25.4	25.3	25.2 25.3	11	25.6	19			11 11	" "	25.5 25.6	"		23.0	24.1	23.5			25.4	3200 3300
3400 3500 3600	26.0	17	25.5 25.6 25.8		25.4	**	**	25.8 25.9			25.6	25.0	11	22.2		23.4		23.7				3400 3500 3600
3700	" 26.1	25.9	26.0 26.1		17	71 31	17	26.0		25.5	7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	**	17	22.4			11	†† ††				3700 3800
4000	26.0 26.1	11	26.2		11	11	11	11 11	26.1		17	17	11		23.6	23.6	24.4	11 11 19	0.4		25.5	
4100 4200	**	** **	11 11 11	26.6	25.4	11	25.7 25.6	26.1	** **		**	11	11	22.7		23.7	11	11	24.1			4100 4200 4300
4300 4400 4500	26.2	" 25.9	11 11		" 25.3	11	25.7	"	11 11	25.6	"	17	11	22.9		" 23.8	11 24.5	24.2	24.4			4400 4500
4600 4700	26.1	25.8	11	25.0	11	25.9	25 . 8	11	11	11	11	17	25.7 25.6	23.1		24.0	? ?		,			4600 4700
4800 4900	17	17	25.1		25.2 25.3 25.5	25.8	11 11	26.2	11 11	11	25.7	17	25.7	23.2	24.1	24.2	24.7 24.6 24.7			24.0		4800 4900 5000
5000 5 10 0 5200	"	17	11 11			25.9	11	" 26.1	11	11	11	111	11	23.3 23.5	I	24.2	11				25.4	
	26.0	17 19	11		17	11	11	" 2 6.2	11	**	**	17	**			99 99	"			24.2 24.3		5300 5400
5500	**	17	2 5.2		11	"	17	26.1	11	11	17	,,,	11			"	11	24.6	$\frac{24.2}{24.9}$	24.2		5500 5600
5600 5700 5800	87 71	" 25.9	11		" 25.5	"	"	25.2	11	"	25.8	11	25.8	23.8		24.4	24.8			24.1		5700 5800
5900 6000	17	11	11		11	11	11	11	11	11	17		25.7	23.9		17	11			24.2		5900 6000
6 1 00 6 2 00	**	25.8	11 11		"	26.1	17	25.3	11	11 11	"		25.8			24.5	24.7			24.8	25.6	6 1 00 6200 6 30 0
6300 6400 6500	25.9	" 25.9	11	26.6	1	25.9	11	" 2 6.2		** **	11		77			**	11					6400 6500
6600 6700	71 77	**	11 11		19	26.0	11 11	11		11	11		**			11	11					6600 6700
6800 6900 7000	25.8	11	11		25.6	11	"	11	26.2	17	11		25.9		24.4	11	"			25.1		6800 6900 7000
7100 7200	**	25.8 25.9 25.8	11	26.0	**	" 25.9	11	26.3	20,2	HT	11		25.8		11	11 11	11 94		25.0	27.1		7100 7200
7300 7400	11	11	11		17	25.8		**		11	f1 11		11		"	**	11	24.7			25.7	7300 7400
	25.7	25.7	17 77 91		77	17	25.8 25.7		i	11	25.9		25.9		**	17	**				**	7500 7600
7700 7800 7900	** **	11	11 11		**	11	17	26.2		11	**		**		11	11					**	77 00 7800 7900_
8000	25.6	17	P1		76	25.9	25.6 25.5	11	26.3 26.4		26.0 25.9		11		77	11				25.2	11	8000
8200 8 300	7 7	11	11		**	26.0	11	26.4	14 17 17		**		**			11	24.9				11	8200 8300
8400 8 5 00 8 600	25.5	17 17	11 11		**	25.9	17	26.5 26.4	11		26.0		11	24.2		f1 f1	11	24.8			"	8400 8500 8600
8700	25.4 25.3	11 11	11		**	11	" 25.6	11	" 26.3		"		**		24.2	11	11					8700 8800
9000	11	25.6	11		25.5	11	11	26.5 26.4	26.2	1	26.1		"			11	17			25.3		8900_ 9000
	25.2	25.7	11 11 11		**	17	11	11	11 11 13	25.1	26.0 " 25.9		25.8			11	**				25.6	9100 9200
9300 9400 9500	25.1	25.6 25.5	11		17	11	11	26.5 26.4	17		"		"			17 11	"					9300 9400 9500
9600 9 7 00	25.0	" 25.4	11		11	" 25.8	25.5 25.6	17	26.1		11		25.7			11	11				25.7	9600 9700
9900		25.3	11	25.5	**	11	11	26.3	26.2 26.1		11		"		04.4	11	24.8				**	9800 9900
10000 10100 10200		25.2 25.3	17		25.6	11	**	26.4	11		25.8 25.7		25.6	24.3	24.1		"				**	10000 10100 10200
10300 10400	24.7 24.6	25.1 25.0	11		**	11	**	11 19	26.2		11		11	103			17				"	10300
10500	11	24.9 25.0	#1 #1	25. 2	11	11	11	26.5 26.4	26.1		**		11 11			24.6	11		25.1	25 4	**	10500 10600 10700
10700 10800 10900	11	**	71 71	25,2	11	11	25.6	26.5 26.4	11		25.6		**		!	24.5	11		27.1	29.4	**	10800 10900_
11000 11100	24.3	25.0	26.0		11	11	11	26.5	26.1 26.2		71		25.7				**			1† ††	11	11000 11100
11300	**	24.6 24.5	11 11	24.3	17 18	11	11 11	"	11		25.7		11 77				11			11 12 11	11 11 11	11200
11400 11500 11600	11	,,	" "		25.7	25.9 25.8	11	26.3	26 .1 25 . 2	25.5	11		17							11	11	11400 11500 11600
11700 11800	24.5	24.8	11		**	25.9	25.6 "	26.4 26.5	11	25.4			25.5		24.0					11	11	11700 11800
11900 12000	24.9	25.0	26.1	24.8	## ##	25.8 25.9	17	26.4 26.5	26.2	<u></u>	11		11			24.6				11	11	11900 12000
12100 12200	**	25.3	26.0		11 18 12	25.8	25.7	" 26.6	11 11 11		17 17		25.4				24.7	24.7		11 11	91 11	12100 12200 12300
12300 12400 12500	17	25.5 25.6	u	25.7	11	11 11	11 11	11	11		25.5		25.3 25.4			24.7	-4•(11		11	11	12400 12500
12600 12700	**	11	26.1		11	11	# 25.6	11	11		77		11	24.0		_	.	11		17	11	12600 12700
12800 <u>1</u> 2900		25.7 25.8		25.6	11 11	25.9 25.8	25.7	26.5	26.3		25.6		17		23.9		25.5	11		11 11	25.6	12800 12900 13000
13000 13100 13200	1,رء	25.8			11	25.8	11))))	11		25.6					25.4 25.7	25.6	11		11		13000 13100 13200
13300 13400					12	11	11	11	11	25.6		: 		1		7.1		"		11		13300 13400
13500 13600					11 11	11 11	11	26.6 26.5	11			!								11		13500 13600
13700 13800	İ				11	25.7	11 11	# #	11 11											11		13700
13900 14000	: 	1			11	25.8	11	26.6 26.7	11													13900 14000 14100
14100 14200 14300					19	" 25.7	11	26.6 " 26.5		25 .7												14200
14400 14500					25	11	11	26.7		->•1												14400 14500
					11		11	11														14600 14700
14600 14700 14800		,			11	1	**	+*		1			,									14800

TEMPERATURE VALUES (°C)

(UNCORRECTED NEAR-SURFACE)

H56/B5-23

TEMPERATURE VALUES (°C)
(UNCORRECTED NEAR-SURFACE)

				-						OMEC	A Tra	VERSE	: 3				•			.		,	
	MARK	20 in	21 out	2 2	22 out	23 in	24 out	25 ou t	26 in	29 out	30 in	31 ou t	32 in	33 out	34 in	36 out	37 in	38 out	41 out	42 in	43 out	45 ou t	MARK
	100 200 300 400			27.3										-				23.4					100 200 300 400
	500 600 700			27.2 27.4 27.2						24.5				25.8									500 600 700
İ	800 900		24.6 24.7				The second of the second of			24.5			25.7				25.5						800
ļ	1000 1100 1200		24.9 24.7		25.1	25.3 25.0					25.0 25.1		25.6 25.7 25.8	25.7	25.6		11						1000 1100 1200
	1300 1400 1500		24.8	27.2 27.1	25.1		'				25.4		25.7 25.9	25.8	25.5 25.8		# # 25.4						1300 1400 1500
	1600 1700	24.8	#	27.2		24.4	: : : : :			24.8	# # # # # # # # # # # # # # # # # # #		25.8 25.9		25.6		25.5	24.5			:		1600 1700 1800
_	1800 1900 2000	25.0 24.8 25.0	24.8	27.3			25.1 25.6			24.0	Manyalina di sariya dibisa	25.3	11	25.8	25.7	ļ	25.4	24.8					1900
	2100 2200 2300	24.8	24.9	"		24.6	25.1				"	-713	26-0	25.9		!	n n		23.7	23.9 24.1			2100 2200 2300
	2400 2500		25.6	27.2	25.6	"	24.7				11 11	25.5	"	**	- J. J		25.4	25.0		24.2	23.8		2400 2500 2600
	2600 2700 280 0	25.7	25.7	j :	25.8	n		26.5			#1		25.9 25.8	**	H H		11			24.2			2700 2800
	2900 3000 3100		25.6	26.8 26.3 26.5		# #				25.0	n n	25.6	25. 9	25.8		25.0		24.9	23.9		24.1		3000 3100
	3200 3300 3400	25.7		20.7	11	n	24.8			18 78 19	н	n n	25.7	**			#1 #1				24.0		3200 3300 3400
	3500 3600 3700	**	25.7			24.7	H		26 .7	## ##	25.5	n ' n	25.8	25.9	25.6		**		23.8	24.7	24.5		3500 3600 3700
1	3800 3900	*		26.7 27.0			H		26.8 27.0	**	**	**			25.5	25.1 25.2	,, ,,		25.0		24.6	25.7	3800
	4000 4100 4200	**	25.7	26.8		24.8	11	26.7 26.8 27.1	26.9	**	1 1 1	**			25.6	**	•	25.0			24.9	25.8 25.7	4000 4100 4200
	4300 4400 4500	"		26.9	25.3	**		, •	26.8	# #	*		25.7	25.8	25.7	**		24.9	24.3 24.4			25.8	4300 4400 4500
	4600 4700	**	25.6		25.1	11 11				** **			25.8		25.6	25.0	25.5		24.5		25.1	# H	4600 4700 4800
_	4800 4900 5000	**	< 7.6	27.3		24.9	25.3	26.9	27.0	"			"	26.0	25.6		25.4	25.0			27.1	**	4800 4900 5000
	5100 5200 5300	**	25.7 26.0	27.2			25.4	и и	n n	11 11	25.4	25.5 25.6	**		**		25.3				25.2	**	5100 5200 5300
	5 400 5 5 00 5600	11 11		27.4	24.8	25.0	11	n n	**	11 11	**	25.5	"		11 11	25.2	25 .4 25 . 5				" "	" "	5400 5500 5600
	5700 5800	**	25.8 25.9		24 4			n n	n n	"	11	H H	**		25.7			25.2				H H	5700 5800
	5900 6000 6100	P)	**	27.5	24.4	24.9	25.5 "	11	**	**	•	"	**	25.9	25.5	25.3 25.2	25.2			25.1	"	**	5900 6000 6100
	6200 6300	**	n	27.3	24.3		"	*** *** ***		11		** **		25.9	•	47.2 H	**					7	6200 6300
	6400 6500 6600	**	25.6				"	"		24.9 25.0		**		05.0	25.6		**	25.3	24.9				6400 6500 6600
	6700 6800 6900	# #	25.7				• :	H H	26.7 26.3			" "		25.8	ü 	i 	**	N	25.0			**	6700 6800 6900
	7000 7100	**	25.6	27.1		24.8	25.4		26.5			m m	25.7		25.8	25.1	25.0	**		25.4	28 -		7000 7188 7800
1	7200 7300 7400	"	25.7 25.7					2 6.6	"	24.0		# #		26.0	n n	" "	25.0				25.3	**	7300 7400
	7500 7600 7700	**		26.9		24.6	1	26.7	"	24.9	25.2	# #		**	H H	11	**	25.4				25.9	7700
	7800 7900 8000	n n		27.0			<u> </u>	26.6		25.0	**	"	25.9	26 1	, n	H H	*		25.2			26.0	7800 7900
	8100 8200	11	26.5	£0,9	E4,0		26 -	26.5 26.6	1		**	25.6		~U, I					٤,٠٤			-7.0	8100 8200
	8300 8400 8500	**	26.0	27		24.9	25.3		26.4		** ** **		25.8	26.2	05 =							25.9 26.0	8300 8400 8500
	8600 8700 8800	"	26.2	27.0		24.6	**	26.7		25.0	18	25 .5	26.0	" "	25.7						25.2	10	8600 8700 8800
	8900 9000 9100	**			25.0	n n	**	# #			**			99 99 13	26.0			25.5				*	9000 9100
	9200 9300	**			27.0	24.7		# #			25 -	25 (26 4	-	**					25.3		25 -	9200 9300
	9400 9500 9600	**		•	24.8			n n	26.5		*	25.6 25.7	26.1	26.3	n n			25.6	25.3			<>->•9	9400 9500 9600
10	9700 9800 9 9 00	11 11				25.0 25.1		26.4	26.8	25.2	# #			**	99 99			25.5					9700 9800 9900
CCOMPA	10000 10100 10200	# #			25.2	25.0					11 11		26.0 26.1	# # 26.2	99 99 91							25.8 25.9	
RECO	10300 10400 10500	n n			25.0			26.7	26.6	25.3	17 18 71	25.8	26.2	7	**			25.6 25.5				**	10300 10400 10500
No. 196	10600 10700	H 11			75.0	25.2	-).1	26.7	1	27.3 #	# # # # # # # # # # # # # # # # # # #	25.8	**	26 -	n			25.5	25.2		25 4	**	10600 10700
	10800 10900 11 000	n n			"	25.0		**		**	*	H	n	26.3 " 26.2	H			25.6		,	25.1	"	10800 10900 11000
	11100 11200 11300	1 1 1	i		# # #		25.3	**		**	*	# # #	# # #							25.1			11100 11200 11300
	11400 11500 11600	п н			"			26.6	26.8	**	11 15 11	n n	# #	26.1 26.0					25.1	-/•1		# #	11400 11500 11600
	11700 11800	11	26 4		**		2 5.2			# # #	n n	н н	#	26.U							25.0 25.3	**	11700 11800
	11900 12000 12100	n n	26.4		77 111	25.1	25.0 24.9	26.8	26.7	n n		n n		**	25.9						25.2 25.4		11900 12000 12100
	12200 12300 12400	# "			17 17	25.0	25.0	# #	# # #	#1 #1		n n n							:				12200 12300 12400
	12500 12600 12700	# 25.6	26.3		n n		# #	# #	Ħ		4	n n									25.4	26.1	12 50 0
	12800 12900		د.٥٠		*	25.1	·			25.2		# #	26.1	25 .9									12799 12800 12900
'	13000 13100 13200									-	25.1	n n			25.8			25.7	25.0			26.0	13000 13100 13200
	13300 13400 13500								2 6. 5									· / • •	# #		25.5	*	13300 13400 13500
	13600 13700								26.7										H H		25.6		13600
_	13800 13900 14000								n n									······································	*	24.8 25.0	25.7	26.2	13900 TO 13900 TO 14000 Z
	14100 14200 14300								# #										n n	# #	25.6	,	14100 <u>U</u> 14200 X
	14400					1													 2 5.1	*	25 5		14300 N 14400 14500
	14600 14700 14800																					25.9	14600 S 14700 8 14800
-	14900 15000													_							25.6		14900 N
1_		h	L				and the second s						.	tennin eemme sad									

MARK	ON 46	EGA TE	AVERSE 48	4 9	SEIS	MIC TR	AVERSE	S 4
	in	out	in	out	in	in	out	out
100 200 300 400 500 600 700 800					26.0	24.5 24.6 24.9	24.5 24.3	
900 1000 1100					n	25.0	24.7	
1200 1300 1400 1500 1600 1700 1800 1900							25.0	
2000 2100 2200 2300 2400 2500 2600 2700 2800					26.1	25.1		
3000 3100					11	25.2	25.1	
3200 3300 3400 3500 3600 3700 3800 3900					11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11	
4000 4100 4200 4300 4400 4500 4600					17	11 11 11 11 11	11 17 11 11 11	
4700 4800 4900	25.7 25.8					10 10	91 97	
5000 5100 5200 5300 5400 5500 5600 5700	25.6 25.7 25.6 25.7 25.6 25.5	25.3 25.5 25.4			26.0	25.4	11	
5800 5900 6000	11	18 18	25.4		11	25.5		
6100 6200 6300 6400 6500 6600 6700	25.7 "	11 11 11 11 11 11 11 11 11 11 11 11 11	25.3 25.4		11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11		
6800 6900 7000	11		**	24.4	11	11	25.0	
7100 7200 7300	25.6	25.5 25.6	25.2	24.4	70 70 11		# #	
7400 7500 7600 7700 7800 7900	25.7 "" ""		25.4	24.4	11 11 11 11 11		11 20 20 27 27	
8000 8100 8200 8300 8400 8500	25.8	25.7	25.3	24.5	99 99 99 99 11	25.4	11 10 10 11 11	
8600 8700 8800 8900 9000	25.7	25.8 25.7 25.8	25.4	17 17 11 17	11 11 11	25.3	17 18 17 17	
9100 9200 9300 9 400	25.9 25.8	25.9	25.7	24.8 25.0	11 11		17 17 17	
9500 9600 9700 9800 9900	25.9 25.8	25.9		11 11 11 11	11 11 11		15 11 11 11	25.5
10000 10100 10200 10300 10400 10500 10600 10700 10800	25.9	26.0 26.1 26.0	25.6	25.1	11 11 11 11 11 11		11 11 11 11 11 11 11	25.4
10900 11000 11100	26.0			25.0	11	25.2	19 19	25.4
11200 11300 11400 11500 11600	10 10 21 24 19	26 .1 26 .0		25.1		99 99 98 98	17 18 17 17	11 11 11 11
11700 11800 11900	11 11	26.1				11 11	11 11	11
12000 12100 12200	1) 11	26.0		25.0	25.8	11 11	**	11
12300 12400 12500 12600 12700 12800	11	11 17 18 19 11	25.4 "	11 11 11 11		11 11 11 11 11		25.2 25.3
12900 13000 13100	25.9	19	17 17	**	25.9	11 11		
13200 13300 13400	10 10 11	26.1	99 . 99 . 99	**		10 10 10		25.1
13500 13600 13700 13800 13900	11 11 11 11	26.0	11 11 11 19	25.1		91 91 91	24.9	25.2
14000 14100 14200	11		11 11	/- 1		13 11	97 97 98	25.3
14300 14400 14500 14600	25.7	26.1 26.0	17 87 17	25.0		11 11 11	11 10 10	25.2
14700 14800 14900				11 11 27		ti ti		19 19 19
15000	25,8			11			24.8	H

	OM TRAVE	DEGA	SEI	SMIC !	ravers	ES
MARK	48 in	49 out	1 in	2 in	3 out	4 out
15100 15200 15300 15400 15500 15600 15700 15800 15900	25.2	25.0			24.8 11 11 11 11 11	25.2 "" "" 25.1
16000 16100 16200 16300 16400 16500 16600 16700 16800 16900		H			19 19 19 19 19 19 19 19 19 19 19 19 19 1	10 10 10 10 10 11 11 11 11 11 11 11 11 1
17000 17100 17200 17300 17400 17500 17600 17700 17800 17900					17 17 17 18 19 19 11 11	## ## ## ## ## ## ## ## ## ## ## ## ##
18000 18100 18200 18300 18400 18500 18600 18700 18800 18900					41	11 11 11 11 11 11 11 11 11 11 11 11 11
19000 19100 19200 19300 19400 19500 19600 19700 19800 19900					24.7	11 11 11
20000 20100 20200 20300 20400 20500 20600 20700 20800 20900					24.6	
21000 21100 21200 21300 21400 21500 21600 21700 21800 21900					24.5	
22000 22100					71	

NOTE: (1) Temperature gradients, for the zones between

(2) The date/time on which the traverse was values given, are constant. surveyed can be found in Plate 2. Times of

by interpolation.

individual temperature readings may be found

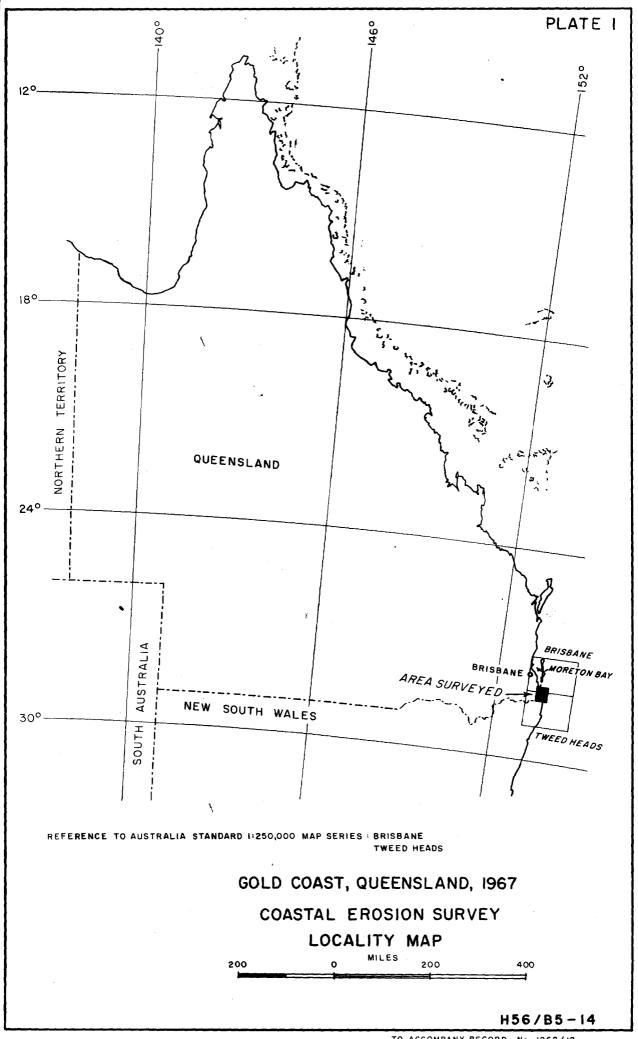
TEMPERATURE VALUES (°C)

(UNCORRECTED NEAR-SURFACE)

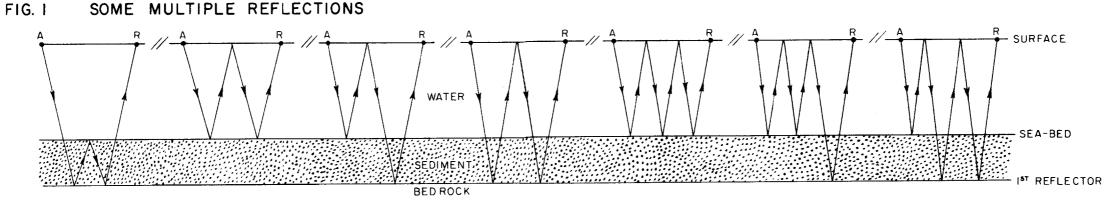
Results of seismic refraction traverses at sea

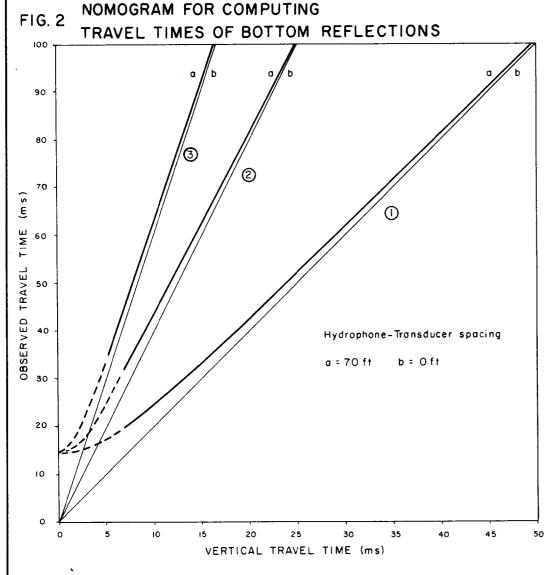
Traverse Seismic 1 (inshore)

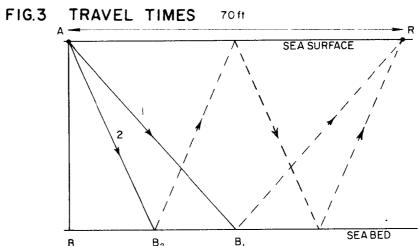
Shot No.		2	4	5	6
Direction		In	Out*	In	Out
Spread Location	(metres)	2030 2113	1970 1887	2090 2173	1902 1822
Depth (ft)	Shot Water	103 103	103 103	103 103	103 103
First Refractor	Velocity (ft/s) Depth (ft)	5500 103	5700 103	5600 103	5000 103
Second Refractor	Velocity (ft/s) Depth (ft)	<u>-</u> -	<u>-</u>	19,500 159	6300 135
Third Refractor	Velocity (ft/s) Depth (ft)		<u>.</u>		17,000 185
Shot Dista	nce (ft)	50	50	185	250
		•		•	

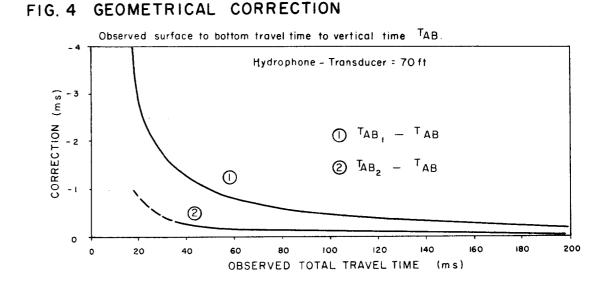

APPENDIX 3

Traverse Seismic 1 (at sea)


Sho	t No	o.	7	8
Dir	ect:	lon	In	Out
Spread (met			10090 10173	9910 9827
Depth (ft)	l .	not ater	75 185 – 190	75 185–190
First Refract		Velocity (ft/s) Depth (ft)	5300 185 – 190	5000 185 – 190
Shot di	star	nce (ft)	297	_250


Traverse Omega 37


Shot No.	4 - 4 W	1	3	4
Direction		Out	Out	In
Spread Location (Metres)		2213 2130	2200 2117	2392 2475
Depth (ft)	Shot Water	82 82	82 82	8 2 82
First Refractor	Velocity (ft/s) Depth (ft)	5500 82	5500 82	6700 82
Second Refractor	Velocity (ft/s) Depth. (ft)	12,500 163	11,000 173	12,500 160
Shot Distance (ft)		250	-	-



Toolet Evenou Liney QLO 1962

LEGEND

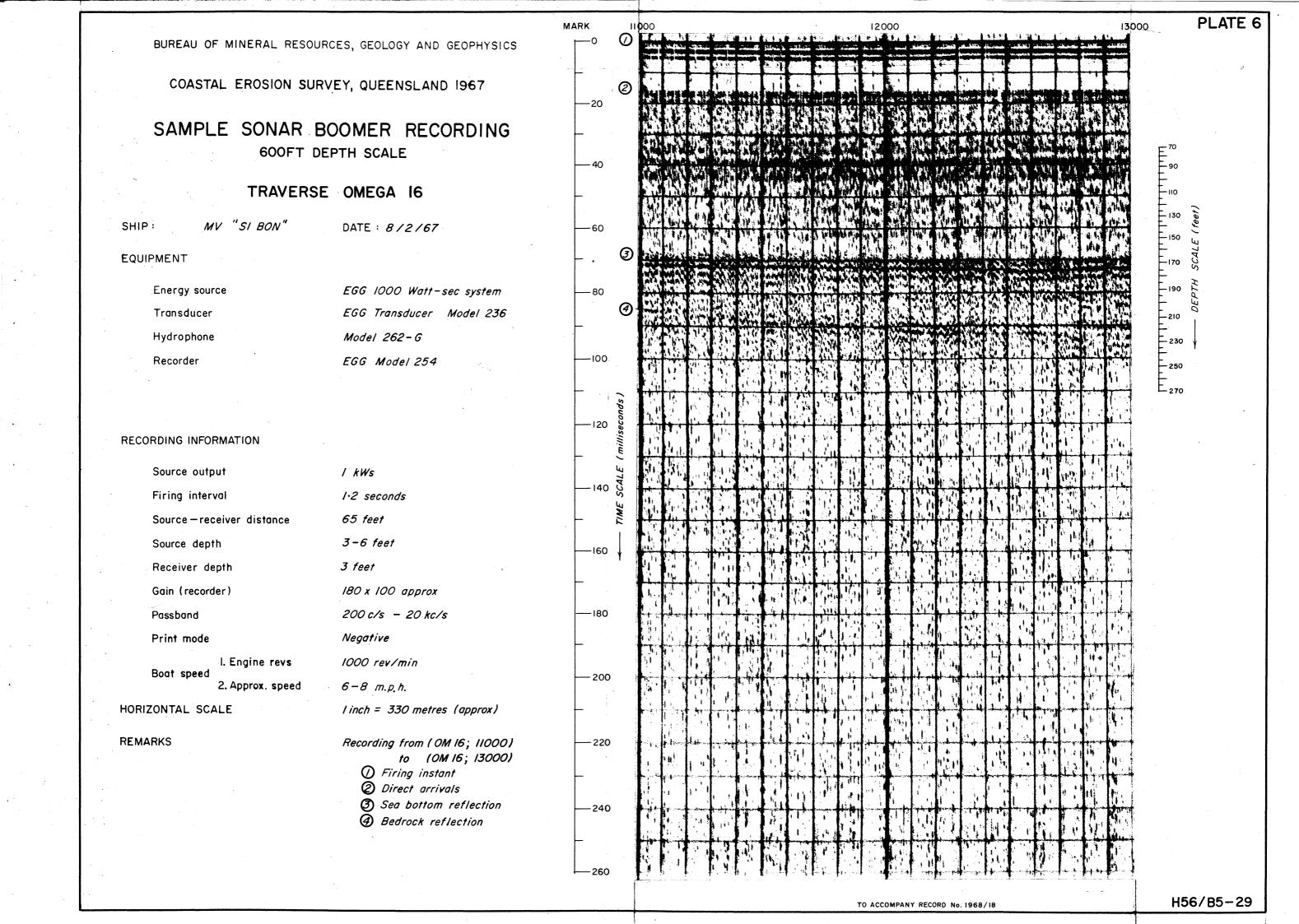
A Transmitter (Transducer)

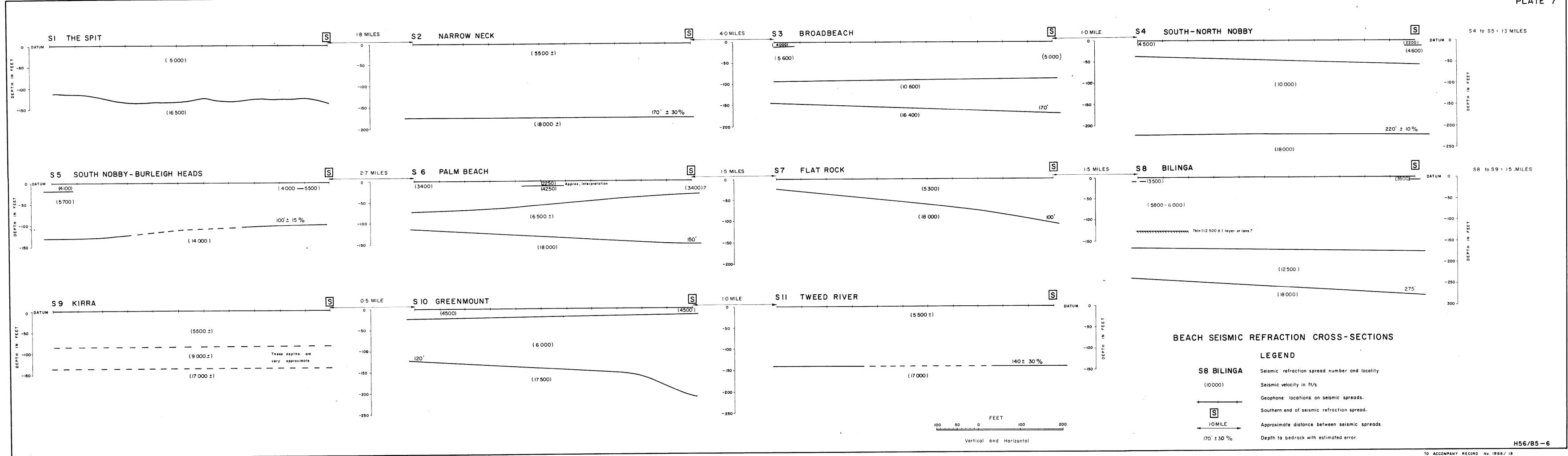
R Receiver (Hydrophone)

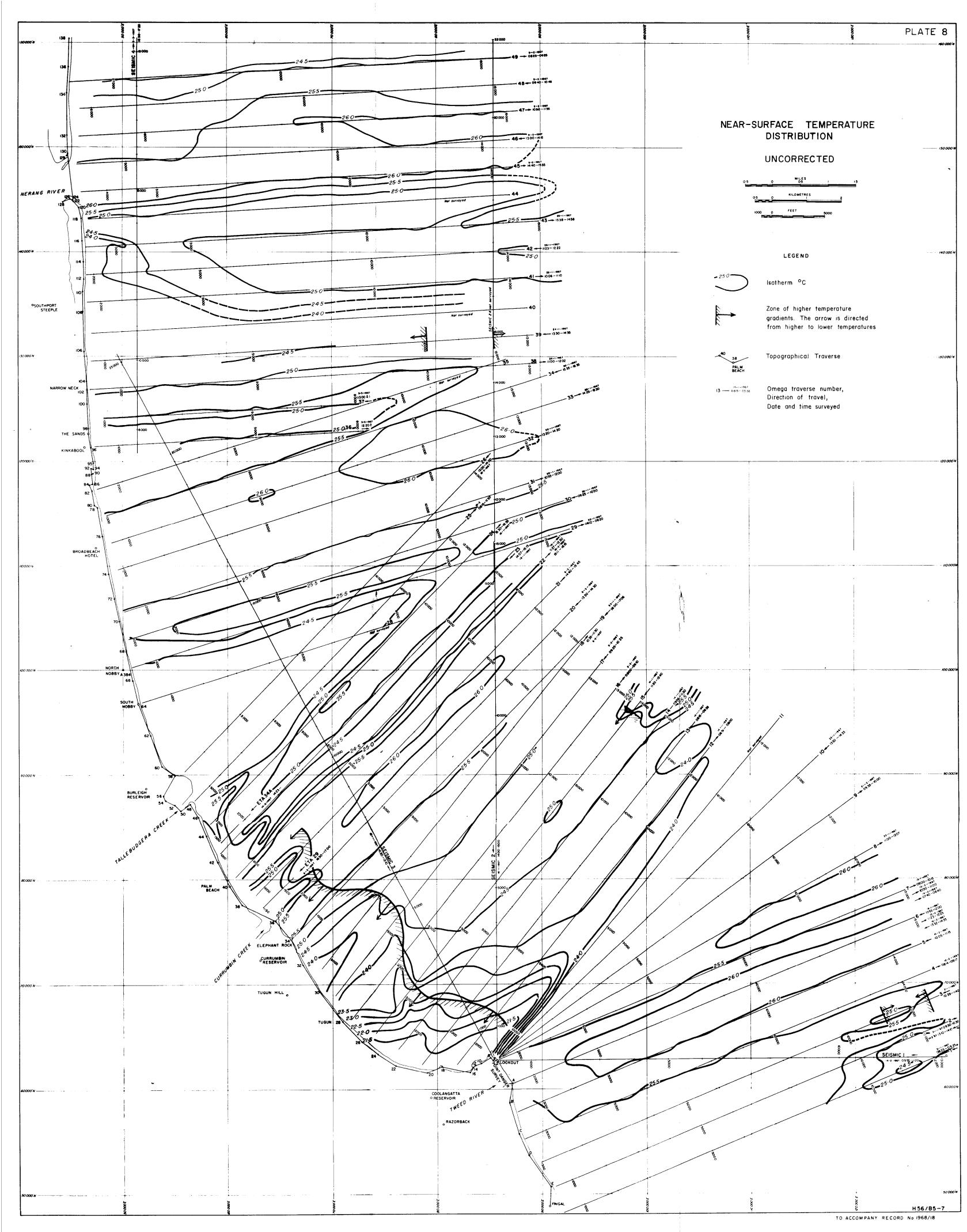
TAB Vertical travel time

TAB, Surface to bottom travel time, bottom reflection

TAB2 Surface to bottom travel time, first bottom multiple

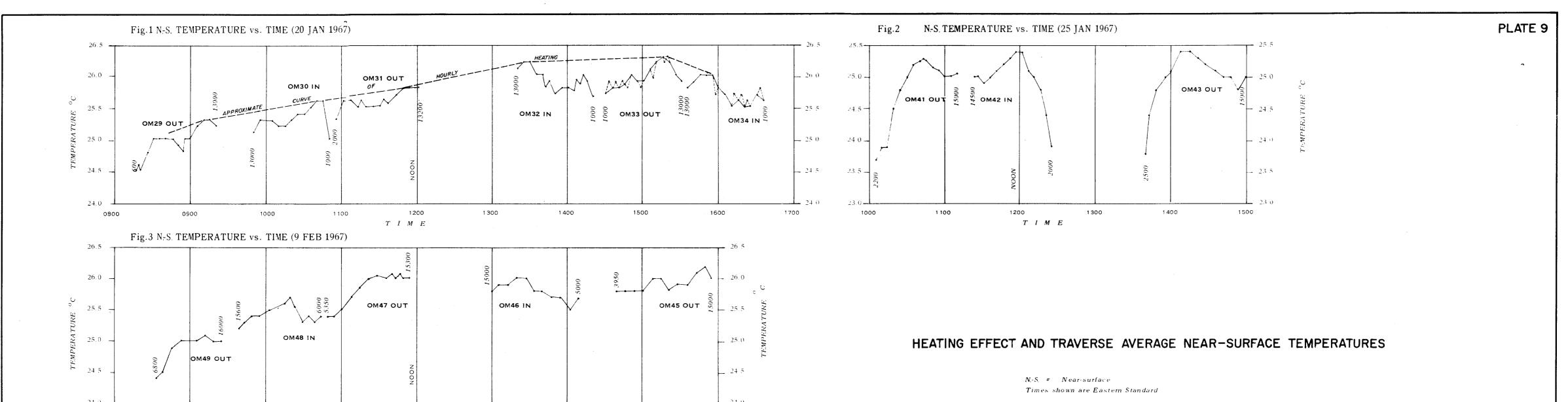

(1) Single bottom reflection.

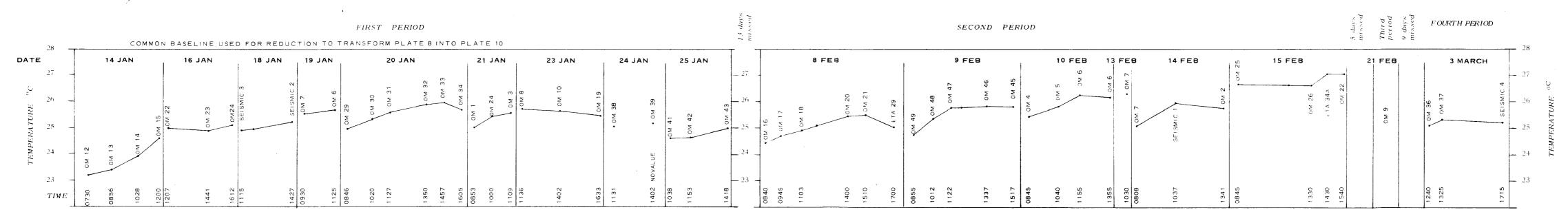

(2) Double bottom reflection (1st bottom multiple)


(3) Triple bottom reflection (2nd bottom multiple)

MULTIPLE REFLECTIONS AND GEOMETRICAL CORRECTIONS

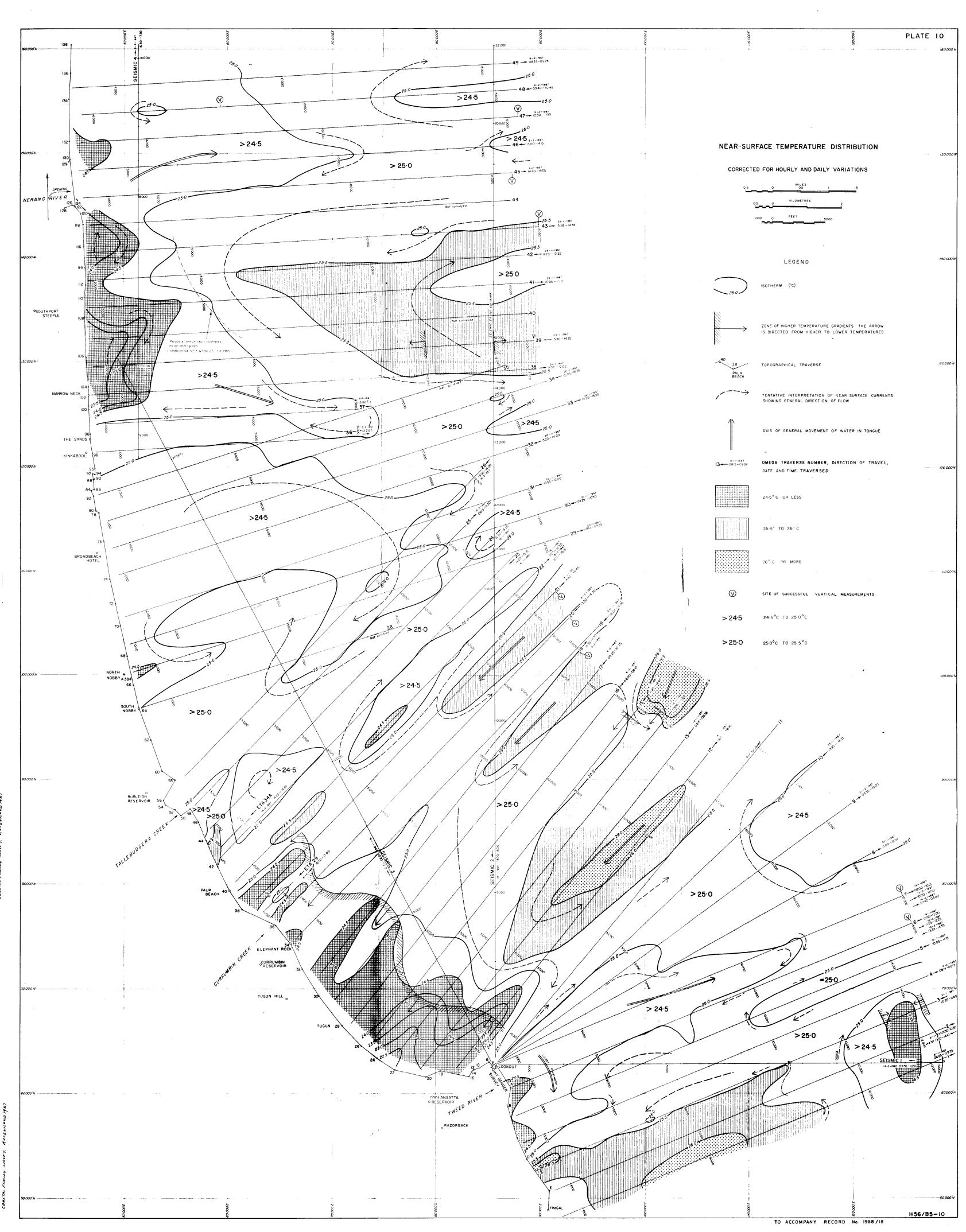
10000 PLATE 5 10500 MARK BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS COASTAL EROSION SURVEY, QUEENSLAND 1967 SAMPLE SONAR BOOMER RECORDING 240FT DEPTH SCALE — o ? TRAVERSE OMEGA 13 SHIP: MV "SI BON" DATE : 14/1/67 EQUIPMENT . Energy source EGG 1000 Watt-sec system EGG Transducer Model 236 Transducer Hydrophone Model 262-6 EGG Model 254 Recorder RECORDING INFORMATION Source output 1 kWs 1.2 seconds Firing interval 65 feet Source - receiver distance 3-6 feet Source depth Receiver depth 3 feet 180 x 100 approx Gain (recorder) 200 c/s - 20 kc/s Passband Negative Print mode 1000 rev/min I. Engine revs Boat speed -80 2. Approx. speed 6-8 m.p.h. HORIZONTAL SCALE I inch = 180 metres (approx) Recording from (OM 13; 11100) REMARKS to (OM 13; 10000) - 220 () Firing instant 2 Direct arrivals 3 Sea bottom reflection Bedrock reflection H56/B5-28 TO ACCOMPANY RECORD No. 1968/18

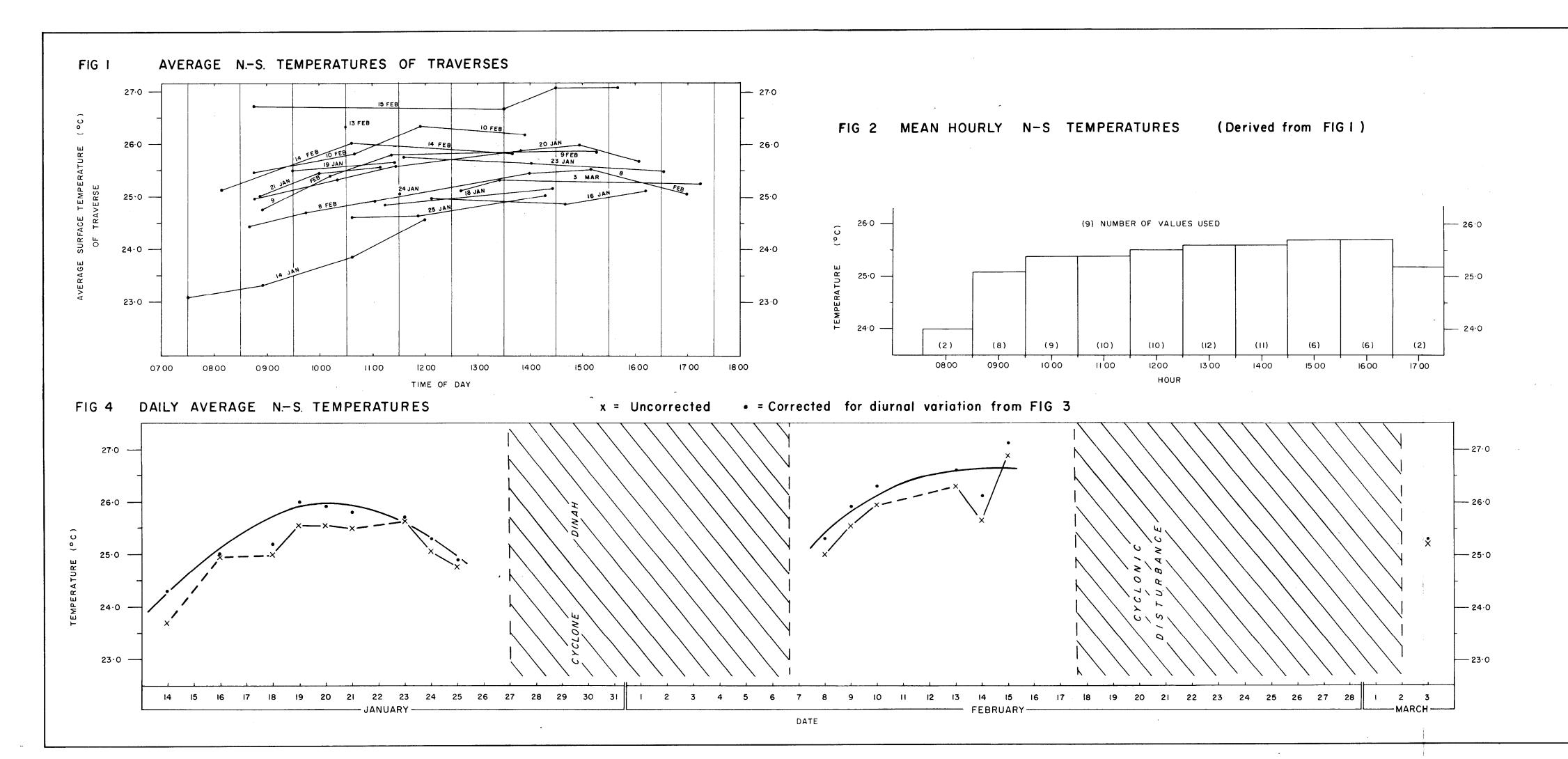


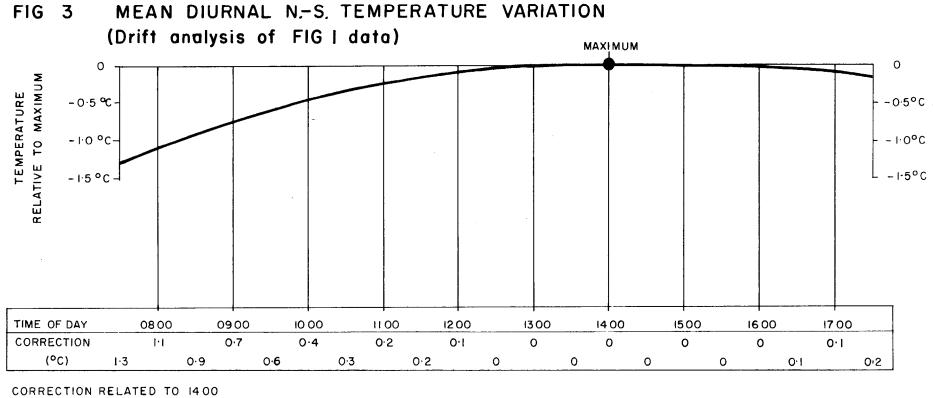

Fig.4 S. UNCORRECTED TRAVERSE AVERAGE OF N-S TEMPERATURES

1100

1200

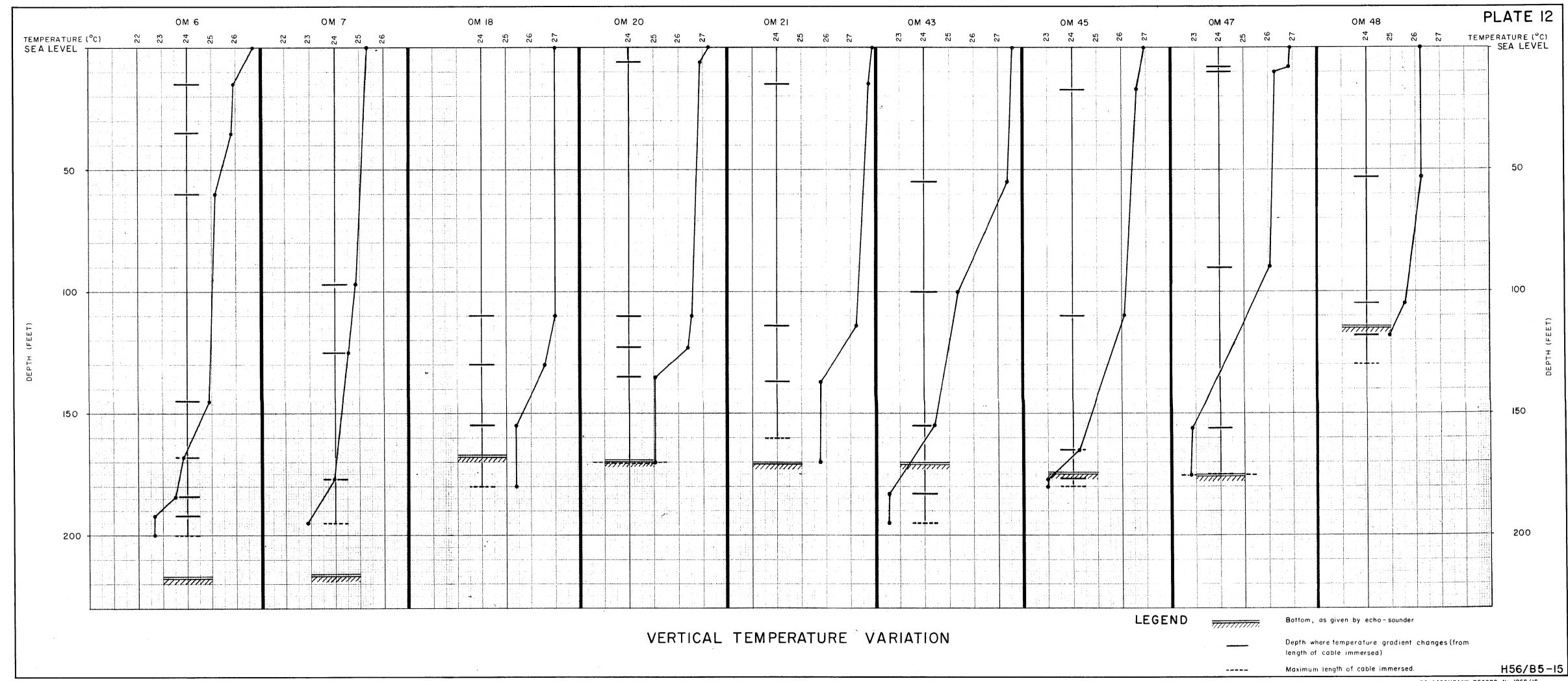

T I M E


0800



1500

1600



HOURLY AND DAILY NEAR-SURFACE
TEMPERATURE VARIATIONS

(N-S.= NEAR SURFACE)

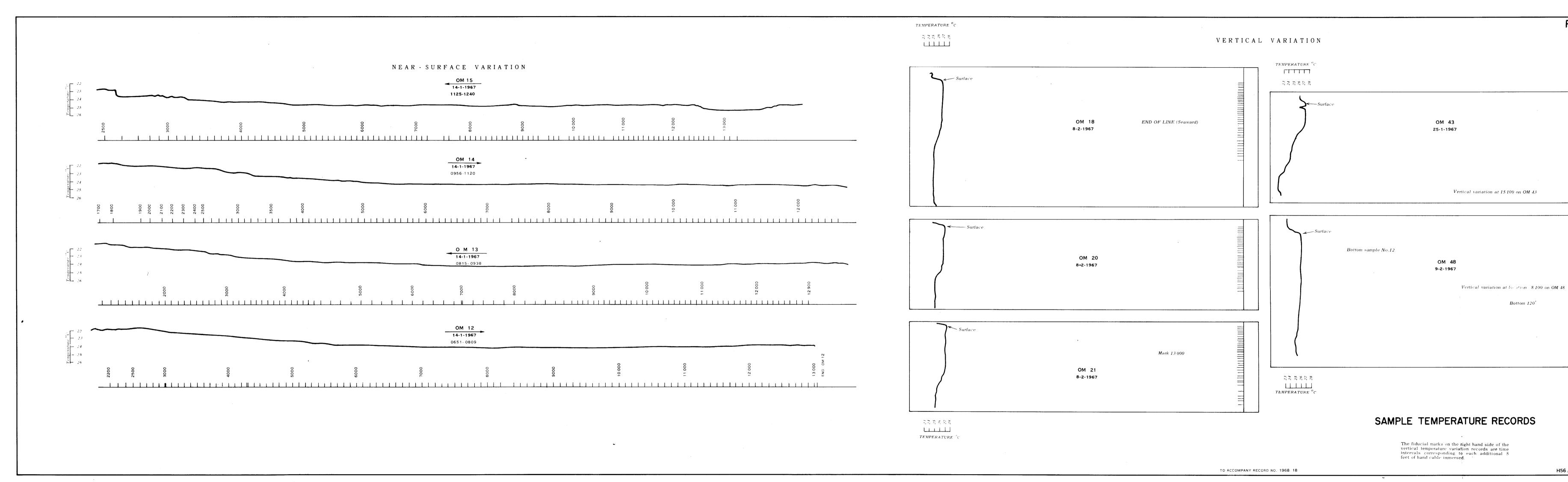


PLATE 13

H56/B5-18

FIG I TEMPERATURE PROBE CALIBRATION CURVES

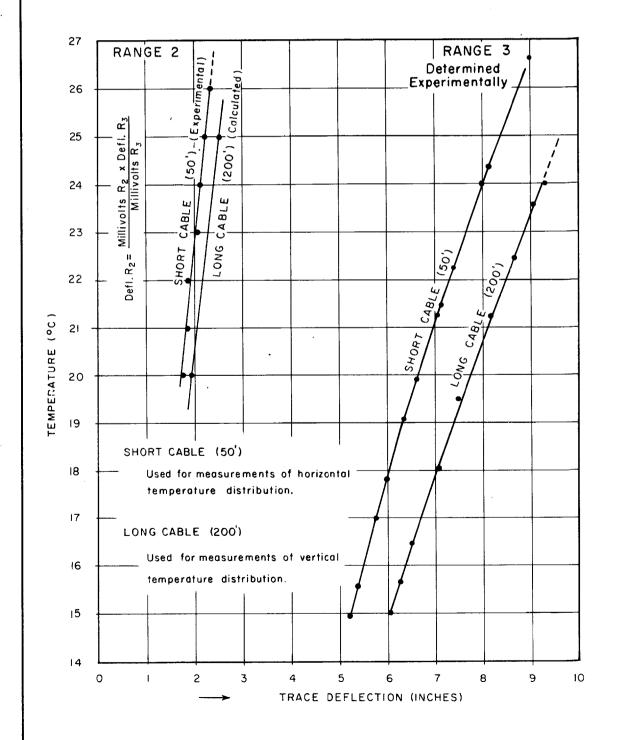


FIG 2 THERMISTOR SYSTEM TTPI CALIBRATION CURVES

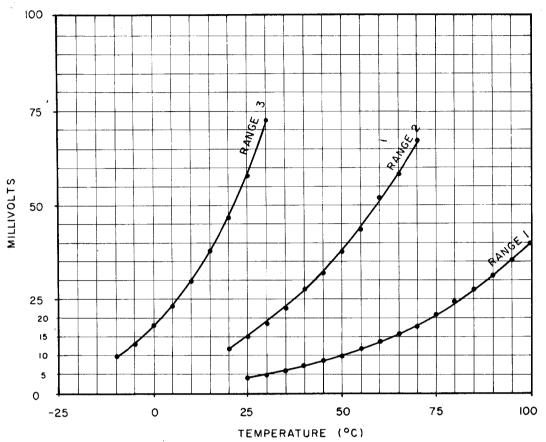
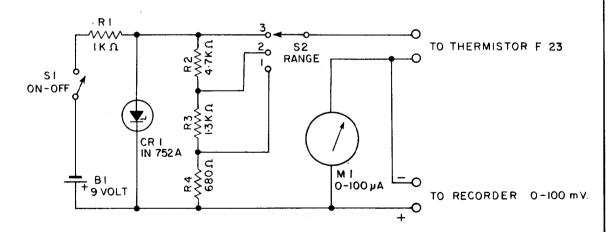



FIG. 3 CIRCUIT DIAGRAM

THERMISTOR SYSTEM TTP I CIRCUIT DIAGRAM

AND CALIBRATION CURVES