1972/79 Copy 4

007616

DEPARTMENT OF MINERALS AND ENERGY

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

Record 1972/79

LAKE GEORGE, N.S.W. - NOTES FOR SEDIMENTOLOGISTS' EXCURSION, NOVEMBER, 1970

by

G.M. Burton

The information contained in this report has been obtained by the Department of Minerals and Energy as part of the policy of the Australian Government to assist in the exploration and development of lineral resources. It may not be published in any form or used in a company prospectus or statement ithout the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

BMR Record 1972/79 c.4 Record 1972/79

007623

LAKE GEORGE, N.S.W. - NOTES FOR SEDIMENTOLOGISTS' EXCURSION, NOVEMBER, 1970

by

G.M. Burton

CONTENTS

90		Page
FOREW	ORD	
SUMMA	RY	i
PREFA	CE	iii
INTROD	UCTION	1
RECENT	r surveys by bmr	1
HYDRO	GRAPHY	2
DECEP	TIVE OBSERVATIONS	3
CHEMIS	TRY	5
SEDIME	NTATION	9
FORMA'	TION OF THE LAKE	9
CONCLU	USIONS	10
ACKNO	WLEDGEMENTS	11
REFERE	ENCES	11
840) 2	TABLES	
1.	Estimated Annual Water Balance, 1958-1970.	4
2.	Water analyses, Lakes George and Bathurst.	7
	APPENDIX	
1.	Lake George - Water level, depth, etc.	
2.	Conversion factors.	
,	FIGURES	16.00
1.	Depth of Lake George 1819-1972.	
2.	Lake George (Topography).	
3.	Hydrography, 1958-1972.	
4.	Hydrographs showing seiches.	
5.	Instrument Platform.	
6.	Annual approximate water balance.	
7.	Hydrological seasons, rainfall and evaporation.	45

- 8. Set-ups and seiches.
- 9. Wind roses, Canberra.
- 10. BMR 1 Scout Hole Canberra (log.).
- 11. Formation of apparently mature quartz gravels near fault.

FOREWORD

This Record was prepared by G.M. Burton for the Sedimentologists' Excursion to Lake George in November, 1970. It was issued after his death in November, 1972, without some of the amendments that he had intended to make.

SUMMARY

The study of Lake George has been in progress for over 150 years since its discovery in 1820, and the fluctuations in water levels that have transformed the lake into pastureland, and in turn inundated the area again to form a lake have captured the interest of scientist and layman alike. The earliest records of Lake George were compiled by H.C. Russell, Government Astronomer of New South Wales; following the reappearance of the lake after heavy rain in 1950, the Bureau of Mineral Resources (BMR) commenced regular observation of the lake, and subsequently initiated a continuing study into other aspects of scientific interest in the Lake George drainage basin.

Observations of water levels for over 20 years, and a study of the meteorological records in the area now permit a reasonably accurate water balance for the lake to be obtained in which the rainfall on the lake, plus run-off into the lake, less the water lost by evaporation can be equated with the change in water storage for any given period. Changes in level of the lake are therefore attributable to the natural processes of rainfall and evaporation, and there is no need to invoke mysterious and unaccountable phenomena in order to explain such changes.

Most claims that a sudden rise in the level of the lake has been observed, can be attributed to an optical deception; the contrast between the aspect presented by the lake when approached by road from the north at a height of 15 feet (5m) above lake bed, to that obtained on the approach from the south through Geary's Gap, 100 feet (31m) above the lake, suggests that there has been a change in the level of the lake, particularly if the two impressions were gained on different days. From the latter point the lake presents a vast expanse of water, whereas from the north, water is barely visible; the impressions are conflicting, and it seems reasonable to the observer to conclude, that a change has taken place in the water level since the lake was last seen. Others claim to have witnessed the water of the lake either advancing or receding. These reports are attributable to movement of the lake waters set up by the wind, causing the water to oscillate; recorded rises of 6 inches (0.15m) would account for advances of water over ½ mile (1km) across the almost flat lake margins. This is a common occurrence known as a seiche.

The salt concentration of the lake water increases as the lake level is reduced by evaporation. The water is dominantly a sodium chloride type, and analyses indicate that the ratio of the dominant ions is similar to that of sea water; in particular the bromide to chloride ratio is reasonably close to that of sea water. It is believed that the salt in the lake water is in fact salt brought inland with moist air from the Pacific Ocean by winds from

the east, and deposited with rain. The concentration of salt in the water increases during drought years and the water may become unfit for consumption by stock.

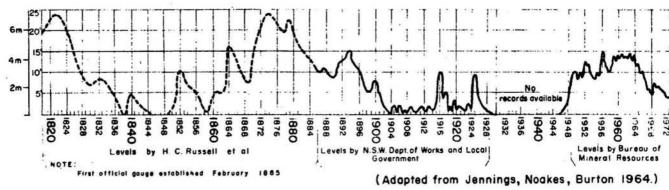
Sedimentation in and around the lake ranges from coarse scree slopes and alluvial fans, to beaches, bars, and spits of reworked material around the margin of the lake. Deposits of windblown sand are present along the eastern and southern shores, and stream beds entering the lake contain deposits of sand and gravel. High shrinkage clay and silty clay, and organic ooze occupy the bed of the lake.

Recent investigations including crustal studies have convinced the writer that formation of the lake followed disruption by faulting of the antecedent drainage in late Tertiary to Pliestocene times, and the formation of a number of fault blocks; the most prominent fault, lying immediately to the west of Lake George, is known as the Lake George Fault. Earlier opinions have been expressed that the Lake George Fault came into existence in Palaeozoic times, but that movement has also taken place along the fault in post-Palaeozoic times.

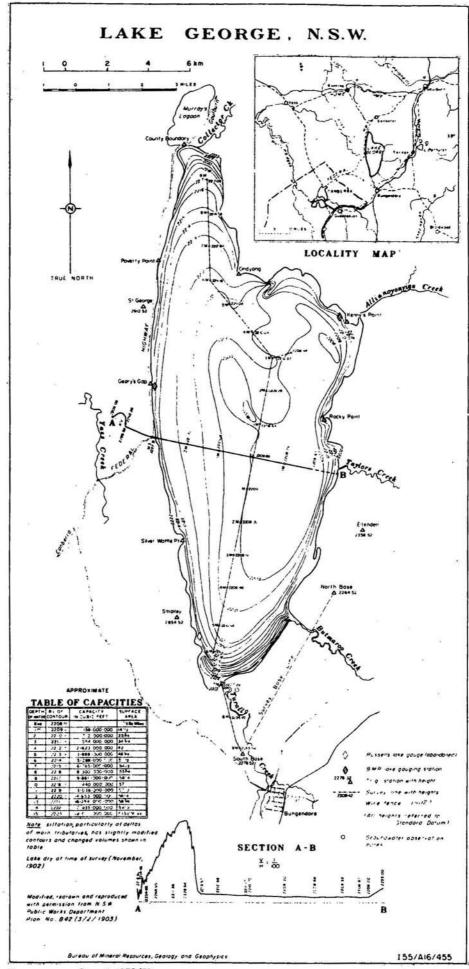
PREFACE

Lake George is the focus of drainage for an internal drainage basin of 360 square miles (932 sq km*) within the Great Dividing Range of southeastern New South Wales. The floor of the lake is 2208 feet (673 m) above sea level and only 65 miles (105 km) inland from the sea. The lake lies at latitude 35°05'S and longitude 149°25'E, 18 miles (30 km) northeast of the national capital, Canberra. It is a tectonic lake according to Hutchinson's (1957) classification.

The lake is of great interest to local residents, and also to the many tourists visiting Canberra. It is the natural centre of an area of the Southern Tablelands covering 3000 square miles (7770 sq. km) and embracing the cities of Canberra, Goulburn and Queanbeyan, the major towns of Yass and Braidwood, and the small towns of Bungendore, Tarago, Collector, and Gunning (Figure 2). The Federal Highway linking Canberra and Goulburn passes along the western shore of the lake and most of the towns are less than 25 miles (40 km) from the lake along the good network of roads that radiate from the lake.


The lake is a proclaimed Wildlife Refuge, and is a favoured recreational area. The wide expanse of water presents pleasant relief in the noticeably dry Southern Tablelands where the annual evaporation is about 50 inches (1270 mm) and rainfall only 25 inches (635 mm). Its use for recreation is expected to increase rapidly with the increasing population of Canberra and the nearby towns.

The lake shows marked seasonal fluctuations in depth and area, and similar fluctuations over longer irregular periods. It is a relatively shallow body of water compared to major lakes of the world (Lake Baikaal, U.S.S.R. depth 5710 feet (1741 m), and Lake Tahoe, U.S.A., 1643 feet (501 m)). Over the last 150 years (Figure 1) the depth of water in Lake George has rarely exceeded 20 feet (6.1 m) at its deepest point and, as far as is known, has not exceeded 25 feet (7.5 m). Commonly its maximum depth is between 5 and 15 feet (1.5 and 4.6 m) and its area between 50 and 60 square miles (130 and 155 km²). When the area of the lake is 55 square miles (142 km²), its length is about 12 miles


^{*} BMR commenced conversion to metric units in 1970. Data for Lake George are being converted progressively and will be completed in 1973. British units are used herein, with equivalents where appropriate; conversion factors are given in Appendix 2.

LAKE GEORGE, N.S.W. HYDROGRAPH - DEPTH

1819-1972

(Updated to December, 1972)

To accompany Record 1972/79

(19 km) and width 5 miles (8 km): the ellipticity* is 0.6 and the shoreline is about 30 miles (48 km) in length. In Pleistocene times, the lake is believed to have attained a depth of about 115 feet (35 m), (E.G. Wilson, in Galloway, 1965).

The level of the lake falls rapidly during major droughts, and on several occasions it has been completely dry. The larger and more rapid fluctuations that have occurred from time to time have puzzled the casual observer and the lake has assumed an air of mystery for the layman. Nevertheless, studies of the lake undertaken by geologists and hydrologists have clearly demonstrated that the fluctuation in levels is a normal response to the wide range of climatic conditions encountered in the area.

The lake usually appears tranquil. However, the rapid onset of strong winds, and the long fetch across the lake quickly produce rough choppy seas, that necessitate great caution when boating. The surprisingly low temperature of the water for much of the year (Appendix 1) can cause cramps for overturned yachtsmen, and the heavy black mud on much of the floor can soon lead to fatigue for men attempting to wade to the shore.

Besides being an important recreational area, the lake is a regular source of interest to visiting scientists, particularly hydrologists, limnologists, geomorphologists, and geologists. These notes were prepared for an excursion for Australian Sedimentologists in November, 1970, the 150th anniversary of the discovery of the lake by Joseph Wild on 19 August, 1820. The notes complement an earlier and more detailed account of the lake (Jennings, Noakes, Burton, 1964). A short Appendix containing hydrological records of the lake from 1958 to 1972 has been added (Appendix 1).

It is appropriate on the occasion of this anniversary to draw attention to the work at Lake George in the 1880's of H.C. Russell, Government Astronomer of New South Wales. Russell's diligent investigations at the lake and in other areas of New South Wales, including the Great Artesian Basin, place him among the notable Australian pioneering hydrologists; his studies of seiches** at the lake are some of the earliest

^{*} ellipticity = $\frac{\text{length - width}}{\text{length}}$

^{**} Seiches (Figure 4) are oscillatory movements of the water in a lake, similar to water moving in a saucer when disturbed; they have been receiving increasing attention from hydrologists, including J.A.H. Brown (1961) at Lake Eucumbene. Seiches are commonly caused by meteorological phenomena such as when a persistent wind drives water to one side of a lake causing the 'set-up' from which the lake commences to oscillate. The generation of a seiche is shown in Figure 8. Hutchinson (1957) discusses seiches in detail.

V

published works on this phenomenon. The work begun by Russell lapsed during the 1930's and 40's, but the careful re-establishment of gauging of the lake by Noakes (1951), after the refilling of the lake during the flood rains of March 1950, enabled work on the water balance of the lake to be carried out over the last thirteen years. Noakes took particular care to link the new work with that of Russell, and the N.S.W. Department of Works and Local Government, who surveyed the bed of the lake in 1903 (Figure 2).

It is appropriate to recall part of Russell's (1885) address on Lake George to the Royal Society of New South Wales on 1 December, 1886. Therein is part of the reason of our debt to Russell and a reminder to continue his research: 'The history of floods in our rivers and lakes, if it could be accurately written, would form one of the most important chapters in the history of our climate, and probably throw much light upon the laws which control the changes in seasons that have such prominent effects upon a country like this, almost wholly devoted to pastoral pursuits'.

It is no longer true that the country is almost wholly devoted to pastoral pursuits, but the impact of the severe droughts of the second half of the 1960's embracing as they did, New South Wales, Queensland, Victoria, Tasmania, South Australia, and the Northern Territory, was severe over a wide range of Australian activities.

INTRODUCTION

As well as being the 150th anniversary of the discovery of Lake George by Wild in August, 1820, this year, 1970, also marks the completion of the first 150 years of one of the longest and most interesting hydrographic records in Australia, Lake George.

The Lake George basin probably contains the thickest section of Cainozoic sediments in the southern highlands. It is of major importance not only to sedimentologists, but also to geologists andgeomorphologists attempting to reconstruct the post-Palaeozoic geological history of the southeastern portion of N.S.W., a difficult task in the absence of widespread Mesozoic and Cainozoic sedimentation. The geological history is also important to engineering geologists in the A.C.T.* studying regional weathering, sand, and quarry products; however, studies over parts of the Lake George region have been impaired by the lack of suitable topographic maps and detailed geological maps. A notable exception is the excellent survey of the lake floor carried out by the N.S.W. Department of Public Works in 1902 (Figure 2). Some up-to-date topographic maps at 1:50 000 scale are now available, and the new maps will permit a sounder consideration of the theories proposed over the last 50 years for the formation of the lake.

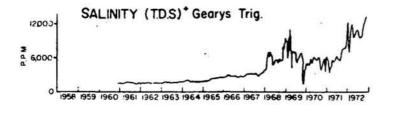
RECENT SURVEYS BY BMR

The lake, during the last twenty years, has been an active area of investigation by officers of the Commonwealth Scientific and Industrial Research Organization (particularly Dr. R.W. Galloway), by staff of the Australian National University (J.N. Jennings, J.R. Cleary, R. Coventry and others) and by BMR geologists and geophysicists, starting with L.C. Noakes in 1950.

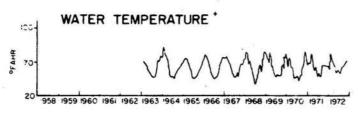
BMR surveys have been concerned with the hydrogeology of the basin, geological mapping of adjacent areas, e.g., Geary's Gap area (Hill, 1969), gravity surveys, the drilling of stratigraphic holes and groundwater observation bores, and the establishment of lake gauging stations.

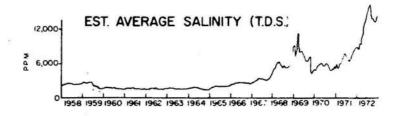
^{*} The Canberra 1:250 000 Geological Sheet (2nd Edition) published by the Bureau of Mineral Resources in 1964, and the Goulburn 1:250 000 Geological Sheet published by the New South Wales Geological Survey late in 1970 provide an excellent picture of the regional geological setting of the lake.

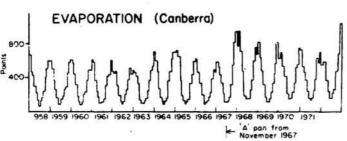
HYDROGRAPHY

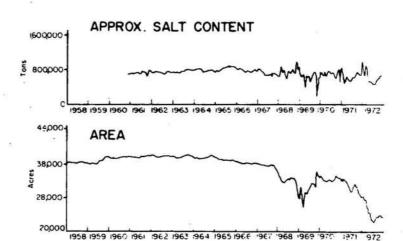

The long hydrological record of Lake George is not only of regional importance, but is also important in establishing key national and international water balances. The study of lakes as world hydrological datum points has been increasing rapidly (e.g. Lamb, 1967; Tarasov, 1967; IASH, 1966) during the current world-wide studies under the International Hydrological Decade. The importance of even relatively minor climatic changes in a country such as Australia, which possess limited water resources, can be seen in the work of Lamb (1967) and Ambe (1967).

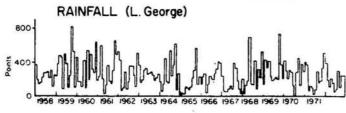
Hydrography not only measures the water resources of a basin but also helps to establish the environment of deposition of sediments. The United States Geological Survey (USGS) with a primary defined role as a hydrographic agency, has been able to contribute significantly to the sedimentology and geomorphology of alluvial and laucustrine deposits. BMR, although not possessing the same major hydrographic role, is gathering hydrographic data to a similar purpose. Gauging stations have been established for measuring depth, salinity and temperature (Figure 3). One offshore station (Figure 5) fitted with water-level and lake temperature recorders has been established. The seiches recorded by the station (Figure 4) are active agents in the formation and modification of sedimentary deposits in the lake. A small meteorological station is established at Kenny's Point to supply data on the generation of the seiches. Floats to define current movements have been used in preliminary studies, and temperature and salinity traverses have been run across the lake.

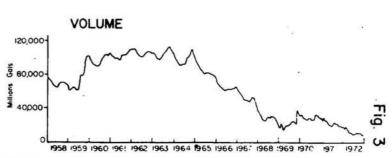

Reasonably accurate water balances for the lake have now been obtained. The water balance, which is illustrated in Figure 6, may be summarized as follows: (major components are underlined):

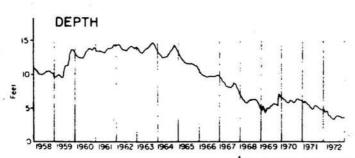

CHANGE IN STORAGE: = (Rainfall on lake + Run-off into lake + Groundwater seepage into lake) - (Evaporation from lake + Leakage to underground + Biological consumption + Loss to shore-line evaporation)

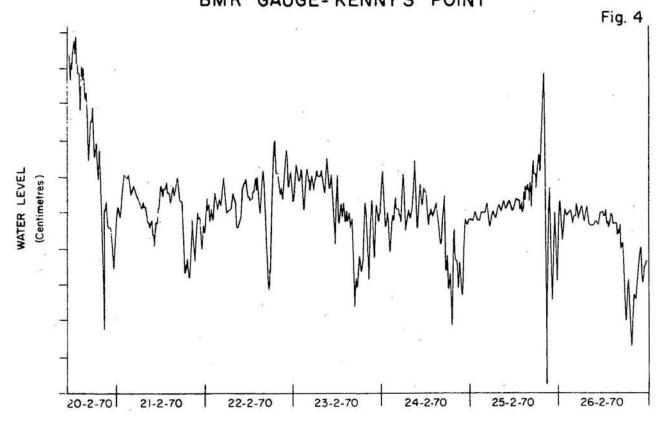

or $\triangle s = (R + RI + RU) - (Ev + LU + BC + LS)$

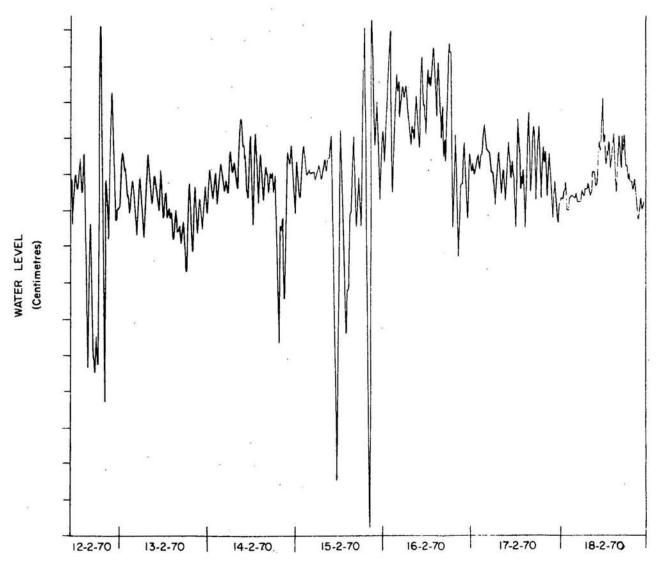



LAKE GEORGE, N.S.W. HYDROGRAPHY 1958-1972

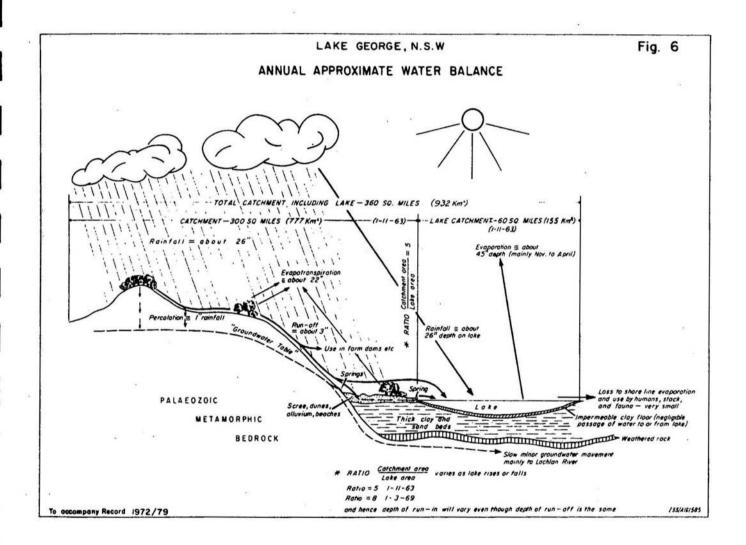








LAKE GEORGE, N.S.W. HYDROGRAPHS SHOWING SEICHES
BMR GAUGE-KENNY'S POINT


BMR negative GA/3973

A. Kennys Point Off-shore Gauging Platform.

BMR. negative GA/3976

B. Detail of Water-Temperature and Lake-level Recorders.

Changes due to thermal expansion and contraction are not included. They are difficult to measure (Reeves, 1968) and the writer believes they are not relevant to the present studies, although they may explain minor but rare anomalous readings of lake level, e.g. where a severe cold snap reduces markedly the temperature of a thin upper layer in the lake during calm conditions.

The response of the lake to the normal seasonal changes (Figure 7) are summarized in Table 1, Estimated Annual Water Balance for Lake George from 1958 to 1970 (13 years). The 13 values for a particular month were averaged, and they illustrate how the monthly variation between rainfall and evaporation imparts a seasonal influence on the additions to, and losses from the water in the lake.

During the drought of 1965 a water balance based on rainfall at Bungendore and evaporation at Canberra (Australian pan) was prepared for four months, February to June. The pan evaporation was corrected for salinity and altitude. The gauges and pan indicated a likely fall in the lake of 17.32 inches (44 cm): an actual decline of 17.64 inches (44.8 cm) was recorded at the lake. The relationship between lake and pan evaporation is complicated (AWRC, 1970; Reeves, 1968; Webb, 1966) and BMR is preparing more detailed studies, particularly use of the Bulk Aerodynamic Method, in keeping with the Australian Water Resources Council's draft recommendations.

The hydromechanics of a lake are particularly complicated (Hutchinson, 1957) but are of great interest to the sedimentologist, as well as to the hydrogeologist seeking suitable aquifers in the area of a former lake. Wind direction, fetch, depth of water, present and previous shapes of the basin and its shore profiles, each play their part in the generation and modification of waves, set-ups, seiches, and the breaking of waves. The relationship between temperatures and salinity stratification further complicates the environment of sedimentation.

DECEPTIVE OBSERVATIONS

Frequent statements by responsible laymen that they have witnessed the lake draining, filling or behaving in an unusual manner call for comment. It is important to note that optical illusions at lakes are common; Hutchinson (1957) in a chapter on the optical properties of lakes covers a number of these, including mirages. There are two other forms of deception, however, that are believed to have led to errors at Lake George in the past; they are based on reliable and

TABLE 1: ESTIMATED ANNUAL WATER BALANCE

(1958-1970)

LAKE GEORGE, N.S.W.

253

194

201

209

1427

Jan.

Feb.

Mar.

Apr.

Total

Annual Total: 2948

Hydrological Precip-Change in Lake Precip-Evaporation from Inflow to seasons and itation Level Volume itation lake (v. approx.) lake (v. month points Ft. Ac.-Ft. on lake Vol. Depth approx.) Ac.-Ft. Ac.-Ft. Ft. Ac.-Ft. 'Winter' May 222 0.00 -85 6489 7078 0.20 504 June 167 0.13 4613 4938 2380 0.07 2055 July 239 0.24 9035 7277 2352 0.07 4110 Aug. 246 0.18 6480 7272 2195 0.06 1403 271 Sept. 0.15 5545 8173 4690 0.13 2062 Oct. 376 0.17 6095 11288 8468 0.24 3275 Total 1521 0.87 31683 45437 27163 0.77 13409 'Summer' Nov. 260 -0.07 -2559 7821 10494 0.29 114 310 Dec. -0.33-11510 9249 20759 0.59 0

Note: The period covers the severe drought of 1965-1968.

-1.27 -45867

-0.27

-0.26

-0.23

-0.11

-0.40

-9959

-9394

-8340

-4105

-14184

Method used slightly underestimates evaporation, particularly in 'winter', and slightly underestimates run-off particularly in 'summer'.

7634

5663

5764

6069

42200

87637

17593

15057

14104

10174

88181

115344

0.49

0.42

0.40

0.28

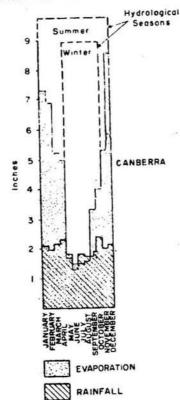
2.47

3.24

0

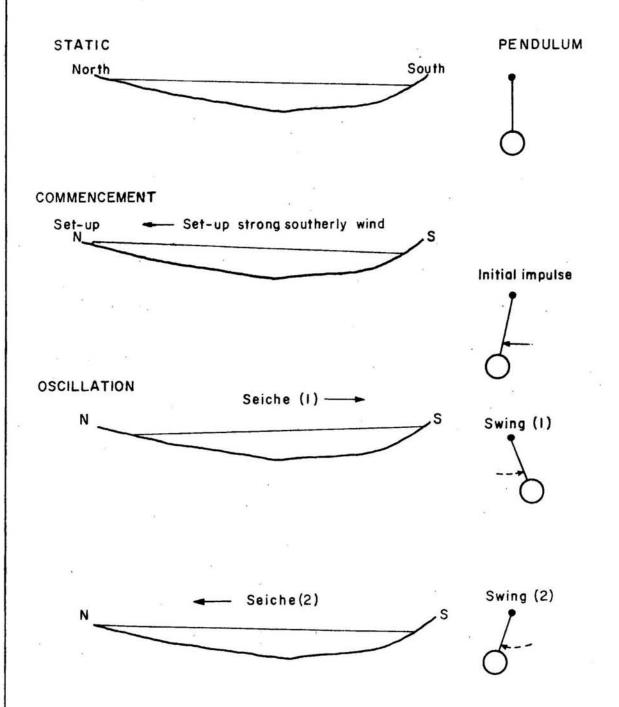
0

0


0

114

13523


Climatological Data Canberra - Queanbeyan Area

MEAN RAINFALL AND EVAPORATION

Bureau of Mineral Resources, Geology and Geophysics

SET-UPS AND SEICHES LAKE GEORGE, NEW SOUTH WALES

PERIOD OF LAKE

$$T_n = \frac{1}{n} \frac{2L}{\sqrt{gd}}$$
 (Simplified equation)

n = *number of nodes*

L = mean length of basin

d = mean depth

g = acceleration of gravity

PERIOD OF PENDULUM

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

l = length of pendulum

g = acceleration of gravity

accurate observations, but the conclusions arrived at have been due to mistaken interpretation of hydrological phenomena.

An example of the first, 'observer deception', is the report of visitors to Canberra who return to Sydney and believe that the lake rose suddenly between their journey to Canberra and the return journey. The reason for the apparent rise would appear to be as follows: The approach from Sydney to the lake traverses low ground about 15 feet (4.5 m) above water level, and in the low western light of afternoon an observer sees a long dry foreground of grass and little water with the road sign 'Lake George', 1½ to 2 miles (2.5 - 3 km) from the present shore. On the return journey the motorist rounds a bend at Geary's Gap, and from a height of about a hundred feet (30 m) suddenly sees a vast stretch of water spread out in front of him, and at the same time he sees the southern road sign 'Lake George'. The two visual impressions appear incompatible to the observer and he must therefore conclude that a rise in lake level has taken place since he proceeded southbound.

The other type of deception is that associated with the observation of a seiche. The sudden onset of a wind, or a change in the wind can cause water in a lake to oscillate like a pendulum, like water set in motion in a saucer (Figure 8). Measurements by BMR indicate that seiches in Lake George have periods of 1½ to 2 hours, and can cause temporary changes in level of more than 6 inches (0.15 m) (Figure 4); in some bays, these changes could be considerably more, and cause the strand line to advance and retreat across the almost flat lake margins by from ½ to 1 mile (1 to 2 km) in an hour. An observer, unfamiliar with the effect of a seiche, would gain the impression that a rapid emptying or filling of the lake was in progress.

CHEMISTRY

The chemistry of the lake water has been an essential area of BMR study since 1959. The principal cations and anions categorize the water as distinctly different from the range of water types found in local rivers, or in local groundwater. The lake water is dominantly a sodium chloride type and several analyses of the main ions in the early 1960's indicated similar ratios of the main ions to that of sea water. A.D. Haldane (pers. comm.) has commented on the unusual content of bromine for a local surface water. The bromine to chloride ratio is reasonably close to that of seawater. The writer, after examining analyses of some similar eastern

Australian water storages, believes that most of the salt in Lake George is cyclic salt brought in from the Tasman Sea and Facific Ocean by eastern coastal rainfall. Evaporation continually concentrates the salts, and calcium and magnesium bicarbonates introduced by surface run-off are probably lost from solution by deposition as carbonates.

Figure 3 shows that the salinity of the lake varies considerably with the stage of the lake, and warnings have been issued to graziers from time to time concerning the unsuitability of the lake water for consumption by stock.

Bue (1963) quotes the USGS classification of lakes as follows:

Slightly saline	1000 to	3000	parts	per	million	(ppm)
Moderately saline	3000 to	10000	11	11		AND CONTRACTOR
Very saline	10000 to	35000	11	**	JI.	
Brine greater than	35000		11	11	11	

The water in Lake George has ranged from slightly saline to very saline over the last twelve years* and may well pass at some future stage to brine. The total salt content of the water in the lake is estimated by the writer at 735000 tons.

During the 1965-68 drought the lake lost salt from solution as thin evaporite deposits along the shore-line; these were dispersed by wind (mainly the 'willy-willies' that sweep the shore in summer) to higher areas of the catchment or to other catchments. Recent observations suggest that much of this salt has returned to the lake in solution as run-off over the last two years.

Table 2 gives two analyses of water from Lake George and one from Lake Bathurst. The samples were collected on 30 January 1969 and indicate that the total dissolved solids is now many times greater than in the samples collected on 14 November 1960 (Jennings et al., 1964), which contained total dissolved solids of 1286 and 714 ppm respectively for Lake George and Lake Bathurst.

^{*} Since 1970 salinities ranging to 29 000 ppm (December, 1972) have been recorded in the lake waters.

TABLE 2.

WATER ANALYSES - LAKES GEORGE AND BATHURST

Sampling Poir Date of Sampl				GEORGE s Trig. 69		nnys Point 0/1/69	LAKE I Souther 30/1/	
Sample Numb	er		69270	001	69	270002	692700	003
		ppm		meg/L	ppm	meg/L	ppm	${ m meg/L}$
pН		8.9			8.9	, ×	8.3	
T.D.S.		9893			7163		2935	
Calcium	Ca	18		0.9	22	1.1	18	0.9
Magnesium	Mg	205	5	16.9	152	12.5	90	7.4
Sodium	Na	3506		152.5	2504	108.9	990	43.1
Potassium	K	17	**	0.4	13	0.3	15	0.4
Total Iron	Fe Total			- 1				
Manganese	Mn	0.02		0.001	0.03	0.001	0.01	< 0.001
Boron	В	:00				96		
Fluoride	F	1.88		0.10	1.54	0.08	0.49	0.026
Chloride	Cl	4995		140.9	3535	99.7	1420	40.0
Sulphate	so ₄	470		9.8	325	6.8	10	0.2
Bicarbonate	HCO3	1085		17.8	930	15.2	700	11.5
Carbonate	co,	66		2.2	33	1.1	Nil	_

Sampling Po		Near Gea	KE GEORGE arys Trig. 1/69		nnys Point 1/69	LAKE BA Southern 30/1/6	
Sample Num	ber	6927	0001	6927	70002	6927000	03
		ppm	meg/L	ppm	nieg/L	ppm	meg/L
Phosphate	PO_4	0.94	0.03	1.01	0.032	<0.01	<0.001
Silica	SiO2	4.56	0.15	3.14	0.11	18.1	0.60
Nitrate	NO ₃	0.16	0.003	0.10	0.002	0.77	0.012
Conductivity a	t 25°C	16250		11900		4575	
Bromine	Br	23	0.29	16	0.20	<2	<0.02
Nitrate	NO ₂ N	ID <0.05	7	ND < 0.05		ND <0.05	
Aluminium	Al_2O_3			6			
Copper	Cu	0.02		0.02		0.02	
Zinc	Zn	0.04		0.01		0.01	
Strontium	Sr	0.75	0.017	0.72	0.016	0.70	0.016

Note: Analyses carried out for BMR by Australian Mineral Development Laboratories. (AN4064/69). The maximum depth of Lake George on 30/1/69 was 4.55 feet; the lake was continuing to recede after the 1965-68 drought and reached its lowest stage, 4.08 feet on 11/3/69. The proportions of the main ions differ significantly from the analysis of the sample of 13/11/60, when the depth of the lake was 13.49 feet and the total dissolved solids (T.D.S.) was 1286 ppm (see Jennings et al., 1964).

SEDIMENTATION

Few comments will be made on the sedimentation taking place in and around the lake other than to indicate the range of sediments to be observed. Fans and scree sediments are common along the steep western shore; these have been reworked by waves, seiches and current action into beaches, bars, and spits. The finer lacustrine sediments such as silt, clay, and organic ooze occupy the bed of the lake in the deeper water. Streams entering the lake form deltas and can be readily identified on aerial photographs, and aeolian deposits can be recognized along the eastern and southern shores. (Note the wind-roses of Fig. 9 for Canberra). The stream channels that form the bed of Turallo Creek bear sand and gravel alluvial deposits.

The complex pattern of sedimentation during the different stages of the lake is evident in the sediments encountered in drilling water bores. Correlation between holes is difficult as the distribution of shore lines, lake bed, aeolian banks and stream channels has changed continually with the progressive infilling of the lake bed (Fig. 10).

FORMATION OF THE LAKE

The Lake George basin is a minor basin of internal drainage within the Great Dividing Range (Fig. 2). East of Lake George the Shoalhaven and Wollondilly River systems drain to the east coast, and to the west the Yass and Lachlan River systems drain inland and westwards to the Australian Bight. Data are still inadequate to permit a reconstruction of the stages of the formation of the lake. The three main theories for the formation of the lake basin proposed in turn by T. Griffith-Taylor in 1907, by M.D. Garretty in 1936 and by Noakes and Jennings in 1954 are outlined in Jennings et al., (1964); all three theories postulate the disruption and blockage of a pre-existing drainage system by crustal movement and consequent formation of the lake at the lowest point.

The writer believes that Cleary (1967), working on more recent seismological evidence, defines more clearly the nature of the crustal movements and adds considerably to Noakes' and Jennings' theory.

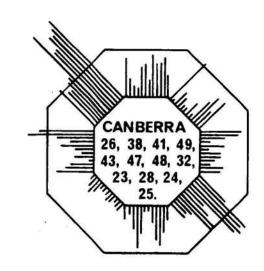
From geomorphological observations and observations on weathering in the field, from oblique aerial photographs specially taken of the scarp, and from Hill's (1969) mapping, the writer believes that the Lake George Fault along the western shore of Lake George is not a simple meridional fault dividing the area into the Cullarin Horst and the Lake George Graben; but rather, that the area is divided into a series of differentially tilted blocks with the Lake George Fault being the dominant fault. The differential tilting and movement between blocks has disrupted the old established drainage system, and set the conditions for the formation of the new drainage system.

Most of the tilting and faulting probably occurred late in the Tertiary and early in the Pleistocene. Consequently the lowest areas of the tilt blocks contain the thickest sections of post-Miocene sediments, and beneath the sediments, the thick weathered profile of the Miocene land surface. The provenance of the post-Miocene sediments is the deeply weathered Miocene(?) and Pliocene(?) land surface and its superficial sedimentary deposits.

The presence of copious quartz-rich gravels in the region has frequently been commented on. H.F. Doutch drew the writer's attention some years ago to a partly weathered section of rock containing an angular quartz fragment shedding a sharp corner in situ. The plucking of quartz by colloidal clay is well known; hence if one accepts this, and Jennings' and Noakes' view that the Lake George Fault is partly Palaeozoic, one may easily reconstruct the formation of quartz-rich gravel banks and rounded quartz scree deposits (Figure 11). Many of the major Palaeozoic faults, such as the Lake George fault, contain numerous quartz 'blows'. During the Mesozoic-Tertiary peneplanation deep pockets of weathering would have penetrated the fault lines; the pockets would contain deeply weathered rock fragments, clay, and rounded quartz. Reactivation of the faults would have led to active erosion of these same pockets and the deposition nearby of apparently mature quartz gravels, and scree banks containing clay, weathered rock, and rounded quartz. The distance of transport in such circumstances would often be quite short.

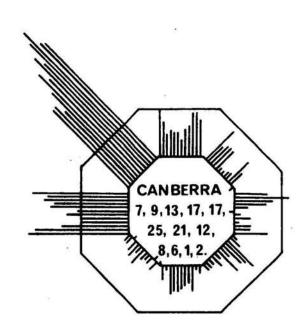
CONCLUSION

Many problems concerning Lake George remain to be answered, and additional work is under way. Cores from the lake bed will provide some of the answers as well as pose some additional problems. The possibility of the lake drying up could provide an opportunity to survey the bed of the lake.


The formation of the lake and its subsequent history will continue to exercise the minds of those engaged in one or other aspects of the study of Lake George, for years to come.

WIND ROSES CANBERRA

Compiled by the BUREAU OF METEOROLOGY


9 a.m.

Showing monthly percentage frequency distribution of wind directions to eight points of the compass

3 p.m.

Showing monthly percentage frequency distribution of wind directions to eight points of the compass

SCALE OF FREQUENCIES PER. CENT.
0 10 20 40 60 80 100

The sides of the octagons face towards the cardinal and semi-cardinal points. Projecting from each side are twelve columns representing the twelve months of the year, and the lengths of the columns are proportional to the percentage frequencies of the winds from the given direction in the successive months, working round clockwise from January to December. The scale is shown above, and the outer octagons have been drawn, separated from the inner octagons by a distance representing 12½%. The tops of the columns would all be on these outer octagons if winds from the eight directions were equally frequent and there were no calms. The percentage frequency of calms in the 12 months is shown by figures within the octagons. Small dashes within the inner octagons indicate months when the percentage of winds from that direction is practically zero.

To accompany Record 1972/79

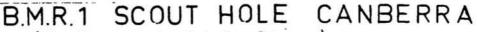
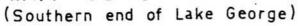
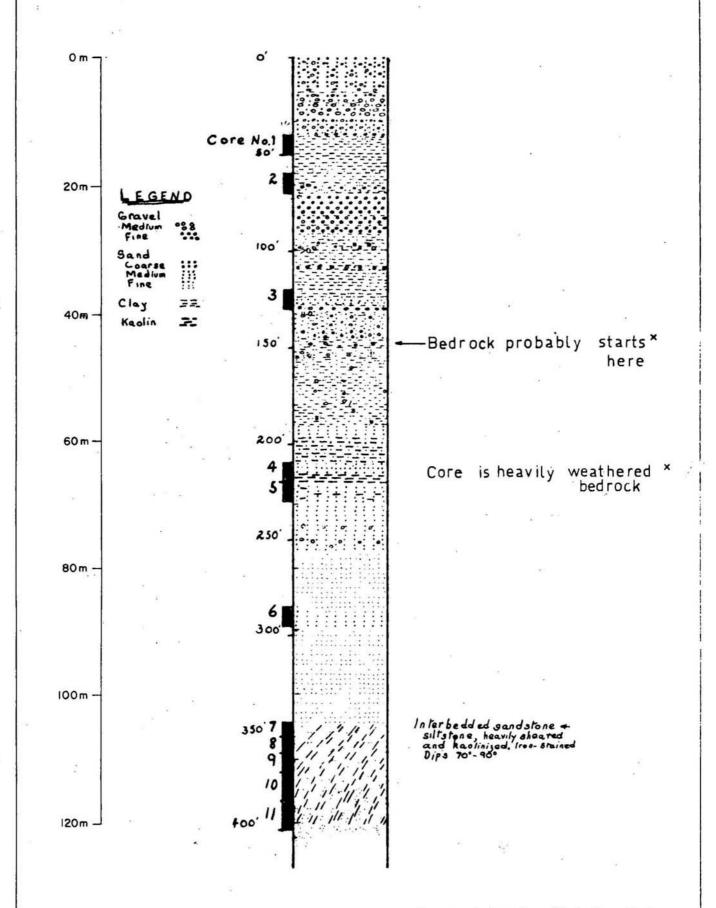
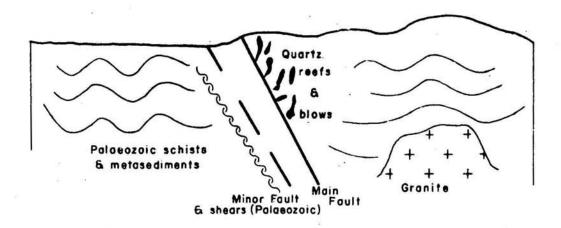
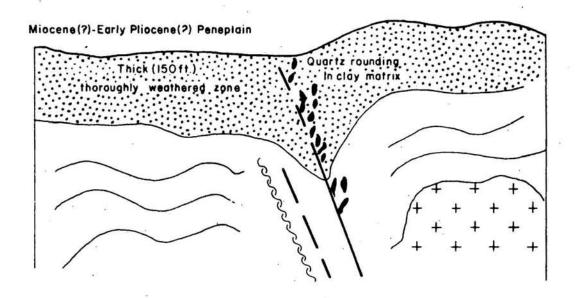




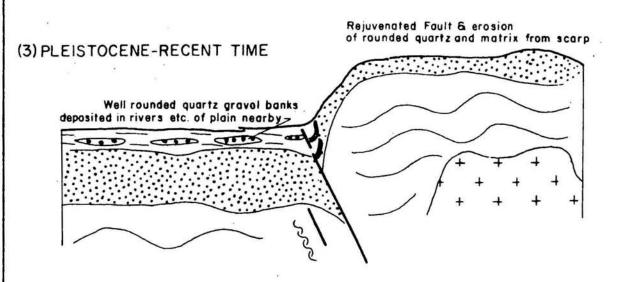
Fig. 10

General log by M.A.Randal


* Comment by G.M. Burton

Bureau of Mineral Resources


155/A16/730


FORMATION OF APPARENTLY MATURE QUARTZ GRAVELS NEAR FAULT

(I) PALAEOZOIC TIME

(2) PLIOCENE TIME

ACKNOWLEDGEMENTS

The study of a lake embraces many disciplines and the many helpful discussions in the field at Lake George with Messrs J.N. Jennings and R. Coventry of the Australian National University, Dr R. Galloway of CSIRO and of Mr J.A.H. Brown of the Snowy Mountains Engineering Corporation, were greatly appreciated. Mr A.D. Haldane and fellow officers of the Bureau's chemical laboratory have assisted with many analyses and discussion.

It is not usual to acknowledge the routine assistance of fellow Bureau officers but it would be inappropriate not to mention the assistance of former geologists of the field party, particulary E.G. Wilson, H.F. Doutch, M.A. Randal, Miss R.G. Warren and Mrs R. Thieme, and the continued excellent field hydrography and instrumentation of A.W. Schuett assisted by F.F. Simonis over the last few years, and previously by Mr R.B. Grey and other assistants.

BIBLIOGRAPHY

- AMBE, Y., 1967 Secular variation of aridity in the World. Jap. J. Geol. & Geophys., 38, 1, 43-77.
- AWRC, 1970 Evaporation from water storages. <u>Aust. Wat. Resour.</u> Counc., Hydrological Series, 4.
- BROECKER, W.S., & WALTON, A.F., 1959 Re-evaluation of the salt chronology of several Great Basin Lakes. <u>Bull. geol. Soc. Amer.</u>, 70, 601-18.
- BROWN, J.A.H., 1961 Oscillations of water level on Lake Eucumbene. Snowy Mts. Hydro-Electric Authority Rep. (unpubl.).
- BUE, C.D., 1963 Principal lakes of the United States. <u>U.S. Geol. Surv.</u> <u>Circ.</u>, 476.
- CLEARY, J.R., 1967 Seismicity of the Gunning and surrounding areas, 1958-1961. J. geol. Soc. Aust., 14, 23-9.
- GALLOWAY, R.W., 1965 Late Quaternary climates in Australia. J. Geol., 73, 4, 603-18.

- HILL, R.M., 1969 Geology of the Gearys Gap Sutton Gundaroo Area. <u>Bur. Miner. Resour. Aust. Rec.</u>, 1969/148 (unpubl.).
- HUTCHINSON, G.E., 1957 and 67 A TREATISE ON LIMNOLOGY. (2 Vols Vol. 1, 1957; Vol. 2, 1967). Wiley, N.Y.
- IASH, 1966 Symposium on hydrology of lakes and reservoirs, Italy 1966. Intern. Assoc. of Hydrol. Publ. 70.
- JENNINGS, J.W., NOAKES, L.C., & BURTON, G.M., 1964 Notes on the Lake George and Lake Bathurst excursion (ANZAAS 1964), in <u>Canberra</u> Excursions, Bur. Miner. Resour. Aust. Pamph.
- KEVI, L., 1964 Lake George gravity survey, N.S.W., 1963. <u>Bur. Miner.</u> Resour. Rec., 1964/21 (unpubl.).
- LAMB, H.H., 1967 Recent high levels of East African lakes. J. Hydrol., 5, (1967), 107-16.
- MATVEYEV, A.A., & BASHMAKOVA, O.I., 1967 Chemical composition of atmospheric precipitation in some regions of U.S.S.R. <u>Soviet Hydrol.</u> <u>Select. Paps, 5, 480-91.</u>
- NOAKES, L.C., 1951 Notes on fluctuations of water-level at Lake George. <u>Bur. Miner. Resour. Aust. Rec.</u>, 1951/17 (unpubl.).
- POLAK, E.J., & KEVI, L., 1964 Lake George seismic refraction survey, N.S.W., 1964. Bur. Miner. Resour. Aust. Rec., 1964/118 (unpubl.).
- REEVES, C.C. (Jr.), 1968 INTRODUCTION TO PALAEOLIMNOLOGY. Elsevier Amsterdam.
- RUSSELL, H.C., 1885 Anniversary Address. J. & Proc. Roy. Soc. N.S.W.
- TARASOV, M.N., 1967 Water and salt balance of L. Balkhash during periods of falling and rising levels. Soviet Hydrol. Select. Paps., 5, 470-4.
- WEBB, E.K., 1966 A pan-lake evaporation relationship. <u>J. Hydrol.</u>, 4(1), 1-11.

O					APPI	ENDIX 1							()
. O	LAKE GEORGE N. WATER LEVEL.MA	S.W XIHUH DEPTH,TEM	PERATURE	CONDUCTIVITY.SA	ALINITY, TOTAL	SALT CONT	ENT,STORAG	GE					0
C	MEASUREMENTS B	Y BUREAU OF HIN ATER FIELD PART	ERAL RESOI	JRCES									Ø
G				STATION - GEAR	RYS GAP TRIG								O
O	TIME	LAKE DEPTH	HATER	HATER	AIR	ELECT.	APPROX	x,TDS	V.APPROX.	WATE	R IN STORA	G F	O
C	HOUR DATE	MAXIMUM APPRO (STAGE) MEAN FEETFEET	(ASL)	TEMPERATURE C _ E	TEMPERATURE C F	CONDUCT. UMHOS/CM 25 C	EST,AV, LAKE PPM	AT BMR S GAUGE PPM	GALT CONTENT OF LAKE TONS	VOLUM MILLION GALS	4E AGRE÷FT	AREA	O
C	2 1 58 21 2 58 27 3 58	11.06 7.5 10.61 7.4 10.09 6.9	2218.66 2218.21 2217.69				2114 2243			77868 73387	286840 270330	36691 36547	0
C	9 5 58 19 6 58 28 7 58	9,90 6,7 9,85 6,7 10,12 6,9	2217.50 2217.45 2217.72	-		t in the second	2412 2480 2499 2402			68245 66375 65883 68540	251390 244500 242690 252480	36331 36240 36216 36346	0
С	28 8 58 27 9 58 25 10 58	10.43 7.2 10.38 7.2 10.37 7.2	2218.03 2217.98 2217.97				2300 2316 2319			71594 71098 71000	263738 261990 261540	36490 36470 36466	Ó
()	22 11 58 22 12 58 22 1 59	10,22 7.0 9,98 6.8 9,42 6.3	2217.82 2217.58 2217.02				2368 245 <u>1</u> 2670			69524 67162 61652	256100 247400 227100	36394 36278 36010	•)
C	1 4 59 16 5 59 20 6 59	9,89 6,7 9,53 6,4 9,46 6,3	2217,49 2217,13 2217,06				2484 2624 2654			66277 62734 62045	244140 231090 228550	36235 36062 36029	i)
c	25 7 59 15 8 59	11.27 8.0 11.19 7.9	2218.87 2218.79 2218.88		·		2059 2080			79959 79163	294540 291 6 10	34758 36733	Ó
(24 10 59 21 11 59	13,14 9,7 13,56 10,1	2220.74		•		2056 1666 1596			80059 98841 103128	294910 364090 379890	36762 37517 37677	•)
(·	19 12 59 27 1 60 6 3 60	13,57 10.1 12.88 9.5 12.50 9.1	2221.17 2220.48 2220.10		- 1		1595 1711 1783			103231 96198 92335	380260 354360 340130	37682 37434 37312)
0	6 5 60 2 6 60 20 9 60	12.28 8.9 12.31 8.9 13.75 10.2	2219.88 2219.91 2221.35				1827 1821 1567			90111 90413 105080	331940 333050 387080	37222 37237 37768	.)
O	14 11 60 16 12 60 31 1 61	13,49 10,0 13,90 10,4 13,42 10,0	2221.09 2221.50 2221.02			2270 • 2350	1608 1544 1619	1521	696542 716024	102408 106622 101689	377240 392760 374596	37643 37840 37610	(ر
c	2 3 61 7 4 61 11 5 61	13,27 9,8 13,36 9,9 13,23 9,8	2220.87 2220.96 2220.83			2350 2500	1644 1629 1650	1575 1675	705273 747245	100162 101077 99756	368960 372330 367460	37558 37587 37546	()
C.	27 6 61 25 7 61 26 9 61	13,05 9.6 13.61 10.1 13,68 10.2	2220.65 2221.21 2221.28			2420 2450 2400	1681 1589 1578	1621 1642 1608	710066 760827 750473	97926 103642 104361	360720 381788 384438	37488 37701 37734	С
C	25 10 61 24 11 61 21 12 61	13.71 10.2 14.30 10.7 14.13 10.6	2221,31 2221,90 2221,73	-		2040 = 2475 2304 =	1573 1487 1511	1367 1658 1544	639787 821176	104669 110733	385560 407900	37749 38032)
C	25 1 62 28 2 62 38 3 62	14.31 10.7 14.32 10.7	2221,91 2221,92			2230 * 2304 *	1485 1484	1494 1544	752380 740575 765859	108986 110835 110938	401460 408280 408660	37950 38037 38042	Ü
C	8 5 62 30 5 62	13.54 10.1 13.51 10.0	2221,49 2221,14 2221,11		•	2380* 2460* 2380*	1546 1600 1604	1595 1648 1595	759609 758630 731761	106519 102922 102614	392380 379130 377998	37835 37667 37653	٥
0.	28 6 62 1 8 62 28 9 62	13.37 9.9 13.59 10.1 14.05 10.5	2220.97 2221.19 2221.65			2380+ 2230+ 2380+	1627 1592 1522	1595 1494 1595	721 5 25 691135 77 1 335	101179 103436 108163	372718 381020 398440	37590 37691 37912	8

Property of

Ş				•									
Æ	TIME	LAKE DEPTH	KATER	* t *E P	AIR	ELECT.	APPRO	y.TDS	Y.APPROX.	WATER	R IN STOFA	GE	ų.
•	HOLR DATE	MAXIMUM APPE.			TEMPERATURE	COMPLET.	EST.AV.	LI ENL	SALT CONTEST	 	4E	ARE-	J
€.	5- 2	FEET LIFEE		2	F	25 C	FA.	PP.		- GALS-	ACRE-FT	ACRES	Α,
•	25 10 67	14.04 10.5	2221.64		_ _	-	1524			108061	398868	37907	
	6 12 62	13.74 18.2	2221.34				156B			134978	386708	37763	
•	7 1 63	13.85 10.3	2221,45	•		2380	1552	1595	756678	106108	390667	37616	,
	3n 1 63	13.83 10.3	2221.43	20.5 48.0		2360	1555	1595		105963	390118	37.606	
	27 2 63	13.32 9.9	2220.92			2460	1635	1648	742032	100670	370830	37574	
6	1 4 63	13,19 9,7	2220,69	17.5 63.5			1674	4700	751317	98333	362220	37501	0
	1 5 63	13.04 9.6	2220.64	13.5 56.3		2460=	1683	1648	721053	97824	360350	37485	
	4 5 63	13.52 10.0	2221.12				1603	1709	784815	102717	378370	37658	
€	2 7 63	13.72 10.2	2221.32	8.5 47.3		2360+	1571	1595	747151	104772	385941	37754	ા
	1 8 63	13.94 10.4	2221.54			2550+	1538	1709	817793	107.033.	394270	37659	
	3 9 63	14.32 10.7	2221.92	9.6 48.2		2460	1484	1648	817714	110936	408660	38142	
6	10_10_63	14.59 11.0	2222_19 .	22.1 71.6			1447			113747	419000	38262	Э
	31 10 63	14,46 10.9	2222.D6	20.0 68.0			1465			112388	414000	38138	
_	<u> 12 63</u>	14.04 . 10.5	. 2221.64	25.6. 77.0		2460	1524	1645	796505	108061	398860	37987	
€ .	7 1 64	13,53 10,1		24.0 75.2			1601			102819	37875	37662	G
٠.	5 2 64			33.613191.4		2750	1671	1643	811918	98536	362978	-37507	
٠ ـ	27 2 64	12,76 9,4	2220.36	26.0 78.8			1733			94978	349870	37395	~
6		12.31 8.9	2219.91	22.5 72.5		3100=	1821	.2077	839506	90413	333050	37237	•
	4 5 64	12.52 9.1	2220.12	13.5 56.3		3020	177 9	2023	837367	92539	340860	37318	
		12.54 9.2	2220.14			27.00	1775	1509	750284	92742	341630	37325	
£.	2 7 64	12.54 9.2	2220.14	8.5 47.3		2750	1775	1543	764179	92742	341637	37325	ં
	. <u> </u>		. 2220.74	6.C42.B		2640	_ 1666 __ _	1769	76 <u>1854</u>	98841	_364090	37517	
~	4 9 64	13.36 9.9	2228.96	11.0 51.8		2640	1629	1769	799543	101077	372330	37587	475
6		13.51 10.0	2221.11			2530	1604	1695		192614	377998	37653	0
	2 11 64	14.31 10.7	2221.91	16.0 60.B		2420	1485	1621	803673	110835	408280	36:37	
6	15.12.64	_13-65 10-2	2221.25	19+E 66+2		2420	1562	1621	754492	104053	383290	37720	^
•	14 1 65	13.20 9.8	2220.80			2692	1655	1804	B02173	99451	366340	37536	0
		12.86 9.4	2220.46	23,474,1_			1715	1543	790980		353610	37427	
G-	2 3 65	12.14 6.8	2219.74	23.0 73.4		2910	1856	1950	773415	9.B7p2	326750	37155	•
-	4 45	11.858.5	2219.45				1919			85783	316050	37016	9
	1625 12 5 65	11.57 8.3	2219.17	14.5 58.1		*	1984	27.55	0.1500.	82965	305610	36882	
G	1430 3 6 65 1015 38 6 65	11.39 8.1 11.48 8.2	2218.99	4 4 4 4		3570	2029	2392	.668094	81155	298540	36797	၁
•	1615 9 B 65	11.48 8.2 11.40 8.2	2219.08 2219.06	6:1 43.8 7-2 45.0		3540	2006	2372	870396	82059	30225n	36838	. 9
	920 2 9 65	11.55 6.3	2219.15	7.E 46.D		3550	2006	.237 9 .	<u>8</u> 70396	_ B2050	3022RD	34838	
6	1000 12 11 65 .	11.24 . 5.0	2218.84	15.559.9		3550	1989	2379	880349	82764	304870	36872	0
•	1500 3 12 65	11.18 7.9	2216.78	1912 2945		3700	- 2067 2082	2479	876520	7.9661	293440	36749	U
	1125 5 1 66	10.68 7.5	2216.26	23.2 .73.4		3800	. 2222	2546		79063	291240	36730	
G	1005 2 2 66	10.25 7.1	2217.85	26.4 79.5		3850	2358	2580	843514 805417	743 <u>84</u>	272900	36570	€,
ͺ	950 7 3 66	9.92 6.6	22:7.52	23.4		4250	2473	2648	B47744	69819 . <u>66</u> 572 .	257190 245230	36488 36250	***
	1105 1 4 66	9.78 6.6	2217.36	20.0 68.0		4300	2525	2581	639968	65194	240150	36182	
e	1020 6 5 66	9.56 6.4	2217.10	11.0 51.8		4180	2612	2801	789412	63029	232150	36077	Č
•	1030 2 6 66	9,45 6,3	2217.05	9,0 48,2		3950	2658	2647	733164	61947	228190	36024	•
	950 £ 7 66	9.57 6.4	2217-17	5.9 42.6	4.3 39.7	4120	2608	2760	779296	63128	232540	36082	
6	1010 5 8 66	9,58 6,5	2217.16	7.0 44.6	9.0 48.2	4160	2604	2727	788065	63226	232900	36086	€0
	1415 18 9 66	9.556.4	2217.15	10.5 50.9	10.0 50.0	3950	2616	_ 2647	744611	62931	231810	36572	•
٠ _	950 26 10 66	9,60 6,5	2217.20	19.0 66.2	19.5 67.1	4180	2596	2801	794342	63423	233635	36196	
. €	1500 24 11 66	9.84 6.7	2217.44	24.0 75.2	24.5 76.1	4180	2503	2801	B23922	65785	242330	36711	f.
•	1540 B 12 66	9,87 6,7	2217.47	24.0 75.2	21.5 70.7	4070	2492	2727	805840	56080	24341n	36226	
	1130 6 1 67	. 9,63 6,5	2217,23	23.0 23.4	22.0 71.6	3950 -	25.84	2647	754128	63718	234710	36110	
. €	1130 20 1 67	9.42 6.3	2217.02	22.5 72.5	25.5 77.9	4510	2670	3022	833117	61652	227.5.00	36010	
	93 <u>0_242_67</u>	9.04 5.9	22-6.64	25.577.0	31.5 58.7	46.75	2841 .	3132	B11783	57953	213480	35885	
^	1400 7 4 57	B,63 5,6		18.0 64.4	21.0 69.8	4700	3051	3149	759954	53964	198788	35754	
€	1040 4 5 67		2215.82	15.5 59.9	17-5 63-5	4750	3305	3183	708963-	49813	183490	35520	
•	1410 24 5 67	8.14 5.1		10.5 50.9	9.0 48.2	4600	3344	3082	678664	49239	181388	35472	
	1000 11 7 67	B.14 5.1	2215.74	7-6 44-6	8-0 46-4	4600.	3344	3082	678664	49239	181388	35472	,
•	1200 1 8 67	8.03 5.0	2215.63	9.5. 49.1	10.8 50.0	4800	3417	3216	693036	48187	177500	35384	ϵ .
	1030 9 8 67		2215.77.	7+244+6	8-5 47-3	4300	3324	2851	638100		182448	35496	
.	1130 25 8 67	8.25 5.2		12.5 53.6	10.5 50.9	4600	3274	3082	693167	50291	185261	35560	r-
6	<u>1030 </u>		2215.84	7.5 45.5	9.7 .49.5	4700	3280	. 3149			184908	35552	€
	1120 7 9 67		2216.27	9,5 49,1	9.0 48.2	3600	3029	2546	618661	54353	200220	35766	
3	1000 12 9 67		2216.20	10.0 50.0	5.5 47.3	45.0.0	3035		731551		199860	357.63	
1979	1000 6 10 67	8.51 5.4	2216.11	16.0 60.B	17.8 62.6	4500	3118	3015	711675	52797	194480	35715	*.

e	TIME	LAKE DI	EFT:	FATES	* 1	TER		AIR	ELECT.	APPRO	cx.TDS	V.APPROX.	WATE	R IN STORA	g E	
		STX: "	48090	X. LEVEL	TEMPE	PATERE.	TEMP:	BRLIAFE	COMPLET.	FST.AV.	AT EMR	SALT CONTENT	VOLU	HE	AREA	
_	HOUR DATE	(STABE)	×÷A.						LHHOS/CH	LAME	GAUGE	OF LAKE	MILLION			- ·
Č		FEET	.FEET	FECT	ε	F		F	25 C	FPM	PPM	TON\$ =	- GALS -	ACREST	ACRES	• • • • • • • • • • • • • • • • • • •
	930 17 10 67	8.52	5.5	2216,12	18.0	64.4	19.5	67.1	4400	3113	2948	697338	52894	194840	35718	,
	930 1 11 67	6.33	5.3	2215,93	19.5	66.2	17.5	63.5	4800	3225	3216	734312	51057	188080	35624	
-	1030 4 12 67	7.78	4,8	2215.38	16.0	64,4	14.5	58.1	5000	3595	3350	686084	45795	168690	35184)
	1000 29 12 67	7.03	4.2	2214.63	22.0	71.6	29.5	85.1	5600	4248	3752	650271	38754	142760	34170	
	1110 19 1 68	6,86	4.0	2214.46	23.0	73.4	22.0	71.6	5950	4427	3987	663016	37190	136990	33843	
	1500 24 1 68	6.71	3.9	2214.31	25.5	83.3	34.5	94.1	5600	4598	3752	600847	35809	131910	33555)
	930 23 2 68	6.11	3,5	2213,71	26.5	79,7	21.0	69.8	9500	5411	6365	866047	30425	112080	32450	
~	1050 7 3 68	6.16	3.5	2213.76	17.5	63,5	19.7	67.5	9900	5335	6633	915453	30861	113686	32538	
v	1010 12 3 68	5.84	3,2	2213,44					10500	5865	7835	883096	28069	103400	31974	•
•	950 26 3 68	5.81	3.2	2213.41	21.0	8.94	24.5	68.9	8500	5921	5695	708221 -	27808	102430	31922	
	1000 5 4 68	5.58	3.0	2213.18	20.5	68.9	18.0	64,4	10500	6381	7035	811727	25801	95040	31517	^
C	1000 19 4 68	5.68	3.1	2213.28	14.5	58.1	13.5	56.3	10000	6172	6700	799215	26673	98260	31693	0
	1000 9 5 68	5,60	3.0	2213.20	12.7	54.9	12.0	53.6	9400	6338	6298	731603	25975	95680	31552	
. (1000 3 6 68 1000 1 7 69	5.87 6.16	3.3 3,5	2213.47 2213.76	7.5	44.6	5.0	41.0	6750	5811	- 4523	572998	28331	104360	32027	O
	950 5 8 68	5.91	3.3	2213.76	1.0	33,8	0.5	32.9	8500	5335	5695 5405	785995 770440	30861	113680	32538	•
	1000 14 8 66	6,23	3,5	2213.83	.6+8 7₁5	42.8 45.5	- 8+0 7+0	46.4 44.6	8500 7500	5741 5231	5695 5025	730442 -	28680	105650	32098	
(1050 26 8 68	6.22	3,5	2213.82	13.0	55.4	14.0	57.2	8250	5246	5528	707250 775818	31472 31385	115930	3266 <u>1</u> 32643	0
`	1200 18 9 68	6,22	3,5	2213,82	17.5	63,5	13.0	55.4	8750	5246	5863	822837	31385	115610 115610	32643	•
	1710 27 9 68	6.08	3,4	2213.68	17.5	63.5	10.0	58.0	7940#	5458 -	5320	717606	30163	111110	32397	
. (·	950 10 10 68	6.21	3,5	2213.81	11.3	52.3	14.5	58.1	8100	5260	5427	759595	31298	115290	32626	O
-	1030 31 10 68	5.91		2213.51	17.8	. 64.0	17.5	63,5	8250		5528	708958		105650	32098	•
	1120 19 11 68	5,82	3,2	2213.42	26.2	79.2	27.3	81.1	12000(9)		8040	1002978	27895	102750	31939	
C	1130 9 12 68	5.23	2.8	2212.83	29.0	84.2	28.0	82.4	11500	7193	7705	788738	22898	84320	30466	0
,	1000 20 12 68	4.94	2,6	2212,54	27.5	81.5	27.0	89.6	14250	7991	9548	879733	20604	75900	29213	
	1000 8 1 69	4.72	2.5	2212.32	27.0	80.6	29.5	85.1	13200	8725	8644	746313	18870	69510	28262	_
· O	1000 36 1 69	4,55	2.3	2212.15	22.5	72.5	20.5	68,9	12050-	9392	8074	632905	17529	64570	27528	•
;	930 13 2 69	5.30	2.8	2212.90	23.0	·- 73,4	23.5	74.3.	- 8800	7023	5896	418107	23442	- 86358	30768	
•	940 28 2 69	4.75	2.5	2212.35	18.8	65,8	19.0	66.2	12100	8617	8107	692695	19106	70386	28392	_
C	1030 11 3 69	4.08	2.1	2211.68	29.0	84.2	24.5	76.1	16500	11582	11055	702771	14215	52360	25395	0
	930 28 3 69	4,23	2.1	2211.83	24.0	75.2	22.0	71.6	13200	10821	8844	601741	15214	56040	26091	
C.	940 3 4 69	4.85	2,5	2212.45	16.0	60.8	15.5	59,9	8400 -	8276	5628	500722	19894	73288	28824	^
, C	1230 17 4 69	4,97	2.6	2212.57	16.8	60.8	17.0	62.6	5900	7900	3953	368421	20840	76778	29342	Ð
•	930 23 4 69 1030 28 5 69	4 96	2.6	2212.56	18.0	64,4		44.6	10560=	7930	7,075	- 656917		76480	29299	
C	1030 28 5 69 930 4 6 69	4.84 4.98	2,5 2,6	2212,44 2212,58	8.0	46.4	9.5	49.1	10560	8309	7075	626984	19816	72990	28781	0
: ~	930 17 6 69	5.05	2.7	2212.65	9.0 7.5	48,2 44,6	11.0	51.8 46.4	10010 10400	7870 7668	670 7 6968	627432	20919	77868	29386	9
}	1030 17 7 69	5.19	2.7	2212,79	10.0	50.0	11.0	51.8	7370	7293	4938.	669074 498515	21471	79090	29688	
C	1130 5 8 69	5,51	3,0	2213.11	8.1	46.6	4.0	39,2	8570 +	6536	5742	6 46841	22575 25190	83168 92798	30293 31394	0
;	930 18 9 69	5.52	3.0	2213.12	9.0	48.2	11.0	51.8	10100-	6513	6767	764961	25277	93110	31411	*
	930 3 10 69	5,35	2,8	2212.95	17.0	62.6	16.5	61.7	10450	6907	7002	746345	23836	87800	30984	
C	930 29 10 69	5.20	2.8	2212.80	16.0	65.8			8250	7268	5528	559988	22654	83450	38336	C
	1410 31 10 69	6.16	3.5	2213.76	17.0	62.6	23.0	73,4	1760*	5335	1179	162747	30861	113680	32538	
_	930 3 11 69	6.52	3.8	2214.12	25.0	77.0	21.0	69.8	3800*	4834	2546	387805	34060	125468	33190	
C	930 5 11 69	6,49	3.8	2214.09	23.0	73,4	24.0	75.2	4940*	4873	3310	500059	33784	124458	33133	9
	930 10 11 69	<u>5</u> ,74	4.0	2214.34	17.5	62.6	19.5	67.1	3190 -	4563	2137	344908	36085	132920	33613	
•	950 14 11 69	7.03	4.2	2214.63	14.0	57.2	15.0	59.0	2140+	4248	1434	248496	38754	142760	34170	•
€.	1010 17 11 69	6,96	4 - 1	2214.56	21.5	72.7	23.0	73.4	3360+	4320	2251	383676	38110	140380	34035	0
	940 26 11 59	6.77	4.0	2214.37	25.1	77.2	22.5	72.5	5290	4528	3544	576340	36361	133940	33670	
C:	1000 1 12 69	6,54	3.8	2214.14	22.9	73.2	29.5	85.1	6130-	4808	4107	628971	34244	126140	33229	
Ç.	1000 12 12 69	6,52	_	2214.12	25.1	78.8	25.0	77.0	6130*	4834	4107	625590	34060	125460	33190	\circ
	1320 23 12 69	6.34		2213.94	22.£	73.0	22.8	71.6	7150	5076	4791	694806	- 32432	119478	32854	
	1320 31 12 69 900 6 1 70	6.47		2213.79	27.0	80.6	26.0	78.8	8360	5290	5601	779606	31123	114650	32590	1977
	1250 22 1 70	6,54		2214.14	18.5	65.3	20.0	68.0	7520+	4900	5038	757075	33600	123770	33094	.0
	1000 11 2 70	6.25		2213.85	16.3 23.3	61.3 73.4	21.3 26.5	70.3 7 9. 7	7260 7260	4808 5202	4864 4864	744916	34244	126140	33229	
	· 1000 12 2 73	6.18	3.5	2213.78	24,0	75.2	27.0	89.6	7040	5202 5305	4717	688414 - 654670	31647	116578	32696	6
	950 6 3 70	5.97	3.3	2213.57	21.0	69,8	22-0	71.6		5638	5159	673772	31036	114330	32573	1.0
	1000 13 3 70	5.89		2213.49	16.3	60.8	15.5	59,9	8910	5776	5970	761016	292 <u>04</u>	107580	32203	
୍ଦ	1030 16 4 75	5.82		2213.42	15.0	59.0	17.5	63.5		5902	50B5	634384	28506 27895	105000 102750	32062 31939	9
	1030 5 5 70	5,72		2213.32	6.0	42,8	7.5	45.5 .	9240	6093	6191	748137	27022	99540	31763	-1 50
_	1200 5 6 70	5.99		2213.59		- • -	. **	- • - •	8700	5604	5829	765824	29378	108220	32238	
िन	° 1030 ี8 7 70	5.91		2213.51	8.5	47.3	11.5	52.7	8250	5741	5528	708958	28680	105650	32098	
				***					A 171 may			.,.		207070		•
				-												

OUP DATE CSTAGE FEET FEET C F											ELECT.			-		R IN STORA	
1		HÖLR "	- DATE	(STAGE)	FEAN	(ASL)					UMHOSZCM	LAKE	GAUGE	OF LAKE	MILLION		AREA
930 12 8 77 5,71 3,1 2213,31 4,0 39,2 6.8 42.8 9400 6112 6298 758635 700331 28331 10450 32273 930 25 8 77 5,87 3,3 2213,47 8,0 46,4 9.0 48,2 8250 5811 5528 700331 28331 10450 32273 930 27 9 77 5,97 3,3 2213,57 8,5 47,3 10.0 58,0 7260 5638 4864 455271 29204 107580 32283 930 27 9 77 6,33 3,6 2214,13 13.0 55,4 15.0 59,0 6500 4821 4054 64,9094 34,52 125808 33210 93 11 70 6,30 3,6 2214,13 13.0 55,4 15.0 59,0 8000 5305 70033 2283 31186 32780 930 12 77 0 6,26 3,6 2213,78 29,0 84,2 27.5 81,5 9000 5305 6030 836933 31036 114330 32573 930 12 12 70 6,26 3,6 2213,78 29,0 84,2 27.5 81,5 9000 5305 6030 836933 31036 114330 32573 930 12 17 70 6,26 3,6 2213,78 29,0 84,2 27.5 81,5 9000 5305 6030 836933 31036 114330 32573 930 12 17 70 6,26 3,6 2213,78 29,0 84,2 27.5 81,5 9000 5305 6030 828427 29902 110150 32344 930 11 17 5,84 3,2 2213,78 18.5 65,3 19.6 64,2 94,0 5305 6298 47433 31336 114330 32573 930 12 27 1 5,96 3,3 2213,76 19.0 86,2 21.0 8,8 8 8000 5305 8298 47433 31036 114330 32573 930 5 7 1 5,96 3,3 2213,76 19.0 86,2 21.0 8,8 8 8000 5305 8298 47433 31036 114330 32573 930 6 7 7 1 5,96 3,3 2213,76 19.0 86,2 21.0 8,8 8 8000 5305 8298 47433 31036 114330 32573 930 12 27 1 5,96 3,3 2213,76 19.0 86,2 21.0 8,8 8 8000 5305 8298 48408 3201 117 11 11 11 11 11 11 11 11 11 11 11 1				FEET	, FEET	FEET	_ C	F	C.		25 .C	£PM	PPH	TONS	GALS.	. ACRE-FT	ACRES
930 12 8 77 5,71 3,1 2213,31 4,0 39,2 6.8 42.8 9400 6112 6298 758635 700331 28331 10450 32273 930 25 8 77 5,87 3,3 2213,47 8,0 46,4 9.0 48,2 8250 5811 5528 700331 28331 10450 32273 930 27 9 77 5,97 3,3 2213,57 8,5 47,3 10.0 58,0 7260 5638 4864 455271 29204 107580 32283 930 27 9 77 6,33 3,6 2214,13 13.0 55,4 15.0 59,0 6500 4821 4054 64,9094 34,52 125808 33210 93 11 70 6,30 3,6 2214,13 13.0 55,4 15.0 59,0 8000 5305 70033 2283 31186 32780 930 12 77 0 6,26 3,6 2213,78 29,0 84,2 27.5 81,5 9000 5305 6030 836933 31036 114330 32573 930 12 12 70 6,26 3,6 2213,78 29,0 84,2 27.5 81,5 9000 5305 6030 836933 31036 114330 32573 930 12 17 70 6,26 3,6 2213,78 29,0 84,2 27.5 81,5 9000 5305 6030 836933 31036 114330 32573 930 12 17 70 6,26 3,6 2213,78 29,0 84,2 27.5 81,5 9000 5305 6030 828427 29902 110150 32344 930 11 17 5,84 3,2 2213,78 18.5 65,3 19.6 64,2 94,0 5305 6298 47433 31336 114330 32573 930 12 27 1 5,96 3,3 2213,76 19.0 86,2 21.0 8,8 8 8000 5305 8298 47433 31036 114330 32573 930 5 7 1 5,96 3,3 2213,76 19.0 86,2 21.0 8,8 8 8000 5305 8298 47433 31036 114330 32573 930 6 7 7 1 5,96 3,3 2213,76 19.0 86,2 21.0 8,8 8 8000 5305 8298 47433 31036 114330 32573 930 12 27 1 5,96 3,3 2213,76 19.0 86,2 21.0 8,8 8 8000 5305 8298 48408 3201 117 11 11 11 11 11 11 11 11 11 11 11 1					• •												
930 2 9 7 7 5.97 3.3 2213.47 9.0 46.4 9.0 48.2 8250 5811 5528 700331 28331 104350 32203 930 2 9 7 7 5.97 3.3 2213.57 8.5 47.3 10.0 59.0 59.0 5638 4864 43527. 29224 107580 32203 930 2 10 70 6.53 3.6 2213.93 9.0 48.2 5.0 41.0 5990 32345 119150 32203 930 2 10 70 6.53 3.6 2213.93 9.0 48.2 5.0 41.0 5990 32345 119150 32203 930 2 10 70 6.53 3.6 2213.93 9.0 48.2 5.0 41.0 5990 32345 119150 32203 930 2 10 70 6.53 3.6 2213.93 9.0 48.2 5.0 41.0 5990 32083 119150 32203 930 2 10 70 6.53 3.6 2213.90 18.0 64.4 15.0 59.0 8000 5132 5360 769039 32083 119150 32203 930 1 12 70 6.18 3.5 5213.78 29.0 84.2 27.5 81.5 90.0 5305 6030 836035 31036 114330 32573 930 1 1 7 6 7 6.26 3.6 2213.86 25.0 77.0 22.0 71.6 5400 5188 3648 \$13455 31734 116000 32714 930 1 1 7 7 6.18 3.5 5213.86 22.0 71.6 23.8 73.4 9250 5506 4198 82247 29902 110150 32344 930 1 1 7 7 6.18 3.5 5213.86 16.2 20.0 71.6 5400 5188 3648 \$13455 31734 116000 32714 930 1 1 7 8 6.18 3.5 5213.86 16.5 65.3 19.0 66.2 24.2 75.6 8200 6093 5494 663931 27022 99940 31253 930 2 2 7 1 5.76 3.3 2213.50 19.0 66.2 24.2 75.6 8200 6093 5494 663931 27022 99940 31263 950 5 2 7 1 5.96 3.3 2213.50 19.0 66.2 19.8 66.2 8800 5655 5092 408708 31683 116370 32586 950 8 2 7 1 5.96 3.3 2213.50 19.0 66.2 19.8 66.2 8800 5655 5092 408708 31683 1167750 32186 950 10 2 1 7 5.6 5 3.1 2213.2 19.0 66.2 19.5 67.1 6700 5638 4899 88007 29989 110470 32586 950 10 2 1 7 5.6 6 3.4 2213.50 19.0 66.2 19.5 67.1 6700 5638 4890 3497 460047 29989 110470 32586 950 10 2 1 7 5.6 6 3.1 2213.2 17 19.0 66.2 19.5 67.1 6700 5638 4890 3497 460047 29989 110470 32586 950 10 2 1 7 5.6 6 3.1 2213.2 17 19.0 66.2 19.5 67.1 6700 5638 4890 3497 460047 29989 110470 32586 950 10 2 1 7 5.6 6 3.1 2213.5 19.0 66.2 19.5 67.1 6700 5638 4890 3497 460047 29989 110470 32586 950 10 2 1 7 5.6 6 3.1 2213.5 19.0 66.2 19.5 67.1 6700 5638 4890 3497 460047 29989 110470 32586 950 10 2 1 7 7 5.8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5																	
930 2 9 77																	
930 2 9 7 73 6.33 3.6 2213.73 9.0 48.2 5.0 41.0 5090 1223 4093 1225 12586 33210 20 9 11 70 6.53 3.8 2214.13 13.0 55.4 15.0 59.0 6050 4821 4054 619094 34152 12586 33210 12 70 6.18 3.5 2213.78 18.0 64.4 15.0 59.0 6050 5132 5360 769039 3203 118180 32784 18.0 11.1 12.70 6.18 3.5 2213.78 29.0 84.2 27.5 81.5 9000 5305 6030 836935 31036 114330 32784 18.0 12.70 6.18 3.5 2213.78 2213.78 27.0 22.0 71.6 5400* 5188 3618 513455 31734 116900 37714 18.0 12.70 6.26 3.6 2213.78 22.0 71.6 22.0 71.6 5400* 5188 3618 513455 31734 116900 37714 18.0 12.70 6.26 3.6 2213.65 22.0 71.6 22.0 71.6 5400* 5188 3618 513455 31734 116900 37714 18.0 11.7 5.44 3.2 2213.64 16.2 61.2 24.8 76.6 9240 5865 6191 777124 28069 103400 31974 930 19 1 71 6.18 3.5 2213.74 16.2 61.2 24.8 76.6 9240 5865 6191 777124 28069 103400 31974 930 19 1 71 6.18 3.5 2213.74 18.5 65.3 19.0 66.2 24.2 75.6 8200 6093 5494 663831 27022 99540 31763 32784 18.5 65.2 11.5 5.7 3.1 2213.32 19.0 66.2 24.2 75.6 8200 6093 5494 663831 27022 99540 31763 32785 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18													22 CO	/00331 435374	20331		
930 2 10 73 6.53 3.8 2214.13 13.0 55.4 15.0 59.0 6050 4821 4054 619094 34152 125808 33710 000 9 11 70 6.30 3.6 2213.90 18.0 64.4 15.0 59.0 8000 5132 5360 769039 32033 18160 32784 000 1 12.70 6.18 3.5 2213.48 29.0 84.2 27.5 81.5 9000 5305 6030 83693 31036 114330 32573 000 10 12 70 6.26 3.6 2213.68 29.0 77.0 22.0 71.6 5400 5188 3618 513455 31734 11690 32714 000 22 12 70 6.55 3.4 2213.65 22.0 71.6 22.0 71.6 5400 5188 3618 513455 31734 11690 32714 000 22 12 70 6.55 3.4 2213.65 22.0 71.6 22.0 71.6 5400 5188 3618 513455 31734 11690 32714 000 22 12 70 6.55 3.4 2213.65 22.0 71.6 24.8 76.6 9240 5865 6191 777124 28030 10340 31974 930 19 1 71 6.18 3.5 2213.48 18.5 65.3 19.0 64.2 24.8 76.6 9240 5865 6191 777124 28030 10340 31974 930 19 1 71 6.18 3.5 2213.48 18.5 65.3 19.0 64.2 24.2 75.6 8200 6093 5494 663931 27022 9954 31763 050 5 2 71 5.96 3.3 2213.56 19.0 66.2 24.2 75.6 8200 5055 5896 748725 29116 107250 32186 050 5 2 71 5.96 3.3 2213.56 19.0 66.2 19.0 66.2 8800 5655 5896 748725 29116 107250 32186 050 10 2 71 6.06 3.4 2213.60 21.0 69.8 21.0 69.8 5200 5490 3497 469047 29989 110470 32562 050 12 71 6.06 3.4 2213.60 21.0 69.8 21.0 69.8 5200 5490 3477 469047 29989 110470 32562 050 12 71 6.06 3.4 2213.52 21.0 69.8 21.0 69.8 5200 5490 3477 469047 29989 110470 32562 050 12 71 6.06 3.4 2213.60 21.0 69.8 21.0 69.8 5200 5490 3497 469047 29989 110470 32562 050 12 71 6.06 3.4 2213.52 21.0 69.8 21.0 69.8 5200 5490 3497 469047 29989 110470 32562 050 12 71 6.06 3.4 2213.52 21.0 69.8 21.0 69.8 5200 5490 3497 56904 2000 2000 2000 2000 2000 2000 2000 2											7265		1004				
0.00 1 12 70 6.30 3.6 2213.78 18.0 64.4 15.0 59.0 8000 5305 6303 32003 32003 3200 10 12 70 6.16 3.5 2213.78 29.0 84.2 27.5 81.5 9000 5305 6030 836933 31036 11330 32734 3100 11 12 70 6.26 3.6 2213.78 29.0 84.2 27.5 81.5 9000 5305 6030 836933 31036 11330 2733 200 10 12 70 6.05 3.4 2213.65 25.0 77.0 22.0 71.6 5400 5188 3618 513455 31734 11690 32714 310 12 70 6.05 3.4 2213.65 22.0 71.6 24.8 76.6 9240 5305 6191 777124 28039 10.310 3193 3190 19 17 1 6.18 3.5 2213.78 16.5 61.2 24.8 76.6 9240 5805 6191 777124 28039 10.3400 3197 310 19 17 1 6.18 3.5 2213.78 18.5 85.3 19.0 66.2 24.2 75.6 8200 6093 5494 643931 27022 99940 31763 910 12 71 5.72 3.1 2213.78 19.0 66.2 24.2 75.6 8200 6093 5494 643931 27022 99940 31763 910 12 71 5.96 3.3 2213.56 19.0 66.2 24.2 75.6 8200 6093 5494 643931 27022 99940 31763 910 12 71 6.06 3.3 2213.56 19.0 66.2 19.0 66.2 19.0 66.2 8800 5455 5896 740725 29116 107250 32186 10.1 12 2 71 6.06 3.4 2213.76 19.0 66.2 19.0 66.2 19.0 66.2 19.0 66.2 19.0 86.2											6050		4054	619094			
000 1 12.70																	
000 22 12 70 6.05 3.4 2213.69 22.0 71.6 23.8 73.4 9250 5506 6198 82247 29902 101.50 33344 830 1 171 5.84 3.2 2213.44 16.2 61.2 24.8 76.6 9240 5865 6191 777124 280.89 103400 33974 930 19 1 71 6.18 3.5 2213.78 18.5 65.3 19.0 66.2 24.2 75.6 8200 6003 5494 663931 27022 99940 31.63 32573 950 5 2 71 5.72 3.1 2213.32 19.0 66.2 24.2 75.6 8200 6003 5494 663931 27022 99940 31.63 32573 950 5 2 71 5.96 3.3 2213.56 19.0 66.2 24.2 75.6 8200 6003 5494 663931 27022 99940 31.63 32573 950 5 2 71 5.96 3.3 2213.56 19.0 66.2 24.2 75.6 8200 6003 5494 663931 27022 99940 31.63 107250 32186 1072					3.5	2213.78											
830 1 1 71								77.0	22.0	71.6	5400+		3618				
930 19 1 71 6.18 3.5 2213.78 18.5 65.3 19.0 66.2 94.0 5305 6298 874133 31036 144330 32573 930 2 271 5.72 3.1 2213.32 19.0 66.2 24.2 75.6 8200 6093 5494 663931 27022 99540 31763 550 8 2 71 5.96 3.3 2213.56 19.0 86.2 19.8 66.2 8800 5855 5896 747725 29116 107750 32186 550 8 2 71 5.96 3.3 2213.56 19.0 86.2 19.8 66.2 5800 5855 5896 747725 29116 107750 32186 107150 32186 5655 5896 747725 29116 107750 32186 748 748 748 748 748 748 748 748 748 748	_						22.0.	71.6	_23.0	23.4	9250	.5586	6198	828747	29902	110158	32344
930 2 71 5,72 3.1 2213,32 19.0 66.2 24.2 75.6 8200 6003 5494 643031 27022 99540 31763 550 6 2 71 5,96 3.3 2213,56 19.0 66.2 19.8 66.2 8800 5655 5896 747725 29116 107750 32186 10.1 15.2 71 5.96 3.3 2213,56 27.0 5655 740 5365 5092 488798 30487 113040 32502 740 740 740 740 740 740 740 740 740 740														777124	28369	103400	
19.0 5 2 71 5.96 3.3 2213.56 19.0 66.2 19.0 66.2 19.0 66.2 19.0 66.2 19.0 66.2 19.0 66.2 19.0 66.2 19.0 66.2 19.0 66.2 19.0 66.2 19.0 56.55																	
550 8 2 71 5,96 3,3 2213.56 110 15 2 71 6.14 3.5 2213.74				2,72	3,1	2213.32											
110 15 2 71 6.14 3.5 2213.74							19.0	66.2	19.0	46.2	8800		5896	. 7 67725 .			
030 19 2 71 6.06 3.4 2213.66 21.0 69.8 21.0 69.8 52.0 5490 3497 469047 29989 110476 32362 030 2 3 71 5.77 3.3 2213.57 19.0 66.2 19.5 67.1 6700 5638 4489 386269 29204 107580 32203 371 5.72 3.1 2213.32 27.0 80.6 21.5 78.7 6500 6093 4355 526287 27022 99540 31763 3300 6 4 71 5.67 3.1 2213.27 21.0 69.8 24.5 76.1 8600 4193 5762 685077 26586 97930 31675 571 5.30 2.8 2212.90 13.9 55.4 11.5 52.7 8200 7023 5494 575964 23442 86396 38768 830 8 6.7 1 4.98 2.6 2212.58 16.8 60.8 41.5 52.7 8200 7023 5494 575964 23442 86396 38768 830 8 6.7 1 4.98 2.6 2212.58 16.8 60.8 41.5 50.9 8600 28.7 1 5.62 539053 20919 77060 29386 830 8 7.7 1 4.96 2.6 2212.58 16.8 60.8 41.5 50.9 8600 78.7 1 5.7 2 2.8 2212.88 11.0 51.8 10.5 50.9 8000 79.3 6365 590977 20762 76480 2729 800 1 9.7 1 5.44 2.9 2213.04 8.0 46.4 11.0 51.8 8500 6698 5695 626002 24579 90540 31270 800 1 9.7 1 5.45 2.8 2212.88 18.0 46.4 21.0 51.8 8500 6698 5695 626002 24579 90540 31270 80552 8040 1 1.7 1 4.89 2.6 2212.89 18.0 46.4 21.0 51.8 8500 6698 5695 626002 24579 90540 31270 80552 8040 1 1.7 1 4.89 2.6 2212.89 17.5 63.5 17.5 63.5 17.5 63.5 17.50 8147 7705 696378 20210 74450 28997 9500 2 12.7 1 4.7.2 2.5 2212.32 17.0 62.6 17.5 63.5 17.5 63.5 17.50 8147 7705 696378 20210 74450 28997 950 2 12.7 1 4.7.2 2.5 2212.32 17.0 62.6 17.5 63.5 17.5 63.5 17.50 8988 12462 1920868 18318 67480 27960 830 18 1.7 2 4.65 2.4 2212.25 17.0 62.6 17.5 63.5 17.50 8988 12462 1920868 18318 67480 27960 830 18 1.7 2 4.78 2.5 2212.32 14.5 58.1 16.0 68.8 10400 8512 6968 602744 19343 71250 28552 100 1 4.7 2 4.5 2 2.2 212.1 2 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1											74.00		E009	400700			
030 2 3 71 5.97 3.3 2213.57 19.0 66.2 19.5 67.1 6700 5638 4489 586269 29204 107580 32203 371 5.72 3.1 2213.32 27.0 80.6 21.5 70.7 6500 6093 4355 526287 27022 99540 31763 300 6 4 71 5.67 3.1 2213.27 21.0 69.8 24.5 76.1 8600 6193 5762 685077 26586 97930 31675 200 5 5 71 5.30 2.8 2212.90 13.0 55.4 11.5 52.7 8200 7023 5494 575964 23442 86350 38768 2938 200 7023 5494 575964 23442 86350 38768 2938 200 7023 5494 575964 23442 86350 38768 2939 200 200 2 8 71 5.28 2.8 2212.58 16.0 60.8 10.5 58.9 8600 7870 5762 539053 20919 77060 29386 200 2 8 71 5.28 2.8 2212.88 11.0 51.8 10.5 58.9 9000 7930 6365 590977 20762 76488 29299 2040 2 8 71 5.28 2.8 2212.88 11.0 51.8 10.5 58.9 9000 7031 6030 627903 23284 85770 30682 2000 2 24579 90540 31270 2000 2 24574 1472 22.5 2212.32 14.0 20.6 14.0 57.2 18600 8988 12462 102066 18538 67480 27960 2000 2 2472 4.55 2.4 2212.25 17.0 62.6 14.0 57.2 18600 8988 12462 102066 18538 67480 27960 2000 2 2472 4.55 2.3 2212.13 24.5 14.5 58.1 16.0 68.8 10400 8512 6968 602744 19343 71250 28522 2000 2 2472 4.55 2.3 2212.13 28.5 14.5 58.1 16.0 68.8 10400 8512 6968 602744 19343 71250 28522 2000 2 2472 4.55 2.3 2212.14 25 17.0 62.6 14.0 57.2 18600 48980 12462 102066 18538 46720 24580 2000 1 4 72 3.69 1.8 2211.29 12.0 53.6 11.5 52.7 15000 14173 10050 22107 11647 42790 23564 2000 1 4 72 3.69 1.8 2211.29							21.0	40 8	24 0	48.0							
320 23 3 71 5.72 3.1 2213.32 27.0 80.6 21.5 78.7 6500 6093 4355 \$20287 2702 99540 31763 3300 6 4 71 5.67 3.1 2213.27 21.0 69.8 24.5 76.1 8600 6193 5762 685077 26586 97930 31675 6000 5 5 71 5.30 2.8 2212.90 13.0 55.4 11.5 52.7 8200 7023 5494 575964 2342 86396 38768 330 8 6 71 4.98 2.6 2212.50 8.0 46.4 7.0 44.6 9500 7930 6365 590977 20762 76480 27938 400 2 8 71 5.28 2.8 2212.80 11.0 51.8 10.5 58.9 8600 2870 5762 539053 20919 77060 29386 2030 1 9 71 5.44 2.9 2213.04 8.0 46.4 11.0 51.8 8500 6698 5695 626002 24579 90540 31270 2000 1 1 7 7 5.25 2.8 2212.85 18.0 64.4 21.0 69.8 11000 7143 7370 759642 23048 84900 30552 2040 1 1 1 7 1 4.89 2.6 2212.49 17.5 63.5 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8725 7705 6508 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8725 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 14.0 57.2 18600 8988 12462 192086 18318 67480 27960 300 18 1 7 7 4.65 2.4 2212.25 17.0 62.6 14.0 57.2 18600 8988 12462 192086 18318 67480 27960 300 18 1 7 7 4.55 2.3 2212.11 23.0 73.4 19.0 66.2 17700 9564 11859 912937 17135 63120 27312 000 1 2 7 7 4.55 2.3 2212.11 23.0 73.4 19.0 66.2 17700 9564 11859 912937 17234 63416 27355 100 1 4 7 7 3 3.5 2 1.7 2211.45 17.0 62.6 15.8 58.0 14300 12649 9715 565487 13036 47950 24560 100 2 5 7 2 3.85 1.9 2211.45 17.0 62.6 15.8 58.0 14300 12649 9715 565487 13036 47950 24560 100 2 5 7 2 3.85 1.9 2211.45 17.0 62.6 15.8 58.0 14300 12649 9715 565487 13036 47950 24560 100 2 5 7 2 3.85 1.9 2211.45 17.0 62.6 15.8 58.0 14300 12649 9715 565487 13036 47950 24560 100 2 5 7 2 3.85 1.9 2211.45 17.0 62.6 15.8 58.0 14300 12649 9715 565487 13036 47950 24560 100 2 5 7 2 3.85 1.9 2211.45 17.0 62.6 15.8 58.0 14300 12649 9715 565487 13036 47950 24560 100 2 5 7 2 3.85 1.9 2211.45 17.0 62.6 15.8 58.0 14300 12649 9715 565487 13036 47950 24560 100 2 5 7 2 3.85 1.9 2211.45 17.0 53.6 11.5 58.0 14300 12649																	
300 6 4 71 5.67 3.1 2213.27 21.0 69.8 24.5 76.1 8500 6193 5762 685077 26585 97938 31675 000 5 5 71 5.30 2.8 2212.90 13.0 55.4 11.5 52.7 8200 7023 5494 575964 23442 86398 38768 030 8 77 1 4.98 2.6 2212.58 16.0 40.8 10.5 58.9 8600 2870 5762 539053 20919 77068 29388 030 6 7 71 4.96 2.6 2212.58 16.0 46.4 7.0 44.6 9900 7930 6365 509977 20762 76488 29299 040 2 8 71 5.28 2.8 2212.88 11.0 51.8 10.5 58.9 9000 7071 6030 627903 23284 85778 30682 030 1 9 71 5.44 2.9 2213.04 8.0 46.4 11.0 51.8 8500 6698 5695 626002 24579 90548 31270 930. 1 10 71 5.25 2.8 2212.85 18.0 64.4 21.0 69.8 11000 2143 7370 759642 23048 84900 30552 040 1 1 1 1 71 4.89 2.6 2212.49 17.5 63.5 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8725 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8725 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8725 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8725 7705 65039 1240 18370 69510 28262 100 7 1 72 4.65 2.4 2212.25 17.0 62.6 17.5 63.5 11500 8725 7705 650397 18370 69510 28262 100 7 1 7 2 4.65 2.4 2212.25 17.0 62.6 17.5 63.5 11500 8725 7705 650397 18370 67510 28262 100 1 1 7 2 4.55 2.3 2212.32 17.0 62.6 17.5 63.5 11500 8725 7705 650397 18370 770132 17135 63120 27312 07040 17 37 4.51 2.3 2212.11 23.0 73.4 19.0 68.2 17700 9508 10850 770132 17135 63120 27312 07040 17 37 4.51 2.3 2212.11 23.0 73.4 19.0 66.2 17700 9508 10850 770132 17135 63120 27312 07040 17 37 4.51 2.3 2212.11 23.0 73.4 19.0 66.2 17700 9504 11859 912937 17214 63410 27355 100 11 4 72 3.90 2.0 2211.50 19.5 67.1 15.0 59.0 14500 12649 9715 565487 13016 47950 24560 100 1 7 7 2 3.52 17 2211.45 17.0 62.6 15.8 50.0 14500 12649 9715 565487 13016 47950 24560 100 1 7 7 2 3.67 1.8 2211.12 15.0 59.0 11.0 51.8 16300* 15704 10921 512042 10484 450180 9885 36418 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 24033 200 7 11 72 3.67 1.8 2211.27 12.1 53.8 10		1320 2	23 3 71														
000 5 5 71 5.30 2.8 2212.90 13.0 55.4 11.5 52.7 8200 7023 5494 775964 2342 86356 38768 030 8 6 71 4.98 2.6 2212.58 16.0 60.8 10.5 50.9 8600 7870 5762 539053 20919 7706.0 29386 030 6 7 71 4.96 2.6 2212.50 8.0 46.4 7.0 44.6 9900 7930 6365 590977 20762 76480 29299 040 2 8 71 5.28 2.8 2212.88 11.0 51.8 10.5 50.9 9000 7071 6030 627903 23284 65770 30682 030 1 9 71 5.44 2.9 2213.04 8.0 46.4 11.0 51.8 8500 6698 5695 626002 24579 90546 31270 930. 1 10 71 5.25 2.8 2212.83 18.0 64.4 21.0 69.8 11000 71.43 7370 759042 23048 84900 30552 040 1 11 71 4.89 2.6 2212.49 17.5 63.5 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.33 14.5 58.1 16.0 68.8 10400 8512 6968 602744 19343 71250 28522 000 2 2 72 4.50 2.3 2212.11 23.0 73.4 19.0 66.8 10400 8512 6968 602744 19343 71250 28522 000 2 7 72 4.50 2.3 2212.11 23.0 73.4 19.0 66.2 17700 9564 11859 912937 17234 63416 27355 100 1 4 72 3.90 2.0 2211.50 19.5 67.1 15.0 59.0 14500 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13016 9885 36410 22379 23586 2200 7 11 72 3.63 1.6 2211.27 12.1 53.8 10.5 50.9 14300 14377 12194																	
030 8 6 71 4.98 2.6 2212.58 16.0 60.8 10.5 50.9 8600 7870 5762 539053 20919 77060 29388 0030 6 7 71 4.96 2.6 2212.56 8.0 46.4 7.0 44.6 9500 7930 6365 590977 20762 76480 29299 040 2 8 71 5.28 2.8 2212.83 11.0 51.8 10.5 50.9 9000 7071 6030 622903 23284 85770 30682 030 1 9 71 5.44 2.9 2213.04 8.0 46.4 11.0 51.8 8500 6698 5695 626002 24579 90540 31270 930 110 71 5.25 2.8 2212.85 18.0 64.4 21.0 69.8 11000 7143 7370 759642 23048 84900 30552 76.0 11 71 4.89 2.6 2212.49 17.5 63.5 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 950 2 12 74 4.78 2.5 2212.32 17.0 62.6 14.0 57.2 18600+ 8988 12462 1920868 18318 67480 27960 830 18 1 72 4.65 2.4 2212.25 17.0 62.6 14.0 57.2 18600+ 8988 12462 1920868 18318 67480 27960 830 18 1 72 4.55 23 2212.33 14.5 58.1 16.0 68.8 10800 8512 6968 602744 19343 71250 28522 1000 2 2 72 4.50 2.3 2212.10 26.5 83.3 22.5 72.5 15000+ 9608 10850 770132 17135 63120 27312 100 1 4 72 3.90 2.0 2211.45 17.0 62.6 15.0 59.0 14500 12649 9715 565487 13016 47950 24550 100 1 4 72 3.90 2.0 2211.45 17.0 62.6 15.0 59.0 14500 12649 9715 565487 13016 47950 24550 100 1 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300+ 12982 9581 543415 12683 46720 24350 100 2 5 72 3.85 1.9 2211.45 17.0 62.6 15.0 59.0 14500 12649 9715 565487 13016 47950 24550 100 1 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300+ 12982 9581 543415 12683 46720 24350 100 2 5 72 3.65 1.6 2211.29 12.0 53.6 11.5 52.7 15000+ 14173 10050 522107 11617 42790 23566 200 1 7 72 3.65 1.6 2211.27 12.1 53.6 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.67 1.8 2211.38 22.5 72.5 10.5 79.7 18000 13477 12194 666187 12216 45000 24003																	
030 6 7 71 4.96 2.6 2212.56 8.0 46.4 7.0 44.6 9900 7930 6365 590977 20762 76488 29299 0140 2 8 71 5.28 2.8 2212.83 11.0 51.8 10.5 58.9 9000 7071 6030 627903 23284 85770 30682 9790 930 1 9 71 5.44 2.9 2213.04 8.0 46.4 11.0 51.8 8500 6698 5695 626002 24579 90546 31270 930 1 10 71 5.25 2.8 2212.85 18.0 64.4 21.0 69.8 110.00 7143 7370 759642 23048 84900 30552 970 2 11 71 4.89 2.6 2212.49 17.5 63.5 17.5 63.5 11500 8147 7705 696378 20210 74450 20997 9750 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8147 7705 696378 20210 74450 20997 9750 2 12 71 4.72 2.5 2212.32 17.0 62.6 14.0 57.2 18600 8988 12462 1920868 18318 67480 27960 830 18 1 72 4.78 2.5 2212.38 14.5 58.1 16.0 68.8 10400 8512 6968 602744 19343 71250 28522 10.0 2 7 7 4.51 2.3 2212.10 28.5 83.3 22.5 72.5 15000 9608 10850 770132 17135 63120 27312 10.0 1 4 72 3.90 2.0 2211.50 19.5 67.1 15.0 59.0 14500 12649 9715 565487 13036 47950 24560 10.2 5 72 3.65 1.9 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.2 5 72 3.65 1.9 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.2 5 72 3.65 1.9 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.2 5 72 3.65 1.9 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.2 5 72 3.65 1.9 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.0 1 7 72 3.52 1.7 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.0 1 7 72 3.52 1.7 2211.45 17.0 62.6 15.8 59.0 14500 12649 9715 565487 13036 47950 24560 10.0 1 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13036 47950 24560 10.0 1 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13036 47950 24560 10.0 1 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300 12649 9715 565487 13044 13044 13044 13044 13044 13044 13044 13044 13044 13044 13044 13044 13044 13044	_	1030	9_6_71_	4.98	2.6	2212.58					8600	2870 _	5762	539053	20919 _	. 77068.	
14 0 7 1 72 22 24 2 2 2 2 2 2 3 2 4 2 2 2 2 3 2 4 2 2 2 2				4.96			6.0	46.4	7.0	44.6	9500	7930		598977	20762		
930 1 10 71 5.25 2.8 2212.85 18.0 64.4 21.0 69.8 11000 7143 7370 759642 23048 84900 30552 040 1 11 71 4.89 2.6 2212.49 17.5 63.5 17.5 63.5 11500 8147 7705 696378 20210 74450 28997 750 2 12 71 4.72 2.5 2212.32 17.0 62.6 17.5 63.5 11500 8725 7705 650197 18870 69510 28262 100 7 1 72 4.65 2.4 2212.25 17.0 62.6 17.5 63.5 11500 8725 7705 650197 18870 69510 28262 100 7 1 72 4.65 2.4 2212.25 17.0 62.6 17.5 63.5 11500 8725 7705 650197 18870 69510 28262 100 7 1 72 4.65 2.4 2212.25 17.0 62.6 17.5 63.5 11500 8725 7705 650197 18870 69510 28522 100 2 2 72 4.50 2.3 2212.10 28.5 83.3 22.5 72.5 15000 9608 10850 770132 17135 63120 27312 100 11 4 72 3.90 2.0 2211.50 19.5 67.1 15.0 59.0 14500 12649 9715 565487 13036 47950 24560 100 2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14300* 12649 9715 565487 13036 47950 24560 100 2 5 72 3.69 1.8 2211.29 12.0 53.6 11.5 52.7 15000* 14173 10050 522107 11617 42790 23586 200 17 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300* 15704 10921 512042 10484 38620 22797 200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 150.0 1656 10184 450180 9885 36410 2339 200 7 11 72 3.43 1.6 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003														627903	. 23284	85778	30682
040 1 11 71														626002	24579	93548	
950 2 12 71																	
100 7 1 72 4.65 2.4 2212.25 17.0 62.6 14.0 57.2 18600 8988 12462 1920868 18318 67488 27960 830 18 1 72 4.78 2.5 2212.38 14.5 58.1 16.0 68.8 10400 8512 6968 602744 19343 71250 28522											11508	8147	7705	696378	20210	74450	
000 2 2 72 4.50 2.3 2212.10 28.5 83.3 22.5 72.5 15000 9608 10850 770132 17135 63120 27375 040 17 3 72 4.51 2.3 2212.11 23.0 73.4 19.0 66.2 177004 9504 11859 912937 17214 63416 27355 100 11 4 72 3.90 2.0 2211.50 19.5 67.1 15.0 59.0 14500 12649 9715 565487 13016 47950 24560 100 2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14300 12649 9715 565487 13016 47950 24560 100 2 6 72 3.69 1.8 2211.29 12.0 53.6 11.5 52.7 15000* 14173 10050 522107 11617 42790 23586 200 11 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300* 15704 10921 312042 10484 38626 22797 200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 15200 16656 10184 450180 9885 36410 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003											11500	8725	. 7205	450197	18870		
100 2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14300+ 12982 9581 543415 12683 46726 24328 310 8 6 72 3.69 1.8 2211.29 12.0 53.6 11.5 52.7 15000+ 14173 10050 322107 11617 42798 23586 200 11 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300* 15704 10921 312042 10484 38626 22797 200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 15200 16656 10184 450180 9885 36410 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003														1920868	18318		
100 2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14300+ 12982 9581 543415 12683 46726 24328 310 8 6 72 3.69 1.8 2211.29 12.0 53.6 11.5 52.7 15000+ 14173 10050 322107 11617 42798 23586 200 11 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300* 15704 10921 312042 10484 38626 22797 200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 15200 16656 10184 450180 9885 36410 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003														770470	19343		
100 2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14300+ 12982 9581 543415 12683 46726 24328 310 8 6 72 3.69 1.8 2211.29 12.0 53.6 11.5 52.7 15000+ 14173 10050 322107 11617 42798 23586 200 11 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300* 15704 10921 312042 10484 38626 22797 200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 15200 16656 10184 450180 9885 36410 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003														7/0132	1/137		
100 2 5 72 3.85 1.9 2211.45 17.0 62.6 15.8 59.0 14300+ 12982 9581 543415 12683 46726 24328 310 8 6 72 3.69 1.8 2211.29 12.0 53.6 11.5 52.7 15000+ 14173 10050 322107 11617 42798 23586 200 11 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300* 15704 10921 312042 10484 38626 22797 200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 15200 16656 10184 450180 9885 36410 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003														565487	17634		
310 8 6 72 3.69 1.8 2211.29 12.0 53.6 11.5 52.7 15000 14173 10050 522107 11617 4279 23586 200 11 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 16300 15704 10921 512042 10484 38620 22797 200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 15200 16656 10184 450180 9885 36410 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003		1100	2 5 72									12982	9581	543415	12683	46726	
200 11 7 72 3.52 1.7 2211.12 15.0 59.0 11.0 51.8 1630* 15704 10921 \$12042 10484 38626 22797 200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 15200 16656 10184 450180 9885 36416 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42306 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003		1310	8 6 72									14173	10050	\$22107			
200 4 8 72 3.43 1.6 2211.03 12.0 53.6 17.0 62.6 15200 16656 10184 450180 9885 36416 22379 200 1 9 72 3.67 1.8 2211.27 12.1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42306 23493 200 7 11 72 3.78 1.9 2211.38 22.5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45006 24003				3.52													
200 1 9 72 3.67 1.8 2211.27 12:1 53.8 10.5 50.9 14300 14337 9581 492033 11483 42300 23493 200 7 11 72 3.78 1.9 2211.38 22:5 72.5 21.5 78.7 18200 13477 12194 666187 12216 45000 24003							12.0	53.6	17.0	62.6	15200	16656	10184				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															11483		
1841.12/K																	
		11UU	.316/4	3.200	7+4	2211.20	23.0	73.4	21.5	/4+7 .	_19500	14421	. 14065.	<u> </u>	11417	- 42068	23446
		*	INDICATES	LABORATO	RY ME	ASUREHENT											
# INDICATES LABORATORY MEASUREMENT		SEE	E EXPLANA	TURY NOTES	ONF	ULLDWING P	AGE						** * *				
# INDICATES LABORATORY MEASUREMENT See explanatory notes on following page	-																
(\$) INDICATES DOUBTFUL READING # INDICATES LABORATORY MEASUREMENT SEE EXPLANATORY NOTES ON FOLLOWING PAGE																	
# INDICATES LABORATORY MEASUREMENT SEE EXPLANATORY NOTES ON FOLLOHING PAGE				. •													
* INDICATES LABORATORY MEASUREMENT SEE EXPLANATORY NOTES ON FOLLOWING PAGE																	
* INDICATES LABORATORY MEASUREMENT SEE EXPLANATORY NOTES ON FOLLOWING PAGE											<u> </u>						
* INDICATES LABORATORY MEASUREMENT SEE EXPLANATORY NOTES ON FOLLOWING PAGE																-	

1, DEPTH OF ATER IN LAKE HAS BEER CALCULATED USING THE FOLLOWING RES, WEFFERD TO HAIR STATUM, TOO FOUNT FILLER RES HAIT GAURING BENCH HARY BEEN MILE GAURING BENCH HARY 2330.55 BERN SECONGARY GAURING BENCH HARY 2330.55 SER NAKES), USE HOLD GAURING BENCH HARY 2330.55 SER NAKES), USE HOLD GAURING BENCH HARY 2330.57 24 THE OFFICE GAMES BERN HARY 240 YES PROJECT GAMES BERN CALCULATED BENCH HARY 250.57 25 THE LAKE FILL BELD BEEF DEPTH IN DECEMBER 1220.27 26 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 27 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 28 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 29 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 20 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 20 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 21 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 22 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 23 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 24 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 25 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 26 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 27 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 28 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 29 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 20 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 20 THE LAKE FILL BELD BEFF DEPTH IN DECEMBER 1220.27 21 THE STATE 1220.20 22 THE STATE 1220.20 23 THE STATE 1220.20 24 THE STATE 1220.20 25 THE STATE 1220.20 26 THE STATE 1220.20 27 THE STATE 1220.20 28 THE STATE 1220.20 29 THE STATE 1220.20 20 THE STATE 1220.20		
FIL LOHEST POINT OF LAKE FLOOR 220.05 BRY SECONDARY CAUGING BENCH MARK 223.05 BRY SECONDARY CAUGING BENCH MARK 223.05 SEE NAMES, L.C., "10755 DV MATER EVEN L.K. EEDRGE, BRY RED. 19 51/17 AND MAN MAN PUBLIC LORKS DEPT MASS BRANCH PLAN MO, BAZ(32/2/19037) AND MAN PUBLIC LORKS DEPT MASS BRANCH PLAN MO, BAZ(32/2/19037) AND MAN PUBLIC LORKS DEPT MASS BRANCH PLAN MO, BAZ(32/2/19037) APPROXIMATELY 1 D 2FT DEPTH OF MASS BFY SHORE, LY THE CAUGINGSTATION (SINCE THE LAKE FELL BELDE OF FEET DEPTH MI ACT 1908 MARKET THEMPERATURE MEASUMEMENTS HAVE HAD TO BE TAKEN IN 6 INCHES TO 1 FOOT OF MATER) 3. PUBLIC LORKS PLAN PLZ, WHICK MANUS LOEST POINT OF LAKE THEMPERATURE MEASUMEMENTS PLAN PLZ, WHICK MANUS LOEST POINT OF LAKE TO BE SLIGHTLY BEHAM RAZING FROM, "CAUGING BRY MATER LEVELS" DEPTH CAPACITY CAPACITY LARGE IN 1 NO.		
### SECONDARY GAUGING BENCH MARK 2223.51 ### SECONDARY GAUGING BENCH MARK 2223.51 (SSE AJAKS, L., TAG.) 3 GAUGING BENCH MARK 2223.51 (SSE AJAKS, L., TAG.) 3 GAUGING BENCH MARK 2223.51 (SSE AJAKS, L., TAG.) 3 GAUGING BENCH MARK 2223.51 AND YSU PUBLIC ALMKS DEPT WSS BRANCH PLAN MO, 842/367/190377 2. WATER TEMPERATURE IS MEASURED & INCHES APPROX BELOW THE SURFACE AND IN APPROXIMATELY 1 TO 27T DEPTH OF MATER OFF SHORE AT THE GAUGINGSTATION (SINCE THE LAKE FILE BELOW & FEET DEPTH IN 10.1 1908 MATER TEMPERATURE MEASUREPENTS HAVE MAD TO BE TAKEN IN & INCHES TO 1 FOOT OF MATER.) PUBLIC MORKS PLAN BRAZ, WHICH SHOWS LOUEST POINT OF LAKE TO BE SLIGHTY BELOW READ FROM THE COLONIAN BRAY HAVE MAD TO BE TAKEN IN & INCHES TO 1 FOOT OF MATER.) PUBLIC MORKS PLAN BRAZ, WHICH SHOWS LOUEST POINT OF LAKE TO BE SLIGHTY BELOW READ FROM THE COLONIAN BRAY HAVE HEVELS DEPTH CAPACITY CAPACITY AREA AREA AREA IN & IN		RLS; REFERRED TO MAIN DATUM, TOP OF SOUTH PILLAR 2276,52FT ASL
### BYR SECONDARY GAUZING BENCH MARK 2223.51 BYR NO.3 GAUGING BENCH MARK 2220.6 (SEE NJAKSLIC,TOTES OF MATER LEVEL I, BEORGE RIP REC. 19 51/17 AND YEST PUBLIC JORNS DEPT MAS BRACE PLAN NO, 842(3/27)8071) 2. MATER TEMPERATURE IS MEASURED 6 INCHES APPROX BELOW THE SURFACE AND IN APPROXIMELY 10 267 DEPTH OF MATER OFF SOME AT THE SURFACE AND IN APPROXIMELY 10 267 DEPTH OF MATER OFF SOME AT THE SURFACE AND IN APPROXIMELY 10 267 DEPTH OF MATER OFF SOME AT THE SURFACE AND IN APPROXIMELY 10 267 DEPTH IN OCT. 1968 MATER TEMPERATURE MEASUREMENTS HAVE HAD TO BE TAKEN 19 6 INVENTED TO GET MATER.) 1. PUBLIC DORKS PLAN 842, WHICH SKOUS LOWEST POINT OF LAKE TO BE SLIGHTLY BELOW RL 2208 FT(CT, NOAKS-SHM ESTIMATE 2207.4FT) INDICATES THE FOLLOWING CAPACITIES FOR THE LAKE FOR THE FOLLOWING BMR MATER LEVELS— DEPTH CAPACITY CAPACITY APACA AREA AREA IN		
SEE YJAKS,L,C,TOTES ON WATER EVEL L, GEORGE, BHY REC. 19 51/17 AND NEW PUBLIC JORKS DEFT MSS BRANCH PLAN NO, 842(3/2/19037) AND NEW PUBLIC JORKS DEFT MSS BRANCH PLAN NO, 842(3/2/19037) APPROXIMATELY 1 TO 2FT DEPTH DF WATER OFF SAGRE AT THE SAURINGSTATION (SINCE THE LAKE FELD BELOW & FEET DEPTH IN ORT. 1968 MATER TEMPERATURE MEASUREPENTS HAVE HAD TO BE TAKEN IN & INCHES TO 1 FOOT OF WATER, 1) PUBLIC DARKS PLAN BRY, WHICH NEWS LOVEST POINT OF LAKE TO BE SLIGHTY BELWAR L 2208 FT(CF, NOAKES-BRNS ESTIMATE 2207.6FT) INDICATES THE FOLLOWING CPACITIES FOR THE LAKE FOR THE FOLLOWING BRY WATER LEVELS- DEPTH CAPACITY CAPACITY AREA AREA 1 TOTE OF THE STATE OF		
(SEE NJAKES,LC,)OTÉS ON WATER LEVEL L, GEORGE, BHR REG. 19 31/17 AND NSW PUGLIC JORNS DEPT MAS BRANCH PLAN NO, 842(3/2/19037) 2. WATER TEMPERATURE IS MEASURED & INCHES APPROX BEION THE SURFACE AND IN APPROXIMETERY IN COTT DEPTH OF WATER OFF SOME AT THE GRANGHOUSTAIN (SINCE THE LAKE FELL SELDW & FEET DEPTH IN OCT. 1948 MATER TEMPERATURE MEASUREMENTS HAVE HAD TO BE TAKEN IN & INVERSE TO 1 FOOT OF WATER). 3. PUBLIC *JORNS PLAN B42, WHICH SHOWS LOWEST BOINT OF LAKE TO BE SLIGHTLY BELLOW IN CAPACITY TO THE LAKE FOR THE FOLLOWING CAPACITIES FOOT THE LAKE FOR THE FOLLOWING CAPACITIES FOOT THE LAKE FOR THE FOLLOWING CAPACITIES FOOT THE FOLLOWING CAPACITIES FOOT THE LAKE FOR THE FOLLOWING SAME WATER LEVELS— DEPTH CAPACITY CAPACITY AREA AREA 1. N N N (FT.1 - LOUDS,FT, I LACE-FID (SQ.**LLES) (ACRE) 0. LOUDOOD 3027 14:58 9286 2. 1 158400000 3027 14:59 9286 2. 1 159400000 3547 34:79 22240 4. 2 228000000 30214 42:89 2286 2. 4 71200000 13642 25:75 14486 3. 4 1252400000 30215 42:89 2286 4. 2 2283000000 12:390 21:98 30:966 7. 4 25283000000 12:390 21:98 30:966 7. 4 25283000000 12:390 21:98 30:966 8. 4 3000000000 10:9642 55:75 36:686 9. 4 9861000000 20:77 56:72 36:686 10. 4 11450000000 20:77 56:72 36:686 11. 4 1733000000 10:9642 55:75 36:686 11. 4 1733000000 10:9642 55:75 36:686 11. 4 1733000000 10:9642 55:75 36:686 11. 4 1733000000 10:9642 55:75 36:686 11. 4 1733000000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173300000 10:9642 55:75 36:686 11. 4 173000000 10:9642 55:75 36:686 11. 4 173000000 10:9642 55:75 36:686 11. 4 1740000000 10:9642 56:75 36:766 11. 5 1840000000 10:9642 56:76 36:766 11. 6 1840000000 10:9642 56:76 36:766 11. 6 18400000000 10:9642 56:76 36:766 11. 7 18400		
AUD NSW PUBLIC WORKS DEPT WSS BRANCH PLAN NO, BAZIS/Z/10037] 2. MATER TEMPERITURE IS MEASURED 6 INCHE APPROX BELOW THE SUBFACE AND IN PROXINATELY 1 TO 27T DEPTH OF WATER OFF SHORE IT THE DAMPINSTATION (SINCE THE LAKE FILE BELD'S FEET DEPTH IN DOCT, 1008 AUTER TEMPERATURE MEASUREMENTS MAVE HAD TO BE TAKEN IN 6 INCHES TO 1 FOOT OF WATER,) 3. PUBLIC WORKS PLAN BAZ, WHICH SHOWS LOWEST POINT OF LAKE TO BE SLIGHTLY BELOW IN 2200 FT(OT, NOAKS-SHOW ESTIMATE 2207,6FT) INDICATES THE FOLLOWING CAPACITIES FOR THE LAKE FOR THE FOLLOWING BWR WATER LEVELS- DEPTH CAPACITY CAPACITY CAPACITY AREA AREA AREA (FILE) O.4 1000000 3507 14.59 (1000) I. N. IN		ASEE NOAKES OF LOUTES ON WATER I SECTION DECOME THE 40 READS
2. WATER TEMPERATURE IS MEASURED 6 INCHES APPROX BELOW THE SURFACE AND IN APPROXIMATELY 1 TO 2TT DEPTH OF WATER OFF SHORE AT THE GAUGINGSTATION (SINCE THE LAKE FILE BELD & FEET DEPTH IN DCT. 1968 WATER TEMPERATURE MEASUREPENTS HAVE HAD TO BE TAKEN IN & INCHES TO 1 FOOT OF WATER.) 3. PUBLIC WARSE PLAN BAY, WHICH NOWS LOWEST POINT OF LAKE TO BE SLIGHTLY BELBURY RESULTED FOR THE LAKE FOR THE FOLLOWING BRY MARKES HER FOLLOWING CAPACITIES FOR THE LAKE FOR THE FOLLOWING BRY MARKE LEVELS— DEPTH CAPACITY CAPACITY CAPACITY AREA AREA IN		AND NEW PUBLIC HORKS DEPT WSS REAMED IN M. DADITIZATIONTS
APPROXIMATELY 1 TO 2FT DEPTH OF WATER OFF SHORE AT THE GAUGINOSTATION (SINCE THE LAKE FELL BELOW & FEET DEPTH IN OCT. 1906 WATER THEMPERATURE MEASUREMENTS HAVE HAD TO BE TAKEN IN & INCHES TO 1 TOOT OF WATER.) J. PUBLIC LOWING PLAN BRZ, MHICH KOMUS LOWEST FOILT OF LAKE TO BE SLIGHTLY BELOW RL 2208 FTICEF, VOLAKES-BHR ESTIMATE 2207, 6FT, INDICATES THE FOLLOWING CAPACITIES FOR THE LAKE FOR THE FOLLOWING BHR WATER LEVELS— DEPTH CAPACITY CAPACITY AREA AREA IN IN IN (Ff.1 CUBS.FT, KARE-FT) (SQ. MILES) (ACCE) 0.4 1000000 23 0.33 223 1.4 158000000 3627 14:98 9280 2.4 712000000 16342 25.75 16486 3.4 1594000000 36475 34.75 22240 4.4 2623000000 16342 25.75 16486 3.4 1594000000 36475 34.75 22240 4.5 268300000 80256 46.75 31200 6.4 228300000 163593 54.75 32580 5.4 380000000 163593 54.75 32580 8.4 300000000 163593 54.75 32580 9.4 9361000000 226377 56:25 36000 10.4 1144000000 226377 56:25 36000 11.4 1144000000 22626 57.08 36680 11.4 1144000000 240265 57.08 36680 11.4 1144000000 373829 58.73 37800 11.4 1144000000 373829 58.73 37800 11.5 11284000000 373829 58.73 37800 11.5 1284000000 373829 58.73 37800 11.6 11284000000 373829 58.73 37800 11.7 11284000000 373829 58.73 37800 11.8 1284000000 373829 58.73 37800 11.9 118ES VOLUMES SLIGHTLY. 4. RELATIONSHIP GETWEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S., OF L. GEORGE WATER CALCULATED FOOM BHR CHEFICAL ANALYSES- TOSTLOST TOST TOTAL SALT CONTENT OF LAKE IS BELOW ABOUT OF T. STACE HEAVY RAINFALL OF STROWS SUMMER EVACORATING TO MEGET JOIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPH, (NOTE., WHEN LAKE IS BELOW ABOUT OF T. STACE HEAVY RAINFALL OF STROWS SUMMER EVACORATING TO MEGET JOIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPH, (NOTE., WHEN LAKE IS BELOW ABOUT OF T. STACE HEAVY RAINFALL OF STROWS SUMMER EVACORATING TO MEGET JOIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPH, (NOTE., WHEN LAKE IS BELOW ABOUT OF T. STACE HEAVY RAINFALL OF STROWS SUMMER EVACORATING TO MEGET JOIVIDING BY 3500000 AND MUL- TIPLYING BY TOS IN PPH, (NOTE., WHEN LAKE IS BEL		MAD 404 LOSDIG HOUVE BELL HOS DIMMON LEMA HOL BASTANSATA
APPROXIMATELY 1 TO 2FT DEPTH OF WATER OFF SHORE AT THE GAUGINOSTATION (SINCE THE LAKE FELL BELOW & FEET DEPTH IN OCT. 1906 WATER THEMPERATURE MEASUREMENTS HAVE HAD TO BE TAKEN IN & INCHES TO 1 TOOT OF WATER.) J. PUBLIC LOWING PLAN BRZ, MHICH KOMUS LOWEST FOILT OF LAKE TO BE SLIGHTLY BELOW RL 2208 FTICEF, VOLAKES-BHR ESTIMATE 2207, 6FT, INDICATES THE FOLLOWING CAPACITIES FOR THE LAKE FOR THE FOLLOWING BHR WATER LEVELS— DEPTH CAPACITY CAPACITY AREA AREA IN IN IN (Ff.1 CUBS.FT, KARE-FT) (SQ. MILES) (ACCE) 0.4 1000000 23 0.33 223 1.4 158000000 3627 14:98 9280 2.4 712000000 16342 25.75 16486 3.4 1594000000 36475 34.75 22240 4.4 2623000000 16342 25.75 16486 3.4 1594000000 36475 34.75 22240 4.5 268300000 80256 46.75 31200 6.4 228300000 163593 54.75 32580 5.4 380000000 163593 54.75 32580 8.4 300000000 163593 54.75 32580 9.4 9361000000 226377 56:25 36000 10.4 1144000000 226377 56:25 36000 11.4 1144000000 22626 57.08 36680 11.4 1144000000 240265 57.08 36680 11.4 1144000000 373829 58.73 37800 11.4 1144000000 373829 58.73 37800 11.5 11284000000 373829 58.73 37800 11.5 1284000000 373829 58.73 37800 11.6 11284000000 373829 58.73 37800 11.7 11284000000 373829 58.73 37800 11.8 1284000000 373829 58.73 37800 11.9 118ES VOLUMES SLIGHTLY. 4. RELATIONSHIP GETWEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S., OF L. GEORGE WATER CALCULATED FOOM BHR CHEFICAL ANALYSES- TOSTLOST TOST TOTAL SALT CONTENT OF LAKE IS BELOW ABOUT OF T. STACE HEAVY RAINFALL OF STROWS SUMMER EVACORATING TO MEGET JOIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPH, (NOTE., WHEN LAKE IS BELOW ABOUT OF T. STACE HEAVY RAINFALL OF STROWS SUMMER EVACORATING TO MEGET JOIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPH, (NOTE., WHEN LAKE IS BELOW ABOUT OF T. STACE HEAVY RAINFALL OF STROWS SUMMER EVACORATING TO MEGET JOIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPH, (NOTE., WHEN LAKE IS BELOW ABOUT OF T. STACE HEAVY RAINFALL OF STROWS SUMMER EVACORATING TO MEGET JOIVIDING BY 3500000 AND MUL- TIPLYING BY TOS IN PPH, (NOTE., WHEN LAKE IS BEL		2. WATER TEMPERATURE IS MEASURED 6 INCHES APPROX RELOW THE SURFACE AND IN
(SINCE THE LAKE FELL BELOW 6 FEET DEPTH IN DOT, 1988 WATER TEMPERATURE MEASUREPENTS HAVE HAND TO BE TAKEN IN 6 INCHES TO 1 FOOT OF MATER.) 3. PUBLIC WORKS PLAN BA2, WHICH SHOWS LOWEST POINT OF LAKE TO BE SLIGHTLY BELOW RL 2200 FTLOF, VOAKES-BHR ESTIMATE 2207,671; INDICATES THE FOLLOWING CAPACITIES FOR THE LAKE FOR THE FOLLOWING BHR WATER LEVELS— DEPTH CAPACITY CAPACITY AREA AREA IN IN IN (FI.1 10UB.FT., 1 CACRE-FT) (SQ.MILES) (ACRE) 0.4 1000000 23 0.33 213 1.4 15000000 3627 14.59 9288 2.4 722000000 16540 25.79 14.686 2.4 122000000 16540 25.79 14.686 2.4 122000000 16540 25.79 14.686 2.4 128000000 12396 51.58 32960 2.4 128000000 12396 51.58 32960 2.4 308000000 12396 51.58 32960 2.4 308000000 19550 3 54.58 34680 8.4 30000000 10542 55.75 35688 9.4 980100000 226977 56.29 36008 9.4 9801000000 226977 56.29 36008 10.1 1144000000 370387 58.28 11.4 1465000000 330387 58.28 11.4 14703300000 41689 59.58 38080 11.4 1703300000 41689 59.58 38080 11.4 1703300000 41689 59.58 38080 11.4 1703300000 41689 59.58 38080 11.5 18.5 194EVIATION IN LAKE SINCE PUBLIC WORKS SURVEY IN 1802 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETWEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. BEDRGE WATER CALCULATED FROM BHR CHEMICAL ANALYSES TDS(PPA)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OF STROWS SURWER FINGE TO HEAVE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OF STROWS SURWER FINGE TO HEAVE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OF STROWS SURWER FINGE TO HEAVE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OF STROWS SURWER FINGE TO HEAVE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OF STROWS SURWER FINGE TO HEAVE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OF STROWS SURWER FINGE TO HEAVE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OFT STROWS SURWER FINGE TO HEAVE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OFT STROWS SURWER FINGE TO HEAVE IS BELOW AROUT OFT, STAGE HEAVY RAINFALL OFT STROWS SURWER FINGE TO HEAVE IS CALCULATED BY DIVIDING TISTORED WITH CONTROL TO THE TOTAL SALTOWS THE S		
MEASUREPEATS HAVE HAD TO BE TAKEN IN 6 INDES TO 1 FOOT OF MATER.) 3. PUBLIC WORKS PLAN 842, WHICH SHOWS LOWEST POINT OF LAXE TO BE SLIGHTLY BELOW RL 2208 FT(CF, WOAKSS-BMR ESTIMATE 2207.6FT) INDICATES THE FOLLOWING CAPACITIES FOR THE LAXE FOR THE FOLLOWING BHR MATER LEVELS— DEPTH CAPACITY CAPACITY CAPACITY AREA AREA AREA AREA AREA AREA AREA ARE		
DEPTH CAPACITY CAPACITY AREA AREA IN I		
DEPTH CAPACITY CAPACITY AREA AREA IN I		
DEPTH CAPACITY CAPACITY AREA AREA IN I		3. PUBLIC WORKS PLAN B42. WHICH SHOWS LOWEST POINT OF LAKE TO BE SLIGHTLY
DEPTH CAPACITY CAPACITY AREA AREA IN I		BELOW RL 2208 FT (CF. NOAKES-BMR ESTIMATE 2207.6FT) INDICATES THE FOLLOWING
IN		CAPACITIES FOR THE LAKE FOR THE FOLLOWING BMR WATER LEVELS-
IN		DEREN CONSTRUCTION OF THE PROPERTY OF THE PROP
0.4 100000 23 0.31 213 1.4 15800000 3627 14;38 928 2.4 712010000 16341 25.75 14488 3.4 155400000 35677 34,79 22240 4.4 262300000 69256 48;79 31200 5.4 388000000 89256 48;79 31200 6.4 5288000000 125370 34,79 31200 6.4 5288000000 125370 34,78 32940 7.4 6765000000 155303 34,58 34880 8.4 830000000 19542 55;75 35688 9.4 9840100000 226377 56;29 36008 11.4 11440000000 226377 56;29 36008 11.4 13338000000 299311 57.58 3680 11.4 13338000000 299311 57.58 3680 11.4 13338000000 373829 58,79 37600 11.4 1440300000 373829 58,79 37600 11.4 17933000000 373829 58,79 37600 11.5 13,4 16284000000 373829 58,79 37600 11.6 17933000000 450207 61;08 39040 NOTE, SEJIMENTATION IN LAKE SINCE PUBLIC WORKS SURVEY IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETWEEN THE ELECTRICAL CONDUCTIVITY AND THE T,D.S. OF L. GEORGE MATER CALCULATED FROM BHR CHEMICAL ANALYSES— TOS(PPH)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LIKEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND NUL— TIPLYING BY TOS IN PPM, (NOTE, , mem LAKE IS BELDOW ABOUT 9 FT, STAGE HEAVY RAINFALL OF STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SALLLOW MATER SUCH AS AROUND ROUNDING VOLUME BY LIKEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND NUL— TIPLYING BY TOS IN PPM, (NOTE, , mem LAKE IS BELDOW ABOUT 9 FT, STAGE HEAVY RAINFALL OF STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SALLLOW MATER SUCH AS AROUND ROUNDING STATION, ESTIMATES OF TOTAL SALI COVITENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE 6, ESTIMATED AVERAGE T,D,S,OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, HEIGHT OF		=== · · · · · · · · · · · · · · · · · ·
0.4 1000000 23 0.33 213 1.4 158000000 3627 14:39 9286 2.4 712000000 16342 25:75 16486 3.4 155400000 35675 34.79 22240 4.4 . 2623000000 60216 42:08 26880 5.4 3888000000 89256 48:79 31200 6.4 5288000000 12:1396 51:58 32940 7.4 6765000000 155303 54:58 38:80 8.4 830000000 190542 55:75 35688 9.4 9861000000 190542 55:75 35688 9.4 9861000000 263077 56:28 36008 11.4 11450000000 262626 57:08 36488 11.4 13038000000 29311 57:58 36800 12.4 14653000000 336537 56:28 37280 13.4 1628400000 3736387 58:28 37280 13.4 1628400000 3736387 58:28 37280 13.4 1628400000 41:689 59:58 38008 15.4 1961100000 450207 61:08 39940 NOTE, SCIMENTATION IN LAKE SINCE PUBLIC WORKS SURVEY. IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP GETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE WATER CALCULATED FROM BHR CHEMICAL MARKYSES— TDS(FPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TIDS IN PPM. (VOTE,, MEMEL LAKE IS BELOW ABOUT 9 FT, STAGE MEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND ROUNDS IN SALINITY IN SHALLOW WATER SUCHOMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND ROUNDS IN CENTRE OF TOTAL SALI COYTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES VEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		in in in in in in
1.4 15800000 16345 25.75 16488 3.4 15940000 13647 34.75 2248 4.4 262300000 36675 34.75 2248 4.4 262300000 69256 46.75 31200 6.4 5288000000 121396 51.58 32960 7.4 676500000 155303 54.58 34880 8.4 830000000 195542 55.75 35688 9.4 981000000 195542 55.75 35688 9.4 981000000 226377 56:25 36000 10.4 1144000000 262626 57.08 36488 11.4 1333800000 39313 57.59 36800 12.4 1465300000 333387 56:25 37280 12.4 1465300000 33387 56:25 37280 12.4 1465300000 33387 56:25 37280 13.4 128800000 373829 58.75 37600 14.4 1793300000 45027 61.08 39040 NOTE, SEJIMENTATION IN LAKE SINCE PUBLIC WORKS SURVEY. IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETMEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GECRGE MATER CALCULATED FROM BHR CHEMICAL ARALYSES— TDS.PPHP)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND NUL- TIPLYING BY TOS IN PPM, NOTE,, THEN LAKE IS BELDO ABOUT 9 FT, STAGE HEAVY RAINFALL OF STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SALLON WATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, HEIGHT OF		L. IT LES AUDISTING FRANCET IN ADMINISTRATION (AUDIST LANGET AUDISTING AND AUDISTING AUDISTING AND AUDISTING AUDISTING AND AUDISTING AND AUDISTING AND AUDISTING AND AUDISTING AUDISTING AND AUDISTING AUDISTING AUDISTING AND AUDISTING AND AUDISTING AND AUDISTING A
1.4 15800000 16345 25.75 16488 3.4 15940000 13645 25.75 16488 3.4 15940000 36075 34.75 2248 4.4 262300000 60216 42.08 26880 5.4 388800000 69256 48.75 31200 6.4 528800000 121396 51.58 32940 7.4 676500000 155303 54.58 34880 8.4 830000000 195542 55.75 35688 9.4 936100000 226377 56:25 36008 10.4 1144000000 262626 57.08 36488 11.4 1333800000 29311 57.59 36800 12.4 1465300000 333387 56:25 36008 12.4 1465300000 373829 56.75 37600 12.4 1465300000 373829 56.75 37600 12.4 1465300000 373829 56.75 37600 14.4 17933300000 45020 51.08 38888 15.4 19841000000 45020 51.08 38940 NOTE, SEJIMENTATION IN LAKE SINCE PUBLIC WORKS SURVEY. IN 1902 HAS REDUCED THREE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GECRGE MATER CALCULATED FROM BMR CHEMICAL MANALYSES— TDS(PPH)=E.G.X 0.657 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPM, (NOTE), AMEN LAKE IS BELDON ABOUT 9 FT, STAGE HEAVY RAINFALL OP STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SALLON WATER SUCH AS AROUND GAUSING SALININE SITUATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		0.4 1000000 25 0.33 213
2.4 71200000 16342 25.75 16486 3.4 155400000 35675 34.75 2240 4.4 26200000 60216 42.08 2680 5.4 388800000 60256 46:75 31200 6.4 528800000 121396 51.58 32900 7.4 676500000 155303 54.58 34880 8.4 830000000 190542 55:75 35688 9.4 936100000 26377 56:23 36008 10.4 1144000000 26377 56:23 36008 11.4 1303800000 299311 57.50 36800 11.4 1303800000 299311 57.50 36800 11.4 1303800000 299311 57.50 36800 11.4 1303800000 373829 56:73 37800 13.4 16284000000 373829 56:73 37800 14.4 17933300000 41687 59:58 38088 15.4 19611000000 450207 61:08 39040 NOTE, SEJTHENTATION, IN LAKE SINCE PUBLIC HORKS SURVEY, IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T,D.S., OF L. GECRGE WATER CALCULATED FROM BHY CHEMICAL ANALYSES— TDS(PPM)=E,C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND NUL— TIPLYING BY TOS IN PPH, (NOTE,, WHEN LAKE IS BELOM ABOUT 9 FT, STAGE HEAVY RAINFALL OP STRONG SUMMER EVAPORATION COMMONILY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOM WATER SUCH AS ARCUND GAUGING STATION, ESTIMATES OF TOTAL SALT, CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES VEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T,D,S,OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		
3.4 155400000 35675 34,78 22240 4.4 222300000 60216 42.08 2680 5.4 388000000 121396 51,58 32900 7.4 676500000 155303 54,58 34680 8.4 63000000 190542 55:75 35688 9.4 986100000 20347 56:28 36008 10.4 1144000000 22637 56:28 36008 11.4 1333800000 29311 57.58 36800 12.4 145300000 373638 58:28 37280 12.4 1465300000 373638 58:28 37280 13.4 1628400000 373638 58:28 37280 14.1 17783300000 450207 61:08 3980 15.4 1961100000 450207 61:08 3980 NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC WORKS SURVEY IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T,D.S. OF L. GEORGE HATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPH)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPH, (NOTE, , MEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OP STRONG SUMMER EVAPORATION COMMONTING TO WEIGHT, DIVIDING BY TAXABLE OF TOTAL SALT, CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES VEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T,D,S,OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, MEIGHT OF		2,4 712000000 16345
5.4 3888000000 89256 46;79 31200 6.4 5288000000 155303 54;58 32960 7.4 676500000 155303 54;58 34880 8.4 830000000 19642 55;75 35688 9.4 986100000 226377 56;23 36008 10.4 1144000000 226377 56;23 36008 11.4 1303800000 29311 57:59 36808 12.4 1453000000 29311 57:59 36808 12.4 14653000000 336387 56;23 37280 12.4 14653000000 33829 56;73 37280 13.4 16284000000 37829 56;73 37600 14.4 1793300000 411689 59:58 38088 15.4 1961100000 450207 61:08 39040 NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC WORKS SURVEY IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. BEDRGE HATER CALCULATED FROM BMR CHEMICAL ANALYSES— TDS(PPN)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION.CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPM, (NOTE,, WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EMPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW HATER SUCH AS AROUND GAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW HATER SUCH AS AROUND GAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW HATER SUCH AS AROUND GAUSING STATION, ESTIMATES OF TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL GIRCULATION IN LAKE 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		3.4 1554000000 35675 34.78 22248
6.4 528300000 121396 51.58 32960 7.4 676500000 155503 54.58 34880 8.4 830000000 190542 55:75 35688 9.4 936100000 262675 55.08 36088 9.4 936100000 262676 57.08 36488 11.4 1333000000 299311 57.59 36800 12.4 1465300000 35387 56:23 37280 13.4 1628400000 373829 56:75 37680 13.4 1628400000 373829 56:75 37680 15.4 1793300000 411689 59.58 38088 15.4 1661100000 450207 61:08 39940 NOTE, SEJIYENTATION,IN LAKE SINCE PUBLIC WORKS SURVEY, IN 1902 HAS REDUCED. THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. BECRGE HATER CALCULATED FROM BHR CHEMICAL ANALYSES— TOSTPPH)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME 8Y LINEAR INTERPOLATION,CONVERTING TO MEIGHT,DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPM, (NOTE,, HHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OF STRONG SUMMER EVAPORATION COMPONEY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLON HATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALT, CONTENT BY ABOVE METHOD ARE DISTORTED LINTIL CIRCULATION IN LAKE 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		
7,4 676500000 155303 54:58 34880 8,4 830000000 190542 55:75 35688 9,4 986100000 266377 56:28 36008 10.4 11440000000 262626 57:08 36808 11.4 1333800000 29311 57:58 36808 12.4 1465300000 373829 58:28 37280 13.4 16284000000 373829 58:75 37600 14.4 1793300000 410687 59:58 38088 15.4 1981100000 450207 61:08 39040 NOTE, SEDITENTATION. IN LAKE SINCE PUBLIC WORKS SURVEY. IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. BEDRGE WATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPM. (NOTE, WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EXPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLON WATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES VEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		
8.4 830000000 190542 55:75 35668 9.4 984000000 226377 56:25 36008 10.4 1144000000 262626 57.08 36808 11.4 1303800000 299311 57.58 36808 11.4 1303800000 336387 58:25 37280 13.4 1628400000 373829 58:75 37600 14.4 1793300000 411683 59:58 38088 15.4 1961100000 450207 61:08 39040 NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC MORKS SURVEY IN 1902 HAS REDUCED. THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETWEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE MATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME 8Y LINEAR INTERPOLATION. CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TOS IN PPM. (NOTE., WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW MATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI. COLTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES VEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		
9,4 986100000 226377 56:25 3608 10,4 1144000000 29931 57:50 36800 11,4 1303800000 29931 57:50 36800 12,4 14653000000 373829 56:75 37280 13,4 16284000000 373829 56:75 37280 14,4 1793300000 411689 59:50 38088 15,4 19611000000 450207 61:00 39040 NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC MORKS SURVEY IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE WATER CALCULATED FROM BHR CHEMICAL ANALYSES— TOS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME 8Y LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPM, (NOTE, , WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALI, COPTENT BY ABOVE HETHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES YEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST. HEIGHT OF		
10.4 1144000000 262626 57.08 36486 11.4 1333800000 299311 57.58 36830 12.4 1465300000 373829 58.75 37280 13.4 16284000000 373829 58.75 37600 14.4 1793300000 416687 59.58 38888 15.4 1961100000 450207 61.08 39040 NOTE, SCIMENTATION IN LAKE SINCE PUBLIC WORKS SURVEY IN 1902 HAS REDUCED THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE WATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPH)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPH, (NOTE,, WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI, CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES YEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, HEIGHT OF		
11.4 13038000000 299311 57.58 36800 12.4 14653000000 336367 58:25 37280 13.4 16284000000 373889 58.75 37600 14.4 17933000000 41168> 59.58 38088 15.4 19611000000 450207 61:06 39040 NOTE, SEDITENTATION IN LAKE SINCE PUBLIC WORKS SURVEY IN 1902 HAS REDUCED. THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE HATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPN)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME 8Y LINEAR INTERPOLATION, CONVERTING TO HEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPM, (NOTE,,, MHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW HATER SUCH AS AROUND BAUGING STATION, ESTIMATES OF TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, HEIGHT OF		11
12.4 1465300000 336387 56:25 37280 13.4 16284000000 373829 58:75 37600 14.4 1793300000 411685 59:58 38088 15.4 1961100000 450207 61:08 39040 NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC MORKS SURVEY IN 1902 HAS REDUCED. THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE HATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS EALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TOS IN PPM, (MOTE,, HMEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF	-	
13,4 16284000000 373829 58.75 37600 14,4 1793300000 41683 59.58 38080 15,4 19611000000 450207 61:06 39040 NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC WORKS SURVEY IN 1902 HAS REDUCED. THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETWEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE WATER CALCULATED FROM BYR CHEMICAL ANALYSES— TDS(PPH)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPM, (NOTE,,, WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OF STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW MATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI. CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		
14.4 1793300000C 41168> 59.58 38088 15.4 1961100000 450207 61:08 39040 NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC MORKS SURVEY IN 1902 HAS REDUCED. THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE HATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TOS IN PPM, (NOTE, WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL HARKED CHANGES IN SALINITY IN SHALLOW MATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		45 4 16984000000 74569 47600
15.4 1961100000 450207 61:06 39040 NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC MORKS SURVEY. IN 1902 HAS REDUCED. THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GECRGE HATER CALCULATED FROM BMR CHEMICAL ANALYSES— TDS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPM, (NOTE, WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE. PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		14.4 1793300000 4/1685 59.58 38088
NOTE, SEDIMENTATION IN LAKE SINCE PUBLIC NORKS SURVEY IN 1902 HAS REDUCED. THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETWEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. BECRGE HATER CALCULATED FROM BMR CHEMICAL ANALYSES— TDS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO HEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPM, (NOTE,, HHEN LAKE IS BELOM ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW MATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, HEIGHT OF		15.4 1961100000 450207 A1:08 39040
THESE VOLUMES SLIGHTLY. 4. RELATIONSHIP BETHEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE HATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPH)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO MEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPM, (NOTE, WHEN LAKE IS BELON ABOUT 9 FT. STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLON HATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, HEIGHT OF		
4. RELATIONSHIP BETWEEN THE ELECTRICAL CONDUCTIVITY AND THE T.D.S. OF L. GEORGE HATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPH)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO HEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TDS IN PPH. (NOTE, HHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW HATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, HEIGHT OF		
HATER CALCULATED FROM BHR CHEMICAL ANALYSES— TDS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TOS IN PPM, (NOTE,MEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW MATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		
TDS(PPM)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL— TIPLYING BY TOS IN PPM, (NOTE, WHEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES. IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE. PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		
TDS(PPH)=E.C.X 0.67 5. APPROXIMATE TOTAL SALT CONTENT OF LAKE IS CALCULATED BY COMPUTING VOLUME BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL+ TIPLYING BY TOS IN PPM, (NOTE, WHEN LAKE IS BELOW ABOUT 9 FT. STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONDLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		
BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPM, (NOTE, LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF		TDS(PPH)=E.C.x 0.67
BY LINEAR INTERPOLATION, CONVERTING TO WEIGHT, DIVIDING BY 1800000 AND MUL- TIPLYING BY TOS IN PPM, (NOTE, LAMEN LAKE IS BELOW ABOUT 9 FT, STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE. PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, WEIGHT OF	_	
TIPLYING BY TDS IN PPM. (NOTE,WHEN LAKE IS BELOW ABOUT 9 FT.STAGE HEAVY RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES. IN SALINITY IN SHALLOW WATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE. PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735.000 TONS(EST.WEIGHT OF		
RAINFALL OR STRONG SUMMER EVAPORATION COMMONLY CAUSES LOCAL MARKED CHANGES. IN SALINITY IN SHALLOH WATER SUCH AS AROUND GAUGING STATION, ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE. PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735,000 TONS(EST, HEIGHT OF		ST LINEAR INTERMULATIONS CONVERTING TO WEIGHT DIVIDING BY 1800U AND MULT
IN SALINITY IN SHALLOH HATER SUCH AS AROUND GAUGING STATION. ESTIMATES OF TOTAL SALI CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE. PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735.000 TONS(EST.HEIGHT OF		TIFLIAND OF THE ANTIFICATION COMMIND EARLING TO BELLE ABOUT A TISTIAGE HEAVY. BAINGAL OF STORMS STREET LANDONATION COMMIND PARTICE FORM MADDED BURNES
TOTAL SALT CONTENT BY ABOVE METHOD ARE DISTORTED UNTIL CIRCULATION IN LAKE. PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735.000 TONS(EST. WEIGHT OF		THE CALL THITY THE CHARLES WATER CHOW AS ADDING GARGING CTATION. ECTIMATES AS
PRODUCES NEAR UNIFORMITY AGAIN) 6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735.000 TONS(EST. HEIGHT OF		TOTAL CALT COUTENT BY AROVE METHOD ASE DISTORTED UNTIL CALCINATED UT
6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735.000 TONS(EST. WEIGHT OF	-	PRODUCES NEAR UNIFORMITY AGAIN
		6. ESTIMATED AVERAGE T.D.S.OF LAKE IS CALCULATED BY DIVIDING 735.000 TONS(EST.HEIGHT OF
en e		
en e		
in the second of		and the state of t
المنافع الم		
		and the second of the second o

APPENDIX 2

Conversion Factors

Inches x 25.40

Feet x 0.3048

Miles x 1.609

Acres x 4047

Square miles x 2.59

Gallons (imp.) \times 0.0045

Acre-feet x 1234

Tons x 1016

= Millimetres

= Metres

= Kilometres

= Square metres

= Square kilometres

= Cubic metres

= Cubic metres

= Kilograms