DEPARTMENT OF MINERALS AND ENERGY

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

011593

Record 1974/60

MACQUARIE ISLAND GEOPHYSICAL OBSERVATORY,
ANNUAL REPORT 1973

by

P.J. Hill

The information contained in this report has been obtained by the Department of Minerals and Energy as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

BMR Record 1974/60 Record 1974/60

MACQUARIE ISLAND GEOPHYSICAL OBSERVATORY,
ANNUAL REPORT 1973

by

P.J. Hill

CONTENTS

		Page
	SUMMARY	
1.	INTRODUCTION	1
2.	GEOMAGNETISM	1
	Normal-run magnetograph Rapid-run magnetograph Orientation tests Effect of earthquakes Pier corrections Thermographs	2 2 3 4 5 5
3.	SEISMOLOGY	5
	Performance of MQI system Noise comparison of MQI and MCQ sites T phases	8 9 10
4.	TIDE GAUGE	10
5.	ADDITIONAL DUTIES	11
6.	ACKNOWLEDGEMENTS	11
7.	REFERENCES	11
	TABLES	
1.	Magnetograph parameters	13
2.	Normal-run magnetograph baseline values	14
3.	Rapid-run parallax corrections	15
4.	1973 preliminary monthly mean values D, H, Z	15
5.	Geomagnetic annual mean values 1963-1973	16
6.	Orientations of variometer magnets	. 17
7.	F variation above pier A	17
8.	Normal-run thermographs 1973	18
9.	Earthquakes recorded at Macquarie Island and listed in NOAA PDE sheets	19
10.	Intensities of local earthquakes	21
11.	Seismograph constants	22
12.	MQI attenuator settings	22
13.	T phases Macquarie Island 1973	23

PLATES

- 1. MQI magnification curve 1973
- 2. MQI MCQ magnification relation
- Comparison of microseismic noise levels in MQI and MCQ vaults
- 4. Epicentres Macquarie Island region 1973 T phase
- 5. Observed T phase travel-times

SUMMARY

Geomagnetic and seismological recording was continued at the Macquarie Island Geophysical Observatory throughout 1973. The newly installed seismic system MQI, with the seismometer on the plateau linked by hardwire f.m. telemetry to the recorder in the Geophysics Office, was calibrated and kept functioning throughout the year except for short periods after landline faults developed; when this happened a standby system MCQ in the original vault was brought into operation until repairs had been effected.

Comparisons of microseismic noise at the MQI and MCQ sites indicated that under normal weather conditions noise levels at the new site are not significantly lower than at the old.

Investigation of 1973 earthquakes which produced T phases at the Island confirmed the general epicentral location pattern and the propagation velocity value (1.475 km/s) found in previous years.

1. INTRODUCTION

This Record describes the operation of the Macquarie Island Geophysical Observatory from 23 November 1972 to 2 December 1973 when the author was observer-in-charge.

The Bureau of Mineral Resources, Geology carried Geophysics (BMR) out seismological has and geomagnetic recording at Macquarie Island since 1950 1951 respectively, as part of the operations Australian National Antarctic Research Expeditions (ANARE); the Antarctic Division (Department of Science) has provided accommodation and logistic support for this work.

The normal term of duty is one year; the author succeeded M. McMullan and was relieved by J. Walsh. During the November 1973 changeover the Observatory was inspected by G. Small, H.Q. Observatory Group, Canberra.

The operation of the Observatory in earlier years is described in BMR Records (e.g. Meath, 1971b; McDowell, 1973; McMullan (in prep.)).

2. GEOMAGNETISM

Two sets of continuous recording magnetographs were in operation during 1973:

- 1. La Cour normal-run (15 mm/h) three-component magnetograph
- 2. La Cour rapid-run (180 mm/h) three-component magnetograph

Baseline control observations were carried out with absolute instruments as follows:

- H: QHMs 177, 178, 179
- D: Askania declinometer 640505 and circle 640620
- Z: BMZ 236, Elsec PPM 421 (in conjunction with H trace)

Intercomparisons of absolute instruments through the baselines made in November 1973 consisted of:

- H: HTM 704 and QHM 172 against QHM 177
- D: Dec. 509320 against Dec. 640505
- F: Elsec PPM 339 against Elsec PPM 421

Z: Elsec PPM 421 (plus H trace) against BMZ 64 (the latter being checked for use at Casey, Antarctica in 1974)

From baseline value determinations done throughout the year the differences between the QHMs were: 177 - 178 = 7nT

177 - 179 = 6nT

The correction to the BMZ was obtained from Z baseline values derived directly from BMZ observations, and indirectly from PPM 421 values of F and magnetogram values of H (the indirect results are called Zp). The mean difference, with no corrections applied to the QHM data, was:

BMZ 236 - Zp = 147 nT

BMR magnetograph calibrator MCO-1 was used supply the currents through the Helmholtz coils on each of variometers for scale-value determinations. Magnetograph parameters are shown in Table 1, and baseline Table 2. Normal-run magnetograph control in observations were done about 5 times a month and rapid-run magnetograph scale values and parallax corrections (Table 3) determined once a month. The parallax correction to time-marks was negligible. normal-run variation Thermometers on the H and Z variometers were read and records changed on both magnetographs daily between 2351 and 2359 UT. At the end of each month, magnetic data (K-indices, preliminary monthly mean values, baseline values, and scale values) was forwarded by telegram to the BMR Office in Melbourne. Preliminary monthly mean values are listed in Table 4; they were determined from the mean of the hourly values of 10 selected quiet days of each month. Table 5 lists the annual mean values 1963-1973.

Normal-run magnetograph (N/R)

The N/R magnetograph performed well during the year. Only minor record loss resulted owing to sticking of the recording drum. This was rectified by oiling the bearings, adjusting the mass, and lubricating the string of the frictional load for the motor. The prisms and lenses of the recorder were adjusted several times to improve clarity of the traces and to record reserve traces. Correct intensities of the light spots were in part achieved by masking of the lenses.

Rapid-run magnetograph (R/R)

The mechanics of the magnetograph gave no problems, and the quality of the magnetograms was satisfactory but not perfect, as has been so in previous

years. This was due to uneven intensities of the traces, some fogging, and occasional blotchiness. The latter was caused by condensation forming on the paper while on the drum, the variometer hut being unheated. Some improvement was achieved by adjustment of the recorder mirrors (the silvering of which showed signs of corrosion), and fogging was reduced by narrowing the aperture of the recorder, effected by bolting a strip of copper sheeting onto the recorder cover. This considerably reduced fogging during scale value tests.

In July the position of the direct Z trace was shifted, by adjustment of the variometer prism, from the extreme top edge of the record to a more central position.

Orientation tests

Orientation tests on the variometers were performed after disturbance of the magnetographs by earthquakes (see next section) and after adjustments to the variometers. The results of the tests are shown in Table 6.

The N/R H and D variometers each have two sets of orthogonal Helmholtz coils centred on the recording magnets, one for scale values and the other for orientation tests. The R/R H and D variometers each have only one set of coils for scale values, so for orientation tests these have to be turned through 90 i have to be turned through 90 into the prime vertical and meridian directions respectively. The N/R Z and R/R Z variometers have orientation benches, and deflector magnets of known moment (Meath, 1971b) are used for the tests.

Checks were made on the orientation of the N/R coils using the azimuth marks along the north and south walls of the variometer room. Measured orientations of the coils (assuming orthogonality) were 28.4° for D and 118.5° for H. When installed in 1970 the coils were supposedly set at 29.0° and 119.0° respectively (Meath, 1971b), with the footings fixed in plaster. When examined, no cracking or movement of the plaster was evident. McMullan also discovered discrepancies in these values.

When the orientation tests were first carried out, the deflections on the magnetograms of traces from adjacent variometers showed inexplicable behaviour. Subsequently the directions of the orientation currents (which are controlled through the main console in the Geophysics Office) were determined in the variometer building. These were found to be opposite in sense to that indicated by the MCO-1 unit which supplies the R/R current and also to that shown by the MCO-3 which provides the larger current for the N/R coils. This results from the fact that COMMON on the MCO-1 is + ve

and that the 12V battery supply in the MCO-3 had been wired internally to give reversed current. Thus there is possibility that H and D ex-orientation determinations of both N/R and R/R variometers could be in error since 1971. this reason, and because of variometer adjustments earthquake disturbances, after no direct required correlation between 1972 and 1973 values for H N/R ex-orientation angles can be and R/R Z made. ex-orientations for 1973 are in agreement with previous years. The results of the tests are shown in Table 6.

Effect of earthquakes

Macquarie Island lies on an active oceanic ridge and so is subject to seismic disturbance; usually a number of mild tremors are felt at the station each year. Seven such tremors were experienced between December 1972 and November 1973. On the magnetograms the H and D (suspended magnets) traces show large oscillations for the duration of the ground movement, while the Z (pivoted magnet) trace is relatively insensitive to vibration and only small deflections result.

The earthquake on 7 June caused the N/R H ordinate to decrease by about 25 mm and the N/R D trace to disappear off the bottom of the record; the R/R H traces were also displaced. The N/R H trace was returned by a small turn of the torsion head, and the N/R D trace was brought back by turning the variometer body and moving the head an equal amount in the opposite direction to correct the resulting fibre twist. The N/R D baseline mirror was adjusted to restore the baseline trace to its proper position.

When magnetic conditions were suitably quiet, orientation tests were done on all variometers (27 June and 8 July). All ex-orientation angles were found to be less than 1 except R/R H and N/R D which were respectively W 1.5 S and N7.2 W for the magnets' N pole. The R/R H magnet orientation was adjusted by turning the torsion head. The large ex-orientation of the N/R D magnet indicated that the earthaqake had caused it to spin a number of revolutions, the resulting torsion in the fibre holding the magnet from the meridian. Two turns of the variometer head were required to readjust it; the body was turned, and the baseline mirror adjusted to complete restoration of D traces. Orientation tests were repeated on R/R H, N/R D, and N/R H, and ex-orientation angles determined to be less than 1°.

On 19 October an earthquake caused a shift downwards in the N/R H trace of about 6 mm, which was restored by turning the variometer torsion head.

Ex-orientation angles of the N/R H and N/R D magnets were checked and found to be almost unaltered.

Pier corrections

Three piers were in use during the year for absolute measurements. In the absolute building, pier E was used for H and D, pier W for Z and F, and only F was measured on the external pier A. Differences in F between the three piers were determined once monthly.

The concrete used in the construction of pier A is so it is necessary to position the PPM sensor magnetic, the pier out the magnetic influence of above of Tests were carried out by raising the PPM sensor concrete. the pier and measuring box to various heights above With the PPM sensor box F; results are shown in Table 7. 51 cm above the concrete, it was sufficiently high not to be affected by the magnetic concrete. All absolutes and done with the box at this height. comparisons were Initially, wooden blocks were used as support but this proved unstable in windy conditions, so a rigid wooden support was later constructed.

The inter-pier difference (E,W,A) was less than lnT.

Thermographs

Two temperature traces are provided on the N/R magnetograms, one from the H variometer and the other from the Z variometer. The latter is used for all variometer reductions because it is the more sensitive and because the temperature within the variometer room is fairly uniform.

Temperature scale values (St) and baseline values (bt) for both thermographs are shown in Table 8. Two changes in Zbt can be correlated with times when silica gel was renewed in the variometers (every two months); other changes cannot be explained. The change in Hbt is due to a magnetograph adjustment. The temperature scale values were calculated by a computer least-squares fit to the data obtained from the daily temperature readings and the corresponding ordinates of the temperature traces.

3. SEISMOLOGY

In October 1972 a new seismograph system (MQI) was brought into operation to replace the one in the Wireless Hill (MCQ) vault which had been used since recording commenced in 1950. A detailed description of the instruments and an account of the installation of the new system is provided by McMullan (in prep.).

MOI sensing station is situated on the 250-m high plateau about 3 km from the ANARE base. A fibreglass vaultlet sunk into the bottom of an excavation in weathered volcanics houses a vertical component short-period Willmore It is coupled to a TM 251 telemetry MK2 seismometer. amplifier from which the frequency-modulated seismic signal Geophysics fed via a screened six-core cable to the Office. Here the original signal is recovered by an discriminator. attenuated, and passed through short-period (0.2 second) galvanometer and is photographically on a 60 mm/minute drum recorder.

As a back-up in the event of landline or other failures, the system in the original value (MCQ) which had been used by McMullan was re-assembled and made operational. This system comprised a Willmore Mk 2 seismometer (replaced in January by a Willmore Mk 1 when the Mk 2 was required in Australia), short-period (0.2 second) galvanometer and BMR 30 mm/minute recording drum.

Seismic data were telegraphed daily to the Office in Melbourne, and thence to the US National Oceanic Administration Colorado, Atmospheric (NOAA), preliminary computation of epicentres. Earthquakes listed in the PDE (Preliminary Determination of Epicentres) sheets and recorded at Macquarie Island are shown in Table 9. After final analysis a total of 363 events were reported to the International Seismological Centre at Endinburgh. During the year a number of earthquakes were felt at the ANARE Station; they are listed in Table 10, together with their intensities according to the Modified Mercalli Scale (1956 version).

Tests done during the year on the two systems gave the seismograph constants in Table 11. Until 16 July, MQI was operated as it had been set up (seismometer free period 0.68 seconds, damping ratio about 20:1). The seismometer was then brought to the Geophysics Office, the period adjusted to 1.00 second, and the motor constant (G) of the calibration coil determined by weight lift tests, using the spare amplifier and discriminator as in normal operation. In addition, with the aid of a large screen CRO the damping resistance required to give a damping ratio of 17:1 was determined accurately. The results were:

G = 0.46 N/A

Damping resistance (in each arm of seismometer output)

to give 17.0:1 = 5900 ohms

The vaultlet control board was wired with fixed damping resistors in place of the existing makeshift ganged potentiometers which were unequal in value, easily knocked

out of adjustment, and subject to corrosion. The attenuator box was calibrated by applying a sinusoidal signal to the calibration coil and measuring the output on the record for different settings; Table 12 gives the results.

November the frequency response of MQI was determined, weight lift tests were done (masses used being 20.0 and 41.4 mg) to check G of the calibration coil, and the system magnification was calculated from the deflection produced by a known sinusoidal current through the calibration coil. G was found to be unaltered (0.46 N/A). An exceptionally calm day was chosen for the weight lift tests and the seismometer was set up on a concrete block vaultlet, it being impossible to the sufficiently still with the seismometer in the vaultlet to prevent the lift pulse being swamped by noise.

The motor constant (G) and magnification (V) are given by the formulae (for derivation see Geotechnical Corporation manual)

$$G = (Xlp/Xlw) (980 \text{ Wt x } 10^{-5}/ip). 10^{-3} \text{ N/A}$$

 $(V) = Af^2/K \text{ is}$

where $K = G/411^2 M$

Xlp : deflection on seismogram from current
 pulse lp (amperes) through
 calibration coil

Xlw : deflection from weight lift
 (Wt grams)

A : trace amplitude (p-p, metres) due to sinusoidal current is (p-p, amperes) of frequency f through calibration coil

M : seismometer mass (kg)

The MQI magnification (with attenuator box setting 42 dB) at 5.0 Hz was 30.3 K; Plate 1 shows the magnification curve.

The attenuator box setting used until 29 July was 38 dB when it was increased to 42 dB and kept there for the rest of the year. The increase was necessary because changing the seismometer period from 0.68 to 1.00 second made the system more sensitive to the ambient noise which has a predominant period of 2 to 3 seconds.

By scaling amplitudes and periods of events recorded on both MQI and MCQ the magnification relation between the two stations in Plate 2 was obtained.

Performance of MQI system

The equipment functioned well throughout the year; the main problem lay in keeping the landline to the vaultlet in service.

On the isthmus the cable had been buried (except for a short section up to the Geophysics Office) to protect it from seals and vehicles, and on the slopes and plateau it was supported above the ground by star-pickets and wooden posts to prevent rabbit damage.

On arrival in November 1972 there were 14 joins in the cable; after it was accidentally severed by a bulldozer, thus requiring another 2 and making a total of 16. In 1972 McMullan had trouble with discontinuities developing in the cable connexions and the same problem was experienced early in 1973 when several faults occurred. The majority of cable failures were due to corrosion of the soldered leads in the connectors; the most vulnerable conductors were those supplying power to the amplifier, i.e. the shielding (OV) and two leads (+12V, -12V). Electrolytic corrosion is greatly accelerated by Macquarie Island's sea air and wet climate.

The cable connexions were housed in wooden boxes and the sleeved, soldered joints were covered with silicone grease to help exclude moisture. Not being completely waterproof, they were not entirely successful. In April and May the cable was thoroughly overhauled - wooden posts were to the plateau to replace star-pickets or provide additional support, the deteriorating rubber hose protectors at the metal posts were replaced by tough plastic tubing to prevent further abrasion of the cable, all solder joints were inspected and re-soldered where necessary, and all but connexions were made permanent by filling the boxes with These epoxy resin. five were left conductors would be accessible for checking with a multimeter so that if a fault occurred it could readily be isolated. Waterproofing was done with silicone grease on the joints, and by painting the boxes with bituminous paint and covering them with layers of plastic sheeting. cable gave no further trouble throughout the winter until From then until departure several faults occurred, mostly due to corrosion; only once was a potted connector at fault.

Repairing the cable on the plateau and testing of equipment in the vaultlet is made difficult by the cold, wet, windy climatic conditions that prevail on Macquarie Island. Remoteness is another unfavourable factor for all tools and test equipment have to be carried by pack up the arduous plateau climb. Generally soldering is possible only

by a large gas flame because of the strong winds, which with the cold prevent any delicate work being carried out. In addition the persistent precipitation saturates any new wiring jobs and aggravates the corrosion problem; even inspection of cable connectors under the usual damp conditions has the same effect, for unless great care is taken moisture will enter them.

It is expected that the cable will have a useful life of a few more years before the task of maintenance becomes too great and the reliability of the seismic system suffers. Deterioration of the cable other than connectors is already evident - cracks have appeared in outer PVC owing to hardening by low temperatures and also at twists movement by the wind, abrasion at the posts has left cuts through the PVC cable; and in some places through the shielding; some sections show minor signs of rabbit attack. Wherever the shielding has been exposed, particularly at the joints, oxidation and atmospheric corrosion have worked along the wire for several metres, making it impossible to be soldered properly.

Noise comparison of MQI and MCQ sites

The microseismic noise at Macquarie Island is due primarily to two sources, wind and surf. On the plateau at the MQI vaultlet, wind velocities are generally greater (up to 10 knots according to Meath, 1971a) than on the isthmus; the MCQ valul, being close to the seashore (60 m from the east coast and 140 m from the west coast), is affected by the seismic noise of pounding waves.

On a number of occasions throughout the year MQI and MCQ were run simultaneously, so from the records a comparison of the background noise levels can be made. Noise levels measured from records at time intervals of not less than 12 hours, between 23 July and 11 November are shown in Plate 3. The period of the noise was found to lie mainly in the range 2 to 3 seconds.

The results show no significantly greater (not more than 10%) noise level at MCQ than MQI. The plot does not cover all weather conditions and undoubtedly at times, such as when there is a large easteraly swell, MQI could be a quieter site than MCQ. For most of the year, however, it appears that the noise levels at the two sites are comparable. This is substantiated by McMullan (pers. comm.), but contrasts with Meath's (1971a) conclusion that the noise level on the plateau is about 60 percent less in adverse weather.

Seismometer foundations at the two sites are not identical and could affect the recorded noise levels. At the MCQ vault the seismometer is based on a large concrete

pier constructed on bedrock, whereas the MQI seismometer stands in the bottom of a fibreglass box sunk into a medium of soil and weathered rock fragments.

The advantages of having a readily accessible (for inspecting and testing seismometers vault associated equipment) without a long, failure-vulnerable cable link between seismometer and recorder (thus meaning more reliability and less maintenance) outweigh that of the insignificant decrease in noise by having the vault on the So it is suggested that MQI be abandoned in favour of the original MCQ vault, or a suitable quieter alternative site near the Geophysics Office. Preliminary noise tests 1971; McCue, 1971) reveal that a number of such (Connelly, sites possibly exist on the isthmus.

T phases

Quite a number of T-phase events appeared on the 1973 records, the associated body waves some times being too small in amplitude to show up on the records. Twenty which could be correlated with earthquakes listed in the sheets are given in Table 13. Epicentres of 1973 PDEregional shocks recorded on Macquarie Island and located by NOAA, with and without T phases, are plotted in Plate 4, superimposed on Cooke's (1967) 1961-62 results. The information shows a similar pattern to that of 1961-62 and indicates that oceanic earthquakes in the region generally T waves, except for those occurring north-trending Macquarie Ridge as far down as the active area of 62°S. Earthquakes west of Macquarie Island are characterized by large-amplitude surface waves which appear on the Macquarie Island records together with the T waves.

A plot of travel-time against great circle epicentral distance (Plate 5) for the earthquakes of Table 12, yields a velocity of 1.475 km/s for the T waves.

4. TIDE GAUGE

The tide gauge on Buckles Bay, belonging to the Horace Lamb Centre for Oceanographic Research, Flinders University, was kept in operation during the year; records were changed weekly and time corrections noted daily.

On 27 July the tide gauge was calibrated; previous to this, the charts provided information only on relative tidal variations, not absolute heights.

WATER LEVEL (RELATIVE TO TOP OF WELL) = 10 x CHART ORDINATE

+ CHART BASELINE (B)

(A gear wheel is emplouey which gives a 1:10 reduction to the pen movement)

A B-value of -381.7 cm was obtained. Checked on 10 November, the calibration gave B as -372.2 cm.

In February there was found to be almost no syphon action; inspection revealed this was caused by blockage of the hose and nozzel by sand and dirt. The whole system was flushed using the station fire hose and pump, and a new syphon head retaining the original nozzle was fitted. Subsequently tests were made monthly by pouring 500 ml of sea water into the well and watching (on the chart) that the water level returned to the normal value within a few minutes. Repair work was necessary on two occasions to the gauge-housing when gigantic seas from easterly gales smashed the fibro walls.

5. ADDITIONAL DUTIES

The author acted as stand-in physicist for several weeks. Assistance was given in general station duties. Much time was spent on the ANARE biology program, carrying out bird-banding, checking of bands, and seal and rabbit counts. Buildings were painted and maintained as required during the year.

6. ACKNOWLEDGEMENTS

Thanks go to all members of the 1973 expedition for their support and congenial company, in particular A. King (physicist) who looked after the Observatory during the author's absence on field trips and W. Kulikowski (carpenter) who assisted in restoring operation of the tide gauge.

7. REFERENCES

- CONNELLY, J.B., 1971 Macquarie Island Geophysical Observatory, annual report, 1968. Bur. Miner. Resour. Aust. Rec. 1971/87 (unpubl.).
- COOKE, R.J.S., 1967 Observations of the seismic T phase at Macquarie Island. N.Z.J. Geol. Geophys. 10(5), 1212.
- GEOTECHNICAL CORPORATION Installation and operation manual. Electromagnetic calibrator, Model 2419A.

- McCUE, K.F., 1971 Macquarie Island Geophysical Observatory, annual report, 1969. Bur. Miner. Resour. Aust. Rec. 1971/13 (unpubl.).
- McDOWELL, M., 1973 Macquarie Island Geophysical Observatory, annual report, 1971. Bur. Miner. Resour. Aust. Rec. 1973/150 (unpubl.).
- McMULLAN, M., (in prep.) Macquarie Island Geophysical Observatory, annual report 1972. Bur. Miner. Resour. Aust. Rec. (unpubl.).
- MEATH, J.R., 1971a Selection of a seismometer site Macquarie Island. Bur. Miner. Resour. Aust. Rec. 1971/79 (unpubl.).
- MEATH, J.R., 1971b Macquarie Island Geophysical Observatory, annual report 1970. <u>Ibid</u>. 1971/129 (unpubl.).

TABLE 1. MAGNETOGRAPH PARAMETERS

COMPONENT	MEAN OBSERVED SCALE VALUE	ADOPTED SCALE VALUE	STANDARD D	TEMP COEFF nT/ ^O C	
Normal-run		·			
Н	19.45	19.45	0.06	2 nT	+3.0
D	2.36	2.35	0.02	0.4 min	_
Z	20.76	20.75	0.05	3 nT	0
Rapid-runs					
н	5.43	5.40	0.08		_
D	0.99	0.99	0.01	-	-
${f z}$	6.16	6.20	0.06	-	
·					

D scale values are in minutes/mm

H and Z scale values are in nT/mm

TABLE 2
OBSERVED BASELINE VALUES, NORMAL-RUN MAGNETOGRAPHS

Date 1973	UT h m		Baseline	Remarks	
Horizontal intensity			BHs nT		
Jan 01 Jun 07 Jun 08 Jun 10 Oct 19 Oct 20	00 02 06 02 00	00 43 56 06 13 32	12690 13175 12694 12750 12858 12744	Earthquake Adjustment Adjustment Earthquake Adjustment	
<u>Declination</u>		•	$\frac{BD (E)}{O}$		
Jan 01 Jun 07 Jun 09 Jul 13	00 02 10 00	00 43 15 14	26 46.8 26 28.0 26 42.2 26 55.6	Earthquake Adjustment Adjustment	
Vertical intensity			BZs *		
Jan 01 through	00	00	-63774		
Nov 30	24	00			

^{*} Derived from H and F (PPM 421)

TABLE 3

RAPID-RUN PARALLAX CORRECTIONS (SECONDS)

	CORRECTION	STANDARD DEVIATION
D	+ 05	2
Н	+ 24	2
Z	+ 30	3

TABLE 4

PRELIMINARY MONTHLY MEAN VALUES, 1973

MONTH 1973	H nT	D o	East '	Z nT
Jan	12922	27	24.0	-63985
Feb	12915	27	25.5	-63986
Mar	12911	27	26.2	-63990
Apr	12905	27	27.2	-63996
May	12908	27	27.3	-63992
Jun	12905	27	27.5	-63997
Jul	12905	27	28.2	-63990
Aug	12903	27	28.4	-63979
Sep .	12897	27	29.5	-63985
Oct	12897	` 27	29.7	-63978
Nov	12896	27	28.6	-63967
Dec	12895	27	28.8	-63972
Mean	12905	27	27.6	-63985

TABLE 5

GEOMAGNETIC ANNUAL MEAN VALUES 1963-1973

YEAR	D	I	Н	X	Y	. Z	F	NOTES
	o '	0 1	nT	nT	nT	nT	nT	
1963	26.08.5	-78 24.2	13193.	11843	5813	-64294.	65634	
1964	26.17.0	-78 24.7	13174.	11812	5834	-64249.	65586	
1965	26.28.6	-78 25.5	13152.	11773	5864	-64214.	65547	
1966	26.37.6	-78 26.7	13121.	11729	5881	-64175.	65503	
1967	26.46.5	-78 28.5	13084.	11681	5894	-64166.	65486	
1968	26.54.7	-78 29.7	13053.	11639	5908	-64132.	65447	
1969	27.02.3	-78 30.8	13026.	11602	5921	-64099.	65409	
1970	27.09.6	- 78 32.1	12996.	11563	5932	-64078.	65383	
1971	27.13.3	-78 33.3	12963.	11527	5930	-64032.	65331	
1972	27.22.1	-78 34.4	12937.	11489	5947	-64008.	65302	
1973	27.27.6	-78 35.8	12905.	11451	5951	-63985.	65273	
Mean annual change	+07.91	-01.16	-28.8	-39.2	+13.8	+30.9	-36.1	

16

TABLE 6
ORIENTATIONS OF VARIOMETER MAGNETS

COMPONENT		REFERENCE	FIELD	DATE	MAGNET	ORIENTATION	N POLE
Normal-Run H		12903	nT	27-06-73	E	0.3° N	
		12898	nT	25-10-73	E	0.3 N	
	D	27.5°E		08-07-73	N	7.2° W	
	;	27.5°E		13-07-73	N	0.3° E	
		27.6°E		24-10-73	N	0.2° E	
	Z	63994	nT .	27-06-73		0.2°	Down
Rapid-Run	H	12907	nT	27-06-73	W	1.5° s	
		12907	nT	13-07-73	W	0.05°s	
	D	27.45 ⁰ 1	Ε .	27-06-73	N	0.2°E	
	Z	63994	nT	27-06-73		0.70	Down

TABLE 7

F VARIATION ABOVE PIER A

Height Above Pier A* cm	F FIELD nT
. 0	65362
11	65317
21	65303
31	65294
41	65291
51	65289

^{*} Height is measured from base of sensor box to top of pier. Lower edge of sensor is 20 cm above base of box.

TABLE 8

NORMAL-RUN THERMOGRAPHS 1973

FROM	TO	ADOPTED (a)				
		St	St	bt		
		°C/mm	°C/mm	°c		
Z THERMOGRAPH						
01-01-73	07-01-73	1.28	1.4	-64.0		
08-01-73	29-01-73	1.31		-63.8		
30-01-73	18-02-73	1.41		-63.5		
19-02-73	03-03-73	1.38		-63.2		
04-03-73	02-04-73	1.35		-64.5		
03-04-73	17-05-73	1.42		-64.2		
18-05-73	30-11-73	1.40		-64.8		
H THERMOGRAPH						
01-01-73	08-06-73	5.66	6.0	-240.8		
09-06-73	30-11-73	6.33		-218.5		

⁽a) Adopted scale values apply for the entire interval 1 Jan through 30 Nov 1973

TABLE 9

EARTHQUAKES RECORDED AT MACQUARIE ISLAND AND LISTED IN NOAA PDE SHEETS

Date 1973	Station	Arrival Time UT		aphic	Depth	DATA Magnitude	FROM PDE SHEETS Region
		hms	Lat.	Long.	km	МВ	J
Jan 04	MQI	04 09 19.4	49.7S	155.1E	N	-	North of Macquarie Islan
Jan 05	MQI	13 58 43.0	39.0S	175.2E	150	6.2	North Island, New Zealan
Jan 06	MQI	16 00 17.0	14.75	166.4E	36	6.1	New Hebrides Islands
Jan 18	MQI	09 36 51.1	6.9S	150.0E	43	6.3	New Britain Region
Jan 23	MQI	04 57 37.0	12.1S	166.5E	97	5.8	Santa Cruz Islands
Jan 24	MQI	20 15 26.3	1.0N	126.3E	53	5.1	Molucca Passage
eb 13	MQI	15 29 50.5	17.5S	178.5W	541	5.5	Fiji Islands Region
eb 21	MQI	12 23 31.4	5.38	151.5E	90	5.3	New Britain Region
1ar 10	MQI	19 47 22.0	0.1N	123.4E	173	5.0	Northern Celebes
Mar 13	MQI	01 51 15.8	5.4S	154.2E	170	5.5	Solomon Islands
1ar 14	MQI	06 09 27.0	62.5S	165.3E	36	5.5	Balleny Islands Region
Mar 14	MQI	11 34 31.8	5.38	152.2E	64	5.8	New Britain Region
Mar 16	MQI	01 02 11.0	2.1N	126.6E	18	6.0	Molucca Passage
Mar 17	MQI	05 03 55.0	19.45	169.4E	194	6.0	New Hebrides Islands
Mar 17	MQI	08 42 40.0	13.4N	122.8E	N	5.6	Luzon, Philippine Island
1ar 19	MCQ	06 42 46.1	53.2S	159.2E	N	5.5	Macquarie Islands Region
1ar 20	MCQ	19 18 35.8	8.3S	117.4E	162	5.7	Sumbawa Island Region
pr 28	MQI	08 14 05.2	55.9S	158.7E	22	-	Macquarie Islands Region
May 02	MQI	01 34 36.0	10.0S	150.2E	29	5.6	East New Guinea Region
1ay 04	MQI	11 37 37.6	2.3N	126.7E	N	5.9	Molucca Passage
May 04	MQI	19 43 52.5	6.0S	129.7E	175	5.3	Banda Sea
May 11	MQI	10 55 44.0	1.0N	126.0E	24	5.4	Molucca Passage
May 12	MQI	16 29 13.0	3.7S	152.1E	13	5.5	New Ireland Region
May 22	MQI	22 13 15.1	10.0s	150.3E	13	5.5	East New Guinea Region
Jun 01	MQI	07 30 05.0	47.8S	99.7E	N	5.8	Southeast Indian Rise
Jun 07	MQI	02 43 38.1	53.9S	159.4E	N	5.8	Macquarie Islands Region
Jun 09	MQI	08 29 30.7	10.35	161.4E	70	6.3	Solomon Islands
Jun 14	MQI	11 11 31.6	7.3S	120.4E	631	5.8	Flores Sea
Tun 15	MQI	21 35 38.0	61.1S	154.2E		4.9	Balleny Islands Region
Jun 25	MQI	07 31 54.8	19.1N	121.2E	50	5.7	Philippine Islands Region
Jul 09	MQI	16 32 21.0	10.7N	92.6E	46	5.7	Andaman Islands Region
Jul 20	MQI	08 02 51.8	56.3S	146.9E	N	5.2	West of Macquarie Island
Jul 21	MQI	04 25 24.3	24.8S	179.2W	411	5.9	South of Fiji Islands
Jul 23	MQI	01 41 57.7	50.0N	78.9E	0	6.3	Eastern Kazakh SSR
ful 23	MQI	08 43 12.8	5.4S	146.9E	221	5.1	East New Guinea Region
ul 29	MQI	21 43 56.3	56.3S	147.4E	N	5.3	West of Macquarie Island
ug 01	MQI	01 38 53.2	14.35	167.3E		6.1	New Hebrides Islands
lug 04	MQI	22 01 45.0	2.0N	126.7E	40	5.6	Molucca Passage
Aug 05	MQI	15 55 40.3	16.2S	173.1W	N	6.1	Tonga Islands
Aug 09	MQI	13 08 08.6	56.3S	173.1W	N	5.6	West of Macquarie Island
Aug 13	MQI	08 37 14.7	4.5S	147.4E 144.0E	112	6.0	Near North Coast of New Guinea

TABLE 9 (cont)

			DATA		FROM PDE SHEETS		
Date	Station	Arrival		raphic	Depth	Magnitude	Do mi on
1973		Time UT hms	Lat.	-ords Long.	km	МВ	Region
Aug 30	MQI	20 02 47.2	7.1N	84.3E	N	5.9	Bay of Bengal
Sep 03	MQI	19 10 05.6	54.6S	146.3E	N	- .	West of Macquarie Island
Sep 05	MQI	03 51 12.0	19.7S	177.9W	402	5.0	Fiji Islands Region
Sep 12	MCQ	07 19 33.6	73.3N	55.2E	0	6.8	Novaya Zemlya
Sep 24	MQI	23 31 36.8	52.3S	160.7E	10	5.6	Macquarie Islands Region
Sep 25	MQI	16 19 07.0	54.8S	145.8E	N	5.9	West of Macquarie Island
Sep 26	MQI	16 29 26.1	55.4S	146.3E	N	5.5	ti ti ti
Sep 28	MQI	23 53 27.0	55.4S	146.0E	N	5.1	11 ti
Sep 29	MQI	03 06 05.0	60.3S	150.0E	N	4.8	62 · 61 £1
Sep 29	MQI	11 19 41.0	49.8S	164.1E	N		Auckland Islands Region
Oct 19	MCQ	00 13 03.9	54.7S	158.5E	N	5.8	Macquarie Islands Region
Oct 27	MCQ	07 19 34.9	70.8N	54.2E	0	6.9	Novaya Zemlya
Nov 06	MQI	05 25 19.0	23.8S	179.1E	546	5.5	South of Fiji Islands
Nov 12	MQI	04 02 22.9	6.2S	154.5E	50	5.6	Solomon Islands
Nov 30	MQI	08 17 17.0	15.2S	167.4E	124	6.0	New Hebrides Islands

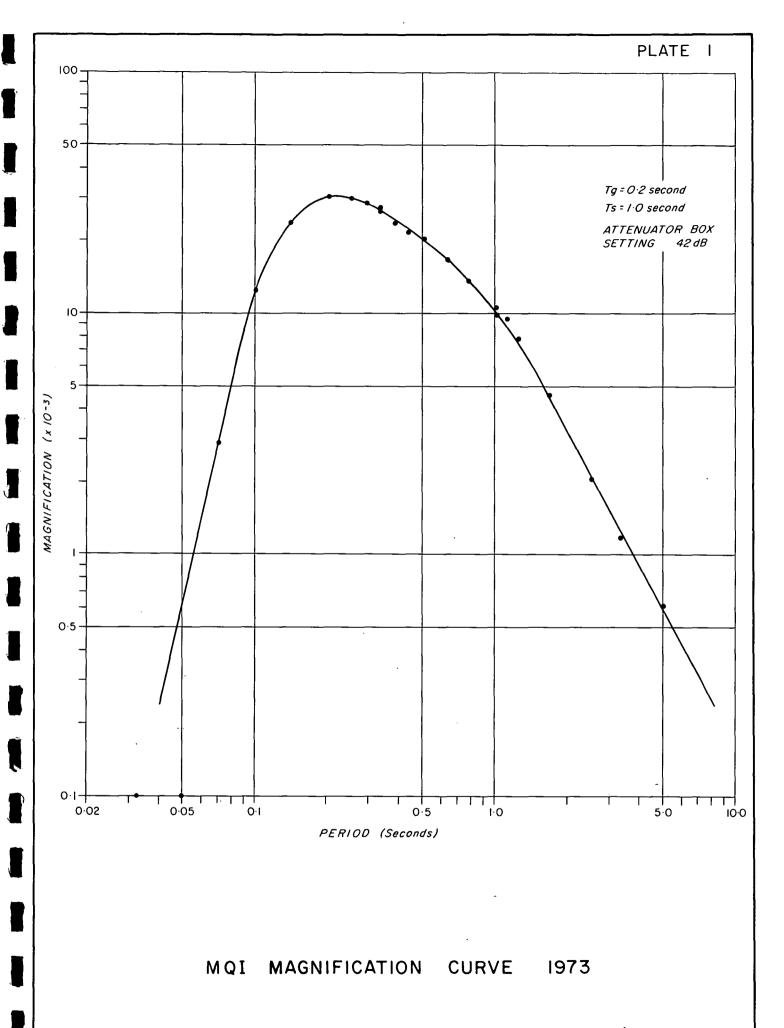
TABLE 10

INTENSITIES OF LOCAL EARTHQUAKES

DATE	ARRIVAL TIME (UT) AT RECORDING STATION hms	
1972 Dec 24	20 31 31.4	II
1972 Dec 26	15 09 28.7	II - III
1973 Jun 07	02 43 38.1	III - IV
1973 Oct 19	00 13 03.9	IV
1973 Oct 19	14 19 30.5	II .
1973 Nov 19	18 18 54.7	II .
1973 Nov 20	22 32 15.3	II

TABLE 11
SEISMOGRAPH CONSTANTS

DATE 1973	SEISMOMETER	SEISM. F.P. (SEC)	GALVO. F.P. (SEC)	-		DEFLECTION ON SEISMOGRAM FOR GROUND MOTION UP	
		MCQ (LAT. 54°	29.9'S LONG.	158 ⁰ 57.4	'E)	-	
Jan 31	Willmore Mk 2	0.97	0.2	3.4:1	Critical	Down	
Feb 21	Willmore Mk 1	0.86	0.2	11:1	3.1:1	Up	
Oct 24	Willmore Mk 1	0.87	0.2	13:1	3.6:1	Ŭр	
		MQI (LAT. 54°	31.2'S LONG.	158 ⁰ 55.9'1	<u>E)</u>		
Jul 02	Willmore Mk 2	0.68	0.2	18:1	_	-	
Jul 18	Willmore Mk 2	1.00	0.2	18:1	Seism. damping set at 17.0:1	Up	
Aug 29	Willmore Mk 2	0.99	0.2	18:1	-	-	
Nov 05	Willmore Mk 2	0.99	0.2	17:1	_	Up	

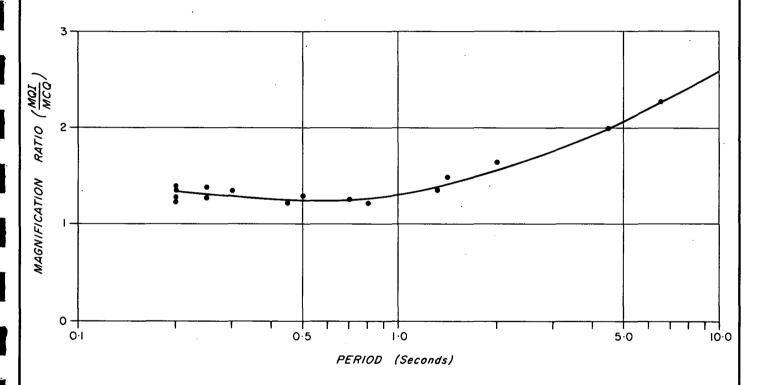

TABLE 12

MQI ATTENUATOR SETTINGS

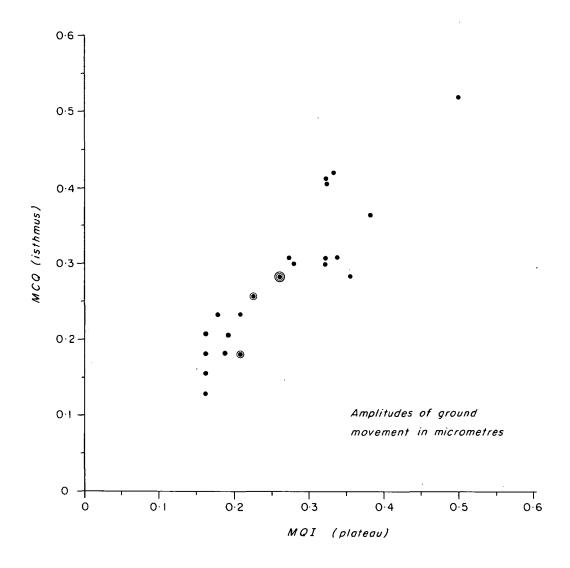
Attenuator Box Setting	<u> </u>	42 dB	38 dB	34 dB	30 dB	
Relative Magnification	Observed	1.0	1.55	2.5	3.95	
	Calculated	1.0	1.58	2.51	3.98	

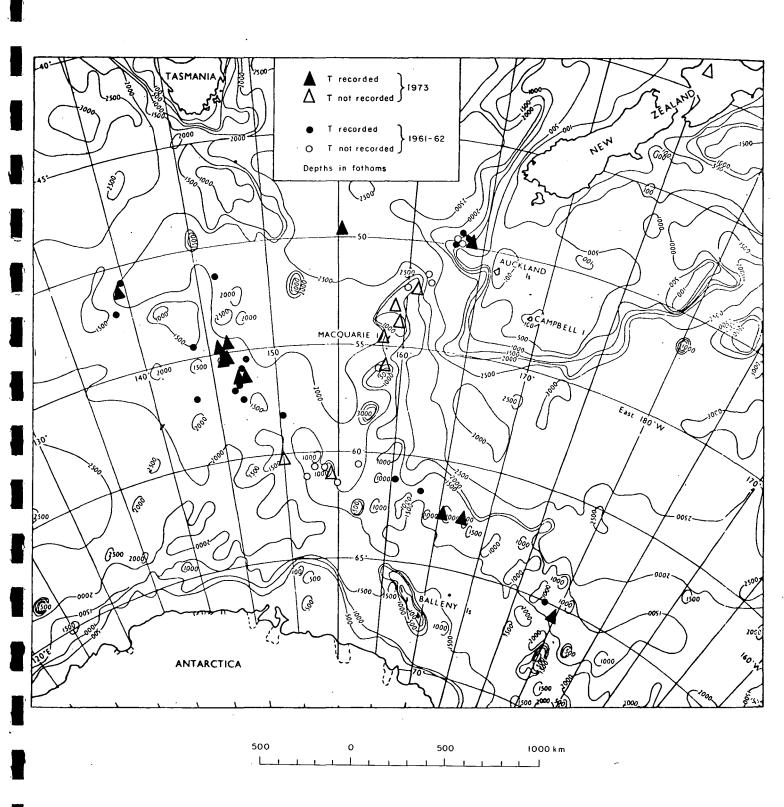
TABLE 13
T PHASES MACQUARIE ISLAND 1973

		····					
DATE	ORIGIN TIME UT	$\frac{\texttt{GEOGRAPHIC}}{\texttt{Co-ords}}$ Lat. Long.	DEPTH KM	REGION	STATION	RECORDED TMAX TIME UT	GREAT CIRCLE DISTANCI
	(hms)	•				(hms)	KM
Jan 04	04 08 01.	7 49.7S 155.11	e n	North of Macquarie Island	MQI	04 14 55	594
Feb 08	10 09 08.3	3 45.5S 96.3I	E N	Southeast Indian Rise	MQI	10 59 40	4452
Feb 19	20 07 11.9	57.58 141.0	N N	South Pacific Cordillera	MQI	20 49 00	3651
Feb 20	22 05 19.0	62.6S 167.4I	E N	Balleny Islands Region	MQI	22 17 07	836
Mar 14	06 07 30.1	62.5S 165.3	E 36	10 11	MQI	06 18 20	965
Apr 25	07 27 20.	L 65.5S 179.3	e n	n u	MQI	07 46 30	1660
May 19	18 18 31.4	15.6S 73.8	v 79	Southern Peru	MQI	20 20 22	10810
Jun 01	07 22 57.0	47.85 99.71	E N	Southeast Indian Ris	e MQI	08 09 12	4092
Jun 10	07 16 19.5	5 57.75 142.1	N	South Pacific Cordillera	MQI	07 57 41	3582
Jul 20	08 01 16.	7 56.3S 146.91	E N.	West of Macquarie Island	MQI	08 09 55	786
Jul 29	21 42 21.4	56.3S 147.4	E N	11 11 11	MQI	21 50 55	758
Aug 07	06 39 00.1	3 54.4S 136.6W	N N	South Pacific Cordillera	MQI	07 24 41	4044
Aug 09	13 06 36.0	5 56.3S 147.41	e n	West of Macquarie Island	MQI	13 15 06	756
Aug 18	09 20 18.4	56.0S 143.8V	N N	South Pacific Cordillera	MQI	10 00 45	3552
Sep 03	19 08 26.	1 54.6S 146.3	E N	West of Macquarie Island	MQI	19 17 34	816
Sep 25	16 17 28.3	3 54.8S 145.8	E N	n n n	MQI	16 26 35	845
Sep 26	16 27 47.	2 55.4S 146.3	E N	11 11 11	MQI	16 36 53	818
Sep 28	23 51 46.9	55.4S 146.0	e n	91 H	MQI	24 00 49	834
Sep 29	11 18 20.	7 49.8S 164.1	e n	Auckland Islands Region	MQI	11 24 51	637
Oct 05	05 45 27.3	3 33.0S 71.9V	N 14	Near Coast of Centra Chile	1 MQI	07 29 07	9190
Oct 12	18 04 29.3	3 16.0S 74.0V	N 47	Near Coast of Peru	MCQ	20 06 10	10760
Nov 16	23 08 49.0	51.2S 139.5	E N	South of Australia	MQI	23 24 02	1356

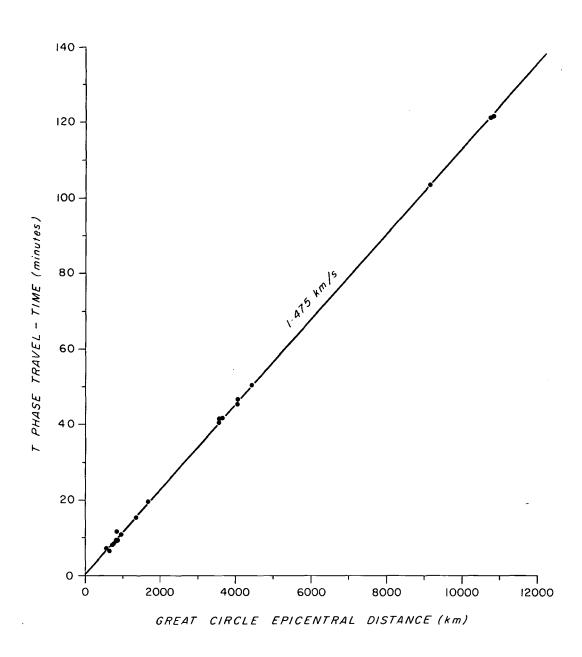

To accompany Record No. 1974/60

ANT / B9 - 46 A


MQI Attenuator box setting 42dB


MCQ Attenuator box setting 0 dB

Ts(MQI) = 1.0 second Ts(MCQ) = 0.9 second



MQI-MCQ MAGNIFICATION RELATION

EPICENTRES MACQUARIE ISLAND REGION 1973 - T PHASE

OBSERVED T PHASE TRAVEL-TIMES

MACQUARIE ISLAND 1973