1975/57. Cory4

> DEPARTMENT OF MINERALS AND ENERGY

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD 1975/57

056240

QUARRY SITE INVESTIGATION AT CAPTAINS FLAT

NEW SOUTH WALES 1974

by

G. Jacobson and G. Briscoe

The information contained in this report has been obtained by the Department of Minerals and Energy as part of the policy of the Australian Government to assist in the exploration and development of mineral resources, It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

RECORD 1975/57

QUARRY SITE INVESTIGATION AT CAPTAINS FLAT

NEW SOUTH WALES 1974

ρ'n

G. Jacobson and G. Briscoe

CONTENTS

	Page
SUMMARY	
INTRODUCTION	2
GENERAL GEOLOGY	2
SELECTION OF QUARRY SITE	3
INVESTIGATION OF THE NORTH QUARRY	3
GEOLOGY	4
RESERVES	5
CONCLUSIONS AND RECOMMENDATIONS	6
REFERENCES	T_{i}^{*}
APPENDIX, 1. Logs of diamond-drill holes	
APPENDIX 2. Photographs of diamond-drill con	c e
APPENDIX 3. Petrography by J.P. Caplecha	× ×
TABLE 1. Possible quarry sites for rock-	fill.
FIGURES	
1. Tailings dumps at Captains Flat	
2. Metavolcanic rocks exposed in railway-	-cutting
3. Possible quarry sites for rock-fill	s v
4. North Quarry, Captains Flat	e * :
5. North Quarry showing vertical bedding	planes
6. Slate in trial embankment.	
· · · · · · · · · · · · · · · · · · ·	

North Quarry geological plan and sections

SUMMARY

It is planned to stabilize the mine waste dumps at Captains Flat in order to prevent pollution of the Molonglo River by material eroded from the dumps and by the collapse of unstable dump slopes. Large quantities of rock-fill will be used in the stabilization project.

An inspection of possible quarry sites in the Captains Flat area has led to a decision to use the North Quarry as a source of rock-fill for proposed reclamation works. Reserves of about 200 000 m³ of rock have been proved in a diamond drilling investigation; this is sufficient for the project, and the rock is of adequate quality.

INTRODUCTION

At a meeting of the Joint Government Technical Committee on Mine Waste Pollution of the Molonglo River in May 1974, the Bureau of Mineral Resources (EMR) undertook to inspect possible quarry sites for rock-fill for the proposed reclamation works at Captains Flat (Joint Government Technical Committee, 1974). These works are being undertaken to decrease pollution in the Molonglo River from erosion of the mine waste dumps and collapse of unstable dumps (Fig.1). The inspection of quarry sites followed an earlier reconnaissance appraisal of sources of materials for the project by the Geological Survey of New South Wales (Chesnut, 1974).

About 150 000 m³ of rock-fill are required for facing the seven tailings dumps (Fig. 3) in the mine area. The rock-fill has to be of a quality adequate to withstand weathering by acid waters; the quarry site must be close to the works area; and quarrying must have a minimal environmental effect.

Six possible quarry sites (Fig. 3) at Captains Flat were inspected in June 1974. After an interim geological report on these sites, a decision to investigate the North Quarry by diamond drilling was made by the Department of Public Works, New South Wales, which is the design and construction authority responsible for the reclamation works. The drilling program was carried out in November-December 1974.

GENERAL GEOLOGY

The general geology of the Captains Flat area has been described by Oldershaw (1965). The rocks around the mine and town are mainly volcanic and sedimentary rocks of Silurian age.

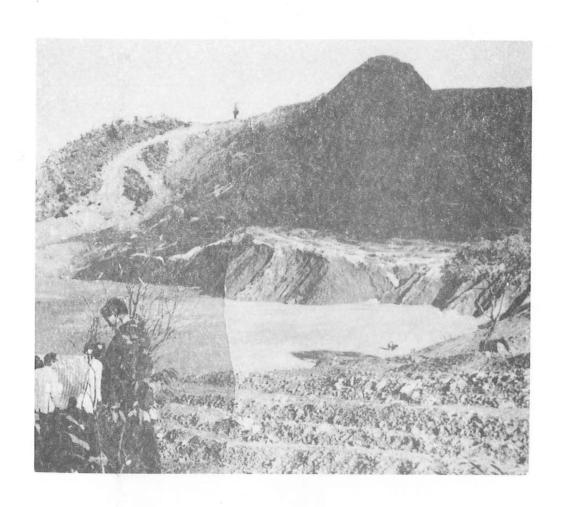


FIGURE 1
TAILINGS DUMP AT CAPTAINS FLAT

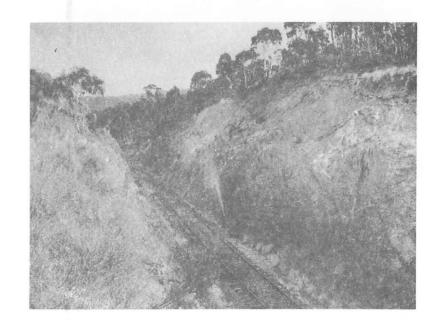
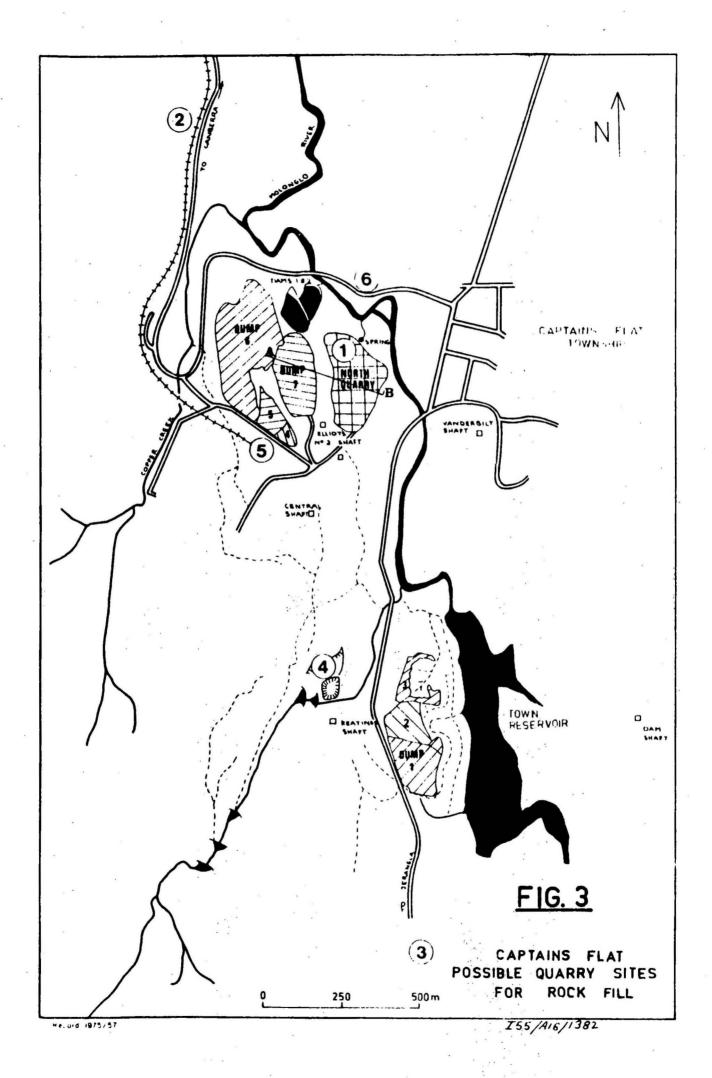



FIGURE 2

METAVOLCANIC ROCKS EXPOSED IN RAILWAY-CUTTING

(Quarry Site 2)

SELECTION OF QUARRY SITE

The main features of the possible quarry sites are summarized in Table 1. Sites 3, 4, and 5 have insufficient reserves to supply the required amount of rock.

Sites 2 and 6

Sufficient reserves are probably available in both sites 2 (Fig.2) and 6, which would have to be opened as quarries for the reclamation project; this, however, would destroy grazing land and create an additional scar on the landscape. Both sites are believed to be on freehold land. The haulage to the works area would be longer from site 2 than from site 6. However, site 6 has the disadvantage that it is adjacent to the main road, and quarrying operations would affect the road traffic.

Site 1 (North Quarry)

Site 1 is the North Quarry, which ras originally worked for material to backfill mine workings. The quarry has sufficient reserves but is of mixed lithology with varying degrees of weathering; an appreciable proportion of fines is to be expected. The quarry (Fig.4) is conveniently sited in the project area and re-opening it would be more desirable environmentally than opening a new quarry elsewhere. Quarry operations would be close to the Captains Flat hotel and other buildings.

INVESTIGATION OF THE NORTH QUARRY

Nine angled diamond-drill holes with a total length of 160 m were drilled in the North Quarry. The drill hole locations and cross-sections of the drill holes are shown in Plate 1, and detailed logs of the drill holes are given in Appendix 1. Photographs of the drill core form Appendix 2.

The drilling was done by contractors, Stewart Brothers of Sydney, and the drill core was logged by BMR geologists.

GEOLOGY

The geology of North Quarry is shown in Plate 1. Some fill occurs on the floor of the existing quarry and is up to 4 m thick in places. Beneath this, the quarry rock types are mainly schist in the west side; mainly slate, in the central part; and mainly sandstone on the east side.

Lithology

Schist forms the upper (western) part of the existing quarry and was intersected in drill holes 6 and 8. It is moderately to slightly weathered in the quarry face, and fresh and hard in drill cores.

Slate crops out in the lower part of the quarry face and in the quarry floor; it was intersected in drill holes 2, 4, 5, 6, 7, 8, and 9. The slate is silty and contains thin interbeds of tuffaceous sandstone and tuff which tend to be more weathered than the slate itself. In the present quarry face the slate is moderately weathered in the northern part of the quarry and slightly weathered in the southern part. The slate is probably the most durable rock type in the quarry, and the computation of quarry reserves (see below) is based on the assumption that slate will form most of the available material.

Sandstone forms the eastern part of the existing quarry. It is moderately weathered at the surface, and contains slate interbeds. The petrography of the quarry rocks is described in Appendix 3.

TABLE 1

CAPTAINS FLAT - POSSIBLE QUARRY SITES FOR ROCK-FILL

×	Quarry Site	Location	Geology	Approximate Reserves m3	Haulage	Land Ownership	Environmental Factors
We Co		North Quarry, in mine area	Slate, mica schist, and sandstone, moderately to slightly weathered in existing quarry face. Closely spaced vertically dipping cleavage. Quarry would produce flat fragments with possibly 20 percent fines	At least 150 000	Adjacent to northern dumps: 1 km to southern dumps	Crown	Existing quarry Would be used and the appearance of the quarry would suffer little change
*	2	Railway-cutting 1 km north of mine area (Fig.2)	Jointed metavolcanic rock, slightly weathered at base of cutting, with average 5 m completely to highly weathered overburden and some deeply weathered pockets. Joint spacing 0.5 m, and quarry would produce blocky fragments with possibly 15 percent fines. Rock would require crushing	At least 150 000	1 km to northern dumps; 3 km to southern dumps	Freehold	Quarrying would necessitate spoiling extensive area of lightly timbered grazing land close to main road
*	3	Road gravel pit 1 km south of mine area, on Jerangle Road	Sheared and altered volcanic- rock, variable from highly to slightly weathered in existing road gravel pit	Limited insufficient height for quarry face	1 km to southern dumps; 3 km to northern dumps	?	Existing pit adjacent to road

Table 1.

Quarr Site		Geology	Approximate Reserves m3	Haulage	Land Ownership	Environmental Factors
4	South Quarry in mine area	Sheared volcanic rocks, moderately to slightly weathered in existing quarry face. Vertical cleavage. Quarry would produce flat fragments and would be difficult to work as it is above Keatings Collapse	Probably less than 150 000	Adjacent to southern dumps; 1 km to northern dumps	Existing quarry on Crown land; extension might be on freehold land	Existing quarry
5	Railway-cutting at former station	Volcanic rock, moderately to slightly weathered in cutting. Vertical cleavage	Insufficient	Adjacent to northern dumps; 1 km to southern dumps	Crown	
6	Road-cutting on spur east of Molonglo River	Slightly weathered slate. Quarry would produce flat fragments but rock probably better quality than in site 1	At least 150 000	Adjacent to northern dumps; 1 km to southern dumps	Freehold?	Quarrying would necessitate spoil extensive area of lightly timbered grazing land adja

FIGURE 4

NORTH QUARRY, CAPTAINS FLAT (Quarry site 1)

Fracturing

The main fracture planes in the quarry rocks are bedding plane partings which strike north-south and dip close to vertical (Fig. 5). Consequently most of the quarry rock, especially the slate, will fracture into platy fragments. Two orthogonal joint sets have been observed in the slate: strike 050°, dip 25°N; and strike 050°, dip 70°SE. The joints are spaced about 0.5 m apart. Fracture spacings in the drill core are indicated as histograms in the drill-hole logs (Appendix 1), and give an indication of the degree of fracturing to be expected in the rocks when quarried.

Quality of rocks

Visual observation indicates that the slate is the most durable of the three main rock types in the quarry. However, a sample of the slate immersed in sulphuric acid for several months in the BMR laboratory deteriorated considerably and it is likely that there will be some deterioration of the rock after placing the fill. Thin tuff interbeds in the slate have been observed to weather differentially, and the sandstone, which is tuffaceous, is also likely to be susceptible to rapid weathering.

Slate was placed in a trial embankment on one of the tailings dumps in December 1974, and appeared to be of adequate quality (Fig. 6) although with an appreciable proportion of fines.

RESERVES

Reserves have been estimated as follows for a possible quarry down to R.L. 840 as outlined in the cross-sections in Plate 1.

Volume of overburden 40 000 m^3

The required amount of suitable material (150 000 m³) could probably be obtained above R.L. 845.

CONCLUSIONS AND RECOMMENDATIONS

- 1. There is no site that could produce first-class rock aggregate within the town area.
- 2. Three sites 1, 2, and 6 could produce second-class rock; of these, sites 2 and 6 have the better-quality rock, but both would have to be opened as new quarries.
- North quarry, site 1, has sufficient reserves, and reopening it would have a lesser environmental impact than opening a new quarry. The slate on the lower benches is a more durable rock than the schistose volcanic rock on the upper benches; however, some deterioration of the rock is likely after the fill has been placed.
- 4. Reopening the North Quarry is recommended.

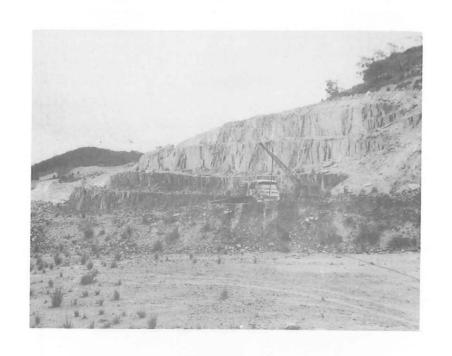


FIGURE 5

NORTH QUARRY SHOWING VERTICAL BEDDING

PLANES

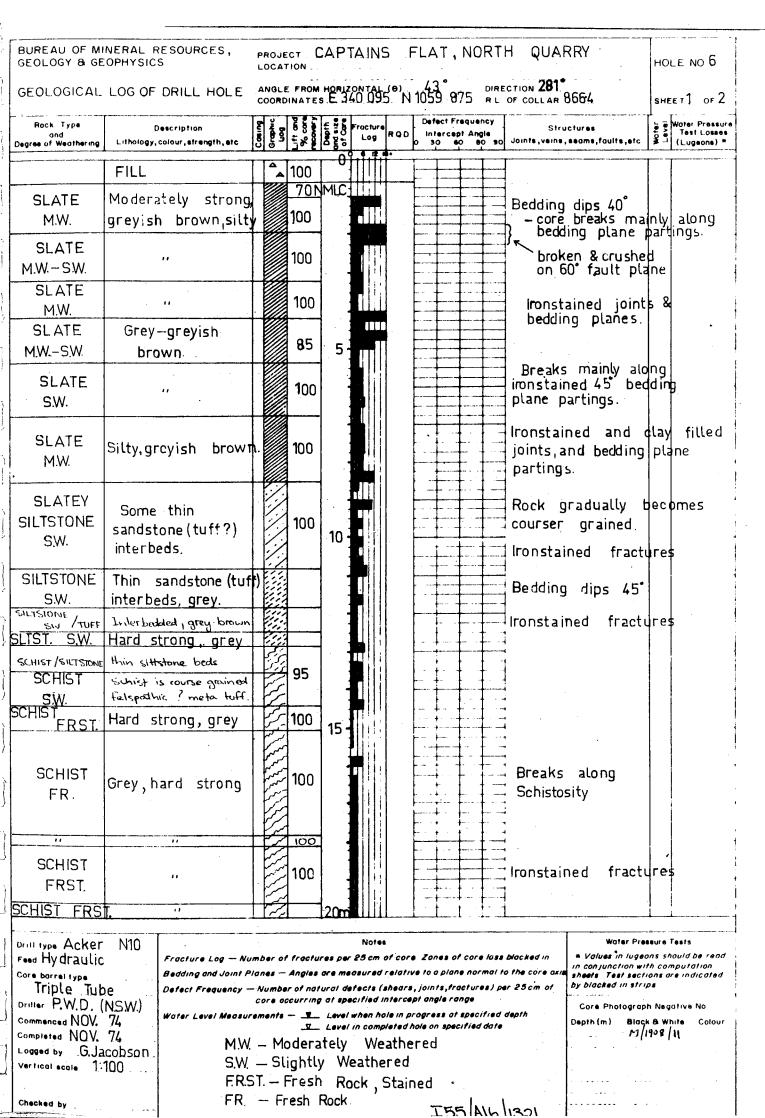
FIGURE 6
SLATE IN TRIAL EMBANKMENT

REFERENCES

- CHESNUT, W., 1974 Rehabilitation of Captains Flat mines dumps: preliminary geological appraisal of sources of extractive construction materials. Geol. Surv. NSW Rep. GS 1974/051 (unpubl.).
- JOINT GOVERNMENT TECHNICAL COMMITTEE OF MINE WASTE POLLUTION OF THE MOLONGLO RIVER, 1974 Mine waste pollution of the Molonglo River. Final report on remedial measures. June 1974. Canberra. AGPS.
- OLDERSHAW, W., 1965 Geological and geochemical survey of the Captains Flat area, New South Wales. <u>Bur. Miner. Resour. Aust. Rep.</u> 101.

APPENDIX

LOGS OF DIAMOND_DRILL HOLES


GEOLOGY & GE	NERAL RESOURCES, OPHYSICS	LOCAT	ION I	owe.	r B	enc	h	., 1		IH QU	ARRY	но	LE NO 1
GEOLOGICAL	LOG OF DRILL HOLE	ANGLE	FROM	E3Z	8" J65	(N)	45° 1059 93	۵	DIRE	OF COLLAR	.859:2	. SHE	ET 1 OF
Rock Type and Degree of Weathering	Description Lithology, colour, strength, etc	Coning Organic Log	% cord	Depth of Core	Log	ROD	Defect F interce 0 30	pt An	gle		uctures , seams,faults ,etc	1000 L	Water Press Test Loss (Lugeons)
A .	,	a								8			
			N	MLC :				=	<u> </u>	8			
		A								* *			
(a)	FILL ayey gravel)	Δ .		1									
(00	ayey gravery	۵	50	-]					
		۵						-		en •			
		Δ	1										•
	e e	۵		5									
		2	100	1]		 				Cleavag	e dips 45°	to I	nole
SLATE	Light grey-light brown		100			ĺ		†		oriental	tion.Main f	ract	ures
M.W.	DIOWII.		100							on 45°	cleavage p	lan	е.
SLATE - M.W.	Buff, broken crushe	β. <u> </u>	100					1		T.	T.		
ruff -E.W.	Tuff soft. State is highly weathered	//	90] {			ļ	-					
HW-EW	Slate and fuff interbed		100					<u> </u>	1				
LATE HW-EW	Buff-light grey, wea	k //	100										
NO	CORE			10			+						
SLATE	Grey slate with interbetted bulk tuff, Tuff layer 10-52 - 10-97m.		100	1 1						_	parallel to		
M.W.	10.52 - 10-97m.		,	1						cleavag	<u>e</u>		
SLATE	Grey slate, buff tuf	f	96										
H.WM.W. Tuff	Tuff more weathered		100	1	84		1						
HW-MW	. 8						-	ļ					
Quartz clay			75		,					Foult Zo	ne		
Lott Hn-Wn Plate Hn-Wn	Grey slate, buff mid brown tuff.		74.	15				- :-		Kink ba	inding		
If HW : EW.	Tuff weathered to		96				-			-			
	soft sandy material		96					Ė					X
late MW, tuff MU	Tiff weathered to sandy me Light brown tiff grey state NO CORE		100										
01.475	late head and to 66 0		100] .]				-		5. 151	dipping joi	1 4	
SLATE HW-MW	Interbedded tuff & slate, 75% tuff.		100					-		oblique	to cleavag	₽.	
Tuff	6-20cm interbeds		100							5cm sh	ear at 191m	. '	
H.WMW.			100	1		e ·		-					
	END OF HOLE 19	·60m				·							
raii type Mindrill	F25				Notes						Water Pres	sure T	
Hydraulic	Fracture Log - Nu				25 cm	of cor					■ Values in luged	ns 5h	ould be read
Triple tube	Bedding and Joint Pi Defect Frequency —										sheets Test secti by blacked in strip	ons or	
oriller P.W.D (N	IS.W.)	core oc	curring	at spe	cified i	nterce	pt angle ra	nge			Core Photograpi	Ne go	itive No
commenced NOV.	1001		₽	Level	in comp	leted	hole on spec			, 49 117	Depth (m) Black	8 Wh	
Logged by G. Bri	scoe HW _H		•		191	e 0							42
Pertical scale 1:10	E.W. — E.					ed							
											1616 - FE FEE S - FEE		

BUREAU OF MI GEOLOGY & GE	NERAL RESOURCES, OPHYSICS	PROJECT CAPTAINS FLAT, NORTH QUARRY	HOLE NO .2						
GEOLOGICAL	LOG OF DRILL HOLE	COORDINATES E 340.125 N.1059.970 BL OF COLLAR	51°sHEE T1 OF 1						
Rock Type and Degree of Weathering	Description Lithology, colour, strength, etc	Defect Frequency Structure Log RQD Intercept Angle SO S	tures Water Pressure Test Losses (Lugeone) a						
FILL	Clayey gravel, slate fragments.	A NMLC							
SLATE MW-SW.	Light grey slate w tuff interbeds .5-20 Tuff-buff coloured. Light grey slate a luff.	n bedding	parallels (45° to drill hole ion)Oblique joints.						
SLATE, TUFF		Joints in clay fills							
			1-10cm wide 695-93m.						
	Light brown gree	100 10 10							
SLATE MW	slate with mid brow more weathered to bands	97 Minor q							
TUFFACEOUS SANDSTONE!	More weathered(S	bedding Minor jo normal	inting & faulting to cleavage.						
slate & tuff FRST.—S.W.	at 14·12—15·93 m. Tuff bands more weathered.	15.	tz vein – 2cm, nt						
SLATE & TUFF FR-FRST	Light-medium gre strong.	100							
	END OF	HOLE 19 10m.							
Drill type ACKE Feed Hydraulic Core barrel type Triple Tub	Fracture Log — No Bedding and Joint F Defect Frequency	- Number of natural defects (shears, joints,fractures) per 25cm of	Water Pressure Tests National Values in lugeons should be read in conjunction with computation sheets. Test sections are indicated by blacked in strips.						
Core occurring at specified intercept angle range Commenced Nov 1974 Commenced Nov 1974 Completed Nov 1974 Level in completed hole on specified date M.W.—Moderately Weathered S.W.—Süghtly Weathered FRST.—Fresh Rock—Stained FR.—Fresh Rock									

,											
	BUREAU OF MI GEOLOGY & GE	NERAL RÉSOURCES, COPHYSICS	PROJECT LOCATION	CAPT	A INS	nch.	LAT, NORTH	QUARR	Y	но	LE NO 3
	GEOLOGICAL	LOG OF DRILL HOLE	ANGLE FE	TES E. 3	014	(e) N.	45° 1059.865	OF COLLARS	362:3	SHE	ET1. OF1
	Rock Type and Degree of Weathering	Description Lithology, colour, strength, etc	Graphic Log	Depth of Cons	Froctur	ROD	Defect Frequency Intercept Angle 0 30 60 80 9		ctures , seams,faulte,etc	Mater	Water Pressure Test Losses (Lugeons) *
	SLATE MW. Tuff MWHW. NO	Brown grey state & interbedded pink-yell tuff.Slate predominat CORE		NMLC							
	TUFFACEOUS SANDSTONE intcrbedded slate tuff bands HW-MW	Brown-grey, fine grained slate & yello pink tuff. Core piece from 2-20cm small pieces also, broken along joint planes as well as cleavage Tuff interbeds generally more weathers Tuffaceous sandstormost abundant Slat bands to 10cm. Core 4-12cm.	er	5				paralle	kinking Cleav l to beddin jointing.	-	•
1	TUFF, SLATE HW-MW	Core fragments of average size 4cm		10				Foliate	d		
	TUFFACEOUS SANDSTONE tuff bands MW-SW	Brown tuff band to 5cm Pale grey white tuffaceous sandstone.Medium dark grey slate. Corc sizes 1-10cm.		15-				7	d Cleavage ding Obliqu		
	As above FR.S.T.	Pale grey tuffaceou sandstone-finc gra ed fine state beds	in in					HW MW	tuff at 190	m.	
	MW-SW				Ші	Ц_		-tuff; subj	associated parallel to	bec	ding.
		END OF HOLE	19·58m	<i>;</i>						-	
	prilitype ACKE reed Hydraulio Cere borreltype Triple Tube priller P.W.D.(Fracture Log — No Bedding and Joint F Detect Frequency -	lanes — Ang - Number of	gles are me ' natural· de	osurec fecte	of cor relati	e Zones of core los ve to a plane normal s, joints,fractures) pt angle range	to the core axe	Water Pres * Values in lugged in conjunction will sheets. Test section by blacked in strip Core Photograpi	ns sh consons ons on	ould be read apputation reindicated
	Commenced NOV	1974					rogress at specified had note on specified dat			a w	
	Completed Nox 19	Core					s, and repla		NOT PHOT	0 G R	APHED.
	Logged by G.B. Vertical scale 1:10	in box					ervisor as			· · · · · · · · · · · · · · · · · · ·	
	Checked by			:			155 A16 131	8		••••	••••

BUREAU OF MINERAL RESOURCES, PROJECT CAPTAINS FLAT, NORTH LOCATION LOWER Bench QUARRY GEOLOGY & GEOPHYSICS HOLE NO 4 ANGLE FROM HORIZONTAL (6) 45° COORDINATESE 340 925 N 1059 125 GEOLOGICAL LOG OF DRILL HOLE RL OF COLLAR 858-7 SHEET OF 1 Rock Type Post Procure Post Post Post Procure Post Procure Post Procure Post Procure Post Procure Post Procure Post Pro Water Pressure Test Losses (Lugeons) # Description intercept Angle ROD and Degree of Weathering Lithology, colour, strength, atc Joints veins seams foults atc UFFAC. SST Breaks along bedding 100 NMLC Hard, strong, buff plane 45 partings. TUFFAC. SST Ironstained joints, some Grey - buff. & SLATE 100 calcite veins. S.W. 1-8cm interbeds TUFFAC. SST Bedding dips 50°, breaks Grey buff. mainly along bedding plane partings Limonite & chlorite coated fractures. & SLATE 100 hard, strong. S.W. Thin sandstone SLATE 100 interbeds, grey - buff S.W. 5 Ironstained bedding plane SLATE Silty, thin 100 partings. Bedding dips 45° S.W. sandstone interbeds 2 thin calcite veins SLATE 100 weathered out at 6.95 S.W. & 7.12 m breaks mainly along booking plane partings, which are ironstained. Silty, thin SLATE 90 tuff interbeds S.W. eroun silt at 9.05 (? gavity suling) core broken on 60° joints, at SLATE 100 Silty 905 and 1040 m. S.W. Oum mileing core , 3cm gle Fault zone SILTSTONE 90 Buff S.W. WOAKTZ .. WADKEN 20 cm quartz, 23cm ryissing inco 40 KROKON NO 126-130 broken core willy straig SILTSTONE 85 and limonite. Grey-buff S.W. Bedding dips 460 Breaks mainly on bedding plane partings which are 4501 iron-stained. SILTSTONE Grey, thin tuff 100 15 S.W. interbeds. 10 cm missing core at 16.58m. breaks mailthy on bedding plane partings. SILTSTONE/TUFF Interpedded tuff 85 S.W. - M.W. is more weathered partings. broken core. Grey 100 SILTSTONE Tuff interbeds, 85 grey F.R.ST. Thin tuff interbeds SILTSTONE 95 Breaks on 40 bedding planes. grey, hard, strong F.R.ST. OF HOLE 1981m Drill type Acker N10 Woter Pressure Tests Fracture Log — Number of fractures per 25 cm of core. Zones of core loss blacks . Volues in lugeons should be read Food Hydraulic in conjunction with computation Bedding and Joint Planes — Angles are measured relative to a plane normal to the cor sheets Test sections are indicated by blocked in strips Number of natural defects (shears, joints, fractures) per 25cm of Triple Tube core occurring at specified intercept angle range Driller P.W.D. (NSW.) Care Photograph Negative No Water Level Measurements - Level when hole in progress at specified depth Commenced NOV. 74 Depth (m) Black & White Level in completed hole on specified date M/1105 /10 A Completed NOV. 74 Logged by G. Jacobson S.W. - Slightly Weathered Vertical ecole 1: 100. M.W. - Moderately Weathered FRST. Fresh Rock, Stained Checked by I55 A16 1319

BUREAU OF MI GEOLOGY & GE			PROJE	CT C	AP owe	TAINS r Be	FL.	AT,N	ORTH	l QUAF	RRY	но	LE NO 5
GEOLOGICAL	LOG OF	DRILL HOLE	ANGLE	E FROM	нові s E.3	zontal (40 140	•) 3! 	9 * 59.830	DIRE	OF COLLAR	50° 3660	SHE	тет1 ог 1
Rock Type and Degree of Weathering		Description , colour, strength, etc	Graphic Log	Lift and % core	Depth and size	Fracture Log	· •	Defect Fre Intercept 30 60	Angle	1	ictures , seams,faults,etc	Water	Water Pressure Test Losses (Lugeons) *
SILTY SLATE		har sports the history		100 100	MLC					1cm qtz 0.8 m., pa	z-clay vein	at edd	ling
LP. A.A.* 1.41.79.4	general weathe	v-grey slate, lly highly red Clay hand 36,10cm @ 316n		80 92									-
Silty slate MW		mtine graine		98	5					4	ge paralle 1,45° to cor		ю .
1bb	sandsto grey s (<1cm).! friable	one,pale_med late interbeds Brown-yellow tuff bands & < 4cm	.	100						and in patches	stained on discontinuoi 376-45m, & fractures	us bed	
H.W. – M.W.				100 100	10	51 51 112							
& silty state. MW-SW	grey s med —f fine silt beds.Bi & lense	e to medium sandstone, ine grained sy slate inter- rown tuff ban syfine grained weathered	ds	100 100 100 100 100	15					45° to c and dis Variable Core g	vage & bedo ore Oblique continuous weatherin enerally m where tuf	jo fr: g in	ints actures. n core
TUFFACEOUS SANDSTONESilty slate, tuff	Grey silty s tuff ba	sandstone & late with browands.		100 100 100						weather Iron sta	more broke red than a ained fract f bands et	bov ure	e, 5,
<u>El</u>		HOLE 19.68d	<u> </u>		L	1111111 						i	
Drill type Mindrit Feed Hydrautic Core borrel type Triple Tube Driller PWD(N Commenced Nov 19 Completed Nov 19 Logged by G. Brist Vertical scale 1:10	NSW) 374 74 cae	Water Level Measure	ones - Numbe core oc ements High	Angles r of nat courring	urai di ai ep Level Level	easured re lefects (sh ecified int I when hole I in comple hered	elative t ears, jo ercept o in prog sted hole	to a plane pints,frac angle ran press at s	normal t tures) pe ge pecified	o the core axe er 25cm of	Care Photograph Depth (m) Black	ns sh consor os. h Nege	ould be read aputation re indicated
Checked by		M.W. — S.W. —			•		EIEU	TEE	land	1820			

GEOLOGY & GEOR	PHYSICS	PROJECT CAPIAINS FLAI, NURTH QUARRY	HOLE NO 6
GEOLOGICAL'L	OG OF DRILL HOLE	ANGLE FROM MORIZONTAL (8) 43° DIRECTION 281° RL OF COLLAR	SHEE 1 2 OF 2
Rock Type and Degree of Weathering	Description Lithology, colour, strength, stc	Defect Frequency Structures Defect Frequency Structures O D D D D D D D D D D D D D D D D D D	Water Pressure Test Losses (Lugeons)
SCHIST S.7.		90 20·46 - 20·60 broken	& crushed.
NO CORE	OF HOLE 20-73m.	at end of hole	
Drill type Feed Core barrel type Driller Commenced	Bedding and Joint P Defect Frequency -		ns should be read in computation ons are indicated
Completed Logged by Vertical scale Checked by	S.W. —	Slightly Weathered	

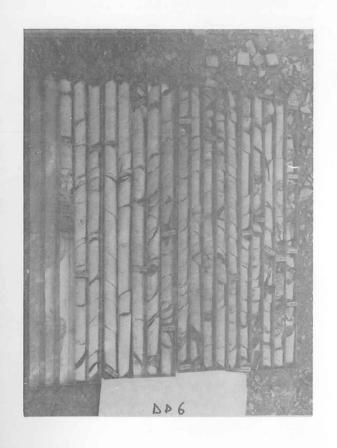
BUREAU OF MI GEOLOGY & GE		RESOURCES, S	PROJI LOCA	ECT C	AP [AINS F. Ber	FL	AT ,NOF	RTH. Q	UARRY		нон	LE NO. 7
GEOLOGICAL	LOG OF	DRILL HOLE	ANGL COORI	E FROM	нові sE.3	200 JAL	(e) N	42 ° 1059 830	DIRE L R.L	OF COLLAR	8650	SHE	ет1 of1
Rock Type and Degree of Weathering		Description colour, strength, etc	Graphic	Lift and % core	Ond size	Fracture Log	ROD	Defect From Intercept 0 30 60	t Angle	l '	ictures , seams,faults,etc	Water Leve!	Water Pressure Test Losses (Lugeons) #
SLATE M.W.	Slate (tufface	with 30% tuff & eous) sands con beds	2	65 100 100 100 100							•		
SLATE S.W.	thin(tu sandsto	with 20% ffaceous) ne beds tely hard & grey		100 100 100 100	5					bedding A few joints no	mainly alo plane part steeply dippormal to be es generally	ing ing ddii	s ng
NO	CORE								-				
SLATE M.W.		brown,with ndstone beds		65									
SLATE SW. -FRST	_	slate with in sandstone		100	10					1	mainly on plane par	1 1	. 1
Quotz vein	eathered.	beniotanai	12.	100						1			
QUARTZITE FRST.	Hard,st	rong,grey-blu	e	100									-
END	OF H	OLE 1403m			15m						•		
ACKE	D 110 1					Note					Water Pres	Aura 1	Tests
Drill type ACKE Feed Hydraulic Core borrelltype Triple Tube		Fracture Log — Nui Bedding and Joint Pl Defect Fr e quency —	ones -	Angles	are m	r 25 cm easured	of coi	ve to a plan	e normal f	o the core axis	* Values in luged	ns sh h con ons a	ould be read aputation
Driller P.W.D. Commenced Nov 1: Completed Nov 1 Logged by G.Jac Vertical scale 1:10	(NSW.) 974 974 obson		core o ments light oder	ecurring - ▼ N ly W ately	eath	ecified in I when he I in comp ered eathe	red	ept angle rai	nge specified		Core Photograp Depth(m) Blac	h Neg k & Wi	ative No
Checked by							I55	AIGH	355	<u> </u>		· · ·	

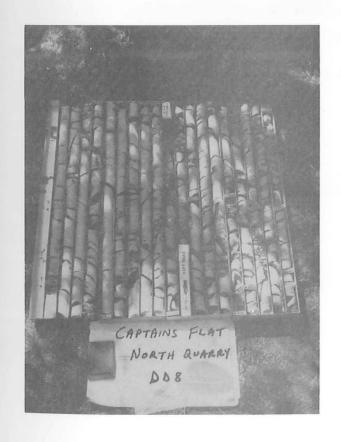
BUREAU OF MI GEOLOGY & GE			PROJE		APTA Lo	AINS.	FL/	AT . N	IORTH	QUARRY		но	LE NO 8
GEOLOGICAL	LOG OF	DRILL HOLE	OOORD	FROM	E34	3766	N 105	40° 19.780	DIF	ECTION	257° 370 2	SHE	ET1 OF2
Rock Type and Degree of Weathering		escription colour, strength, etc	Graphic Log	Lift and % core	Of Core	Fracture Log	ROD	interce	requency of Angle so so s		actures , seams,faults,etc	Water	Water Pressure Test Losses (Lugeone) ^R
	FILL		۵۵			T	•						
SANDSTONE M.W. SILTY SLATE M.W.	grained s tuffaceon brown s	nid grey fine sandstone (possibly us), grey - grey lity state.	1.7	98 98 58						joints, chi to beddi at 45°	tined oblique eauage parallel ng - which is to core.		
	finely in <3 cm. colour c with gree white sa	nterbedded 23-31 m ontrast greater n grow slate and ndstone		97 87							ctured with 2ci	٤	
SANDSTONE M.W. SILTY SLATE M.W.	grained	RE ey brown slate le grey fine sandstone ne more abundan	/////	100 100 98	5	1000	Ī			more were to fault	planes paral	e1	
	٠			98						fractures	ng joints, cleans ironstained.	J.	
9	e P			100 100	10						•		a.
	NO CO	4		46									
SLATE S.W.		silty slate.	77							minor dis	contains quarz	veing	
SANDSTONE and silty slake FR-FRST. tuff-H.W.	Mid are	y, fin: sandstone slide. Minor which have ses. Slate more t, especially at to		99		A B				core bree associated bands of to Zem w fault at Oblique	alts often d with tuth. Quartz viens lath, Otz filled 1600 - 1624m. Iron stained Minor crushed		
				100	15						-15cm wide care is >12cm		
ScHIST-FRST. - schistose quartzite	grained quartz so gray, with 200m (1	nedium-coarse mica-chlorite chist Clau Land fractured schist Ocm wide) hlorite veins at		100							onstaining on and fractures.	,	
	8.94 -19.	56 m.	1	100	20								
									······································				
Drill type ACKER. Feed Hydraulic Core borrel type Triple Tube		Fracture Log — Nu Bedding and Joint Pl Defect Frequency —	lanes - Numbe	Angles r of nat	are me urai de	osured . fects (s	of core relative	e to a pla	ne normal actures)	to the core axis	by blocked in strip	ns sh con one a	ould be read inputation re indicated
Logged by G. B	1974 1974			— <u>*</u>	Level I	uhan ho in comp UEATHI	ele in proveded he	ogress a ole on spe			Core Photograpi Depth (m) Block	8 W	nite Colour
Checked by		. н. Р	ω 1 ξ 1 ≈π	h IGH LY P RESH	POC	EATHE	RED		55 A11	1323			

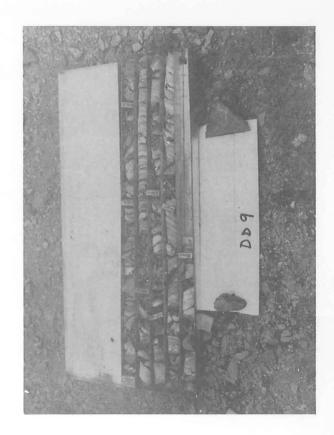
BUREAU OF MINERAL I GEOLOGY & GEOPHYSIC		** ***		* 11	QUARRY	HOLE NO 8
GEOLOGICAL LOG OF	DIVILL HOLL	ANGLE FROM HOR		., RL	OF COLLAR	SHEET 2 OF 2
and	Description , colour, strength, etc.	Graphic Lift and % correction Depth	Frocture Log RQD	Intercept Angle 0 30 60 80 90	Structures Joints, veins, seams, fault	te,etc S Woter Pressure Test Losses (Lugeons) **
SCHIST FRST. As (schistose quartzite)	on Sheet 1.	100				
SCHIST FR Green Schistose course quartzite chlorito	, medium to grained mica - qtz schist					
	HOLE 23.20m	The second secon			1	
Drill type Acker N10 Feed Hydraulic Core borrel type Triple Tube Driller P.W.D. (NS.W.)	Fracture Log — Num Bedding and Joint Pla Defect Frequency — I C Water Level Measurei	nes - Angles are m Number of natural (core occurring at sp	neasured relativ defects (shears, pecified intercep	e to a plane normal to joints,fractures) pe of angle range	blacked in w Values in conjunction the core axis sheets. Te by blacked Core Photographic Core Photogra	otograph Negotive No
commenced NOV 74 Completed NOV 74 Logged by G. Briscoe Vertical scale 1:100	: .	T Love		ole on specified date	Depth (m)	Black & White Colour
Checked by	# - E	· c		I55 A16 13	25	· ·

GEOLOGY BIGE GEOLOGICAL	OPHYSIC							1, NORTH	DIRE		0°mag 8660 .	HOLE NO 9
Rock Type and legres of Weathering		Description colour, strength, etc	Graphic Log	Po cor	O o o o o		RQD	Defect Freque Intercept An 0 30 60 8	ole		ctures seams,faults,etc	Water Pressur Test Losse (Lugeons)
SLATE HW-MW	FILL			100 100 100 100	0					Breaks	mainly o	n 40°
SLATE M.W.		, fractured, brown.		100 100 100			5.				plane pa	
				100	_							
	END	OF HOLE	50 m.	*.	3							
•												
*.												•
		*										
	1								-			
Orill type ACKER Feed Hydraulic Core borrel type Triple Tub Driller P.W.D (Commenced 4-12-7	e N.S.W.)	Fracture Log — N Bedding and Joint I Defect Frequency Water Level Measu	Planes — — Numbe care a	Angles or of nai curring	ore me turol de g el ape . Level	deured feats (i acified ii when ha	of cor relati nheari nterci	ve to a plane not e, joints,fractur ept angle range	mal fo ee) pe ified (the core axes	w Values in luge in conjunction w sheets Test sect by blacked in str Core Photograp	tions are indicated ips
completed 4-12-74 cogged by GJacob vertical scale 1:10	son	M! HV	W. — N V. — H	1od er Iighly	ately We	, W eathe	eatl red			Lan		1108/23

APPENDIX 2


PHOTOGRAPHS OF DIAMOND_DRILL CORE





APPENDIX 3

PRTROGRAPHY

by

J.P. Ceplecha

APPENDIX 3.

PETROGRAPHY

pa

J.P. Ceplecha

The rocks reveal an easterly gradation from porphyroblastic schists through slates to shales. Tuffaceous shales occur within this sequence. The mineral assemblages indicate a low-grade regional metamorphism within the lower greenschist facies.

Sample 74360056 Schist, railway-cutting 1 km north of Captains Flat

The cryptocrystalline groundmass consists of white mica (60%), quartz, and phenocrysts of alkali feldspar (albite) (5-8%) which are part or completely altered to clays. Quartz phenocrysts and aggregates of platy mica are associated with 10-15 percent silicate minerals (e.g. epidote). Clustered fibrous minerals, possibly prehnite (or a zeolite), are found within silicate aggregates and often pseudomorph other minerals.

A solution front throughout the section is marked by the concentration of silicates, secondary mica (clays), and cryptocrystalline quartz. The quartz-albite-epidote-muscovite (± prehnite or zeolite) mineral assemblage represents a basic volcanic rock within the green-schist facies.

Sample 74360057 Schist, North Quarry

The fine-grained groundmass consists of fine-grained white mica (15%) and quarts (50%) aligned parallel to the schistosity. Some of quartz porphyroblasts (20%) and altered feldspar (albite) phenocrysts (5-10%) are fractured. Fine-grained quartz domains occur around the rotated feldspar porphyroblasts. Epidote is an accessory mineral. The rock is a coarse-grained basic volcanic tuff which has undergone metamorphism to the lower greenschist facies.

Sample 74360058 Slate, North Quarry

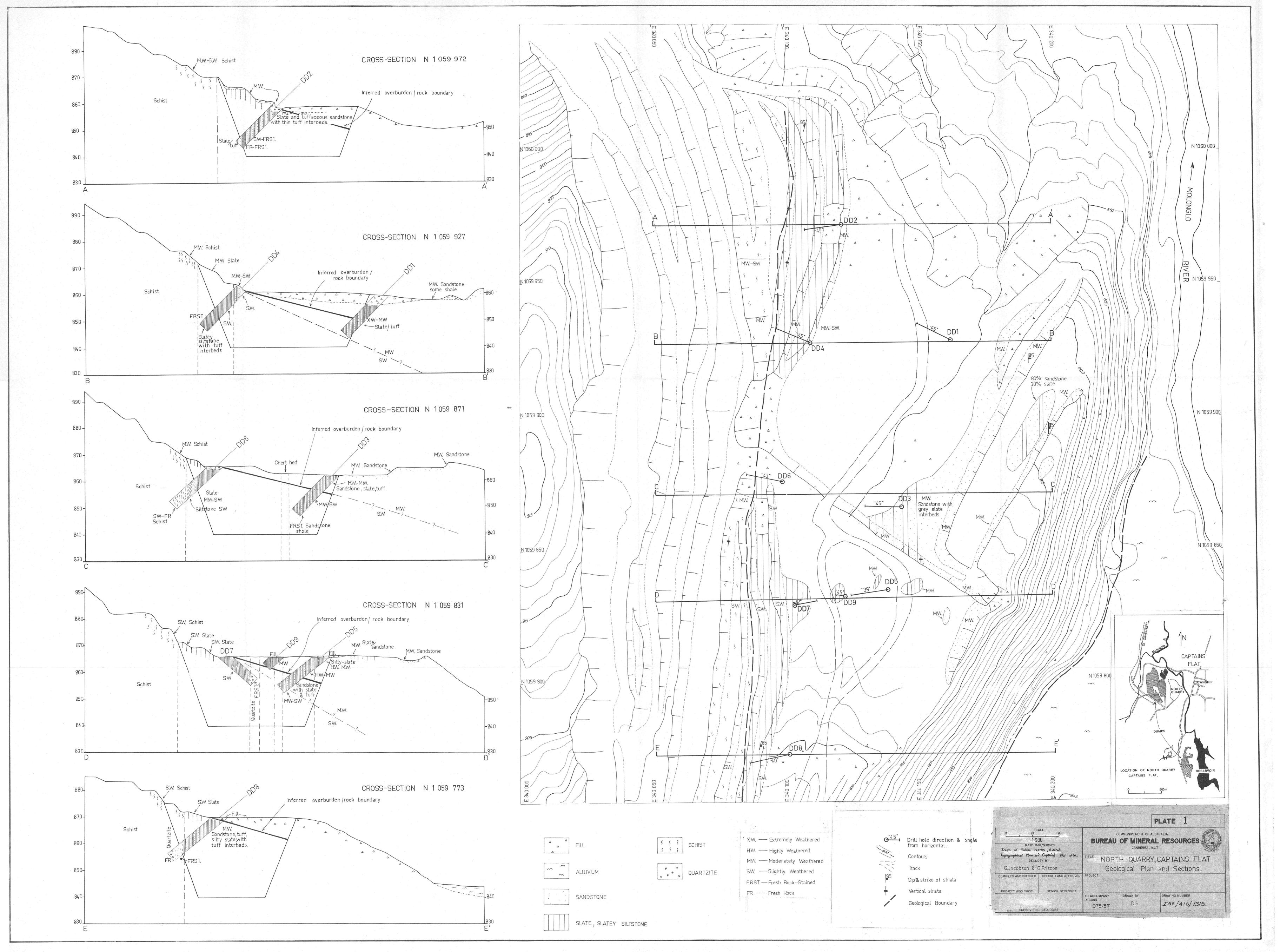
The cryptocrystalline groundmass consists of white mica (70-75%) parallel to foliation. Small quartz phenocrysts (15-20%) lie parallel to foliation. Minor minerals are albite, clays and chlorite (5%).

Sample 74360130 Shale, North Quarry drill hole 2, depth 17.60 m

The cryptocrystalline groundmass consists of white mica and quartz. Epidote and chlorite are accessory minerals. Clay minerals are abundant within the groundmass.

Sample 74360131 Tuffaceous shale, North Quarry drill hole 4, depth 19.30 m

The layered sequence consists of mica-rich and quartz feldsparrich layers. The fine-grained white mica domain also contains quartz, chlorite, and clays.


The medium-grained quartz feldspar layers also contain chlorite, and mica with inter-stratified chlorite, platy white mica, and clays.

The abundant alkali feldspar and chlorite represent altered tuffaceous material.

Sample 74360132 Schist, North Quarry drill hole 6, depth 18.10 m

The fine-grained groundmass of quartz (60-65%) and white mica (30%) contains clay minerals and part altered alkali feldspars. Quartz phenocrysts have embayments with partial recrystallization to secondary quartz.

Silicates, mainly epidote (5-10%) occur as small phenocrysts or aggregates of crystals adjacent to altered alkali feldspars.

