1975/96


DEPARTMENT OF MINERALS AND ENERGY

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

Record 1975/96

 056468^{+}

MISCELLANEOUS CHEMICAL, PETROGRAPHIC AND MINERAGRAPHIC INVESTIGATIONS CARRIED OUT IN THE GEOLOGICAL LABORATORY

JANUARY-DECEMBER 1974

Compiled

by

J.C.W. WEEKES

The information contained in this report has been obtained by the Department of Minerals and Energy as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

BMR Record 1975/96 c.4 Record 1975/96

MISCELLANEOUS CHEMICAL, PETROGRAPHIC AND MINERAGRAPHIC INVESTIGATIONS CARRIED OUT IN THE GEOLOGICAL LABORATORY

JANUARY-DECEMBER 1974

Compiled

by

J.C.W. WEEKES

MISCELLANEOUS CHEMICAL, PETROGRAPHIC AND MINERAGRAPHIC INVESTIGATIONS CARRIED OUT IN THE GEOLOGICAL LABORATORY.

Compiled by J. Weekes

Record

January - December 1974

The miscellaneous chemical, petrographic and mineragraphic investigations carried out in the Geological Laboratory, Bureau of Mineral Resources during 1974 are compiled in this Record. The results of these investigations are presented in a series of Laboratory Reports which are arranged in numerical order in the Record.

The information contained in this Record has been obtained by the Department of Minerals and Energy as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

Laboratory Reports January - December 1974

Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water & G.K. Willcocks Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water & G.K. Willcocks Zinc Content of Molonglo River Water & G.K. Willcocks Zinc Content of Molonglo River Water & G.K. Willcocks Zinc Content of Molonglo River Water & G.K. Willcocks Zinc Content of Molonglo River Water 3.I. Cruikshank Zinc Content of Molonglo River Water & G.K. Willcocks Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water Analysis of Laterite Samples from the Lount Theo Area Zinc Content of Lolonglo River Water R. Denardi, G.F. Sparksman & II. Hughes Zinc Content of Molonglo River Water H. Hughes Zinc Content of Molonglo River Water H. Hughes Zinc Content of Kolonglo River Water H. Hughes & R. Denardi Zinc Content of Molonglo River Water R. Denardi Zinc Content of Molonglo River Water R. Denardi Zinc Content of Kolonglo River Water Zinc Content of Holonglo River Water 23

Analysis of Silicates from Westmoreland Area,

Zinc Content of Molonglo River Water

North Queensland

- B.I. Cruikshank & G.F. Sparksman
- J.I. Cruikshank & G.F. Sparksman
- B.I. Cruikshank, G.F. Sparksman
- 3.I. Cruikshank, J.P. Sparksman
- B.I. Cruikshank, G.F. Sparksman
- B.I. Cruikshank, G.F. Sparksman
- B.I. Cruikshank, G.F. Sparksman
- 3.I. Cruikshank, G.K. Willcocks, R. Denardi, "L. Hughes
- B.I. Cruikshank, G.K. Willcocks, R. Denardi, H. Huches
- B.I. Cruikshank & G.F. Sparksman
- 3.I. Cruikshank, J.K. Willcocks,
- B.I. Cruikshank, G.K. willcocks,
 - R. Denardi, G.F. Sparksman &
- B.I. Cruikshank, G.K. Willcosks,
 - R. Denardi, G.F. Sparksman &
- B.I. Cruikshank, J.k. Willcocks,
- D.I. Cruikshank, U.K. Willcocks &
- B.I. Cruikshank, T.K. Jillcocks &
- B.I. Cruikshank & G.K. Willcocks
- B.I. Cruikshank & G.K. Willcocks
- B.I. Cruikshank, G.K. Jillcocks, R. Denardi & H. Hughes
- B.I. Cruikshank, G.K. Willcocks, & R.Denardi

2 5	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & R. Denardi
26	Zinc Content of Molonglo River Water	3.I. Gruikshank, G.K. Willcocks & R. Denardi
27	Zinc Content of Nolonglo River Water	B.I. Cruikshank, G.K. Jilloocks & R. Denardi
28	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & H. Denardi
29	Zinc Content of Molonglo River Water	3.1. Cruikshank, G.K. Willcocks & R. Denardi
30	Zinc Content of Molonglo Raver Water	B.I. Cruikshank, G.K. Willcocks & R. Denardi
31	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & R. Denardi
32	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & R. Denardi
33	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & R. Denardi
34	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & R. Denardi
35	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & R. Denardi
36	Zinc Content of Molonglo River Water	G.I. Cruikshank, G.K. Willcocks t J. Irice
37	Zinc Content of Molonglo River Water	B.I. Gruikshank, G.K. Willcocks & J. Price
38	Microprobe Determination of Feldspars & Feldspathoid in Volcanic Rocks from the New Ireland Region	s R.N. Ungland
39	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & J. Price
40	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & J. Price
41	Zinc Content of Lolonglo River Water	B.I. Cruikshank, G.K. Willcocks & J. Frice
42	Zinc Content of Molonglo River Mater	B.I. Cruikshank, G.K. Willocoks & J. Frice
43	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Willcocks & J. Frice
44	Winc Content of Molonglo River Water	B.I. Cruikshank, G.K. Millcocks & J. Frice
45	Zinc Content of Molonglo River Water	B.I. Cruikshank, G.K. Hillcocks & J. Frice
46	Zinc Content of Lolonglo River Water	B.I. Cruikshank, J.C. Weekes, &
47	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, & F.J. Swan
48	Zinc Content of Molonglo -iver Water	B.I. Cruikshank, J.C. Weekes, & P.J. Swan

B.I. Cruikshank, J.C. Weekes, &

B.I. Cruikshank, J.C. Heekes, P.J.

Swan

Zinc Content of Molonglo River Water

49

72

Zinc Content of Molonglo River Water

P.J. Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Jeekes, & P.J. Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, & P.J. Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, & P.J. Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, & P.J. Swan Chemical Analysis of Rock Samples from Alligator J.G. Pyke River, Coburg Feninsular & Cloncurry Zinc Content of Molonglo River Water B.I. Cruikshank, P.J. Swan, J.C. Weekes Zinc Content of Molonglo River Water B.I. Cruikshank, F.J. Swan, J.C. Weekes 57 Zinc Content of Molonglo River Water B.I. Cruikshank, F.J. Swan, J.C. Weekes Zinc Content of Molonglo River Water B.I. Cruikshank, P.J. Swan, J.C. Weekes Zinc Content of Molonglo River Water B.I. Cruikshank, P.J. Swan, J.C. Weekes 60 Analysis of Basic Igneous Rocks & Lime - Magnesia T.I. Slezak Sediments of North West Queensland Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, P.J. Swan B.I. Cruikshank, J.C. Weekes, P.J. Zinc Content of Molonglo River Water Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, F.J. Swan 64 Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, F.J. Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Neekes, P.J. Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, P.J. Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, P.J. Swan 68 Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, P.J. Swan B.I. Cruikshank, J.C. Weekes, P.J. Zinc Content of Molonglo River Water Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, P.J. Swan Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, P.J. Swan

		×
73	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J Swan
74	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J Swan
75	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C.Weekes, F.J. Swan
76	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
77	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
7 8	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
79	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
80	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
81	Analysis of Water from Lake George, N.S.W.	B.I. Cruikshank
82	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
83	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
84	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, F.J. Swan
85	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
86	Zinc Content of Molonglo River Water	B.I. Cruikshank & P.J. Swan
87	Zinc Content of Molonglo River Water	B.I. Cruikshank & P.J. Swan
88	Zinc Content of Molonglo River Water	B.I. Cruikshank & P.J. Swan
89	Identification of Refractory Minerals in Kerogen Samples from South Africa	G.W.R. Barnes
90	Identification (including semi-quantitative analysis) of minerals in tuffs, shales & dolerites from Woodlawn, N.S.W.	G.W.R. Barnes
91	Mineralogical analysis of granites from the Barberton Mountain Land, South Africa	G.W.R. Barnes
92	Heavy minerals from stream sediments, Westmoreland & Georgetown, Queensland.	G.N.R. Barnes
93	Xray diffraction identification of minerals from experiments investigating the coprecipitation of metals with carbonate, in saline systems.	G.W.R. Barnes
94	Evaporites from the Ngalia Basin, W.A.	G.W.R. Barnes
95	Mineralogical analysis of sulphide samples used in the isotropic determination of sulphur	G.W.R. Barnes
96	Evaporites from the Lucas and Stansmore Sheet	G.W.R. Barnes

areas, West Australia

	*	
97	Identification of minerals from Antarctica and Africa.	G.W.R. Barnes
98	Heavy minerals from the Georgina Basin, Qld., and Lake Frome, S.A.	G.W.R. Barnes
99	Miscellaneous heavy mineral determinations	G.W.R. Barnes
100	Identification of refractory minerals in kerogens from Black Shales, Woodcutter's Prospect, Rum Jungle, N.T.	G.W.R. Barnes
101	Mineralogical analysis of rocks from Tabar, Tatua & Lihir Islands, P.N.G.	G.W.R. Barnes
1 02	Minerals from near Broken Hill, N.S.W.	G.W.R. Barnes
103	XRay Diffraction determination of detection limits for aragonite in aragonite/calcite mixtures	G.W.R. Barnes
104	Laterites and calcretes from the Canning Basin, W.A.	G.W.R. Barnes
105	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, F.J. Swan
106	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, P.J. Swan
107	Investigation of museum mineral species	G.W.R. Barnes & D.H. McColl
108	Black Shales from Mt Isa, Queensland	G.W.R. Barnes
_109	Carbonates from Naracoota, S.A.	G.W.R. Barnes

G.W.R. Barnes

Heavy minerals from Connors Range, W of Mackay, Queensland

by

B.I. Cruikshank & G.F. Sparksman

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with 5N Hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Commonwealth Department of Works for the joint N.S.W. Mines Department/Commonwealth investigation of zinc pollution in the Molonglo River.

Date of sampling: 3/1/74

Sampling points	Sp. Cond (umho/cm)	РД	Zn Fe (ppm) (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)	-	-		<u>4</u>
Mine Eastern Spring Northern dump (410767)	3,500	2.3	202 309	0.225 M
Copper Creek (410762)	2,150	6.2	25.8 23.8	1.42
Molonglo River at Copper Ck (410757)	264	4•7	6.60 8.15	0.86
Bungendore Rd (C) (410758) Hoskinstown Rd (D)	329	3•4	8.59 0.48	1.10
(410759)	246	6.9	0.26 0.39	1.13
Burbong Weir (D2) (410705) Honeysuckle Ck (F2)	301 169	7.1 6.8	0.14 0.25 0.04 0.68	0.35
Lake Burley Griffin at	181	7 1	0.06 2.35	v .
Kings Ave (H2) Commonwealth Ave (H3)	178	7.1 7.5	0.06 2.35 0.07 2.55	
Scrivener Dam (H4)	166	7•7	0.09 2.60	
Molonglo River below Scrivener Dam (410718)	225	7.0	0.14 2.85	2.56
	-			

by

B.I. Cruikshank & G.F. Sparksman

The following results were obtained for the determination of specific conductance at 20°C, pH and total/on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Commonwealth Department of Works for the joint N.S.W. Mines Department/Commonwealth investigation of zinc pollution in the Molonglo River.

Samples removed: 4.1.74.

Sampling points	Estimated time of sampling	Sp. Cond (umho/cm)	pН	Zn (ppm)	Gauge height
Captains Flat Mine	1100 on 30.12.73.	7,280	2.4	975	0.294 M
drain southern dump (410766)	1102 on 30.12.73.	12,400	2.3	1500	0.403M
Copper Creek (410762)	1200 on 30.12.73	8,120	2.0	423	1.57
Molonglo River at			(8		
Copper Creek	1425 on 30.12.73	2,940	1.8	132	1.261
(410757)		3			
Molonglo River at				197	
Bungendore Rd. (410758)	1330 on 27.12.73	260	5.6	6.45	1.39

рy

B.I. Cruikshank, G.F. Sparksman & G.K. Willcocks

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin System. All samples were acidified with 5N Hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Commonwealth Department of Works for the joint N.S.W. Mines Department/Commonwealth investigation of zinc pollution in the Molonglo River.

Date of sampling: - 17-1-74

Sampling points	Sp. Cond (umho/cm)	ДД	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)				-	-
Mine Eastern Spring Northern dump (410767)	3,260	2.8	192	266	0.228M
Copper Creek (410762)	1,610	4.2	40.3	19.8	1.37
Molonglo River at Copper Ck (410757)	136	5.8	3.00	4.80	1.32
Bungendore Rd (C)	133	6.2	2.50	2.93	1.45
(410758) Hoskinstown Rd (D) (410759)	186	6.2	1-47	0.27	1.75
Burbong Weir (D2) (410705)	260	6.1	3.20	1.35	0.70
Honeysuckle & (F2)	175	6.3	0.56	1.25	_
Lake Burley Griffin at Kings Ave (H2)	172	6.7	0.18	2.15	-
Commonwealth Ave (H3)	167	7.3	0.09	2.15	-
Scrivener Dam (H4)	167	8.0	0.07	2.40	24.86
Molonglo River below Scrivener Dam (410718)	168	6.6	0.21	2.65	3•55

by

B.I. Cruikshank and G.F. Sparksman

The following results were obtained for the determination of specific conductance at 20°C, pH and total zinc on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Commonwealth Department of Works for the joint N.S.W. Mines Department/Commonwealth investigation of zinc pollution in the Molonglo River.

Samples removed:- 16/1/74

Sampling points	Estimated time of sampling	Sp. Cond. (umho/cm)	pH	Zn (ppm)	Gauge height
, P ,	*				
Captains Flat	1610 on 4/1/74	7,520	2.0	1,120 800	0.294M
Mine drain Southern dump (410766)	1620 on 4/1/74	9,310	2.1	2	0.403M
Copper Creek	1730 on 4/1/74	9,510	2.2	525	1.57
(410762)	1100 on 10/1/74	2,630	1.8	118	1.98'
	1215 on 10/1/74	2,400	1.8	89.0	2•33'
Molonglo River	1040 on 10/1/74	1,,510	2.2	70.0	1.26
at Copper Creek (410757)	1300 on 10/1/74	1,640	2.1	63.0	1.66'
* * *					
Molonglo River at	0300 on 5/1/74	285	5.5	6.80	1.39
Bungendore Road	1700 on 10/1/74	225	5.5	4.90	1.70
(410758)	2200 on 10/1/74	434	3.7	18.8	2.10

by

B.I. Cruikshank and G.F. Sparksman

The following results were obtained for the determination of specific conductance at 20°C and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Commonwealth Department of Works for the joint N.S.W. Mines Department/Commonwealth investigation of zinc pollution in the Molonglo River.

Date of sampling: 10/1/74 to 17/1/74.

Date	Time	Sp. Cond. (umho/cm)	Zn (ppm)	Gauge height
10-1-74	1425 2225	285 280	1.53	0.28 0.34
11–1–74	0625	286	1.45	1.35
	1425	261	1.24	1.53
	2225	221	1.29	1.72
12-1-74	0625	191	1.35	2.00
	1425	225	1.40	1.90
	2225	245	1.35	1.65
13-1-74	0625	272	1.53	1.37
	1425	295	2.10	1.18
	2225	310	2.90	1.12
14–1–74	0625	316	3.55	1.08
	1425	317	3.95	1.02
	2225	309	4.45	0.95
15–1–74	0625	299	4.39	0.90
	1425	294	4.20	0.85
	2225	285	4.20	0.81
16-1-74	0625	277	3.73	0.77
	1425	268	3.55	0.74
	2225	258	3.50	0.71
17-1-74	0625	252	3.31	0.70

bу

B.I. Cruikshank, G.F. Sparksman & G.K. Willcocks

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with 5N Hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Commonwealth Department of Works for the joint N.S.W. Mines Department/Commonwealth investigation of zinc pollution in the Molonglo River.

Date of sampling: 10-1-74.

Sampling points	Sp. Cond (umho/cm)	рН	Zn Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)	3,950	1.8	213 468	0.401M
Mine Eastern Spring Northern dump			4 ,	
(410767)	3,220	2.2	171 230	0.212M
Copper Creek (410762)	2,330	2.0	84.0 338	2.45
Molonglo River at				
Copper Ck (410757)	1,810	2,0	63.3 122	1.20
Bungendore Rd (C) (410758)	252	4.2	5.40 0.80	1.35
Hoskinstown Rd (D) (410759)	258	6.8	0.44 0.60	1.18
Burbong Weir (D2) (410705)	284	7.3	0.08 0.22	0.28
Honeysuckle Ck (F2)	195	6.5	0.04 0.55	
Lake Burley Griffin at Kings Ave (H2)	182	6.6	0.07 2.35	-
Commonwealth Ave (H3)	174	7•3	0.11 2.55	-
Scrivener Dam (H4)	172	7.2	0.06 2.40	24.88
Molonglo River below Scrivener Dam (410718)	156	6.6	0.08 3.10	9.35

Date of sampling 24-1-74

Molonglo River below

Scrivener Dam (410718)

Zinc Content of Molonglo River Water.

by

B.I. Cruikshank, G.K. Willcocks & G.F. Sparksman

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with 5N Hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Commonwealth Department of Works for the joint N.S.W. Mines Department/Commonwealth investigation of zinc pollution in the Molonglo River.

Sampling points	Sp. Cond (umho/cm)	рН	Zn (ppm)	Fe (ppm)	Flow

Captains Flat Mine drain Southern dump (410766)		No sam	ple		
Mine Eastern Spring Northern dump (410767)	3,410	2.3	195	277	0.240 M
Copper Creek (410762)	2,160	2.1	53.3	137	1.10
Molonglo River at Copper Ck (410757)		No sam	ple		
Bungendore Rd (C) (410758)	162	6.0	2.50	3.45	1.48
Hoskinstown Rd (D) (410759)	206	6.3	2.13	0.38	2.32
Burbong Weir (D2) (410705)	227	6.1	1.10	0.34	-
Honeysuckle Ck (F2)	176	6.3	0.32	1.08	-
Lake Burley Griffin at Kings Ave (H2)	169	6.6	0.16	2.20	-
Commonwealth Ave (H3)	174	7.0	0.07	2.20	-
Scrivener Dam (H4)	168	7.2	0.05	2.40	24.86

6.4

0.14

2.95

3.53

177

by

B.I. Cruikshank, G. Willcocks, G.F. Sparksman

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with 5N Hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Commonwealth Department of Works for the joint N.S.W. Mines Department/Commonwealth investigation of zinc pollution in the Molonglo River.

Date of sampling 31.1.74

	Sp. Cond (umho/cm)	pН	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)	No sample				
Mine Eastern Spring Northern dump (410767)	3 , 250	2.4	186	275	0.218
Copper Creek (410762)	1,850	4.2	32.8	27.3	1.36
Molonglo River at Copper Ck (410757)	123	5.8	2.41	3.92	1.36
Bungendore Rd (C) (410758)	124	6.0	1.88	3.03	1.41
Hoskinstown Rd (D) (410759)	187	6.1	1.23	0.21	1.52
Burbong Weir (D2) (410705)	269	6.0	2.66	0.37	0.54
Honeysuckle Ck (F2)	172	6.4	0.19	0.50	_
Lake Burley Griffin at Kings Ave (H2)	181	6.4	0.13	1.67	-
Commonwealth Ave (H3)	194	6.0	0.10	2.00	-
Scrivener Dam (H4)	185	7.5	0.04	2.07	-
Molonglo River below Scrivener Dam (410718)	185	6.4	0.08	2.65	

M

bу

B.I. Cruikshank, G.K. Willcocks & G.F. Sparksman

The following results were obtained for the determination of specific conductance at 20°C, pH and total zinc on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Samples removed - 31/1/74

Sampling Points	Estimated time of sampling	Sp. Cond. (umho/cm)	Яq	Zn (ppm)	Gauge height
Captains Flat Mine drain Southern dump (410766)	1000 on 26/1/74	7,600	2.2	960	0.294M
Copper Creek (410762)	1140 on 26/1/74 1330 on 26/1/74 1330 on 26/1/74	1,400 2,920 3,280	3.4 2.7 1.9	40.0 269 286	1.23' 1.57' 1.98'
Molonglo River at Copper Creek (410757)	· · · ·	562	3.4	25.0	1.66

by B.I. CRUIKSHANK

The following results were obtained for the determination of specific conductance at 20°C and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Dates of sampling: 17/1/74 to 24/1/74.

Date	Time	Sp.Cond. (umho/cm)	Zn (ppm)	Gauge height
17/1	1030 1830	247 244	3.07 3.10	0.70 0.70
18/1	0230 1 030	24 1 242	2.81 2.44	0.68
19/1	1830 0230	237 235	2.44	0.65
,	1030 1830	232 225	2.15 2.13	0.68 0.87
20/1	0230 1030	219 212	2.05 1.79	0.82 0.75
21/1	1830 0230	202 201	1.68 1.69	0.68
22/1	1030 1830	197 192	1.44 1.41	0.62
22/1	0230 1030 1830	190 187 184	1.35 1.21 1.22	0.59 0.58
23/1	0230 1030	183 182	1.27 1.10	0.56 0.55 0.59
24/1	1830 0230 1030	183 185 206	1.18 2.51 1.24	0.60 1.30 1.40

by

B.I. Cruikshank, G.F. Sparksman & G.K. Willcocks

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 7.2.74

Sampling points	Sp. Cond (umho/cm)	PH	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)	-	· <u>-</u> ,	-	. -	-
Mine Eastern Spring Northern dump (410767)	3,300	2•5	182	244	0.212M
Copper Creek (410762)	2,070	6.2	21.8	14.8	1.02
Molonglo River at Copper Ck (410757)	348	3.6	10.6	11.2	0.83
Bungendore Rd (C) (410758)	122	5•9	1.37	0.72	1.16
Hoskinstown Rd (D) (410759)	150	6.6	0.47	0.24	1.38
Burbong Weir (D2) (410705)	202	6.4	0.95	0.38	0.47
Honeysuckle Ck (F2)	156	6.4	0.41	0.49	-
Lake Burley Griffin at Kings Ave (H2)	168	7.1	0.05	1.63	-
Commonwealth Ave (H3)	171	6.9	0.05	1.81	-
Scrivener Dam (H4)	174	6.9	0.08	1.78	24.85
Molonglo River below Scrivener Dam (410718)	175	6.6	0.07	2.57	3.01

by

B.I. Cruikshank, G.K. Willcocks, R. Denardi, H. Hughes

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 14-2-74.

Sampling points	Sp. Cond (umho/cm)	Hq	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)		_			9 9
Mine Eastern Spring Northern dump					
(410767)	3,390	2.3	186	270	0.205M
Copper Creek (410762)	3,000	2.2	57.0	133	0.28
Molonglo River at			×)	
Copper Ck (410757)	528	2.5	11.7	19.1	0.79
Bungendore Rd (C) (410758)	232	4•7	4.52	1.08	1.12
Hoskinstown Rd (D) (410759)	163	6.2	0.38	0.46	1.04
Burbong Weir (D2) (410705)	208	6.2	0.72	0.38	0.23
Honeysuckle Ck (F2)	129	6.3	0.10	0.52	-
Lake Burley Griffin at		_	w N		
Kings Ave (H2)	176	6.9	0.05	0.74	-
Commonwealth Ave (H3)	172	6.7	0.04	0.58	-
Scrivener Dam (H4)	176	7.4	0.06	0.65	24.87
Molonglo River below Scrivener Dam (410718)	185	6.3	0.08	0.84	3•53

by

B.I. Cruikshank, G.K. Willcocks, R. Denardi and H. Hughes

The following results were obtained for the determination of specific conductance at 20°C, pH and total zinc on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zine.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Samples removed - 14.2.74

Sampling points	Estimated sampling time	Sp. Cond. (umho/cm)	Hq	Zn (ppm)	Gauge height
Captains Flat Mine drain Southern dump (410766)	0640 on 12/2/74 0640 on 12/2/74	12,600 8,190	1.9 2.3	3,050 1,100	0.294M 0.403M
Copper Creek (410762)	0605 on 12/2/74 0605 on 12/2/74	1,540 2,160	4.9	39•9 112	1.57' 2.70'
Molonglo River at Copper Creek (410757)	-	869	2.6	30•5	1.26'
Molonglo River at Bungendore Rd., (410758)	0030 on 13/2/74	219	6.2	6.00	1.39'

Analysis of Laterite Samples from the Mount Theo Area.

by

B.I. Cruikshank & G.F. Sparksman

The following results were obtained for the analysis of four typical tertiary laterite samples from the Mount Theo area (map SF52/8). The samples were submitted by A.J. Stewart.

Sample No.	Ag	Bi (a	Cu all in	Mn p.p.m.	Ni .)	Pb	Zn
72110307	1	-	11	763	13	29	72
72110309A	1	-	13	108	6	16	, 9
72110317	19	-	10	37	6	41	13
72110322	48		11	82	6	38	8
Detection Limit	* _{**}	8					

by

B.I. Cruikshank, G. Willcocks, R. Denardi, G. Sparksman, H. Hughes.

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling	20-2-74				
Sampling points	Sp. Cond (umho/cm)	pН	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump					
(410766)	6,500	1.7	790	945	.340 M
Mine Eastern Spring Northern dump		e	¥		
(410767)	No sample				
Copper Creek (410762)	2,090	1.9	79•2	208	1.46
Molonglo River at Copper Ck (410757)	1,240	2.1	9.68	78.0	1.02
Bungendore Rd (C) (410758)	459	2.6	37.8	14.9	1.64
Hoskinstown Rd (D) (410759)	221	6.2	1.20	0.30	
Burbong Weir (D2) (410705)	, . ,				
Honeysuckle Ck (F2)	,		* *	*	

Lake Burley Griffin at Kings Ave (H2)

Commonwealth Ave (H3)

Scrivener Dam (H4)

Molonglo River below Scrivener Dam (410718)

Bracketed numbers are Dept. of Housing and Construction stream gauge reference numbers.

by

B.I. CRUIKSHANK, G.F. SPARKSMAN, R. DENARDI, H. HUGHES, G. WILLCOCKS

The following results were obtained for the determination of specific conductance at 20°C, pH and total zinc on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Samples removed - 20-2-74

Sampling Points	Estimated Sampling Time	Sp. Cond (umho/cm)	pН	Zn (ppm)	Gauge height
Captains Flat Mine drain Southern dump (410766)	- -	3,710 4,100	2.0	325 375	.294N .403N
Copper Creek (410762)	. =	1,730 1,530 2,120	4.0 2.3 2.1	30.5 51.3 75.0	1.57 2.33 2.70
Molonglo River at Copper Creek (410757)		790	2.4	17.1	1.26
Molonglo River at Bungendore Rd (410758)	-	300 290	3.8 3.7	7.85 6.50	1.39 1.70

by

B.I. Cruikshank, R. DeNardi, H. Hughes, G. Sparksman, G. Willcocks.

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling	21-2-7	4				
Sampling points		Sp. Cond (umho/cm)	pН	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)		7,250	1.6	995	865	0.255M
Mine Eastern Spring		*		(W)		
Northern dump (410767)		3,300	2.5	191	276	0.217M
Copper Creek (410762)		1,600	2.3	63.2	69.0	1.38
Molonglo River at Copper Ck (410757)		589	2.6	16.4	20.4	0.87
Bungendore Rd (C)	*	380	2.8	10.7	8.30	1.32
(410758) Hoskinstown Rd (D)		299	5.9	2.75	0.38	2.571
(410759) Burbong Weir (D2)	i i	230	6.4	0.60	0.80	1.36'
(410705) Honeysuckle Ck (F2)		167	6.5	0.11	0.90	
Lake Burley Griffin at	19					
Kings Ave (H2)	<i>y</i>	168	6.7	0.04	0.85	
Commonwealth Ave (H3)		172	6.9	0.04	0.65	
Scrivener Dam (H4)		176	6.7	0.04	0.65	24.93
Molonglo River below - Scrivener Dam (410718)	180	6.8	0.03	0.68	5.41'

Bracketed numbers are Dept of Housing and Construction stream gauge reference numbers.

by

B.I. CRUIKSHANK, G. WILLCOCKS, H. HUGHES, R. DENARDI

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 28.2.74.

Sampling points	Sp. Cond (umho/cm)	РH	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump					
(410766)	No sample				
Mine Eastern Spring					
Northern dump (410767)	3,300	2.4	178	281	.212 M
Copper Creek (410762)	1,952	4.6	29.2	101	1.35'
Molonglo River at Copper Ck (410757)	395	3.0	11.6	13.2	0.821
		1			
Bungendore Rd (C) (410758)	239	5•3	6.08	0.58	1.17
Hoskinstown Rd (D) (410759)	276	5.7	3.75	0.18	1.23'
Burbong Weir (D2) (410705)	335	6.3	2.98	0.30	0.37
Honeysuckle Ck (F2)	162	6.6	0.07	0.95	
Lake Burley Griffin at					
Kings Ave (H2)	155	7.0	0.03	1.78	*
Commonwealth Ave (H3)	167	7.0	0.03	1.50	
Scrivener Dam (H4)	172	7-1	0.04	1.54	24.84
Molonglo River below Scrivener Dam (410718)	175	6.8	0.04	2.00	3 . 45 '

Bracketed numbers are Dept of Housing and Construction stream gauge reference numbers.

by

B.I. CRUIKSHANK, G. WILLCOCKS, R. DENARDI.

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling	7-3-74				
Sampling points	Sp. Cond (umho/cm)	pН	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)	No Sample			a m a	
Mine Eastern Spring					
Northern dump (410767)	3280	2.6	189	282	0.207M
Copper Creek (410762)	1235	3.9	23.0	24.0	1.42
Molonglo River at Copper Ck (410757)	540	2.5	13.0	17.6	0.81'
Bungendore Rd (C) (410758)	295	3.8	7.70	0.48	1.15'
Hoskinstown Rd (D) (410759)	247	5.8	1.85	1.04	1.09'
Burbong Weir (D2) (410705)	328	6.4	2.84	0.28	0.25S.G.
Honeysuckle Ck (F2)	166	6.7	0.09	0.72	
Lake Burley Griffin at Kings Ave (H2)	162	7.0	0.04	0.93	
Commonwealth Ave (H3)	163	7.0	0.03	0.93	
Scrivener Dam (H4)	178	7.0	0.04	0.55	
Molonglo River below Scrivener Dam (410718) 177	6.9	0.05	1.47	3 . 03'

Bracketed numbers are Dept of Housing and Construction stream gauge reference numbers.

рà.

B.I. CRUIKSHANK, G. WILLCOCKS, R. DENARDI

The following results were obtained for the determination of specific conductance at 20°C, pH and total zinc on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Samples removed - 8-3-74

Sampling Points	Estimated Sampling Time	Sp. Cond (umho/cm)	pН	Zn (ppm)	Gauge height
Captains Flat Mine drain	2050 6/3	7,780	1.9	1200	.403M
Southern dump (410766)	20,00 0/)	7,700	1.00	1200	•40JH
Copper Creek (410762)	2040 6/3 2040 6/3 2040 6/3 2040 6/3 2040 6/3	1,640 1,725 2,080 2,975 3,580	3.8 3.8 2.9 2.1	50.6 72.4 117 169 268	1.57' 1.98' 2.33' 2.70' 3.00'
Molonglo River at Copper Creek (410757)		450	3. 4	13.3	1.26'
		775	2.8	26.0	1.66'
Molonglo River at Bungendore Rd (410758)	0400 7/3	320	4•1	9.70	1.39'

by

B.I. Cruikshank, G.K. Willcocks

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 14/3/74

Sampling points	Sp. Cond (umho/cm)	pН		Fe I ppm)	Flow
Captains Flat Mine drain Southern dump (410766)	7,400	1.6	. 952	778	•257 m
Mine Eastern Spring Northern dump (410767)	3,450	2.5	190	310	•233 m
Copper Creek (410762)	945	2.5	31.4	23.0	1.43
Molonglo River at Copper Ck (410757)	108	6.0	1.39	2.95	1.801
Bungendore Rd (C)	132	6.0	1.39	3.20	1.79
(410758) Hoskinstown Rd (D)	332	5•7	7.20	0.10	2.61'
(410759) Burbong Weir (D2) (410705)	300	6.3	1.84	0.32	1.47
Honeysuckle Ck (F2)	102	6.5	0.05	0.97	
Lake Burley Griffin at Kings Ave (H2)	189	6.5	0.10	0.68	
Commonwealth Ave (H3)	175	7.1	0.05	0.50	
Scrivener Dam (H4)	180	6.9	0.06	0.32	29.92'
Molonglo River below Scrivener Dam (410718)	180	6.7	0.04	0.50	5.281

Bracketed numbers are Dept. of Housing and Construction stream gauge reference numbers.

by

B.I. Cruikshank, G.K. Willcocks

The following results were obtained for the determination of specific conductance at 20°C, pH and total zinc on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Samples removed - 15/3/74

Sampling Points	Estimated Sampling Time	Sp. Cond (umho/cm)	-	En Gauge opm) height	
Captains Flat Mine drain Southern dump (410766)	1815 7/3 1830 7/3			80 •294 80 •403	
Copper Creek (410762)	1700 10/3 1700 12/3 1730 12/3 1735 12/3 1750 12/3	3,610 2 3,690 2 1,080 2	2.0 21 2.1 21 2.2 2	30.0 1.57° 12 1.98° 12 2.33° 41.3 2.70° 43.5 3.00°	,
Molonglo River at Copper Creek (410757)		2 , 090 827	1.9 9	94.4 1.26' 90.0 1.66' 30.4 2.10' 12.1 2.45'	
Molonglo River at Bungendore Rd (410758)	0100 11/3 1800 12/3 2110 12/3 2200 12/3	262 208	4.0 3.8 4.1 2.9	8.70 1.39' 6.48 1.70' 6.37 2.10' 12.3 2.44'	

Analysis of Silicates from the Westmoreland Area, North Queensland.

by

B.I. CRUIKSHANK, G.K. WILLCOCKS, R. DeNARDI & H. HUGHES.

Forty-three silicate samples from the Westmoreland Area (Seigal 1:100,000 sheet), North Queensland, were analysed for Bi, Co, Cu, Li, Ni, Pb and Zn by atomic absorption spectrophotometry. The samples were submitted by C. M. Gardner.

The samples were digested by the action of hydrofluoric/perchloric acids. Non-atomic absorption corrections were made for Bi, Co, Ni, Pb and Zn.

I D and	711 ·	1						
		Bi	Co	Cu	Li	Ni	Pb	Z_n
7376-		ppm	ppm	ppm	ppm	ppm	ppm	ppm
0802		ND	28	41	21	120	7.5	755
0805		ND	20	41	433	ND	3 5 5	188
0809		ND	5	. 1	82	ND	4 1	27
		ND ND		6	6	ND	43	33
0812		ND	4 · 6	3	6	4	23	24
0814		ND	16	10	16	32 32	41	6 2 8
0815A	X	ND	14	.14	15	. 4	34	685
0817B 0820		ND	22	7	25	49	32	. 65
0824	* *	ND	2	42	3	ND	31	418
0826		ND	5	3	7	ND	36	588
0827		ND	36	48	18	83	24	850
0828		ND	12	20	10	4	76	665
0836B		8	4	7	3	2	22	393
0845A	H 9	8	3	3	5	ND	42	30
0850		ND	23	. 3 16	25	12	38	88
0852A	4.	ND	20	14	27	36	18	533
0855C		ND	6	ND	8	ND	43	21
0858		ND	5	21	4	4	42	9
0859A		ND	13	15	24	4	38	81
0860C		ND	23	16	19	46	29	725
0862A		8	18	10	21	44	27	510
0862B		10	30	134	20	81	44	740
0864A		ND	5	79	9	ND	28	39
0868		ND	3:	115	1	ND	30	223
0869A		ND	2	7	3	ND	44	366
0871B		ND	5 .	3 3	6	ND	61	29
0875	*	ИD	6	3	26	ND	51	270
0876		8	38	253	25	43	33	556
0882		ND	4	2	39	ND	54	21
0885		ND	. 8	7	12	2	66	33
0886₺		ND	11	5	7	19	27	69
8880		ND	4	1	10	ND	48	204
0889C		ND	. 11	3	16	8	25	298
0893A		10	4	29	. 4	ND	. 15	168
0913B	*	ND	5	3	3	ND	13	223

				•							
			Bi ppm	Co	e.	Cu ppm	Li ppm	;	Ni ppm	Pb ppm	Zn ppm
7376-											
0915A			10	16		13	14		2	29	409
0916			ND	41		210	21		45	15	128
0923A			ND	9		37	26		6	30	59
0923B						220	30		18	47	371
0924	94. Ag	ه چ څه و تا	ND 10	10	, j e • ,	3	19		12	32	331
0925			ND	10		18	27		4	40	80
0925			8	2		3	14		MD	35	25
			8	The same of		2	18		2	5 7	39
0927			O	5) .	10		۲.	21	. 79
		2)									
				ND = NOT	DET.	ECTED.					
				3							

Detection Limit

1

2

by

B.I. Cruikshank, C. Willcocks, R. Denardi.

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of	sampling	21-3-74
---------	----------	---------

Sampling points	Sp. Cond (umho/cm)	pН	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)	No sample				
Mine Eastern Spring Northern dump	•		* ia		
(410767)	3,190	2.5	179	260	.235M
Copper Creek (410762)	1,340	4.1	35.0	16.8	1.39
Molonglo River at Copper Ck (410757)	665	2.6	22.5	25.0	0.79
Bungendore Rd (C) (410758)	192	5.6	4.80	1.29	1.30
Hoskinstown Rd (D) (410759)	160	5.6	1.65	0.08	1.32'
Burbong Weir (D2) (410705)	244	6.1	4.00	0.19	0.43'
Honeysuckle Ck (F2)	132	6.0	0.31	0.78	
Lake Burley Griffin at					
Kings Ave (H2)	136	6.5	0.04	0.78	*
Commonwealth Ave (H3)	154	6.7	0.02	0.48	
Scrivener Dam (H4)	170	6.6	0.03	0.39	24.86
Holonglo River below		*		e	
Scrivener Dam (410718)	163	6.4	0.02	0.48	3.821

by

B.I. CRUIKSHANK, G. WILLCOCKS, R. DE NARDI

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling28-	3 - 74	•			,
Sampling points	Sp. Cond (umho/cm)	pН	Zn (ppm)		Flow
Captains Flat Mine drain Southern dump (410766)	No Sample	• • • • • •	· .		
Mine Eastern Spring Northern dump (410767)	3180	2.4	180	258	0.218M
Copper Creek (410762)	1660	5:7.	32.7	16.0	1.03'
Molonglo River at Copper Ck (410757)	122	5.6	2.30	3.16	1.36'
Bungendore Rd (C) (410758) Hoskinstown Rd (D) (410759) Burbong Weir (D2)		.6.1	.0.72	.0.14	.1.78' .0.70'
(410705) Honeysuckle Ck (F2)	112	6.4	0.28	0.57	•••••
Lake Burley Griffin at Kings Ave (H2)	146	6.4	0.08	0.72	• • • • • • • • • • • • • •
Commonwealth Ave (H3)	150	6.6	0.06	1.72	• • • • • • • • • • • • •
Scrivener Dam (H4)	195	6.6	0.02	0.47	24.88!
Molonglo River below Scrivener Dam (410718)	165	6.5	0.02	0.57	4.611

Laboratory Report No.26

Zinc Content of Molonglo River Water

by

B.I. CRUIKSHANK, G. WILLCOCKS, R. DE NARDI

The following results were obtained for the determination of specific conductance at 20°C, pH and total zinc on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Samples removed - 28-3-74

Sampling Points	Estimated Sampling Time	Sp. Cond (umho/cm)	I	рΉ	Zn (ppm)	Gauge height
Captains Flat Mine drain Southern dump (410766)	2000 21/3 2000 21/3	5,500 4,340	2. 1.		940 415	0.294M 0.403M
Copper Creek (410762)	2050 21/3	950	4	•7	22.8	1.57'

by

B. I. Cruikshank, G. Willcocks, R. DeNardi

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zine.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 4.4.74/18.4.74

Date	Time .	Sp. Cond. (umho/cm)	Zn (dissolved)	Zn Ga (Total)	uge height
4-4-74	1145 1945	184 176	*	2.70 2.14	0.61 0.60
5-4-74	0345 1145 1945	175 170		2.47 3.08 2.82	0.60 0.58 0.57
6-4-74	0345 1145	166 166		2.32 2.53	0.56 0.55
7-4-74	1945 0345 1145	164 164 165		2.36 2.14 2.47	0.55 0.54 0.54
8-4-74	1945 0345 1145	164 164 165		2.66 2.32 2.23	0.54 0.54 0.55
9-4-74	1945 0345	163 163	, a	2.02 1.90	0.55 0.56
10-4-74	1145 1945 0345	163 226 207	*	1.36 2.10 1.47	0.64 0.88 1.72
	1145 1945	188 159 163		1.73 1.81 1.78	1.90 2.80 3.03
11-4-74	0345 1100 1115	182 182	1.20	1.90 1.84	2.87 2.88
12-4-74	1915 0315 1115	161 140 122	1.25 1.10 0.98	1.73 2.16 1.68	2.88 3.35 3.41
12-4-74	1915 0315	115 109	0.93 0.89	1.54 1.47	3.50 3.57
	1115 1915	105 101	0.93	1.42 1.22	3.47 3.08

		*		2. "	
Date	Time	Sp. Cond (umho/cm)	Zn (dissolved)	Zn (Total)	Gauge height
14-4-74	0315 1115	107 113	0.93 0.90	1.17	2.95 2.68
15-4-74	1915	117	1.00	1.29	2.50
	0315	120	0.90	1.12	2.38
	1115	124	0.89	1.14	2.25
16-4-74	1915	127	0.98	1.20	2.07
	0315	131	0.90	1.12	1.88
	1115	135	0.86	1.12	1.74
17-4-74	1915	138	0.90	1.16	1.62
	0315	141	0.89	1.14	1.52
	1115	144	0.86	1.07	1.44
18-4-74	1915	146	0.89	1.12	1.37
	0315	147	0.86	1.11	1.32
	1115	150	0.80	1.03	1.28

by

B. CRUIKSHANK, G. WILLCOCKS, R. DENARDI

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 18-4-74.

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Plow
Molonglo River at					
Burbong Weir (D2) (410705)	153	5•9	0.78	0.86	1.28'
Honeysuckle Crk (F2)	128	6.3	0.17	0.25	
Lake Burley Griffin at					
Scrivener Dam (H4)	129	6.2	0.04	007	24.90'

by

B. CRUIKSHANK, G. WILLCOCKS, R. DENARDI

The following results were obtained for the determination of specific conductance at 20°C, pH and total zinc on water samples, collected by Rising Stage Automatic Samplers, from the Molonglo River system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Follution in the Molonglo River.

Samples removed - 28-3-74.

Sampling Points	Estima Sampling		Sp. Cond. (umho/cm)	pН	Zn (ppm)	Gauge height
Captains Flat Mine drain	28–3–74	1630	8,900	2.0	1,120	•294M
Southern dump (410766)						

Copper Creek (410762)

Molonglo River at Copper Creek (410757)

				h.		
	28-3-74	1600	132	5.6	2.20	1.70
Molonglo River	28-3-74	1630	150	4.2	3.40	2.10'
at Bungendore Rd	28-3-74	1645	136	4.5	2.90	2.44
(410758)	28-3-74	1700	71	5.4	0.70	2.83

Laboratory Report No. 30.

Zinc Content of Molonglo River Water

bу

B.I. CRUTKSHANK, G.K. WILLCOCKS, R.W. DE NARDI.

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 4-4-74.

Sampling points	Sp. Cond (umho/cm)	pН	Zn (ppm)	Fe (ppm)	Flow
Captains Flat Mine drain Southern dump (410766)					
Mine Eastern Spring Northern dump (410767)			. *		
Copper Creek (410762)				*	
Molonglo River at Copper Ck (410757)					
Bungendore Rd (C) (410758)					
Hoskinstown Rd (D) (410759)					
Burbong Weir (D2) (410705)	189	6.3	0.95	0.75	0.61'
Honeysuckle Ck (F2)	128	6.3	0.23	1.78	
Lake Burley Griffin at					
Kings Ave (H2)	166	6.0	0.11	1.65	
Commonwealth Ave (H3)	170	6.9	0.05	1.40	
Scrivener Dam (H4)	180	6.1	0.07	1.45	24.86'
Molonglo River below Scrivener Dam (410718)	180	6.4	0.05	2.39	4.12

Bracketed numbers are Dept of Works stream gauge reference numbers.

by

B.I. Cruikshank, G.K. Willcocks, R.W. DeNardi

The following results were obtained for the determination of specific conductance at 20°C, pH, total zinc and iron on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of zinc and iron.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 11.4.	74			* *	
Sampling points	Sp. Cond (umho/cm		Zn (ppm)	Fe (ppm)	Flow
		gu e u	971		
Captains Flat Mine drain Southern dump (410766)					
Mine Eastern Spring Northern dump (410767)					
Copper Creek (410762)					w.
Molonglo River at Copper Ck (410757)			* * *		
Bungendore Rd (C) (410758)					
Hoskinstown Rd (D) (410759)					
Burbong Weir (D2) (410705)	178	5.8	1.13	3.23	2.88
Honeysuckle Ck (F2)	114	6.0	0.15	4.08	7.921
Lake Burley Griffin at Kings Ave (H2)	110	6.4	0.08	4.88	
Commonwealth Ave (H3)	131	6.1	0.09	3.35	
Scrivener Dam (H4)	160	6.9	0.01	1.08	25.24'
Molonglo River below Scrivener Dam (410718)	163	6.5	0.03	1.20	9.78'

by

B. Cruikshank, G. Willcocks & R. de Nardi

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 18/4/74 to 26/4/74

Date	Time	Sp. Cond. (umho/cm)	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Gauge height
18/4/74	1210	150	0.75	1.07	1.28
	2010	154	0.78	1.05	1.22
19/4/74	0410	154	0.81	1.08	1.29
	1210	154	0.78	1.07	1.38
	2010	154	0.75	1.08	1.33
20/4/74	0410	164	0.75	1.13	1.26
	1210	164	0.75	1.07	1.32
	2010	160	0.75	1.05	1.32
21/4/74	0410	155	0.83	1.12	1.60
	1210	156	0.94	1.26	2.92
	2010	136	0.97	1.32	3.07
22/4/74	0410	124	0.95	1.32	2,80
	1210	120	1.03	1.34	2.57
	2010	116	1.01	1.30	2.49
23/4/74	0410	115	1.03	1.32	2.89
	1210	115	1.06	1 • 43	2.83
	2010	116	1.03	1.28	2.75
24/4/74	0410	114	1.01	1.24	2.93
	1210	114	1.01	1.22	2.78
	2010	114	0.99	1.24	2.65

			2.		
Date	Time	Sp. Cond. (umho/cm)	Zn (ppm) (dissolved)	Zn (ppm) (total)	Gauge height
25/4/74	0410	120	1.05	1.30	2.55
	1210	117	0.99	1.55	2.48
	2010	118	1.14	1.52	2.43
26/4/74	0410	113	1.18	1.57	2.35

* * *

Ŧ

by

B. Cruikshank, G. Willcocks, R. De Nardi

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 26/4/74

Sampling points	Sp. Cond. (umho/cm)	ÞН	$Z_n (ppm)$ (dissolved)	Zn (ppm) (Total)	Flor
Molonglo River at					
Burbong Weir (D2) (410705)	124	6.4	0.73	0.80	2.22
Honeysuckle Crk (F2)	93	6.4	0.16	0.24	
Lake Burley Griffin at		*			
Scrivener Dam (H4)	117	6.5	0.07	0.10	24.91

bу

B. Cruikshank, G. Willcocks, R. De Nardi

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 2.5.74

Sampling points	Sp. Cond. (umho/cm)	Нq	Zn(ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at Burbong Weir (D2) (410705)	173	7•3	0.52	0.72	1•53
Honeysuckle Crk (F2)	132	6.9	0.12	0.18	
Lake Burley Griffin at Scrivener Dam (H4)	113	6.3	0.12	0.15	24. 96

by

B. Cruikshank, G. Willcocks, R. De Nardi

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 26/4/74 - 2/5/74

Date	Time	Sp. Cond (umho/cm)	Zn (dissolved)	Zn (Total)	Gauge height
26•4•74 27•4•74	1630 0030 0830 1630	122 124 126 130	1.02 0.98 0.95 0.84	1.37 1.17 1.17 1.17	2.22 2.05 1.97 1.93
28•4•74	0030	154	0.84	1.11	2.05
	0830	156	0.75	1.08	2.07
	1630	167	0.78	0.99	2.25
29.4.74	0030	152	0.75	1.03	2•57
	0830	154	0.73	1.03	2•45
	1630	153	0.76	1.08	2•35
30-4-74	0030	154	0.79	1.03	2.30
	0830	153	0.80	1.05	2.18
	1630	153	0.73	0.99	2.07
1.5.74	0030	150	0.69	0.96	1.94
	0830	150	0.71	0.95	1.85
	1630	151	0.76	1.11	1.77
2.5.74	0030	149	0.70	1.00	1.65
	0830	150	0.70	0.92	1.57
	1515	151	0.75	1.00	1.53

by

B. CRUIKSHANK, G. WILLCOCKS, J. PRICE.

The following results were chtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 16-5-74.

Sampling points	Sp. Cond. (umho/cm)	рH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at			,		
Burbong Weir (D2) (410705)	180	7.0	0.44	0.50	0.75
Honeysuckle Crk (F2)	111	6.4	0.05	0.10	
Lake Burley Griffin at Scrivener Dam (H4)	107	6.4	0.10	0.14	24.92

by

B. CRUIKSHANK, G. WILLCOCKS, J. PRICE.

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 9-5-74.

Sampling points	Sp. Cond. (umho/om)	Hq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
*					
Molonglo River at					
Burbong Weir (D2) (410705)	143	6.5	0.56	. 0.72	0.91
Honeysuckle Crk (F2)	111	6.7	0.12	0.20	
Lake Burley Griffin at	*				
Scrivener Dam (H4)	113	6.4	0.09	0.16	24.90

Microprobe Determination of feldspars and feldspathoids in Volcanic Rocks from the New Ireland Region

Laboratory Report No.38

by

R.N. England

The following microprobe determinations of feldspathoids and feldspars in alkalic lawas collected in 1969 by G.A.M. Taylor from islands in the New Ireland region were made in 1971. They are listed here on request from R.W. Johnson. Localities are given in Table 1, qualitative feldspathoid determinations in Table 2, and quantitative plagicalse determinations in Table 3.

Table 1.

Sample No.		¥	Locality
69400271 275	* *,		Tefa Is.
276 280 282 284 292 293			Malendok Is.
309 310 312 313A 314 316 329 333 334			Ambitle Is.
375			Simberi Is.
398 403 416 417			Tatau Is.
448	***		Tabar Is.

Table 2. Qualitative Electron Probe Elemination of Feldspathoids and Zealites

The table gives peak intensities in counts per second for the following elements in the feldspathoids and seclites checked: Na, Al, Si, Cl, S, K, Ca. The specimen current used was 1/10 µA. The intensities, when comparisons are made between the same element in different specimens give a very rough idea of the comparative oncentration in the different specimens. There is no point in comparing the sount rate of one element with that of another element in the same rample as different elements have different count rates for a given concentration. Na has the poorest count rate per wt. percent while Si has the best.

Alteration and replacement of primary feldspathoids is a problem. In some cases, for instance, leucite may be so highly altered as to be difficult to recognize by its chemical commission. It is also possible that very fine intergrowths of different soblites and even clay minerals may prevent proper identification.

Rock	lla	ÄÌ	S1	\$	°C1	K	C _A	Identification	Comments
271	5	2760	606 0	0	0	508	5	Leucite	ana, haadaraar _{ra} gar fiyaaliyara cida <u>makemaning quayaadar waxaaliya</u> anna baraha
275	17	2400	7000	0	0	ð	20	Amelcite	,
276	3	2200	6000	0	0	300	15	Leucite }.	unexpectedly bire-
280	3	3000	7500	0	0	250	5	Laucite	fringent for leucite
282	100	3500	9000	5	0	6	0	Analcito	
284	- 60	1500	3500	Ø	0	20	Q	Analcite	altored leucite?
292	100	2500	4000	300	19	45	1:50	Hallyna	
293	.1	2700	6060	0	0	300	5	Leacite?	patchy, distinctly birefringent
309	50	30 00	5000	0	0	50	30	l.cucite?	showing alteration to kepar + napholine?
310	0	0	12000	0	0	0	0	Silica	?Tridymito?
312	10-100	1500	2000	0	0	30	3000	7	-
31 3A	60	3060	7000	0	0	2	150	faujasite?	•
314	100	20 00	3000	250	0	0	250	Hadlyne	
316	80	2600	6000	0	0	4	160	Faujasito?	
329	3	2300	6000	Û	0	30	300	7	
33	C	2000	5000	0	0	200	120	?	
34	130	2500	4000	200		40	200	Hallyns	highly altered
175	3	1600	4500	9	0	30	400	3	• • • • • • • • • • • • • • • • • • • •
98	2	2200	6000	. 0	0	20-200	300	?	Ca zealite
03	50-100	250 0	7000	0	0	60	76	?Analeste	patchy
16	70	3000	4900	0	Ò	0	200	.	Interstitial Ca-Ma zoolite
17	~	700	4000	0	0	0	99	Chlorite	Mg, 750 cps
48	80	2500	5500	0	0	10	250	Feujasite?	Ma Ca zeolite

Table 3. Microprobe Determinations of Feldspars (expressed as mole percent An and Or)

Rock	Petrographic Notes	An	<u>0r</u> .	Rock	Petrographic Notes	An	<u>0r</u>
267	Corroded phenocryst, centre	55	3.8	314	Corroded phenocryst, centre	28	5.4
	, edge	52	2.8	-	r , edge	32	3.8
	w w , centre	52	3.9		w , centre	45	2.6
	Small groundmass grain	29	5.3		, edge	35	3.7
		40	2.9		n , edge	34	6.0
					Large groundmass grain	36	3.3
271	Groundmass grain	51	2.6		Small	31	4.4
	W N	52	3.5		Small groundmass grain	21	7.1
	9 9	30	5.9			22	5.1
	Microphenocryst	52	3.3		Groundmass grain	33	3.3
275	Carroded phenocryst (centre)	53	2.9	334	Small cuhedral phenocryst	41	3.8
	n n (edge)	13	11.5		Small corroded phenocryst; (38	3.6
	(edge)	51	1.8		traverse from centre to (43	3.1
	Small groundmass grain	49	1.8		ris (39	2.9
		54	1.7		Small corroded phenocryst, centre	38	4.3
		42	2.7		Groundmass sanidine	37 2	3 . 6 56
292	Large pitted phenocryst (centre)	45	3.8		Groundmass grain	32	4.2
LJL	* * (edge)	48	3.2		Groundmass grain	43	3.7
	Small groundmass grain	31	4.4		at dationada gi a i i		***
	R R B	33	4.6	404	Euhedral phenocryst, centre	43	2.1
		36	3.2		u n edge	37	3.1
					Small groundmass grain	59	1.2
295	Large pitted phenocryst (centre)	74	2.8		a a a	53	1.4
	" " (edge)	83	2.3		Corroded groundwass grain	34	4.1
	(centre)	62	5.0		Euhodral phenocryst, centre	73	0.7
	* * (edge)	58	4.3		Euhedral phenocryst, edge	46	2.2
	Small groundmass grain	84	2.2		Corroded groundcass grain	71	0.6
	anorthoclase	27	17.3			000000	0200
		43	5.2	434	Groundmass anorthoclase	19	28
					Groundmass grain	52	28
312	Large zoned phenocryst;	48	2.1			57	1.6
	traverse from centre	48	2.0		Phonocryst, centre	55	1.8
	to rim	47	2.2		* , edge	62	1.4
		46	2.0		Groundmass sanidine	9	32
	lance lather thereses	46	2.1				
	Larga lath; traverse from centre to rim	48 46	2.3				
	II ON COULLE TO LIM	39	2.2 2.4				
	Centre of large lath	39 37	2.4				
	Edge * * *	28	3.7				
	Lugu	20	J. 1				

by

B. Cruikshank, G. Willcocks, J. Price

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. Lll samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 23/5/74

Sampling points	Sp. Cond. (umho/cm)	pH '	Zn (ppm) (dissolved)	Zn(ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	225	6.8	0.33	0.44	0.65'
Honeysuckle Crk (F2)	138	7.8	0.02	0.09	
Lake Burley Griffin at					
Scrivener Dam (H4)	109	6.9	0.08	0.12	24.871

by

B. Cruikshank, G. Willcocks, J. Price

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 27/5/74

Sampling points Sp. Cond. pH Zn (ppm) Zn (ppm) Flow (umho/cm) (dissolved) (Total)

Molonglo River at

Burbong Weir (D2) (410705) Honeysuckle Crk (F2)

Lake Burley Griffin at

Scrivener Dam (H4) 110 6.5 0.05 0.17 25.10'

by

G. Willcooks, B. Cruikshank, J. Price

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved sinc and total sinc on water samples as listed below from the Molonglo River/Lake Burley Graffin system. All samples were acidified with hydrochloric acid prior to the determination of total sinc.

Samples were collected by the Department of Housing and Construction for the joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 1/6/74

Samp	ling points	Sp. Cond. (umho/cm)	Hq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molo Bu	nglo River at rbong Weir (D2) (410705)	138	6.3	0.48	0.59	1.76
Hone	ysuckle Crk (F2)	113	6.5	0.07	0.12	-
	Burley Griffin at rivener Dam (H4)	78	6.1	0.06	0.14	24.87

by

B. Cruikshank, G. Willcocks, T. Price

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the joint Government Technical Committee on Mine Waste Póllution in the Holonglo River.

Date of sampling 6/6/74

Sampling points	Sp. Cond. (umho/cm)	рĦ	Zn (ppm) (dissolved	Zn (ppm) (Total)	Flow
Molonglo River at	*	*			
Burbong Weir (D2) (410705)	138	6.0	0.75	0.98	2.75'
Honeysuckle Crk (F2)	140	6.4	0.22	0.31	
Lake Burley Griffin at	*				
Scrivener Dam (H4)	70	6.3	0.07	0.14	25.05'

by

B. Cruikshank, G. Willcocks, J. Price

The following results were obtained for the determination of specific conductance at 20°C, dissolved zino and total zino on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total sino.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 23/5/74 - 29/5/74

Date	Time	Sp. Cond. (umho/om)	Zn (dissolved)	Zn (Total)	Gauge height
23-5	1505 2305	223 225	0.51 0.65	1.25	
24-5	0705 1505 2305	226 230 230	0.50 0.54 0.56	1.12 1.14 1.08	=
25–5	0705 1505 2305	175 120 108	0.61 0.44 1.27	1.12 1.10 2.48	2.95 3.15 5.18
26-5	0705 1505 2305	86 75 73	1.08 0.79 0.73	1.89 1.27 1.16	5•55 5•61 4•77
27– 5	0705 1505 2305	80 86 89	0.66 0.69 0.64	1.00 0.98 0.96	3.95 3.72 3.64
28-5	0705 1505 2305	93 96 100	0.62 0.62 0.62	0.85 0.90 1.00	3•34 3•15 2•90
29-5	0705	No	Sample		

by

B. Cruikshank, C. Willcocks, J. Price.

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 13-	6-14.				
Sampling points	Sp. Cond. (umho/cm)	Hq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	No sample				
Honeysuckle Crk (F2)	141	6.4	0.10	0.17	
Lake Burley Griffin at		×			
Scrivener Dam (H4)	77	6.3	0.07	0.12	24.93'

by

B. Cruikshank, C. Willcocks, J. Price.

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date	of	sampling	27-5-74
------	----	----------	---------

Sampling points	Sp. Cond. (umho/cm)	рН	$egin{aligned} \mathbf{Z_n} & (\mathtt{ppm}) \ (\mathtt{dissolved}) \end{aligned}$	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	92	5.7	0.38	0.52	3.80'
Honeysuckle Crk (F2)	5 7	5.7	0.01	0.03	10.95
Lake Burley Griffin at					
Scrivener Dam (H4)	No sample				

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 13/6/74

Sampling points	Sp. Cond. (umho/cm)	pH Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at				
Burbong Weir (D2) (410705) Honeysuckle Crk (F2)	166	6.6 0.52 c sample	0.59	1.48'
Lake Burley Griffin at Scrivener Dam (H4)	No			
(410732)		o sample		

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 20/6/74

Sampling points	Sp. Cond. (umho/cm)	pH	Zn(ppm) (dissolved	Zn(ppm) 1) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	200	7.0	0.45	0.58	0.97
Honeysuckle Crk (F2) 121	7.0	0.07	0.16	-
Lake Burley Griffin a	t			w	
Scrivener Dam (H4) (410732)	95	6.7	0.08	0.11	24.89

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee oh Mine Waste Pollution in the Molonglo River.

Date of sampling 27/6/74

Sampling points	Sp. Cond. (umho/cm)	pН	Zn(ppm) (dissolved)	Zn(ppm) (Total)	Flow	
			. *		ii .	
Molonglo River at	* * * * * * * * * * * * * * * * * * * *		× ×		E H	
Burbong Weir (D2) (410705)	205	6.7	0.44	0.57	0.82'	
Honeysuckle Crk (F2)	137	6.7	0.09	0.16	-	
Lake Burley Griffin at						
Scrivener Dem (H4) (410732)	101	6.8	0.10	0.13	24.88	

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 4/7/74

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	238	6.8	0.55	0.63	-
Honeysuckle Crk (F2)	165	6.7	0.13	0.15	-
Lake Burley Griffin at					
Scrivener Dam (H4) (410732)	104	6.5	0.11	0.14	24.89

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 11/7/74

Sampling points	Sp. Cond. (umho/cm)	pН	,	Zn(ppm) (dissolved	Zn(ppm)) (Total)	Flow
у в	*					
Molonglo River at						
Burbong Weir (D2) (410705)	243	6.4		0.64	0.65	0.94
Honeysuckle Crk (F2)	176	6.8		0.12	0.15	_
Lake Burley Griffin at	E			* *		
Scrivener Dam (H4) (410732)	109	 6.6		0.08	0.10	24.88

Laboratory Report No. 51.

Zinc Content of Molonglo River Water

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 18/7/74

Sampling points	Sp. Cond. (umho/cm)	рН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
*					
Molonglo River at					
Burbong Weir (D2) (410705)	358	7.0	0.34	0.45	1.68
Honeysuckle Crk (F2)	153	6.6	0.11	0.20	-
Lake Burley Griffin at					
Scrivener Dam (H4) (410732)	113	6.8	0.07	0.09	25.10

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 25/7/74

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	205	6.4	0.53	0.63	1.04
Honeysuckle Crk (F2)	178	6.7	0.13	0.23	-
Lake Burley Griffin at					
Scrivener Dam (H4)	124	6.8	0.05	0.08	24.891

Date of sampling 1/8/74

Scrivener Dam (H4)

Zinc Content of Molonglo River Water

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved	Zn (ppm) i) (Total)	Flow
Molonglo River at		* * .			
Burbong Weir (D2) (410705)	230	6.7	0.38	0.45	0.901
Honeysuckle Crk (F2)	No	sample	*		
Lake Burley Griffin at					

6.7

149

0.08

0.13

24.86'

CHEMICAL ANALYSIS OF ROCK SAMPLES FROM ALLIGATOR RIVER, COBURG PENINSULAR AND CLONCURRY

by

J.G. Pyke

One hundred and thirty two rock samples, one hundred and three from Alligator River N.T., twelve from Coburg Peninsular N.T. and seventeen from Cloncurry N.W. Qld were submitted by P.G. Wilkes for trace element analysis of uranium and thorium. The analyses were carried out by x-ray fluorescence, using unignited material pressed into boric acid pellets.

	6		
Sample No.	Th ppm	U ppm	
73/163	59	13	
73/164	- 21	76	
73/165	15	5741	
73/166	ND	16	
73/167	ND	38	
73/168	163	20	
73/169	60	10	
73/171	17	38	x 2 x x
73/173	33	6	
73/174	24	- 5	
73/175	787	4581	
73/176	ND	43	
73/177	8	28	
73/178	11	35	
73/179	9	29	
73/180	4	ND	
73/181	19	32	
73/182	9	203	
73/183	4	258	
73/184	4	4	
73/185	3 .	29	
73/186	3	6	
73/187	17	17	
73/188	14	18	
73/189	18	16	
		100	*

Sample No.		Th	ppm		U	ppm
73/190	-		ND			17
73/191		,	38			10
73/192			20			40
73/193			11		*	4
74/42			8			ND
74/43			ND			55
74/44			ND			38
74/45			5			188
74/46		1	6			18
731 21 001			46			8
73121002			38			7
73121003			57			11
731 21 004			56			13
731 21 005			41			13
73121006			22			4.
73121007			56			7
73121008			62			15
73121039			22	•		ND
73121040			17			ND
73121041			16			ND
73121045			6			ND
73121046			4			ND
73121047			3	•		ND
73121048			9			ND
73121049	*		3			ND
731 21 050			10			4
731 21 051			3			ND
73121058		1	15			ND
731 21 059			32			3
73121060			55			13
73121061			13			ND
731 21 065			13			4
731 21 066			. 9			ND
731 21 067		3	ND			ND
73121068	ĸ		5			ND
73121074			4			ND
73121075			4			ND
73121076			5			ND
73121077			5			ND
73121173			ND			ND

Sample No.	Th ppm	U ppm	
73121174	ND	ND	
73121175	KD	ND	
73121176	. 8	ND	
73121177	ND	ND	
73121178	. 7	ND	
73121179	5	ND	
73121289	ND	4	
73121290	4	ND	
73121291	ND	ND	
73121292	5	ND	
73121293	10	3	
73121294	33	19	
73121295	13	ND	
73121296	IID	ND	
73121297	5	ND	
73121298	7	ND	
73121299	7	ND	
73121339	18	ND	
73121340	14	4	
73121341	10	ND	
73121381	17	4	
73121382	9	ND	
73121383	9	ND	
73121384	ND	ND	
73121385	11	4	* *
73121386	13	3	
73121387	12	ND	
73121388	13	ND	
73121389	. 13	4	
73121399	10	ND	
73121445	32	53	
73121446	21	ND	* .
73121447	ND	ND	
		6	
73121448	19	ND .	
73121449	9		
73121450	19	5 MD	
73121451	9	ND	
73121452	17	ND	
73121453	12	3	

Sample No.	Th ppm	U ppm	
73121455	51	. 6	
731 21 456	32	5	
73121457	5	ND	
73121458	4	IID	
73121459	ND	ND	
73121460	11	ND	
73121461	21	6	
73121462	4	ND	
731 21 463	ND	MD	
73121464	19	5	
73121465	4	ND	
73121466	50	5	
73121467	11	ND	
73121468	11	4	
73050162	41	. 8	
73050164	44	7	
73050165	35	ND	
73050168	39	ND	
73050171	46	ND	
73050178	46	12	
73/056A	54	ND	
73/056B	43	4	
73/0560	16	ND	
73/056D	6	4	
73/056E	10	ND	
73/069A	43	5	
73/0690	29	4	

NB. ND = Not Detected

Calculated detection limits are :- Thorium 3 ppm Uranium 3 ppm

by

B.I. CRUIKSHANK, P.J. SWAN AND J.C. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling10/10/74....

Sampling points	Sp. Cond. (umho/cm)	Щq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at	P		y		
Burbong Weir (D2) (410705)	214	5•9	0.27	0.34	1.45
Honeysuckle Crk (F2)	160	6.8	0.05	0.10	
Lake Burley Griffin at					3
Scrivener Dam (H4) (410732)	177	6.9	0.02	0.06	. 24.94.

by

B.I. CRUIKSHANK, J.C. WEEKES AND P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

	8	Date of s	ampling	: 3/10/74	to 6/10/74	
Date	Time	Sp. Cond. (umho/cm)	pН	Zn (dissolved)	Zn (Total)	Gauge height
3/10	1050	228	6.6	0.41	0.87	1.53'
4/10	1600	210	6.5	0.25	0.42	2.76
5/10	1030	128	6.4	0.19	0.94	3.40'
5/10	1830	155	6.4	0.29	0.91	3.55
6/10	0230	160	6.3	0.42	0.86	3.40

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan.

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 17/10/74 to 19/10/74

Date	Time	Sp. Cond. (umho/cm)	Яq	Zn (dissolved)	Zn (Total)	Gauge height
17/10	1030	288	6.8	0.14	0.40	2.50
18/10	1030	119	6.2	0.23	0.61	5.15
	1830	79	5.9	0.41	0.65	4.00
19/10	0230	89	6.0	0.34	0.52	3.40
	1030	100	6.2	0.40	0.45	3.10

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling:	11/10/74	to	13/10/74
-------------------	----------	----	----------

Date	Time	Sp. Cond. (umho/cm)	Hg :b)	Zn issolved)	Zn (Total)	Gauge height
		X X		S S		
11/10	1015	219	6.8	0.34	0.70	1.51'
	1815	212	6.8	0.38	1.24	2.40
12/10	0215	200	6.8	0.32	0.76	2.39
	1015	195	6.5	0.30	0.70	2.05
	1815	200	6.7	0.25	0.58	1.72
13/10	0215	204	6.5	0.34	0.37	1.55

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the JointGovernment Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 17/10/74

Sampling points	Sp. Cond. (umho/cm)	рН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at	* · · · · · · · · · · · · · · · · · · ·				
Burbong Weir (D2) (410705)	274	6.5	0.16	0.30	2.43
Honeysuchle Crk (F2)	138	6.5	0.04	0.10	
Lake Burley Griffin at				,	•
Scrivener Dam (H4)	141	6.5	0.03	0.06	25.28

Laboratory Report No. 60.

Analysis of Basic Igneous Rocks And Lime-Magnesia Sediments Of North-Western Queensland

by

T.I. Slezak

Fifty-five samples from NW-Queensland submitted by Dr K.R. Walker were analysed by optical emission spectroscopy on the Hilger and Watts 3 metre Polychromator for the following elements: Fe, Mg, Mn, Cr, Co, Ni, V, Ca, Ti, Sr, Ba, Sc, Y, La, Zr, and Cu. The values for Fe, Mg, Mn, Ca, and Ti are given in per centum, whereas all others in parts per million.

The analytical method used was adopted from Ahrens and Taylor ("Spectrochemical Analysis", 1961, p. 189, Addison-Wesley Publishing Company). One part of sample was mixed with two parts of graphite (National Carbon Company Type L4160, Grade SP-2). The mix was loaded into a pre-formed graphite electrode (National Carbon Company Type 4206), and arced as the anode in a constant current (8 amps) D.C. arc for 130 seconds. Both internal and rock standard control were used. From previous experience with this method for the analysis of similar materials it is estimated that the values given for the elements are within 10% of the true value.

	Sample No	Fe %	Mg	Mn %	Cr p.p.m.	Co p.p.m.	Ni p.p.m.	V p.p.m.	Ca %
	J601	8.0	3.8	0.10	66	30	46	205	6.6
	1712	6.3	4.4	0.13	170	33	86	200	9.0
•	1772	4.1	2.9	0.16	86	21	38	90	6.2
	B1 941 D	6.5	4.5	0.13	> 500	67	620	130	5.3
	A1 974	6.2	1.9	0.18	270	34	39	140	4.0
	2004	5.4	2.3	0.14	410	20	23	72	9.0
	2112	>10.0	3.3	0.26	92	42	57	330	6.2
	2114	8.6	4.3	0.26	180	39	94	260	7.8
	2171	5.8	3.9	0.12	180	31	84	170	8.4
	2173a	> 10.0	4.6	0.26	78	47	47	250	7.4
6	2149	4.7	2.8	0.17	100	17	32	150	2.9
1	2173Ъ	> 10.0	3.9	0.13	76	52	66	310	6.0
	2771	3.7	2.7	0.15	87	22	40	90	6.6
	2850	8.8	3.8	0.11	110	39	70	260	5.0
	2867	6.6	3.7	0.16	1.70	43	120	210	7.2
	4001	> 10.0	2.8	0.14	250	31	. 39	340	7.0
	4002	5.6	2.1	0.13	68	23	22	68	9.8
l	7503	7 10.0	2.1	0.12	47	40	49	240	6.2
	7642B	3.2	2.9	0.02	47	. 12	29	36	5.0
	7902	7.8	3.7	0.15	100	43	86	220	7.0

1	Sample No	Fe %	Mg %	Mn %	Cr p.p.m.	Co p.p.m.	Ni p.p.m.	У р.р.т.	Ca %
	7911	8.2	4.4	0.15	200	39	94	260	7.2
1	7913aa	8.1	4.1	0.17	180	40	80	300	8.0
	7945	7.1	4.5	0.16	150	35	100	200	6.0
	7987	10.0	2.4	0.16	115	31	31	350	6.2
	7990	5.2	1.8	0.10	56	20	25	78	8.3
	8000	6.8	3.8	0.15	130	35	96	190	7.2
	9518	>10.0	2.7	0.19	105	33	44	270	5.5
	9531	10.0	3.8	0.15	120	50	56	270	6.4
	9578	>10.0	3.4	0.14	74	32	31	280	6.4
	9597	8.0	4.2	0.18	175	45	125	250	6.5
_	J204	9.0	3.7	0.15	170	46	110	230	6.6
2	403C	9.5	3.5	0.18	86	40	68	300	7.2
-	1556	6.7	3.1	0.12	74	30	47	190	6.8
	1948	> 10.0	4.1	0.14	120	39	90	250	7.2
	1975	> 10.0	3.6	0.20	100	52	92	320	6.6
-	2129	9.8	3.8	0.26	120	. 39	52	300	7.6
	2164	9.4	3.9	0.10	190	33	66	310	7.8
	2169	6.2	4.1	0.18	180	32	80		10.0
	2170	6.0	5.0	0.15	170	41	140	150	8.0
	2183	7.9	3.0	0.11	135	34	68	270	7.0
-	2636	2.8	1.8	0.15	64	16	26	88	4.5
1	2770	9.0	2.9	0.16	30	38	32	350	5.4
200	2829	8.0	3.4	0.15	135	44	78	260	6.0
	2849	7.2	4.5	0.09	220	30	150	190	6.2
	2857	> 10.0	3.8	0.18	110	44	85	290	5.6
	2871	8.2	4.6	0.13	100	49	210	170	7.2
	3198	9.0	2.9	0.13	83	48	115	180	4.2
	4003A	6.0	4.2	0.12	270	40	135	160	7.0
	4002B	7.0	4.3	0.13	170	46	160	230	6.6
_	4033	8.2	4.1	0.15	90	49	99	240	7.4
-	4040	10.0	2.3	0.13	89	42	64	180	4.0
7	7080	7.9	3.9	0.17	145	41	80	270	6.4
	9521	8.3	2.9	0.18	25	39	88	260	6.2
VY	95 2 8	5.5	4.1	0.29	52	21	27	66	9.5
	9529	6.2	3.7	0.10	240	41	88	220	8.0
	9595	9.0	4.3	0.22	140	52	130	240	7.3

Sample No	Ti %	Sr p.p.m.	Ba p.p.m.	Sc p.p.m.	y p.p.m.	La p.p.m.	Zr p.p.m.	Cu p.p.m.
J601	0.66	< 70	90	45	66	∠100	150	∠10
1712	0.62	240	230	37	32	<100	120	90
1772	0.40	390	670	17	35	<100	170	10
B1 941 D	0.40	120	165	27	27	∠100	100	83
A1974	0.78	150	300	47	76	130	470	100
2004	0.33	180	210	. 17	33	<100	180	13
2112	1.00	210	390	38	52	<100	210	54
2114	0.74	290	580	35	41	≥100	200	78
2171	0.50	220	215	34	27	∠100	100	94
2173a	1.15	300	560	34	47	<100	200	68

.

Sample No	Ti %	Sr p.p.m.	Ba p.p.m.	Sc p.p.m.	Y p.p.m.	La p.p.m.	Zr p.p.m.	Cu p.p.m
2149	0.54	< 70	160	21	29	< 100	190	< 10
2173ъ	0.81	160	135	43	43	< 100	200	180
2771	0.36	380	690	17.	34	<100	180	< 10
2850	0.62	110	145	38	29	100	< 100	260
2867	0.48	150	< 80	35	28	100	< 100	190
4001	1.40	160	210	39	60	100	280	43
4002	0.33	170	215	18	37	_ 100	170	14
7503	0.34	160	470	38	58	120	250	200
7642B	< 0.10	< 70	250	10	32	< 100	270	50
7902	0.58	130	330	40	37	<100	110	135
7911	0.68	210	200	42	37	.:100	130	170
7913aa	0.72	160	105	41	30	100	< 100	120
7945	0.45	140	250	44	23	. 100	100	175
7987	1.30	100	220	33	54	-100	270	54
	0.30	160	130	17	30	.:100	160	∠ 10
7990						100	∠ 100	155
8000	0.31	100	310	40	32			56
9518	0.80	150	80	36	50	100	190	
9531	0.66	160	290	45	43	100	130	150
9578	1.10	170	120	39	58	100	240	42
9597	0.56	84	< 80	42	33	100	105	280
J204	1.05	270	350	35	42	< 100	< 100	88
403C	0.70	280	195	44	34	< 100	120	120
1556	0.57	180	190	32	30	≥ 100	140	72
1948	0.85	180	450	35	44	< 100	210	125
1975	1.15	152	425	45	80	140	300	142
2129	0.88	240	120	38	46	<100	220	100
21 64	0.71	160	< 80	42	43	<100	160	29
2169	0.52	230	230	37	30	< 100	110	86
2170	0.50	180	250	37	28	∠100	< 100	130
2183	0.71	150	150	35	38	≥ 100	150	74
2636	0.37	160	640	24	. 32	∠100	200	31
2770	0.88	140	390	39	. 52	<100	240	46
2829	0.62	150	< 80	41	40	<100	140	130
2849	0.52	140	< 80	33	37	<100	145	35
2857	0.78	160	96	44	43	∠100	150	205
2871	0.56	230	190	26	29	<100	120	135
3198	0.92	170	865	36	59	110	220	94
4003A	0.34	120	200	37	33	∠100	110	92
4003B	0.52	180	185	35	38	<100	100	140
4033	0.53	130	< 80	43	36	<100	100	150
4040	1.03	270	740	34	6 8	105	345	145
7080	0.60	110	105	47	37	∠100	150	155
9521	0.72	120	< 80	35	49	<100	270	28
9528	0.21	180	100	14	37	∠100	170	115
9529	0.54	260	96	40	32	2100	100	115
9595	0.56	450	260	47	46	∠100	120	100
2222								

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling	1/8/74				
Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705) Honeysuckle Crk (F2)) 196	6.4	0.15	0.30	_
Lake Burley Griffin at			. 01.7	0.00	
Scrivener Dam (H4)		-			

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Sampling points Sp. Cond. pH Zn (ppm) Zn (ppm) Flow (umho/cm) Molonglo River at	Date of sampling	8/8/74			* .	
Molonglo River at	Sampling points		pН			Flow
	Molonglo River at					
Burbong Weir (D2) 275 6.8 0.40 0.44 0.66 (410705)		275	6.8	0.40	0.44	0.661
Honeysuckle Crk (F2) 216 6.7 0.07 0.13 -		216	6.7	0.07	0.13	
Lake Burley Griffin at	Lake Burley Griffin at					
Scrivener Dam (H4) 157 6.6 0.09 0.13 24.66	Scrivener Dam (H4)	157	6.6	0.09	0.13	24.661

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling	15/8/74	F	*		* *
Sampling points	Sp. Cond. (umho/cm)	РĦ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at			8		
Burbong Weir (D2) (410705)	312	7.1	0.35	0.50	0.61
Honeysuckle Crk (F2	2) 230	7.1	0.03	0.09	-
Lake Burley Griffin a	at				
Scrivener Dam (H4)	161	7.1	0.05	0.08	24.88

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling	22/8/74			3	150
Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at				$\tau_{_{\rm H}}$	
Burbong Weir (D2) (410705)	290	6.9	0.34	0.40	0.55'
Honeysuckle Crk (I	72) 188	7.1	0.03	0.06	-
Lake Burley Griffin	at				
Scrivener Dam (H4)	163	6.9	0.04	0.06	24.86

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 28/8/74

Sampling points	Time	SP.Cond. (umho/cm)	рH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow (cusecs)
Molonglo River at :-			**			
Burbong Weir	2400	47	5.1	0.41	0.90	22,000*
(410705)	1315	60	6.1	0.29	0.42	3,500
Oaks Estate** (410729)	1500	46	6.2	0.02	0.06	24,300
Below Scrivener Dam (410718)	1430	40	6.0	0.14	0.20	30,600

^{*} Value for river flow is approximate

^{**} Sample from left bank and is predominantly water from the Queanbeyan River.

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling	29/8/74			*	
Sampling points	Sp. Cond. (umho/cm)	рH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow (cusecs)
Captains Flat, Mine Eastern Spring Northern Dump (000067)	2,600	2•5	146	146	0.8
Molonglo River at				**	
Burbong Weir (D2) (410705)	39	5.6	0.29	0.32	12,000

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Follution in the Molonglo River.

Date of sampling: 2/9/74

Sampling points	Sp. Cond. (umho/cm)			Zn (ppm) dissolved)	Zn (ppm) (Total)	Flow (cusecs)
Molonglo River at			a j			
Captain's Flat Road Bridge Hoskinstown Road	108	. 4	1.8	3.10	3.10	80**
(D) (410759) Burbong Weir (D2)	104	5	5•9	0.41	0.45	200**
(410705) Oaks Estate* (410729) Honeysuckle Ck. (F2) Duntroon Bridge (G)	113 78 90 89	. 6	5.1 5.4 5.4	0.33 0.01 0.06 0.05	0.43 0.04 0.11 0.08	420 2,250 —
Lake Burley Griffin at**	**					
Kings Ave. (H2) Commonwealth Ave. (H3) Scrivener Dam (H4)	90 80		5.0 5.9	0.06 0.07	0.12 0.78***	= -
(410732)	59	5	5•7	0.11	0.12	. -
Molonglo River Below						
Scrivener Dam (410718)	54	5	5•9	0.07	0.08	2,040

^{*} Sample from left bank and is dominantly water from the Queanbeyan River.

** Values for river flow are approximate.

**** Lake level was 25.04 ft. on 2/9/74.

^{***} Value notably high - possibility of contamination since amount of sediment not noticeably different from other lake samples and there was evidence of staining in sample bottle.

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Follution in the Molonglo River.

Date of Sampling: 12/9/74

Sampling points	Sp. Cond. (umho/cm)	Hq	Zn(ppm) (dissolved)	Zn(ppm) (Total)	Flow
Molonglo River at	¥ ,				
Burbong Weir (D2) (410705) Honeysuckle Crk (F2)	142	No 6.3	sample 0.08	0.12	· .
Lake Burley Griffin at					
Scrivener Dam (H4)	104	4.5	0.08	0.09	24.95

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of	sampling:	10/9/74 -	17/9/74
---------	-----------	-----------	---------

Date	Time	Sp. Cond. (umho/cm)	pH (Zn dissolved	Zn) (Total)	Gauge height
10-9	1340 2140	151 163	6.6 6.8	0.32 0.25	0.46 0.52	1.88 1.78
11-9	0540 1340 2140	166 168 174	6.8 6.8	0.28 0.28 0.31	0.43 0.47 0.47	1.74 1.70 1.67
12 - 9	0540 1340 2140	175 178 180	6.9 6.6 6.9	0.27 0.37 0.38	0.47 0.66 0.68	1.62 1.59 1.53
13–9	0540 1340 2140	180 182 185	6.9 6.9	0.37 0.42 0.33	0.58 0.82 0.75	1.48 1.46 1.41
14-9	0540 1340 2140	188 192 194	6.9 6.9	0.49 0.43 0.37	0.66 0.60 0.69	1.41 1.41 1.38
15-9	0540 1340 2140	196 200 197	6.9 6.9	0.42 0.42 0.39	0.64 0.82 0.84	1.35 1.42 1.39
16-9	0540 1340 2140	198 200 204	6.9 6.9	0.42 0.43 0.49	0.69 0.75 0.82	1.33 1.26 1.22
17-9	0540	202	6.9	0.50	0.85	1.19

by

B.I. Cruikshank, J.C. Weekes, & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Follution in the Molonglo River.

Sampling points	Sp. Cond. (umho/cm)	pH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	
			4 A		

Date of sampling: 19/9/74

Molonglo River at

Burbong Weir (D2)
(410705)
Honeysuckle Crk (F2)

Lake Burley Griffin at

Scrivener Dam (H4)

104

6.0

0.07

0.11

24.92

Flow

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Follution in the Molonglo River.

Date of sampling: 17/9/74 - 20/9/74

Date	Time	Sp. Cond. (umho/cm)	Zn (dissolved)	Zn (Total)	Gauge height
17-9	1230 2030	208 208	0.26 0.22	0.60 0.52	1.18 1.16
18-9	1230	210	0.25	0.45	1.12
19-9	1230	222	0.20	0.40	1.07
20-9	1000	222	0.27	0.42	1.04

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 26/	9/74				
Sampling points	Sp. Cond. (umho/cm)	pH	Zn(ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at		V V			
Burbong Weir (Ds) (410705)	236	6.7	0.26	. 0.29	1.181
Honeysuckle Crk (F2)	175	7.1	0.04	0.08	-
Lake Burley Griffin at					
Scrivener Dam (H4)	111	6.3	0.08	0.08	24.96

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

	Date of sa	mpling: 2	14/9/74 to	26/9/74		
Date	Time	Sp. Cond. (umho/cm)	pH ($Z_{\mathbf{n}}$ dissolved)	Zn (Total)	Gauge height
24/9	1010 1810	230 233	6.5 6.7	0.38	0.47 0.71	1.10
25/9	0210 1010 1810	244 240 236	6.9 6.7 6.6	0.26 0.38 0.47	1.17 0.84 1.28	1.27' 1.26' 1.33'
26/9	0210 1010	243 243	6.6 6.8	0.31 0.25	0.56 0.89	1.27' 1.15'

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 3/10	0/74				
Sampling points	Sp. Cond. (umho/cm)	рН	Zn(ppm) (dissolved)	Zn(ppm) (Total)	Flow
Molonglo River at		W			s 1
Burbong Weir (D2) (410705)		No sampl	.e		
Honeysuckle Crk (F2)	174	6.8	0.04	0.09	-
Lake Burley Griffin at					
Scrivener Dam (H4)	131	6.1	0.07	0.14	24.941

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2 - 1410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 2/10/74 to 3/10/74

Date	Time	Sp. Cond. (umho/cm)	pН	Zn (dissolved)	Zn (Total)	* ;	Gauge height
2/10	0345 1145 1945	262 228 226	6.7 6.4 6.4	0.21 0.26 0.40	0.89 0.76 0.85	* :	2.55' 2.33' 1.93'
3/10	0345	221	6.4	0.40	0.58		1.651

0.56

0.59

2.081

1.74'

1245

1245

21/10

22/10

Zinc Content of Molonglo River Water

by

B.I. Cruikshank, J.C. Weekes & P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). samples were acidified with hydrochloric acid prior to the dtermination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling:		19/10/74	- 22/10/74			
Date	Time	Sp. Cond. (umho/cm)	pΗ	Zn (dissolved)	· Zn (Total)	Gauge height
19/10	1245	110	6.0	0.37	0.59	3.05
	2045	120	6.2	0.27	0.43	2.84'
20/10	0445	140	6.3	0.29	0.47	2.66
	1245	160	6.1	0.34	0.47	2.48

0.34

0.31

6.2

6.4

145

158

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 24/10/74.....

Sampling points	Sp. Cond. (umho/cm)	p H	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705) Honeysuckle Crk (F2)			0.19		
Lake Burley Griffin at Sorivener Dam (H4)	95	.6.2	0.04	0.052	5.00!

by

B.I. CHUIKSHANK, J.C. WEEKES & P.J. SWAN

The following regults were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 29/10/74 to 30/10/74

Date	Time	Sp. Cond. (umho/cm)	рН	Zn (dissolved)	Zn (Total)	Gauge height
29/10	2215	235	6.9	0.13	0.19	1.27'
30/10	0615	251	6.9	0.12	0.19	1.61'

by

B.I. CHUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling ...31/10/74..... Sp. Cond. Zn (ppm) Zn (ppm) Flow Sampling points pH (umho/cm) (dissolved) (Total) Molonglo River at219......6.8......0.13......0.17....-Burbong Weir (D2) (410705)155.......6.9......0.04......0.04..... Honeysuckle Crk (F2) Lake Burley Griffin at96.......7.0.......0.05........0.05..... Scrivener Dam (H4)

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling ..7/11/74.....

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	205	6.6		0.25	1.56'
(410705) Honeysuckle Crk (F2)	150	6.7	0•04	0.09	
Lake Burley Griffin at					
Scrivener Dam (H4)	113	6.6	0.05	0.08	.24.99

Laboratory Report No. 81

Analysis of Water from Lake George, N.S.W.

B.I. Cruikshank

A water sample from Lake George, N.S.W., was tested for pH, specific conductivity and total dissolved solids. The sample was submitted by A.W. Schuett.

Date of sampling 21/10/74

pH - 6.4 sp. cond. - 1,860 umho/cm T.D.S. (180°C)-1,120 p.p.m.

by

B.I. CRUIKSHANK, P.J. SWAN & J.C. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly-intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 1/11/74 to 7/11/74.

Date	Time	Sp. Cond. (umho/cm)	рĦ	Zn dissolved	Zn (Total)	Gauge height (ft)
1-11-74	1710	231	6.5	0.02	0.23	1.58
2-11-74	0110	250	7.1	0.03	0.25	2.27
	0910	251	7.1	0.05	0.23	2.65
3-11-74	0110	236	7.3	0.05	0.32	2.90
	0910	198	6.6	0.17	0.45	2.96
	1710	179	7.0	0.11	0.38	2.75
4-11-74	0910	181	6.9	0.19	0.45	2.29
	1710	176	6.9	0.07	0.56	2.05
5-11-74	0110	182	6.3	0.18	0.46	1.79
	0910	184	6.5	0.17	0.41	2.00
	1710	186	6.9	0.19	0.66	1.65
6-11-74	0110	192	6.8	0.11	0.31	1.64
	0910	197	7.3	0.19	0.35	1.80
	1710	213	7.0	0.17	0.56	1.64
7-11-74	1415	212	6.7	0.11	0.27	1.55

by

P.J. SWAN, J.C. WEEKS & B.I. CRUIKSHANK

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 14-11-74.

Sampling points	Sp. Cond. (umho/cm)	pH .	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	226	6.3	0.16	0.20	2.37'
Honeysuckle Crk (F2)	193	6.4	0.02	0.05	-
Lake Burley Griffin at Scrivener Dam (H4)	137	6.6	0.02	0.04	25.0'

by

B.I. CRUIKSHANK, P.J. SWAN & J.C. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling:

14/11/74 to 15/11/74

Date	Time	Sp. Cond. (umho/cm)	pΗ	Zn (dissolved)	Zn (Total)	Gauge height
14/11	0935 1 7 35	228 242	6.5 7.1	0.21 0.06	0.60 0.54	2.37 1.94
15/11	0135 0935	233 250	7.0 6.7	0.11	0.50 0.37	1.62 1.45

bу

P.J. SWAN, B.I. CRUIKSHANK, & J.C. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 21-11-74.

Sampling points	Sp. Cond. (umho/cm)	pΉ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flo
Molonglo River at					
Burbong Weir (D2) (410705)	2 52	7•1	0.07	0.15	0.7
Honeysuckle Crk (F2)	174	7.2	0.01	0.02	-
Lake Burley Griffin at Scrivener Dam (H4)	150	6.5	0.03	0.06	24.9

рх

B.I. Cruikshank, P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 28/11/74

Date	Time	Sp. Cond. (umho/cm)	pН	\mathbb{Z}_n (dissolved)	Zn (Total)	Gauge height
28/11	1330	225	6.4	0.21	0.43	1.67

7 January 1975

Zinc Content of Molonglo River Water

bу

B.I. Cruikshank and P.J. Swan

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 5.12.74

Sampling points	Sp. Cond. (umho/cm)	рĦ	Zn (ppm) (dissolved)	Zn (ppm) (total)	Flow
Molonglo River at Burbong Weir (D2) (410705)	235	6.7	0.07	0.15	0.66
Honeysuckle Crk (F2) 169	6.1	0.02	0.06	_
Lake Burley Griffin at Scrivener Dam (H4)	175	6.6	0.02	0.04	24.92

7 January 1975

Zinc Content of Molonglo River Water

bу

P.J. Swan & B.I. Cruikshank

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 12/12/74

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at Burbong Weir (D2) (410705)	250	6.6	0.09	0.12	○ 0•58
Honeysuckle Crk (F2)	215	6.7	0.03	0.04	-
Lake Burley Griffin at Scrivener Dam (H4)	180	7.6	0.02	0.04	_

Identification of refractory minerals in ${\rm ^Kerogen}$ samples from South Africa

by

G.W.R. Barnes

The mineralogy of 22 Kerogen samples submitted by Z. Horvath was determined by X-ray diffraction.

The results are as follows:

Sample No.		Minerals Identified
72240083	A B C D	Graphite, Rutile Graphite, Rutile Graphite, Rutile Graphite, Rutile
72240084	A B C D E F	Graphite, Rutile Graphite, Rutile Graphite, Rutile Graphite, Rutile Graphite, Rutile Pseudoanatase, Pyrite, Feldspar Pyrite, (? Co-) pentlandite, Pseudoanatase, Feldspar
72240085	f 2 3 4	Graphite, Rutile, ?Tourmaline Tourmaline, Graphite Graphite, Rutile Quartz, Graphite, Anatase, Rutile, Tourmaline
72240090	1 2 3 4	Brookite, Rutile, Graphite, Tourmaline, ?Anatase, Zircon Rutile, Anatase, Graphite, Zircon Rutile, Anatase, Graphite, Zircon, ?Opal Rutile, Opal
72240098	4 Mc 1 9/2	Tourmaline, Rutile, Pyrite, Sphalerite, Hematite, ?Pseudoanatase, ?Graphite Pyrite
72240099	H 41 T 68	<pre>?Opal Quartz, Anatase, Rutile, Tourmaline, ?Graphite</pre>

Identification (including semi-quantitative analysis) of minerals in tuffs, shales & dolerites

from Woodlawn, N.S.W.

by

G.W.R. Barnes

The Woodlawn ore body is a massive base-metal sulphide deposit within felsic tuffs of Upper Silurian age.

The samples obtained are generally unmineralised but some do contain disseminated mineralisation.

105 total rock powders were submitted by Dr. I.B. Lambert for mineral identification by X-ray diffraction and, if possible, quantitative mineralogical analysis. The first task was relatively easy, but only an approximation to the second could be obtained.

The method involved making up multi-minerallic mixtures of varying but known mineral composition and obtaining diffraction charts from these samples, comparing selected peak heights for each mineral with those on the unknowns, and extrapolating where necessary.

The following results were obtained (see following pages):

- N.B. (a) Numbers are in percent (accuracy is \pm 5-9% absolute for major minerals).
 - (b) a ? indicates that the mineral may be present, but that positive identification was not possible.
 - (c) m indicates that the mineral is present but in quantities generally less than 1-5%.
 - (d) X indicates that a mineral is present, but that % estimates could not be made, eg. within members of the plagioclase group.

The locality of Woodlawn is marked on the Canberra 1:250 000 sheet, SI55-16.

		(ىر	ar	tze	0-	fe	La	sp	ati	hic	=	Te	ift	5	4	vit	<u> </u>	. /	70	, 0)C	m	in	2	~	SU	Iphide
BMR Registered Number	Quartz	Albite	Oligoclase	Andesine	plagioclase composition	Microeline	Intermediate	Orthoclase	Indeferminate K-feldspar	Muscovite	Scricite	chlorite	Mg-chlorite (Elinochlore)	Montmorillonite	Kaolinite	74(c	Tremolite	Indeterminate Amphibole	Pyrite	Sphalerite	Galena	Chalcopyrite	Epidote	Calcife	Sphene	Apatite	Zircon	Stil promelane
74420011-1	84									5	?	m		11									m		m			
74420011-3	89	m					!			1	m	m		10														
74420011-4	95									1		4															m	
74420011-5	92					<u>-</u>				1	1	6			?			: -		m								
74420011-6	94									1										5	?			?			m	
74420011-7	96	1								2		1								m			?			i,	m	?
74420011-9	94									1	J	4															3	
74420011-10	83	1								4		11															3	
74420011-12	94									1		5		רח													m	
74420011-14	92									1.		6		m		8	a			m		N.						
74420011-15	90	m								3		7			m												3	
74420011-16	95		,							1		4		m														
74420011-17	86									m		14				?											m	
74420011-18	96									1		3															m	
74420011-26	-		*							3		13		4													?	
74420010-2	87									3		10			3				?	m							?	
74420010-3	87									2	-	11									?						m	
74420010-8	93									71		7		?		?					m							
74420009-1	92								m	3		4		m					m	1								
74420009-4	92									3		4							3	ı							?	

Quartzo-feldspathic	Tuffs	with	no,or	minor	sulphide	(cont.)
---------------------	-------	------	-------	-------	----------	---------

BMR Registered Number	Quartz	Albite	Oligoclase	Andesine	plagic (45e composition	Microcline	Intermediate	Orthoclase	Indeterminate K-feldspar	Muscovite	Sericite	chlorite	Mg-chlorite (Elinochlore)	Montmorillonite	Kaolinite	7.01c	Tremolite	Indeterminate Amphibole	Pyrite	Sphalerite	Gales	Chalcopyrite	Epidote	Calcife	Sphene	Apatite	Zircon	stil promelane										
74420009-10	95									m	m	1			m				3	?										-	1 -	1	1			-		
74420009-11	85	M								3		5							.7	?	m			m			m		_	1	<u> </u>	1	1		-			L
74420009-12	94									6		m			?					M	?			?	?				_	1	-	<u>.</u>		1_	; - +		<u> . </u>	<u> </u>
74420009-13	93				12						m	7													m		?				1	1		1				<u> </u>
74420009-16	92									1	?	7							Ĺ	m										_	<u> </u>	1						<u> </u>
74420012-1	42	×	54		Ann					1		3	3							m		?						3				1_			-			
74420012-5	43	56			Anz					m		1				?			N.	T		?								1.	1		<u> </u>					<u> </u>
74420003-1	54	42			An ₄					m		2		?					2			ന													i	-		
74420003-3	12	74	X		An.					1		/3								77										_						ļ —+—		
74420003-5	78	X	15		Anz					1		5																						1	1_	1		
74420003-7	48		50		Aniz					m		2												L					2		1_			1		<u> </u>	ļ	
74420003-8	78	12	X							3		7							ļ								m					\perp		1	1_	1		
74420003-9	1	1	1	7 "	An ₃	; ;	i	!		1		2								?			ļ													-		<u> </u>
74420002-1	40	38			An.		21			m				n					1		i i						?	-								<u> </u>		ļ
74420002-2	14	46	X		Ang			m		m		9											?	31			m						\perp			_	1	_
74420002-3	18	68			Ana							14				?									m		?	?		1			1	1	1		1.	_
744Z000Z-A	-+	1	•		An,			m				13			3					?	m				?	?	?					\perp					1	
74420004-	88		11		An ₂	+				1										m														\perp			1	
74420004-	89									2		9			n																		\perp			1	<u> </u>	1
74420004-	+	1					1	~	1	2		10			m																							

BMR Registered Number	Quartz	Albiłe	Oligoclase	plagice lase composition	Microeline	Microcline Orthoclase	Indeterminate K-feldspar	Muscovite	Scricite	chlorite	Mg-chlorite (Clinochlore) Montmorillonite	Kaolinite	Talc	Indeterminate Amphibole Purite	Sphalarite	Gales	Chalcopyrite	a pidote	Sphene	4patite	Zircon	stil promelane								
74420004-5	68			Ang		n		m		m	n	- +	•	5		•					m			•						
74420004-7	97	T		Ans				m		3			1		?	İ		1			?			<u> </u>			•			
74420008	85	15		An.		7		m	Ĺ				·	ď	וֹכ	.	1	1		L		: -,	_i	<u> </u>	· 	<u>.</u>			: 	·
								-30						y his				7	·T-	T	T			1.	L . I		. 1		- 1	
	+		· - •	T -		7	- Ţ *	! _ !			1	1	1 - 1							i			i	i		3				
	+	-	+-	I		1-	1	50	├ ──┿	11			?	-+	} m	+	12	· i	+	+	m		-	-			+	-	+	- i -
74420009-1	\$ 6	m	+-	I -	- -	- - - -	- 			35			++-	3	0 12	m	17		+-					-			+		+ -	
74420009-15	70	m		-		- - - - -	1	50 m		35 11			m	30	0 12	E E		5	•	m	?								! ! !	
74420009-15 74420009-15	70	m		<u> </u>		+-	 			35 11 20		?	++-	30 10 20	0 12	m m	17 57	5	•	3 3	s.								! ! !	
74420009-15 74420009-15 74420009-16	70 3	m				+				35 11 20 71		?	m	30 10 20 20	0 12	m m		5	1.	m	?									
74420009-12 74420009-15 74420009-18	70 3 3	m								35 11 20 71 5		?	m m	30 10 20 20	0 12	m m		5	1.	+	s.									
7442009-15 74420009-15 74420010-9 74420011-20	70 3 3 3 80	m ?								35 11 20 71 5 7		?	3 3 3	30 10 20 20 13	0 12	m		5	1.	m	° .									
7442009-15 7442009-15 74420010-9 74420011-20 74420011-21	3 3 3 80 61 46	m ?						m		35 11 20 71 5		2	3 3 3 3	30 10 20 20	0 12	m		5	1.	m	° .									
7442009-15 74420009-15 74420010-9 74420011-20	3 3 3 80 61 46	m ?						m - m		35 11 20 71 5 7		?	3 3 3 3	30 10 20 20 13	2 ?	m m		5	1.	?	° € ° €									
7442009-15 7442009-15 74420010-9 74420011-20 74420011-21	3 3 3 80 61 46	m ?						m - m	ş	35 11 20 71 5 7 35		?	3 3 3 3	30 20 20 13 37	0 12	m m		5	1.	m	° € ° €									
7442009-15 7442009-15 74420010-9 74420011-20 74420011-21 74420011-23	3 3 3 80 61 46 61	?						m - E E	ş	35 11 20 71 5 7 35 m		?	3 3 3 3	30 20 20 13 37 19	2 ?	m m		5	1.	?	° € ° €									
7442009-15 7442009-15 74420010-9 74420011-21 74420011-23 74420011-23	3 3 3 80 61 46 61 3	?		Ana				m m m	ş	35 11 20 71 5 7 35 m 39			3 3 3 3	30 20 20 13 30 30 50 70	3 ?	m m	57	5	1.	?	3 ° E									

			-	r				TU :		1-		1.0	1	. т	,	y r			1 -	Γ		7	7		J	:		T		- •	T- T
BMR		, 55	, ,	Plagiociase Composition	Microeline	Intermediate	orthoc (asc	Indeferminate K-feldspar	te	U	Mg-chlorite	Montmorillonit	Kaolinite	i	Tremolite	Amphibole	-ite	·	yrite	J	U	3	J	C	nelon			. !	į		
Registered	-tz	دراء	Sir	80	100	S.C.) 0	3	2	cit	200	0	Č	U	10	1.50	و د	5	3	of	zi.f	3	fit	irco	5						
Number	8	30,6	6	20	2	500	70	40	SC	٠٠.	Chlorite	4.5	0	Talc	\ \	20	Sphaler	Galena	Chalcopy	Epidote	calcife	Sphen	Apatit	. 5	stil pro			į	•		
	9	Albite Oligoel	Andesin	23	Z	Int	5	In X	Muscovite	Sericit	2 6	200	Ka	L	الم	44. 5.5.0	E, N	V	ည်	EP	U	S	4	N	246					_	
74420013-1	96			+		,		-	3	?	ור			•			<u>_</u>	!		1								. !	1		
74420013-2	94				?				2		1	m	1				3											:	:		
74420014-1	34	18						?	20		28					,	77	?		?				?						•	<u> </u>
74420014-2	54	21							1		2.4		m	1				1											i +-		
74420009-2	89								5	.	6						? 1) . -+								- + - +			1		ļ
74420009-9	72					L		m	8		8					1	2 ?	?		<u> </u>	?			?							
74420009-6	81					1	İ		5		14					 	n	?		1	<u> </u>			?							1-1
74420012-4	77	20	2	Aniz		Ĺ			1		2	m					?		?	 	?			m							1 1
74420005-1	68							m	15		16		m					. ?								-		-			
74420005-2	85	5	•					?	8		m	~					2 ?				į			?							
74420007-2	78	15					:	?	4		2	m	m	m		_	1	+		+	1					1				· j -	1-1
74420002-5	70	15						?	7		7					İ	4	?			1										1
74420002-6	74	12						?	5		8			?		1		?			. 1			m		4	L			- +	.
74420002-7	78	5			··		1	m	10		7		m				n)	<u> </u>	<u> </u>	?										1_1
74420001-1	93		<u>.</u>					ļ -	2		2	-	1_				2	1_		1	ļ									<u> </u>	-
74420001-3	64				· •	+	***	+	35		1	m	m	1				-	<u> </u>	?				?				!			1
74420001-4	92							ļ	m		8		r	١			· ~)	: +	m	ļ	ļ		?							
				1	ļ ——	-	_+	1					J	+			:	÷ -	ļ		· -	ļ									
*				<u>.</u>		1	ļ •		. 1			1_		:				į	,	1	ì										1
					,		1						1			į			i								İ				

		`	Sh	ale	2 5	Σ	3.	Tu	ff	5	W	it	4	,	nc	d	er	ate	:	f	-y	ri	te		٥٥	חכ	te	0	Ċ						5
BMR Registered Number	Ouartz	Albife '	Oligoclase	Andesine	plagioclase composition	Microcline	Intermediate Microcline	Orthoclase	Indeterminate K-feldspar	Muscovite	Scricite	chlorite	(clinochlore)	Montmorillonite	Kaolinite	Talc	Tremolite	Indeterminale Amphibole.	37.6	Sphalante	Galena	Chalcopyrite	Epidote	calcite	Sphene	Apatite	Zircon	stil promelane					;		
74420011-2	84	m								8	?					m		8	3	X			m		m										
74420011-8	17		48	1	An,			?		m		31	-					4	1	m				m			m				 			<u>.</u>	
74420011-11	84	m								4		6						4	1	2	m			m									,		
74420011-19	91		L							3		6			m			-	>	?		?	m				?								
74420011-22	95	m		<u> </u>						1		2						Z	2	X															
74420011-24	-			<u> </u>						m		8								m							m								
74420011-27	+									1		3						n	7		m						?								
74420006-1	+								?	5		1			m	?			וח	m	?				m		m								
74420006-2	90									6		4		?	m			7	מ	_			?			*	?								
74420007-1	1		m							2		2		?	?				ח				m		is .										
74420012-3	90		m		An		m			6		4		m	m				_	_		?													
74420003-2	86	2			Ano					1		3			?		4		8	m							?								
74420001-2	92						<u> </u>			5		3		?	m			n	7		m				3		m								
74420001-5	92								m	2		6		m	?					m			-												
74420001-6	95	1								3		1		m		?	?	n	7								m								
74420001-7	96	m								3		1	9		100	m		7	ים	ומ															_
74420001-8	87	m								8		5							7	77					m										
74420001-9	81							8.	?.	14		5		m		?		n									~								
74420009-3	91	m								4		4		?				n	ח								m								
74420009-8	80									7		13							7							?	m								

* ***	Shale	s &	Tuffs	with	moder	ate p	pyrite	cont	ent (co	nt.)	Е
BMR Registered N	Albite Oligoclase Andesine Plagioclase	Microsition Micrositine Intermediate	Orthoclase Indeferminate K-feldspar	Sericite Chlorite Mg-chlorite (Elinochlory)	Montmorillonite Kaolinite Talc Trenolite	Amphibole Pyrite Sphalerite	Galena Chalcopyrite Epidote	Calcife Sphene Apatite	Zircon Stil pnomelane		
74420010-4 65			7	23		mm	5	m			
74420010-5 85			6	8	?	1 ×	m	m?	?		
74420010-6 83	1		1	11	?	2 2		m			*
74420010-7 83			4	13		mm.	m	3			
74420009-5 53 74420009-17 84	Tuf1	11	sith i		nlorite	6 m	77		m		
74420011-13 5	- + - + - + -	-++	3	· · · · · · · · · · · · · · · · · · ·	+ + + + +	10					-
74420010-1081			m	+ + + + + + + + + + + + + + + + + + + +	+ + + + +	3			?		+
74420004-686		+ +	4	5 ?		5	+++	+ +	m		+-
			δο	lerites							
74420010-1 4	26 A	716	6 1	8	? 55	m		?	1.		
74420004-4146		79	7 ?	12				?	m		
74420012-2 m	27A		9	4	60						
											-

Mineralogical analysis of granites from the

Barberton Mountain Land, South Africa

by

G.W.R. Barnes

17 powdered rock samples from South Africa were submitted by Dr. A.Y. Glikson for mineral determination (including quantitative analysis) by X-ray diffraction (see Laboratory Report No. 90 for discussion).

The results are set out in the following table.

- N.B. (a) Numbers are in percent (accuracy is 5-9% absolute for major minerals).
 - (b) m indicates that the mineral is present but in quantities generally less than 1-5%.
 - (c) a ? indicates that a mineral may be present, but peaks are not of sufficient intensity for absolute confirmation.

Notes:

Muscovite was not detected in 07, but the percent is high in 34 and 37 and ranges from less than 1% to about 10% in the other samples. If the 10Å peak of muscovite is carefully examined and the total height of the peak designated A, then the height of the secondary peaks on the low angle flank of the peak can be measured, and designated B; the A/B ratio increases with the degree of metamorphism, since metamorphism results in the closing of the expanded layers, (Weaver, 1960).

Values for samples 34 and 37 were 8.4 and 11.7 respectively, (corresponding to weak to low grade metamorphism). The sharpness ratio for the other samples ranged from 1.3 to 3.6 (mean ~2.3). It appears then that the muscovites in rocks with a high A/B ratio are different to those with the lower A/B ratio. In fact, 34 and 37 are serioite schists — the rest are granites.

To determine whether or not the chlorites were all the same type, the (00 ℓ) reflections (ℓ =1-5) were examined. For iron-rich chlorites, strong (002) and (004) with weak (001), (003) and (005) reflections are present; this was the case with these samples.

The ratio of the intensity of (001) to (004) was taken as a measure of the similarity within the chlorites of structural type related to the degree of replacement of Si by Al in tetrahedral sites. This ratio ranged from 0.37 to 0.69 (mean ~ 0.50) and appears to indicate that they are all of a similar chlorite type.

3 K-foldspar phases were recognised - orthoclase, microcline and, in places, an intermediate member.

Plagioclase was not detected in 34 and 37 but of the other samples, albite was present in all but 106, 117 and 118 - here oligoclase (${\rm An}_{16}$ and ${\rm An}_{21}$) was present.

Reference:

Weaver, C.E., 1960. Possible uses of clay minerals in the search for oil. "Clay and clay minerals (8th Nat'l Conf., 1958)", pp. 214-17.

Granites & sericite Schists from the Barberton Mountain Land, South Africa

BMR Registered Number	Quartz	Albite	Oligoclase	Plagioclase	Microcline	Intermediate	Orthoclase	Indeterminate X-feldspar	Muscovite	chlorite	Hornblende	Hastingsite	Tremolite - Actinolite	Indeterminate Amphibole	Epidote	Apatite	Sphene	Zircon				·					-	,				
73325007	1	21		Ana						5			73		m		?				3.50			<u>.</u>			1					
73325029	40	50		An					1	9								m														
73325034	80							?	20																							
73325037	62								38																							
73325078	28	70	m	Ana						2								m						74								i
73325090	24	63		Ana		6	4		m	3						?		m	Ī													
73325098	20	70		Ana					5	5						?		3	İ													
73325100	22	65		An	1	4			m	3			6			?	?	3														
73335104	20	56		Ana		19			,	3	?				77																	
73325105	34	41		An	8	12			2	3								5														
73325106	31		50	Ann		1	3	1	1	2		7		-				?			1	1										
73325108	35	36		And		14	11		m	4								?														
73325109	38	47		An,	+			1	m	2					m																	
73325 114		39		An	+	-	1		10	2			İ		m			m			1											
73345/15		47		An	19)			5	m		13						?														
73325117	29		62	Ana	•	5			m	3				?	?		je,	m														
73325118	38			Anz	+	7			6	m					?																	
					Í																											
	 		:	1	-		1		†								†						1	1								
	1		•	+	-	+	1		†		†									+	+-	-	1	1	1	1		 T				

Heavy minerals from stream sediments, Westmoreland area and Georgetown, Queensland

by G.W.R. Barnes

2 heavy mineral concentrates from the Westmoreland area and 6 from Georgetown, Qld, were analysed for A.G. Rossiter, by X-ray diffraction.

Sample numbers and results are tabulated below:

Sample No.	Locality	Minerals Identified
73760278	Cobar 2 Uranium mine, Westmoreland area.	Pitchblende
73760237	Crystal Hill tin mine	Topaz
73301023	Georgetown	Sphene, Quartz, ?Cerussite
73301158	Georgetown	Quartz, Goethite, Hematite
73301219	Georgetown	Cassiterite, ?Ilmenite
73301247	Georgetown	Ilmenite, Epidote, Quartz, ?Spessartite
73301501	Georgetown	Grossularite, Quartz, Sphene, Zircon
73301505	Georgetown	Quartz, Sphene, Hematite, Anglesite, Cerussite, ?Goethite.

73760278 and 73760237 are from the Calvert Hills 1:250,000 sheet, SE53-8. The remainder are from the Georgetown 1:250,000 sheet, SE54-12.

Date of Experiment	Expt. No./Starting material	Results
	brown	CaCO3.H2O
220373	A	Halite, Calcite, Aragonite, 2CaCO ₃ .H ₂ O ?Dolomite
130273	В	Halite, Calcite, Dolomite Aragonite
	PA ³ (washed-distilled water)	CaCO. H.O. Nesquehonite, Dolomite, Quartz
	(washed-acetone)	CaCO ₃ .H ₂ O, Nesquehonite, Dolomite, Quartz
	SW ³ (washed-distilled water)	CaCO3.H2O, Nesquehonite
	(washed-acetone)	CaCO3.H2O, Nesquehonite
230774	2B Ca	Calcite, Halite
	3 Ca	Calcite, minor Halite
	4 Ca	Calcite, Halite
	5 Ca	Calcite, Halite
	2B Ne	Calcite, m ⁴ . Halite, ?Magnesite
	3 Ne	Nesquehonite, m. Halite
		m. CaCO3.H2O
	4 Ne	Nesquehonite, m. Halite, m. CaCO3.H2O
	5 Ne	Nesquehonite, Halite, m. CaCO3.H2O
	4 'crust'	Nesquehonite, Halite, CaCO3.H2O
	5 'crust'	Nesquehonite, CaCO3.H2O, Halite
251174	2B Ca	Calcite, tr. Halite
4	3 Ca	Nesquehonite, Halite, CaCO3.H2O, ?Calcite
	4 Ca	Calcite, tr. Halite
	5 Ca	Calcite, tr. Halite
	2B Ne	Calcite, tr. Halite
	3 Ne	Nesquehonite, Calcite
	4 Ne	Nesquehonite, Calcite
	5 Ne	Nesquehonite, Halite, CaCO3.H2O, ?Calcite
	es that a sample has been taken from a 0) starting material layer & Ca indica aken from a calcite (CaCO3) starting m	
2. tr =	trace amount	

PA refers to Port Alma brine

minor amount (generally < 1-5%)

SW refers to sea water

4.

Conclusions reached as a result of these experiments:

- (a) Organic material helps in the precipitation of carbonate and in the localisation and reconcentration of Pb & Zn.
- (b) Mg carbonate hydrates form a thermodynamically unstable phase in the formation of dolomite.
- (c) Organic material helps in dolomite synthesis.
- (d) High bicarbonate concentration is a prerequesite to the formation of dolomite.

X-ray diffraction identification of minerals from experiments investigating the co-precipitation of metals with carbonate, in saline systems

ру

G.W.R. Barnes

Experiments, forming the basis of several papers by Drs P.J. Davies, J. Ferguson & B. Bubela, have been carried out on the co-precipitation of metals with carbonate in saline systems and the co-precipitation of dolomite with Mg & Ca carbonate hydrates. Mineral phases present from each experimental run have been analysed by X-ray diffraction; the results are displayed below.

Date of Experiment	Expt. No./Starting material	Results
	Calcite + Nesquehonite- algae	Nesquehonite
	Calcite + Nesquehonite + algae	Nesquehonite, Calcita Halite
120674	2Ne 1	Nesquehonite, Halite Dolomite, ?CaCO3.H2O
	2BNe	Nesquehonite, Halite
	3Ne	Nesquehonite, Halite ?CaCO3. H2O
•	4Ne	Nesquehonite, Halite
	2BCa ¹	Calcite, Halite
	3Ca	Calcite, tr ² . Halite
	4Ca	Calcite, tr. Halite
	5Ca	Calcite, Halite
	49	CaCO3. H2O, Aragonit
	50	CaCO3. H2O, Aragonit
	51	CaCO ₃ . H ₂ O, Calcite, ?Barringtonite
	52	CaCO ₂ . H ₂ O, Aragonit Magnesian-calcite
	53	Lansfordite,
		Barringtonite
	54	CaCO ₂ . H ₂ O, Aragonit ?Vaterite
	55	Magnesian-calcite, Vaterite
	57 white	CaCO ₃ . H ₂ O, tr. Aragonite

Evaporites from the Ngalia Basin, W.A.

by

G.W.R. Barnes

3 evaporites and 5 core extractions from the Ngalia Basin, W.A. were analysed by X-ray diffraction for A.T. Wells.

Sample numbers, localities and minerals identified are tabulated below:

Sample Number	Locality	Minerals Identified
72130066	E shore of Gregory salt lake near Len's bore; 0-0.003 m; Lucas 1:250 000 sheet, SF52-2	Halite, Quartz, Gypsum
73121571	W shore of Gregory salt lake; 0-0.003 m; Cornish 1:250 000 sheet, SF52-1	Quartz, Halite Gypsum
73121572	E shore of Gregory salt lake; 0-0.003m; Lucas 1:250 000 sheet, SF52-2	Halite, Quartz, Gypsum, Calcite
74880017	Core extraction from 74.37 m; BMR Browne No. 1; Browne 1:250 000 sheet, SG51-8	Quartz, Gypsum, ?Kaolinite
74660004 A	Core extraction from 21.3 m; BMR Mt. Doreen No. 1; Mt. Doreen 1:250 000 sheet, SF52-12	Quartz, Dolomite, Muscovite, Chlorite, Orthoclase
74660004B	Core extraction from 21.3 m; BMR Mt. Doreen No. 1; Mt. Doreen 1:250 000 sheet, SF52-12	Pyrite, Quartz, minor Dolomite, ?Chlorite
74660005	Core extraction from 22.56 m; BMR Mt. Doreen No. 1; Mt. Doreen 1:250 000 sheet, SF52-12	Quartz, Dolomite, Muscovite, Chlorite, Orthoclase, Gypsum, Anhydrite
74660006	Core extraction from 99.9 m; BMR Mt. Doreen No. 3; Mt. Doreen 1:250 000 sheet, SF52-12	Quartz, Kaolinite, Montmorillonite, Anhydrite

Mineralogical analysis of sulphide samples used in the isotopic determination of sulphur

ъу

G.W.R. Barnes
3 galena (PbS) samples from the Laisvall area, Boliden sulphide
deposit, Sweden and 4 sulphide extracts from the Lunnon Shute area,
Kambalda, W.A. were submitted by T. Donnelly and analysed by X-ray diffraction.
The results are tabulated below:

Number & Remarks	Locality	Mineralogy
1	Sweden	Galena, Quartz, minor Muscovite, ?Barite
3	Sweden	Galena, Quartz, Fluorite, ?Rutile
4	Sweden	Galena, Quartz, Barite, ?Rutile
acid treated	Kambalda	Pentlandite, Ilmenite, Pyrite
	(Widgiemooltha 1:250 000 sheet, SH51-14)	Quartz, ?Hematite
Background	Kambalda (Widgiemooltha 1:250 000 sheet, SH51-14)	Pyrrhotite, Pentlandite
Yellow Bands	Kambalda (Widgiemooltha 1:250 000 sheet, SH51-14)	Pentlandite, Pyrrhotite
White Blebs	Kambalda (Widgiemooltha 1:250 000 sheet, SH51-14)	Pyrite, Pyrrhotite, Pentlandite, Chalcopyrite, ?Calcite

Evaporites from the Lucas and Stansmore sheet areas, Western Australia.

by

G.W.R. Barnes

3 core extractions and one evaporite sample were submitted by Dr. D.H. Blake for X-ray diffraction analysis.

Sample numbers, localities and results appear below.

Sample Number	Locality	Mineralogy
73495032	BMR Lucas No. 32, Lucas 1:250 000 sheet SF52-2	Dolomite, Quartz, Illite, ? Microcline
73495035	EMR Lucas No. 35, Lucas 1:250 000 sheet, SF52-2	Quartz, Kaolinite, Muscovite
73495038	BMR Lucas No. 38, Lucas 1:250 000 sheet, SF52-2	Gypsum, Bassanite
72490413	'Salt' crust from SE shore of L. Wills. Stansmore 1:250 000 sheet, SF52-6	Quartz, Halite, Gypsum, Glauberite

Identification of minerals from Antarctica & Africa

by

G.W.R. Barnes

8 minerals from Antarctica and 3 from Africa were submitted by Dr. J.W. Sheraton for identification by X-ray diffraction. The results are set out below.

Registered Number	Locality	Mineral
R11371	Mt. Bayliss, Sthn Prince Charles Mtns, Antarctica. Mt. Menzies 1:250 000 sheet SS40-42/6	Allanite
73281396	Mt. Dummet, Prince Charles Mtns., Antarctica. Compston Massif 1:250 000 sheet SS40-42/7	Chalcocite
73281595	Manning Massif, Nthn Prince Charles Mtns., Antarctica. Beaver Lake 1:250 000 sheet, SR41-42/11	Natrolite
73281710	Keyser Ridge, Sthn Prince Charles Mtns, Antartica. Compston Massif 1:250 000 sheet, SS40-42/7	Allanite, Quartz, Albite K-feldspar
73281916	Mt. Twigg, Prince Charles Mtns, Antarctica. Mt. Twigg 1:250 000 sheet, SS40-42/12	Fluorapatite
73281946	Mawson Escarpment, Antarctica. Mawson Escarpment South 1:250 000 sheet SS40-42/8	Dolomite, Tremolite
73281947	Mawson Escarpment, Antarctica. Mawson Escarpement South 1:250 000 sheet, SS40-42/8	Tremolite
A	Victoria Falls, Zambia	Scolecite
В	Isimila, Tanzania	Goethite
C	L. Nakuru, Kenya	High-sanidine

Heavy minerals from the Georgina Basin, Qld, and Lake Frome, S.A.

by

G.W.R. Barnes

10 heavy mineral concentrates, extracted from sediments, were submitted by J.J. Draper and analysed by X-ray diffraction.

The results are tabulated below:

		at the state of th
Registered Number	Locality	Minerals Identified
74710108	Georgina Basin, Qld. Boulia 1:250 000 sheet, SF54-10	Quartz, Goethite, Muscovite, ?Arsenopyrite
74710108A	11	Quartz, Muscovite, K-feldspar, Kaolinite
74710108B	11	Quartz, Microcline, Muscovite, ?Kaolinite, Zircon, Rutile
74710109	Ħ	Tourmaline, Hematite, ?Epidote ?Apatite
74710126	u	Calcite
74711060	H	Goethite pseudomorphing pyrite
74712235	n	Calcite
74712237	II	Quartz, K-feldspar, Fluorite, Calcite
73010001A	L. Frome, S.A. Frome 1:250 000 sheet, SH54-10	Magnetite, Ilmenite, Zircon Hematite, Quartz, ?Rutile
73010001B	, n	Zircon, Quartz, Ilmenite, Rutile
73010121	Core extraction from L. Frome, S.A. Frome 1:250 000 sheet, SH54-10	Gypsum, Halite

Miscellaneous heavy mineral determinations

by

G.W.R. Barnes

Heavy mineral concentrates from various localities were submitted by K.A. Heighway for mineral determination by X-ray diffraction.

Some samples were entire concentrates, others were hand-picked mineral grains. The results appear below:

Remarks

Queensland locality

Unknown locality

11

New Zealand No. 1 Beach sand

Bawley Pt., N.S.W. Ulladulla 1:250 000 sheet, SI56-13

Norah Head, N.S.W. Newcastle 1:250 000 sheet, SI56-2 Mineralogy

Zircon, Barite, Labradorite, Andalusite, Quartz

Quartz

Epidote

Corundum

Quartz, Labradorite, Diopside, Tremolite, ?Magnetite

Magnetite, Zircon, Ilmenite, Rutile, Sphene, Corundum, Goethite

Zircon, Rutile, Ilmenite, Spinel, Critchtonite, ?Garnet

Identification of refractory minerals in kerogens from black shales, Woodcutters' prospect, Rum Jungle, N.T.

bу

G.W.R. Barnes

6 kerogens, their host shales and one kerogen extract from a chert were submitted by Dr J. Oehler for mineral identification by X-ray diffraction. The results are set out below:

Sample No.	Locality	Mineralogy
A	Woodcutters' prospect, Rum Jungle, N.T. Darwin 1:250 000 sheet, SD52-4	Graphite, Rutile
В	II .	Anglesite
С	17	Anglesite, Graphite, ?Jarosite, ?Pseudorutile
D .	11	Anglesite, Brookite, Rutile
E	Ħ	Rutile, Graphite
F	" .	Graphite, Rutile, ?Dolomite, ?Stolzite
Black Shales		
1	**	Quartz, Dolomite, Muscovite
2	17	Quartz, Sphalerite, Pyrite, Galena, Siderite, ?Epidote
3	11	Quartz, Pyrite, Sphalerite, Galena, Muscovite
4	· ·	Galena, Sphalerite, Quartz, Muscovite, Pyrite, K-feldspar
5	ri .	Dolomite, Quartz, Muscovite minor Pyrite, ?K-feldspar
6	11	Quartz, Dolomite, Muscovite, ?Pyrite, ?K-feldspar
Chert	Paradise Ck Formation, Mount Isa 1:250 000 sheet, SF54-1	Pyrite, Brookite

Mineralogical analysis of rocks from Tabar, Tatau & Lihir Islands, Papua-New Guinea

Ъу

G.W.R. Barnes

3 samples of thermally altered volcanic rocks from Tabar & Lihir islands (off the NE coast of New Ireland) and one from Tatau island, were analysed for Dr. R.W. Johnson, by X-ray diffraction.

The samples were crushed and the 90 - 500 µm fraction was put through a heavy mineral separation. Both the light and the heavy fraction were x-rayed. The combined results are tabulated below.

Sample Number	Locality	Mineralogy
G2006	Tatau Is., PNG. Mabua 1:250,000 sheet, SA56-10	Quartz, Hematite
G2O11/WTB 23	Tabar Is., PNG. Mabua 1:250 000 sheet SA56-10	Quartz, Oligoclase (An ₁₆), Dolomite, Chlorite, Muscovite, Pyrite, Spinel (possibly Titan- magnetite)
G2011/WTB 24	Tabar Is., PNG. Mabua 1:250 000 sheet, SA56-10	Quartz, Pyrite
G2O11/WL 1	Lihir Is., PNG. Samo 1:250 000 sheet, SA56-15	Alunite, Pyrite, K-feldspar (?Sanidine), Marcasite, Galena

Minerals from near Broken Hill, N.S.W.

by

G.W.R. Barnes

5 samples - 4 from near Broken Hill, N.S.W. and one from near Maldon, Vic. were submitted by Mr G.C. Meatheringham (a resident of Broken Hill). The minerals were identified by X-ray diffraction and results follow:

1. Magnetite, Hematite

2. Magnetite, Hematite, Quartz
3. Quartz, Plagioclase (An₈₋₁₂), K-feldspar, Muscovite, Epidote

4. Epidote

5. Safflorite, Pyrite

I. X-ray diffraction determination of detection limits for aragonite in aragonite/calcite mixtures.

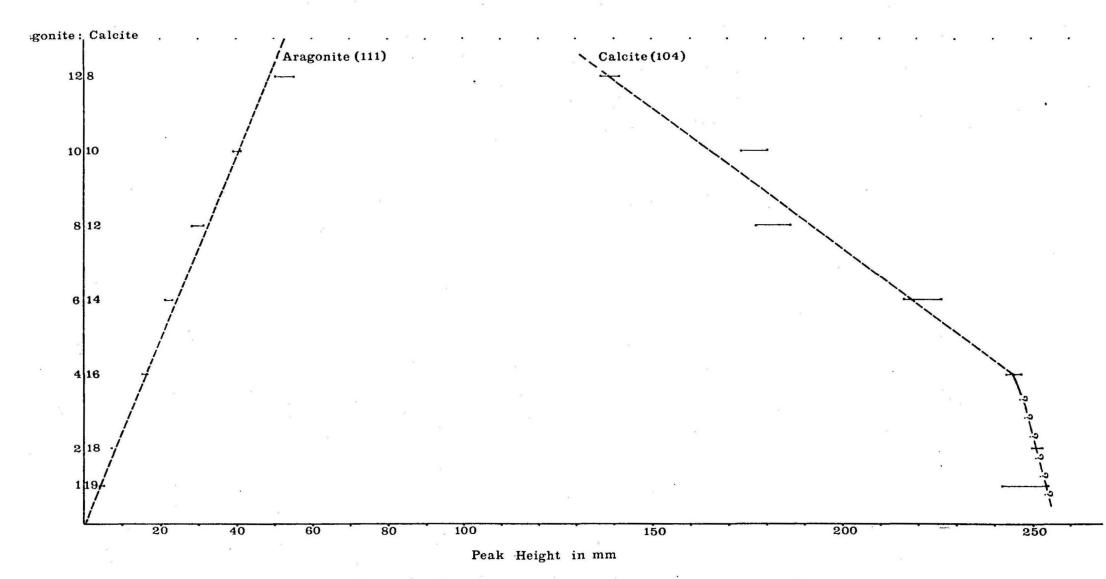
II. Curves for quantitative analysis

by

G.W.R. Barnes

8 mixtures of varying proportions of calcite: aragonite were prepared:

A	Calcite		
В	95% calcite	+	5% aragonite
C	90% calcite	+	10% aragonite
D	80% calcite	+	20% aragonite
E	70% calcite	+	30% aragonite
F	60% calcite	+	40% aragonite
G	50% calcite	+	50% aragonite
H	40% calcite	+	60% aragonite


A graph was drawn plotting peak heights in mm (for calcite the (104) reflection was used and for aragonite the (111) reflection was used) against the ratio of aragonite to calcite in the mixture (see graph next page). The minimum detection limits for aragonite were determined to be about 2-3%.

Operating conditions of Philips PW1051 X-ray diffractometer:

Cu K radiation with Ni K filter. 1500 W tube; 1092 W operating power.

Divergence slit 1°, Receiving slit 0.2°, Scatter slit 1°. EHT supply 1670 V. Goniometer speed 1°/minute; Chart speed 10 mm/minute.
Amplification factor 1 x 10° counts/second; Attenuation 24; Time constant 1.

I. X-ray diffraction determination of detection limits for aragonite in mixtures of aragonite and calcite. II. Curves for quantitative analysis

Laterites & calcretes from the Canning Basin, W.A.

by

G.W.R. Barnes

8 samples from the Canning Basin, W.A. were submitted by A.N. Yeates for mineral determination by X-ray diffraction. The results are set out below.

Sample No.	Locality	Mineralogy
L519 Cainozoic breccia	Sth Bishop Range, Lucas 1:250 000 sheet, SF52-2	Quartz, Kaolinite
S104 Pisolitic laterite	Near Pt. Moody, Stansmore 1;250 000 sheet SF52-6	Hematite, Quartz
\$105	W. edge of Stansmore 1:250 000 sheet, SF52-6	Gypsum
S110 Calcrete	(Eastern) Helana 1:250 000 sheet, SF52-5	Quartz, Dolomite, Calcite,
S114 Calcrete	(Western) Stansmore 1:250 000 sheet, SF52-6	Calcite, Quartz
S314 Calcrete	(Western) Stansmore 1:250 000 sheet, SF52-6	Calcite, Quartz
S321 Calcrote	(Western) Stansmore 1:250 000 sheet, SF52-6	Calcite, Quartz
S614 Calcrete	Near Lake Hevern, Stansmore 1:250 000 sheet, SF52-6	Calcite, Quartz

Zinc Content of Molonglo River Water

by

P.J. SWAN, B.I. CRUIKSHAHK & J.C.W. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 28 November 1974

Sampling points	Sp. Cond. (umho/cm)	рН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	221	6.7	0.09	0.20	1.94'
Honeysuckle Crk (F2)	157	6.7	0.03	0.06	-
Lake Burley Griffin	at				
Scrivener Dam (H4)	162	6.9	0.03	0.07	24.981

Bracketed numbers are Department of Housing and Construction stream gauge reference numbers.

Zinc Content of Molonglo River Water

by

B.I. CRUTKSHANK & J.C.W. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Nine Waste Pollution in the Molonglo River.

Date of sampling 19/12/74

Sampling points	Sp. Cond. (umho/cm)	pН	Z_n (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Holonglo River at		9.			
Burbong Weir (D2) (410705)	272	6.7	0.13	0.15	0.501
Honeysuckle Crk (F2)	204	7.0	0.02	0.03	-
Lake Burley Griffin at					
Scrivener Dam (H4)	198	6.7	0.02	0.03	24.851

Bracketed numbers are Department of Housing and Construction stream gauge reference numbers.

Investigation of museum mineral species

by

G.W.R. Barnes & D.H. McColl

During 1974, as in previous years, investigation of mineral specimens (by X-ray diffraction), from the museum, was an important component of the work of the section. This work involves identity confirmation of known materials from reference collections, with comparison to unknown specimens collected in the field or from other sources.

Interesting and unusual results include the discovery of rare species (e.g. Gerhardite from the Great Australia Mine, Cloncurry, Qld) and investigation of unusual varieties (e.g. the dark red variscite from Iron Knob in S. Aust.).

Powder diffraction photography was also introduced to facilitate the use of very small sample quantities, especially for scarce and valuable samples. The cameras are a specially modified type allowing exposure periods to be reduced to as little as 10 minutes.

Investigation of mineral suites from the copper-lead carbonate deposits at Brown's Deposit, Rum Jungle, N. Territory, and of oxidised mineralisation of various kinds from the current open cut mining at Broken Hill, NSW, is still proceeding.

A summary of the X-ray work undertaken for the BMR museum is presented in tabulated form below.

Registered No.	Identification	Locality
Arc 179	Grossularite	Broken Hill, NSW
Doo 1583	Axinite, Chlorite	Dauphine, FRANCE
BMR 472	Manganosite	Längban, SWEDEN
BMR 926	Hausmannite, Braunite	Ilmenau, Thuringia, GERMANY
BMR 1242	Muscovite	SWITZERLAND
BMR 1852	Galaxite, Hausmannite	Bald Knob Mtns, Allegahany
		County, N. Carolina, USA
BMR 1863	Hollandite	Virgin Valley, Nevada, USA
R 839	Ferritungstite, Quartz,	Black Andrew Mine,
	Kaolinite	Wee Jasper, NSW
R 996	Muscovite	Williamstown, SA
R 1297	Sphene	Radium Ck, Mt Painter, SA
R 1314	Limonite/Goethite	10 m NE Mt Ida, NT
R 2610	Stibnite	1000' level, Lake View Shaft,
		Kalgoorlie, WA
R 4309	Scapolite, Emplectite	Broken Hill, NSW
R 4800	Hibschite	"Bauple", via Tiaro, QLD
R 13783	Chalcopyrite, Chalcocite	Ruddygore Mine, Chillagoe,
*		N QLD
R 17518	Axinite	2 m N Ravenshoe Tin
R 18100	RE oxide mixture	Poseidon Mines NL, WA
	(?Davidite)	
R 18346	Pyromorphite	Brown's Deposit, Rum Jungle, NT

Registered No.	Identification	Locality
R 18454	Alabandite	Broken Hill, NSW
R 19012	Natrolite	Ardglen, NSW
R 19040	Muscovite	Wauchope, NT
R 19183	Sphene	Capelinna, Minas Gerais, BRAZIL
R 19329	Cerussite, Malachite	Cordillera Mine, Crookwell, NS
R 19729	Manganite	Cumberland, UK
R 19755	Franklinite	Franklin Furnace, New Jersey, USA
R 20774	Pyromorphite	Brown's Deposit, Rum Jungle, NT
R 20815	Topaz	Petersen's Lode, Mt Garnet, QL
R 20962	Mn - Diopside	Grabben Gullen, NSW
R 21099	Mimetite	Mt Bonney Mine (10 m E Hays Ck NT)
R 21288	Pb/Zn slag, isostructural	Broken Hill, NSW (North Mines)
	with Diopside	
R 21295	Wavellite	Iron Monarch Quarry,
		Iron Knob, SA
R 21296)	Calcite	Iron Monarch Quarry,
R 21303		Iron Knob, SA
R 21308)	Gypsum, ?Arcanite	Iron Monarch Quarry,
R 21309	dypsum, Ricallice	Iron Knob, SA
R 21310	Pyrolusite, Hematite	Iron Monarch Quarry,
	-	Iron Knob, SA
R 21318	Pyrolusite	Iron Monarch Quarry,
	•	Iron Knob, SA
R 21420	Calcite, Quartz, Sphalerite,	NBHC Mine, Broken Hill, NSW
	Galena, Pyrrhotite	NUMBER OF A REPO
R 21421	Anhydrite, Gypsum	NEW ZEALAND
R 21423	Mimetite Dustite	Mt Bonney Mine, NT Mt Bonney Mine, NT
R 21424	Mimetite, Duftite Mimetite	Mt Bonney Mine, NT
R 21425 R 21426	Phosphatian Mimetite,	Mt Bonney Mine, NT
n 21420	Mimetite	The Bolling Tillie, 112
R 21454	Pyromorphite	Peelwood copper mine,
	-,	Crookwell, NSW
R 21455	Cerussite	Peelwood copper mine,
*		Crookwell, NSW
R 21456	Siderite	Broulee Pt, NSW
R 21469	Graphite	WESTERN AUSTRALIA
R 21470	Galena, Tetrahedrite	Broken Hill, NSW
R 21471	Arsenopyrite, Löllingite,	Maldon, VIC
D 24492	Pyrite, ?Safflorite Triplite - Wolfeite	Egebek Rd, Thackaringa, NSW
R 21482 R 21489	Pyrargyrite	Level 12, Junction Mine,
11 21409	Tyrangyiro	Broken Hill, NSW
R 21500	Maghemite, Pyrolusite	21 level, NBHC Mine, Broken Hill, NSW
R 21505	Pyrite, Chlorite, Quartz	Level 12, Junction Mine, Broken Hill, NSW
R 21506	Silver, Sphalerite,	Level 12, Junction Mine,
2 "	?Xanthoconite	Broken Hill, NSW
R 21507	Clinoptilolite	Wollongong Mine,
		(Council Dump near Berkley)
R 21508A	Microcline	17 level 7 S.W., Zinc Corp'n
R 21508B	Johannsenite	Mine, Broken Hill, NSW 17 level 7 S.W., Zinc Corp'n
* *		Mine, Broken Hill, NSW

Registered No.	Identification	Locality
R 21509	Ilvaite	Zinc Corp'n Mine, Broken Hill, NSW
R 21510	Ilmenite)	Bentle Deserved Commenting
R 21511	Rutile)	Bert's Prospect, Serpentine
R 21512	Rutile)	Hills, Thackaringa, NSW
R 21524	Pyromorphite	New Open Cut, Blackwood's Shaft, South Mine, M.M.M., Broken Hill, NSW
R 21527	Pyromorphite	100' level, Retallick's Shaft, Junction Mine, Broken Hill, NSW
R 21531A	Spessartite, Muscovite,) Feldspar	Nearest to Marsh's shaft,
R 21531B	Smithsonite, Cerussite,) Quartz)	200' level, Retallick's shaft, Broken Hill, NSW
R 21531C	Cerussite, Smithsonite,) Galena	
R 21532	Hyaline Opal	Blackwood's shaft, South mine, M.M.M. Open Cut, Broken Hill,
		NSW
R 21533A R 21533B	Pyromorphite) Cerussite, Kaolinite,) ?Pyrrhotite)	200' level, Retallick's shaft, Junction Mine, Broken Hill, NSW
R 21589	Fe & Mn oxides, Quartz, Halloysite	5000 m deep, near Marshall Is, Pacific Ocean
R 21591	Marcasite, Pyrite	Ertsberg copper mine, West Irian
R 21619	Olivenite-Libethenite	Colereina copper mine, Nymagee, NSW
R 21747	Variscite (dark red var.)	Iron Knob, SA
R 21771	Dolomite	3.5 m W of Stapleton Siding, Rum Jungle, NT, Drill Hole
		R32/74
R 21776	Jarosite-Natrojarosite	Londonderry, WA
R 21789A	Calcite	Manager TDAN
R 21789B	Chalcedony)	Mashhad, Khorasan, IRAN
R 21789C	Calcite)	*
R 21789D	Pyrolusite)	Broken Hill, NSW
R 21802	Smithsonite	
R 21884	Wavellite	Bodalla, NSW
R 21886	Turquoise	Bodalla, NSW
R 21887	Turquoise	Bodalla, NSW Bodalla, NSW
R 21888	Wavellite	Casa Grande, Arizona, USA
R 22053	Pyrolusite, Ramsdellite	Iron Knob, SA
R 22056	Pyrolusite Hausmannite	Thuringia, GERMANY
R 22060		Northbourne Ave, Canberra, ACT
R 22071	Pyrolusite	Zeehan, TAS
R 22134	Boulangerite	MEXICO
R 22148	Boulangerite	Paremea, SPAIN
R 22196	Calcite	Grand Canyon, Arizona, USA
R 22214	Brochantite	Pamplona, SPAIN
R 22299	Dolomite Gibbsite	Dundas, TAS
R 22451	Hydrated Mg, K phosphate,)	•
R 22554	isostructural with Struvite)	Skipton Caves, Ballarat, VIC
R 22555	Newberyite)	***************************************
R 22557	Eosphorite	Jacqueral, Minas Gerais, BRAZIL
R 22559	Hydroxyapatite	Mapimi, MEXICO

Registered No. Identification Locality R 22748 Hemimorphite SARDINIA R 22970 Flinders, VIC Gmelinite, Analcite R 22972 Herschelite Flinders, VIC Chabazite, ?Okenite R 22974 Nova Scotia, CANADA Scolecite, ?Hillebrandite Poona, INDIA R 22989 R 22996 Datolite possibly Poona, INDIA R 23048 Natrolite Oregon, USA Arizona, USA Azurite, Malachite R 23171 R 23285 Chalcostibite, Malachite, probably USA Azurite, Tetrahedrite XRD 74/758 Gerhardite, Atacamite, Great Boulder Mine, Malachite Cloncurry, QLD File 74/512 Cassiterite unknown File 74/858 Iron Knob, SA (JEJ-612)Pyrolusite File 74/858 (JEJ-883) Pyrolusite Iron Knob, SA File 74/858 (JEJ-1037) Pyrolusite Iron Knob, SA File 74/858 Iron Knob, SA Pyrolusite (JEJ-1052) File 74/858 (JEJ-1058) Lepidocrocite, Goethite Iron Knob, SA

Black Shales from Mt Isa, Qld.

by

G.W.R. Barnes

5 February, 1975

13 black shales were analysed by X-ray diffraction for B.A. Duff. The results are tabulated below

	Registered No	<u>.</u>	Mineralogy
¥	73201608	8 7	Quartz, Gypsum, Pyrite, Anhydrite, Muscovite, Anorthoclase
	73201612		Quartz, Muscovite, Pyrite, Sphalerite
	73201619		Quartz, Muscovite, Pyrite, Pyrrhotite
	73201621		Quartz, Muscovite, Augite, Anorthoclase,
	¥		?Digenite
	73201633		Quartz, Pyrrhotite, Calcite
	73201639		Quartz, Muscovite, Pyrrhotite, Bytownite
	73201645		Quartz, Muscovite, Pyrrhotite, Bytownite
	73201646		Quartz, Muscovite, Labradorite
	73201657		Quartz, Muscovite, Labradorite
	73201660		Quartz, Calcite, Bytownite
	73201665		Quartz, Muscovite, Andesine, ?Sphalerite
	73201666		Quartz, Calcite, Bytownite
	73201675	3	Quartz, Muscovite, Andesine

Carbonates from Naracoorte. S. Australia

by

G.W.R. Barnes

12 samples from Naracourte, S.A. were submitted by Dr. P.J. Cook for X-ray diffraction analysis. The results are displayed below.

Registered No.	Mineralogy			
74636100	Dolomite ¹ , Magnesian-calcite ² , Halite, Quartz, ?Nesquehonite, ?Illite			
74636101	Dolomite, Magnesian-calcite, Quartz, Halite, ?Aragonit			
74636102	Dolomite, Halite, Quartz, Illite, Nesquehonite, Magnesian-calcite			
74636103	Dolomite, Quartz, Halite, Illite			
74636104	Dolomite, Quartz, Halite, Magnesian-calcite, Illite			
74636105	Dolomite, Quartz, Halite, Illite			
74636106	Aragonite, Halite, Calcite, Magnesian-calcite, Quartz			
74636107	Halite, Aragonite, Magnesian-calcite, Quartz, Dolomite ?Illite			
74636108	Quartz, Illite, Calcite, Magnesian-calcite, Montmorillonite			
74636109	Quartz, Illite, Montmorillonite, Magnesian-calcite			
74636110	Quartz, Magnesian - calcite, Dolomite, ?Illite			
74636111	Magnesian-calcite, Quartz, Aragonite, Halite, ?Orthocla			

Notes:

- 1. Dolomite the (104) reflection for pure dolomite, CaMg (CO₃)₂, has a d-spacing of 2.886 Å. The dolomite present in these samples appears to be a more calcic variety; d(104) varies from 2.898 Å to 2.913 Å.
- Calcite pure rhombohedral $CaCO_3$ (calcite) has d (104) = 3.035 Å. Two calcites were close enough to this value to be called 'calcite', viz. 74636106, d(104) = 3.031 Å & 74636108, d(104) = 3.030 Å. The magnesian-calcite has a (104) d spacing varying between 2.986Å and 3.025 Å.

Heavy minerals from Connors Range, W of Mackay, Qld

by

G.W.R. Barnes

A heavy mineral concentrate was submitted by Mr T.H. McFadzen (a resident of Mackay) for mineral determination (particularly rare earth phosphates).

The sample was put through a magnetic separation and various fractions were analysed by X-ray diffraction.

Heavy minerals identified included rutile, zircon, pyrite, scheelite and sphene. Quartz and muscovite were minor constituents.