1976/55 copy 3.

BMR PUBLICATIONS COMPACTUS
(LENDING SECTION)

DEPARTMENT OF MINERALS AND ENERGY

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

Record 1976/55

055196

MISCELLANEOUS CHEMICAL, PETROGRAPHIC AND
MINERAGRAPHIC INVESTIGATIONS CARRIED OUT IN
THE GEOLOGICAL LABORATORY

JANUARY-DECEMBER 1975

Compiled

by

J.C.W. WEEKES

The information contained in this report has been obtained by the Department of Minerals and Energy as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

BMR Record 1976/55 c.3 Record 1976/55

MISCELLANEOUS CHEMICAL, PETROGRAPHIC AND
MINERAGRAPHIC INVESTIGATIONS CARRIED OUT IN
THE GEOLOGICAL LABORATORY

JANUARY-DECEMBER 1975

Compiled

by

J.C.W. WEEKES

MISCELLANEOUS CHEMICAL, PETROGRAPHIC AND MINERAGRAPHIC INVESTIGATIONS CARRIED OUT IN THE CEOLOGICAL LABORATORY.

Compiled by J. Weekes

Record

January - December 1974/5

The miscellaneous chemical, petrographic and mineragraphic investigations carried out in the Geological Laboratory, Bureau of Mineral Resources during 1975 are compiled in this Record. The results of these investigations are presented in a series of Laboratory Reports which are arranged in numerical order in the Record.

The information contained in this Record has been obtained by the Department of National Resources as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director, Bureau of Mineral Resources, Geology and Geophysics.

INDEX

Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water 2. Zinc Content of Molonglo River Water 3. Zinc Content of Molonglo River Water 4. Zinc Content of Molonglo River Water 5. Degraded Illite from Raglan, Vic. 6. Fluorite & Sulphide bearing rocks from 7. Georgetown & Red River Sheets, Qld. Zinc Content of Molonglo River Water 8. Zinc Content of Molonglo River Water 9. 10. Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water 12. Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water 13. G.W.R. Barnes 14. Mixed Layer Clays from Pillow Lavas, WA Description of Thin Section Samples from C.M. Gardner 15. Gold Creek Volcanics NE NT. Chemical Analysis of Olivine Baselts from PNG J.G. Fyke 16. Chemical Analysis of Basal Chert from Paradise J.G. Pyke 17. Creek Formation NW Qld. Chemical Analysis of Drill Core Samples from J.E. Pyke 18. Rum Jungle Zinc Content of Molonglo River Water B.I. Cruikshank, J.C. Weekes, 19. C. Madden. Zinc Content of Molonglo River Water 20. B.I. Cruikshank, J.C. Weekes, C. Madden B.I. Cruikshank, J.C. Meekes, 21. Zinc Content of Molonglo River Water C. Madden B.I. Cruikshank, J.C. Weekes, 22. Zinc Content of Molonglo River Water C. Hadden B.I. Cruikshank, J.C. Meekes. 23. Zinc Content of Molonglo River Water C. Madden. B.I. Cruikshank, J.C. Wockes, 24. Zinc Content of Molonglo River Water

Zinc Content of Nolonglo River Water

25.

B.I. Cruikshank, P.J. Swan, J.C. Weekes B.I. Cruikshank B.I. Cruikshank, J.C. Weekes B.I. Cruikshank, J.C. Weekes B.I. Cruikshank, P.J. Swan G.W.R. Barnes G.W.R. Barnes, J.C. Weekes, T.I. Slezak. B.I. Cruikshank, J.C. Weekes, P.J. Swan. B.I. Cruikshank, J.C. Meekes, P.J. Swan. B.I. Cruikshank, J.C. Wookes, P.J. Swan.

C. Madden.

C. Madden.

B.I. Cruikshank, J.C. Weekes,

	26.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekee, C. Madden.
	27.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, C. Madden.
.	28.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, C. Madden
	29.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes, C. Madden
	30.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Woekec.
	31.	Zinc Content of Kolonglo River Water	B.I. Cruikshank, J.C. Weekes.
_	32.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes.
	33.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weeken.
	34.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes.
	35.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes
	36.	Zinc Content of Kolonglo River Water	B.I. Cruikshank, J.C. Weekes
)	37.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes.
ļ	38.	Zinc Content of Molonglo River Water	J.C. Weekes
	39.	Zinc Content of Molonglo River Water	J.C. Weekes
	40.	Zinc Content of Molonglo River Water	J.C. Weekes
	41.	Zinc Content of Molonglo River Water	J.C. Weekes
	42.	Zinc Content of Molonglo River Water	J.C. Weekes
	43.	Zinc Content of Holonglo River Water	J.C. Weekes
	44.	Zinc Content of Molonglo River Water	J.C. Weekes
	45.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes
	46.	Zinc Content of Molonglo River Water	B.I. Cruikshank
	47.	Zinc Content of Molonglo River Water	B.I. Cruikshank
	48.	Zinc Content of Molonglo River Water	B.I. Cruikshank, J.C. Weekes
	49.	Zinc Content of Molonglo River Water	J.C. Weekes
	50.	Zinc Content of Holonglo River Water	J.C. Weekes
	51.	Zinc Content of Molonglo River Water	J.C. Weekes
	52.	Zinc Content of Molonglo River Water	J.C. Weekes
	53.	Zinc Content of Molonglo River Water	J.C. Weekes
	54.	Petrographic Description of Upper Silurian Volcanics of the Canberra Region	C.M. Gardner.
	5 5•	Zinc Content of Molonglo River Water	J.C. Weekes
	56.	Zinc Content of Molonglo River Water	J.C. Weekes
	57.	Zinc Content of Molonglo River Water	J.C. Weekes
	58.	Electron Microprobe Semi Quantitative Analyses of Xenotime & Florencite from the Killi Killi Hills, SE of the Kimberley Region	D. Ellis
		•	

59

J.C. Weekes

Analysis of Lake George Water Sample 61. Analysis of Lake George Water Sample 62. Analysis of Lake George Water Sample 63. Analysis of Lake George Water Sample 64. analysis of Lake George Water Sample 65. Analysis of Lake George Water Sample 66. Analysis of Lake George Water Sample 67. Analysis of Lake George Water Sample 68. 69. Analysis of Lake George Water Sample Analysis of Lake George Water Sample 70. Chemical Analysis of Rock Samples from 71. Arunta Block 72. Zinc Content of Molonglo River Water Zinc Content of Molonglo River Water 75. Chemical Analysis of Drill Core from the 74. Woodlawn Area Chemical Analysis of Olivine Balsalts from PLG 75.

Zinc Content of Molonglo River Water

Analysis of Lake George Water Samples

Zinc Content of Molonglo River Water

Burstall Granite

Chemical Analysis of Drill Core from the

Chemical Analysis of Newcastle Range Volcanics

Analysis of Lake George Water Sample

60.

76.

77.

78.

79.

.05

- B.I. Cruikshank B.I. Cruikshank B.I. Cruikshank, J.C. Weekes B.I. Cruikshank, F.J. Suan B.I. Cruikshank, J.C. Weekes P I. Cruikshank B. I. Cruikshank B.I. Cruikshank B.I. Cruikshank B. I. Cruikshank B. I. Cruikshank J.G. Pyke J.C. Weekes J.C. Weekes J.G. Pyke & K. Ellingsen J.G. Pyke, K. Ellingsen
 - J.G. Pyke, K. Ellingsen
 J.C. Weekes
 J.C. Weekes
 J.C. Weekes
 - J.G. Pyke, K. Ellingsen
 - J.G. Pyke, K. Ellingsen

by

B.I. CRUIKSHANK, P.J. SWAN & J.C.W. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as lited below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 2/1/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Nolonglo River at					
Burbong Weir (D2) (410705)	295	7.8	0.02	0.06	<u></u> .
Honeysuckle Crk (F2)	275	7.2	0.01	0.08	-
Lake Burley Griffin at				*	e e
Scrivener Dam (H4)	205	7.9	0.01	0.02	24.87

by

B.I. CRUIKSHANK

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 9/	1/ 75				
Sampling points	Sp. Cond. (umho/cm)	На	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	322	7.9	0.01	0.06	0.27
Honeysuckle Crk (F2)	242	7.3	0.02	0.06	-
Lake Burley Griffin at					
Scrivener Dam (H4)	220	8.2	0.01	0.05	25.00

ру

B.I. CRUIKSHANK & J.C.W. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Date of sampling	16/1/75		*		
Sampling points	Sp Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total	Flow
Molonglo River at	*				
Burbong Weir (D2) (410705)	317	7.8	0.03	0.12	0.30
Honeysuckle Crk (F2)	286	7.0	0.12	0.24	_
Lake Burley Griffin at	,				
Scrivener Dam (H4)	212	7.8	<0.01	0.05	24.95

by

B.I. Cruikshank & J. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 23/1/75

Sampling points	Sp. Cond. (umho/cm)	Ηq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at Burbong Weir (D2)	335	7.8	0.03	0.08	0.22
(410705) Honeysuckle Crk (F2)	250	7.4	0.01	0.03	-
Lake Burley Griffin at Scrivener Dam (H4)	211	8.0	0.01	0.04	24.94

Minc Content of Molonglo River Water

by

B.I. CRUTECHAME & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pN, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Pate of sampling 30/	1/75				
Sampling points	Sp. Cond. (umho/cm)	pΗ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Holonglo River at				* a .	
Burbong Weir (D2)* (410705)	358	7.8	0.11	0.31	0.30
Honeysuckle Crk (F2)	225	7.8	0.01	0.03	-
Lake Bucley Griffin at Scrivener Dam (H4)	21 8	7.9	0.01	0.02	-

^{*} Work on low level crossing in progress upstream

Degraded illite from Raglan, via Beaufort, Victoria

by

G.W.R. Barnes

A soil sample from a well-developed profile overlaying granite was submitted by P.D. Hohnen for X-ray diffraction analysis of the clay content.

An initial scan of the < 125 um fraction indicated that the major clay mineral present was montmorillonite. As the determination was critical, from an engineering point of view, further treatment of the material was carried out.

Methods & Results:

The < 125 um fraction was dispersed in a water-filled beaker in an ultrasonic bath and allowed to settle for 5 hours. The fraction present in the upper part of the beaker should therefore almost entirely consist of the < 2 um, (clay), fraction. Liquid containing this fraction was pipetted on to a porous ceramic tile disc, under vacuum, until sufficient clay had been deposited on the surface to just mask the surface texture of the tile. This was allowed to dry at room temperature over 3 days and the clay mount was then X-rayed. The diffraction chart gave a strong peak at 15.4 A and a broad weak peak at 7.4 A.

To swell any expanding layer structures, the sample was placed in a desiccator containing ethylene glycol and put in an oven at 65°C. After cooling, the sample was X-rayed again and revealed a strong but slightly reduced peak at 17.1 A and a broad weaker peak at 7.6 A.

To expel ethylene glycol and any loosely bound water, (and thereby collapse any expanded structures), the mount was heated to 300°C for 2 hours. This resulted in the complete removal of the 15-17 A peak and very minor development of a peak at about 10.1 A. The peak at 7.6 A dropped to 7.5 A.

Heating to 550°C causes kaolinite-type structures to decompose and become amorphous. Heating the sample to this temperature resulted in the disappearance of the peak at 7.5 A. The peak at 10 A had very much intensified.

Discussion & Interpretation:

On glycolation, the peak at 15.4 A expanded to 17.1 A; the peak at 7.4 A was barely affected. This implied that montmorillonite, and possibly poorly crystalline kaolinite, were present. Heating to 300°C destroyed the 15-17 A montmorillonite peak, but at the same time a weak peak at 10 A appeared (indicative of the mica-like clay minerals). The peak at 7.6 A dropped to near its original position.

Laboratory Report No. 6 (cont'd)

At 550°C, the 7.5 A peak disappeared and confirmed the presence, in the initial sample, of a poorly crystalline kaolinite. The 10 A peak became more intense indicating illite had been formed from the break-down of the montmorillonite-like structure.

From these results and interpretations the clays are deduced to be poorly crystalline kaolinite and a degraded illite (i.e. illite from which K ions have been removed) and whose behaviour under the various conditions of glycolation and heat treatment is very similar to that of montmorillonite.

Fluorite & sulphide-bearing rocks from the Georgetown & Red River 1:250 000 sheets, Queensland

by

G.W.R. Barnes, J.C.W. Weekes & T.I. Slezak

3 samples were submitted by Dr B.S. Oversby for mineral identification, initially by X-ray diffraction. As a comprehensive mineralogical determination was required, the sample was crushed and the 75-500 pm fraction put through a heavy mineral separation. Both fractions were X-rayed & submitted for minor element chemical analysis.

	TABLE I - Mineralogy
74300165	Albite (An ₇), Fluorite, Dolomite, Calcite, Pyrite, Ilmenite, (Molybdenite, Galena).
74300666	Quartz, Epidote, Galena, Sphalerite, Calcite, Dolomite, ? Kaolinite, (Chalcopyrite, Rutile, & possibly Molybdenite, Ilmenite).
74300667	Quarts, Fluorite, Kaolinite, Phosphuranylite, (Galena, Rutile, & possibly Molybdenite & Ilmenite)

TABLE II
Chemical Analysis (D.R.O.S. & Emission Spectroscopy)

-	7430	00165 74300666		66	743006)667	
Element	Light 2 Fraction	Heavy Fraction	Light Fraction	Heavy Fraction	Light Fraction	Heavy Fraction	
Na T	> 5	> 5	n.d.	n.d.	n.d.	n.d.	
Mg	> 4	> 5	>4	>4	n.d.	n.d.	
Ca	>5	> 5	>5	>5	>5	>5	
Ti	n.d.3	n.d.	1400 ppm	< 1000 ppm	0.6	< 1000 ppm	
v	n.d.	n.d.	200 ppm	200 ppm	n.d.	n.d.	
Mn	800 ppm ⁴	1500 ppm	1500 ppm	1500 ppm	n.d.	n.d.	
Fe	3•5	>5	>5	> 5	3-4	5	

Table II (Contd.)

	743001	65	74300666	1	74300667	
Element	Light Fraction	Heavy Fraction	Light Fraction	Heavy Fraction	Light Fraction	Heavy Fraction
Ni	n.d.	n.d.	100 ppm	100 ppm	n.d.	n.d.
Ca	10 ppm	30. ppm	>1	>1	100 ppm	100 ppm
Zn	n.d.	n.d.	< 1	<1	n.d.	n.d.
Sr	200 ppm	300 ppm	1000 ppm	200 ppm	>1	>1
Мо	trace	trace	trace	trace	trace	trace
Ag	n.d.	n.d.	< 1000 ppm	<1000 ppm	n.d.	n.d.
Ba	trace	trace	>1	0.5	>1	>1
Pb	trace	trace	1	1000 ppm	< 1	< 1
υ	n.d.	n.d.	< 1000 ppm	<1000 ppm	trace	trace

(Figures are in % unless otherwise indicated)

The possible presence of the minerals listed in parentheses in Table I has been deduced from the chemistry & from known mineral associations. Microscope work is required to verify this. e.g. Mo & Pb were identified in 74300165. Molybdenite (NoS.) may occur as a late-stage addition in e.g., contact metasomatic environments. Pb may occur as trace amounts of galena (PbS).

Amounts of Cu, Ti, Zn, Pb, U, Ag & trace No were detected in 74300666. Zn as sphalerite, Cu in minor amounts of chalcopyrite (CuFeS₂), Ti possibly as rutile (TiO₂) inclusions in kaclinite, or ilmenite (FeTiO₃), in calcite; U in trace uraninite (UO₂) or exidation products, Ag in galena probably as discrete blebs of ?argentite (Ag₂S) & Mo as trace amounts of molybdenite.

Pb, Ti, Cu & trace No were detected in 74300667. The equivalent mineralogy should be similar to 74300165 & 74300666.

^{1.} Direct Reading Optical Spectrometer

^{2.} Light Fraction, S.G. 4 2.85; Heavy fraction, S.G. > 2.85

^{3.} n.d. = Not detected

^{4.} ppm = parts per million

Zinc Content of Molonglo River Water

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved sinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 6/2/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	375	7.8	0.04	0.06	0.22
Honeysuckle Crk (F2)	215	7.7	<0.01	0.01	-
Lake Burley Griffin at	*				
Scrivener Dam (H4)	195	8.7	<0.01	0.01	24.92

ру

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 13/2/75

Sampling points	Sp. Cond. (umho/om)	Нq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	392	7.2	0.11	0.27	0.66
Honeysuckle Crk (F2)	212	7.2	0.01	0.08	-
Lake Burley Griffin at	1		8		
Scrivener Dam (H4)	213	7•5	0.01	0.03	25.01

by

J.C. WEEKES, P.J. SWAN, B.I. CRUIKSHANK

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved sine and total zine on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zine.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 20/2/75

Sampling points	Sp. Cond. (umho/om)	pН	Zn(ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	371	7•5	0.02	0.09	0.32
Honeysuckle Crk (F2)	252	7-1	0.02	0.02	-
Lake Burley Griffin at			4 H		
Scrivener Dam (H4)	212	7.8	0.01	0.01	24.94

Bracketed numbers are Department of Housing and Construction stream gauge reference numbers.

Zinc Content of Molonglo River Water

bу

P.J. SWAN, B.I. CRUIKSHANK, J.C. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 27/2/75

Sampling points	Sp. Cond. (umho/om)	pH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at				•	
Burbong Weir (D2) (410705)	440	7•5	0.04	0.07	-
Honeysuckle Crk (F2)	174	7.7	0.02	0.04	-
Lake Burley Griffin at					
Scrivener Dam (H4)	228	7.7	<0.01	0.01	25.02

Zinc Content of Molonglo River Water

by

B.I. CRUIKSHANK, J.C. WEEKES & P.J. SWAN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved sine and total zine on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zine.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 6/3/75

Sampling points	Sp. Cond. (umho/om)	pH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at				2	
Burbong Weir (D2) (410705)	420	7.6	0.05	0.13	0.35
Honeysuckle Crk (F2)	255	7.8	0.01	0.03	2.10
Lake Burley Griffin at			* a *		
Sorivener Dam (H4)	210	8.3	<0.01	0.02	25.01

Zinc Content of Molonglo River Water

by

J.C. WEEKES, P.J. SWAN & B.I. CRUIKSHANK

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved sinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 13/3/75

Sampling points	Sp. Cond. (umho/om)	pΗ	Zn (ppm) (dissolve	Zn (ppm) d) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	392	7.2	0.14	0.28	1.02
Honeysuckle Crk (F2)	110	7.9	0.01	0.03	
Lake Burley Griffin at					
Scrivener Dam (H4)	208	8.3	<0.01	<0.01	24.941

Mixed-layer clays from pillow lavas, WA

by

G.W.R. Barnes

A sample of a yellow to yellow-green mineral was submitted by Mr L. Ranford (Mineral Resources Branch, BMR) for identification. The mineral occurs as massive coatings with quartz solution infillings within vugs in pillow lavas which crop out at the top of the Jeerinah Formation, Hamersley Group, Mt Newman, WA.

The mineral was to be checked for radioactivity, however, testing with a geiger counter proved negative. The material was then examined under a binocular microscope (x12 - x45). The only crystalline structures observed appeared to be plates of white mica embedded in an apparently structureless massive aggregate of yellow clay-like material. This material was then X-rayed using a Philips' powder diffractometer with the following operating conditions: CuK_{ext} radiation ($\lambda = 1.542A$), Ni β -filter; Goniometer speed 1°20/min; chartspeed 10 mm/min; amplification 4000 counts/second; attenuation 2⁴; time constant 1; divergence slit = scatter slit = 1°; receiving slit = 0.2°. The pattern was taken at 26°C.

The diffraction trace indicated a clay mineral and most probably a mixed-layer clay of illite and montmorillonite.

Glycolation and heat treatment could be used to confirm the type of clay mineral present. However, the worth of this type of exercise, with the present material, is dubious.

Description of Thin Section Samples from the Gold Creek Volcanics, northeastern NT.

by

C.M. Gardner

Five samples of Gold Creek Volcanics were collected from the Redbank area with the assistance of A. Fleming of Triako Mines. This paper gives the results of thin section examination of some of these samples, as reported to A. Fleming.

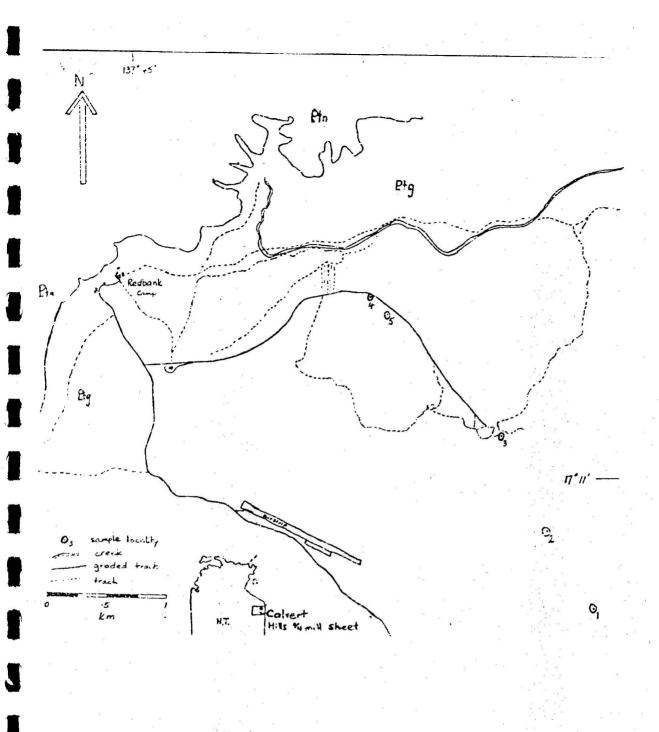
The samples are from a 2000 m thick sequence of successively more acid extrusions (benmoreite, trachyte, rhyolite) with intercalated tuff bands, mud flows, sandstone and conglomerate beds. Copper mineralization is localized in narrow vertical pipes in the lower half of the sequence.

Results:

73760900 A, B. (W05/14/1a, b) Benmoreite.

Fine- even-grained (.7 mm av) holocrystalline rocks with trachytic texture. Sample B slightly less oxidized and finer-grained than A, otherwise indistinguishable. Comprising plagioclase laths (?andesine) (30%), oxidized anhedral interstitial orthoclase (30%), interstitial pseudomorphic chlorite (20%), euhedral magnetite (7%), quartz (7%), accessory sphene, goethite, apatite.

73760902B. (WO5/14/3b) Trachyte


Fine- even-grained (1 mm av) holocrystalline rock with poorly defined trachytic texture. More extensively oxidized than 0900A, B. Comprising subhedral plagioclase laths (30%), their outer zones more extensively sericitized and oxidized than their cores; interstitial alkali-feldspar (30%) occurring as rims around plagioclase; anhedral extremely Fe-rich chlorite pseudomorphs (20%); secondary quartz (5%); euhedral partly hydrated Pe-oxides (7%); accessory apatite, epidote, sphene and rare plagioclase phenocrysts (3%).

73760903A, B (W05/14/4a, b) Rhyolite

Fine- even-grained oxidized rocks composed mainly of equal proportions of devitrified quartz, plagioclase, K-feldspar. Texture dominated by spherulitic K-feldspar aggregates separated by structureless, less well devitrified material. Disseminated opaque oxides are abundant (15%). Rare chloritized plagioclase phenocrysts (3 mm) and smaller rounded embayed quartz phenocrysts together comprise 10% of the rock.

73760903C W05/14/4c) Rhyolite conglomerate

Fine-medium even-grained rock. Similar to A, B but contains veins of sedimentary material. Occasional K-feldspar spherulites are separated by completely devitrified quartz, K-spar in graphic intergrowth. Note that only one feldspar occurs. Rare rounded quartz phenocrysts, replaced K-feldspar phenocrysts and lithic fragments also occur. Veins of coarse quartz carrying K-feldspar prisms are sedimentary. Chlorite (very Fe-rich) and Fe-oxides (magnetite, goethite) are abundant.

CHEMICAL ANALYSIS OF OLIVINE BASALTS FROM PAPUA NEW GUINEA

bу

J.G. Pyke

Two olivine basalt samples from Papua New Guinea were submitted for major element analysis by D. Mackenzie.

The samples were -

- a) G82(48) from the summit area of Mt Giluwe
- b) 71073107 from the SW slopes of Mt Bosavi

X-ray fluorescence was used for the determination of SiO₂, TiO₂, Al₂O₃, total Fe as Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O and P₂O₅. Loss on ignition values were determined by heating the powdered rock to 1000°C, maintaining temperature for 2 hours.

Sample No.	G82(48)	71073107
SiO2	50.89	46.18
TiO ₂	1.01	1.09
A1203	18.50	12.92
Fe ₂ 0 ₃	8.89	11.42
MnO	0.14	0.18
MgO	5.40	14.98
CaO	7.47	9.98
Na ₂ O	2.70	3.09
K20	1.79	0.57
P205	0.61	0.39
Loss on Ign.	3.12	0.10
Total	100.41	100.90

CHEMICAL ANALYSIS OF BASAL CHERT FROM THE PARADISE CREEK FORMATION N.W. QLD.

by

J.G. PYKE

Nine samples of basal chert from the Paradise Creek formation (also called "oxide chert" by Carpentaria Exploration Company) were submitted for major element analysis by J. Oehler.

The Paradise Creek formation is approximately 65 kilometres north of Mt Isa in N.W. Qld.

X-ray fluorescence was used for the determination of SiO₂, TiO₂, Al₂O₃, total Pe as Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O and P₂O₅. Loss on ignition values were obtained by heating the powdered samples to 1000°C, maintaining temperature for 2 hours.

s10 ₂	90.67	75.52	67.10	99.14	98.04	98.24	92.92	94.52	98.40
TiO2	0.13	0.12	0.08	0.01	0.03	0.03	0.23	0.17	0.03
A1203	3.24	2.67	2.26	0.44	0.63	0.52	2.69	2.36	0.89
Fe ₂ 0 ₃	2.20	2.14	15.34	0.70	0.72	0.47	1.66	1.46	0.63
FeO							*		
MnO	0.05	0.06	0.04	0.01	0.00	0.00	0.00	0.01	0.00
MgO	0.69	3.67	2.33	0.00	0.00	0.00	0.12	0.05	0.00
CaO	0.02	5.40	2.71	0.00	0.00	0.00	0.09	0.07	0.00
Na20	0.06	0.05	0.05	0.02	0.02	0.03	0.07	0.05	0.04
K20	1.40	1.20	0.58	0.02	0.07	0.08	0.90	0.62	0.20
P205	0.04	0.05	0.05	0.09	0.01	0.01	0.18	0.31	0.02
H ₂ 0+									
H ₂ 0-									
co ₂							i.		
LOSS	0.82	8.82	10.20	0.19	0.29	0.30	0.80	1.00	0.29
TOTAL	99.31	99.71	100.73	100.55	99.81	99.66	99.66	100.62	100.50

CHEMICAL ANALYSIS OF DRILL CORE SAMPLES FROM RUM JUNGLE

by

J.G. Pyke

Nine heavily mineralised core samples from kum Jungle were submitted for major element analysis by W. Roberts.

The samples were -

- (a) 75426646 75426647 75426648 from drill hole 57B26 at Browns mine 75426649 75426650 75426652 75426653 75426654
- (b) 75426651 from drill hole 70B57

X-ray fluorescence was used for the determination of Sio_2 , Tio_2 , Al_2o_3 , total Fe as Fe_2o_3 , MnO, MgO, CaO, Na₂O, K₂O and P₂O₅. Loss on ignition values were obtained by heating the powdered sample to 1000° C, maintaining temperature for 2 hours.

	7542	-							
	6646	6647	6648	6649	6650	6651	66 52	6653	6654
SiO ₂	68.03	25.91	53.21	30.41	44.17	2.70	48.01	6.19	55.38
TiO2	1.9 6	3 .5 9	0.75	4.25	3.80	0.00	0.89	0.17	3.6 1
A1203	10.84	11.19	13.96	11.57	16.41	0.19	26.73	4.23	9.86
Fe ₂ 0 ₃	7.42	20.38	5•33	11.46	17.26	0.98	8.26	3.29	13.06
MnO	0.10	0.32	0.02	0.97	0.25	0.03	0.03	1.09	0.12
MgO	3.40	8.30	1.82	10.28	5.00	45.94	2.46	17.56	8.44
CaO	1.29	16.91	0.20	18.47	7.85	0.25	0.07	28.96	2.17
Na ₂ 0	0.57	0.78	0.02	0.15	2.39	0.01	0.61	0.07	0.18
K20	2.09	0.84	3.98	3.08	0.70	0.00	6.69	0.66	3.81
P ₂ 0 ₅	0.13	0.61	0.06	1.01	0 .9 6	0.06	0.07	0.09	0.70
LOSS	3.62	8.65	19.31	9.37	1.61	50.51	7.19	36.48	2.12
TOTAL	99.45	96.48	98.66	101.01	100.40	100.99	100.99	98.79	99.44

bу

B.I. Cruikshank, J.C. Weekes & C. Madden

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 20-3-75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	320	7.6	0.14	0.77	0.57'
Honeysuckle Crk (F2)	150	8.0	< 0.01	0.02	2.99'
Lake Burley Griffin at					
Scrivener Dam (H4) (410732)	212	7.6	< 0.01	0.02	25.00

Ъy

J.C. Weekes, C. Madden & B.I. Cruikshank

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 27-3-75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (41075)	312	7.4	0.25	0.56	0.44
Honeysuckle Crk (F2)	139	7.2	< 0.01	0.06	-
Lake Burley Griffin at					
Scrivener Dam (H4)	209	7.1	<0.01	0.05	24.92'

by

C. Madden, B.I. Cruikshank & J.C. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 3-4-75

Sampling points	Sp. Cond. (umho/cm)	pĦ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at		, "			
Burbong Weir (D2) (410705)	308	7.5	0.15	0.36	0.41'
Honeysuckle Crk (F2)	170	7.3	<0.01	0.08	2.3'
Lake Burley Griffin at	* .				
Scrivener Dam (H4)	208	7.8	<0.01	0.03	24.95

by

B.I. Cruikshank, J.C. Weekes & C. Madden

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 10-4-75

Sampling points	Sp. Cond. (umho/cm)	pΉ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					7
Burbong Weir (D2) (410705)	331	7.3	0.15	0.31	0.35
Honeysuckle Crk (F2)	153	7.3	<0.01	0.04	-
Lake Burley Griffin at					
Scrivener Dam (H4)	201	7.5	<0.01	0.04	24.93

by

J.C. Weekes, B.I. Cruikshank & C. Madden

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 17-4-75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					. *
Burbong Weir (D2)	345	7.3	0.22	0.31	0.69'
(410705) Honeysuckle Crk (F2)	136	7.0	0.02	0.08	
Lake Burley Griffin at					
Scrivener Dam (H4)	185	7.5	<0. 01	0.03	24.99'

bу

C. Madden, B.I. Cruikshank & J.C. Weekes

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

	Date	of sampling:	17/4/75	to 21/4/75		
Date	Time	Sp. Cond. (umho/cm)	pН	Zn (dissolved)	Zn (Total)	Gauge height
17/4	1030	360	7.5	0.36	2.98	0.66'
	1830	310	7.5	0.22	3.40	1.05
18/4	0230	241	7.1	0.67	2.80	3.63'
	1030	172	6.7	0.96	2.40	3.251
	1830	119	6.7	0.96	2.85	4.45
19/4	0230	110	6.7	0.99	2.60	3.50
	1030	105	6.7	0.99	2.90	3.28
	1830	103	6.7	0.99	2.64	3.03
20/4	0230	108	6.8	0.99	2.68	2.75
	1030	102	6.8	0.88	2.03	2.55'
	1830	109	6.8	0.86	2.08	2.42'
21/4	0230	. 111	6.9	0.88	2.40	2.35'

by

B.I. Cruikshank, J.C. Weekes & C. Madden

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Date of sampling: 21/4/75 to 24/4/75

Date	Time	Sp. Cond. (umho/cm)	pН	Zn (dissolved)	Zn (Total)	Gauge height
21/4	1045	110	6.8	0.67	0.98	2.27
	1845	115	6.7	0.66	0.86	2.191
22/4	0245	118	6.9	0.60	0.80	2.121
	1045	119	6.8	0.63	0.88	1.99'
	1845	121	6.9	0.54	0.80	1.891
23/4	0245	120	6.9	0.66	0.82	1.83
	1045	128	6.7	0.67	0.92	1.77
	1845	122	6.9	0.63	0.78	1.63'
24/4	0245	125	6.8	0.58	0.80	1.43'
	1045	128	6.8	0.60	0.82	1.36

by

J.C. WEEKES, C. MADDEN & B.I. CRUIKSHANK

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Date of sampling		c			
Sampling points	Sp. Cond. (umho/cm)	рĦ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	138	6.8	0.50	0.63	1.331
Honeysuckle Crk (F	2) 96	7.1	0.10	0.15	
Lake Burley Griffin	at				
Scrivener Dam (H4)	1 78	7.3	<0.01	0.02	25.06

bу

C. MADDEN, B.I. CRUIKSHANK & J.C. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 1/5	/7 5				
Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	176	6.9	0.32	0.52	0.92'
Honeysuckle Crk (F2)	132	6.8	0.08	0.19	-
Lake Burley Griffin at					*
Scrivener Dam (H4)	196	6.9	0.02	0.03	24.97

by

B.I. CRUIKSHANK, J.C. WEEKES & C. MADDEN

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Maste Pollution in the Molonglo River.

Date of sampling 8/5	/75				* * * * * * * * * * * * * * * * * * * *
Sampling points	Sp. Cond. (umho/cm)	pН		Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	205	5.9	0.46	0.49	0.78
Honeysuckle Crk (F2)	131	7-1	0.10	0.22	- :
Lake Burley Griffin at					
Scrivener Dam (H4)	175	7.3	0.03	0.06	24.98

bу

J.C. WEEKES, C. MADDEN & B.I. CRUIKSHANK

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 15/	5/75	*	2.5		
Sampling points	Sp. Cond. (umho/cm)	pH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at				2	
Burbong Weir (D2) (410705)	246	7.3	0.22	0.40	0.54
Honeysuckle Crk (F2)	147	7.2	0.02	0.08	
Lake Burley Griffin at		٠			
Scrivener Dam (H4)	184	7.2	0.02	0.05	24.94

by

B.I. Cruikshank & J.C. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 22-5-75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at		**			
Burbong Weir (D2) (410705)	243	7.3	0.15	0.36	0.129 m
Honeysuckle Crk (F2)	146	7.3	0.01	0.04	2.38
Lake Burley Griffin at					
Scrivener Dam (H4)	177	7.5	0.02	0.06	24.93

by

J.C. Weekes & B.I. Cruikshank

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 29/5/75

Sampling points	Sp. Cond. (umho/cm)	PΗ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at				e e	
Burbong Weir (D2) (410705)	260	7.0	0.29	0.41	0.48
Honeysuckle Crk (F2)	156	7.1	0.02	0.29	
Lake Burley Griffin at					
Scrivener Dam (H4)	148	6.7	0.02	0.04	29.94

bу

B.I. Cruikshank & J.C. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 5/6/75

Sp. Cond. (umho/cm)	Hq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
g.				
266	7.2	0.18	0.41	0.55
194	7.0	0.03	0.06	-
			a. ·	
147	7.2	0.02	0.04	24.94
	(umho/cm) 266 194	(umho/cm) 266 7.2 194 7.0	(umho/cm) (dissolved) 266 7.2 0.18 194 7.0 0.03	(umho/cm) (dissolved) (Total) 266 7.2 0.18 0.41 194 7.0 0.03 0.06

by

J.C. WEEKES & B.I. CRUIKSHAMK

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burely Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 12/6/75							
Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow		
Molonglo River at							
Burbong Weir (D2) (410705)	248	6.8	0.40	0.48	0.58		
Honeysuckle Crk (F2)	173	7.4	0.03	0.11			
Lake Burley Griffin at							
Scrivener Dam (H4)	146	7.2	0.03	0.06	24.95		

Bracketed numbers are Department of Housing and Construction stream gauge reference numbers.

by

B.I. CRUIKSHAMK & J.C. MERKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo Piver/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Maste Pollution in the Molonglo River.

Date of sampling 19/	6 /7 5				
Sampling points	Sp. Cond. (umho/cm)	pΗ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at				*	
Burbong Weir (D2) (410705)	253	6.2	0.47	0.48	0.42
Honeysuckle Crk (F2)	189	6.6	0.04	0.11	-
Lake Burley Griffin at	a a				341 2
Scrivener Dan (H4)	160	7.0	0.02	0.03	24.92

bу

J.C. Weekes & B.I. Cruikshank

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 21/6/75 to 26/6/75

Date	Time	Sp. Cond. (umho/cm)	рН	Z_n (dissolved)	Zn (Total)	Gauge height
21/6	1115	307	7.3	0.36	1.33	0.52
	1915	350	7.2	0.33	0.87	0.82
22/6	0315	136	6.2	0.38	1.14	9.43
	1115	65	5.8	0.51	1.02	6.50
	1915	65	5.8	0.51	0.90	6.50
23/6	0315	67	5.8	0.49	0.82	6.10
	1115	67	5.8	0.55	0.95	5.46
	1915	74	5.9	0.57	1.03	4.50
24/6	0315	78	5.9	0.55	0.90	3 .7 8
	1115	88	6.0	0.57	0.94	3.45
	1915	93	6.1	0.52	0.82	3.17
25/6	0315	100	6.1	0.51	0.82	2.95
	1115	104	6.1	0.73	2.07	2.82
	1915	95	6.2	0.49	2.00	4.75
26/6	0315	71	5.9	0.59	1.84	6.70

by

B.I. Cruikshank & J.C. Weekes

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 26/6/75 to 29/6/75

Date	Time	Sp. Cond. (umho/cm)	Hq	Zn (dissolved)	Zn (Total)	Gauge height
26/6	1110	62	5.9	0.38	0.86	6.69
	1910	120	3.4	0.62	0.70	5.20
27/6	0310	67	6.2	0.36	0.67	4.09
	1110	77	6.3	0.37	0.62	3.63
	1910	82	6.5	0.34	0.70	3.33
28/6	0310	185	3.3	0.64	0.69	3.13
	1110	100	6.4	0.37	0.60	2.92
	1910	102	6.4	0.36	0.58	2.86
29/6	0310	296	2.9	0.57	0.58	2.82
	1110	119	6.6	0.32	0 .7 2	2.82
	1910	134	6.4	0.39	0.63	2.85

bv

J.C. WEEKES & B.I. CRUIKSHANK

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Mousing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling	0/7/75		*		
Sampling points	Sp. Cond. (umho/cm)	pII	Zn (ppm) (dissolved)	in (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	184	7.3	0.26	0.48	1.70
Honeysuckle Crk (F2) 113	7.9	0.04	0.06	-
Lake Burley Griffin a	t .				9
Scrivener Dam (H4)	84	7.0	0.06	0.10	25-02

by

J.C. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, dissolved zinc and total zinc on water samples taken at 8 hourly intervals from the Molonglo River at Burbong Weir (D2-410705). All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling: 13-17/7/75

Date	Time	Sp. Cond. (umho/cm)	Zn (dissolved)	Zn (Total)	Gauge height
13/7	0220	269	0.18	0.91	3.80
	1020	146	0.25	0.71	4.40
	1820	110	0.42	0.70	8.19
14/7	0220	94	0.42	0.60	7.00
	1020	75	0.24	0.53	5.07
	1820	78	0.26	0.48	4-10
15/7	0220	98	0.29	0.54	3.63
	1020	136	0.56	0.62	3.27
	1820	124	0.35	0.67	3.02
16/7	0220	127	0.38	0.69	2.86
	1020	140	0.34	0.44	2.73
	1820	145	0.44	0.67	2.62
17/7	1020	156	0.44	0.67	2.45

py

J.C. Weekes

The following regults were obtained for the determination of specific conductance at 20 C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 17/7/75

Sampling points	Sp. Cond. (umho/cm)	рН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at Burbong Weir (D2) (410705) Honeysuckle Crk (F2)	148	6.8 No	0.28 Sample	0.39	2.41'
Lake Burley Griffin at Scrivener Dam (H4)	80	6.5	0.04	0.03	25.05

by

J.C. Weekes

The following regults were obtained for the determination of specific conductance at 20 C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 24/7/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River on					
Burbong Weir (D2)	213	6.5	0.37	0.40	1.421
(410705) Honeysuckle Crk (F2)	134	6.5	0.08	0.10	
Lake Burley Griffin at	* .				
Scrivener Dam (H4)	83	5.9	0.06	0.05	24.96

Ъу

J.C. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 31/7/75

Sampling points	Sp. Cond. (umho/cm)	ΡĦ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	236	7.0	0.14	0.42	0.340 m
Honeysuckle Crk (F2)	178	8.3	0.02	0.12	
Lake Burley Griffin at					
Scrivener Dam (H4)	87	7.1	0.05	0.06	24.97

bу

J.C. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Criffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 7/8/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	271	7.2	0.20	0.42	0.372 m
Honeysuckle Crk (F2)	184	7.2	0.04	0.10	-
Lake Burley Griffin at	, ,				
Scrivener Dam (H4)	100	6.5	0.04	0.06	5.928 m

by

J.C. WEMES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 14/8/	7 5				(*)
Sampling points	Sp. Con. (umho/cm)	pH	Zn (ppm) (dissolved)	Zn (ppn) (Total)	Flow
Molonglo River at			. %		
Burbong Weir (D2) (410705)	285	6.8	0.23	0.39	1.441
Honeysuckle Crk (F2)	184	7-1	0.04	0.08	
Lake Burley Griffin at					
Scrivener Dam (H4)	No	sample			

by

J.C. WENKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Mousing and Construction for the Joint Government Technical Committee on Mine Maste Pollution in the Molonglo River.

Date of sampling 21/8	3 /7 5	•			a w
Sampling points	Sp. Cond. (umho/cm)	рĦ	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	298	7.3	0.14	0.40	0.246 m
Honeysuckle Crk (F2)	180	6.7	0.06	0.11	-
Lake Burley Griffin at					
Scrivener Dam (H4)	134	6.3	0.03	0.06	5.920 n

by

B.I. CRUIKSHANK & J.C. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Caste Pollution in the Molonglo River.

Date of sampling 28/8	3 /7 5				
Sampling points	Sp. Cond. (umho/cm)	pH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at	¥ 2		," e		
Burbong Weir (D2) (410705	305	7.3	0.14	0.31	0.368 m
Honeysuckle Crk (F2)	193	7.1	0.02	0.04	
Lake Burley Griffin at					
Scrivener Dam (H4)	127	7.0	< 0.01	0.04	5.93 m

by

B.I. Cruikshank

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 4/9/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	336	7.1	0.17	0.31	0.308 m
Honeysuckle Crk (F2)	241	7.2	0.03	0.09	-
Lake Burley Griffin at	* 'Y		*		
Scrivener Dam (H4)	158	7.0	0.04	0.08	5.936 m

bу

B.I. Cruikshank

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 11/9/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at			et (e)		
Burbong Weir (D2)	371	7.2	0.17	0.39	0.69'
(410705) Honeysuckle Crk (F2)	207	7.3	0.03	0.08	
Lake Burley Griffin at					
Scrivener Dam (H4)	176	7.1	0.04	0.14	5.918 m

by

B.I. Cruikshank & J.C. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 18/9/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Z_{n} (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	315	7.0	0.28	0.39	1.54
Honeysuckle Crk (F2)	207	7.1	0.06	0.10	-
Lake Burley Griffin at					
Scrivener Dam (H4)	167	7.7	0.01	0.03	25.02

by

J. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 24/9/75

Sampling points

	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	287	7.2	0.17	0.34	1.00 ft.
Honeysuckle Crk (F2)	215	6.6	0.06	0.12	-
Lake Burley Griffin at			· · · · · · · · · · · · · · · · · · ·		
Scrivener Dam (H4)	190	6.9	N.D.	0.02	25.00 ft.

by

J. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 30/9/75

Sampling points	Sp. Cond. (umho/cm)	Hq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at			* ***		
Burbong Weir (D2) (410705)	, "	No S	Sample		g.
Honeysuckle Crk (F2)	115	6.2	0.05	0.13	3.740
Lake Burley Griffin at					
Scrivener Dam (H4)	205	6.8	0.02	0.04	25.09 ft.

рÀ

J. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 2/10/75

Sampling points	Sp. Cond. (umho/cm)	рН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	178	6.5	0.31	0.49	2.46 ft.
Honeysuckle Crk (F2)	142	6.7	0.09	0.13	-
Lake Burley Griffin at					
Scrivener Dam (H4)	204	6.9	0.02	0.04	24.91 ft.

by

J. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 9/10/75

Sampling points	Sp. Cond. (umho/cm)	Hq	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at		8			
Burbong Weir (D2) (410705)	297	6.8	0.17	0.25	0.89 ft
Honeysuckle Crk (F2)	172	7.1	0.04	0.06	-
Lake Burley Griffin at		**			
Scrivener Dam (H4)	164	7.0	0.03	0.08	25.03 ft.

bу

J. WEEKES

The following results were obtained for the determination of specific conductance at 20 C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 16/10/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2)	290	7.1	0.10	0.20	0.76 ft
(410705) Honeysuckle Crk (F2)	200	7.0	0.02	0.03	
Lake Burley Griffin at				F and	
Scrivener Dam (H4)	151	6 .6	0.03	0.04	24.99 ft

Bracketed numbers are Department of Housing and Construction stream gauge reference numbers.

Laboratory Report No 54

Petrographic Description of Upper Silurian Volcanics from the Canberra Region

by

C.M. Gardner

21 thin sections of samples were submitted by P. Lang for petrographic description. The volcanics include dacites, rhyodacites and quartz arenites from the Canberra, Brindabella, Umburra and Hall 1:50 000 Sheet areas. The samples are described in this report.

SUMMARY

Most of the 21 samples described are porphyritic rhyodacites or rhyolites carrying between 30 and 50% of phenocrysts. These generally include unbroken phenocrysts, fragments of broken phenocrysts (fragmentation is a distinctive feature of these rocks) and microphenocrysts. Quartz is the dominant phenocrystic mineral in all of the samples, in terms of abundance and grainsize. It occurs as rounded or hexagonal embayed crystals and always shows complete extinction.

Plagicclase (albite -?andesine) is always present, usually as subhedral, partly sericitized, irregularly twinned, zoned laths. Euhedral microphenocrysts of magnetite also occur in all the samples.

Mafic phenocrysts were originally biotite ± hornblende ± clinopyroxene (Cpx). Orthopyroxene (Opx) was found in one sample. In almost
all the samples, the mafics have been completely altered, usually to chlorite
+ opaque oxides or sericite. Calcite, tremolite, sphene are also common
alteration products. Low-grade greenschist metamorphism is inferred from
these alteration products.

The groundmass is usually comprised of quartz, plagioclase, K-feldspar, chlorite, sericite, opaque oxides in varying stages of devitrification. Strong flow banding is evident in some samples, the flow enveloping deformed biotite pseudomorphs.

Accessories include apatite, zircon, epidote.

Phenocrysts (35%): most of these are clear (i.e. not undulose)
quartz, up to 5 mm diameter, cracked but not displaced. Sericitized
albite and biotite partly replaced by chlorite + opaques make up
the remainder of the phenocrysts. Microphenocrysts of biotite
and chlorite + opaques (3%), and magnetite also occur.

<u>Groundmass</u>: partly devitrified quartz-feldspar-opaques intergrowth makes up the groundmass. Feldspar is clouded with inclusions of opaque oxides.

75360022

Phenocrysts (50%): Phenocrysts, fragmented phenocrysts and microphenocrysts of clear quartz, plagicclase (oscillatory zoned and twinned) and pseudomorphs after biotite and hornblende.

Groundmass: this is very dark, due to the high density of opaques, and shows only incipient devitrification; flow structure is evident.

75360023

This sample is similar to 75360022 described above. Biotite (now chlorite or sericite, + opaques) is strongly deformed and is strung out to narrow elongate laths concordant with the groundmass flow structure, which is also crenulated. The chlorite replacing biotite is an intermediate biotite -> chlorite alteration product, with greater birefringerence than chlorite (i.e. the same order of birefringence as sericite). Magnetite and apatite are accessory.

75360024 Porphyritic dacite. This sample is similar to 75360023.

75360025

The mineralogy of this sample is the same as that of the two preceding samples 75360023 and 75360024. Phenocrysts, fragmented phenocrysts and microphenocrysts comprise 50% of the rock. Red-brown biotite phenocrysts are unaltered and undeformed.

This sample is similar to 75360025. <u>Phenocrysts</u> (40%): these are nearly all fragmented. Biotite is fresh; pleochroic colours are dark brown to pale green. Plagioclase is sharply twinned and zoned from An_o to An₁₀. K-spar phenocrysts were not observed.

Magnetite phenocrysts are abundant. Fresh <u>orthopyroxene</u> phenocrysts with zircon inclusions occur rarely.

<u>Groundmass</u>: the groundmass is comprised of completely devitrified quartz, albite, K-spar and chlorite.

75360027

Phenocrysts. fragmented phenocrysts and microphenocrysts make up 50% of rock. They include embayed, generally rounded, non-undulose quartz, up to 5 mm diameter; smaller subhedral partly sericitized twinned plagioclase, zoned from Ano to Ano; strongly deformed chlorite+opaque pseudomorphs after biotite, and chlorite pseudomorphs after hornblende.

Groundmass: this consists of a devitrified cryptocrystalline intergrowth, with no flow structure remaining.

75360028

This rock may be sedimentary as quartz phenocrysts are generally not embayed, although some are angular. However, the texture is similar to that of rhyodacites already described. Feldspar phenocrysts are replaced by sericite, clay or calcite; mafics (biotite, hornblende) are replaced by colourless chlorite+opaques. Groundmass: the consists of quartz, clay, calcite and sericite.

75360029

Phenocrysts (40%): these include large, embayed quartz, heavily corroded feldspars altered to sericite, calcite and clay, and dusted with opaques and mafics altered to epidote or colourless chlorite+ opaques. Calcite is abundant in groundmass and has associated with it many tiny (.05 mm) euhedral magnetites.

The rock is partly sedimentary.

This rock is probably sedimentary. Sub-angular quartz fragments (40%) occur in all sizes ranging from a micro-crystalline matrix to 1.5 mm.

Feldspar fragments comprise 25%.

The matrix consists of quartz, clay, feldspar, calcite, opaques+ chlorite. No structures, either sedimentary or volcanic, were observed.

75360031

This rock is extensively altered. Large areas of recrystallized groundmass may be of sedimentary origin. Quartz phenocrysts (20%) are cracked but not displaced from their original position. Feldspars (10%) are sericitized. Rare original biotite and hornblende have been replaced by opaques+sericite or opaques+chlorite. Zircon and magnetite microphenocrysts are accessory.

74360060 Rhyodacite.

Phenocrysts (50%): These include clear, sometimes strained, quartz, 30% of total rock, from .05 mm (microphenocrysts) to 5 mm diameter, mostly fragmented as well as embayed. Original crystal faces are either rounded or hexagonal, indicating a high temperature (around 600°) origin. Sericitized anhedral fragmented plagioclase phenocrysts (15%) are smaller than quartz, indicating relatively deep level of derivation. Sericite and chlorite (± opaques) form pseudomorphs after biotite. The strong deformation of the pseudomorphs probably occurred during solidification of the groundmass, as the contortions parallel the groundmass flow structure. Cpx phenocrysts occur rarely.

Groundmass: Cryptocrystalline partly devitrified quartz, K-spar and plagioclase make up the groundmass. It has a well-defined flow structure. Accessories include apatite, magnetite, zircon, goethite.

Rhyodacite: This sample is similar to 74360060 except that the phenocrysts comprise 35% instead of 50% of total rock and the groundmass is fully devitrified; consequently flow pattern in the groundmass has been destroyed, although deformed biotite laths indicate that it did originally exist.

74360062**,** 0063

Rhvodacite. These samples have similar mineralogy to the preceding samples 0060, 0061 except for the higher proportion of mafics in 0062, 0063.

<u>Phenocrysts</u>: The phenocryst mineralogy is as for 006; except that quartz and plagioclase are both commonly 4 mm, indicating shallower level of commencement of crystallization than for 006;. Plagioclase is twinned, euhedral, its composition not determinable because of sericitization.

Mafic phenocrysts, biotite, Cpx are pseudomorphed by quartz-chlorite ± calcite, sphene-chlorite-opaque oxides for sericite aggregates.

Groundmass (50%): This consists of fine-grained recrystallized volcanic quartz and feldspar.

74360064

Rhyodacite.

Phenocrysts (60%): These include rounded fragments of clear quartz, sericitized subhedral feldspar, and pseudomorphs after biotite and hornblende. The pseudomorphs are aggregates of quartz-calcitetremolite-epidote, calcite-chlorite, or Fe-rich chlorite. Former biotite laths are deformed.

Groundmass: This is structureless cryptocrystalline quartzchlorite-plagioclase-K-feldspar. Accessories include zircon, sphene, opaques.

Rhyodacite.

Phenocrysts (60%): These include fragmented irregularly-shaped but well-rounded quartz, dense enough that they are just touching, and partly sericitized untwinned sodic plagioclase. As in the previous sample, 0064, mafic phenocrysts have been altered by low-grade geeenschist metamorphism to aggregates of Fe-poor chlorite, Fe-poor chlorite-sphene, calcite-quartz-sphene. Some of the sphene occurs as radially-grown spherical crystals.

Groundmass: structureless cryptocrystalline quartz-Fe-rich chlorite-albite-calcite make up the groundmass.

74360066

In this sample there is a large hiatus between phenocrysts and groundmass, i.e. there are no fragmented phenocrysts or microphenocrysts. The proportion of phenocrysts relative to groundmass is much smaller than in previously described samples. The rock is cut by long narrow quartz-sericite veins.

Phenocrysts: These include quartz (25%), up to 8 mm long, the larger ones showing incipient undulose extinction; plagicclase (10%), up to 4 mm long, forming subhedral, heavily sericitized laths. Hornblende, ?biotite (total 7%) are replaced by chlorite + opaque oxides. Magnetite phenocrysts are common.

<u>Groundmass</u>: This is only partly devitrified (but no flow structure evident) microcrystalline quartz-albite-opaques-Fe-rich chlorite.

74360067

Rhyolite. This sample is similar to 74360066, except that some of the feldspar phenocrysts may be potash feldspar (orthoclase); these are up to 8 mm long. The quartz and feldspar phenocrysts are commonly split, but the fragments are not displaced from their original position. Hornblende and biotite total 7%.

Groundmass (65%): this consists of partly devitrified quartz,

albite, chlorite and opaques.

Rhyolite.

Phenocrysts: this sample has a low density of phenocrysts (20%). Quartz and plagioclase are present in equal proportions and have the same grainsize. Biotite altered to sericite forms 3%.

Groundmass: this consists of fully devitrified, cryptocrystalline, locally recrystallized (quartz only) quartz, feldspar, chlorite and opaque oxides.

74360069

Rhyolite.

Phenocrysts (40%) most of these are quartz, clear, highly fragmented, all with sharp angular edges. Both albite-twinned plagioclase and microcline-twinned potash feldspar occur. Some K-feldspar phenocrysts are altered to quartz-sericite aggregates. Biotite microphenocrysts (8%) are altered to opaques + epidote, and carry abundant zircon inclusions.

Groundmass: this is devitrified and locally recrystallized.

by

J. Weekes

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 23.10.75

Sampling points	Sp. Cond. (umho/cm)	$_{ m pH}$	$\mathbb{Z}n(ppm)$ (dissolved)	Zn(ppm) I (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	210	6.3	0.28	0.41 2	2.43 ft.
Honeysuckle Crk (F2)	150	6.8	0.04	0.07 2	2.09 ft.
Lake Burley Griffin at					
Scrivener Dam (H4)	153	6.4	0.28	0.49 55	55.81

Laboratory Report No. 56

Zinc Content of Molonglo River Water

bу

J. WESKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Nine Waste Pollution in the Molonglo River.

Date of sampling 30/10/75

Sampling points	Sp. Cond. (umho/cm)	рĦ	Z_n (ppm) (dissolved)	Z (ppn) (Total)	Flow
Molonglo River at Burbong Weir (D2) (410705)	177	7.0	0.17	0.26	1.63 ft.
Honeysuckle Crk (F2)	No	samp	<u>l e</u>		2.
Lake Burley Griffin at Scrivener Dam (H4)	116	6.4	0.03	0.05	25.06 ft.

Zinc Content of Molonglo River Water

by

J. WEEKES

The following results were obtained for the determination of specific conductance at 20 C, pH, dissolved zinc and total zinc on water samples as listed below from the Folonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 6/11/75

Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at		a .			b
Burbong Weir (D2) (410705)	205	6.8	0.20	0.26	1.49 ft
Honeysuckle Crk (F2)	146	7.0	0.06	0.09	
Lake Burley Griffin at					er er
Scrivener Dam (H4)	110	6.8	0.04	0.08	555•93 m

Bracketed numbers are Department of Housing and Construction stream gauge reference numbers.

Laboratory Report No. 58

ELECTRON MICROPROBE SEMIQUANTITATIVE ANALYSES OF XENOTIME AND FLORENCITE FROM THE KILLI KILLI HILLS AREA, SOUTHEAST OF THE KIMBERLEY REGION

D.J. Ellis

Analytical operating conditions - a JEOL JXA-3A electron microprobe was used. Operated at 15 KV and 20 KV accelerating voltage, 0.5 x 10^{-7} amps beam current, forty second counting time on peak and background.

Standards used -

P205 - natural apatite specimen.

Rare earth elements-synthetic glass standards

Al₂0₃ - both synthetic glass standard and New Spring Mountain hornblende.

The wt % oxides in the standards were as follows -

Al ₂ 0 ₃ 14.	26 New S	Spring Mountain Hornblende
Al ₂ 0 ₃ 30.	52 Synth	netic glass
P ₂ 0 ₅ 42.	00 Natur	cal apatite standard
- 2	20 Synth	netic glasses
Gd ₂ O ₃ 4.	46	t tt
Tb ₂ 0 ₃ 4.	35	t the state of the
	35	1 11
	26	1 " H
Sm ₂ 0 ₃ 4.	26	t m
	26 "	11
	26	11
	08 "	ı ıı ,
	28 "	1 11
V-V-	00 "	t tt
	44 "	er er
	36 "	* ***
Ho ₂ 0 ₃ 4.	41 "	n' :
Er ₂ 0 ₃ 4.	36 "	tt tt

The RED (rare earth elements) and Al₂O₂ synthotic class standards are as described by Drake, N.J., and Weill, D.F., Chem. Geol, 10, 1972, pp. 179-181, "New Rare Earth Element Standards for Electron Microprobe Analysis".

Raw data were processed using the correction programs of Frazer, J.Z., Fitzgerald, R.W., and Reid, A.M., Scripps Institute of Oceanography, Uni. Cal. Unpublished report. SIO Reference 66-14, June 20, 1966.

Results

Considerable difficulty was obtained in the analysis of these minerals because of the fine grain size, pronounced compositional zoning and volatilization of specimens during the probe work. For the rare earth elements, a high operating voltage (20 KV) was necessary for their detection. This high operating voltage also resulted in volatilization of water present in the florencite.

Florencite

Ideal formula CeAl₃ (PO₄)₂ (OH)₆.

Occurring as isotropic euhedral clear cubes in the specimens.

	72	2490309	0315		
	1	2	3	4	5
A1203	35.87	35 . 5 4	44.85	42.12	48.24
P205	33.91	31.72	25.75	24.68	12.6
CaO	4.19	4.87	3.24	4.21	3.98
La203	1.92	0.77	0.41	1.21	1.58
Ce_0_3	5.94	2.67	1.34	3∙9 5	4.84
Nd ₂ 0 ₃	5.63	2.57	0.05	0.30	3.23
Am ₂ 0 ₃	0.48	0.34	0.07	0.43	0.34
Gd ₂ O ₃	0.49	0.27	0.15	0.37	0.39
Pr203	1.07	0.36	0.00	0.74	0.70
2					
Total	87.50	79.08	75.86	78.01	75.90

These results must be considered semiquantitative only. The low totals are due to several factors. Florencite contains an appreciable quantity of water (e.g. 11.11 wt % H₂0 in florencite from Russia - Somina and Bulakh, 1966). The necessity of using a high KV for detection of the REE resulted in drastic volatilization in the samples, and, therefore, erratic counting statistics compared to the synthetic standards. The possible presence of other elements in the minerals which were not analyzed for (especially Pb, Sr, though cursory peak scans did not indicate its presence).

All REE were searched for, and those not reported in the table were present below the detection limit (0.01 wt 3).

The minerals were markedly zoned. It is of interest to note from the analyses that although there is a very wide range in Al₂O₃ and P₂O₅ abundances, their combined totals are usually close to 66² wt percent.

Xenotime YPO4.

Disseminated anhedral grains of browny-orange xenotime from the same rock samples were also analyzed.

	1	2
Y203	48.04	48.52
P205	20.72	16.51
Ga203	0.29	0.41
EuO	0.09	0.09
Nd ₂ O ₃	0.05	0.09
Sm203	0.13	0.20
Yb203	0.19	0.12
Dy 03	0.43	0.53
Er203	0.26	0.26

All REE and Al₂O₃ were analyzed for, with peak scans being undertaken for other elements, however, they were not present in quantities above the detectable limit (0.07 wt/o).

The extremely low totals are, in part, due to the very inaccurate analysis of P_2O_5 (xenotime analyses presented by Amli, 1975, contain 34 wt % P_2O_5 and 46 wt % Y_2O_3).

At best these results should be regarded as semiquantitative, confirming that the mineral is xenotime containing low concentrations of the above rare earth elements.

References

Amli, R., 1975. Am. Miner., 60, pp. 607-620. Mineralogy and rare earth geochemistry of apatite and xenotime from the Gloserheia Granite Pegmatite, Froland, Southern Norway.

Drake, M.J., and Weill, D.F., 1972. Chem. Geol., 10, pp 179-181. new rare earth element standards for electron microprobe analysis.

Somina, M. Ya., and Bulakh, A.G., 1966. Zap. Vses. Min. Obshch. 95, pp. 537-550. Florencite from the carbonatites of Eastern Sayan and the chemical constitution of the Crandallite Group (In Russian) Chemical analyses from this paper are given in Mineralogical Abstracts, Vol. 18, p. 204, 1967.

Minc Content of Molonglo River Water

by

J. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Mousing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 13/11/75

Sampling points	Sp. Cond. (unho/cm)	pH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flou
Molonglo River at				*	
Burbong Weir (D2) (410705)	234	6.8	0.12	0.18	0.91 ft
Honeysuckle Crk (F2)	170	7.0	0.02	0.08	
Lake Burley Griffin at				w w	
Scrivener Dam (H4)	127	7.1	0.06	0.09	25.01 ft

Bracketed numbers are Department of Housing and Construction stream gauge reference numbers.

bу

B.I. CRUIKSHANK

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling - 2/1/75

Sp. Cond. (20°C) - 3,000 umho/cm

pH - 8.3

T.D.S. (180°C) - 1,750 ppm

by

B.I. CRUIKSHANK & P.J. SWAN

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling - 4/2/75

Sp. Cond. (20°C) - 3,650 umho/cm

pH - 8.6

T.D.S. (180°C) - 1,990 ppm

by

B.I. CRUIKSHANK & J.C. WEEKES

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling - 11/3/75

Sp. Cond. (20°C) - 3,300 umho/cm

pH - 8.3

T.D.S. (180°C) - 1,970 ppm

bу

B.I. CRUIKSHANK & P.J. SWAN

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling - 1/4/75

Sp. Cond. (20°C) - 3,630 unho/cm

PH - 7.7

T.D.S. (180°C) - 2,210 ppm

ру

B.I. CRUIKSHANK & J.C. WEEKES

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling $- \frac{1}{5}/75$

Sp. Cond. $(20^{\circ}C)$ - 3,750 umho/cm

pH - 7.7

T.D.S. (180°C) - 2,170 ppm

b.y

B.I. CRUIKSHANK

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling - 2/6/75

Sp. Cond. (20°C) - 4,090 umho/cm

pH - 8.2

T.D.S. (180°C) - 2,380 ppm

by

B.I. CRUIKSHANK

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling	-	2/7/75
Sp. Cond. (20°C)	-	3,690 umho/cm
PH	_	7.9
T.D.S. (180°C)		2.120 ppm

by

B.I. CRUIKSHANK

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling - 1/8/75

Sp. Cond. (20°C) - 3,120 umho/cm

pH - 6.8

T.D.S. (180°C) - 1,680 ppm

ру

B.I. CRUIKSHANK

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling - 1/9/75

Sp. Cond. (20°C) - 3,210 umho/cm

pH - 6.7

T.D.S. (180°C) - 1,730 ppm

bу

B.I. CRUIKSHANK

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling $- \frac{1}{10/75}$

Sp. Cond. (19°C) - 2,610 umho/cm

pH - 6.9

T.D.S. (180°C) - 1,540 ppm

by

B.I. CRUIKSHANK

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180°C).

Date of sampling - 31/10/75

Sp. Cond. (22°C) - 2,260 umho/cm

pH - 7.1

T.D.S. (180°C) - 1,320 ppm

CHEMICAL ANALYSIS OF ROCK SAMPLES FROM

THE ARUNTA BLOCK

bу

J.G. Fyke

One hundred and thirty four rock samples from the Arunta block N.T. were submitted by P.G. Wilkes for trace element analysis of uranium, thorium and rubidium. The analyses were carried out using the Philips PW 1210 X-ray fluorescence spectrometer on unignited material pressed into boric acid backed pellets.

Calculated detection limits are:-

• Uranium 2ppm

. Thorium 2ppm

. Rubidium 2ppm

N.B. ND = Not detected.

					4		
mple No.	Uppm	Th ppm	Rb ppm	Sample No.	U ppm	Th ppm	Rb ppm
709 1000	4	22	160	7509 1022	IID	13	119
5 09 1001	ND	17	145	7509 1023	MD	19	158
25 09 1003	4	23	162	7509 1024	4	14	116
9 1004	3	20	164	7509 1025	ND	15	148
7509 1005	4	20	156	7509 1026	3	19	158
09 1006	ND	11.	137	7509 1027	4	16	136
7509 1007	2	18	2	7509 1029	ND	MD	ND
09 1008(1)	4	21	144	7509 1030	ND	ND	2
7509 1008(2)	ND	13	153	7509 1031	IID	7	17
9 1009	IID	13	144	7509 1032	ND	IID	3
7509 1011	MD -	IVD	26	7509 1033	MD	IID	5
09 1012	ND	IID	94	7509 1037	MD	ND	2
909 1013	ND	ND	5	7509 1038	IID	ND	6
7509 1014	ND	13	97	7509 1048	3	18	151
09 1016	ID	25	166	7509 1049	IID	18	205
7509 1017	4	16	87	7509 1050	2	17	138
09 1018	4	17	148	7509 1051	6	32	309
7509 1019	6	21	427	7509 1052	MD	1 9	148
09 1020	MD	21	161	7509 1054	4	28	5
7509 1021	ND	37	75	7509 1055	ND	26	218
		*					

1			. 2	• •			
mple No.	U ppm	Th ppm	Rb ppm	Sample No.	U ppm	Th ppm	Rb ppm
7509 1056	ND	7	270	7509 1122	ND	8	130
09 1058	ND	ND	59	7509 1127	ı IID	14	348
7509 1059	6	33	217	7509 1128	IID	18	108
09 1060	4	24	200	7509 1131	MD	• • 11	104
7509 1061	IID	6	36	7509 1136	4	2 8	204
1062	ND	8	69	75 09 11 40	5	12	188
7509 1063	ND	4	31	7 509 11 42	IID	13	90
1064	ND	3	15	7 509 11 44	IID	10	71
9 09 1066	MD	16	88	7509 1145	IID	18	1 35
75 09 1067	4	17	91	7509 1147	MD	8 * * *	74
09 1068	ND	13	161	7509 114 8	2	40	174
7509 1070	8	36	284	7509 1149	5	1 9	103
09 1071	10	41	35 1	7509 1150	ND	. 7	104
7509 1072	7	37	286	7509 1151	MD	12	101
09 1074	4	17	1 89	7509 1152	ND	23	195
7509 1030	ND	ND	5	7509 1153	ND	30	105
2 09 1081	ND	3	30	7509 1154	ND	5	80
7509 1082	ND	3	21	7509 1156	ND	7	94
25 09 1083	IID	4	55	7509 1157	ND	12	76
509 1086	ND	ND	8	7509 1162	,2	25	163
7509 1087	· ND	ND	1 49	7509 1163	2	32	160
09 1088	IID	IID	140	7509 1164	3	27	183
7509 1089	ND	13	169	7509 1165	ND	18	130
509 1 090	3	23	188	7509 11 66	5	21	94
7509 1091	9	100	409	7509 1167	2	24	97
09 1092	2	21	170	7509 1168	8	45	274
7509 1094	4	23	171	7509 117 0	3	24	146
509 1 095	ND	10	190	7509 1171	4	46	104
7 509 1 096	ND	12	136	75 09 117 7	ND	39	99
7509 1097	3	19	3	7509 1178	ND	13	220
509 1098	3	18	122	7509 1183	2	20	108
7509 1100	3	21	184	7509 1184	ND	18	206
509 1105	ND	5	178	7509 1185	ND	6	52
7509 11 07	ID	15	14	7509 11 89	9	24	230
509 1108	IID	8	43	7509 11 90	3	25	189
7509 1109	ND	11	65	7509 1192	IID	ND	5
509 1110	ND	, 9	54	7509 1194	2	8	96
7509 1111	3	15	165	7509 1198	ND	8	127
		*	v.				8 8

X				5	•			
Sample	No.	U ppm	Th ppm	Rb ppm	Sample No.	U ppm	Th ppn	R b ppm
7509 1	199	3	17	84	750 9 0506	2	7	24
7509 0	100	2	10	90	7509 0507	IID	IID	4
750 9 0	104	IID	ND	2	7509 0509	3	15	192
7509 0	106	4	21	684	7509 0510	4	24	135
750 9 0	108	IID	4	3	7509 0511	IID	7	197
7509 0	109	HD	a m	29	7509 0512	2	5	93
7509 0	110	MD	. 17	6 9	7509 1202	2	ND	3
7509 0	501	5	26	211	7509 1206B	9	2	ИD
7509 0	502	ND	13	164	7509 1207B	ND	ND	ND

Zinc Content of Molonglo River Water

by

J. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 20/11	/75	*			
Sampling points	Sp. Cond. (umho/cm)	pН	Zn (ppm) (dissolved)	Zn(ppm) (Total)	Flow
Molonglo River at		5, 8			
Burbong Weir (D2) (410705)	286	7.1	0.06	0.16	0.30ft.
Honevsuckle Crk (F2)	168	7.3	0.02	0.05	
Lake Burley Griffin at					
Scrivener Dam (H4)	133	6.6	0.03	0.04	555.93 m.

Bracketed numbers are Department of Housin; and Construction stream gauge reference numbers.

Zinc Content of Molonglo River Water

by

J. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 27/11/75

Sampling points	Sp. Cond. (umho/cm)	pН	$Z_{n(ppm)}$ (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705) Honeysuckle Crk (F2)	2 46 200	6.9 7.4	0.03 0.01	0.15	0.58 ft
Lake Burley Griffin at			T.		
Scrivener Dam (H4)	140	6.8	0.03	0.07	24.97 ft

CHEMICAL ANALYSIS OF DRILL CORE FROM THE WOODLAWN AREA

рÀ

J.G. Pyke and K. Ellingsen

Two hundred and seventy four drill core samples were submitted by I. Lambert (C.S.I.R.O.) for trace element analysis of uranium, thorium, yttrium, rubidium, zirconium, niobium, strontium, lead, arsenic, barium, cerium, lanthanum and titanium.

The samples were taken from drill holes within one kilometre of the Woodlawn ore body seventy kilometres north east of Canberra.

Calculated detection limits are:

Uranium	2 ppm	Strontium	2	ppm
Thorium	2 ppm	Lead	2	ppm
Yttrium	2 ppm	Arsenic	2	ppm
Rubidium	2 ppm	Barium	10	ppm
Zirconium	2 ppm	Cerium	5	ppm
Niobium	2 ppm	Lanthanum	5	ppm

Titanium 20 ppm

N.B. ND = Not detected. All results in p.p.m.

Sample No.	01-1	01-2	01-3	01-4	01-5	01-6	01-7	01-8	01-9	02-1
σ	7	8	20	5	7	11	8	4	6	5
Th	.9	6	12	10	14	8	9	14	12	20
Y	11	13	17	17	25	19	23	20	22	47
Rъ	73	51	101	3 8	66	96	74	137	162	214
Zr	ND	ND	38	-126	209	ND	ND	43	ND	ND
МЪ	6	5	8	8	13	5	5	11	9	10
Sr	12	10	10	9	12	4	12	18	11	49
Ръ	ND	3	ND	40	MD	27	ND	7	14	10
As	ND	4	ND	ND	ND	ND	4	ND	13	ND
Ba	930	570	780	340	440	840	1090	1080	950	1140
Ce	53	59	5 8	59	72	34	33	59	52	55
La	. 11	5	14	15	19	5	5	. 17	12	9
Ti	1820	1450	2160	2390	2710	1650	1590	3150	2670	530

Sample	3			4.						10
No	02-2	02-3	02-4	02-5	02-6	03-1	03-2	03-3	03-4	03-5
υ	ND	ND	ND	3	4	ND	4	3	ND	3
Th	5	4	6	18	17	18	13	25	22	14
Y ,	13	12	14	33	33	21	17	38	14	16
Rъ	69	15	10	165	137	57	27	96	38	108
Zr	53	109	105	64	72	134	123	286	106	74
Nb	6	5	5	14	14	10	8	17	6	5
Sr	50	67	63	20	. 21	31	30	29	29	10
Pb	ND	ND	ND	5 5	18	11	23	ND	72	ND
Ав	ND	ND	6	ND	ND	14	41	13	42	ND
Ba	740	220	180	1310	1220	200	130	410	ND	450
Се	22	3 8	30	81	82	77	59	42	30	53
La	ND	ND	ND	23	22	18	12	21	ND	12
Ti	6070	8160	6970	3980	3620	2050	1950	7640	2940	1890
					2					
C1 -										
Sample No	03-6	03-7	03-8	03-9	04-1	04-2	04-3	04-4	04-5	04-6
U	3	4	3	3	5	ND	6	ND	ND	ND
Th	9	19	19	15	16	18	24	7.	18	16
Y	9	55	32	3 0	32	24	45	.18	32	33
RЪ	15	91	128	55	131	127	106	19	124	132
Zr	66	48	72	39	ND	86	29	124	ND	11
Np .	4	- 7	11	6	8	12	9	8	8	14
	2.22			V 100		_	4 6	106	88	21
Sr	ND (25	10	11	34	8	15	100	. 00	
Sr Pb	ND (25 ND	10 ND	11	34 34	מ וו	ND	ND	13	4
			ND	8		ND	ND	*1	13	
Pb	109	ND .	ND ND	8 dw	34	ND	ND ND 490	ND ND 320	13 ND 720	4 ND 1640
Pb As	109 46	ND ND 450	ND ND	8 dw	34 ND 810 44	ND ND 1030 67	ND ND 490 26	ND ND 320 25	13 ND 720 59	4 ND 1640 69
Pb As Ba	109 46 120	ND ND 450	ND ND 740	8 ND 220	34 ND 810 44	ND ND 1030 67	ND ND 490 26	ND ND 320	13 ND 720 59 10	4 ND 1640 69

a -	7									* *
Sample No.	04-7	05-1	05-2	06-1	06-2	07-1	07-2	08	09-1	09-2
บ	ND	ND	. 6	7	10	15	16	5	3	ND
Th	21	14	11	13	14	. 11	15	24	18	14
Y	29	16	26	18	21	18	27	40	15	50
Rъ	106	156	103	107	138	88	117	175	161	125
Zr	40	13	2	27	45	16	20	ND	95	101
Nb	8	8	8	8	11	7	1.0	. 6	15	11
Sr a	43	18	18	15	17	18	23	149	17	8
Pb	ND	14	ND	38	16	ND	53	33	49	111
As	ND	3	5	ND	ND	ND	ND	ND	385	ND
Ba	730	750	920	630	910	670	890	1950	860	550
Се	57	59	49	58	69	43	53	60	119	63
La	6	- 10	13	15	18	10	11	7	16	11
Ti	980	2480	2250	2080	3050	2090	2500	380	3710	3720
		en e e								
S1-	, , , , , , , , , , , , , , , , , , ,		2.						* *	
Sample	09-3	09–4	09-5	09-6	09-7	09 – 8	09-9	09–10	09–11	09–12
	09 -3 ND	09 - 4	09 - 5	09-6 ND	09 - 7	09 - 8	09 - 9	09 – 10 25	09-11 ND	09-12 ND
No.			* *						- 7 %	
No. U	ND	3	5	ND	9	7.	4	25	ND	ND
No. U Th	ND 12	3 17	5 33	ND 20	9 39	7 18	4 20	25 10	ND 16	ND 17
No. U Th Y	ND 12 11	3 17 23	5 33 31	ND 20 20	9 39 35	7 18 25	4 20 23	25 10 18	ND 16 69	ND 17 22
No. U Th Y Rb	ND 12 11 113	3 17 23 165	5 33 31 290	ND 20 20 153	9 39 35 320	7 18 25 128	4 20 23 145	25 10 18 92	ND 16 69 149	ND 17 22 148
No. U Th Y Rb	ND 12 11 113 71	3 17 23 165 108	5 33 31 290 50	20 20 153 112	9 39 35 320 216	7 18 25 128 194	4 20 23 145 139	25 10 18 92 40	ND 16 69 149 85	ND 17 22 148 73
No. U Th Y Rb Zr	ND 12 11 113 71 8	3 17 23 165 108 14	5 33 31 290 50 25	20 20 153 112 14	9 39 35 320 216 19	7 18 25 128 194 15	4 20 23 145 139 17	25 10 18 92 40 7	ND 16 69 149 85 12	ND 17 22 148 73 11
No. U Th Y Rb Zr Nb	ND 12 11 113 71 8 9	3 17 23 165 108 14 12	5 33 31 290 50 25 21	ND 20 20 153 112 14 12	9 39 35 320 216 19 25	7 18 25 128 194 15	4 20 23 145 139 17	25 10 18 92 40 7 6	ND 16 69 149 85 12 22	ND 17 22 148 73 11 12
No. U Th Y Rb Zr Nb Sr	ND 12 11 113 71 8 9 48	3 17 23 165 108 14 12 69	5 33 31 290 50 25 21	ND 20 20 153 112 14 12 91	9 39 35 320 216 19 25 64	7 18 25 128 194 15 11	4 20 23 145 139 17 12 59	25 10 18 92 40 7 6	ND 16 69 149 85 12 22	ND 17 22 148 73 11 12
No. U Th Y Rb Zr Nb Sr Pb	ND 12 11 113 71 8 9 48 11	3 17 23 165 108 14 12 69 72	5 33 31 290 50 25 21 97 3035	ND 20 20 153 112 14 12 91 ND	9 39 35 320 216 19 25 64 41	7 18 25 128 194 15 11 20	4 20 23 145 139 17 12 59 546	25 10 18 92 40 7 6 25 22	ND 16 69 149 85 12 22 39 19	ND 17 22 148 73 11 12 5
No. U Th Y Rb Zr Nb Sr Pb As Ba	12 11 113 71 8 9 48 11 490	3 17 23 165 108 14 12 69 72 730	5 33 31 290 50 25 21 97 3035 1040	20 20 153 112 14 12 91 ND 650	9 39 35 320 216 19 25 64 41 1120	7 18 25 128 194 15 11 20 9	4 20 23 145 139 17 12 59 546 600	25 10 18 92 40 7 6 25 22 300	ND 16 69 149 85 12 22 39 19 780	ND 17 22 148 73 11 12 5 55 1040

44.

	Sample										
	No.	09-13	09-14	09-15	09-16	09-17	09-18	10-1	10-2	10-3	10-4
	σ .	ND	5	4	7	5	ND	ND	4	ND	4
	Th	8	53	32	32	20	266	ND	25	19	59
-	Y	12	53	ND	51	84	ND	25	22	10	ND
	Rъ	ND	ND	19	142	ND	9	8	148	121	104
	Zr	57	47	48	ND	39	13	78	29	33	ND
	Nb	6.	13	10	12	10	ND	4	.11	12	16
	Sr	ND	8	5	6	ND	ND	58	4	7	37
	Ръ	ND	261	7482	51	58	1135	36	18	450	20590
	8A	ND	80	98	19	ND	120	24	ND	ND	ND
	Ba	50	36	ND .	1180	50	90	360	1100	1940	2430
	Ce	26	13	ND	30	13	ND	ND	40	44	400
	La	ND o	ND	ND	ND	ND .	ND	ND	ND	ND	48
	Ti	1640	310	140	240	180	90	7890	1720	4210	3820
		1									
		in a					ž.	i * *			
	Sample No.	10-5	10–6	10-7	10-8	10-9	10-10	11-1	11-2	11-3	11-4
	σ	3	3	ND	4 .	3	9	ND	4	5	7
	Th	28	16	15	- 11	33	34	14	17	16	27
	Y	ND	23	ND	22	24	69	14	ND	17	50
	Rь	160	106	43	34	3	71	168	182	80	94
•	Zr	ND	35	47	49	60	ND	42	100	9	36
	Nb	10	13	9	10	11	14	14	15	6	12
	Sr	5	9	6	4	3	3	13	- 10	3	8
	Pb	6450	286	3440	3	125	12	92	2100	42	ND
	As	111	ND	ND	ND	73	ND	85	3860	12	ND
	Ba	2070	1750	670	850	90	3620	950	730	250	380
	Се	130	7 5	112	47	7	30	140	412	35	32
	La	ND	13	5	ND	ND	ND	6	18	ND	ND
	Ti	3050	3720	2680	2520	300	320	1990	3770	90	180

C1-							w.			·
Sample No.	11-5	11–6	11-7	11-8	11-9	11-10	11-11	11-12	11-13	11-14
σ	4	ND	3	ИD	. 5	3	3	ИD	10	4
Th	30	13	21	ND	20	28	15	15	48	22
Y	62	ND	49	36	44	52	7	29	80	38
Rb	121	121	177	20	156	215	111	127	274	145
Zr	27	8	15	209	33	122	94	45	158	80
Nb	14	7	17	18	15	21	11	14	31	15
Sr	7	ND	9	208	8	6	5	2	10	3
Ръ	904	1890	13	2	10	11	1465	57	48	161
As	ND	ND	ND	17	ND	ND	ND	ND	ND	ND .
Ba	640	680	1190	420	830	760	410	520	1300	590
Ce	42	70	54	30	55	120	195	48	66	59
La	ND	ND	5	ND	ND ,	47	81	ND	5	5
Ti	190	200	340	13100	370	740	2880	330	1040	480
N N				* *	9	. ,				
C1-	*				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Sample No.	11-15	11-16	11-17	11–18	11-19	11-20	11-21	11-22	11-23	11-24
	6									3500
v -	4	5	4	8	3	ND	ND	ND	4	ND
U Th	4 17	5 17	4 18	8 16	3 20	ND 12	ND 15	ND 9	4 18	11
Th	.17	17	18	16	20	12	15	9	18	11.
Th Y	17 24	17 24	18 56	16 34	20 40	12 19	15 24	9	18 41	11 16
Th Y Rb	17 24 124	17 24 134	18 56 28	16 34 122	20 40 122	12 19 51	15 24 16	9 16 58	18 41 11	11 16 8
Th Y Rb Zr	17 24 124 61	17 24 134 53	18 56 28 95	16 34 122 42	20 40 122 63	12 19 51 23	15 24 16 40	9 16 58 19	18 41 11 81	11 16 8 48
Th Y Rb Zr Nb	17 24 124 61	17 24 134 53 12	18 56 28 95 14	16 34 122 42 12	20 40 122 63 11	12 19 51 23 8	15 24 16 40 7	9 16 58 19 6	18 41 11 81 12	11 16 8 48 7
Th Y Rb Zr Nb Sr	17 24 124 61 11	17 24 134 53 12 4	18 56 28 95 14	16 34 122 42 12	20 40 122 63 11	12 19 51 23 8 3	15 24 16 40 7 ND	9 16 58 19 6	18 41 11 81 12 ND	11 16 8 48 7 ND
Th Y Rb Zr Nb Sr Pb	17 24 124 61 11 4	17 24 134 53 12 4	18 56 28 95 14 ND	16 34 122 42 12 4 ND	20 40 122 63 11 3	12 19 51 23 8 3	15 24 16 40 7 ND	9 16 58 19 6 3	18 41 11 81 12 ND ND	11 16 8 48 7 ND
Th Y Rb Zr Nb Sr Pb As	17 24 124 61 11 4 12	17 24 134 53 12 4 ND	18 56 28 95 14 ND ND	16 34 122 42 12 4 ND ND	20 40 122 63 11 3 ND	12 19 51 23 8 3 24 71	15 24 16 40 7 ND 19 168	9 16 58 19 6 3 ND	18 41 11 81 12 ND ND	11 16 8 48 7 ND ND
Th Y Rb Zr Nb Sr Pb As Ba	17 24 124 61 11 4 12 ND 620	17 24 134 53 12 4 ND ND	18 56 28 95 14 ND ND ND	16 34 122 42 12 4 ND ND	20 40 122 63 11 3 ND ND	12 19 51 23 8 3 24 71	15 24 16 40 7 ND 19 168 160	9 16 58 19 6 3 ND 21 250	18 41 11 81 12 ND ND 69 150	11 16 8 48 7 ND ND 29 100
Th Y Rb Zr Nb Sr Pb As Ba Ce	17 24 124 61 11 4 12 ND 620 54	17 24 134 53 12 4 ND ND 610 45	18 56 28 95 14 ND ND ND 210 48	16 34 122 42 12 4 ND ND 620 61	20 40 122 63 11 3 ND ND 590	12 19 51 23 8 3 24 71 350 23	15 24 16 40 7 ND 19 168 160 12	9 16 58 19 6 3 ND 21 250	18 41 11 81 12 ND ND 69 150 5	11 16 8 48 7 ND ND 29 100

~ -					343					
Sample No.	11-25	11-26	11-27	11-28	11–29	12-1	12-2	12-3	12-4	12-5
υ	ND	ND	3	8	ND	5	ND	4	8	5
Th	39	13	13	39	31	23	ND	12	8 10	23
Y .	173	38	21	92	16	29	41	19	16	53
Rъ	4	20	95	56	59	115	27	104	48	41
Zr	78	64	44	166	30	49	134	ND	ND	33
Nb	16	9	7	28	7	11	5	10	4	15
Sr	ND	ND	3	2	ND	66	13 8	56	46	95
Pb	3	ND	ND	50	71	23	ND	6	ND	2
As	471	ND	6	107	131	ND	5	ND	ND	ND
Ba	130	170	420	380	320	1070	220	1820	830	840
Ce	80	16	34	54	11	95	. 8	52	32	77
La	5	ND	ND	ND	MD .	34	ND	ND	5	23
Ti	430	280	290	750	290	2000	12830	3180	1460	520
			*		*					
~ .				*						*
Sample No.	13-1	13-2	14-1	14-2	15-1	15–2	15-3	15-4	15-5	15–6
U	10	14	4	ND	3	4	ND	ND	ND	4
Th	9	10	23	21	19	17	11	ND	3	19
Y	18	27	25	23	19	19	18	28	ND	ND
Rъ	81	73	240	229	161	173	76	16	141	189
Zr	2	2	13	20	68	13	ND	86	ND	112
Nb	5	5	16	14	14	13	9	2	ND	13
Sr	14	17	46	57	5	6	54	36	65	7
Pb	9	13	ND	14	5	3	9	34	1970	6604
As	ND	ND	ND	· ND	ND	ND	ND	31	6	ND
Ва	750	920	1180	1060	1370	2250	8780	330	7870	380
Ce	35	48	103	77	68	8	37	ND	14	106
La	5	11	37	17	19	17	ND	ND	ND	11
Ti	1570	1680	4470	3970	4000	4240	1990	9100	9140	3220

Samala										
Sample No.	15-7	15-8	15-9	15-10	15-11	15-12	15-13	15-14	15-15	15-16
U	3	7	4	3	ND	3	ND	ND	11	3
Th	19	34	16	18	6	33	5	ND	50	21
Y	35	98	6	28	ND	ND	6	23	112	28
Rb	149	156	152	206	5	7 3	17	102	253	198
Zr	119	54	128	97	ND	ND	30	154	65	108
NP	14	16	10	. 13	ND .	3	4	11	22	13
Sr	10	4	12	4	71	11	2	6 8	15	11
Pb	46	7	1015	134	4997	20090	20	ND	24	26
As	57	3	7	18	45	618	26	37	ND	6
Ba	490	540	590	710	9000	1430	150	550	870	830
Ce	97	64	78	99	52	125	33	27	71	105
La	22	8	14	26	ND	ND	ND	ND	9	28
Ti	4290	290	3380	3950	7440	1030	940	9150	340	3770
Sample No.	15-17	15-18	15-19	15-20	15-21	15-22	16-1	16-2	16-3	16-4
U.	ND	ND	5	9	ND	ND	ND	9	4	ND
Th ·	16	12	25	30 30	14	18	16	33	21	18
Y	13	13	60	93	20	21	21	95	56	24
Rъ	161	113	133	141	106	148	170	99	216	185
Zr	107	76	23	38	81	113	112	48	138	103
Nb	12	85	14	14	11	12	12	16	15	.15
Sr	6	35	73	56	25	17	8	8	14	12
Pb	231	85	41	19	24	36	31	ND	45	31
As	ND	17	9	5	ND	ND	38	ND	12	23
Ba	530	460	370	400	630	640	590 ·	440	680	1160
Ce	75	48	40		56	84	70	30	110	94
La	17	7	ND .	ND	10	20	70 7	ND	31	28
na	11	- 1	ND	Hν	10	20	I.	MD	71	20
Ti	3620	2310	150	180	2630	352 0	3740	270	4500	3950

.

Commla										
Sample No.	16-5	16-6	16-7	16-8	16-9	16-10	16-11	16-12	16-13	16-17
σ	ND	ND	7	3	ND	8	ND	3	ND	6
Th	15	16	20	20	14	35	10	17	19	18
Y	15	20	25	23	22	95	2 5	18	23	22
Rъ	165	131	204	207	167	218	138	160	152	196
Zr	14	105	146	142	78	54	68	115	108	144
NP	13	11	16	15	10	19	10	12	14	14
Sr	43	21	17	17	. 11	121	127	21	31	20
Pb	52	37	40	25	30	20	41	22	29	47
As	28	ND	ND	2	4	ND	3	5	ND	ND
Ba	1540	660	610	530	480	320	390	690	960	600
Се	52	78	74	98	89	54	60	7 8	91	88
La	ND -	18	26	26	26	5	16	19	22	27
Ti	2790	3390	3760	3820	3380	230	2060	3620	3470	3720
		* .								
Sample No.	17-1	17-2	17-3	17-4	17-5	17-6	17-7	17-8	17-9	17-10
U	3	ND	ND	3	3	ND	ND	5	6	3
Th	12	ND	17	19	21	3	12	19	22	12
Y	23	26	24	28	27	30	3	50	17	. 8
Rb	148	4	164	166	167	42	62	94	11	16
Zr	73	. 99	5 7	79	77	90	36	22	146	84
Nb	13	ND	10	15	15	3	8	11	12	9
Sr	12	147	8	14	19	69	2 ,	ND	5	2
Рb										
100 m	13	ND	ND	ND	46	7	354	389	59	13
As	13 ND		ND ND		46 ND	7 ND	354 40	389 ND	59 2	13 ND
		ND		ND			40 680			
As	ND	ND 15	ND	ND	ND	ND	40	ND	2	ND
As Ba	ND 1340	ND 15 130	ND 1700	ND ND 1570	ND 1550	ND 390	40 680	ND 320	2 110	ND 70

	Sample No.	17-11	17-12	18-1	18-2	18-3	18-4	18-5	18-6	19-1	20-1
	U	4	ND	6	ND	3	ND	ND	ND	ND	ND
	Th	18	15	ND	3	19	16	133	8	12	18
	Y	25	8	ND	29	ND	14	ND	9	9	19
	Rъ	196	165	6	6	161	132	25	- 54	35	8
	Zr	115	85	113	151	103	66	43	36	80	70
r	Nb	16	10	4	6	13	14	4	. 7	11	8
	Sr	12	12	96	32	9	17	ND	4	13	33
	Pb	54	100	1290	24	1900	14	13280	62	177	96
	As	10	45	52	6	26	ND -	434	36	3	ND
	Ba	620	440	740	390	670	1390	ND	260	300	100
	Ce	105	73	130	ND	108	65	110	61	100	53
	La	26	10	6	ND	17	6	ND	ND	59	- 13
	Ti	3930	2740	14410	16050	3700	3810	500	1280	1660	380
	Sample	20. 2	20.7	20-4	20-5	20-6	20-7	20-8	20-9	20-10	20-11
	No.	20-2	20-3	ND	ND		-	ND ND	ND	3	
	U m	.3 20	4 26	ND	νυ, 5	4 21	.3 20	17		ر 18 ن	3 14
	Th Y	28	12	29	6	23	30	ND	13	31	27
	Rb	144	110	ND	16	154	152	159	149	176	156
	Zr	ND	ND	209	97	73	66	70	71	ND	5
	Nb	. 8	8	14	6	15	13	13	12	15	14
	Sr	14	58	197	20	6	5	7	8	8	8
	Pb	68	9	9	323	2	3	1015	100	186	32
	AB	ND	ND	ND	ND	ND	ND	118	25	ND	5
	Ba	1350	1430	130	280	790	900	780	880	1890	1450
	Ce	54	60	26	21	63	70	100	49	82	76
	La	ND	9	ND	ND	11	16	18	10	23	19
	Ti	450	530	10920	8020	550	510	2990	2800	610	560
						-			1	3-0 0 0-0	•

				10).					
¥				(*)		¥ v		·		
Sample No.	20-12	20-13	20-15	20-16	20-17	20-18	20-19	20-20	20-21	20-22
Ū	3	4	4	ND	3	ND	5	ND	4	4
Th	9	21	24	22	26	13	30	10	24	16
Y	55	32	2 8	ND	ND	ND	53	37	47	29
Rъ	98	191	242	150	86	116	197	45	141	98
Zr	23	17	17	2 2	38	65	138	50	85	52
Иb	9	15	17	12	8	10	22	7	16	11
Sr	16	8	13	6	2	11	11	3	8	6
Ръ	38	1096	761	3558	7 512	709	ND	ND	ND	ND
As	19	ND	ND	20	ND	ND	33	ND	ND	ND
Ba	650	1418	2310	1350	760	670	1010	240	640	560
Ce	56	96	103	125	170	80	120	42	54	5 6
La	7	15	23	13	, 9	12	39	9	,8	13
L T	1430	560	670	460	370	2110	830	310	520	420
									el .	
Sample No.	20-23	20-24	20– 25	20-26	03-10	03–11	03-12	03–13	03-14	03-15
Ū	4	5	3	4	ND	ND	ND	ND	ND	3
Th	24	19	. 19	14	ND	13	15	19	14	17
Y	37	35	38	27	22	15	20	19	19	19
Rb	172	80	128	80	9	41	12	22	18	111
Zr	74	49	19	30	176	125	134	157	141	65
Nb	16	13	14	9	9	9	8	10	7	7
Sr	10	ND	3	5	327	36	32	45	34	8
Ръ	ND	ND	ND	ND	7	21	9	11	6	ND
As	ND	ND	ND	ND	9	21	4	13	11	3
Ва	830	850	1400	680	190	180	130	150	130	520
Ce	56	44	54 •	44	29	63	61	85	66	49
La	8	ND	9	7	ND	12	13	30	27	5
Ti	560	520	460	330	12130	2150	2360	2350	1740	1880

Gamm1 a										
Sample No.	03-16	03-20	09-19	09-20	09-21	09-22	10-11	10-12	10-14	10-15
ΰ	ND	3	ND	ND -	ND	ND	ND	6	ND	4
Th	13	14	ND	26	7	10	12	19	9	12
Y	19	28	32	70	6	6	5	42	17	15
Rb	23	44	48	9	16	7	4	29	3 5	78
Zr	154	44	190	51	3 5	32	76	ND	57	43
Nb	10	6	14	22	3	5	7	11	8	9
Sr	33	31	149	ND	ND	ND	2	4	ND	6
Pb	13	. 17	4	122	16	2	381	20	4	3
AB	8	ND	32	20	67	7	21	7	. 13	. 5
Ba	140	340	300	100	120	70	80	880	380	900
Ce	70	53	27	ND	44	17	18	20	55	56
La	24	6	ND	ND	ND	ND	ND	ND	.7	12
Ti.	2280	470	11630	2030	770	160	2400	160	2270	2850
									2 2 E	
	*									
Sample	10-17	172	17_4	17-5	17-6	17-7	17-8	17-9	17-10	17-11
No.	10–17 ND	17-2	17-4	17-5 ND	17-6	17-7 ND	17 - 8	17-9	17-10 ND	17-11 ND
No.	ND	3	3	ND	3	ND	4	4	ND	ND
No. U Th	ND 6	3 22	3 26	ND 19	3 18	ND 25	4 23	4 22	ND 19	ND 19
No. U Th	ND 6 10	3 22 23	3 26 48	ND 19 22	3 18 24	NTD 25 38	4 23 42	4 22 35	ND 19 28	ND 19 22
No. U Th Y Rb	ND 6 10 23	3 22 23 52	3 26 48 101	ND 19 22 94	3 18 24 167	ND 25 38 51	4 23 42 38	4 22	ND 19 28 155	ND 19 22 194
No. U Th Y Rb	ND 6 10 23 45	3 22 23 52 53	3 26 48 101 61	ND 19 22 94 29	3 18 24 167 63	ND 25 38 51 75	4 23 42 38 51	4 22 35 167 ND	ND 19 28 155 90	ND 19 22 194 102
No. U Th Y Rb Zr	ND 6 10 23 45 6	3 22 23 52 53 7	3 26 48 101 61 8	ND 19 22 94 29 6	3 18 24 167 63	NTD 25 38 51 75	4 23 42 38 51 7	4 22 35 167 ND 6	ND 19 28 155 90 14	ND 19 22 194
No. U Th Y Rb Zr Nb	ND 6 10 23 45 6 ND	3 22 23 52 53 7 65	3 26 48 101 61 8	ND 19 22 94 29 6	3 18 24 167 63 14	ND 25 38 51 75 9	4 23 42 38 51 7 50	4 22 35 167 ND 6	ND 19 28 155 90 14 10	ND 19 22 194 102 15
No. U Th Y Rb Zr Nb Sr	ND 6 10 23 45 6 ND 11	3 22 23 52 53 7 65	3 26 48 101 61 8 52	ND 19 22 94 29 6	3 18 24 167 63	NTD 25 38 51 75	4 23 42 38 51 7 50 16	4 22 35 167 ND 6	ND 19 28 155 90 14	ND 19 22 194 102 15 11 69
No. U Th Y Rb Zr Nb Sr Pb	ND 6 10 23 45 6 ND 11 3	3 22 23 52 53 7 65 9	3 26 48 101 61 8 52 10	ND 19 22 94 29 6 69 43 ND	3 18 24 167 63 14 10 ND	ND 25 38 51 75 9 47 23 ND	4 23 42 38 51 7 50 16 5	4 22 35 167 ND 6 84 17	19 28 155 90 14 10	ND 19 22 194 102 15 11 69 13
No. U Th Y Rb Zr Nb Sr Pb As Ba	ND 6 10 23 45 6 ND 11	3 22 23 52 53 7 65	3 26 48 101 61 8 52 10 ND 840	ND 19 22 94 29 6 69 43 ND 980	3 18 24 167 63 14 10	ND 25 38 51 75 9 47 23	4 23 42 38 51 7 50 16	4 22 35 167 ND 6 84	19 28 155 90 14 10	ND 19 22 194 102 15 11 69
No. U Th Y Rb Zr Nb Sr Pb As Ba Ce	ND 6 10 23 45 6 ND 11 3 130	3 22 23 52 53 7 65 9 ND 360	3 26 48 101 61 8 52 10 ND 840 63	ND 19 22 94 29 6 69 43 ND 980 68	3 18 24 167 63 14 10 ND ND	ND 25 38 51 75 9 47 23 ND 390 92	4 23 42 38 51 7 50 16 5 360 70	4 22 35 167 ND 6 84 17 ND	19 28 155 90 14 10 ND 15 1310	ND 19 22 194 102 15 11 69 13 600 96
No. U Th Y Rb Zr Nb Sr Pb As Ba	ND 6 10 23 45 6 ND 11 3 130 ND	3 22 23 52 53 7 65 9 ND	3 26 48 101 61 8 52 10 ND 840	ND 19 22 94 29 6 69 43 ND 980	3 18 24 167 63 14 10 ND ND 1400 50	ND 25 38 51 75 9 47 23 ND 390	4 23 42 38 51 7 50 16 5	4 22 35 167 ND 6 84 17 ND 1200	19 28 155 90 14 10 ND 15 1310 86	ND 19 22 194 102 15 11 69 13 600

Sample			1							
No.	17-12	17-14	17-15	17-16	17-17	17–18	17-19	17-20	17-21	17-22
Ū	ND	ND	6	ND	ND	ND	ND .	6	ND	ND
Th	18	10	67	ND	13	19	19	16	18	64
Y .	23	6	ND	22	9	20	21	ND	ND	ND
Rb .	154	61	55	118	102	157	162	118	52	38
Zr	77	50	83	ND	4	2	ND	ND	12	ND
Nb	. 13	8	ND	3	9	12	13	ND	5	ND
Sr	9	8	ND	· 73	- 5	15	10	741	ND	269
Pb	18	906	57362	235	513	13	165	1339	12233	46435
As	11	66	2558	49	27	ND	7 8	101	388	2649
Ba	1260	640	ND	9380	1420	2090	2630	78450	180	37540
Ce	61	53	425	ND	72	56	85	ND	155	93
La	8	ND	ND	ND	, 9	. 8	17	ND	ND	ND
Ti	3620	2210	320	9900	2150	4090	3140	1800	410	50
							* .		2 ×	
		7	VII. 4							
Sample	47 07	17-24	17-25	17 26	17-27	18-1	18-2	10 7	40.4	40 E
No.	17-23 ND		ND	17-26 ND	3	ND	ND	18-3 ND	18-4 ND	18–5
Th.		3 18	ND	ND		ND				ND
Y	23 ND	27	עא 28	28	19 26	28	21	17 10	36 ND	14
Rъ	νυ _. 5	125	18	5	26 87	26 37	25 157	122	6 0	12
Zr	NTD	ND ND	.87	109	65	ND	157 82	50		82
Nb	7	14	2	7	11	3	15	6	67 3	71
Sr	1,1	9	20	141	32	212	12	13	ND	17
Pb	2690	51	6	5	ND					13
As	318	9		4	ND	23	7 ND	105 19	36685	57
Ba.	2410		5			14			1059	55
Се	24 10 ND	2720 62	350 ND *	160 6	1620	2510	1580	1170	200	610
	ND				70 20	ND	80	44	240	52
La Ti	710	13 3190	ND	ND 8640	20	ND	22	ND	ND	8
I T	/10	2190	7740	204U	2310	7470	4260	2550	930	2480

¥ 9 6					. 13	5.			N.		
	Sample	10.6	18-7	18-8	18–9	18–10	18-11	19–1	19-2	19-3	19–4
	No.	18-6 ND	ND	3	ND	ND	ND	ו בפי	ND	ND	3
	Th	20	3	19	ND	ND	3	14	56	13	23
	Y	22	8	26	33	32	34	25	3	24	45
	Rъ	147	ND	5 8	10	10	5	4	8	35	89
		71	39	109	88	99	116	156	69	54	88
	Zr Nb	15	2	14	4	55 5	4	10	5	5	9
		2 7	199	165	209	249	138	31	ND	18	21
	Sr		- 11	ND	5	5	3	9	111	5	8
	Pb	23 ND		ND	NTD	NTD .	ND	9	3	18	ND
	As		14	760	380	340	180	130	140	190	400
	Ba	1490	110		NTD	6	12	11	ND	34	70
	Ce	86	ND	66		ND	ND	32	ND	ND	14
	La	30	ND	14	ND	121	, ,				
	Ti	4010	3060	3620	8520	7760	9440	3840	1230	570	1230
								81 181		F2	ži o
	C1-										
	Sample No.	19-5	19–6	19-7	19 – 8	20-1	20-2	20-3	20-4	20-5	20-6
	σ	ND	ND	ND	ND	ND	ND	3	ND	ND	4
¥	Th	16	21	17	15	13	14	41	14	28	14
	Y	28	26	33	19	13	15	32	21	13	26
	Rb	145	121	71	65	5	ND	ND	53	4	39
	Zr	26	155	125	145	93	132	207	136	94	40
	Nb	6	14	13	10	10	8	12	11	9	8
	Sr	8	9	5	66	. 4	ND	2	22	32	31
	Pb	ND	ND	6	ND	30	7	53	7	82	12
	As ,	ND	11	25	8	100	8	16	ND	4	11
	Ba	560	570	390	450	110	100	130	370	130	280
	Ce	37	108	80	. 47	9	24	ND	49	ND	44
	La	ND	36	23	6	ND	ND	ND	18	ND	5
	Ti	750	4140	3180	5160	1380	2060	3660	3160	2450	330

Samala										
Sample No.	20-7	20-8	20-9	20-10	20-11	20-12	21-1	21-2	21-3	21-5
U .	8	3	ND	ND	3	ND	ND	ND	4	ND
Th	24	15	15	26	26	21	ND	3	19	20
Y	52	28	14	34	46	35	33	27	10	22
Rb	177	41	81	80	135	103	18	12	144	95
Zr	45	76	107	119	8	81	134	96	7	ND
Nb	11	6	10	10	13	8	3	5	13	6
Sr	12	22	6	24	47	59	233	277	7	64
Ръ	6	ND	5	3	3	5	3.	6	450	19
As	6	ND	6	` 9	ND	ND .	27	11	204	ND
Ba	660	270	470	400	1030	490	150	290	2240	3960
Ce	60	61	50	115	63	98	5	5	17	40
La	9	12	7	47	18	31	ND	ND	11	ND
Ti	590	1040	2740	1320	990	1070	8640	8900	3790	500
	*					•				
	,									
Sample							04.40		04 45	04.46
No.	21-6	21-7	21-8	21-9	21-10	21-11	21-12	21–14	21-15	21–16
U	ND	ND	5	ND	ND	ND	ND	ND	ND	ND
Th	15	20	31	21	17	ND	8	15	24	3
Y	17	32	22	22	17	ND	3	14	6	22
Rb	118	138	177	139	125	44	34	95	16	9
Zr	ND	ND	ND	41	77	149	31	89	25	145
Nb	, 13	9	9	12	11	ND	4	10	3	5
Sr	23	83	43	14	7	ND	ND	6	4	107
Pb	194	106	67	ND	18	66024	38	12	298	21
As	5	ND	6	ND	7	2274	45	6	8	18
Ba	3960	7310	5710	2030	1290	ND	250	460	100	160
Ce	60	58	80	. 80	82	382	53	64	5	14
La	5	5	12	16	24	ND	ND	10	ND	ND
Ti	2250	890	1030	3770	3670	470	1130	2860	790	13710

Sample No.	21-17	21-18	21-19	21-20
U	ND	ND	ND	ND
Th	20	15	21	3
Y	25	18	22	29
Rъ	150	135	146	10
Zr	139	11	59	121
Np .	16	12	16	2
Sr	28	23	24	126
Pb	55	17	7	7
As a	ND	ND	13	ND
Ba.	720	2080	1510	140
Ce	72	69	75	5
La	23	14	12	ND
Ti	380	3730	3930	6960

CHEMICAL ANALYSIS OF OLIVINE BASALTS FROM PAPUA NEW CUINEA

by

J.G. Pyke and K. Ellingsen

Two olivine basalt samples from Papua New Guinea were submitted for chemical analysis by D. Machensie.

The samples were :-

- a) G82(48) from the summit area of Ht Giluwe.
- b) 71073107 from the southwest slopes of Mt Bosavi.

The analyses were carried out using X-ray fluorescence, on boric acid backed powder pellets.

Calculated detection limits are :-

U	2 ppm	lΠb	2 ppm	Pb	2 ppm	V 3 ppm
${ m Th}$	2 ppm	Sr	2 ppm	As	2 ppm	Co 2 ppm
Y	2 ppm	Ti	5 ppm	Cu	2 ppm	No 3 ppm
Rb	2 ppn	Ce	3 ppm	Zn	2 ppm	Cr 2 ppm
Zr	2 ppm	Ba	3 ppm	Ni	2 pym	Sn 3 ppm

All results in ppm

7107-	G82(43)
E 121	102(40)
100	
	. 3
	15
64	43
80	48
10	4
602	670
6740	6920
	37
430	263
2	3
3	IID
95	121
71	7 3
553	57
245	229
125	53
514	540
1040	33
ND	IID
	5107 ND 4 14 64 80 10 602 6740 30 430 2 5 71 533 245 125 514

Zinc Content of Molonglo River Water

by

J. WEEKES

The following results were obtained for the determination of specific conductance at 20°C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling - 4/12/75

Sampling points	Sp Cond. (umho/cm)	На	An (ppm) (dissolved)	Zn (ppu) (Total)	Flow
Holonglo River at		a		, f	
Burbong Weir (D2) (410705)	254	7.0	0.04	0.15	0 .1 62 m
Honeysuckle Crk (F2)	208	7.0	N.D.	N.D.	.
Lake Darley Griffin at	* **				
Scrivener Dam (II4)	147	6.8	0.01	0.05	555-915

ANALYSIS OF LAKE GEORGE WATER SAMPLES

by

J. WEEKES

A sample of water from Lake George, N.S.W., was submitted by A.W. Schuett for determination of specific conductance, pH and total dissolved solids (180 C).

Date of sampling -27/11/75

Sp. Cond. (°C) - 2,800

pH - 7.4

T.D.S. (180°C) - 1,670 ppm

Zinc Content of Molonglo River Water

by

J. WEEKES

The following regults were obtained for the determination of specific conductance at 20 C, pH, dissolved zinc and total zinc on water samples as listed below from the Molonglo River/Lake Burley Griffin system. All samples were acidified with hydrochloric acid prior to the determination of total zinc.

Samples were collected by the Department of Housing and Construction for the Joint Government Technical Committee on Mine Waste Pollution in the Molonglo River.

Date of sampling 18/12/75

Sampling points	Sp. Cond. (umho/cm)	рH	Zn (ppm) (dissolved)	Zn (ppm) (Total)	Flow
Molonglo River at					
Burbong Weir (D2) (410705)	285	7.1	0.02	0.10	0.110 m
Honeysuckle Crk (F2)	198	7.9	ND	0.03	
Lake Burley Griffin at				4.5	
Scrivener Dam (H4)	160	7.7	0.02	0.06	24.95 ft

Bracketed numbers are Department of Housing and Construction stream gauge reference numbers.

CHEMICAL ANALYSIS OF NEWCASTLE RANGE VOLCANICS

by

J.G. Pyke and K. Ellingsen

Fourteen rock samples of the Newcastle Range volcanics from the George town area north central Qld. were submitted by B. Oversby for chemical analysis.

All analyses were carried out using X ray fluorescence.

Glass discs were prepared for the analysis of $Si0_2$, $Ti0_2$, $A1_20_3$, total Fe as Fe₂0₃, MnO, NgO, CaO, K₂O and P₂O5.

Na 0 and all trace elements were determined using boric acid backed powder pellets:

Loss on ignitions values were determined by heating the powdered rock to 1000°C, maintaining temperature for 2 hours.

Trace element detection limits were calculated to be:-

U	2ppm	Nb	2ppm	Zn	2p m	Cr	2ppm
Th	2ppm	Sr	2ppm	Ni	2ppm	 ٧	3ppm
Y	2ppm	Pò	2ppm	Ba	5ppm	Co	2ppm
Rb	2ppm	As	2ppm	Ce	5ppm	Mo	2ppm
$Z\mathbf{r}$	2ppm	Cu	2ppm	La	5ppm	Ga	2ppm

N.B. ND = Not detected.

									77 770
ample No.	7330 - 0041	7 3 30 – 0265	7330 - 0284	7330 – 0293	7330 <u>-</u> 0 3 01	7330 - 0322	7330 - 0323	7350 - 0525	7330 - 0340
i0 ₂	78.28	72.21	65.26	73.62	67.31	75.3 9	57.18	69.92	73.40
TiO2	0.10	0.25	0.90	0.29	0.74	0.08	1.23	0.49	0.24
1 ₂ 0 ₃	11.62	13.81	14.05	12.61	14.08	13.02	15.29	14.43	13.22
Fe ₂ 0 ₃	0.59	2.33	5.84	2.24	4.86	1.21	8 .51	3.54	2.70
in0	0.01	0.04	0.11	0.02	0.09	0.03	0.09	0.08	0.03
Mg0	0.00	0.54	1.24	0.29	1.47	0.71	3.00	0.78	0.09
CaO	0.01	1.51	2.47	1.29	2.82	0.39	8.14	2.90	0.63
NaQ	3.53	4.19	3.54	3.40	3.44	2.23	3.99	4.38	3.74
_K ₂ 0	4.34	3.53	3.97	4.41	3.67	5.43	0.49	1.91	5:19
P ₂ 0 ₅	0.02	0.07	0.30	0.06	0.19	0.01	0.40	0.12	0.03
LOSS	1.33	1.39	1.38	0.82	1.07	0.92	2.53	2.05	1.07
TOTAL	99.84	99.86	99.06	99.04	9 9 .74	99.41	100.05	100.40	100.14
T v	ND	ND	ND	3	ND	IID	5	ND	5
Th	21	15	19	25	17	23	19	16	30
T Y	42	17	36	24	27	16	22	29	46
Rъ	148	117.	115	170	121	192	16	84	174
Zr	25 5	47	246	125	214	24	182	321	1 52
NP	16	11	15	9	12	9	15	13	18
sr	43	138	209	88	176	108	879	256	61
■ Pb	14	1 9	13	19	34	22	28	20	14
As	ND	ND	IID	ND	ND	2	7	13	2
Cu	4	112	12	. 11	16	ND	145	4	ND
Zn	83	24	79	35	93	3 9	90	57	30
■ Ni	3	2	6	ND	12	ND	103	ND	3
Ba	1690	980	1720	670	940	970	2 20	740	660
Ce	210	72	115	98	86	61	100	102	84
_ La	146	22	46	36	25	19	47	92	22
Cr	2	11	31	. 4	14	5	251	10	2
v	3	24	50	17	56	ND	141	23	2
I			*		ĸ				
			W 2	,		i.		is .	©:

U	ND	ND	ND	3	ND				ל
Co	76	112	70	62	67	78	71	53	108
Мо	ND		ND	ND	ИD	ЛD	ND	ИД	ND
Ga.	16	16	19	15	17	14	24	18	17

Sample No.	7430 - 0165	7430 - 0662	7430 - 066 3	7430 - 0664	7430 - 0665
SiO ₂	64.97	76.98	76.31	74.42	73.06
TiO ₂	0.98	0.20	0.16	0.23	0.28
A12 ⁰ 3	7.92	11.50	12.17	11.60	13.01
Fe ₂ 0 ₃	3.70	1.53	2.16	1.36	1.92
MnO	0.03	0.03	0.05	0.04	0.04
MgO	0.74	0.19	0.06	0.15	0.41
CaO	14.49	0.62	0.26	1.51	0.35
Na ₂ 0	3.48	3.47	3.06	3.42	3.83
к ₂ 0	0.28	4.38	5.27	4.66	4.90
P ₂ 05	0.16	0.03	0.02	0.05	0.04
LOSS	2.47	0.79	0.66	2.04	1.23
TOTAL	99.23	99.72	100.18	99.30	99.09
U	112	4	ND	7	3
Th	290	31	20	45	34
Y	119	29	40	38	34 34
Rъ	12	202	149	197	214
Zr	405	99	174	121	133
Nb	14	11	19	14	12
Sr	138	63	25	55	61
Pb	59	20	37	15	25
As	7	ND	ND	ND	ND
Cu	10	2	36	15	4
Zn	36	27	134	50	33
Ni	14	ND	ND	4	2
Ba	95	420	920	330	590
Cc	90	103	252	102	125
La	21	36	137	31	60
Cr	ND	5	6	5	3

Sample No.	7430 - 0 165	7430 – 0662	6430 <u>-</u> 0663	7430 - 0 6 64	7430 - 0665
V	47	9	ND	15	4
Co	49	126	88	129	74
Мо	480 ,	ND	ND	7	ND
Ga	16	14	16	14	16

CHEMICAL ANALYSIS OF DRILL CORE FROM THE BURSTALL GRANITE

by

J.G. Pyke and K. Ellingson

Fifteen drill core samples from the Burstall granite and associated rhyolite/microgranite dyke rocks were submitted for chemical analysis by G. Derrick. The Burstall granite is situated 7 km east and southeast of the Mary Kathleen open cut mine, NW Qld.

The analyses were carried out using X-ray fluorescence on boric acid backed powder pellets.

Calculated detection limits are:

U	2 ppm	Sr	2 ppm	Ba	5 ppm	Mo	2 ppm
Th	2 ppm	Pb	2 ppm	Ce	5 ppm	W	2 ppm
Y	2 ppm	As	2 ppm	La	5 ppm	Bi	2 ppm
Rb	2 ppm	Cu	2 ppm	Cr	2 ppm	Sn	2 ppm
Zœ	2 ppm	Zen	2 ppm	V	3 ppm		
Nb	2 ppm	Ni	2 ppm	Co	2 ppm		

NB. ND means not detected.

Sam	ple						r 5 g			
No	237A	237B	2370	237D	237F	23 7 H	238	239	240A	240B
U	16	11	12	22	7	16	10	12	13	9
Th	78	44	47	80	72	67	61	60	81	73
Y	21	22	24	57	37	40	34	38	8	7
Rb	235	2 7 3	272	258	242	275	342	350	50	41
Zœ	96	112	108	98	117	88	156	157	202	271
Nb	28	19	22	28	25	28	20	23	21	18
Sr	16	16	15	13	22	21	45	45	38	45
Pb	9	9	9	14	12	10	15	14	6	5
As	7	ND	2	ND	ND	2	ND	ND	2	2
Cu	5	4	2	5	5	13	4	2	10	9
Zn	14	10	11	13	13	16	8	12	ND	ND
Ni	4	4	. 5	3	3	5	6	6	2	ND
Ba	636	6 59	65 1	627	602	904	380	439	90	92
Се	43	32	36	150	40	120	150	148	27	35
La	8	ND	ND	32	13	47	69	68	ND	ND
\mathtt{Cr}	155	121	142	132	134	140	158	146	103	110
v	3	3	6	2	2	4	18	16	4	6
Co	5	2	3	3	2	4	10	10	ND	ND
Mo	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
W	3	10	3	7	6	7	ND	2	ND	ND
Bi	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sn	3	ND	2	ND	ND	2	ND	ND	ND	ND
					w	27 129				*
	e .			10 10				* * * *		
		¥							3	
		2								

~		-
	ome.	
	41111	
	~~~	

No	240C	241D	242B	242C	242D
Ŭ	17	4	6	. 3	6
Th	84	44	41	45	96
Y	12	41	36	38	39
Rb	40	265	269	296	399
Zœ	245	225	210	211	183
Nb	23	23	22	20	27
Sr	36	35	44	31	15
Pb	9	10	9	13	41
As	2	ND	ND	ND	2
Cu	16	4 -	7	2	5
Zm	ND	14	12	19	99
Ni	ND	3	5	4	3
Ba	84	487	1080	460	219
Ce	61	152	174	126	240
La	ND	72	79	54	71
Cr	96	160	158	138	159
V	6	14	18	7	ND
Co	2	10	9	6	5
Мо	ND	220	ND	ND	ND
W	2	3	2	3	5
Bi	ND	ND	ND	ND	ND
Sn	ND	2	ND	2	3