1981/22 Copy 3.

BMR PUBLICATIONS COMPACTUS
(LENDING SECTION)

082633+

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD

Record 1981/22

Central Eromanga Basin seismic survey, Queensland, 1980:

Operational Report

by

K. Wake-Dyster and J. Pinchin

The information contained in this report has been obtained by the Bureau of Mineral Resources, Geology and Geophysics as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director.

Record 1981/22

Central Eromanga Basin seismic survey, Queensland, 1980:

Operational Report

by

 ${\tt K.\ Wake-Dyster}$ and ${\tt J.\ Pinchin}$

CONTENTS

	Page
ABSTRACT	i
INTRODUCTION	1
FIELD OPERATIONS	2
SEISMIC DATA PROCESSING	4
PRELIMINARY RESULTS	4
REFERENCES	5
Appendix 1 : Operational statistics	7
Appendix 2 : Spread and recording parameters	8
Appendix 3: Personnel and equipment, 1980 survey	9
Table 1 : Processing sequence for the seismic	
sections	
Fig. 1: BMR Seismic Reflection Traverses, 1980.	
Plate 1: Seismic Section, Traverse 1	
Plate 2: Seismic Section, Traverse 3	
Plate 3 : Seismic Section, Traverse 4 and 5	
Plate 4 : Seismic Section, Traverse 6	
Plate 5 : Seismic Section, Traverse 8	
Plate 6: Plot of weathering and near-surface profile,	
Traverse 1	
Plate 7 : Synthetic seismograms and seismic sections	
at well locations	

ABSTRACT

The Bureau of Mineral Resources conducted a seismic survey in the Central Eromanga Basin in Queensland from July to November 1980. This survey was part of a new multidisciplinary study to investigate the structure, stratigraphy, geological and tectonic evolution, and petroleum potential of the area.

The survey obtained 478 km of 6-fold CDP seismic reflection data, mostly along four long east-west traverses crossing sparsely investigated sedimentary basins between exploration wells. The basins crossed included the Warrabin Trough, Cooper Basin, and Eromanga Basin west of the Canaway Fault. Gravity observations were made at ½ km intervals along the seismic traverses.

The seismic data quality was fair to good, and will enable a detailed stratigraphic interpretation of the Cretaceous to Permian sedimentary rocks. Reflections from below the Permian were obtained in some areas, and are particularly good where the Permian coal measures are absent.

This report presents operational information on the survey and reduced scale copies of the seismic sections. Full scale copies may be obtained from the Copy Service, Government Printer (Production), G.P.O. Box 84, Canberra 2600. Interpretation of the data will be published at a later date.

INTRODUCTION

The Bureau of Mineral Resources, Geology and Geophysics (BMR) conducted a seismic survey of the Eromanga, Cooper, and underlying pre-Permian Basins west of the Canaway Fault in Queensland from July to November 1980.

The seismic survey was part of the regional multi-disciplinary geoscientific research project on the "Central Eromanga Basin" (Harrison and others, 1980), the geology of which is discussed in detail by Senior & others (1978). The project aims are to gain knowledge of the structure, stratigraphy and lithology of the Eromanga and underlying sedimentary basins in order to study the geology and tectonic evolution of the area, and to generally provide basic information to assist in the exploration of the area for petroleum.

The objectives of the 1980 BMR seismic survey (Pinchin, 1980) were to use multiple-coverage CDP seismic techniques to provide high quality seismic sections along long traverses across the main structural elements in the area, to provide a suitable basis for a regional interpretation of the area, and for correlation between existing exploration wells.

Six seismic traverses totalling 478 km of mainly 6-fold CDP reflection coverage were recorded. These included Traverses 1, 3, 4, 5, 6, and 8 (Figure 1). Traverse 7 and the western half of Traverse 6 of the original proposal (Pinchin, 1980) were omitted from the survey owing to lack of sufficient survey time. Traverse 2 was omitted in an early stage of planning. Gravity measurements were made along Traverses 1, 3, 6 and 8. In addition gravity readings were also measured along a company seismic traverse extending to the east of Traverse 3. A detailed deep crustal refraction survey was also made along Traverse 1 with wide angle reflection recordings made from the largest blasts (Moss, 1980).

This report presents details of operations and

includes reduced scale copies of the processed seismic sections (Plates 1 to 5). Operational statistics, spread and recording parameters, and personnel and equipment are included in Appendices 1, 2 and 3.

Note: Copies of the sections at a scale of 10 cm/s are available from the Copy Service, Government Printer (Production), GPO Box 84, Canberra (Attention Mrs Misins).

FIELD OPERATIONS

The survey area lies in western Queensland, between Quilpie and Windorah, covering the 1:250 000 map sheets of EROMANGA, WINDORAH and part of CANTERBURY and BARROLKA. The main road between Quilpie and Windorah is sealed bitumen; other access roads are reasonably good gravel roads or tracks.

Operations began on Traverse 1 which had ease of access and close proximity to Quilpie, the party's supply centre. Traverses 3, 4, 8, 6 and 5 were then recorded in that order (Figure 1). Adverse weather conditions were not a great problem except for a few days' loss of production particularly towards the end of the survey due to wind noise on the recording spread. Also towards the end of the survey, temperatures of 45°C and over caused extreme discomfort to the field crews.

A bulldozer was under contract for the entire survey for clearing heavy vegetation and construction of creek crossings where necessary. Owing to the rough nature of the western end of Traverse 3 across the channels of Coopers Creek, even after being bulldozed, a grader was hired to improve the condition of the remaining traverses to make them suitable for vehicles. The grader was used in conjunction with the bulldozer on the eastern half of Traverse 3, traverses 4, 8 and the eastern half of Traverse 6.

Surveying of the traverses was done by the Brisbane

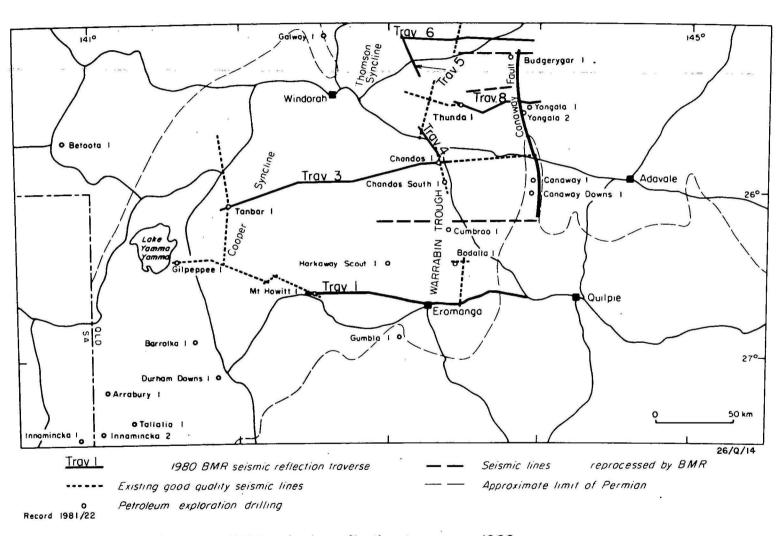


Fig. 1: BMR seismic reflection traverses, 1980

,

Branch of the Australian Survey Office. Ties were made to existing exploration wells and bench marks in the area. The surveyors provided Australian Map Grid (AMG) co-ordinates for traverse bends and endpoints, elevations referenced to Australian Height Datum (AHD), and latitudes and longitudes for all shotpoints.

Four shot-hole drilling rigs were used throughout the survey. One of these rigs was used during July and August to drill shot-holes for the refraction seismic survey, and for the heat-flow holes, all sited along Traverse 1 (Moss, 1980). Drilling conditions were reasonably good with mud pits being used only on Traverse 6 in the vicinity of the Barcoo River. Rock bits and and a percussion hammer were used to drill through hard layers of silcrete found on parts of Traverses 1 and 3. Holes were generally drilled to 40 m depth, which in most cases was below the base of the weathered layer.

Seismic reflection recording progressed very well for most of the survey, with only minor recording delays. These included four days owing to faults with the DFS IV seismic recording system, and cable problems caused by vermin damaging spread cables and geophone strings in the area of the 'Channel Country' on the western end of Traverse 3. The spread and recording parameters are listed in Appendix 2, and the recording equipment in Appendix 3. Charge sizes for the survey ranged between 7 kg and 15 kg and averaged approximately 8 kg. All reflection shots were recorded to 20 s record length in order to record deep crustal reflections.

For the deep crustal refraction and wide angle reflection recordings along Traverse 1, 20 shots were fired, with charges of 200 kg for refraction offsets up to $37\frac{1}{2}$ km, increasing to 2500 kg for offset distances up to 300% km.

These refraction shots were recorded by an array of 20 remote automatic seismometers looked after by members of the Regional Geophysics Group of the BMR. The smaller refraction shots were recorded at a distance of $37\frac{1}{2}$ km by a

wide -angle reflection spread of 48 geophone stations over a distance of 8 km. The refraction operations are not covered by this report.

Gravity measurements were read at 500 m intervals along the traverses using the Worden gravity meter and making loop closures after every ten stations. These readings were tied into the BMR network of gravity base stations using the La Coste meter.

SEISMIC DATA PROCESSING

Processing of the seismic data was done under contract by Geophysical Service International (GSI) in Sydney.

Static corrections, including elevation and weathering corrections, were calculated in the field using the uphole method. An elevation datum of 183 m above mean sea level was used for all traverses, with a replacement velocity of 2000 ms⁻¹.

Initial stacking velocity functions to correct for move-out were calculated from the field records using the T^2-X^2 method. The processing sequence applied is shown in Table 1; further processes such as migration are being applied to some sections. All lines have been processed to 4 seconds, and most will later be processed to 16 seconds to display the deep crustal reflections.

PRELIMINARY RESULTS

Data quality is fair to good (Plates 1 to 5); in some areas where a hole could not be drilled and the CDP coverage fell below 6-fold, the reflection quality deteriorates. Only in a few isolated areas was the weathered layer deeper than the shot depth of 40 m, resulting in poorer reflection quality. On Traverse 1, in the places where the weathering depth increased beyond 40 m, high velocity silcrete "stringers" within the weathered layer and above the explosive charges directed the energy downwards (Plate 5). Results from the

experimental wide angle reflection recordings on Traverse 1 were generally poor, possibly because the offset distance was beyond the critical angle for these reflections.

The seismic sections (Plates 1 to 5) will assist in enabling a regional interpretation of both structure and stratigraphy in this area to be undertaken. The quality of the reflections is sufficient to show details of the stratigraphy such as coal seams within the Winton Formation, shoaling and channeling within the Toolebuc Formation and Coreena Member of the Wallumbilla Formation, and sedimentary onlaps within the Permian and Triassic units of the Cooper Basin. These features will be discussed in later publications on the interpretation.

To aid interpretation, synthetic seisograms were made from sonic logs of the exploration wells to which the seismic traverses tied (Plate 7); enabling precise identification of the reflection horizons to be made. In addition, the character of the sonic logs (in a filtered form) has proved useful in correlating stratigraphic units between wells. The sections from this survey will be interpreted together with the results from previous siesmic surveys, and with recently re-processed seismic sections to provide a new assessment of the stratigraphic and tectonic development, and of the area's petroleum potential.

REFERENCES

- HARRISON, P.L., MATHUR, S.P., MOSS, F.J., PINCHIN, J., & SENIOR, B.R., 1980 Central Eromanga Basin Project, Program proposals, 1980-1982. <u>Bureau of Mineral Resources</u>, <u>Australia, Record</u> 1980/32 (unpublished).
- MOSS, F.J., (Coordinator), 1980 Central Eromanga Basin
 Project, Progress Report, January-June 1980. <u>Bureau of</u>
 <u>Mineral Resources, Australia, Record</u> 1980/60 (unpublished)

- PINCHIN, J., 1980 Central Eromanga Basin Seismic Survey,

 Qld., 1980 Preview report. <u>Bureau of Mineral Resources</u>,

 <u>Australia, Record</u> 1980/77 (unpublished).
- SENIOR, B.R., MOND, A., & HARRISON, P.L., 1978 Geology of the Eromanga Basin. <u>Bureau of Mineral Resources</u>, <u>Australia</u>, <u>Bulletin</u>, 167.

APPENDIX 1

Operational statistics

Shot-hole drilling commenced	18. 7.80
Recording commenced	28. 7.80
Shot-hole drilling completed	21.11.80
Recording completed	26.11.80
Total length of traverses	478 km
Number of recordings days worked	70
Recording days lost:	14
Due to campshifts - 5	
" " adverse weather - 4	
" " equipment breakdowns - 4	
" " no recording line - 1	
Multiplicity production shots	6-fold
Total number of shots	1520
Average number production shots/recording day	21.7
Average surface coverage/recording day	6.8 km
Maximum number production shots/recording day	48
Explosives used	11 900 kg Anzite Blue
Detonators used	1540
Average charge/shot	7.8 kg
Total number of rig days worked	238
Rig days lost:	55
Due to campshifts (8 days) 32 rig-days	
" " adverse weather nil	
" " equipment breakdowns 11 rig-days	
" " no bulldozed line (3 days) 12 rig-days	

APPENDIX 2

Spread and recording parameters

Production shooting spread

Spread length and type 2000-0-1916

Number of channels 48

Geophone station interval 83 1/3 m
Multiplicity 6-fold CDP

Number of geophones/trace 16

Geophone pattern in-line Geophone spacing in line $5\frac{1}{2}$ m

DFS IV instrument settings

AGC mode

Recording mode Digital
Format Seg-B

Number of input channels 48 data, 4 auxiliary

Tape 9 track, 1600 bpi PE, ½ in

Record length 20 s
Sample rate 2 ms
Gain constant 42 dB

Input filters, production lo cut : 12 Hz, 36 dB/oct;

hi cut :124 Hz, 72 dB/oct

Notch filter out

Reproduce nodule settings, production

Defloat mode: galvo level 15

high-cut 90 Hz lo-cut 12 Hz : galvo level 15

hi-cut 90 Hz lo-cut 12 Hz

Trip sensitivity 36 dB Trip delay 1.0 s

APPENDIX 3

Personnel and equipment, 1980 survey

Personnel

Geophysical Branch

J. Pinchin (26/7 - 13/9)Party Leader J.A. Bauer (6/9 - 18/10)F.J. Taylor (11/10 - 28/11) Party Manager J.A. Somerville Geophysicists K.D. Wake-Dyster (2/8 - 26/10)M.J. Sexton (26/7 - 28/11)F.M. Brassil (8/11 - 28/11) W. Anfiloff (gravity, 1/9 - 3/10) O. Dixon (GSQ) Technical Officers (Engineering) J.K.C. Grace (26/7 - 9/8) D. Gardner (2/8 - 28/11)Technical Officers (Science) D. Pfister (26/7 - 7/9)G. Price (2/8 - 18/10)Field Assistants R.D.E. Cherry L.O. Rickardsson A.C. Takken D.K. McIntyre Mechanic Wages hands 13

Petroleum Exploration Branch

Toolpusher

E.H. Cherry

T. Shanahan

J. Henry

K. Huth

L. Keast

Assistant Drillers

R. Clark

D. Eaton

Wages mechanics

T. Johnston (18/7 - 6/10)

A. Crawford (5/11 - 28/11)

Australian Survey Office, Brisbane

1 Surveyor, 2 Technical Officers and 4 Chainmen.

Equipment

Recording system	TI DFS IV	
Camera	SIE ERC-1OC; SIE TRO-6	5
Switch gear	I/O Rota-long	
Radio firing unit	I/O RFV	
Cables	539 m, 48 ch.	- 18
Geophones	GSC 20D, 8 Hz	- 1280
Transceivers	Codan 6924	- 6
∞	Phillips FM 828	- 8
Gravity meter	Worden W169	
	La Coste C101	

<u>Vehicles</u>

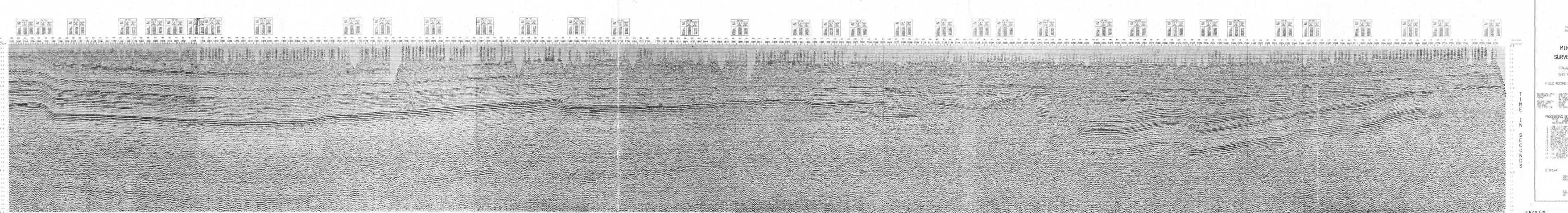
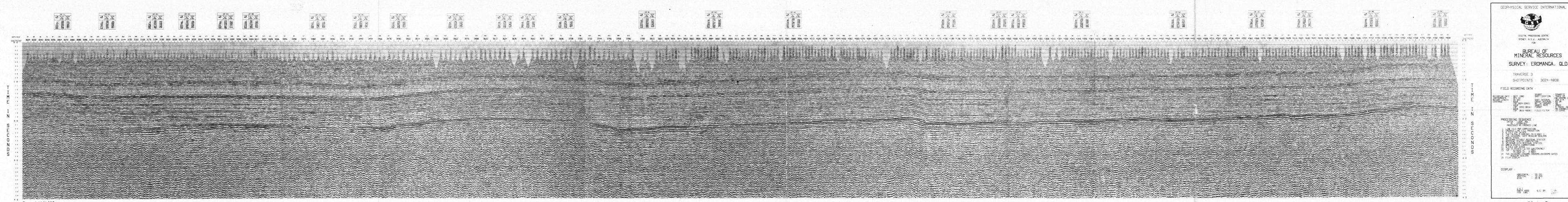
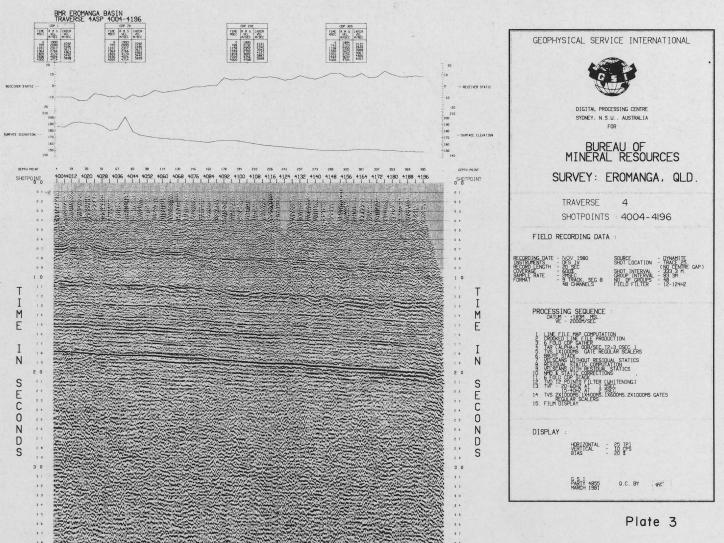

Recording truck	1	x	International D1610 3 ton 4 \times 4	
Workshop truck	1	x	и и и	
Flat-top trucks	2	x	f1 11 11 07	
Water tankers	2	x	11 11 11 11	
Drilling rigs	4	x	Mayhew 1000/Mack 6 x 8 trucks	
Drill water tankers	4	x	Mack R875, 6 x 6, 1900 gallon	
Shooting truck	1	x	Landrover LWB, 4 x 4, Tray-top	
Personnel carriers	3	x	Landrover LWB, 4 x 4, S/W	
Geophone carriers	3	x	International D1310, 30 cwt, 4×4	
Stores truck	1	x	11 11 11 11	
Pre-loading truck	1	x	Landrover LWB, 4 x 4, Tray-top	
Office caravan	1	x	4 wheel	
Kitchen van	2	x	4 wheel	
Ablutions van	2	x	4 wheel	
Stores trailers	3	x	4 wheel	
			1	
Generator trailer	1	X	4 wheel	
Generator trailer Drill trailer			4 wheel, 6 tonne	

TABLE 1. PROCESSING SEQUENCE FOR THE SEISMIC SECTIONS

- 1. Line file map computation
- 2. Crooked line file production
- 3. 6 fold CDP gather
- 4. True Amplitude Recovery
- 5. Time variant scaling
- 6. Brute stack with field statics and field NMO
- 7. Velscans pass 1
- 8. Residual static computations
- 9. Velscans pass 2
- 10. NMO and static corrections
- 11. 6 fold CDP stack
- 12. Time variant deconvolution
- 13. Time variant filter
- 14. Time variant scaling
- 15. Display

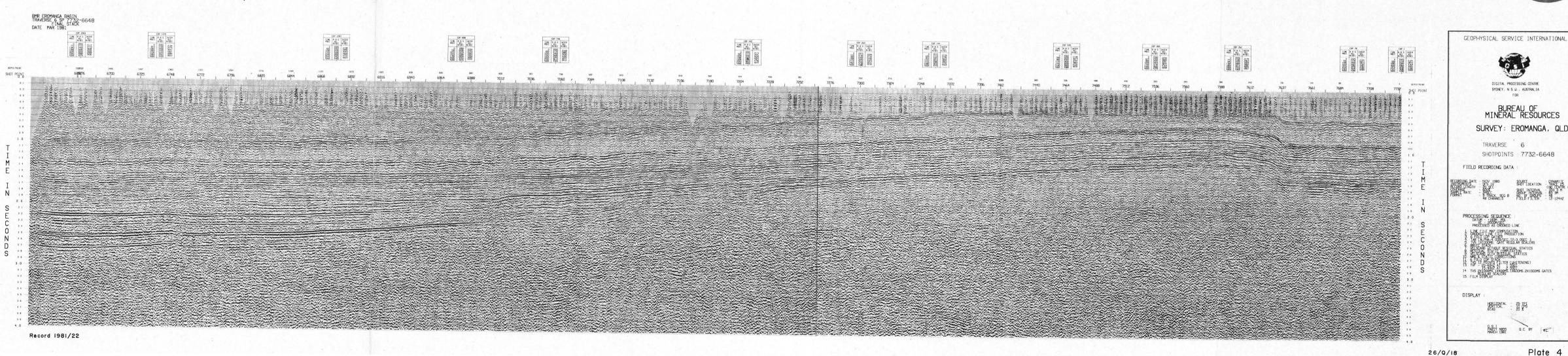

GEOPHYSICAL SERVICE INTERNATIONAL

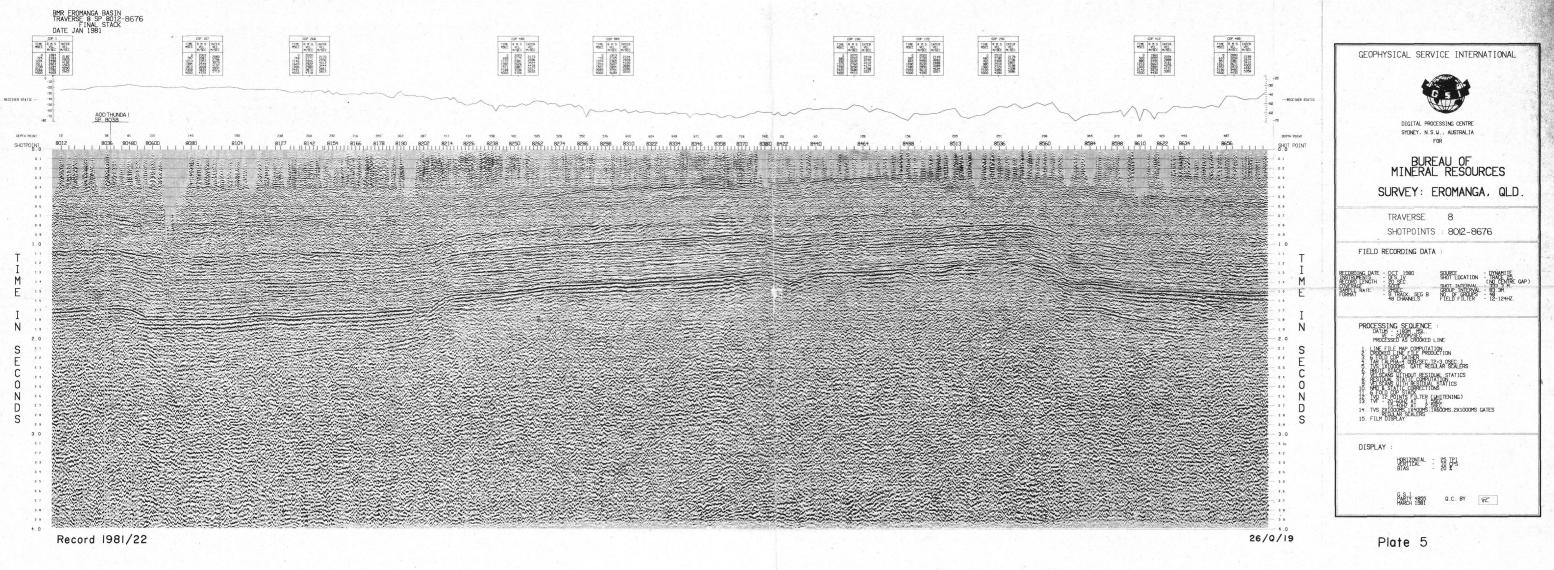


DIGITAL PROCESSING CENTRE SYDNEY, N.S.W., AUSTRALIA FOR SURVEY: EROMANGA, QLD TRAVERSE 1 SHOTPOINTS 2776-1028 FIELD RECORDING DATA : PARTY 1855 Q C BY &

DIGITAL PROCESSING CENTRE

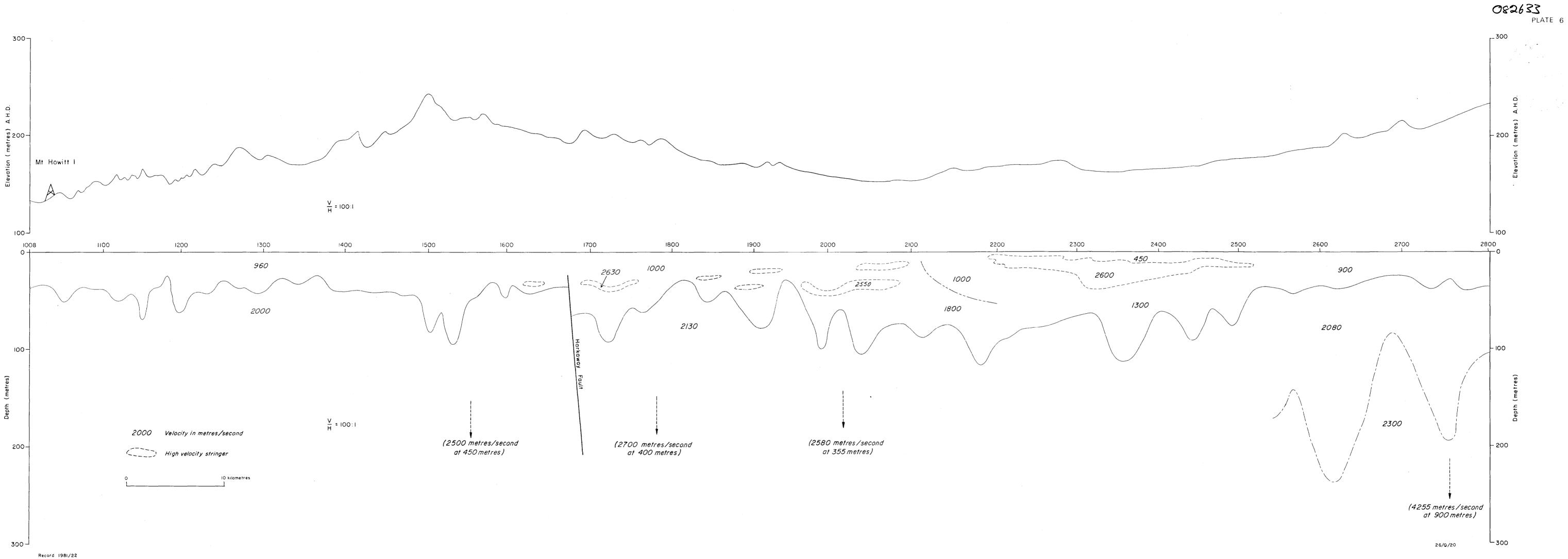
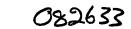
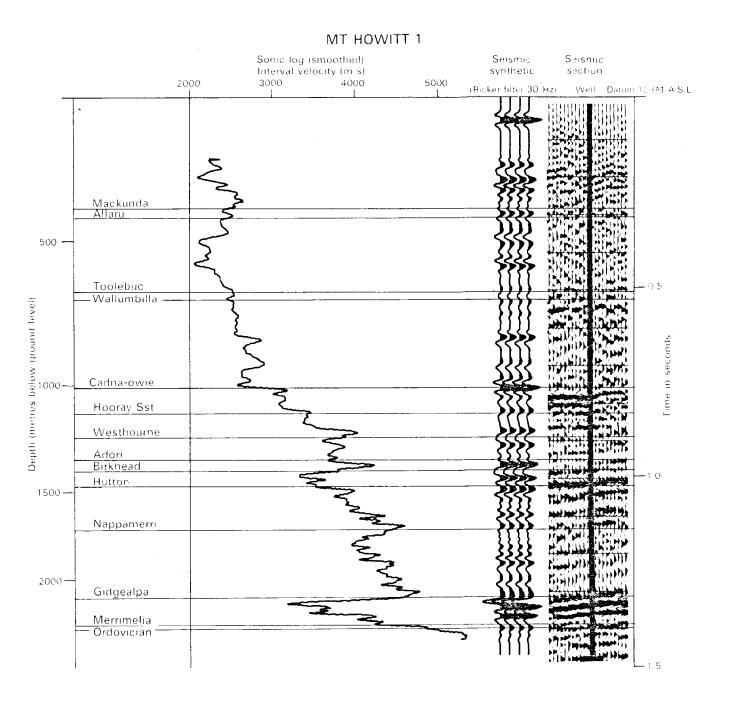
SYDNEY, N.S.W., AUSTRALIA FOR

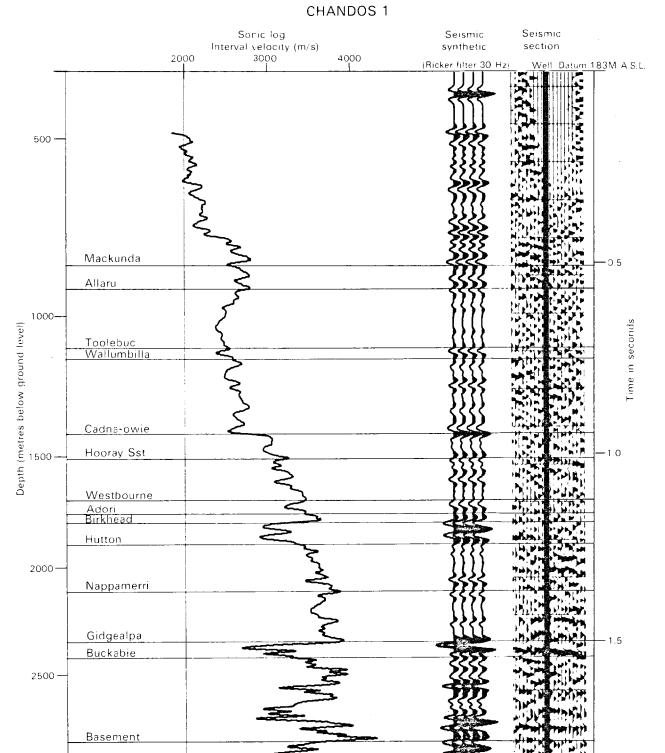


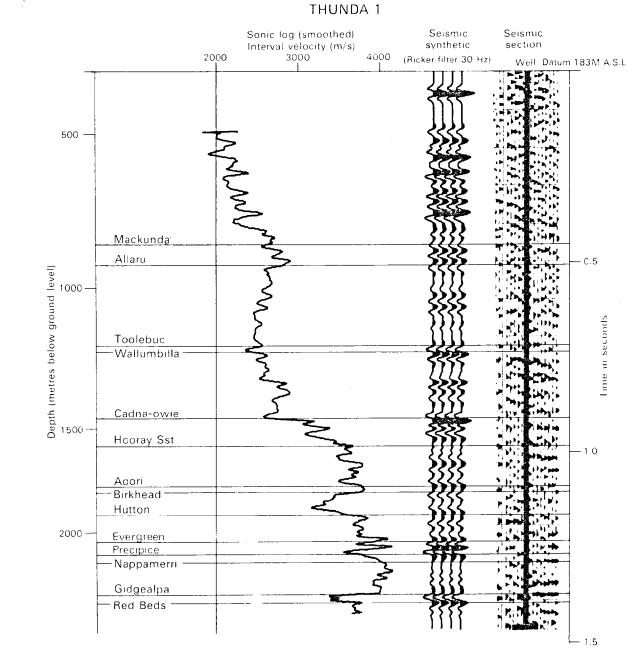

BUREAU OK LIBRARY 1981 SHUMBERRILL PER SHUMBER

26/0/17

Record 1981/22

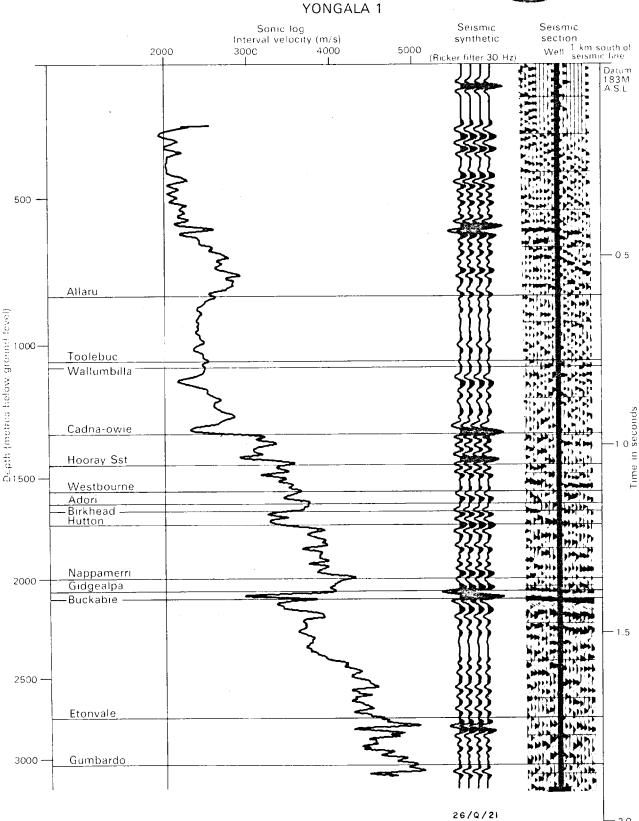





Plate 6: Plot of weathering and near-surface profile, Traverse I



SYNTHETIC

SEISMOGRAMS


WELL

SECTIONS

AND

ΑT

LOCATION

Record 1981/22