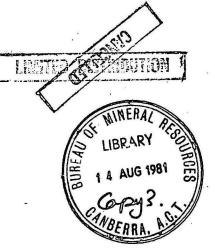
LIMITED DISTRIBUTION

BMR PUBLICATIONS COMPACTUS
(LENDING SECTION)



085339

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD

Record 1981/31

HYDROGEOLOGY OF TARAWA ATOLL, KIRIBATI

by

G. Jacobson & F.J. Taylor

The information contained in this report has been obtained by the Bureau of Mineral Resources, Geology and Geophysics as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director.

Record 1981/31

HYDROGEOLOGY OF TARAWA ATOLL, KIRIBATI

bу

G. Jacobson & F.J. Taylor

CONTENTS

		Page
ABSTRACT	•	
INTRODUCT	TION	1
GEOLOGY		2
GROUNDWAT	· ER	2
Aqui	fer transmissivity	3
RESISTIVI	TY SURVEYS AND LENS CONFIGURATION	3
Baur	iki	5
Buot	a	5
Bonr	iki	5
Beti	0	6
SAFE YIEL	D.	6
HYDROCHEM	ISTRY	8
CONCLUSIO	NS	8
REFERENCE	S	9
	*	
APPENDICE	<u>s</u>	
1.	Logs of bores 1-4	
2.	Technical note on the SAS 300 Terrameter system	
3.	Resistivity field data and interpreted model curves.	
TABLES		
1.	Freshwater lenses on Tarawa	
2.	Chemical analyses of water samples	
FIGURES		
1.	Location map	Y
2.	Tarawa atoll, Kiribati	
3.	Variations in monthly mean sea level	
4.	Results of aquifer test	
5.	Buariki freshwater lens	
6.	Buota freshwater lens	

- 7. Bonriki freshwater lens
- 8. Betio freshwater lens
- 9. Rainfall variation from mean, 1947-79
- 10. Salinity of groundwater, Taeoraereke Gallery
- 11. Relationship of total dissolved solids to electrical conductivity.

ABSTRACT

Tarawa is a coral atoll in the Gilbert Islands; it consists of a number of low islands, several of which contain discrete freshwater lenses overlying salt water. Resistivity depth probes indicate that the largest untapped lens is on the northern island of Buariki, and that this lens is up to 29 m thick. The total safe yield of the Tarawa freshwater lenses is probably more than 12 1/s, and there is scope for the present groundwater development system of infiltration galleries to be extended.

INTRODUCTION

Tarawa is located at 1°30'N, 173°00'E (Fig. 1). It is one of the sixteen atolls which form the Gilbert Islands, and is the administrative centre of the Republic of Kiribati. It has a population of about 20 000.

In the urbanised southern half of Tarawa, a reticulated drinking water supply is derived from infiltration galleries which extract groundwater from freshwater lenses on the islands of Taeoraereke, Bonriki and Buota (Fig. 2). Non-potable groundwater is extracted at Betio, Bairiki and Bikenibeu. Some rainwater is also used for drinking and there are some private wells. Village water supplies in the northern part of the atoll are derived from shallow wells.

The Department of Housing & Construction requested BMR assistance with the investigation of the hydrogeology of Tarawa in 1980. The Department was briefed by the Australian Development Assistance Bureau to design an improved water supply system for the atoll.

Previous hydrogeological studies of Tarawa were done by the British government prior to Kiribati becoming independent in 1979. Mather (1973) identified several freshwater lenses in south Tarawa, and recommended development of the Bonriki and Buota lenses, which has since taken place. Richards and Dumbleton International (1978) carried out resistivity surveys of several freshwater lenses in south and north Tarawa, and modelled the predicted behaviour of the lenses in times of drought. They concluded that the lenses could not sustain a water supply in the second year of a 2% drought (Lloyd & others, 1980).

In the present investigation, additional resistivity surveys were carried out on several of the islands to define the configuration of the freshwater lenses. Concurrently a drilling program was carried out by the Central Investigation & Research Laboratory of the Department of Housing & Construction. Field work on Tarawa was done between September and December 1980, and BMR personnel involved were G. Jacobson (September-October) and A.W. Schuett (October-November). The interpretation of resistivity data was done by F.J. Taylor.

GEOLOGY

Tarawa is a coral atoll formed on top of a volcanic seamount which rises steeply from 4000 m of water. The atoll is roughly triangular in plan and comprises a chain of small islands on the south and northeast sides which partially enclose a central lagoon (Fig. 2). The islands are generally 2-3 m above present sea level.

=

The surface material of most of the islands is coral sand. In places, cemented coral hardpan forms a terrace 1.5-2 m above sea level. The first four bores drilled on Bonriki and Buariki intersected coral sand to depths of 7.5-11.5 m below the ground surface (Appendix 1). Beneath the sand, these bores intersected buried coral reef, 1.5-12.0 m thick. Beneath the buried coral reef, some of the bores encountered interbedded limestone and sand; others had a limestone sequence extending to 30 m below surface, the maximum depth of drilling.

The total thickness of the limestone sequence is unknown. The nearest atoll to Tarawa that has previously been drilled is Funafuti in the Ellice Islands (Fig. 1), where volcanic basement was not encountered even at 330 m. The nearest atoll where basement has been intersected is Enewetok in the Marshall Islands, where basalt was encountered beneath 1300 m of limestone.

GROUNDWATER

Freshwater lenses occur on many of the islands of Tarawa, in general where the width of island is more than 300 m. A summary of the known lenses is given in Table 1.

A freshwater lens on an oceanic island floats on saltwater. Theoretically, assuming static conditions, the approximate depth of the freshwater/saltwater interface is given by the Ghyben-Herzberg relation,

$$h_s = \frac{\rho_f}{\rho_s - \rho_f} h_f$$

where h_s is the depth of the interface below mean sea level, h_f is the height of the water table above sea level, ρ_s is the saltwater density

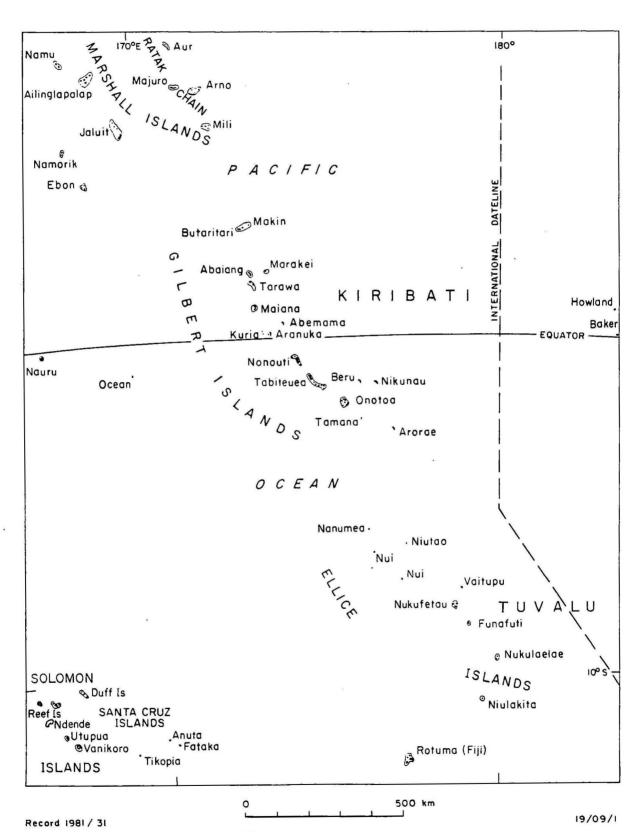


Fig. 1 Location map

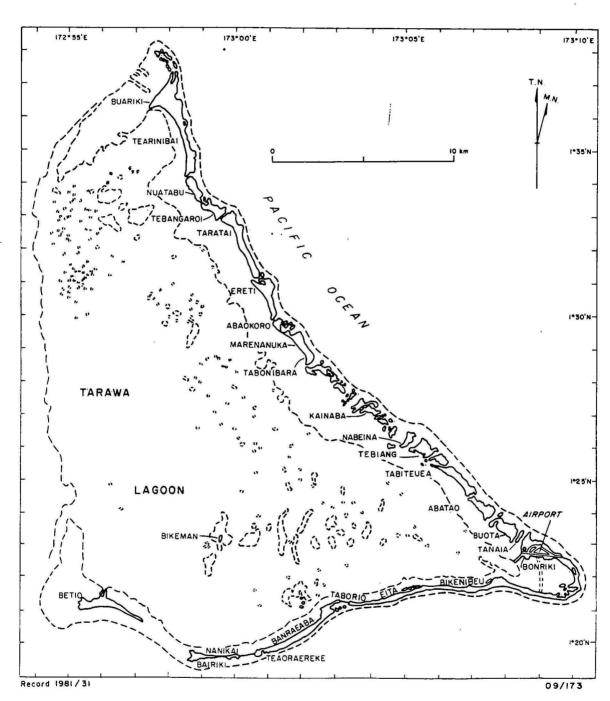


Fig: 2 Tarawa Atoll, Kiribati

and $ho_{
m f}$ is the freshwater density. Density measurements on Tarawa waters show that the saltwater is 1.0228 and the freshwater 0.9974. The Ghyben-Herzberg relation is thus

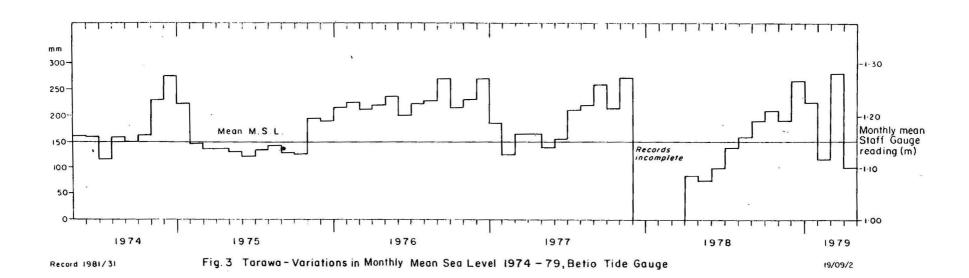
$$h_s = 39.27 h_f$$

In nature, the freshwater lens is a dynamic system. Groundwater in the lens flows into the surrounding and underlying sea water and at the interface there is a transition zone of diffusion. The thickness of the transition zone is affected by the continuous reciprocative movement of the lens caused by ocean tides. The water table oscillates daily with the tides, and mean sea level itself changes over longer periods. Figure 3 shows variations in monthly mean sea level over several years at the Tarawa tide gauge; the monthly variation is up to 0.2 m.

Aquifer Transmissivity

During the present investigation, a pump test was carried out in bore 3 on the island of Buariki. The bore was pumped at a constant rate of 630 m³/d and drawdown of the water table was observed in four observation bores, at distances ranging from 1 to 10 m from the pumped bore. Analysis of the results by a distance/drawdown plot (Fig. 4) indicates that the transmissivity of the aquifer was 5120 m²/d. the 28 m aquifer section, the average hydraulic conductivity was 183 m/day. The section consists of about 8 m of sand, 8 m of buried coral reef, and The results of in situ permeability tests in sections 12 m of limestone. of several drillholes, indicate that the limestone is more permeable than The results of laboratory tests on core samples (Appendix 1) the sand. indicate that the limestone is intrinsically more permeable than the buried coral reef. The high average hydraulic conductivity of the aquifer section probably reflects the transmissive influence of major The thickness of the freshwater lens tends fractures in the limestone. to be greater where there is a thick, relatively impermeable, sand section.

RESISTIVITY SURVEY AND LENS CONFIGURATION


A variety of electrical resistivity methods can be applied to the search for groundwater. In the relatively simple layered situation of the freshwater lens on an oceanic island, resistivity depth probes are considered the most effective method. The technique has previously been used by BMR in surveys of freshwater lenses in New Ireland, Papua New Guinea (Dolan & others, 1975) and Niue Island (Jackson & Hill, 1980).

Resistivity depth probes were carried out on several of the Tarawa islands using the Wenner electrode configuration and an Atlas Copco SAS 300 Terrameter (Appendix 2). This modern instrument has stacking facilities as well as correlation between transmitted and received signals. It is light and portable which makes it particularly suitable for use on remote islands. Some qualifications on its use are given in Appendix 2.

The depth probes are numbered 2 to 47 (Appendix 3) with results of probes 3 and 27 not presented because of poor quality data. The results of probes 38, 41 and 43 do not model well but are included in the presentation. The interpretation of the depth probes was carried out using an inverse modelling program (Mooney, 1980; Davis, 1979; Merrick, 1977), and the field data, computed model and theoretical curve from this model were plotted on log-log scales. The program used to calculate the theoretical curve was based on papers by Ghosh (1971) and O'Neill (1975). This program does not handle high resistivity contrasts very well, and this is evident on some plots as oscillations in the theoretical curve for electrode spacings in the order of 100 m.

In all cases the models chosen were based on geological considerations, and the limits of the resistivity technique. The resistivity of the deepest layer was in most cases confined to 1 ohm-m to represent saline saturated sediments.

The general model which can be used for all the depth probes on these islands is 1-2 m of dry material overlying 5-20 m of sediments saturated with fresh water which in turn overlie sediments saturated with salt water. Areas close to the centre of the islands are expected to have the greatest thickness of fresh water saturated sediments. In general it is expected that a transition zone exists between the freshwater and the salt water beneath it. This zone is not easily detected by the resistivity technique unless it is of comparable thickness to the overlying freshwater layer. In practice, the resistivity values

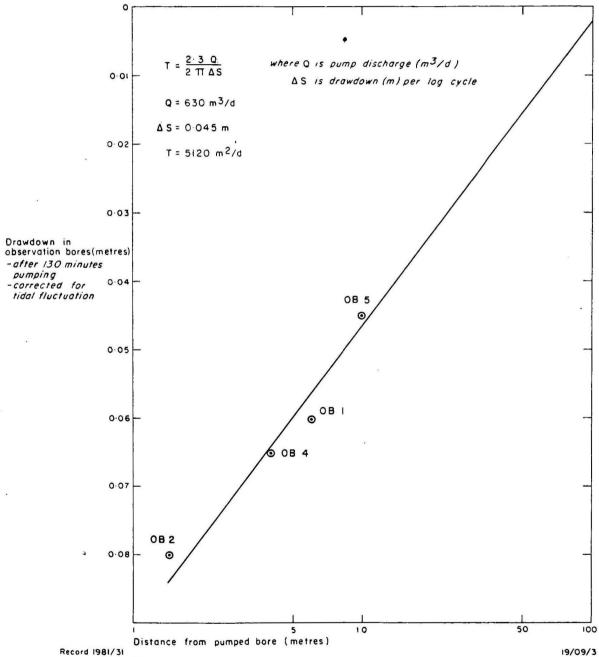


Fig.4 Results of aquifer test, Buariki, bore 3
Drawdown in observation bores v^s distance from pumped bore

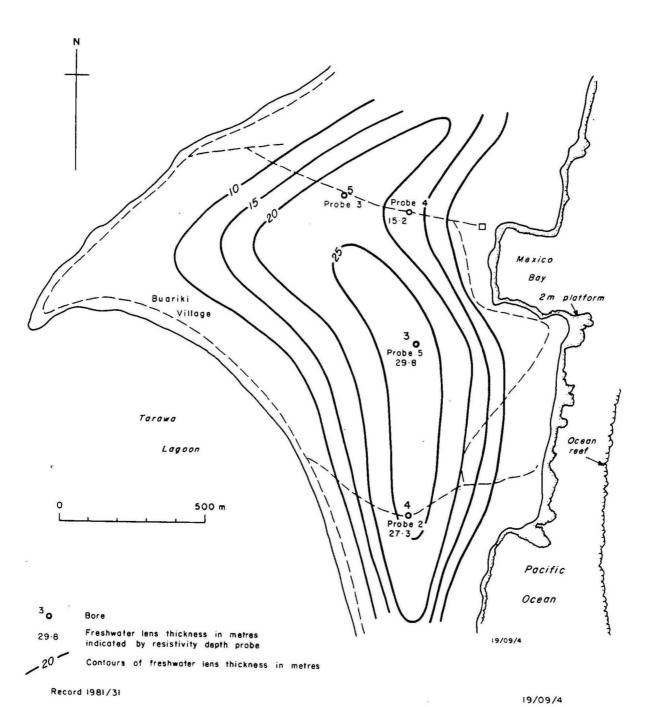
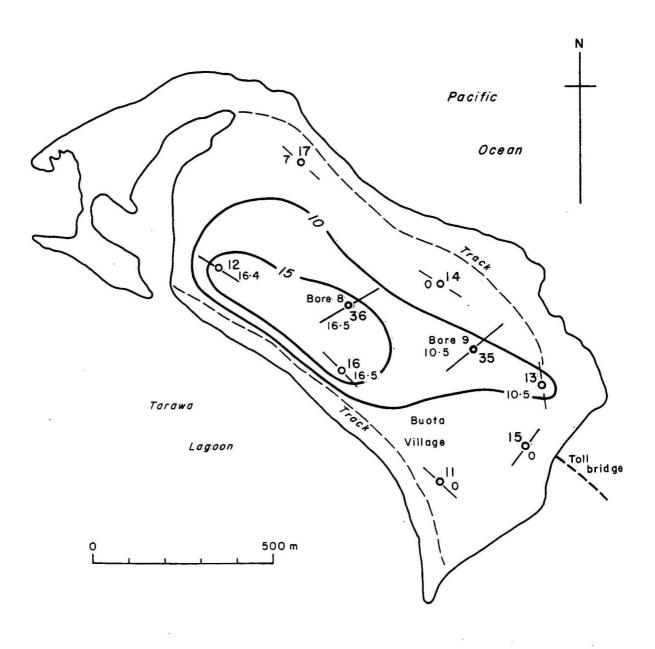



Fig. 5 Buariki freshwater lens

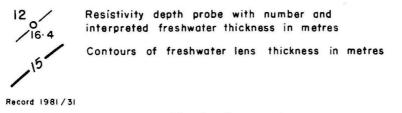


Fig.6 Buota freshwater lens

19/09/5

interpreted for the freshwater layer represent the bulk resistivity of the freshwater and transition zones. When this value is comparatively high (40 ohm-m or greater), fresh water produces the dominant contribution. In cases where this value is comparatively low (20 ohm-m or less), saline or brackish water produces the dominant contribution.

Hence, it is expected that in areas where salt water is closer to the surface or where prolonged pumping has raised the salt water interface, the resistivity of the "freshwater" layer will be comparatively low.

Results obtained on four of the islands are summarised below.

BUARIKI

Results of three resistivity depth probes on Buariki indicate that the freshwater lens is up to 29 m thick. The resistivity of the freshwater saturated sediments ranges from 67 to 86 ohm-m. Inferred contours of freshwater lens thickness are shown in Figure 5. About 130 ha of Buariki is underlain by the freshwater lens with thickness probably greater than 9 m.

BUOTA

Results of 9 resistivity depth probes on Buota indicate that the freshwater lens is up to about 16 m thick. Five of the depth probes indicated freshwater saturated sediments with resistivity between 23 and 51 ohm-m. The thickest part of the lens is west of the centre of the island (Fig. 6) and about 35 ha is probably underlain by freshwater lens more than 9 m thick.

BONRIKI

Results of 21 resistivity depth probes on Bonriki indicate that the freshwater lens is up to 23 m thick. A total of 18 of the depth probes indicated freshwater saturated sediments with resistivity ranging from 64 to 216 ohm-m, and averaging 92 ohm-m. Inferred contours of the freshwater lens are shown in Figure 7. About 70 ha of Bonriki is underlain by freshwater lens more than 9 m thick.

BETIO

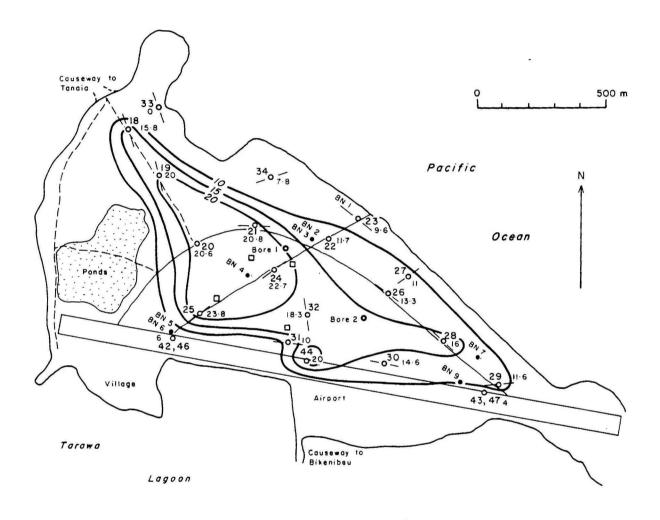
Results of 6 resistivity depth probes on Betio indicate that the freshwater lens is up to 16 m thick in the western part of the island. Resistivity of the freshwater saturated sediments ranges from 26 to 49 ohm-m. Brackish water with resistivity of 15-18 ohm-m is indicated in the centre of the island, where the lens has been disrupted by overpumping. Inferred contours of the freshwater lens are shown in Figure 8. A small area, up to 10 ha, may be underlain by a lens more than 9 m thick.

SAFE YIELD

Runoff is negligible on Tarawa, and the water balance is: rainfall = evapotranspiration + recharge to groundwater aquifer.

Tarawa has a mean annual rainfall of 1948 mm, based on 1947-79 data. Considerable variations from the mean are evident (Fig. 9) and lengthy droughts occur.

() ()


₩

A

There are various ways of estimating evapotranspiration and recharge, none of them satisfactory without detailed meteorological data. Some of the best documented hydrological studies of coral islands have estimated recharge as about 25% of rainfall, e.g. Bermuda (Vacher & Ayers, 1980) and Tongatapu (Hunt, 1979).

Mather (1973) assumed an average annual/recharge of 254 mm for Tarawa, about 13% of the average rainfall, based on the estimated transpiration requirements of coconut trees. He allowed for the effects of the worst recorded drought, that of 1954-56, and recommended the following pumping rates for Tarawa freshwater lenses, allowing for the lenses to be drawn up to one-third of their original thickness.

Original depth to saltwater interface	Recommended depth for lens development	Recommended pumping rate
(m)	(m)	(m ³ /d/ha)
15	5	3.8
12	4	3.5
9	3	2.1

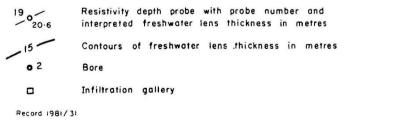
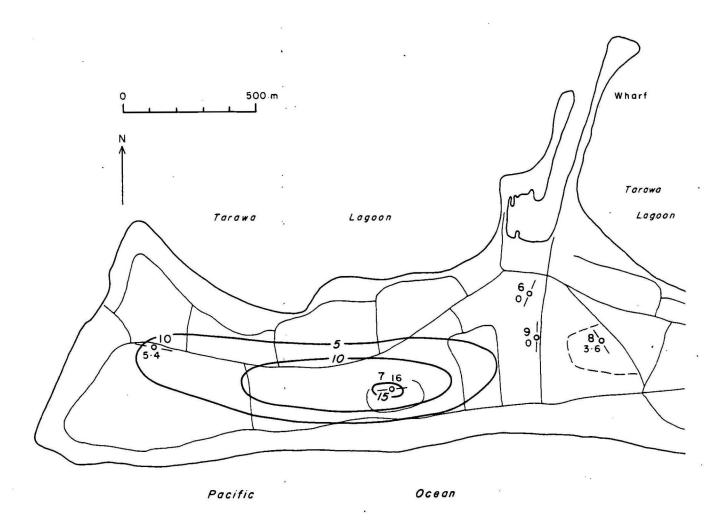
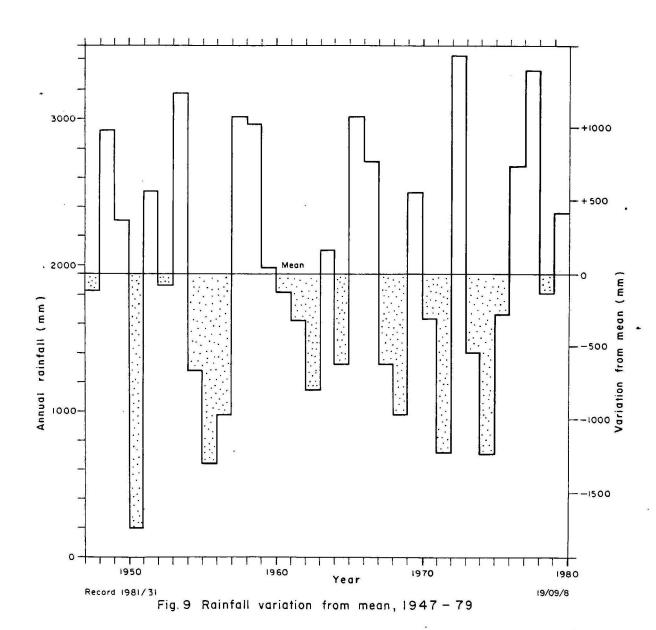



Fig. 7 Bonriki freshwater lens

19/09/6


Resistivity depth probe with probe number and interpreted freshwater lens thickness in metres.

Contours of freshwater lens thickness in metres.

Record 1981/31

19/09/7

Fig. 8 Betio freshwater lens

He recommended that the Tarawa lenses be developed by a network of infiltration galleries, each pumping at a rate of $27 \text{ m}^3/\text{d}$ and each drawing from an area of 8 ha.

Subsequently the Bonriki, Buota, and Taeoraereke lenses were developed, and there are now 11 infiltration galleries on these three islands producing a total of about 168 m³/d or 2 l/s. So far these galleries have produced freshwater within the World Health Organisation (1963) standards for drinking water. The highest electrical conductivities measured in the galleries were 2000 µS/cm on Taeoraereke in the dry months of August 1978 (Fig. 10) and October 1978, and 2300 µS/cm on Bonriki in June 1980. The galleries have so far operated in a period without a prolonged drought.

If the network of infiltration galleries were extended according to Mather's criteria to all the Tarawa freshwater lenses more than 9 m thick, then the potential yield would be:

Island	No. of galleries	$\frac{\text{Yield}}{\text{m}^3/\text{d}}$
Buariki	16	432
Other North Tarawa islands	8	216
Bonriki	9	243
Buota	4	108
Taeoraereke	4	108
Total	41	1107

Thus, the total safe yield would be about 1100 m³/d or 12.5 1/s. In practice, the Buariki and Bonriki lenses are more than 15 m thick and could be pumped at a greater rate than indicated above. Furthermore, Mather's estimate of groundwater recharge, about 13% of the average rainfall, may well be too low, and more detailed analysis could show that the potential yield of the Tarawa lenses is more than 12.5 1/s.

Judging by the available land area, there are substantial reserves of freshwater on at least two other atolls in the Gilbert Islands - Kuria and Nikunau. In the long term it may be necessary to consider shipping water in an emergency situation on Tarawa.

HYDROCHEMISTRY

Twelve chemical analyses of water samples are given in Table 2. One is of rainwater; six are of freshwater from operating galleries and wells; and five are of brackish water from bores drilled into the transition zone. For the freshwater samples, the relationship between total dissolved solids and electrical conductivity is shown in Figure 10. The maximum permissible total dissolved solids content is 1500 mg/l according to World Health Organisation (1963) standards. The equivalent electrical conductivity, which is the parameter commonly measured in the field, is about 2900 µS/cm.

The freshwater is a bicarbonate water with calcium the dominant cation. It is classified as very hard water, with more than 200 mg/l total hardness. The brackish water is a chloride water with solium the dominant cation.

The nitrate content of 12 mg/l in the Abatao well, though still at a safe level, probably indicates some contamination from farm animals.

CONCLUSIONS

- 1. Resistivity surveys indicate that the freshwater lens on Buariki is up to 29 m thick, and is the largest in the Tarawa atoll. The Bonriki lens is up to 23 m thick.
- 2. The total safe yield of the Tarawa freshwater lenses is probably more than 1100 m^3/d (12.5 1/s).
- 3. The present abstraction system infiltration galleries has so far proved a safe one, and there is scope for extending it.
- 4. The chemical quality of the freshwater is generally good, but the water is very hard.
- 5. There are believed to be substantial reserves of freshwater on the atolls of Kuria and Nikunau.

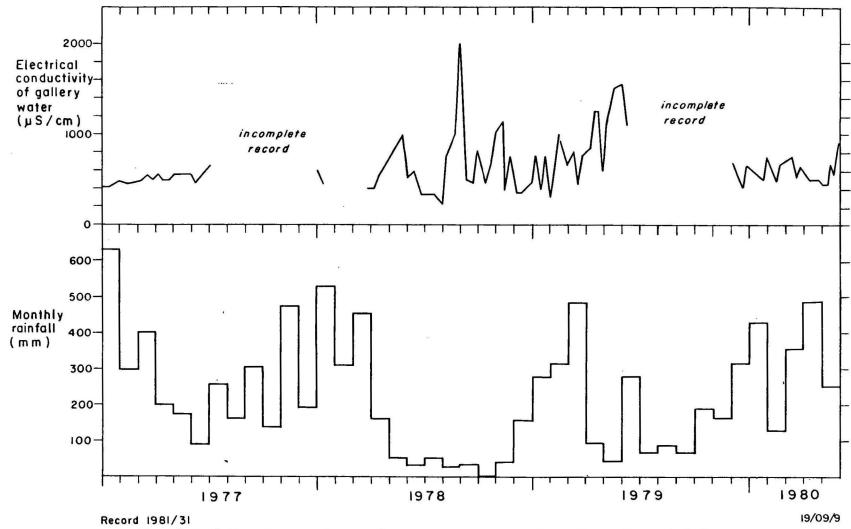


Fig. 10 Salinity of groundwater, Teaoraereke Gallery 3, and monthly rainfall at Betio

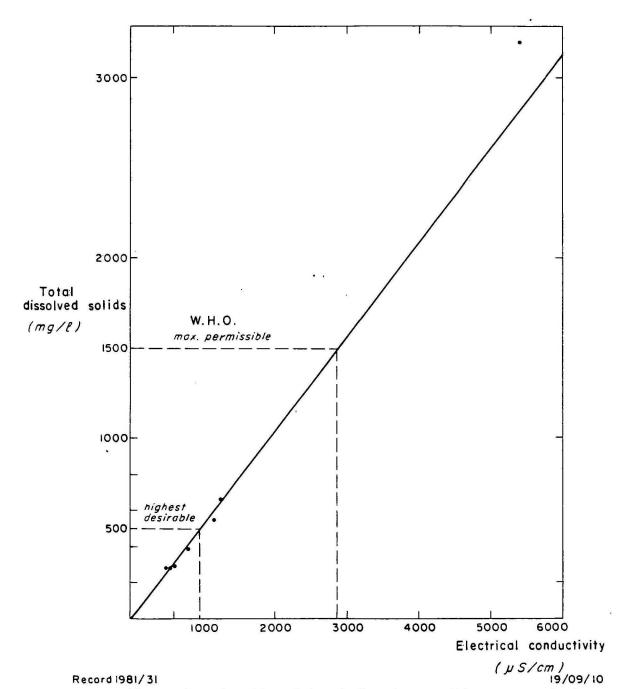


Fig. II Relationship of total dissolved solids to electrical conductivity. Tarawa freshwater lenses

REFERENCES

- DAVIS, P.A., 1979 Interpretation of resistivity sounding data.

 Minnesota Geological Survey, U.S.A. Information Circular 17.
- DOLAN, B., HORSFALL, C.L. & POLAK, E.J., 1975 Kavieng resistivity depth probing. Bureau of Mineral Resources, Australia Record 1975/63 (unpublished).
- GHOSH, D., 1971 Inverse filter coefficients for the computation of apparent resistivity standard curves for horizontally layered earth. Geophysical Prospecting, 19, 769-775.
- HUNT, B., 1979 An analysis of the groundwater resources of Tongatapu Island, Kingdom of Tonga. <u>Journal of Hydrology</u>, 40, 186-196.
- JACOBSON, G. & HILL, P.J., 1980 Hydrogeology of a raised coral atoll Niue Island, South Pacific Ocean. BMR Journal of Australian
 Geology & Geophysics, 5, 271-8.
- LLOYD, J.W., MILES, J.C., CHESSMAN, G.R. & BUGG, S.F., 1980 A ground water resources study of a Pacific Ocean atoll Tarawa, Gilbert Islands. American Water Resources Bulletin 16, 646-53.
- MATHER, J.D., 1973 The groundwater resources of Southern Tarawa,

 Gilbert and Ellice Islands. <u>Institute of Geological Sciences</u>,

 London Report (unpublished).
- MERRICK, N.P., 1977 A computer program for the inversion of Schlumberger sounding curves in the apparent resistivity domain. New South Wales

 Water Resources Commission Hydrogeological Report 1977/5

 (unpublished).
- MOONEY, H.M., 1980 Handbook of Engineering Geophysics.

 Volume 2-Electrical Resistivity. Bison Instruments Inc.
- O'NEILL, D.J., 1975 Improved linear filter coefficients for application in apparent resistivity computations. American Society of Exploration Geophysics Bulletin 6.

TABLE 1 - FRESHWATER LENSES ON TARAWA

Freshwater	Present groundwater	Lens	Scope for further
lens	abstraction	configuration	development
Betio	Non-potable water abstracted	Thin lens, disrupted and not prospective for freshwater development	Nil - saltwater sewerage system introduced
Bairiki	Non-potable water abstracted	- *	Nil - saltwater sewerage system
Teaoraereke	Abstraction from 4 infiltration galleries	Lens 9 m thick in centre	Lens has sustained 4 galleries for several years but probably this is its maximum capacity
Bikenibeu	Non-potable water abstracted	-	Nil - saltwater sewerage system
Bonriki	Abstraction from 4 infiltration galleries	Lens up to 23 m thick indicated by resistivity survey	Additional 5 galleries would bring total yield to 3 1/s. Possibly scope for heavier pumping.
Buota	Abstraction from 3 infiltration galleries	Lens up to 16 m thick indicated by resistivity survey	Possibly one additional gallery
Abatao	Local wells	RDI (1978) indicated lens 13 m thick	Possibly 1-2 galleries
Tabiteuea	Local wells	Lens up to 12 m thick according to BMR inter- pretation of RDI data	Possibly 1-2 galleries
Tebiang	Nil .	Not investigated, but land area equivalent to Buota	Possibly 2 galleries
Marenanuka	Local wells	Lens probably 8-9 m thick according to BMR interpretation	Nil
Ereti	Local wells	Lens possibly 13 m thick	Possibly 1-2 galleries
Taratai	Local wells	Narrow lens up to 11 m thick	Possibly 1-2 galleries
Tearinibai	Local wells	Discrepancy between BMR and RDI interpretation; lens may only be 8 m thick	Nil
Buariki	Local wells	Lens up to 29 m thick indicated by resistivity survey	Largest fresh water lens in Tarawa. Possibly develop up to 16 galleries for yield of 5 1/s on existing criteria. Possibly scope for greater yield.

TABLE 2 - CHEMICAL ANALYSES OF WATER SAMPLES

	Tanaia Rainwater	Teaoraereke No. 3 Gallery	Bonriki No. 3 Gallery	Abatao Well with windmill	Buota No. 4 Gallery	Buariki Camp Well	Bikenibeu Gallery	Buariki Bore 3 during pump test	Buariki Bore 5	Abatao Bore 7	Buota Bore 8	Buota Bore 9	
Calcium	1.3	69	78	75	76	105	69	96	130	185	230	275	
Magnesium	0.4	18	13.5	17.5	42	34	42	135	165	270	430	600	
Sodium	2.5	7.6	6.2	10.5	17.5	62	105	820	1200	2200	3550	5200	
Potassium	0.8	0.6	0.5	1.8	0.6	1.7	5 . 8	31	45	84	135	185	
Bicarbonate	5	291	293	297	441	427	371	395	409	373	390	404	
Sulphate	1	9	7	10	10	22	41	95	285	520	800 .	1350	
Chloride	6	14	13	16	29	104	166	1554	2210	3988	6577	9355	
Nitrate	< 1	3	2	12	< 1	< 1	6	<1	< 1	< 1	< 1	<1	
Electrical Conductivity	55	508	524	561	799	1 145	1249	5397	7719	12569	19563	26108	
Total Dissolved Solids	23	280	280	290	390	550	660	3200	4350	7500	12000	17000	
Total Hardness	5	246	250	259	363	402	345	795	1004	1573	2344	3156	,
Carbonate Hardness	4	238	240	244	361	350	304	324	335	306	320	331	
Non-Carbonate Hardness	1	8	10	15	1	52	41	471	669	1267	3024	2824	
Total Alkalinity	4	238	240	244	361	350	304	324	335	306	320	331	
рH	6.2	7.8	7.9	7.7	8.2	8.0	8.1	7.6	7.4	7.7	7.9	7.6	

Chemical analyses in mg/1; electrical conductivity in S/cm Samples collected October 1980 and analysed by AMDEL, Adelaide, December 1980 APPENDIX 1

LOGS OF BORES 1-4

				LOCATION OF BORE Bonriki		R.N. Bore I
BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS				1:100 000 SHEET Tarawa Atoli		
GEOLOGICAL LOG OF BORE				Kiribati		I.N
GEOLOGIC	JAL L	UG OF	BOKE HOLE	SHEET NO GRID REFERENCE	- -	PROJECT
DOWNHOLE LOGGING			DRILLING METHOD	15 /9 /90		JOB NUMBER
DOWNINGE LOOS			Rotary	DATE HOLE COMMENCED 15/9/80		JOB NOMBER
	·	No.	Rolary	DATE HOLE COMPLETED 19/9/80		<u> </u>
DEPTH (m)	₽ (c	AQUIFERS YIELD S.W.L.		UBSTANCE DESCRIPTION	ADD	TIONAL INFORMATION
LIFT AND	SRAPHIC LOG	AQUIFE YIELD S.W.L.	Type of mat	erial: grain characteristics, colour, cucture, minor components		g rate, water loss, mud
CORE RECOVERT	ō	d ≻ α		ucrure, minor components	Eirculat	rion, drilling problems etc.
		15/9/80	Grey sand Coral hards	oan	Rock	roller 75 mm
		_ ▽			-	r used in drilling-
			Medium – fir	ne coral sand, off white-yellow,	15.0 9000 1000	water loss
		-	well sorted		1	luctivity of surface
			Includes col	obles of cemented sand.	water	r 380 μS/cm
No						
Core						
	1	-				
5 m	-					
				-	5-65	
	-					Piezometer test
				-	6.30	/ k = 36 m/d
	7.					
		3	Pieces of	coral to 5 cm		
10 %	****	1	light green		N	m L c
	_	3		•		
	*************************************	3				
	****	3	80 cm core		\	/
. 10 m	1	1		in situ material)	N	1
45°/0			Core losses	due to large voids.		
	-	3				
					11.5	\
	****	, i			10.00	Piezometer test
		aquifer) /- k=131 m/d than half drilling
15 %		8	Fragments	of coral to 5 cm		lost
		3				
					-	
100%		table		off white to cream;		
15 m	*****	101		is material with cellular structure.		
	*****	3	To 14.9 m	material fragmented; below 14·9 m one piece		
	****	1				
50 %	****	ē	Coral reef	material; mostly fragmented		
	****	Water				
60%		3	C- 11'		*-	
30 /6	_ 	3	Coral limest	one - soft rock, fragmented	_	
60%	*****	3		stone-off white to yellow.		
8U 70	****	\$	Friable sof	t rock – core mostly broken		
	≠	3				
80 %	*****	3	19·4 m — — —	—Unconformity — — — — —		
20 m			Limestone (lime mudstone) with shells etched ou	t	
DRILL	ER P.M.	rphy, B.	Turner, C.I.R.L.	PROJECT Ţ	arawa_G	roundwater Invest.
DRILL	TYPE _	lacro		BMR HOLE	NUMBER .	
LOGG	ED BY	G. Jacob	son	SHEET _1	_ OF 2_	
Record 1981/1						6/09/37
RECOID 1901/	J 1			DRAWING J		

					LOCATION OF BORE	Bonriki			R.N Bore I
BUREAU OF MINERAL RESOUR GEOLOGY AND GEOPHYSICS					Tar	awa Atali			
The same of the sa				BORE HOLE	HIOOOOO SHEET Tar	ibati			PROJECT
				r					
DOWNHOLE LOGGIN	G			Rotary	DATE HOLE COMMEN	CED			JOB NUMBER
	T.	Lo		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DATE HOLE COMPLET	ED			
DEPTH (m)	D F S	FER	o ;		UBSTANCE DESCRIPTION			ADD	ITIONAL INFORMATION
CORE RECOVERY	GRAPHIC	AQUIFERS	YIELD S.W.L.	Type of mat str	rerial: grain characterist ructure, minor componer				g rate, water loss, mud tion, drilling problems etc.
50 % _				Limestone - lime coral fragments	e mudstone with s s etched out.	hell and			- 24·6 m drilled hydropol
33 %					u				
60% _					11				
				slotted plastic After drilling o 1400 س Conductivity o 900 سS 1150 1450 Ground level I	with 63 mm 1.0	in IO/80 to Betio	Base Da ility (md) H 2930 < I 9460 2080	tum (I	O m)
		<u> </u>		<u> </u>					
									<u>oundwater In</u> vest.
DRILL	TYPE								
							SHEET 2		
Record 1981/3	l						DRAWING NU	MBER _L	6/09/37_

.

		LOCATION OF BORE Bonriki		RN Bore 2
BUREAU OF MINERAL RES				
GEOLOGY AND GEOPHYSICS GEOLOGICAL LOG OF		Kiribati		1.N
		SHEET NO GRID REFERENCE		PROJECT
DOWNHOLE LOGGING	DRILLING METHOD	DATE HOLE COMMENCED 22/9/80		JOB NUMBER
	Rotary	DATE HOLE COMPLETED 24/9/80		
DEPTH (m)	. 9	SUBSTANCE DESCRIPTION	ADD	ITIONAL INFORMATION
LIFT AND CORE RECOVERY	Type of man	terial: grain characteristics, colour, ructure, minor components		g rate, water loss, mud tion, drilling problems etc
Ø∵9 	Off white - grey	gravelly sand with coral fragments		
-000 26/9/80	to boulder siz	re		
100%	Coral gravel;	pebble to boulder size.	NmL	c, hydropol
50 %	coarse sand	to cobble gravel		и
	No core		Rock	roller
	-mainly sand	·		
5 m -		*		×
	Fine sand w	th coral fragments	Drive	e sample
	No core	white	NmL	.c using hydropol
0 % [-loose sand,	wiffle	1	
10 m				
10		3	ļ	
100 %		agments to 15 cm pieces	hydr	opol, good circulation
20 %	open, porous,	off white-cream		
	fragments of			
20 %	-harder, dens	er, greenish grey		
	unc	conformity —	<u> </u>	
40 %		ne; off white, dense,		
40 %	some broken	core		
15 m				
	No core; san	d		
o -				
Water				
80 %	Loosely cemen	ted limestone (calcarenite).		
	soft white lie	mestone (lime mudstone with shell		
60 %	272 034 141 141 141	mestone (time muastone with shell gments) -friable rock.		
				· · · · · · · · · · · · · · · · · · ·
DRILLER P. Murphy, B	Turner, C.I.R.L.	and you T	arawa G	Groundwater_Invest.
DRILL TYPE Jacro				J J J J J J J J J J J J J J J J J J J
LOGGED BY G. Jacob	son	SHEET1		
Record 1981/31				6/09/38

		LOCATION OF BORE Bonriki		R N. Bore 2
BUREAU OF MINERAL RES GEOLOGY AND GEOPHYSICS	5	1:100000 SHEET Tarawa Atoll Kiribati		I.N
GEOLOGICAL LOG OF	BORE HOLE	SHEET NO GRID REFERENCE		PROJECT
DOWNHOLE LOGGING	DRILLING METHOD	DATE HOLE COMMENCED 22/9/80		JOB NUMBER
	Rotary	DATE HOLE COMPLETED 24/9/80		
DEPTH (m)		SUBSTANCE DESCRIPTION	ADDI	TIONAL INFORMATION
THE PART CON THE PROPERTY OF THE PART CON TH	Type of mat sti	terial: grain characteristics, colour, ructure, minor components		g rate, water loss, mud ion, drilling problems etc.
60 %	Limestone - soft	, white, friable, limestone	NmL	c, hydropol
45 %		white, friable, poorly cemented with shell and coral fragments.		п
35 %	Limestone – sof Broken core	t, white, slightly better cemented.		п
15 %		y soft lime mudstone agments only recovered		n
25 m	End of hole 2 Hole equipped slotted plastic Conductivity of 1600 1700 2200	with 63 mm 1.D. c casing. bore water 5/10/80 µS/cm at 3 m	tum (10	m)
ORILLER		PROJECT TO	rawa G	roundwater Invest.
ORILL TYPE		BMR HOLE	NUMBER _	
LOGGED BY		SHEET 2.		
Record 1981/31		DRAWING NI	UMBER _	6/09/38

00540			0.45050	LOCATION OF BORE Buariki		R.N. Bore 3
BUREAU OF				1:100 000 SHEET Tarawa Atoll		I.N
			BORE HOLE	Kiribati		
				SHEET NO GRID REFERENCE		PROJECT
DOWNHOLE LOGG	ING	1.00	DRILLING METHOD	DATE HOLE COMMENCED 28/9/8	90	JOB NUMBER
			Rotary	DATE HOLE COMPLETED2/10/	80	
DEPTH (m)	2	ERS	S	SUBSTANCE DESCRIPTION	ADD	TIONAL INFORMATION
LIFT AND CORE RECOVERY	GRAPHIC	AQUIFERS YIELD S.W.L.	Type of man	terial: grain characteristics, colour, ructure, minar components		g rate, water loss, mud ion, drilling problems etc.
	000		coral conglom	erate and sand	Nml	- A
15 %	0.0	ġ				r used 0-6 m cond'y surface wat
	0.00	2/10/80				μS/cm
0.0/	000					
0 %	0 0		No core - sa	nd with coral boulders		casing down
	0 0				Wijn	out coring
	-		No core - mo	oinly sand	Nm	Lc
5 m	1-					
			white sand w	ith shells and coral pebbles	drive	e sample >
· · · · · · · · · · · · · · · · · · ·					pe	rmeability test k = 77 m/d
	· : :		Sand and cor			
20 %	• • •		(coral fragme	nts only recovered)	N m	
					4.00	below 6 m
		7	coral fragmer	ite		
10 m	100		Cordi Tragilier			y
	• • • • •					
40 %	₩	3	coral reef - o	pen, porous, cream		
	****	, i	00101 1001 0	pon, poroda, ordan		
	-	aquife				
	****	8				
	₩		coral reef - fr	agments only recovered;	N m	L c
15 %	****	3	med-fine sar	nd beds, uncemented,		
	- *****	able	not recovered			
	****	\$ ₽				
15 m	` ``````	3				
	****	Water				
20 %	****	S S	coral reef - of	f white, denser, less porous		
20 /8	****		001411001 01	winte, denser, ress porous		
	****	1				
·		3	coral reef			·
60 %			off white lim	unconformity — nestone-friable calcarenite	with	
`	<u></u> ===	1	shell and c	oral fragments to 3cm.		, , , , , , , , , , , , , , , , , , ,
100 %				stone — friable calcarenite agments to 15 cm		*
	111	∄	<u> </u>			
			3. Turner	PR	OJECT Tarawa	<u>Groundwate</u> r Invest.
		Jacro 5			R HOLE NUMBER .	
LOGO	GED BY _	G. Jacol	oson		EET _!_ OF 2	
Record 1981/3	31			DR	AWING NUMBER _!	0\03\33

DUDEAU OF	NAUNICO	241 050	OUBCEC	LOCATION OF B	ORE BUOTIKI			RN Bore	3
BUREAU OF GEOLOGY AT				1:100 000 SHEET	Tarawa Ato	П		I.N	
			BORE HOLE		Kiribati			1.8	
OLOLOGIC	~L L	00 0.	BOKE HOLE	SHEET NO	GRID REFER	ENCE		PROJECT	
DOWNHOLE LOGGIN	G		DRILLING METHOD	DATE HOLE COM	IMENCED			JOB NUMBER	
				DATE HOLE COM				ě	
ļ	T.,	S		DATE HOLE COM	TPLETEU				
DEPTH (m)] ¥ 0	P F P		UBSTANCE DESCR			ADDI	TIONAL INFORMA	TION
CORE RECOVERY	GRAPHIC LOG	AQUIFERS YIELD	Type of mat	erial: grain charac acture, minor con				g rate, water loss ion, drilling proble	
20 m -			· · · · · · · · · · · · · · · · · · ·						
			white limeston	e; soft, friab	e calcarenit	e	N·mL	c, hydropol	
75 %		r	· · · ·	10					
			includes coral	tragments to	5 cm				
33 % -			white limestone	e; soft friabl	e calcarenite				
			white limeston	e; moderatel	y hard calca	renite			·
-									
100 %			white limeston calcarenite wi				e		
<u></u>			- Carcarentie wi	in shells und		Tems			
90 %			white limeston						
25 m			rock. More tha				3		
			up to several c	m in sanay c	ementea ma	Trix.		····	
75.0/			white limeston	-					*
35 % -			broken core.	Shells etched	out by solu	fion.			
			white limeston	e: hard calco	renite fraam	ents			
20 %			recovered. So	W					
-									
			white limestone	· hard calcar	enite with c	oral			
60 %			fragments to						
and the same of th			by solution.						
30 m -	· · · · · ·								,
			Unio agood wi	the sleakand D	V C =:== 63	dia_			
-	,		Hole cased wi						
			,	, , .					
-			Conductivity of		3/10/80				
				S/cm at 5m					
-	1		2100	. 28 m					
			Pump test 9/I	IO/80 using	4 observati	on			
-			piezometers u						
			Transmissivity				1		
-	1				700				
1			Top of casing						
-			mark in Mexic Ground level		11 3.000m).				
	1		0.54114 10401						
-			Laboratory test	s on core sa	mples				
				fective porosit		ility (md)			
_			(m)	(%)	٧	Н			
]			10.50	62 47	385 6650	< I 5360			
×5			24.00	45	9720	11180			
"			24 40	49	8670	11640			
			e.			Section State of Assess			
nouve	В				• .	PROJECT T	arawa	Groundwater	Invest
4						SHEET _2_			
								6/09/39	
Record 1981/31						DRAWING NL	MBER _ !	0/03/33	

I

1

I

פוופבאון סב	MAINICE	201	DEC	OTIBOS .	LOCATION OF BORE Buariki		R.N Bore 4
BUREAU OF GEOLOGY A					1:100 000 SHEET Tarawa Atoli		1.N
GEOLOGICAL LOG OF BORE HOLE			Kiribati				
02020010	, AL L	00	O.	BONE HOLE	SHEET NO GRID REFERENCE	- -	PROJECT
DOWNHOLE LOGGIN	ıG			DRILLING METHOD	DATE HOLE COMMENCED 8/10/80		JOB NUMBER
				Rotary	DATE HOLE COMPLETED		
		S				,	<u> </u>
DEPTH (m)	GRAPHIC LOG	40UIFERS	ز ہ		UBSTANCE DESCRIPTION		TIONAL INFORMATION
CORE RECOVERY	GRA	AQ€	YIELD S.W.L.	Type of man	erial: grain characteristics, colour, cucture, minor components		g rate, water loss, mud ion, drilling problems etc.
No core	0.00		7		edium grained, some gravel.	Nml	.c, hydropol
15 % 5 m -	0			Coral sand, so pieces of gra			
No core				Coral sand, se	ome gravel.		
30 %	00000			1000	some sand, -bedded; vel recovered.		
30 %				Coral gravel,	some sand.		0.
80 %				Coral reef-cre	eam, open, porous.		
25 %				Limestone - wh with shells an (conglomerate	in not recovered ite, moderately hard calcarenite d coral fragments to several cm platform?) Fossils include biscult urchin.	1000	mud circulation hard to thicken
12 %				Limestone - wh	nite, weakly cemented calcarenite.		
70 %				with shells ar from solution Limestone - har	d and soft bands calcarenite with		
	0 14		hv P	shelly fossils		orawa M	Inter Supply
				.Turner, C.I.R.L.			later Supply
	DRILL TYPE Jacro 500 BMR HOLE NUMBER						
		<u>J. U</u>	2500	3011	SHEET _L.		
Record 1981/31					DRAWING N	UMBER _1	6/09/40

							LOCATION OF BORE Bugriki		Para 4
BUREA	U OF	MINE	RAL	. RE	so	URCES,			R.N Bore 4
GEOLOGY AND GEOPHYSICS									I.N
GEOLOGICAL LOG OF BO						BORE HOLE	Kiribati SHEET NO GRID REFERENCE		PROJECT
							SHEET NO. 1111 OND REPERENCE 1		PROJECT IIII
DOWNHOLE	DOWNHOLE LOGGING					DRILLING METHOD	DATE HOLE COMMENCED		JOB NUMBER
							DATE HOLE COMPLETED		
() [8					+				
	DEPTH (m)			أز		UBSTANCE DESCRIPTION		ITIONAL INFORMATION	
	GRAPHIC (W) H1430		3	Type of material: grain characteristics, colour, structure, minor components			g rate, water loss, mud tion, drilling problems etc.		
	20 m				+	· · · · · · · · · · · · · · · · · · ·			
					-				
	-		1		-		eam, generally soft and friable.		Lc, hydropol,
50 °	%		1			Half the rock consists of shells and coral			jsten bit.
							sandy matrix. Shells etched		
	11	뒤		1	out by solution.				
					Γ	Limestone - cre	eam, soft friable rock consisting	a	
100	% ‡	+ + +				of 50% sand and silt. Some solution etching		-	
			1		-				
			1		-	······································			
100	%		3			Limestone - cre	eam, soft, friable rock consisti	ng	
	25 m -					of 50% sand and silt.			
	-5 ""						*		
					7				
1	1		ŀ						
	ľ								
-									
	1								
	4								
			١,						
	1								
5	1				i				
					1				
	30 m -								
	31 m		_		+				
						Completed at	31m on 11/10/80 and equipp	ed	
]]				with slotted P.V.C. casing.					
]]									
						Top of casing R.L. 3-370m referred to bench			
1 1				mark in Mexico Bay (datum 3.000 m)					
	ŀ					Ground level 3	3·370 m.		r.
	-				ľ				
,					1				
					ı				
	1	5.5°						1	
1	7								
			1					*	
	-								
								1	,
			1		1				
			1						
	1								
ORILLER PROJECT								ст	
DRILL TYPE BMR HOLE								OLE NUMBER	
LOGGED BYSHEET _2								_2_ or _2_	_
								NG NUMBER _	16/09/40
		_							

I

1

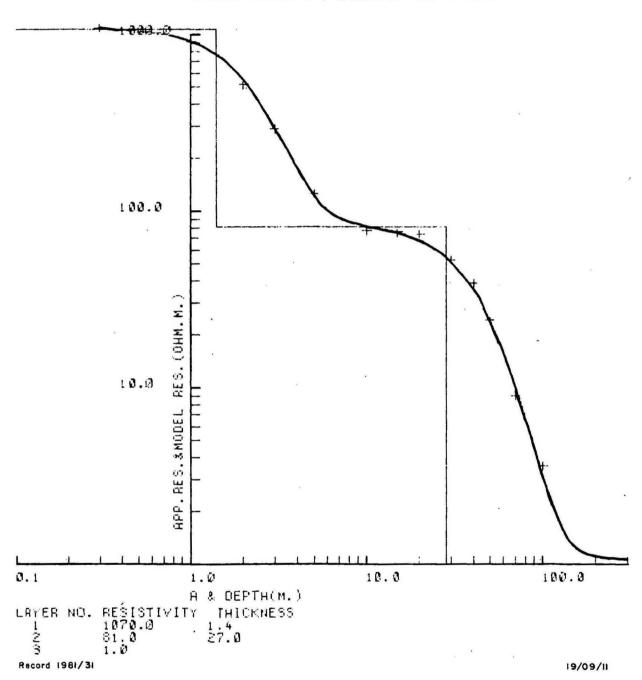
1

I

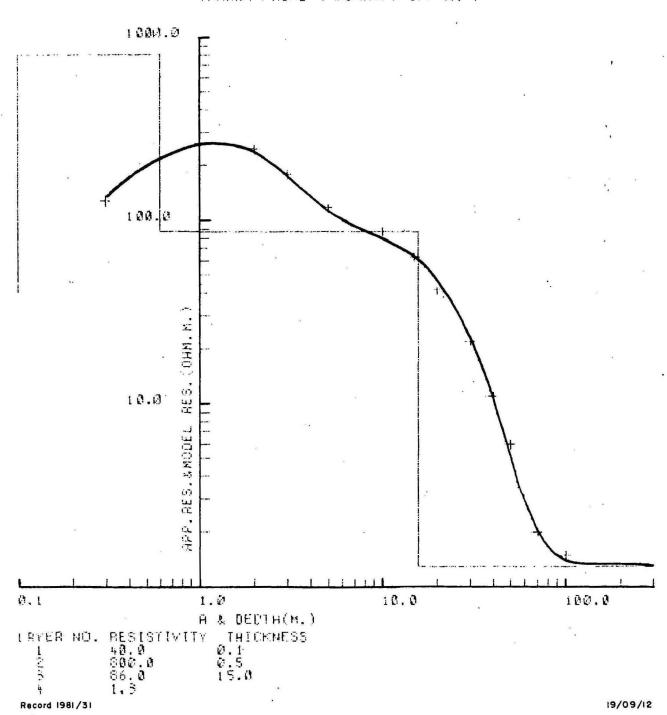
1

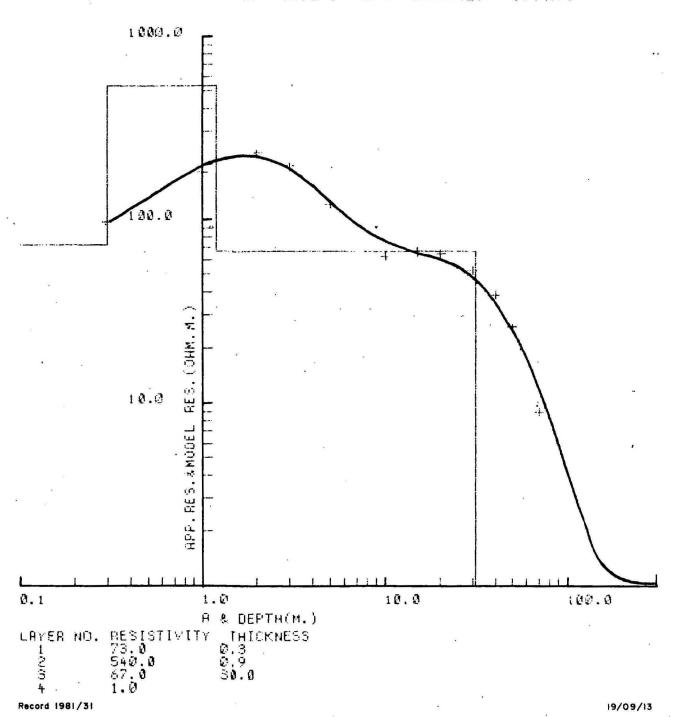
APPENDIX 2

Technical note on the SAS 300 Terrameter system

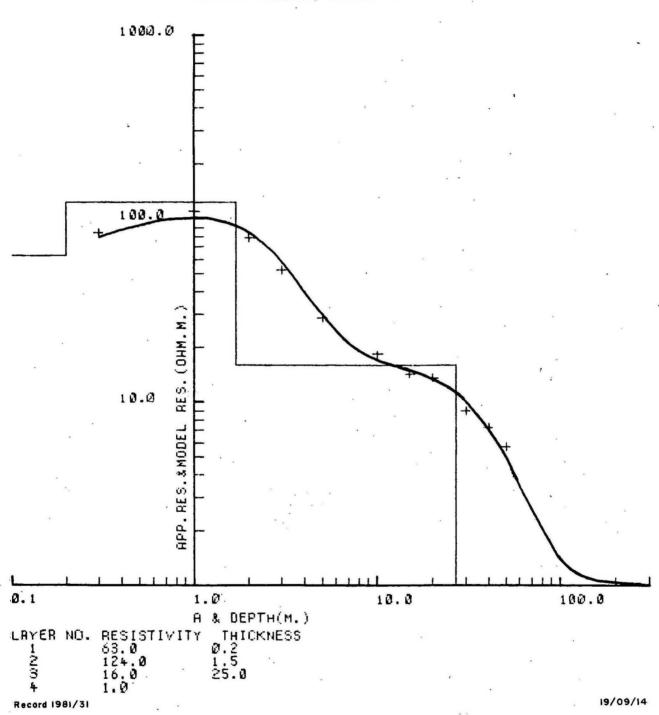

This instrument has a number of internal checks which assist in avoiding errors during field measurements. However, there is no check on whether the potential measuring circuit is correct and not open circuit or intermittent. Since the system is a stacking one in which successive measurements are averaged, any intermittent circuitry leading to false potential measurements will not be obvious to the operator. Hence it is important that the potential leads and electrodes be of high quality. It is suggested that brass electrodes (6 mm) be used and that the leads be bolted to the electrodes using brass bolts and washers. These leads and electrodes should be checked for continuity at least once per day.

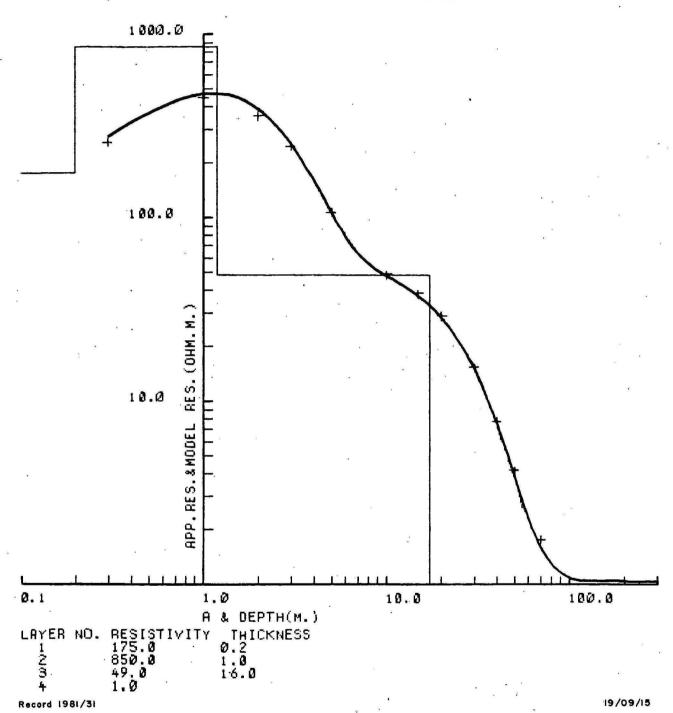
APPENDIX 3

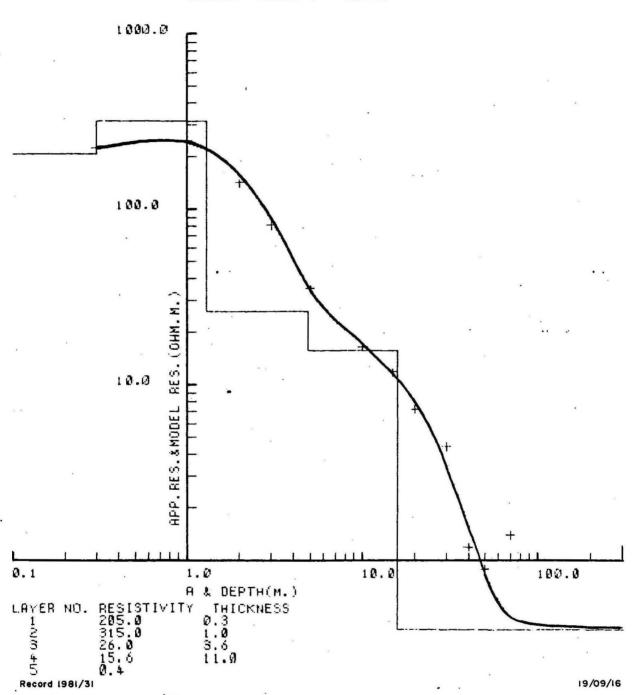

RESISTIVITY FIELD DATA AND INTERPRETED MODEL CURVES


Nos 2, 4-26, 28-47

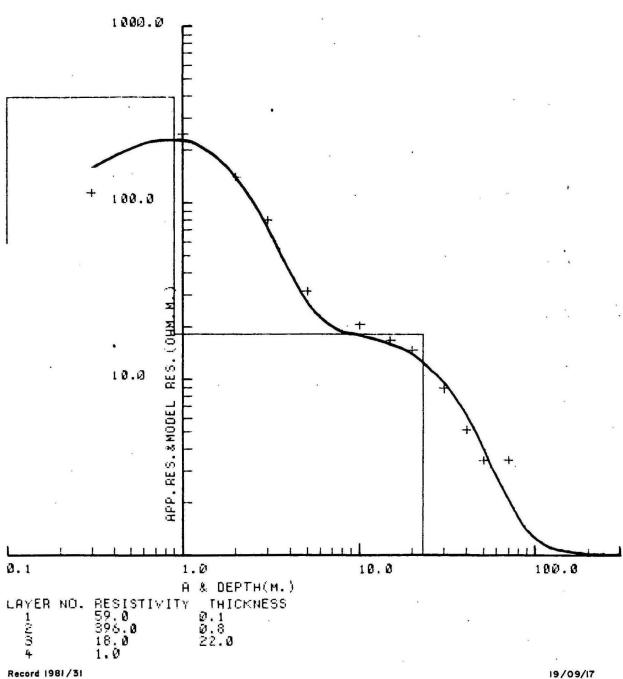
TARAWA PROBE 2 , BUARIKI NO 4 BORE

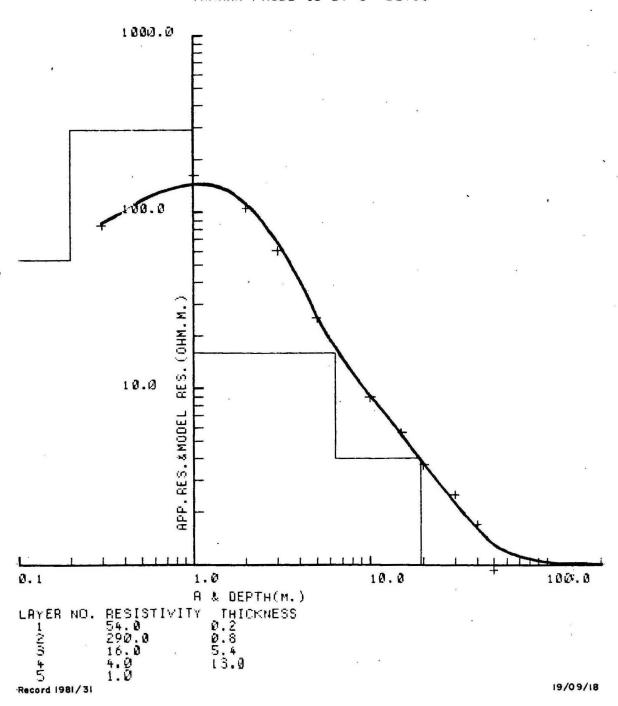


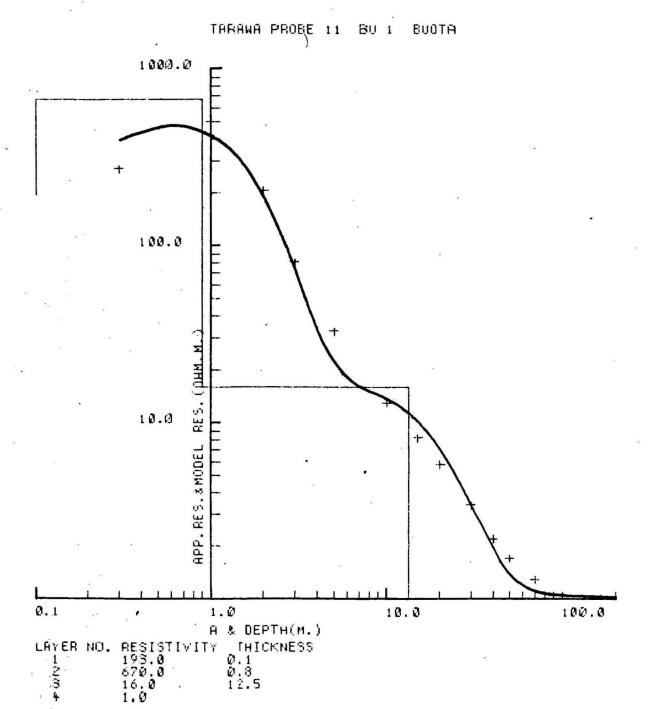

TARAWA PROSE & BUARIKI OFF NO 5



TARAMA PROBES, BETIO BT 1

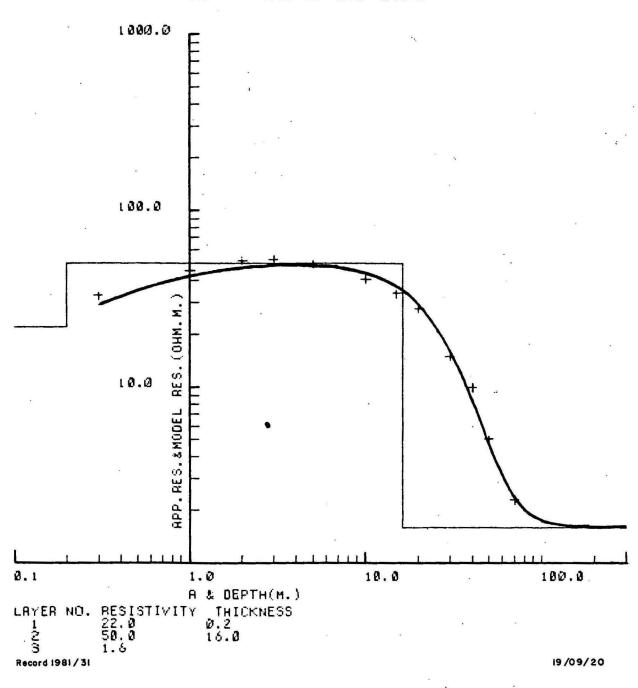


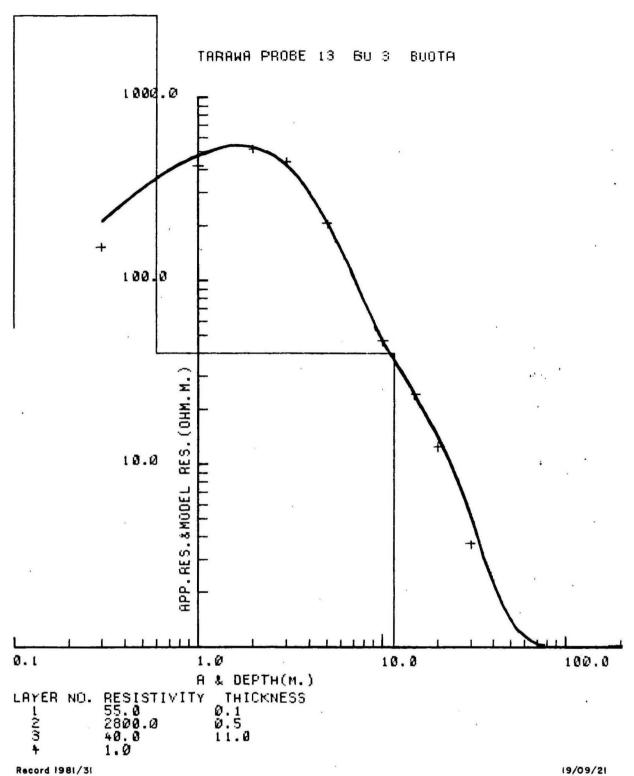

TARAWA PROBE 8 BETIO

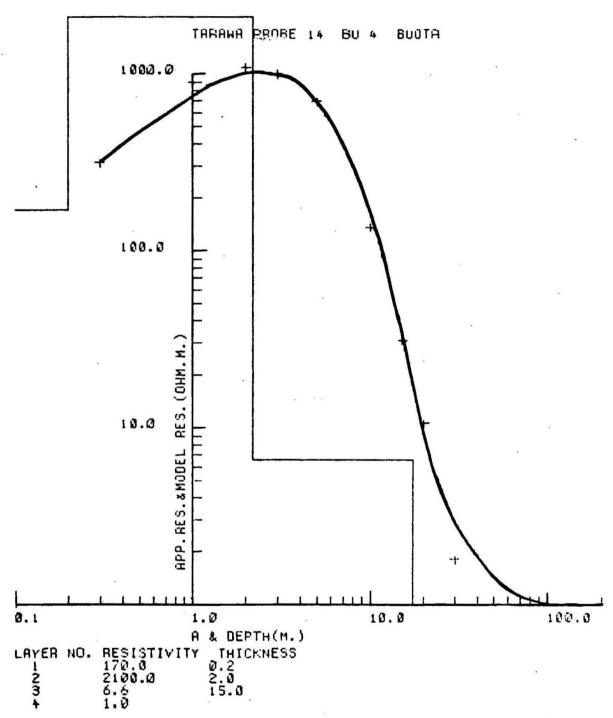


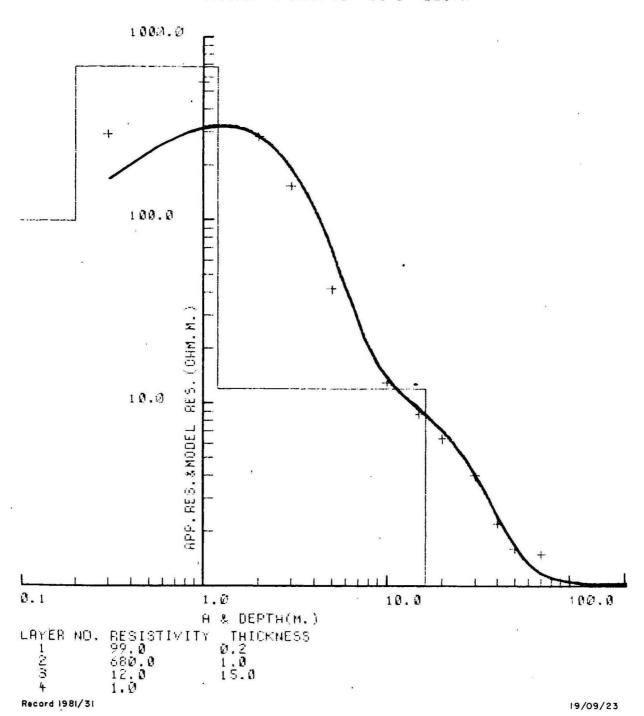
TARAWA PROBE 9 BT 4 BETIO

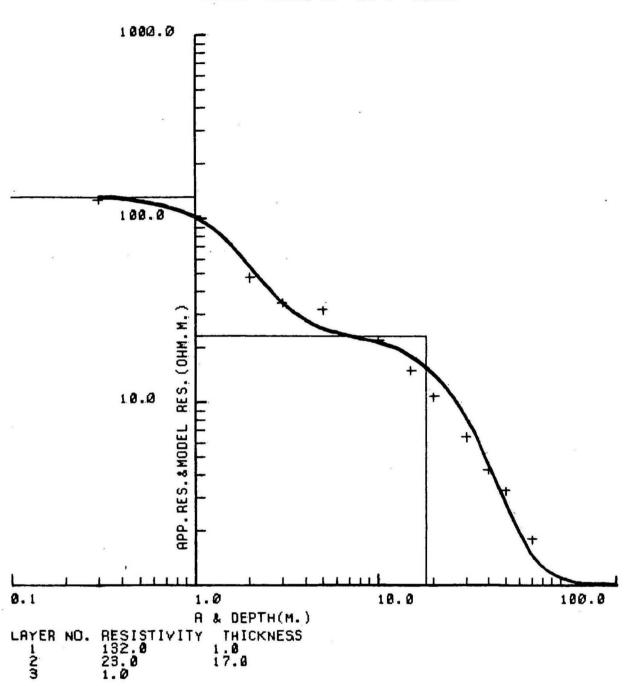
TARAMA PROBE 18 BT 5 BETTO

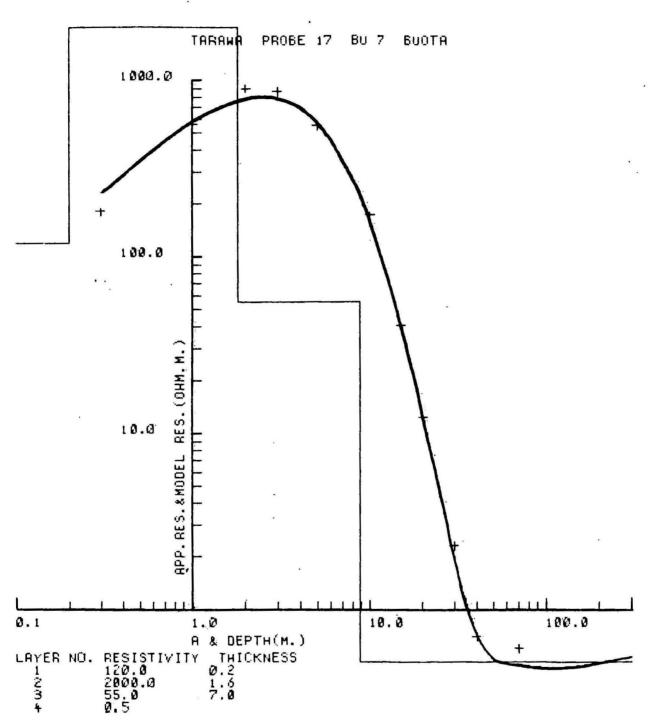


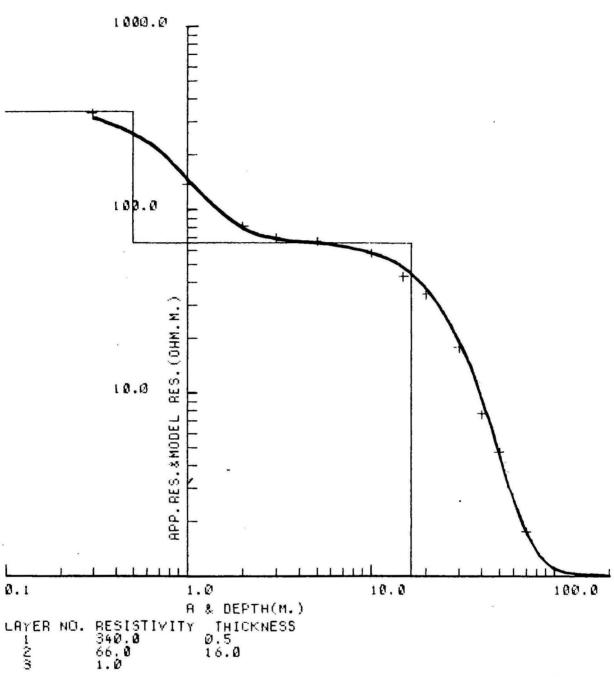



19/09/19

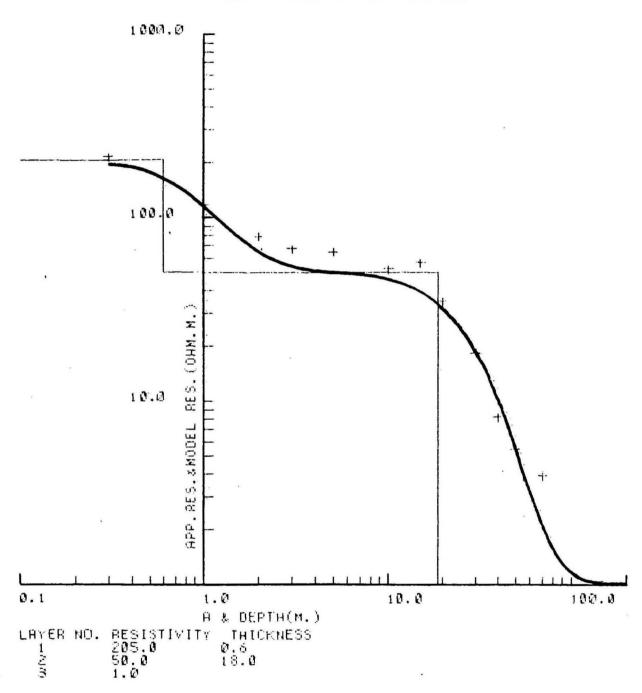

Record 1981/31

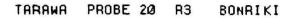


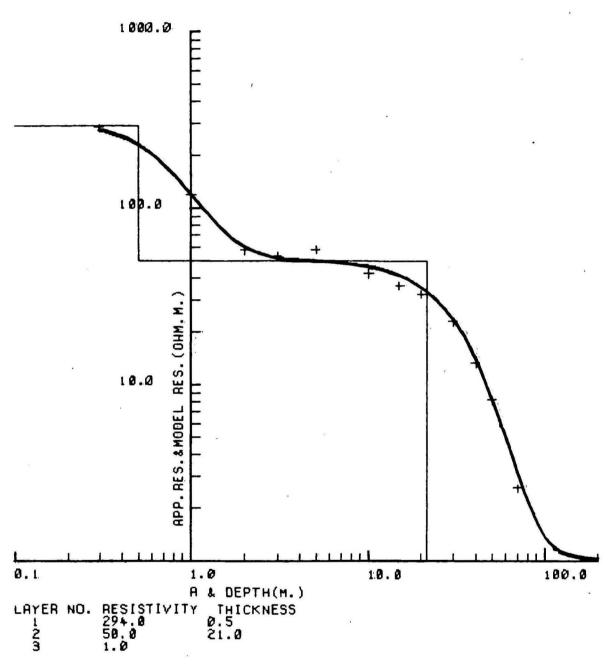



TARAMA PROBE 16 BU 6 BUOTA

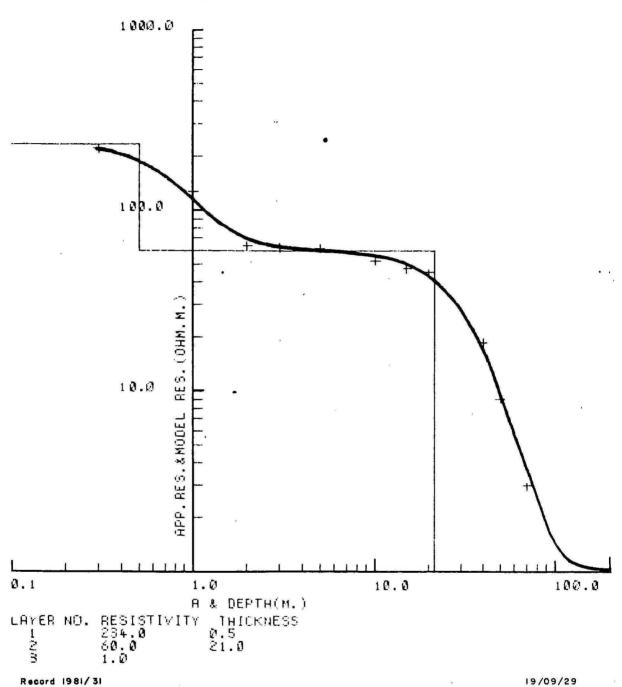
Record 1981/31

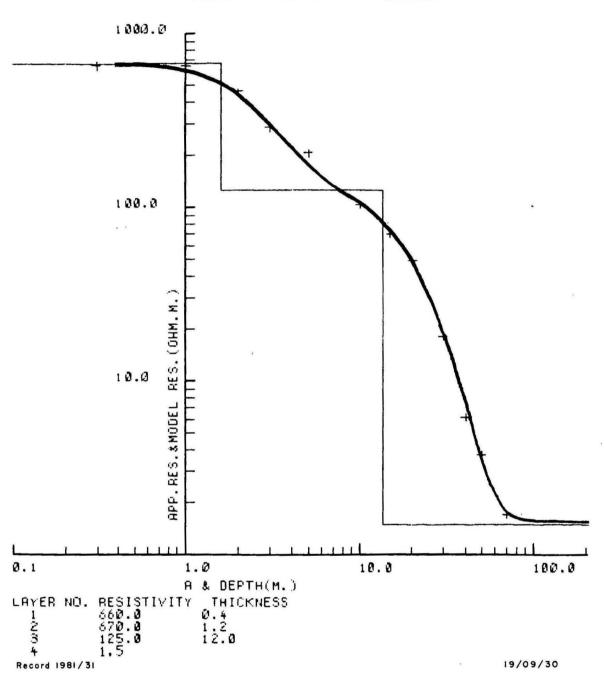


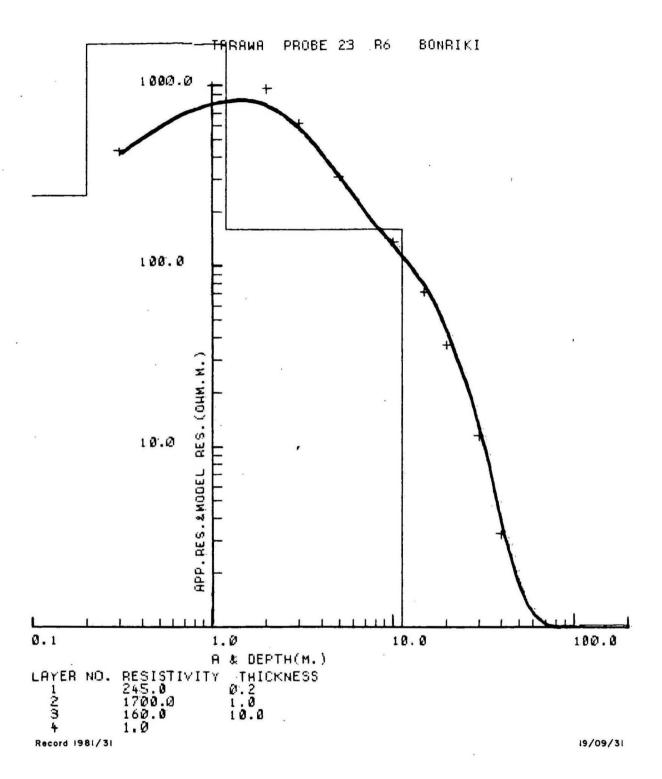

TARAWA PROBE 18 R 1 BONRIKI



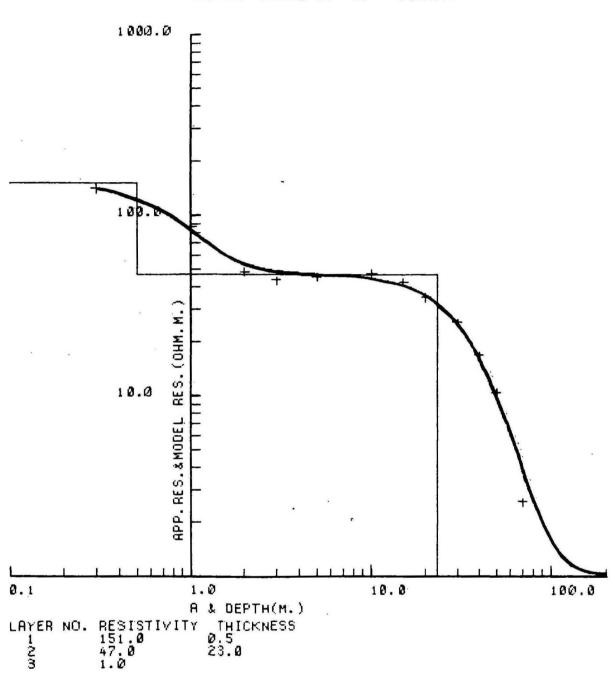
Record 1981/31


TARAWA PROBE 19 RE BONRIKI

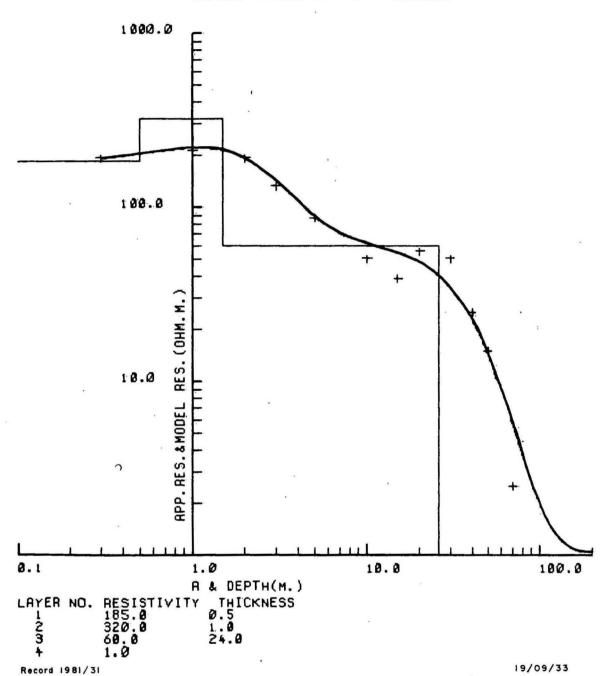


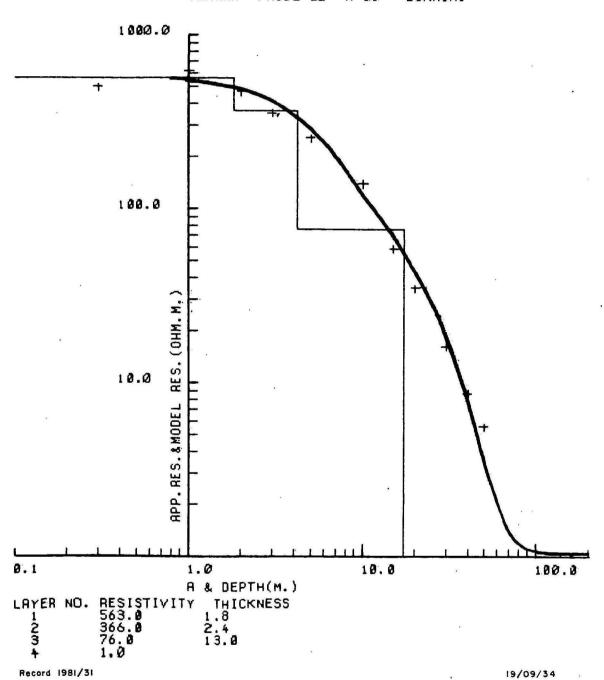


TARAWA PROBE 21 BONRIKI 8 4

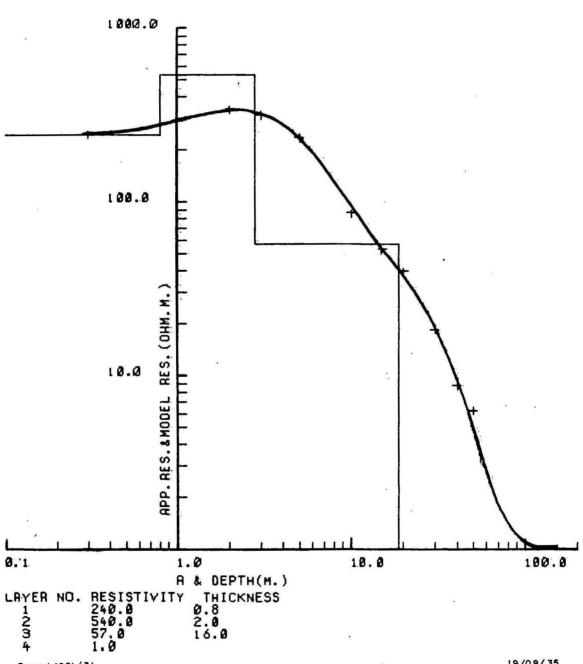


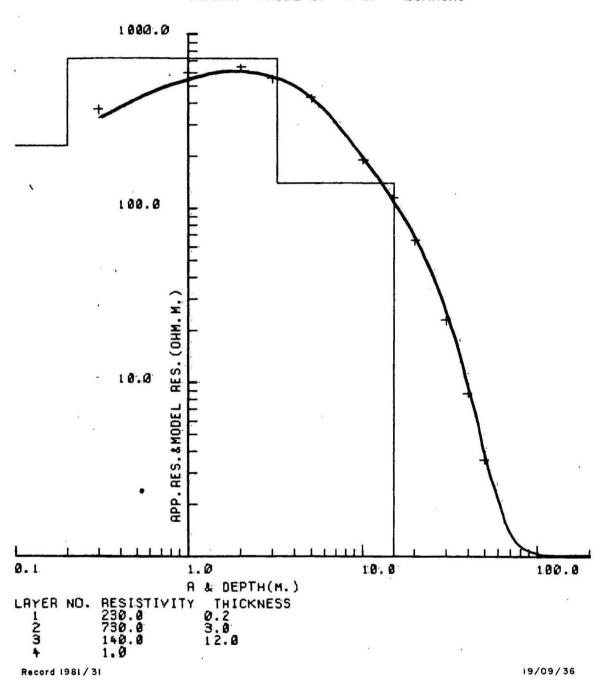
TARAWA PROBE 22 RS BONRIKI

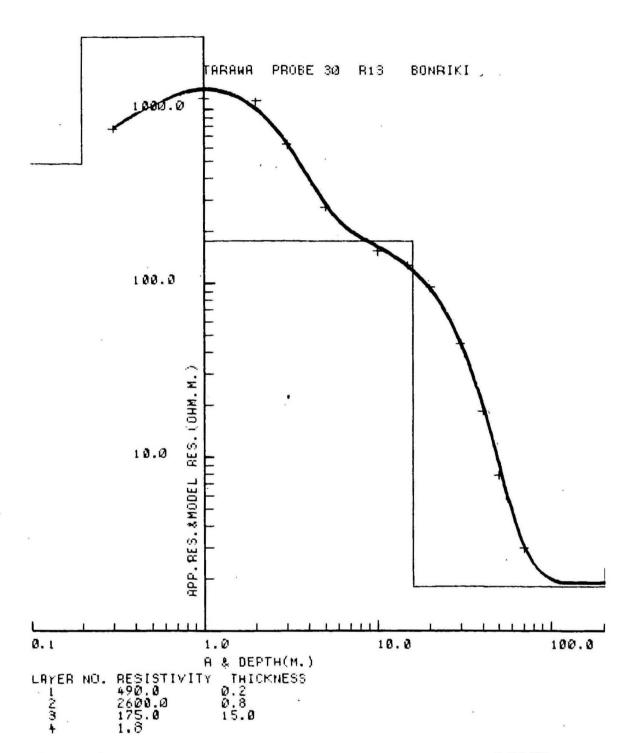


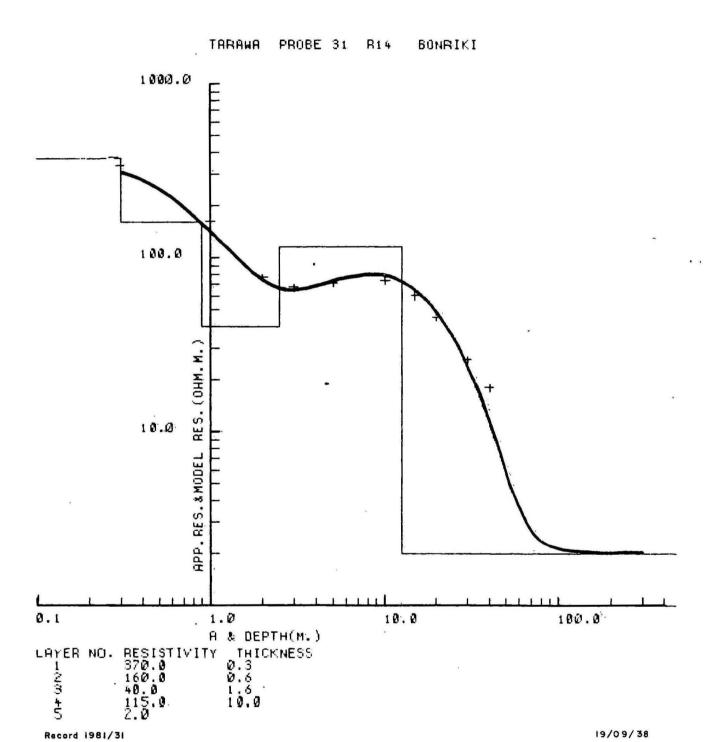

TARAWA PROBE 24 R7 BONRIKI

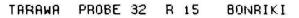


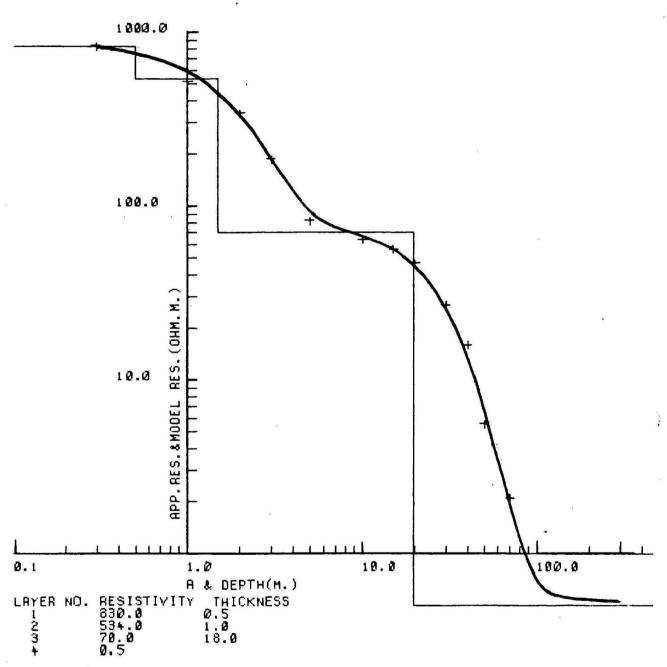


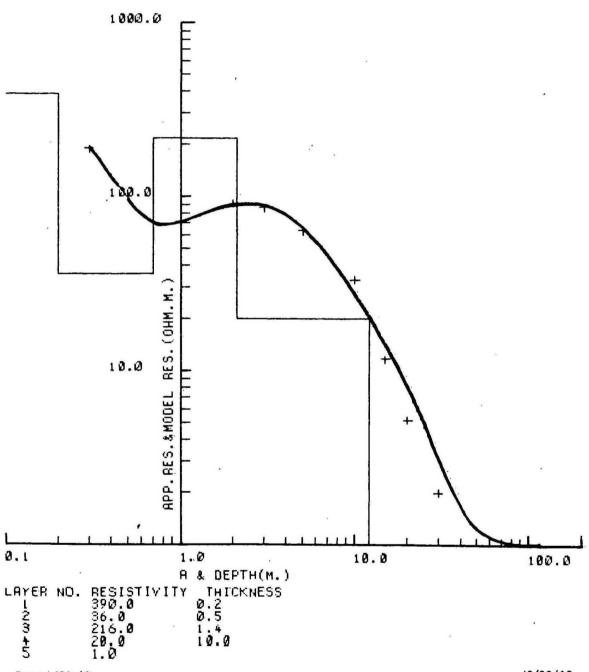


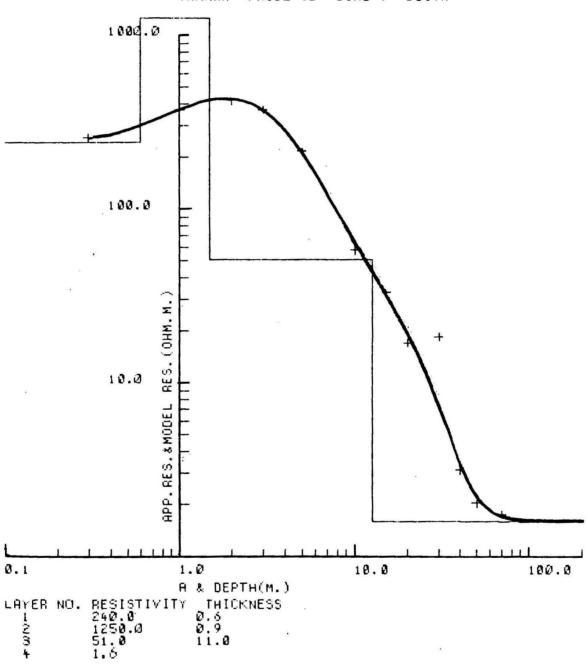


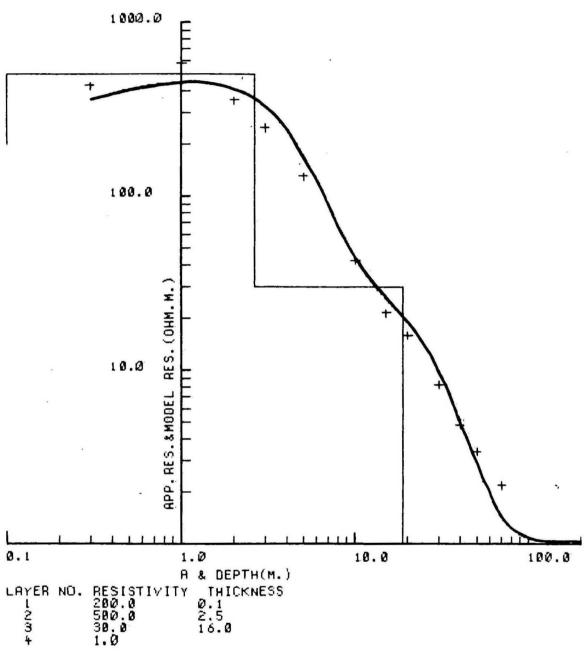


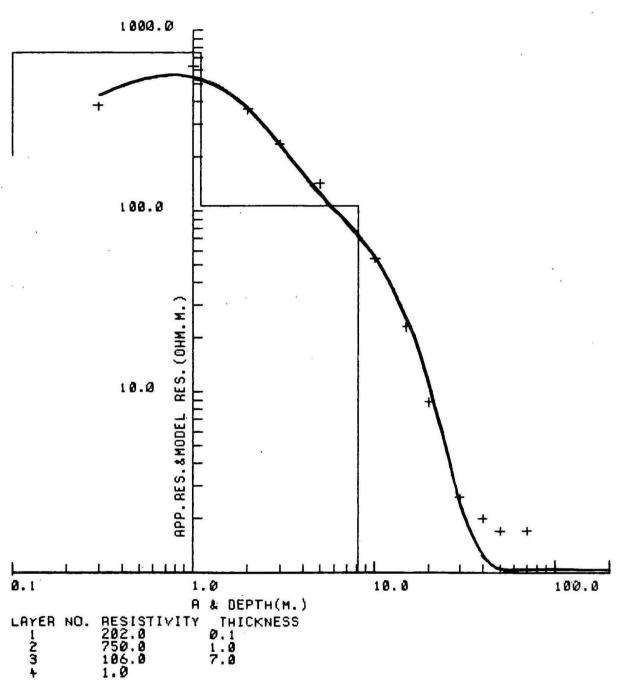


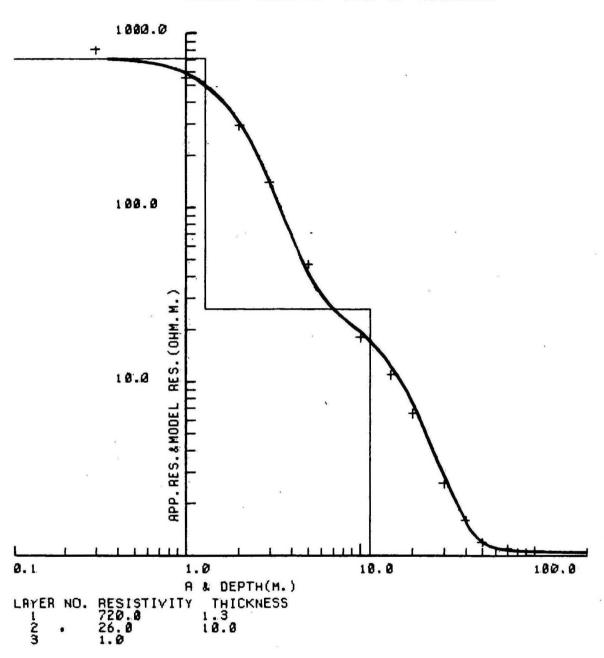

TARAMA PROBE 29 R 17 BONRIKI

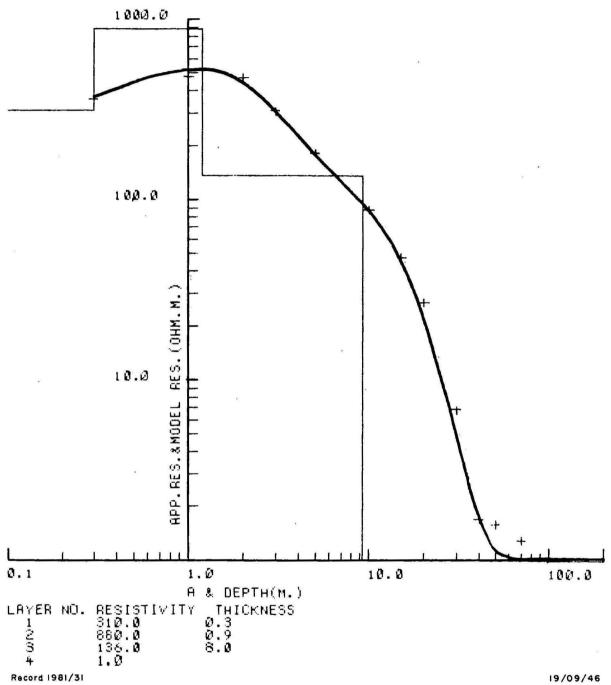


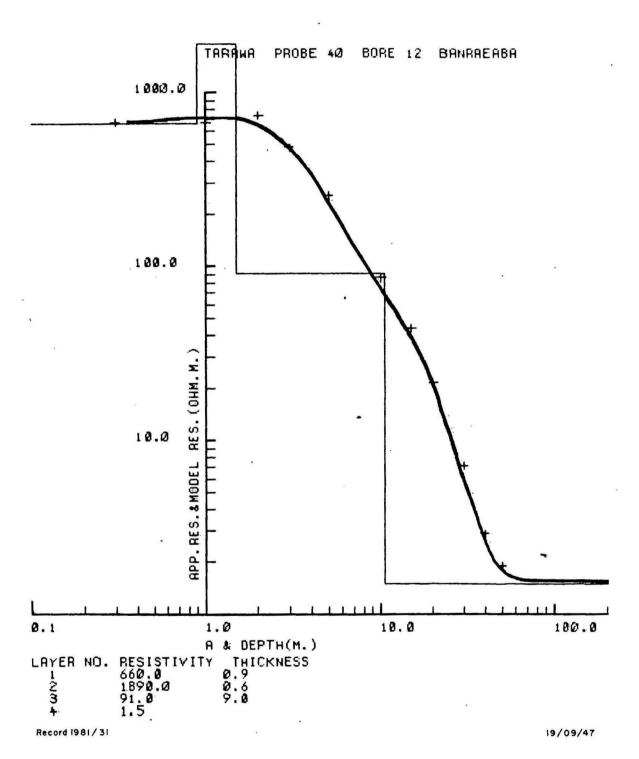


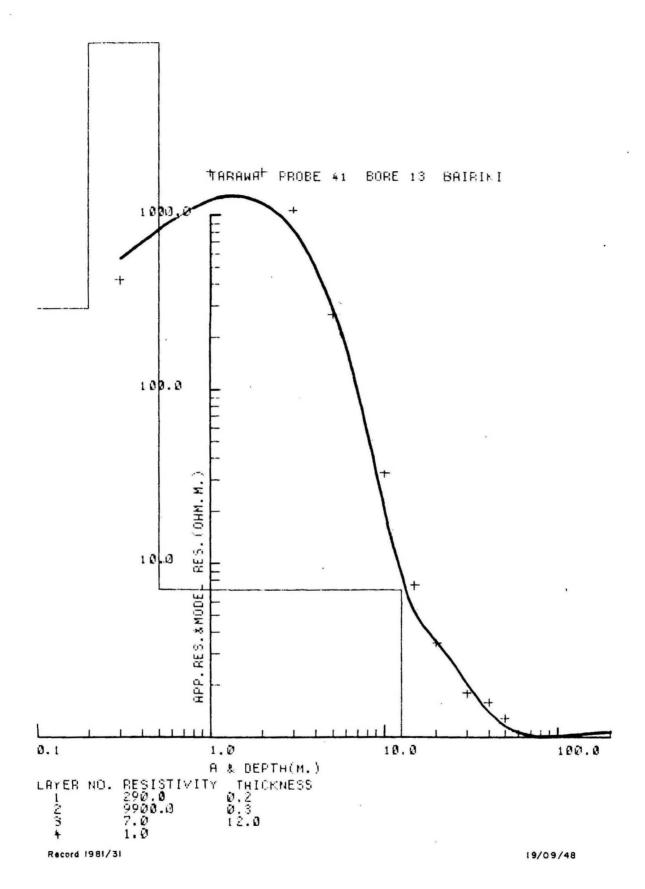




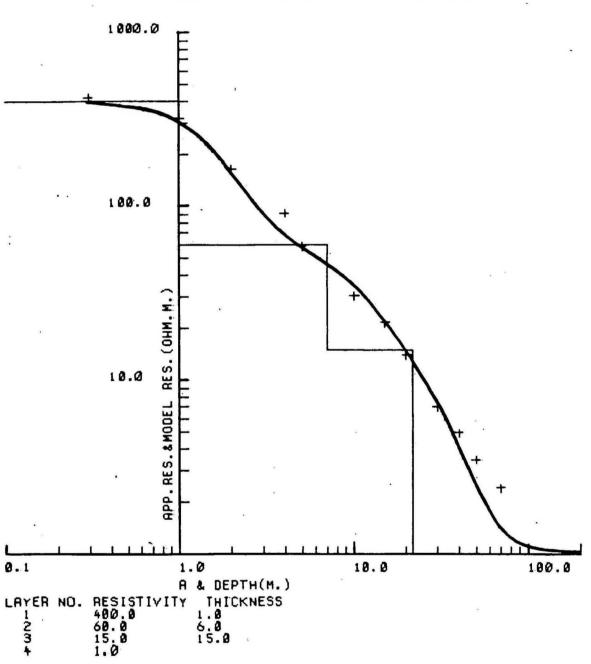


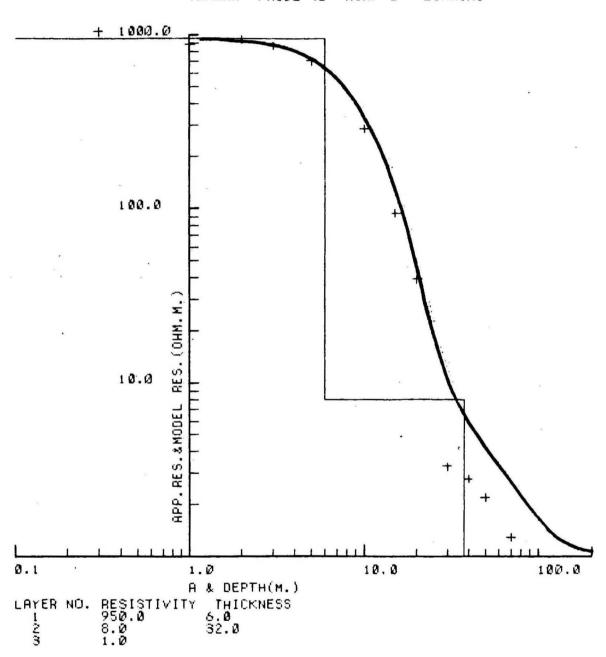


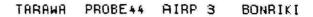

TARAMA PROBE 38 BORE 10 BIKENIBEU

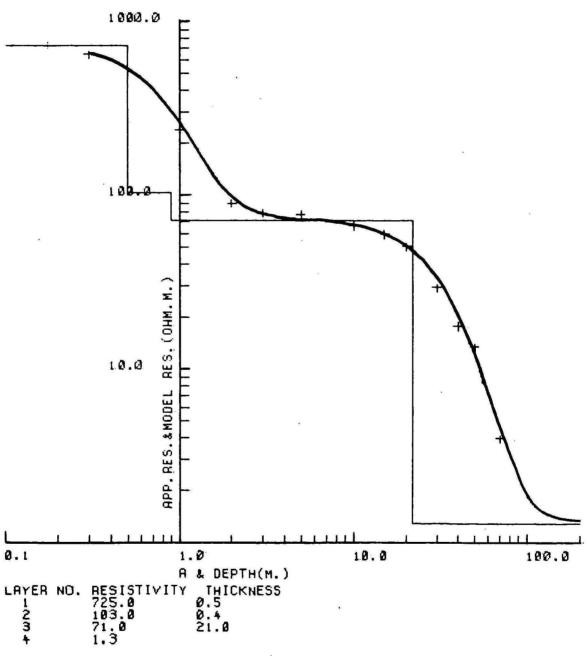


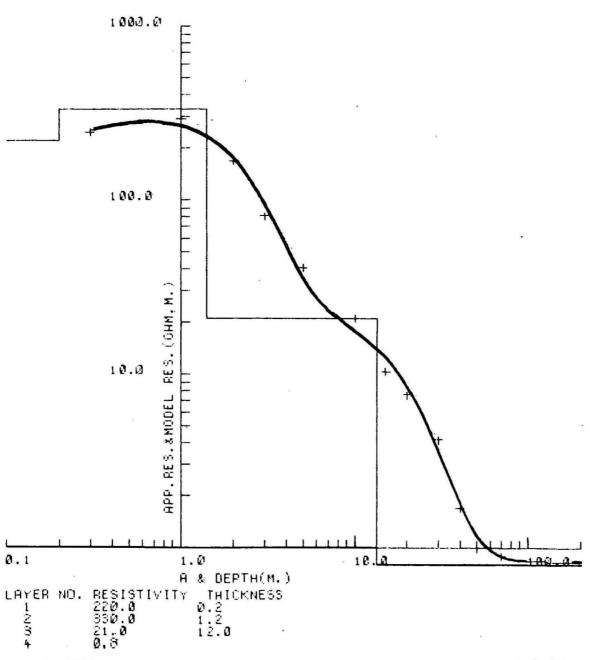
Record 1981/31

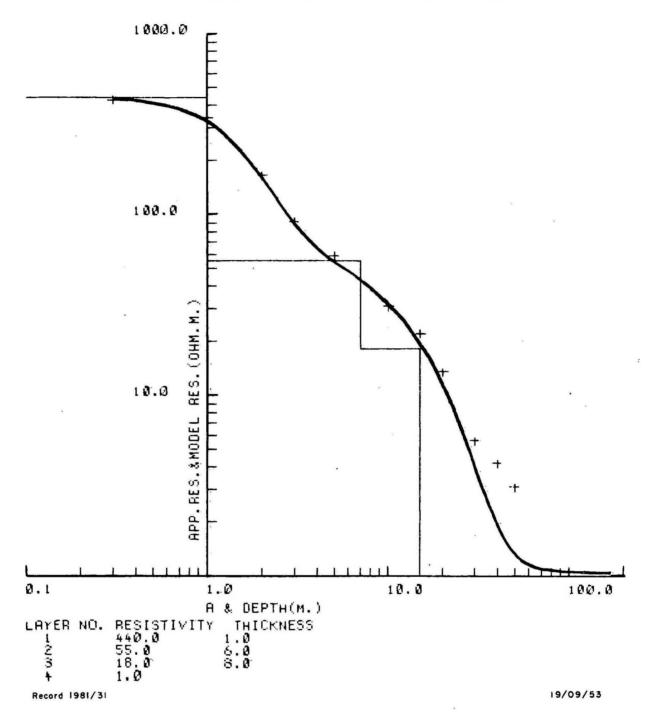

TARAWA PROBE 39 BORE 11 BANRAEABA

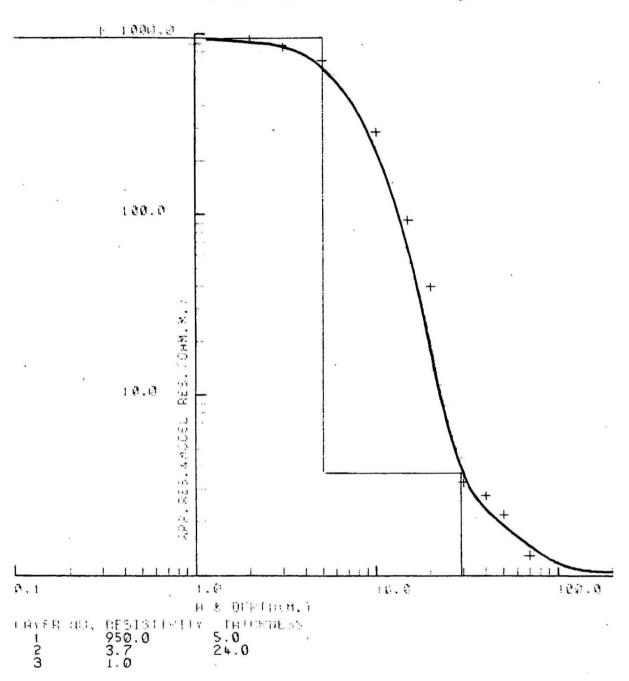







TARAWA PROBE 43 AIRP 2 BONRIKI




TARAWA PROBE 45 BORE 14 BETIO

TARAWA PROBE 46 AIRP 18 BONRIKI

TARAWA PROBE 47 AIRP 28 BONRIKI

