BMR PUBLICATIONS COMPACTUS.

[8 6]

104353

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD

Record 1983/11

MINERAL RESOURCES OF AUSTRALIA

1983

by

Mineral Branch

The information contained in this report has been obtained by the Bureau of Mineral Resources, Geology and Geophysics as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director.

Record 1983/11

MINERAL RESOURCES OF AUSTRALIA

1983

by

Mineral Branch

The minerals industry has made an important contribution to the Australian economy since the mid 1800s, and in the last 20 years it has expanded severalfold. It now plays a fundamental role in the Australian economy and has become an equal partner with the agricultural-pastoral industries as a mainstay of our economy and export trade. The annual value of mine production is now more than \$8.7 billion and Australia's favourable annual balance in mineral trade is about \$4.7 billion.

This paper first summarises the development of the Australian mineral industry, which is divided into four stages - early settlement and exploration from 1788 to 1851, establishment of the mineral industry from 1851 to about 1910, the lean years of exploration and development from 1910 to about 1950, and the large and varied developments leading from discoveries made in the last three decades. The broad spectrum of minerals mined in Australia is then described, under the general headings: energy minerals, iron and ferroalloys, base metals, other metals, and non-metallic minerals. Australia is now a leading world producer and exporter of many minerals, and in most cases this is based on extensive resources. Before World War II Australia had a long list of mineral deficiencies. As late as 1965 the value of mineral trade was barely in balance, but now the value of exports is three times as great as that of imports. Coal, iron ore, and the products of bauxite mining account for about 60% of the value of mineral exports; oil continues to be our most costly mineral import and accounts for about 85% of the value of mineral imports. At this stage, elemental sulphur seems to be our only true 'geological' mineral deficiency. Other major mineral imports (asbestos, mineral fertilisers, diamonds, and ferroalloys) reflect 'economic' rather than 'geological' deficiencies.

Government has assisted the development of the mineral industry by providing topographic, bathymetric, geological, and geophysical mapping; through bounties, subsidies, and taxation concessions; by export controls; and by stockpiling. However, notwithstanding Government assistance, a rich natural mineral endowment, and the enterprise of the private sector, all three of which have played their part in the industry's impressive performance, the result and achievements must not be taken for granted, and vigorous exploration and development programs must be maintained if the industry is to continue as the major industrial sector of the economy, and the major source of supply of minerals, processed and unprocessed, to world markets.

CONTENTS

	Yage
. *	
INTRODUCTION	1
DEVELOPMENT OF THE MINERAL INDUSTRY	3
Early settlement and exploration, 1788-1851	. 4
Establishment of the industry, 1851-1910	4
The lean years of exploration and discovery, 1910-1	950 5
The industry in modern times	. 7
ENERGY MINERALS	9
Petroleum	9
Uranium	12
Black coal	13
Brown coal	16
Oil shale	16
IRON AND FERROALLOYS	18
Iron and steel	18
Manganese	21
Nickel	22
Tungsten	24
Molybdenum	25
Chromium	25
Vanadium	26
BASE METALS	27
Copper	27
Lead	39
Zinc	31
Tin	32
OTHER METALS	34
Aluminium	34
Titanium	36
Zirconium	37
Thorium and cerium	38
Antimony	39
Beryllium	39
Lithium	40
Tantalum-columbium	40
Selenium and tellurium	41
Bismuth	41

	Page
Magnesium and calcium	42
Mercury	42
Silver	43
Indium	43
Cobalt	43
Cadmium	44
Gold	
	44
Platinum-group metals	45
NON-METALS	46
Abrasives	46
Arsenic	47
Asbestos	47
Barite	48
Clays (bentonite, fuller's earth, kaolin, and other clays)	49
Diatomite	50
Felspar	51
Fluorite	51
Graphite	52
Limestone, dolomite and magnesite	52
Mica	53
Quartz crystal and silica	53
Sillimanite and kyanite	54
Talc and pyrophyllite.	54
Vermiculite	55
Salt & other sodium compounds	55
Gypsum	57
Pigments and ochres	57
Sulphur-bearing materials	57
Fertiliser minerals	59
Phosphate rock	59
Potash	60
Nitrates	61

	Page
THE ROLE OF GOVERNMENT IN ASSISTING MINERAL EXPLORATION	
AND DEVELOPMENT	62
SUMMARY OF MINERAL RESOURCES AND MINERAL PROCESSING	65
TABLES	
,	
1. VALUE OF EXPORTS BY INDUSTRIAL GROUPS	66
2. MINERALS IN AUSTRALIA, 1981: ORIGIN, SUPPLY, PROCESSING, ETC.	67
FIGURE	

AUSTRALIAN BALANCE OF TRADE IN MINERAL PRODUCTS, 1981 (\$ million).

INTRODUCTION

This paper attempts to give a broad picture of Australia's mineral industry, and of the varied and widespread resources on which it is founded. It includes a quick glance at the history of the industry and the domestic requirement for the principal minerals and ores, some notes on the chief deposits and centres of production, reference to some of the industrial activities dependent on minerals, remarks about recent important events in mineral exploration, and an attempt to foresee what lies ahead. We should like to acknowledge the assistance of officers of the Petroleum Technology Section, the Uranium Resources Evaluation Unit, the Division of Continental Geology, and particularly Mr A.G.L. Paine of the Publications and Information Section for his editorial assistance.

The topic of mineral resources is a large one. Australia's known mineral wealth has increased with every decade since the first major discoveries more than a century ago. Our growth as a nation has owed much in the past to the flow of population and capital which followed the early mineral discoveries. This flow reached a peak towards the end of the last century, then slackened for almost fifty years; it began again in the last three decades in the wake of exciting discoveries from which great new sources of wealth have emerged.

This new era in mineral development in Australia, with its rash of discoveries and subsequent exploitation, stemmed from many related factors - new exploration tools and concepts, the introduction to Australia of foreign capital and expertise, the rise of Japanese markets, and the advent of bulk carriers, to name a few - and has resulted, in recent years, in the mining industry rivalling the rural industry as a mainstay of our economy and export trade. Statistics available do not indicate the real contribution of the mineral industry to G.D.P. but the value of exports of industrial groups within Australia, given in Table 1, shows the rising impact of the mineral industry on overseas funds as the largest single export earner in recent years. The contribution of mines and quarries in 1981-82, given as 23.7% of all exports, is in fact higher, because the industrial classification used in Table 1 allocates some exports by the smelting and refining sections of the industry to 'manufactures'. For example, if the value of alumina is added to mineral exports the contribution rises to 29.2%.

However, the mineral industry cannot be seen in perspective without identifying problems as well as achievements. If the current level of selfsufficiency in crude oil is to be maintained, additional reserves must be delineated; this will require large amounts of capital for exploration and development; restricted domestic markets for processed products, amongst other factors, continue to place restraints on mineral processing; inflation and increase in domestic costs, relative to those overseas, have eroded our competitiveness and discouraged many new developments; and the prosperity of the industry, inevitably based on exports although benefiting from long-term contracts, remains heavily dependent on the Japanese economy, which currently provides markets for 46% by value of our mineral exports. Indeed the temporary slowing down of the Australian mineral industry from 1975 to 1978, as a result of lower world metal prices and of checks to the economy of both USA and Japan in particular, as well as the current world economic recession, serve as a salutary reminder of our vital concern with world economies and of our need to diversify our mineral trade as much as possible.

Reactions from Australian and foreign stock exchanges, the inevitable failure of some ill-equipped small mining companies, and other regrettable but spectacular events following the boom years of the late 1960s and early 1970s tended to exaggerate the situation and to obscure the fact that in terms of development and production the industry has continued to progress. The value of ex-mine production and of exports continued to rise. The level of exploration expenditure, in real terms, has increased every year from 1976 to 1981; this trend was reversed in 1982 for non-petroleum exploration expenditure which declined in both money and real terms. A high rate of exploration is important if Australia is to be provided with the additional ore deposits required for continued development of the mineral industry in the 1980s, and is to be able to make proper assessments of its resources.

Another factor affecting the industry is the growing concern about environmental matters accompanied by delays and additional costs in some mining developments, and likely permanent loss of identified resources particularly those of mineral sands along the east coast. Moreover, new emphasis on aboriginal land rights has been claimed to be slowing down mineral exploration and development in some areas.

On pages 67-69 reference is made to some of the policies followed in recent years with the intention of encouraging development or of conserving national resources. Attached also (Table 2) is a summary of ore reserves and of mineral processing in Australia as an indication of both resources and processing facilities. Overseas trade in minerals and mineral sufficiency are illustrated in a diagram at the end of this paper showing values of imports and exports of minerals in 1981.

The minerals discussed are grouped under the following headings -

- (a) Energy minerals: petroleum, uranium, coal, and oil shale
- (b) Iron, manganese, nickel, chromium, and other metals commonly used in the manufacture of steel
- (c) Base metals: copper, lead, zinc, tin-
- (d) Other metals
- (e) Non-metallic minerals

Mineral statistics given are those for 1981, the latest calendar year for which complete figures are available.

DEVELOPMENT OF THE MINERAL INDUSTRY

The Australian mineral industry started with the first quarrying and shaping of Hawkesbury Sandstone for early buildings at Sydney Cove and when the first settlers dug clay for brickmaking. Its development can be conveniently divided into four stages - early settlement and exploration, from 1788 to 1851; establishment of the industry, from 1851 to about 1910; the lean years, from 1910 to about 1950; and the large and varied developments leading from discoveries made in the last three decades.

It is significant that these are not only local stages; they can be broadly identified in other countries with a sufficiently long history of the mineral industry, like USA and Canada. Indeed, episodic discovery and development within mineral industries relate to a number of basic controls including the level of technology in exploration, mining and treatment and such matters as government policies and the emergence of markets.

Early settlement and exploration, 1788-1851

The first recognition of mineral wealth followed soon after settlement and inevitably concerned coal, as the settlement of Sydney lay toward the centre of a coal basin that contained coal at depth and cropping out along the coast to both north and south. Coal was first discovered in the Newcastle area by escaped convicts in 1791; discovery of coal on the south coast followed a few years later and mining started near Newcastle in 1799. Coal provided the first mineral export from Australia, in 1800.

However, this first stage of development lacked emphasis on mineral resources, apart from coal, for a number of reasons. At that time, Britain was not seeking mineral supplies overseas and did not encourage the young colony to explore for minerals. Moreover, the colony, first established as a penal settlement, was preoccupied in early years in learning how to feed itself, with little interest in mineral deposits; partly for this reason scientific contributions resulting from geographical exploration during this period were largely in the field of botany rather than geology. And, following British law, deposits of gold and silver were regarded as belonging to the Sovereign and thus prospecting for these metals was unattractive in early years.

However, traces of gold were reported from 1823 onwards and the occurrence of other metallic minerals was recorded from time to time in the early decades of the 19th century.

The first metal mines did not open until the 1840s. Silver-lead ores were mined in 1841 near Adelaide, and copper ore at Kapunda in the same general area in 1842. In the same decade the first pig iron was produced from a small deposit of iron ore at Mittagong near Sydney, although the enterprise found great difficulty in competing with imported material and eventually ceased operation in 1877.

Establishment of the industry, 1851-1910

It was the discovery of payable alluvial gold near Bathurst, NSW, in 1851 that gave impetus to the mineral industry in Australia and, as search and discovery quickly spread to other parts of eastern Australia, the migrants which the gold attracted, the new communities and new access which resulted, and new emphasis on the mineral potential of the young country all profoundly influenced the development of Australia from the 1850s onwards.

It was not long before new interest and expertise in prospecting, arising from the succession of gold discoveries, led to the finding and exploitation of other metals. The start of tin mining in 1872 almost simultaneously at Inverell (NSW), Stanthorpe (Qld), and Mount Bischoff (Tas.) heralded very considerable tin production in eastern Australia, which became the major world source of tin for nearly a decade in the late 1870s and early 1880s. Copper mining was rejuvenated by discoveries at Cobar, NSW, in the early 1870s and the finding of Mount Morgan, Qld in 1882 and of Mount Lyell, Tas., in 1885; although Mount Morgan and Mount Lyell were first mined for gold, by the close of the century they had been shown to contain large reserves of copper ore too. The mineral industry was further diversified with the discovery of the rich lead-zinc-silver lodes at Broken Hill, NSW, in 1883, which, to the credit of the pioneers of that field, were developed to the stage of local smelting by 1885 and as feed to larger smelters at Port Pirie by 1889.

Up to this time successful mining had been restricted to eastern and southern Australia, despite attempts to discover payable gold in the Kimberley and Pilbara divisions of Western Australia and in areas east of Perth. However, discovery of payable alluvial gold near Coolgardie in 1893 and subsequently of the gold lodes of Kalgoorlie extended profitable mining to the western portion of the continent at a time when the economy in the east badly needed new outlets.

The lean years of exploration and discovery, 1910-1950

The mining industry continued to prosper in the early years of the twentieth century, but fortunes began to change and a general decline in both production and ore reserves of copper, gold, and tin continued at least until the 1950s, although gold production temporarily revived in the 1930s. During these lean years, significant new mineral discoveries were restricted to lead-zinc-silver and copper at Mount Isa, Qld in 1923 and 1930 respectively and scheelite (an ore of tungsten) on King Island, Tas. in 1925. Only lead, zinc, and silver production and exports, based on Broken Hill and Mount Isa, showed a general increase in this period; they continued as a solid base for the mineral industry for most of the first half of this century, in which problems of falling domestic production and lack of new major discoveries became more obvious and challenging as time elapsed.

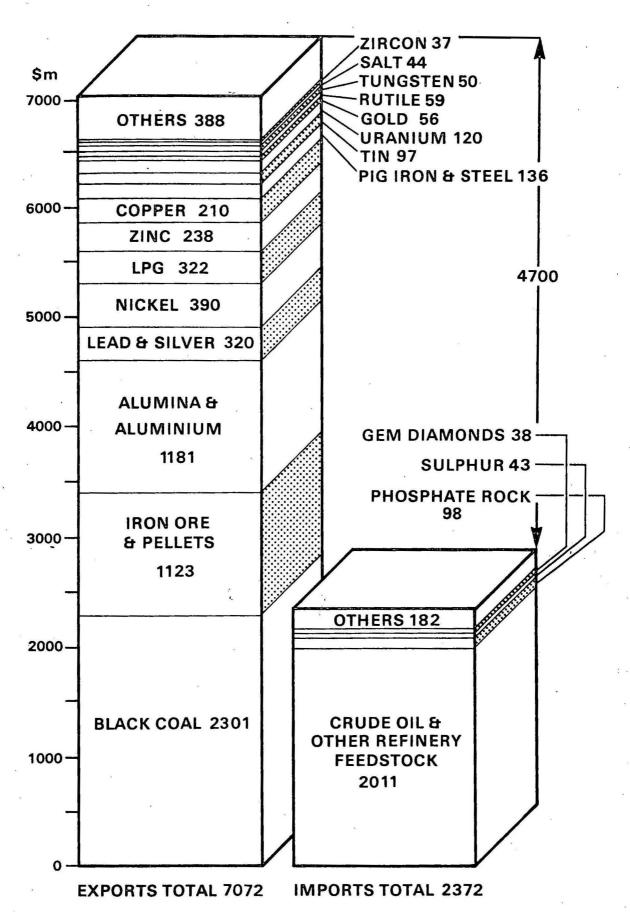
However, mineral processing in Australia continued and expanded during this period; production of lead bullion and copper continued, and output of refined pig lead substantially increased in the second decade and was joined by refined tin and by significant increases in output of refined zinc after 1917. Mineral discoveries made in the 19th century offered challenges to the mineral industry in terms of mining and treatment problems, from mining methods and underground water removal to more efficient smelting, mineral separation, and recovery. Some of these challenges were answered by technological improvements and innovation during the lean years for exploration, and perhaps the most outstanding examples were the development of differential flotation for the separation of lead and zinc sulphides from Broken Hill ores and, later, the electrolytic refining of zinc sulphides to pure metal, in the early part of the 20th century. Basically the same flotation process has been used in the treatment of sulphide ores around the world ever since.

The early years of the twentieth century were noteworthy for the establishment of the Australian steel industry, which made its way stubbornly against competing imports. Pig iron production, beginning at Lithgow, NSW, in 1875 and based on local coal supplies, provided the basis for the first production of steel by open hearth in 1900, but although some production of steel continued at Lithgow until 1932, distance from iron ore supplies and from ports prevented Lithgow from becoming the centre for expanded steel production. Detailed planning eventually led to the establishment by The Broken Hill Pty Co. Ltd of steelworks on the coast at Newcastle, NSW, in 1915 and, although faced with problems in both the 1920s and the 1930s, steelmaking was firmly established and began to expand. Another enterprise, G. & C. Hoskins, eventually transferred steelmaking from Lithgow to the coast near Wollongong in 1928, but subsequent trouble in the depression in the early 1930s led to this project being taken over by The Broken Hill Pty Co. Ltd in 1932. In 1919 the Victorian Government passed legislation to establish the brown coal industry in the Latrobe Valley, based on large deposits discovered 30 years earlier.

In the late 1930s the mineral industry, although well established, played a minor role in the Australian economy. It had been particularly successful in opening up the country, had provided coal as fuel in all States, had bolstered the economy about the turn of the century, and continued to provide steel, lead, zinc, copper, and tin for Australian secondary industry.

The need for new ore reserves of many minerals was the major concern of the industry in the late 1930s and early 1940s, and the embargo placed on the export of iron ore in 1938, when reserves of high-grade ore were believed to be no more than 260 Mt tonnes, was a reaction of the Commonwealth Government to this concern.

The industry in modern times


It is therefore all the more remarkable that within the next decade, starting with the discovery of uranium at Rum Jungle in 1949, there began a series of ore discoveries that is still continuing and that has far exceeded any previous mining boom in Australian history.

There were many reasons for this spectacular upsurge in exploration and development, but most are concerned either with incentives for exploration and development, including higher metal prices, or with the tools by which they can be accomplished. The combination of mineral potential in Australia (particularly in the extensive areas of Precambrian rocks which have provided the bulk of the world's metals), political stability, and Government assistance for exploration and mining attracted both domestic and foreign companies to Australian fields. The general policy of Government of providing basic scientific information and an encouraging climate for mineral exploration, but leaving private enterprise comparatively free to search, discover, and develop, paid off handsomely.

It is interesting to note how technological progress has changed the pattern of mineral discovery in Australia since the 1930s. Before the Second World War the discovery of most mineral deposits owed little to science but much to the keen eye, the luck, or the curiosity of prospectors, boundary riders, and other amateurs. Since the war, although prospectors and others still make discoveries, the emphasis has shifted to the scientific exploration team.

The mineral industry has resumed its old role of opening up the country with railway lines, roads, ports, and towns, has added oil and natural gas to Australian fuel supplies, and has provided processed aluminium and nickel for Australian industry. The long list of significant mineral insufficiencies of the late 1930s has, in geological terms, been spectacularly reduced to sulphur; economic considerations have either limited or deferred development of known resources of minerals such as asbestos, chromite, phosphate rock and potash. Production of diamonds, hitherto on the mineral deficiency list, is to begin shortly in the Kimberleys.

But perhaps the most notable changes brought about by the upsurge of the mineral industry concern overseas funds and the Australian economy as a whole. The value of exports of mineral primary products has risen from \$69 million in 1950 to \$7072 million in 1981, to provide currently about 37% of Australia's overseas earnings and to rival the combined agricultural and pastoral industries as Australia's largest export earner. The mineral industry

AUSTRALIAN BALANCE OF TRADE, MINERAL PRODUCTS, 1981

produced in 1965 what was probably the first favourable balance of overseas mineral trade this century; this favourable balance has grown from \$5 million in 1965 to \$4700 million in 1981 and will undoubtedly continue to increase in the decade ahead.

The rise of the mineral industry was timely, happening when wool and most other rural industries were in difficulties, and doubtless saved Australia from currency devaluation and import restrictions in the late 1960s. Reserves of iron ore, coal, and bauxite, which now account for about 60% of Australian mineral exports, are very large and, combined with long term contracts and rising demand for minerals throughout the world, promise continued major production and export. Added to this, major exports of uranium have begun and export of natural gas is in prospect within the next few years.

However, the upsurge of the mineral industry since the Second World War brought problems as well as achievements. The cost of exploration and development far exceeded the funds available in a country with a small population. Moreover, since ore reserves are wasting assets, a continued flow of risk capital is required in the future to replace depleted reserves, particularly of crude oil if Australia's present 70% self-sufficiency in oil is to last.

Australia has until recently been shielded to a large extent from the world crude oil crisis by the level and prices of domestic supplies. But likely depletion rates have already emphasised the fact that, considering the lead time involved in discovery and development of petroleum resources, the cost of crude oil imports must rise significantly, and indeed the Government has set the price of oil discovered from 14 September 1975 at world parity. In 1977 it enacted measures to increase the return to the producer of oil discovered before 14 September 1975.

Inflation in Australia has increased the cost of exploration, development, and production, reduced profitability, increased cut-off grades, and discouraged new developments, particularly where world metal prices, such as those for copper, have not increased in real terms. The world economic recession has added to the industry's problems because of its dependence on exports.

The late 1960s brought growing awareness in Australia, as elsewhere, of environmental problems which inevitably questioned the disturbance of land-scape and levels of pollution which accompanied in varying degrees the operations of the mining and some other industries - the mining industry has so far taken the brunt of the attack; as a result the mining industry no longer operates with the degree of isolation from the rest of the community that was evident in previous years.

ENERGY MINERALS

Petroleum*

Australia's main mineral deficiency has long been that of indigenous petroleum, particularly crude oil, the lack of which has compelled it to import significant amounts of crude oil and refined products to meet increasing consumption. In 1981 the value of imports of refinery feedstock and refined products rose to \$2471 million (crude oil \$1550 million) from \$2317 million (crude oil \$1263 million) in 1980, mainly reflecting the increase in world prices; indigenous crude oil supplied about 66% of demand in 1981. Consumption of marketable petroleum products decreased by 0.2% in 1981. The average annual rate of increase in consumption of the same range of products for the five years ended 31 December 1981 was 0.2%.

Since the mid-1950s an Australia-wide search for oil has been going on. In 1965,156 exploratory wells were drilled in Australia, compared with only 14 in 1959; in succeeding years the number has ranged from a low of 19 in 1976 to a record 239 in 1982. Based on announcements of future programs, the estimated number of exploratory wells to be drilled in 1983 is 119. The decrease partly reflects the current economic recession and the difficulty experienced by many explorers to raise the required capital.

Part of the reason for the increased tempo of petroleum exploration in Australia in the 1960s undoubtedly resulted from the Commonwealth's policy of subsidising private companies' expenditure under a scheme first introduced in 1958, extended to June 1969, and further extended until its termination in June 1974. Under this scheme selected operations were at first reimbursed by 50 percent (later reduced to 30 percent) of the cost. The then Commonwealth Government did not renew this subsidy scheme after June 1974, but established a Petroleum & Minerals Authority with powers and responsibilities in fields of petroleum and minerals exploration and development. However, the High Court in July 1975 ruled that the Act establishing the Petroleum & Minerals Authority was invalid.

Incentive was, of course, increased by the commercially viable oil and gas discoveries made in the early 1960s and before the decline in drilling activity in the mid 1970s. These include the gas fields in the Roma area in

^{*}Prepared by Petroleum Branch, BMR

Queensland and the Kincora and Boxleigh-Silver Springs gas fields now supplying Brisbane with natural gas; the Gidgealpa-Moomba-Big Lake - Della and Namur gas fields (Cooper Basin) in South Australia, now supplying Adelaide and Sydney with natural gas; the Gippsland Shelf major gas/oilfields, Barracouta and Marlin, supplying gas to Melbourne; and the Dongara area fields in WA now supplying Perth. Other gas fields still to be developed are Mereenie-Palm Valley in the Northern Territory and fields on the Northwest Shelf off Western Australia where development plans are well advanced and major onshore site work has already started. Gas has also been discovered in the Tern well, 300 km west-southwest of Darwin. Several major discoveries of natural gas on the Northwest Shelf, including those at Gorgon and West Tryal Rocks, are being appraised and production plans assessed. In September 1975 the incentive to explore was further increased by the introduction of the Government's "new oil" pricing policy with the introduction of world parity price for "new oil" discovered after 14 September 1975. There have been further amendments to this policy since the original announcement.

Oil was discovered at Moonie and Alton, Qld in 1961, and these fields have been producing since 1964. The Barrow Island oilfield, WA began commercial production in December 1966. The most prolific oil discoveries were the Kingfish and Halibut fields in the Gippsland Basin in Bass Strait; significant discoveries were made in the Barracouta, Marlin, Mackerel, Tuna, Flounder and Cobia fields and more recently at Fortescue in the same basin. The installation of a production platform at West Kingfish was completed in August 1981 and at the end of the 1982 development drilling was in progress; the Cobia and Fortescue platforms had also been installed. Commercial production of gas began from Barracouta in late 1969 and was followed by oil from Halibut in 1970, Kingfish in 1971, and Mackerel in 1977. The Tuna oil field was brought into production in 1979. At the end of 1982 development drilling was still in progress on the Snapper platform and preparations for drilling were well advanced on the Cobia and Fortescue platforms.

At present, companies hold exploration permits over selected areas in most sedimentary basins. Interest has been maintained in offshore localities although several permits in the deeper waters of the Exmouth Plateau off Western Australia have been relinquished because no encouraging results were obtained. Drilling offshore is much more expensive than drilling on land, but the prospects are considered good. The first offshore rig, the Glomar III drill ship, was brought to Australia in 1964. With its first well, Barracouta No. 1, it discovered gas and what is now known as the Barracouta field, some 50 km from the Gippsland coast of Victoria.

More offshore drilling units arrived in Australia, and by mid-1969 six mobile units were operating in Australian coastal waters. Three of these units were drill ships, two were semi-submersible platforms, and one was a jack-up unit. Only two units, 'Ocean Digger' and 'Ocean Endeavour', both Australian-flag units, were in operation by the end of 1976. At the end of 1982 ten mobile offshore units were active in Australian waters and three platform rigs were also active - one each on the Snapper and West Kingfish platforms and one preparing to drill on the Cobia platform.

The year 1969 saw the completion of three major natural gas pipelines. The 170-km, (760 mm) pipeline from Longford to Dandenong first delivered gas to Melbourne and its environs in early 1969, and in the December quarter of 1980 was delivering gas at a rate of about 12.5 million m³/day.

Brisbane received its first delivery of natural gas from the Roma area in March 1969 through the 270 mm, 410-km pipeline. Production in the December quarter of 1980 from this area, together with that from the Kincora and Boxleigh-Silver Springs fields, being sustained at a rate of some 0.8 million m³/day.

In late 1969, Adelaide received natural gas through the 560 mm 778-km pipeline from the Gidgealpa-Moomba field. The natural gas line to Sydney from the Cooper Basin fields in South Australia was brought into service in December 1976. The average rate of gas production from the Cooper Basin fields (for Adelaide and Sydney) at the end of 1980 was 10.45 million m³/day. At the end of 1982 a liquids pipeline had also been built from the Cooper Basin fields to Stony Point on Spencers Gulf, from where LPG will be exported to Japan and other liquids despatched to Australian refineries; shipments are to start in 1983.

Natural gas was first delivered to the Perth area from the Dongara field in October 1971, and in the December quarter of 1980 the rate of delivery averaged 2.34 million m^3/day .

In 1981, indigenous oil production supplied about 66% of Australia's requirements. However, the crude oils discovered so far have been deficient in the heavier distillation fractions required by heavy industry as well as for road and paving construction; thus, import of crudes rich in these fractions must continue, at a rate of about 30% of total consumption, until an adequate source is found in Australia.

Should Australia fail to find more petroleum, then it would become necessary for it to rely on other and less convenient source materials for fuel, and other sources of energy such as uranium, coal, and oil shale. A petroleum substitute can be extracted from oil shale, and attention is now being directed

at such deposits, particularly in Queensland; Australia's very extensive resources of coal could also provide an alternative source if economic methods of conversion are developed. Research into coal conversion is now active in Australia and abroad, especially USA and West Germany.

The Commonwealth contributes to the exploration process in Australia by carrying out, through BMR, regional geophysical surveys and geological research related to Australia's sedimentary basins and the origin of petroleum.

Uranium

Australia is not a consumer of uranium, although small quantities of uranium-derived fuels are imported for use in research at the atomic reactor at Lucas Heights near Sydney. Some 15 years ago Australia completed a brief but important period as a producer of uranium ore and it is now on the threshhold of becoming a much more important producer. The national search for deposits began in 1944 and bore its first fruit in the discovery of Rum Jungle in 1949 and of Mary Kathleen in 1954. Some small deposits were also known in South Australia, as early as 1906, and others, which were to become useful but minor contributors to the output, were found in the South Alligator area, NT, in the early 1950s. Treatment plants for the production of uranium oxide were erected at Port Pirie, where for several years rather high-cost material was produced from ores mined at Radium Hill; at Rum Jungle, where the plant remained in operation treating stockpiled ores until 1971; at Moline, NT where, after fulfilling the last part of an overseas contract for uranium, the plant was modified to treat Pb-Zn-Ag ores from Mount Evelyn; and at Mary Kathleen which began operating in 1956 was placed on care-and-maintenance in 1963, resumed production in 1976, but was closed down again in the latter part of 1982.

All these early discoveries were made at a time when uranium was in strong demand for military purposes, and when world supplies were still so uncertain that prices had to be arbitrarily established by Government agreement. In the event the prices secured by Australia in several of its long-term contracts turned out to be very favourable, and long before the contracts were fulfilled alternative sources overseas were able to supply more cheaply. At the same time dwindling defence needs and the lack of any comparable requirement for peaceful purposes led to a situation in which no market existed for the Australian product once contracts were fulfilled.

In 1967 the Commonwealth Government relaxed its embargo on uranium exports thereby rekindling interest in the metal and stimulating new exploration, with notable success. Thus various deposits in the Westmoreland area of northwest Queensland were re-examined and discovered, and new

discoveries were also made near Lake Frome, SA and other localities in the State, and at Yelirrie WA. But most important of all were the discoveries of large deposits at Ranger, Nabarlek, Koongarra and Jabiluka, about 230 km east of Darwin, which confirm the existence of a major new uranium province in that part of the Territory. In South Australia the Olympic Dam copper uranium deposit on Roxby Downs was discovered by Western Mining Corporation in 1975. A significant intersection of uranium at the Acropilis prospect 25 km southwest of Olympic Dam has further enhanced the potential of the Stuart shelf region west of the main Adelaide Geosyncline. As at 31 December 1982, BMR assessed Australian resources of uranium - in the reasonably assured category, and extractable at costs up to \$US80/kg - to be 314 000 t U, about 20% of the world's uranium resources in that category. By June 1981, the Australian Atomic Energy Commission assessed Australian resources of uranium - in the reasonably assured category, and extractable at costs up to \$US80/kg - to be 294 000 t U, accounting for about 17% of the world's uranium resources in that category.

Some of the new discoveries mentioned are already contributing to Australia's mineral production. Queensland Mines Ltd mined its entire orebody at Nabarlek, Qld in 1979; the stockpiled ore is being treated on-site (capacity of the treatment plant is 1100 t/year $\rm U_3O_8$) and the operation is expected to last some 8 years. Energy Resources of Australia Ltd commenced production from the Ranger deposit in 1981; production capacity is 3300 t/year $\rm U_3O_8$.

Western Mining Corporation Ltd expects the proposed Yeelirrie project in WA to begin production in 1985 at an annual rate of 2500 t of U₃0₈, if results of its feasibility studies are satisfactory.

World demand for uranium increased sharply in 1975 and 1976, with spot prices increasing from \$US10.50/lb of U_30_8 in 1974 to about \$40/lb of U_30_8 at the end of 1976. The increased prices reflected a belief that there could be a shortage in the mid-1980s. Prices remained at \$US42.50 - 44.00/lb of U_30_8 . until June 1979, but then began to fall, and by the end of 1982 were \$US20.25/lb.

Australia is well endowed with uranium resources, which, in the 'reasonably-assured, plus estimated-additional' category account for about 17% of total western world resources. The western world's other resources are mainly in USA, South Africa, and Canada.

Black coal

The last two decades have seen a spectacular increase in the growth of the Australian black coal industry. The main catalyst for this growth has been the coking-coal export market but in recent years growing demand for thermal coal, as a result of the oil crisis, has also contributed to increased coal exports. As a result of increased world demand for Australian coal, new mines have been developed in both Queensland and New South Wales.

Australia's largest, and economically most important, deposits of black coal are concentrated in two main areas: the Bowen Basin in eastern Queensland and the Sydney Basin in New South Wales. More than 85% of Australia's demonstrated economic resources of black coal are in these two areas.

In 1981 Australia was the ninth-largest black coal producing nation, accounting for about 3% of world production of saleable coal; raw coal production increased to 110.9 Mt for a saleable coal output of 92.1 Mt.

The State producing the largest amount of coal is New South Wales, accounting for 55% of raw coal production. The main growth in the last decade, however, has been in Queensland which now produces 41% of the national output of raw coal. Rapid growth in Queensland has been based on the development of large-scale open-cut coking coal mines; 89% of Queensland's production now comes from open-cut mines. The bulk of production comes from the Bowen Basin in eastern Queensland; most of the coal produced is medium volatile coking coal for export. Approximately 0.3 Mt of coking coal from the Bowen Basin was also shipped to BHP's steelworks at Whyalla, SA, in 1981. Smaller quantities of non-coking coal are mined at or near Blair Athol, Callide, Ipswich, Toowoomba and Maryborough for use by electric power stations or local industry.

Coal mined in New South Wales is bituminous and nearly all is mined in the Sydney Basin. In 1981, underground mines accounted for 76% of raw coal production. About 60% is high-volatile soft-coking coal and steaming coal, most of which is mined in the Singleton-North West and Newcastle districts; smaller quantities are mined in the South Maitland area and in the Western district around Lithgow.

The soft-coking coal is used to produce coke for the Newcastle steel-works or is exported. At the present time most of the steaming coal is consumed locally for electric power generation and local industry, but in recent years the quantity of steaming coal being exported has increased.

Low-volatile and medium-volatile, or premium hard-coking coals, are mined in the South Coast and in the Burragorang Valley districts. About one-third of this coal is used at the Port Kembla steelworks, a small amount is shipped to the Newcastle steelworks, and the rest is exported. In 1981, 0.8 Mt of coking coal from the Port Kembla and Newcastle steelworks was shipped to Whyalla.

Minor quantities of non-coking coal are also mined at Gunnedah; the mine at Ashford in northern New South Wales has been temporarily closed but is expected to re-open when accumulated stocks have been reduced.

Comparatively small amounts of non-coking coal are mined in other States for use by electric power stations or local industry. Non-coking coal is obtained from the open-cut mine at Leigh Creek (SA) and from underground and open-cut mines at Collie (WA). Minor quantities of non-coking coal are mined for use by local industry at Fingal in Tasmania.

In 1981, consumption increased to 37.4 Mt mainly because of an increased consumption for electricity generation, and in the steel industry. Consumption in electricity generation accounted for 66% of total consumption, and in the iron and steel industry for 24%.

Australia is a major exporter of black coal. In 1981 it was the second largest exporter of black coal; the 50.7 Mt exported accounted for about 19% of world trade and was valued at about \$2300 million, making coal Australia's largest single export earner. Exports were made up of 10.5 Mt of thermal coal and 40.2 Mt of coking coal.

Exports to Japan rose to 34.3 Mt in 1981 consisting of 28.7 Mt of coking coal and 5.7 Mt of thermal coal. The remaining coal, comprising about 11.3 Mt of coking coal and approximately 4.9 Mt of thermal coal, was exported mainly to Europe and Southeast Asia.

The need in the coming years to conserve certain energy sources, especially oil and gas, because of depletion, will result in a swing away from these energy forms to coal, nuclear, and possibly solar power. Only a limited number of countries have the potential to substantially increase their coal exports to cater for the expected increase in requirements. For coking coal it would appear that Australia, USA, and Canada have the greatest potential, whilst for thermal coal it would appear that Australia, USA, South Africa, and possibly China have the greatest potential to cater for this rapidly expanding market. Because of the limited number of countries able to supply this additional coal it is expected that Australia's share of the export market will rise substantially and could easily double by the year 2000. Australia's known resources are sufficient to allow it to continue as a major exporting country for many decades to come.

Brown coal

Australia's major economic deposits of brown coal (more than 98% of demonstrated economic resources) occur in Victoria. Deposits are also known at many places along the southern margin of the continent and as far north as central Queensland. However, except for the brown coal deposits in Gippsland, and at Bacchus Marsh, Altona, and Anglesea in Victoria, the deposit at Kingston, and other deposits in South Australia and possibly the deposit near Esperance, WA, other known deposits are either too small, too deeply buried, contain too much sulphur, or are otherwise unattractive as sources of energy.

Because brown coal has a relatively low specific-energy value and high water content, its utilisation depends on large-scale, low-cost mining, and negligible transportation costs in its raw state.

Victoria is the only State which produces brown coal; the industry has reached a high degree of sophistication in mining, on-site development for power generation, briquetting, and char manufacture.

Production of raw brown coal in 1981 totalled 32.9 Mt; more than 95% was produced by the State Electricity Commission at Yallourn and Morwell and the rest by privately-owned mines at Anglesea and Bacchus Marsh.

Because brown coal deteriorates rapidly and may ignite spontaneously when stockpiled, producers and consumers do not accumulate large stocks; consumption is roughly equivalent to output.

Apart from the possible markets linked with solvent-refined coal, activated carbon and char production, the major markets available to brown coal are power generation and, potentially, liquefaction. Investigations are presently being undertaken by Victoria's Brown Coal Research & Development Committee to determine the liquefaction potential of various Victorian brown coal deposits.

Australia's known reserves of brown coal are very large and greatly expanded production of brown coal would be possible in Victoria, subject only to environmental, manpower, and capital limitations.

Oil shale

Triggered by the first major increase in the world crude oil price in 1973, interest was revived, in Australia and abroad, in oil shale as a potential source of liquid fuels. However, this has recently waned a little because of weakening oil prices, and rapidly increasing capital costs of processing plants. Discoveries in the last few years, especially in Queensland, have defined extensive resources.

Oil shale is a fine-grained sedimentary rock containing organic matter that yields substantial amounts of oil when heated in a closed retort. Spasmodic production took place from some Australian deposits in New South Wales (e.g. at Glen Davis and Joadja) from 1865 until 1952. The most intensified production was during a period of oil shortage and rationing during and after World War II; total production during this period amounted to about 230 000 m³ (1.4 million bbl) of shale oil.

Australia's inferred subeconomic resources of oil shale are estimated to be capable of yielding 230 000 million m³ (1.4 trillion bbl) of oil. This huge inferred resource is contained mainly in the thin Toolebuc Formation which is thought to underlie 423 000 km² of inland Australia, extending south from the Gulf of Carpentaria to southern Queensland and possibly northeast South Australia. Formidable technical and other problems would need to be overcome to enable this resource to be upgraded to 'economic' status.

However, certain oil-shale deposits in Queensland are much thicker, richer, and in geographically favourable locations, and could thus be regarded more realistically as resources. The Rundle deposit near Gladstone, with stated resources of 421 million m³ (2650 million bbl) of oil and the Condor deposit near Proserpine, with resources of 1300 million m³ (8220 million bbl) of oil, are the subject of comprehensive feasibility studies by Esso Exploration & Production Australia Ltd and the Japan Australia Oil Shale Corporation respectively which should be completed by the mid 1980s. Australia's demonstrated resources of oil obtainable from oil shale presently stand at 3954 million m³ (about 25 000 million bbl), but all of this is still classified as subeconomic; most of the demonstrated resources are in Queensland. Rundle, Julia Creek, Condor, Stuart, Yaamba, Nagoorin, and Duaringa are the most important resource localities.

There are two major options for development of oil shale deposits:

(1) mining, followed by surface processing of shale to extract the oil, and

(2) in-situ processing. So far, only the first has been used in commercial oilshale exploitation. However, some in-situ processing methods are now far more
advanced than in the past but their developers are awaiting more favourable
economic circumstances before committing their processes to commercial
application.

IRON AND FERROALLOYS

Australia has long been largely self-sufficient in the production of iron and steel, and exports have acted chiefly as a buffer between domestic production and demand. Some special steels and shapes and some 20% of ferroalloys are still imported.

Iron and steel

Production of iron ore for iron and steelmaking in 1981 decreased to 84.7 Mt, 8% less than output in 1980. The reduction in output reflected reduced demand from the steel industry as well as the effects of industrial disputes.

Output decreased substantially at Koolyanobbing (down 32% to 2.9 Mt), Mount Tom Price (down 27% to 18.0 Mt), Paraburdoo (down 25% to 11.2 Mt) and Pannawonica (down 19% to 12.2 Mt) but this was partly offset by increased production at Newman (up 22% to 33.6 Mt), Yampi Sound (up 32% to 2.9 Mt), and Savage River (up 5% to 2.2 Mt). Output decreased slightly at the Goldsworthy mines (Mount Goldsworthy Shay Gap, and Sunrise Hill) and at Iron Baron and Iron Knob.

Production of pig iron decreased by 2% in 1981. Output was adversely affected by industrial disputes, maintenance and repairs, and depressed export demand. Reduced demand for pig iron on export markets delayed recommissioning of the Kwinana blast furnace after its shutdown for repair and modification in April and eventually led to its closure in April 1982. In addition iron ore shortages caused by an industrial dispute in the shipping industry caused closure of 2 blast furnaces at Port Kembla towards the end of 1981. No. 1 blast furnace at Whyalla was taken out of service permanently in March following modification of No. 2 furnace in 1980 to increase its production capacity by 25%. Depressed markets and Australian currency appreciation forced Agnew Clough Ltd to close its charcoal iron production plant at Wundowie, WA, early in 1981.

Production of steel at 7.6 Mt in 1981 was only slightly higher than in 1980. Steel production was also adversely affected by industrial disputes as well as reduced iron availability. Increased production at Whyalla (up 1% to 955 000 t) and at Port Kembla (up 2% to 4 348 000 t) was slightly offset by reduced output at Newcastle (down 3% to 2 233 000 t).

Exports of crude steel, including ingots, blocks, lumps, blooms, billets, and slabs, increased by 24% to 378 000 t valued at \$68 million in 1981. Exports of crude steel plus rolled and shaped iron and steel products were

valued at \$547 million in 1981 and imports at \$513 million. Pig iron exports fell by 69% in 1981 to 158 000 t valued at \$18 million because there was no demand from China.

Iron and steelmaking absorbed 11.8 Mt of iron ore in 1981. The main sources were the Middleback Ranges, SA, and Newman and Koolyanobbing, WA.

Newman supplies more than 60% of domestic blast furnace requirements. In 1981,
46 912 t of 'iron ore' (mainly magnetite) was imported, mainly from Canada, for use as a heavy medium in the coal washing industry. In addition to the iron ore consumed in Australia, about 71.1 Mt of ore, including 2.5 Mt of pellets, was exported, 2% less than in 1980. The downturn reflected reduced demand from Japan, China and western Europe. Iron ore exports were principally from Western Australia; Tasmania continued to export iron ore pellets. The f.o.b. value of exports in 1981 was \$1123 million, 3% less than in 1980.

Even in the 1940s and 1950s reserves of iron ore in Australia were regarded as too low for safety in comparison with our long-term industrial needs, and few foresaw the possibility of major new discoveries. Because of this a complete embargo on the export of iron ore had been maintained for more than twenty years. Since the embargo was eased in 1960 new discoveries have confirmed that Australia has one of the most important iron provinces in the world, and a major export trade has been established.

To illustrate the spectacular change in Australia's reserves of iron ore it may be noted that in 1959 the official estimate of demonstrated reserves amounted to only 359 Mt. At that time exploratory drilling in several States had raised hopes that intensified search could reveal some worthwhile new deposits. Among the principal prospects at that time were: Savage River in western Tasmania, where airborne magnetic surveys by BMR had shown a belt of intense anomalies extending over a length of several kilometres; Constance Range in northwest Queensland, where preliminary testing beneath silica-rich ironstone outcrops had shown a marked improvement in quality at depth and some prospect of large tonnages of ore suitable for deep mining methods; and Mount Goldsworthy, near Port Hedland, WA, where drilling had shown a more substantial body than was indicated by outcrop and surface sampling.

Encouraged by these hopes the Commonwealth Government eased the export embargo in 1960, and soon afterwards a series of discoveries in the Pilbara district, east of Onslow, WA, focused attention on an area hardly touched by modern large-scale mineral prospecting. In little more than a year important deposits were reported from such localities as Deepdale, Robe Rive, Mount Tom Price, and Mount Newman, all lying in this neglected northwestern part of the

State. The discoveries included deposits of hematite (iron oxide, Fe₂0₃) and of limonite (a mixture of hydrated iron oxides); early development at Mount Tom Price, Mount Whaleback, Paraburdoo and Mount Goldsworthy, and Koolanooka east of Geraldton, was based on hematite deposits, but limonite deposits at Robe River and hematite-goethite (goethite is an hydrated iron oxide, FeO.OH) deposits near Mount Whaleback particularly are now also worked.

Deposits in Western Australia have since been vigorously tested and very large tonnages of high-grade ore have been demonstrated. Though the full extent is not yet known, BMR assesses economic resources in the Hamersley Iron Province alone at around 19 600 Mt within total economic resources for Australia of 21 600 Mt. In other words, since 1959, Australia's known resources have increased some 60-fold at least and any anxiety for the adequacy of domestic supplies has been removed.

However, not all the increase in reserves has come from the discovery of new deposits. Metallurgical research aimed at making possible the use of low-grade ores, of which there is an abundance in several States, has also contributed to the changed picture and may have a greater long-range effect than is presently realised. Major expansion projects by the Mount Newman Joint Venture and by Hamersley Iron Pty Ltd, designed to enable low-grade ore to be upgraded, were completed in mid-1979. Robe River also completed an expansion program during 1979 to substantially lift production and has extended mining to East Deepdale.

When the export policy was altered, the change was expected to lead to an increase in prospecting with reasonable chances of proving new reserves. The result exceeded the most optimistic expectations, and led to a situation in which the development of an export trade in ore, which plays an increasing part in the national balance of payments, became the paramount consideration. The first small-scale export began in March 1966 from Geraldton; and after extraordinarily vigorous construction schedules, large-scale exports began from new ports at Dampier and Port Hedland in the later part of that year.

On the industrial side, expanded iron and steel plants exist at Port Kembla, Newcastle, Whyalla, and Kwinana.

Investment in iron and steel plant is now running at more than \$350 million annually.

New major plant items commissioned since 1962 are a ferroalloy plant and expansions at Bell Bay, Tas.; an electrolytic tinning line, a high-speed pickle line, a second hot-roll processing line, a new blast furnace and a basic -oxygen steelmaking plant and continuous slabcaster at Port Kembla, NSW; a

basic-oxygen steelmaking plant and associated rolling mill facilities, as well as a continuous steel-casting plant, at Newcastle: At Whyalla a second blast furnace and an integrated steel plant opened in 1965, and an iron ore pelletising plant was commissioned in 1968. At Kwinana, the first stages of an iron and steel complex were constructed, and a cold rolling plant was completed at Unanderra. A \$144 million expansion of basic oxygen steelmaking facilities at Port Kembla is expected to be completed early in 1983.

Non-communist world consumption of steel in 1981, at 460.2 Mt, was 6% below peak consumption of 491 Mt in 1973. World production decreased to 710.7 Mt, 5% below record output in 1979.

Manganese (Mn)

Manganese is one of the key metals in the manufacture of steel, its chief use being as a de-oxidiser and de-sulphuriser in the plant process; adequate supplies of its ores (principally pyrolusite, MnO₂) are essential for the long-range security of the steel industry. Current usage requires about 15 kg of manganese dioxide for every tonne of steel produced. It is also a hardening constituent in many grades of steel; and high-quality manganese dioxide is used in the manufacture of dry-cell batteries. In 1981, 458 000 t of manganese ore was required by our industries.

Australia's self-sufficiency in this mineral for most purposes has only recently been proved; for many years known resources of manganese ore were small. Between 1916 and 1927, the steel industry depended upon deposits in New South Wales; as these were worked out, small deposits in South Australia took their place, from 1940 to 1944; subsequently Western Australia became the main source of supply. In the 1950s cheap supplies also became available from South Africa, and Australian production slumped, but has recovered again to meet the requirements of a developing export trade, mainly to Japan. As with iron ore, manganese was subject to a long-standing embargo on exports, but this was partly relaxed in 1956 to allow for shipments of a portion of any new discoveries made. This change was designed to encourage exploration, and resulted in a burst of prospecting activity in northwestern Western Australia, during which many new small deposits were discovered amounting, in all, to several million tonnes. In 1960 a discovery of much greater importance was made by BMR officers at Groote Eylandt, in the Gulf of Carpentaria, where BHP have now established an open-cut mine and treatment plant. Shipments of ore from Groote Eylandt have increased to supply most of Bell Bay's ferromanganese requirements, plus an export surplus. This deposit can supply all of

Australia's requirements for metallurgical-grade ore for a long period to come; however, Australia has no supplies of battery-grade ore and continues to import this at the rate of about 1900 t/year. In addition of electrolytic manganese dioxide (1542 t in 1980-81) is imported from Japan and USA for battery manufacture.

Australian production of manganese ore in 1981 was about 1.4 Mt. Exports totalled 0.9 Mt, mainly for Japanese and European markets. Imports other than battery-grade ores have shown a marked decline from 1965 and were 99 000 t in 1981. Australia's production of high-carbon ferromanganese now satisfies local demand, but imports of other grades including ferromanganese powder and manganese metal, powder and flakes, totalled 5600 t in 1981. Since the end of production in the Port Hedland district of Western Australia in 1973, Groote Eylandt is now the only large-scale producer of manganese ore.

Nickel (Ni)

Nickel is used mainly as an alloy in stainless steel (about 40%) and other alloy steel, nickel rich 'superalloys' used in high temperature applications such as gas turbine engines, cast-iron, nickel-copper and coppernickel alloys and with chromium or molybdenum and iron in corrosion resistant alloys. The main users of nickel, chiefly in the form of alloys, are manufacturers of chemicals and allied products and petroleum refiners. Nickel is used in electroplating and with some of its salts as catalysts. It is also used in batteries and fuel cells, in carbides and hard facing materials and in ceramics.

The main nickel mineral mined in Australia (and worldwide) is the ironnickel sulphide pentlandite ((Fe,Ni)_QS₈), although most of the world's known resources are contained as oxides and silicates in laterite, a tropical weathering product of certain rocks. Following the initial discovery, by Western Mining Corporation Ltd, of sulphide nickel ore at Kambalda in 1966, other companies made important finds and by the end of 1974 fourteen nickel mines were in production. Fluctuating nickel prices and depletion of reserves have since caused some mine closures but several new mines have started up, and one large mine has been reopened. WMC remains the largest producer of nickel ore from its group of nine mines at Kambalda, where measured and indicated reserves at June 1982 were estimated to be 25 Mt of ore averaging 3.3% Ni. In addition, a deposit at Carnilya Hill (56% WMC and 44% BHP), which commenced production in 1980, contains almost 0.7 Mt of nickel ore averaging 4.0% Ni. In 1981 WMC produced a total of 36 212 t of nickel in concentrates (nickel contained in ore produced at the Nepean mine, owned by Metals Exploration Limited, is included in the WMC figure).

The Greenvale lateritic mine (Metals Exploration Queensland Pty Ltd/Freeport Queensland Nickel Inc.) in northern Queensland produced 2.0 Mt of ore from which 21 519 t of nickel was recovered in sintered nickel oxide and nickel-cobalt sulphide. Measured ore reserves at this mine are 21.8 Mt averaging 1.35% Ni.

Production of concentrates by the Windarra Nickel joint venture (50% WMC - 50% Shell Co. of Australia Ltd) at Mount Windarra resumed mid-1981. Plant for the production of concentrates was recommissioned in conjunction with modified facilities to treat gold ore from the nearby Lancefield mine, and production of nickel in concentrates is being increased to a rate of 8000 t/year; production in 1981 (second half) was 2983 t nickel in concentrates. Demonstrated reserves at Mount Windarra and South Windarra together totalled 9.2 Mt of ore averaging 1.4% Ni.

One relatively new mine, Agnew, operated by Agnew Mining Co. Pty Ltd (60 percent Seltrust Mining Corp Pty Ltd, 40 percent MIM Holdings) started producing nickel concentrates in mid-1978. Original studies called for the production of 30 000 t/year of nickel. However, because of a recession in the nickel industry, initial production began at the rate of 10 000 t/year of nickel in concentrate. A program announced in 1979 to increase production to 15 000 t/year by 1984 is behind schedule because difficulties have been encountered in mining the required ore grades. Output of nickel in concentrates totalled 8349 t in 1981. Demonstrated ore reserves at the mine are 35.8 Mt averaging 1.92% Ni.

In addition to the projects already mentioned, whose output is more than sufficient for Australian requirements, there are several large but low-grade deposits which at the present time are not economically viable. A large lateritic deposit occurs at Wingellina in Western Australia near the northern end of the South Australian border. Large low grade sulphide deposits occur north of Agnew at Mount Keith, Yakabindie and Honeymoon Well, and at Sherlock Bay southeast of Port Hedland. Several higher-grade but smaller deposits also occur at Widgiemooltha, Forrestonia, Wollubar and Mount Keith.

Production of nickel concentrates began in June 1967 at Kambalda and output for that year was 2060 t of contained nickel. In 1981 Australian mine production of nickel was 74 355 t. Australia is now the third-largest producer of nickel in the non-Communist world. In 1981 virtually all of the nickel mined was processed in Australia to either metallic nickel, high-grade nickel matte, or sintered nickel oxide. The nickel refinery at Kwinana near Fremantle started production in 1970 with an output of 15 000 t/year of nickel metal. Output in 1981 was 23 235 t but the plant has the capacity to produce 30 000 t/year. WMC

commissioned a nickel smelter at Hampton near Kalgoorlie in 1972 with a capacity of about 200 000 t/year of concentrate, but this has since been increased to more than 450 000 t/ year with potential for substantial further expansion.

Tungsten (W):

Tungsten is used in certain ferroalloys to produce high-speed tungsten steels, and metallic tungsten filaments which are used in electric light bulbs. Tungsten carbide approaches diamond in hardness and is used as cutting tips or inserts in cutting tools and in other applications where resistance to extremely abrasive conditions is necessary. Since tungsten became commercially important in about 1900, Australia has been an important producer of its ores - wolframite ((Fe,Mn)WO₄) and scheelite (CaWO₄) - but the scale of production has varied with widely fluctuating overseas prices. The greater part of production has always been exported. Domestic consumption is small and there should be little difficulty in meeting Australian requirements for ore from known resources; Australia does not presently produce metal or alloys.

The principal deposits are in Tasmania and Queensland. Wolframite comes mainly from Mount Carbine in northern Queensland where Queensland Wolfram Pty Ltd also produces minor amounts of scheelite. A major deposit of scheelite has been mined for many years on King Island, Bass Strait, where known reserves have increased to 7.63 Mt, averaging 1.0% tungstic oxide (WO₃).

Natural scheelite concentrate is produced at King Island by both gravity and flotation methods and contains about 2% Mo in powellite, which is physically inseparable from the scheelite. Its presence in the coarse gravity concentrate is not regarded as a disadvantage because of the uses of this particular product. However, its presence in the fine flotation concentrate imposes limitations on the marketing of this material, and attracts a price penalty. To overcome this problem, the company has constructed an artificial scheelite plant which chemically treats the fine concentrate, producing a high-grade calcium tungstate or "artificial scheelite" and molybdenum trisulphide. Australian production in 1981 of tungsten-bearing raw materials (expressed in t of W content) was 413 t.

Australian consumption of WO_3 has never exceeded 100 t/year; its main use is in the manufacture of tungsten-carbide-tipped tools.

Molybdenum (Mo)

Molybdenum is being used increasingly in high-strength low-alloy (HSLA) steels for oil and gas pipelines, because of the superior resistance of such steels to corrosion. Some steels in which molybdenum is alloyed with chromium and nickel are being used increasingly where extreme hardness is required. Molybdenum is also used in lubricants, pigments, corrosion inhibitors, flame retardants, and as a catalyst. Before 1920 substantial quantities of molybdenite were produced in Australia, but for many years production has been small. In 1981 domestic production of molybdenum concentrates was about 60 t. Imports of molybdenum ore and concentrates decreased in 1981 to 155 t and imports of ferromolybdenum decreased to 171 t; imports of molybdenum oxide and hydroxide decreased from 31 t in 1974 to less than 1 t in 1975; figures for later years are not available.

Most of the molybdenite deposits in Australia occur in pipes, for which development to any appreciable depth is costly. One exception is at Yetholme, NSW where a disseminated contact deposit aggregating some 800 t of molybdenite lies at shallow depth beneath comparatively thin overburden. A discovery of extensive disseminated low-grade molybdenite at Mount Pleasant, 30 km southeast of Mudgee, was announced by CSR Ltd in September 1979. Considerably more drilling is needed before any decisions can be made about development. During World War II the Commonwealth sponsored exploration for new deposits, but results were generally not encouraging. Production from Wolfram Camp, Qld, resumed in 1979, and a deposit at Mount Mulgine, WA, is under investigation. Recovery of molybdenum as a by-product from treatment of scheelite at King Island began in 1978 and could supply part of Australian demand.

In times of emergency Australia could look to USA or Chile to supplement local supply.

Chromium (Cr)

Chromite ((Fe,Mg)(Cr,Al,Fe)₂0₄), the ore which yields the metal chromium, has two uses in the steel industry; as an ingredient in the production of alloy steel (especially stainless steel), and as a chemically inert furnace lining. Its other main use is in the manufacture of chemicals. Australian annual consumption of chromite, most of which is imported, has averaged about 12 400 t in recent years. In 1981, 7997 t of chromite was imported, mainly from the Philippines and South Africa. Imports of ferrochrome, mainly from South Africa, decreased to 7189 t in 1981. Production of chromite at Barnes Hill, Tasmania ceased in 1980 when reserves were depleted.

The largest known Australian deposit of chromite of economic interest is at Coobina, in the Ophthalmia Range, WA. The only recorded production from this location was between 1952 and 1957 when 14 500 t of ore was produced. The chromite is suitable for metallurgical and chemical use; processing facilities are not available domestically at the present time to warrant development of the deposit.

In general, because of cheaper overseas sources, Australia has been an importer of chromium and its alloys and compounds. Chromium metal is not manufactured locally, and although small quantities of high-carbon ferrochrome were produced at Newcastle until the closure of that plant at the end of 1974, all requirements are now imported. In time of emergency Australia could almost certainly revive its domestic ore production to meet its local demand.

Vanadium (V)

This metal, used in both ferrous and non-ferrous alloys, and in the chemical industry, is a common constituent of minerals, though there are relatively few deposits mined.

Substantial resources of vanadium have been recognised in Australia in recent years and several vanadium-bearing deposits have also been investigated and evaluated.

Agnew Clough Ltd commissioned a vanadium pentoxide extraction plant at Wundowie in June 1980. The plant has a capacity to produce 1620 t/year of vanadium pentoxide flake (98% V_2O_5) from ore mined at a rate of 200 000 t/year from the nearby Coates deposit. Mechanical problems, rising costs and lower prices caused production to be suspended in late 1981.

During 1981, 41 959 t of caprock surface ore averaging 1.13% V_2O_5 . was mined at Coates and 27 869 t of ore was processed. Production of vanadium pentoxide for export totalled 167 t.

Australian imports are not recorded as a separate item in overseas trade statistics because only small quantities are involved. Consumption, principally in the steel industy, is estimated as only a few tonnes/year.

The possibility of economic development of vanadiferous titaniferous magnetite at Barrambie 470 km east-northeast of Geraldton is continuing to be investigated as are deposits at Unaly Hill southwest of Sandstone. Oil shale deposits at Julia Creek in northwestern Queensland also have potential to produce large quantities of byproduct vanadium. In addition, up to 1000 t/year of vanadium pentoxide could also be produced as by-product from any uranium mining at Yeelirrie in Western Australia.

Overseas sources of supply are mainly USA, South Africa, Finland, and Southwest Africa. World production in 1981 was about 35 670 t.

BASE METALS

Copper (Cu):

The first recorded production of copper was in the Kapunda field, SA in 1842 and at Burra in 1846. In these early years, Australia was one of the world's leading producers, but during the first half of this century its known deposits were slowly being depleted so that it appeared that Australia would soon become largely dependent upon imports. However, this possibility was dispelled by the confirmation of large reserves of copper ore, first discovered in 1931, adjacent to the lead-zinc lodes at Mount Isa. Since then other deposits have been found in other parts of the continent. Important discoveries of copper mineralisation have recently been made in South Australia, Victoria, New South Wales and Western Australia. Exploration is proceeding at these and other, prospects, and Australia can be expected to continue, for some time, to provide not only for its own needs, but for a significant export trade as well.

The Australian scene is dominated by Mount Isa, which produced about 60% of total production in 1981 and which has reserves sufficient to support a high rate of production for over 25 years. Other important centres are Mount Lyell, Tas; Cobar, NSW; and Mount Gunson, SA. Production from the Woodlawn copper-lead-zinc-silver mine in NSW began in late 1978, and production from the Teutonic Bore copper-zinc mine in Western Australia commenced in mid-1981.

The full potential of the Mount Isa deposits was not realised until the early 1950s, although copper was mined for emergency purposes from some minor lodes during World War 2. After the discovery by drilling of high-grade copper lodes, a major new enterprise got under way in 1953 and output has since grown steadily. The Mount Isa-Cloncurry region of Queensland is now the most important copper mining province in Australia; of the 2 Mt of copper produced in Australia since 1884, most has come from the Mount Isa mine.

Australian mine production increased steadily for many years also because of expanded output from Mount Lyell and the commissioning of several new mines in the late 1960s and early 1970s. Copper production reached a record level in 1974 (251 000 t); production in 1981 was 228 436 t.

In 1981, Peko-Wallsend closed its mine at Mount Morgan, Qld, and in the following year also closed its Mounts Chalmers Mine (near Mount Morgan) and its Gecks mine in the Northern Territory.

On the other hand, exploration diamond drilling continued during 1981 and 1982 on Western Mining Corporation's large Olympic Dam prospect at Roxby Downs, SA, where an extensive zone of copper-uranium-gold mineralisation from 8 to 248 m thick, with probable economic grades, has been intersected about 350 m below the surface. Exploration diamond drilling also continued at WMC's deposits near Benambra in northeastern Victoria, at Mount Isa Mines Ltd's deposit at Balcooma in north Queensland, and at the Golden Grove deposit (owned by Esso Australia, Amax, EZ, and Aztec Exploration) in Western Australia. In September 1981 Peko-Wallsend Ltd also announced the discovery of a deposit of at least 250 Mt ore, grading 0.7% copper and 0.28 grams/tonne of gold, at Goonumbla, near Parkes, NSW.

Details of copper in all mine products in 1981 are as follows:

Queensland		Tonnes (metal)
Mount Isa	136 421	
Mount Morgan	5 085	
Others	6 774	148 280
New South Wales		
Cobar	4 839	
Broken Hill lead-zinc-silver		
mines (by-products)	3 576	
Woodlawn	10 052	
Others	7	18 474
Tasmania		
Mount Lyell	17 884	
Others	4 516	22 400
Western Australia		
Teutonic Bore	2 508	
Nickel mines (by-product)	3 226	5 784
South Australia		
Burra	3 401	
Mount Gunson	12 363	15 930
others	166	
Northern Territory		
Tennant Creek mines	17 568	
		17 568

Australia has two copper refineries - at Port Kembla and at Townsville; a third, at Mount Lyell, was closed down in 1969. The refinery at Townsville (operated by Copper Refineries Pty Ltd, a wholly owned subsidiary of MIM Holdings Ltd), with an annual capacity recently expanded to 155 000 t, is by far the larger. It was commissioned in 1959 and refines the whole of the Mount Isa output. In 1981, 81% of the copper in copper concentrates produced in Australia was processed in Australia to blister or refined metal. It is expected that the level of domestic processing will rise during the next decade as mine production at Woodlawn and refinery output at Port Kembla increase. The Tennant Creek flash smelter, re-opened by Peko-Wallsend in 1980, was closed down again in October 1981 because of continuing technical and economic problems.

Lead (Pb)

Lead and zinc are usually discussed together because nearly all Australia's production is obtained from orebodies containing the sulphides of both metals (generally galena (PbS) and sphalerite ((Zn,Fe)S)); the lead and zinc are separated by crushing and flotation. Galena also almost always contains silver; it is the most important ore of lead and one of the most important sources of silver.

Since the discovery, in 1883, and development of the Broken Hill lead-zinc-silver orebody, perhaps the richest in the world, Australia has been a major producer of lead and zinc ores and, in the years following 1923, its already dominant position was reinforced by the discovery and exploitation of the Mount Isa deposit. Australian metal mining began with silver-lead in South Australia in 1841. Australia has been amongst the world's leading producers of lead for many years and in 1981, with a production of 388 122 t, it ranked as the third-largest producer in the world behind USSR and USA. Australia's known resources are sufficient to sustain exports for several decades.

Mine production has run uniformly high in recent years, after being below capacity in 1970-71, when it was affected by an international arrangement in which a substantial part of Australian production was voluntarily curtailed. Output in 1981 was 2% below production recorded in 1980, mainly because of falls in output from Mount Isa as well as from the AM&S mines at Broken Hill where the increase of throughout was not sufficient to offset declining grades.

Details of lead in all mine products from the States in 1981 are as follows:

			t	Pb		
New South Wales						
All Broken Hill mines	189	684				
Woodlawn	26	703				
Cobar	4	658			221	045
Queensland						
Mount Isa	140	028				
Others	1	501			141	529
Tasmania						
Read-Rosebery - Que River					25	527
Other States						
					388	122

Most of Australia's lead concentrates are smelted in Australia, at smelters at Mount Isa, Qld, and Cockle Creek, NSW, which together produced 163 710 t of lead in lead bullion in 1981, and a smelter and refinery at Port Pirie, SA, which produced 219 439 t of refined lead. Output of refined lead from other secondary producers totalled 20 000 t. Domestic consumption decreased to 67 696 t (including 31 500 t from scrap).

Lead acid batteries continue to be the most important lead market and account for 45-50% of all lead consumed. Growth in the domestic and world lead markets appears to be closely linked with future developments in the automotive industry, which is the largest single consumer of batteries. The industry is under pressure to manufacture smaller and lighter vehicles which in turn may result in a reduced demand for lead. However, expansion in other applications, including off-road vehicles and standby power plants, will help to offset any slow-down. In addition, the future possible introduction of battery-powered electric vehicles could result in a substantial increase in demand.

The implementation of increasingly stringent regulations controlling vehicle exhaust emissions in some countries has resulted in a decrease in consumption of lead (as tetra-ethyl lead) in petrol. In view of the introduction of similar regulations in other countries it is now inevitable that the amount of lead so consumed will have fallen considerably by the mid 1980s.

There appears to be little fluctuation in demand for most other uses of lead.

Zinc (Zn)

For a number of years Australia has ranked third behind Canada and USSR as the world's leading producers of zinc ores but in 1981 slipped into fourth place behind Peru. In 1979, mine production reached a record 529 000 t.

Details of 1981 production are as follows:

		t Zn
New South Wales	h.	y
Broken Hill mines	224 021	
Woodlawn	64 669	
Cobar	17 320	306 610
Queensland	¥	×
Mount Isa		124 302
Tasmania		
Read-Rosebery		74 413
Western Australia		
Teutonic Bore	le le	12 972
		51:8 297

There are three zinc refineries in Australia - a large electrolytic plant (capacity 210 000 t/year) at Risdon, Tas. based on hydroelectric power; an Imperial Smelting Process plant (capacity 75 000 t/year) at Cockle Creek, NSW; and at Port Pirie, SA, an electrolytic refinery (capacity 45 000 t/year), which recovers zinc from a slag dump derived from the treatment of lead concentrates. About 60% of Australia's total zinc concentrates (all from Tasmania, and some from Broken Hill and Mount Isa) was treated at these plants in 1981. The remainder of concentrates from Broken Hill and Mount Isa was exported. In 1980, production of refined zinc was 300 352 t (including 4500 t from secondary sources). Domestic consumption in 1981 decreased to 96 900 t of refined zinc, of which 92 400 t was of primary origin.

Growth of the zinc market appears to be closely linked with future developments in galvanising, by far the largest end-use for zinc. In Australia, with continued erosion of the galvanised sheet-steel market by 'zincalume' and the importation of one-sided coated steel products, both of which use less zinc (and the zinc-aluminium surface of 'zincalume' is claimed to also have twice the life of ordinary galvanised surfaces), prospects for growth appear limited. However, the use of painted zinc coatings on steel surfaces, as well as the introduction of new technology which uses more zinc, may arrest this decline.

Zinc die-castings, the second-largest end use for zinc in Australia, have also met considerable competition from substitute materials. The trend to conservation of energy and weight reduction in automobiles has led to manufacture of thinner, lighter zinc castings and partial substitution by plastics and aluminium, reducing the amount of zinc used in vehicles.

Other applications, notably zinc oxide (used as an activator in the rubber industry and as a trace element in fertilisers), zinc dust (consumed mainly in the manufacture of zinc-rich primer paints), and rolled zinc (for drycell batteries), appear to be the only areas where future growth seems assured.

Tin (Sn)

Commercially the most important ore mineral of tin is the oxide, cassiterite (SnO₂). From being a country with a considerable tin export surplus (Australia led the world in tin production for nearly a decade around 1883), Australia became partly dependent on imports in about 1947. The revival of several old mining centres radically changed this position and Australia became a net exporter of tin again in 1966.

Production of tin in concentrates reached a record 12 571 tonnes in 1979; it was 12 267 t in 1981. Production of primary refined tin, after reaching a peak in 1972 of 7027 tonnes, decreased largely because of changes in the type of concentrate available to the smelter, and was 4286 t in 1981. World production of tin has exceeded consumption for several years. In an attempt to bring the two into balance, the International Tin Council imposed export quotas on its producer members in April 1982.

Imports in 1981 were 102 t of refined tin; exports were 1407 t of refined tin and 14 910 t of concentrates containing 7305 t of tin. Estimated consumption of primary refined tin in the same year was 3200 t. Consumption in 1982 probably will be about the same.

Tin alloys have many uses - soft solder (tin and lead), bronze, bearing metal, gun metal, die-casting, and pewter. Tin salts are used in ceramic enamels, plastics, wood preservatives, and pesticides.

Tinplate, produced at Port Kembla, accounts for about two thirds of the domestic consumption of tin.

Technological advances have resulted in a progressive decrease in the amount of tin consumed per unit area of tinplate produced. Tinplate is susceptible to substitution by other packaging materials, but increases in energy costs or costs of raw materials have adversely affected the competitiveness of substitutes such as aluminium and plastics.

Associated Tin Smelters Pty Ltd, operating at Alexandria, NSW, is the main domestic producer of primary refined tin. Annual smelter capacity is rated at 15 000 t of concentrates. However, the increased proportion of concentrates from lode mining (see below) means that the output capacity of refined tin has been reduced; concentrates from lode mining have a lower tin content and contain more deleterious impurities than those from alluvial mining. The smelter has installed plant to enable it to smelt such concentrates more efficiently and can more than meet Australia's requirements of refined tin. Greenbushes Tin Ltd commissioned an electric smelter, with a capacity of 1500 t/year of concentrate, at Greenbushes in 1980.

Traditional treatment methods are not suitable for ores in which the cassiterite is very fine grained, especially if other metal sulphide minerals are also common in the ore. A process known as matte fuming gives promise that such ores can be economically treated. Aberfoyle Limited operated a pilot scale matte fuming plant in 1980 and 1981 at the Kalgoorlie nickel smelter of Western Mining Corporation Limited to further develop the matte fuming process.

In the past much Australian tin production was from alluvial deposits, particularly those inland from Cairns in north Queensland, in the New England and central west regions of New South Wales, and in northeast Tasmania. However, with the discovery of new orebodies in some old lode mining areas, the emphasis swung in the late 1960's from alluvial to lode mining, both underground and open cut. The major producers, at Renison Bell and Luina in northwest Tasmania, Ardlethan in central western New South Wales, and Greenbushes in Western Australia, are all lode mines. The major alluvial producer is a dredging operation inland from Cairns in north Queensland.

Exploration for tin deposits greatly increased in the late 1970s, and several promising new discoveries have been reported, although none has as yet been declared economic. Published ore reserves in most deposits are sufficient for only a few years, but further exploration could result in reserves being increased, especially if prices increase. However, the Renison mine contains more than a third of the total known reserves, its annual production is more than Australian consumption, and this mine alone has the potential to supply Australia's requirements of tin to the turn of the century at least.

Some of the greatest tin-producing countries in the world, Malaysia, Thailand, and Indonesia, lie immediately to the north of Australia, but it is very unlikely that Australia would be unable to supply its own needs in any emergency in the foreseeable future.

OTHER METALS

Aluminium (Al)

Over the past two decades the production of aluminium and its ore, bauxite (mainly a mixture of hydrous aluminium oxides and aluminium hydroxides) and alumina (Al₂O₃), a partly processed product, has been one of the most rapidly expanding sectors of Australia's mineral industry. Three decades ago Australia appeared to be seriously deficient in bauxite resources. Although exploration during the war years had shown that there were small domestic reserves, and the decision was reached to establish an aluminium smelting industry at Bell Bay, Tas., it was nevertheless believed that the industry would, at most times, be dependent upon imported ores with local ores held in reserve.

A series of discoveries was to change this picture completely. The discoveries began in 1949 when BMR found relatively small deposits of bauxite at Marchinbar Island off the coast of Arnhem Land; this was followed by a more substantial discovery on the mainland near Gove. Later, in 1956, very large deposits of bauxite were found at Weipa on Cape York Peninsula by an exploration company; and in 1958 important new sources were recognised at Jarrahdale in the Darling Ranges close to Perth, where the bauxites had previously been regarded as too low-grade for commercial exploitation. In 1965, an announcement was made of the discovery of further large deposits inland from Admiralty Gulf in the Kimberley district of Western Australia, and in 1973 it was announced that extensive, lower-grade deposits lay to the north of these, on Cape Bougainville. Exploration during the early 1970s south of the Weipa deposits indicated several hundred million tonnes of bauxite. Production of ore from Weipa, Jarrahdale, and Gove has mounted rapidly and in 1981 was 25.4 Mt. Australian reserves are now known to be very large, at least 6200 Mt, and the largest of any country in the world except Guinea. Bauxite mining and shipping facilities at Weipa are currently capable of handling over 11 Mt/year. Facilities in the Darling Range have a total mining and treatment capacity of 13 Mt/year, while those at Gove, NT can handle 5 Mt/year.

Developments in the field of processing have also been rapid. From 1963, when Alcoa of Australia Ltd commissioned its Kwinana, WA, alumina refinery (present capacity 1.4 Mt/year of alumina), other refineries were commissioned by Comalco Ltd at Gladstone, Qld, in 1967 (capacity 2.4 Mt/year which is to be upgraded to 2.7 Mt/year by mid-1983), by Nabalco Pty Ltd at Gove, NT, in 1972 (present capacity 1.2 Mt/year), and by Alcoa again, at Pinjarra, WA in 1972

(present capacity 2.4 Mt/year), and Wagerup, WA, in 1982 (initial capacity 0.5 Mt/year); Alcoa is deferring commissioning of its Wagerup plant for at least 12 months pending an upturn of the currently depressed world aluminium market. In addition, Worsley Alumina Pty Ltd (a partnership of Reynolds, Shell, Dampier, and Kobe) is constructing an alumina plant at Worsley WA; the 1 Mt/year stage of this refinery is scheduled to be completed late 1983.

Total aluminium smelting capacity of Australia's 4 smelters (including the new Boyne Island smelter) is presently 475 000 t/year of metal and new construction presently being undertaken is expected to increase this to 843 000 t/year by 1985. Australia's smelting capacity is located at Point Henry, Vic (Alcoa - 165 000 t/year aluminium), Kurri Kurri, NSW (Alcan Australia Ltd - 90 000 t/year), Bell Bay, Tas., (Comalco - 117 000 t/year, and Boyne Island, near Gladstone (Comalco - 103 000 t/year); capacity at Kurri Kurri is being increased to 135 000 t/year and at Boyne Island to 206 000 t/year, both expansions to be completed in 1984. In addition, a partnership consisting mainly of Aluminium Pechiney Australia Pty Ltd and Gove Alumina Ltd (51% CSR Ltd) commenced construction in 1981 of a smelter at Tomago NSW. Initial capacity (scheduled for completion at the end of 1983) will be 110 000 t/year, this to be increased to 220 000 t/year by 1985.

Alcoa commenced construction of a new 132 000 t/year (initial capacity) smelter at Portland but work on this project was deferred in the latter part of 1982 because of increased costs (particularly of electricity for smelting), and depressed markets.

Other smelter projects have been mooted in recent years but escalating costs and the current widespread recession have made these much less certain. Thus Alcan Queensland Ltd has deferred indefinitely, plans to build a 100 000 t/year smelter at Bundaberg, Qld while the Westal consortium (comprising Reynolds, Billiton and CSR) has said that its proposed 260 000 t/year smelter at Worsely would not be viable. Similarly, a smelter project proposed for Lochinvar, NSW was abandoned in 1982 because BHP could not find any partners to form a consortium. However, Alcoa, the Western Australian government, and International Construction Corporation (of Korea) are continuing discussions on a proposed combined smelter and powerstation project for the southwest of the State; the proposed project would link a 210 000 t/year smelter and a 600 MW coal-fired power station.

Titanium (Ti)

Australia's resources of the titanium minerals, rutile (TiO_2) and ilmenite (FeTiO_3) , are considerable. Domestic recoverable reserves are put at about 9 Mt of rutile and 43 Mt of ilmenite, although almost half of the east-coast reserves of rutile are currently unavailable for mining because of environmental considerations.

In 1981 Australia supplied about 60% of world output of rutile concentrates and about 25% of the world's ilmenite concentrates.

The traditional uses of rutile have been in the manufacture of welding rods and the production of titanium metal; since the early 1960s, by virtue of the chloride method of processing, rutile has been used in the manufacture of pigment for high-gloss white paint, an outlet which now accounts for about 70 percent of total rutile consumption. The use of ilmenite is virtually confined to pigment manufacture. However, the commercial application of processes by which ilmenite is upgraded to approach rutile in ${\rm TiO_2}$ content (beneficiated ilmenite or synthetic rutile) provides a feed for either pigment or metal via the chloride process; beneficiated ilmenite now complements and competes with supplies of natural rutile. Although installed world capacity for beneficiated ilmenitewas rated a about 300 000 t/year in 1981, only a proportion of half of this capacity (that in Australia, India, USA, Japan and Taiwan) was actually used because of technical difficulties and high production costs.

The principal Australian production of rutile is from sands on and adjacent to the beaches of the eastern coast. The discovery in 1971 of old shoreline deposits of rutile, zircon, and ilmenite near Eneabba, 270 km north of Perth, constituted a major additional supply of rutile. Commercial production of rutile from this source began in 1975 and installed capacity for rutile production in the area is now about 150 000 t/year. In 1981, production from this source accounted for about 35% of total Australian output of rutile concentrates. On the eastern coast much of the ilmenite which accompanies the rutile and zircon has too high a chromium content to be saleable for pigment and for the most part has been discarded or stockpiled; however, ilmenite from the mid-Queensland coast tends to have a more acceptable chromium content and eventually could provide a suitable base for the production of synthetic rutile.

The principal ilmenite industry has been built up along the southwestern coast of Western Australia. The quality of the ilmenite from this source is most satisfactory for the manufacture of titanium white and, as ilmenite is the main heavy-mineral constituent of the sands, its recovery forms the basis of the industry, together with the production of zircon, rutile, and monazite. In mid-1971 Western Titanium Ltd, now a wholly-owned subsidiary of Associated Minerals Consolidated Ltd, commissioned a commercial beneficiation plant at Capel, WA, and an annual production rate of 42 000 t of beneficiated ilmenite was achieved. The plant is now based mainly on ilmenite from the company's operation at Eneabba, supplemented with secondary ilmenite produced at Capel. A semi-commercial plant with an annual capacity of about 13 000 t/year of synthetic rutile, closed down in 1975, was reactivated at the end of 1979. Annual output of about 60 000 t of synthetic rutile is now being achieved. Both rutile and anatase pigments are produced in Australia at Burnie, Tas., and at Bunbury, WA. Both plants are based on the sulphate process and use ilmenite concentrates produced from the Capel deposits. Australian production capacity for TiO₂ pigments is 60 000 - 70 000 t/year about 90% of which was utilised in 1981. Ilmenite concentrates are exported from Bunbury and Geraldton, where substantial bulk loading facilities are available.

Zirconium (Zr)

Australian resources of zirconium, in the beach-sand mineral zircon $(ZrSiO_A)$, are considerable and are almost twice those of rutile. Again, however, almost half of east-coast reserves are unavailable to mining because of environmental considerations. Zircon is produced as a co-product of rutile mining along the east coast and in the Eneabba area, WA, and as a by-product of ilmenite mining in the southwest corner of Western Australia. Western Australia became the leading State producer of zircon concentrates in late 1976, and in 1981 produced 63% of domestic output. The market for zircon, principally required by foundries for moulds, facings, and cores, and for refractories and ceramics, faced oversupply in 1970 but became firm in 1973; as temporary assistance to the industry, the Commonwealth Government, early in 1971, supported a stockpiling scheme initiated by industry, by controlling the minimum price of zircon in export contracts. When world demand recoverd the position of oversupply was quickly reversed, and in 1973 Australia exported 431 000 t of zircon concentrates. However, a position of potential oversupply again developed in 1975 and the Government re-introduced a minimum price for zircon exports, albeit almost five times as high as that in 1971. In view of the continuing adverse market situation, the floor price for zircon exports was reduced to the range \$115-125/t, f.o.b. at the beginning of 1977. To allow more flexibility in approving zircon prices for export, normal export controls were re-introduced in March 1977. Following a period of oversupply, excess stocks have been liquidated, and the world supply-demand position is now in reasonable balance. In 1981, Australia exported 444 000 t of zircon concentrates compared with a record 502 000 t in 1980.

Australia will be self-sufficient in most beach-sand minerals, particularly in ilmenite, at least to the turn of the century. Current resources of rutile available for mining could be exhausted in the 1990's.

Thorium (Th) and cerium (Ce)

The main commercial source of thorium, which has been of interest because of its possible nuclear uses, is the mineral monazite ((Ce,La,Nd,Th) (PO₄,SiO₄)), a by-product of beach sand operations on both the east and west coasts of Australia. Notwithstanding the use of thorium in several US experimental reactors, large-scale nuclear uses in fast-breeder reactors are said to be many years off. Although research on the nuclear application of thorium continues, commercial introduction of the thorium-uranium fuel cycle in the high-temperature gas-cooled reactor (HTGR) as an industrial source of high temperature heat is not seen before the 1990s although a commercial thorium-fuelled HTGR of 330 MW capacity is operating (at 70% capacity) in USA.

The increasing interest in monazite results from its rare-earth content, particularly of cerium and yttrium. World demand for rare earths increased sharply in 1973, particularly for high-strength low-alloy steels used in oil and gas pipelines. In recent years, the pattern of rare-earth applications has changed from one based on the use of rare earths as catalysts to one more strongly oriented to metallurgical applications. Estimated percentage end-use applications in 1980 (compared with about ten years ago) are: catalysts 30% (63.0%); metallurgy 32% (6.4%); glass and ceramics 35% (30.0%); TV electronics, nuclear, and miscellaneous 3% (0.6%). Cerium is also present in the mineral allanite ((Ce,Ca,Y)(Al,Fe)₃(SiO₄)₃(OH)), large quantities of which occurred in the Mary Kathleen uranium deposit.

High-grade monazite concentrates are recovered from beach sands in Western Australia, Queensland, and New South Wales. The monazite recovered in the southwest corner of Western Australia is a by-product of ilmenite production, but elsewhere of rutile and zircon production. Small tonnages of xenotime (yttrium phosphate) are produced as a by-product of ilmenite production in the Capel area of Western Australia. Development of extensive mineral sands deposits commenced at Eneabba about 270 km north of Perth in 1973, and the area is now a major world source of monazite. In 1981 Australian production was 13 282 t of concentrates containing 12 337 t of monazite, 95% of which came from Western Australia; Australian production was about 65% of total world output of monazite in 1981. All sales were exports before 1969, but a former uranium plant, purchased from the South Australian Government at Port Pirie, was commissioned in May 1969 to process monazite. In early 1972 an annual

throughput rate of 1300 t of monazite concentrate was achieved at the plant for the production of cerium and lanthanum hydrates, yttrium oxide, thorium sulphate, and tri-sodium phosphate. However, financial and market difficulties forced closure of the plant in mid-1972.

Australia is undoubtedly self-sufficient in these minerals for any foreseeable requirement; alternative sources of supply would be South Africa, Malaysia, India, Brazil, USA, and South Africa.

Antimony (Sb)

Antimony is used principally to impart hardness and stiffness in lead alloys e.g. in vehicle batteries, as an ingredient in type metal, Babbitt (a soft alloy of tin, antimony, copper, and lead), Britannia metal (alloy of tin, antimony, and copper), pewter, as a flame retardant (as the oxide), and in the plastics industry.

Mine production of antimony in 1981 was 1482 t, of which 637 was produced as antimony concentrates and 845 t was recovered at Port Pirie from Broken Hill Pb-Zn concentrates. In addition, 322 t of antimony was recovered from scrap. The Port Pirie lead refinery also produced 16 403 t of antimonial lead.

Exports of antimony in 1981 were valued at \$5.22 million; included were 1159 t of ores and concentrates and 5319 t of antimonal lead alloy. Some 50 t of antimony metal was imported. In early 1977 Quelar Chemicals established a small electrolytic antimony refinery in Brisbane. Production in 1977 was reported to be about 3 t of metal, but the high energy costs involved made it uneconomic and the operation was placed on care-and-maintenance in early 1978.

Antimony ores have been produced in Australia since the middle of the last century, but most deposits have been worked out. Recently, the only significant production has come from mines in the Hillgrove area in northeastern New South Wales in 1981 production was 637 t of antimony in concentrates.

Australia is self-sufficient in antimonial lead, but requires minor imports of high-purity antimony metal.

Beryllium (Be)

Beryllium is a lightweight metal processed mainly from the mineral bertrandite $(\text{Be}_4\text{Si}_2\text{O}_7(\text{OH})_2)$ but also from beryl $(\text{Be}_3\text{Al}_2\text{Si}_6\text{O}_{18})$, good specimens of which may be marketed as gemstones (e.g. aquamarine and emerald are varieties of beryl). The metal has become of particular interest since the development of nuclear technology, but its main use is still in alloys of copper, nickel, and aluminium, which it toughens for industrial uses. Domestic demand, if any, is small.

Australian production of beryl began in 1939 and reached a peak in the war years. It fell away soon afterwards and mine production in 1967 was only 55 t, containing some 6.9 t of beryllium oxide. However, the same year saw exports totalling 637 t of beryl, but this was mainly of previously-stockpiled material from Western Australia. Production in 1973 was 20 t of contained BeO and this fell to 9 t in 1974; there has been no production since 1974.

Most Australian production has come from open-cuts at the Triple Chance mine near Broken Hill, with some production coming also from Olary, SA, across the border, and from the Goldfield District of Western Australia. In times of emergency, particularly if production costs were not to be the principal consideration, the small scattered deposits already known could most probably produce sufficient for Australia's foreseeable requirements. Main overseas sources are Brazil and USA.

Lithium (Li)

The main uses of lithium are in the glass, ceramics, and pharmaceutical industries, and in the preparation of greases, and welding and brazing fluxes; as lithium seems particularly suitable as a battery anode material, and much interest in battery research has been generated in recent years, a significant market could develop in the future. Consumption of lithium products in Australia is not known in detail, but is quite small; requirements, except for occasional purchases from local production, are met by imports. South Africa dominates the world production scene, but Canada and USA are alternative sources.

Lithium ores have been produced spasmodically since 1905. In 1974 amounts totalling 1.0 t were produced in Western Australia, but no production has been recorded since 1974.

Several years ago a company was reported to have drilled various lithium prospects near Kalgoorlie and Ravensthorpe, WA, and extensive resources are said to have been indicated. In addition, considerable resources of high-grade lithium have been discovered at Greenbushes, WA, adjacent to the tantalum deposits which occur there. Greenbushes Tin Ltd intends to market high-grade lithium concentrates for use in the ceramics industry and is studying plans to establish a lithium carbonate plant.

Tantalum (Ta)-columbium (niobium)(Nb)

Tantalum and columbium are metals that occur together in nature and are used in alloying, in high-temperature corrosion-resistant chemical ware, in tipped cutting tools, and in anodes and grids for electronic equipment. Australia is an important producer of the ore (tantalite-columbite) which is produced mainly as a co-product of tin mining at Greenbushes and Moolyella, and also from

Wodgina in Western Australia. Greenbushes Tin Ltd, the main producer, announced in late 1980, the discovery of a major tantalum resource below its present opencut. On present indications it would appear to be the largest-known tantalite deposit of its kind in the world. The company is presently negotiating with major Australian and overseas companies for plans to develop, on a joint venture basis, a new mine in 1983. The company produces tantalum and columbium oxides from concentrates and from tantalum-rich tin smelter slag.

Total Australian production of combined concentrates in 1981 was 264 t, which was nearly all exported. Presently, there is no domestic demand but should this ever be generated, such could adequately be met from available resources.

Selenium (Se) and tellurium (Te)

Selenium is used in small quantities in the electronic, chemical, glass, and metallurgical industries, but is being replaced in some of its uses by the cheaper materials silicon and germanium. There is some production from tankhouse slimes at the electrolytic copper refinery at Port Kembla, but statistics of production are not available for publication. Peko-Wallsend Ltd produces concentrates containing gold, bismuth, copper, silver, and selenium at Tennant Creek. No payment was received in 1981 for selenium in concentrates exported to the Federal Republic of Germany and it is therefore not recorded as production. Domestic consumption is not large. Leading overseas producers are USA, Canada, and Japan.

No Australian production of tellurium has been recorded since 1964, when output was 1.6 t. The metal was then mainly produced as a by-product of copper and lead refining. Small quantities were also recovered from flue gases and dusts generated from the smelting of copper, lead, and bismuth ores, as well as from the roasting of tellurium-rich gold ores, and from the roasting of some pyrite ores for production of sulphuric acid.

Tellurium is mainly used as an additive to cast iron, to improve its machining properties, and in copper alloy springs to increase their life in electrical apparatus.

Bismuth (Bi)

Post World War II production of bismuth in Australia has come almost entirely from the Northern Territory - initially on a small scale as a by-product of tin and tungsten mining and, since 1967, on a much larger scale as a by-product of copper/gold mining at Tennant Creek, by Peko Mines Ltd.

Production statistics have, since 1979, been classified as confidential and are not available for publication; production in 1978 was 1054 t. Imports of bismuth metal in 1981 totalled 14 t.

Bismuth is used mainly as a constituent of fusible alloys and low-smelting-point solders, as well as in the production of various salts for use by the pharmaceutical and chemical industries. The use of bismuth as a metallurgical additive to aid the casting of iron and improve the machinability of aluminium and steel has increased in recent years.

Calcium (Ca) and Magnesium (Mg)

Calcium and magnesium occur in abundance in nature as limestone (essentially Ca ${\rm CO_3}$) and dolomite (Mg, Ca) ${\rm CO_3}$).

Calcium is a soft metal which, because it corrodes rapidly in air, has little use on its own. However, it has found a use as an alloy of lead, to which it imparts hardness. In more recent years calcium has also found a use in the process of recovering uranium metal from uranium hexafluoride.

Magnesium has been called the lightweight champion of metals, being only two-thirds the weight of aluminium. It is used mainly in alloys, particularly with aluminium, to which it imparts strength, and which is used extensively in the aircraft and allied industries.

Neither metal is presently produced in Australia, although magnesium was smelted from magnesite (Mg ${\rm CO_3}$) in limited amounts at Newcastle during the war. Elsewhere in the world magnesium is produced mainly from seawater; world production in 1981 was 310 000 t. Australia imports magnesium mainly as unwrought metal; imports in 1981 of 2669 t were valued at \$5.3 million.

Mercury (Hg)

Australian resources of mercury are negligible. Until 1945, when Australian production ceased, about two-thirds of its total output of 23.6 t had come from various small cinnabar deposits in the Kilkivan area of Queensland. Production resumed in 1967, but solely on a by-product basis - by Electrolytic Zinc Company of Australasia at Risdon - from roaster gases produced from the calcining of zinc concentrates. No production has been recorded since 1977; production from 1967 to 1977 totalled 8.6 t.

In USA, electrical apparatus accounts for 50% of mercury usage; its use in the production of chlorine and caustic soda by electrolysis, mildew-proofing paint, and industrial and control instruments accounts for most of the remainder.

Imports of mercury in 1981 were 57 791 kg; the bulk of imports were from China (46%), and Spain (33%). World production in 1981 was some 6.9 million kg. World consumption of mercury continued to decline in 1981 mainly because of environmental restrictions.

Silver (Ag)

The main uses of silver are in photography and in electrical and electronic products. Early in 1980 speculation caused prices to rise to an all-time high of more than \$1000/kg before quickly retreating to about \$400-\$500/kg. Silver prices have continued to decline in 1981. Most of the silver produced in Australia is a co-product of lead mining, but some is also a co-product of zinc, copper, and gold mining. Mine production in 1981 was 743 557 kg, most of which was recovered from lead-zinc ore. Refined silver is produced mainly by The Broken Hill Associated Smelters at Port Pirie, The Electrolytic Refining & Smelting Company of Australia at Port Kembla, and the Perth Mint (from gold bullion), but also by several small refiners recovering silver from primary and secondary material (Johnson Matthey Ltd, Harringtons Metallurgists and Englehard Industries) as well as by some small companies recovering silver from used x-ray film and spent photographic solution. Production of refined silver in 1981 totalled 366 737 kg; mine production not recovered at refineries is exported as a component of base metal concentrates or lead and gold bullion.

Indium (In)

Indium is another alloy metal not commonly found in economic deposits, but derived mainly from flue dust at lead and zinc smelters. Australia's consumption is negligible and there is no production. The Baal Gammon coppersilver-tin deposit at Herberton, North Queensland, contains indium but recent feasibility studies indicate there is little likelihood of the deposit being worked at present. Indium can be obtained from Canada, USA, Belgium, West Germany, or Japan.

Cobalt (Co)

Cobalt is a by-product of the Australian nickel industry and also of the production of zinc. It has a variety of uses which include high-temperature alloys, high-speed steels, and magnetic materials.

In 1981, mine production of cobalt totalled 2902 t, of which 2219 t were contained in lateritic nickel ore mined at Greenvale in Queensland, 609 t in nickel concentrates produced in Western Australia, and 74 t in zinc concentrates from Broken Hill. However, only a small proportion of cobalt produced in mine products is recovered in Australia. The zinc refinery at Risdon, Tas., which continues to be the major supplier of cobalt for Australian industry, produced 24 t of cobalt in cobalt oxide from zinc concentrates in

1981. Nickel-cobalt sulphide products are produced at the nickel refinery at Kwinana and the Yabulu refinery near Townsville. In 1981 the cobalt content of materials from both these sources was 1442 t, but these products will be exported rather than further refined in Australia in the immediate future. These by-products, if suitably refined, would make Australia self-sufficient in cobalt; otherwise Australia's relatively small requirement is imported in the form of metal and compounds, mainly from Zaire (the world's principal producer), Canada, Morocco, and Zambia. The USA is an alternative source from which imports could also be obtained.

Cadmium (Cd)

Cadmium is an important metal in alloys for high-pressure bearings required to have a low expansion co-efficient, and has other uses in cadmium plating of steel, nickel-cadmium batteries, in pigments and chemicals, and in fusible alloys for electric fuses and automatic fire extinguishers.

In Australia, cadmium is produced solely as a by-product of lead-zinc-silver mining. Production of refined cadmium in 1981 was 1031 t of metal; 557 t came from Risdon, 422 t from Cockle Creek, and 52 t from Port Pirie. Mount Isa produces minor quantities of cadmium-thallium sponge which is exported. Estimated domestic sales in 1981 were about 98 t and the rest was exported, including cadmium contained in lead-zinc-silver concentrates. Australia is more than self-sufficient in this metal, but USA, Canada, and Japan are alternative sources.

Gold (Au)

Annual production of gold, once steady at above 1 million troy ounces (32 150 kg) has been falling slowly for a number of years. In 1970, production fell to 17 600 kg reflecting the main difficulty confronting the gold mining industry, namely fixed prices. However, rising gold prices in 1971 and 1972 temporarily reversed the trend and production rose to 23 500 kg in 1972, but then declined in the mid-1970s to about 15 000 kg annually. Higher prices in 1979 and 1980 sparked renewed interest in gold - exploration activity increased and some new mines were established, old mines were re-examined and some mine dumps were retreated to recover gold left behind by earlier treatment methods. As a result of these developments, production increased in 1981 to 18 374 kg and is expected to continue to rise in the future. In Western Australia, Northern Territory, and Victoria most of the gold produced is won from gold mines; in the other States nearly all the gold produced is a by-product of the mining and refining of other metals, principally copper, lead, and zinc. Gold won from gold mines accounts for roughly 75% of Australian production. Of this, 87% came

from Western Australia in 1981. In terms of total 1981 production, however, 64% came from Western Australia, 14% from the Northern Territory, 11% from Tasmania, 8% from Queensland, with small contributions from New South Wales and Victoria.

Australia imports about 1000 kg of gold annually, mostly as unrefined bullion, and exports 5000 - 8000 kg of refined gold, and so remains a net exporter of gold.

The price of gold was US\$195/oz at the end of 1974 but by the end of August 1976 it had fallen to US\$103/oz. From this low point it has recovered strongly, averaging US\$147.72/oz in 1977, US\$193.39 in 1978, US\$307.19 in 1979, US\$606.11 in 1980, and US\$459.99 in 1981. Although the price has fallen since 1980, it appears to have moved into a phase of greater stability and steady growth, currently in the range US\$400-500/oz.

Platinum-group metals

The main uses of the metals of this group (iridium, osmium, palladium, platinum, rhodium, ruthenium) are in chemical ware, in jewellery, in alloys used for electrical purposes, and in the petroleum, glass and automotive industries. There has been a small erratic production of platinum and osmiridium (a natural alloy of osmium and iridium) for over 70 years, but known resources have never amounted to much. Small deposits have been worked in Tasmania and New South Wales, but very little production from platinum deposits has been recorded since 1968.

Platinum-group metals (mainly palladium and platinum) are contained in nickel concentrates produced at Kambalda, WA; production in 1981 of recoverable palladium in nickel concentrates was 401 kg and of recoverable platinum 65 kg. Palladium and platinum are recovered at Port Kembla, by ER&S, from by-product copper sulphide residue from WMC's Kwinana nickel refinery. Production in 1981 was 244 kg of palladium (virtually all from the treatment of copper sulphide residue) and 11.6 kg of platinum, from secondary scrap material. The balance of palladium and platinum mine production is recovered in overseas nickel refineries from exported nickel concentrates.

Imports in 1981 were valued at \$3.17 million and exports were valued at \$0.7 million. The pattern of world production is stable, with South Africa, USSR, and Canada together accounting for over 99% of world primary production. As sources of supply, however, Canada and USSR are not as consistent as South Africa, because the quantity of platinum-group metals produced in Canada and USSR is dependent on the quantity of nickel produced, and decreases whenever the nickel industry is depressed. In South Africa, on the other hand, platinum is won from mines where it is the primary product, and copper and nickel are by-products.

Many countries deal extensively in the secondary trade of the platinum-group metals; in 1981, for instance, Australia imported 23 420 kg of platinum-group metals and alloys, mostly from USA and UK (re-exports from those countries), and re-exported 146 kg, mainly to Hong Kong, New Zealand and UK.

US demand can be expected to increase in the 1980s as a result of the passage of the Clean Air Act by Congress in mid-1977. In order to meet the requirements of the Act, automotive manufacturers will need to use larger exhaust gas catalysers containing more platinum than has been used in the past.

NON-METALS

Abrasives

Australia is generally deficient in resources of natural hard abrasives, particularly corundum (Al₂O₃) and emery (an impure variety of corundum containing varying amounts of iron oxides); its resources of industrial (and gem) quality diamonds are presently being evaluated by Argyle Diamond Mines Joint Venture, led by CRA, which discovered diamonds (in kimberlite pipes and alluvial gravels) in the Kimberley district of northwest Western Australia; production from the alluvial deposits began in January 1983 at a rate of 2 million carats/year; and mining of the kimberlite pipe is scheduled to start in 1985, at a rate of about 20 millions carats/year including about 2.5 million carats of gem-quality stone. Production of such quantities would increase the volume of world production of natural stones by about 50%, and would have an estimated value of about US\$250 million. The success of the Joint Venture has spurred intense exploration activity by other companies, both in the Kimberly region as well as other parts of Australia.

Australia's total requirement for industrial diamonds is still met by imports; these totalled 1 311 825 carats in 1980-81, but a considerable amount (139 750 carats) was re-exported. Zaire is the world's major producer, followed by USSR and other African countries.

Corundum and emery have been mined on a small scale in Western Australia but there is now no domestic production, and imports of artificial corundum commonly amount to 3500-4500 t/year. Zimbabwe is the world's leading producer of corundum followed by USSR and South Africa. Turkey is easily the largest producer of emery.

Part of Australia's requirement of garnet is obtained as a by-product of mining mineral sands along the eastern coast, as well as from sands near Port Gregory, WA; production of 3020 t was recorded from these sources in 1981. The bulk of domestic requirements is met by imports, mainly from USA.

Soft abrasives such as diatomite and ground feldspar are produced in Australia in the quantities required.

Arsenic (As)

Arsenic is mainly recovered as a by-product of copper and gold mining and the principal world producers are USSR, Sweden, Mexico, and France. Arsenic is used in insecticides, sheep dips, weed killers, wood preservatives, and in glasses and enamels. In 1975, Copper Refineries Pty Ltd at Townsville commenced production of copper arsenite, for wood preservative, at the rate of 100-200 t/year. This is the first recorded production of arsenic on a commercial scale in Australia since 1952. Broken Hill Associated Smelters Pty Ltd produces and stores about 200 t of arsenic annually in calcium arsenite, a residue of lead refining at Port Pirie. To date no satisfactory method has been found for treatment of the residue to recover arsenic in a saleable product. Most Australian requirements of arsenic are imported. A total of 1225 t of arsenic trioxide was imported in 1981.

A considerable amount of arsenic was at one time also obtained as a byproduct from gold mining at Wiluna, WA, and a number of other Australian sources are also known but these are not economically exploitable under present conditions.

Asbestos

Asbestos is the commercial name for a group of six fibrous minerals. Commercially, the most important variety is chrysotile ('white asbestos') because of its fineness, strength, flexibility, and suitability for spinning fibre. Other important varieties are amosite, and crocidolite ('blue asbestos'). Blue asbestos lacks many of the desirable properties of white asbestos, but is stronger and more resistant to chemical action. No detailed statistics on the consumption of asbestos are collected in Australia, but more than 60% is known to be used in the manufacture of asbestos cement products.

Australia has large resources of blue asbestos (crocidolite) in the Hamersley Range, WA. Deposits of crocidolite near Wittencom were worked, mainly for export, until 1966 when production stopped because of rising costs.

Chrysotile asbestos is presently mined at Woodsreef near Barraba, NSW, by Chrysotile Corporation of Australia; output in 1981 was 45 494 t of fibre including 38 576 t for export. The Woodsreef product comprises mainly short to medium length fibre and although production satisfies local demand for this particular product - and even allows for exports (mainly to Japan) - Australia's requirement for longer-length chrysotile fibre and amosite continues to be met from imports. Imports in 1981 were 16 460 t of chrysotile, 1408 t of amosite,

and 3092 t of other varieties (mainly chrysotile fines); imports were mainly from Canada (75%) and South Africa (13%). Demonstrated economic resources of fibre-bearing rock at Woodsreef total some 38 Mt (BMR estimates the recoverable fibre content as about 2-3%).

A small quantity of asbestos has also been produced at Baryulgil, NSW, also by Chrysotile Corporation; production from here ceased in 1979. Barite ($BaSO_A$)

Barite, also known as barytes, is naturally occurring barium sulphate. It is one of the heaviest of the non-metallic minerals and is used extensively as a weighting agent in oil-well drilling muds to control gas pressures.

Australian production of barite in 1981 was 41 266 t; production was mainly from Western Australia (24 668 t), all by Dresser Australia from its North Pole Mine 110 km east of Port Hedland and from South Australia (16 165 t) by Steetly Industries Ltd. Mine production from North Pole is crushed, screened and jigged on-site to produce a beneficiated (92-94% Ba SO₄) product, which is road-hauled to Port Hedland for milling; the company produces only drilling-grade material. Towards the end of 1981 the company placed its mining operation on care-and-maintenance for economic reasons.

Production from South Australia was mainly from the Oraparinna region in the Flinders Ranges but also from Olary and Truro; production comprises both industrial-grade material (which, apart from minor amounts imported from China, meets all of Australia's industrial-grade requirements) as well as drilling-grade material.

Minor occurrences of barite are known in every State of Australia but of all such occurrences only one, at Trunkey Creek, NSW, has, in recent years, produced small amounts consistently.

Although about 75% of barite production worldwide (7.5 Mt in 1981) is used in drilling muds, barite has various other industrial applications: it is used in the manufacture of glass as a flux and to impart brilliance and clarity; as an extender in paints, and as a filler in rubber and linoleum; for making heavy printing paper and in brake linings, clutch facings, and plastics; and because of its high density, inertness, and ability to absorb X-ray and gamma radiation, it is also used in special concretes in hospitals and nuclear reactors for shielding purposes and in barium "meals" for X-rays. Barite is also used for manufacturing a variety of barium chemicals but Australia has no such industry; requirements are met by imports. Imports in 1981 were: precipitated barium carbonate (1321 t), precipitated barium sulphate (blanc fixe, 405 t), lithopone (barium sulphate and zinc sulphate, 49 t) and

barium chloride (181 t). Consumption of barite in Australia in 1981 was estimated by BMR as 17 000 t, including 9 300 t of drilling-grade material.

Australia has adequate resources of barite which could be brought to production to meet strategic requirements. However, most are in remote localities mainly in Western Australia and South Australia, and as the commercial viability of deposits of minerals of low unit value is mainly influenced by transport costs, domestic requirements will continue to be partly met by imports.

Clays (bentonite, fuller's earth, kaolin, and other clays)

Bentonitic-type material (which includes bentonite and fuller's earth) may, on the basis of its response to water, be broadly classed as swelling and non-swelling. Bentonite, which is composed mainly of sodium montmorillonite, belongs to the swelling class; clays of the non-swelling class, sometimes referred to as 'bleaching clays', fall in two sub-groups: fuller's earth which has naturally-occurring absorbent properties, and activable clays which have the potential to acquire absorbent properties if treated (or 'activated') with acid.

Australian production of <u>bentonite</u> in 1981 was 12 972 t; production was from Queensland (9952 t, from the Roma district), New South Wales (3933 t, from the Scone district), and Victoria (3020 t from Greenwald).

Consumption of bentonite is estimated by BMR as about 60 000 t/year; this was largely met by imports which, in 1981 totalled 43 034 t, most of which came from USA. Its swelling properties render it particularly useful as a bonding agent for pelletising iron ore and in foundry sands, and in drilling mud for sealing pore spaces.

The present rate of world production is about 6.0 Mt/year; main producers are USA, Japan, Greece, Italy, Argentina, Spain, Brazil and Hungary.

Fuller's earth - a term which has neither a compositional or mineralogical connotation but instead is derived from the first major use to which it was put, the cleaning of woollen cloth, by fullers - is defined as a non-plastic clay or clay-like material composed of calcium montmorillonite, attapulgite (Mg rich), or both.

Australian production of fuller's earth has been small and the bulk of past production has come mainly from the Dubbo region; no production has been recorded from this area since 1978. However, Mallina Holdings Ltd commenced production of attapulgite from Lake Nerramyne, about 95 km northeast of Geraldton, in October 1979; production in 1981 was about 14 000 t of marketable

product. Imports of fuller's earth in 1981 totalled 4325 t indicating a rate of Australian consumption of about 18 000 t/year. The absorbent properties of fuller's earth render it particularly suitable for decolorising and purifying mineral, vegetable, and animal oils, as an industrial absorbent for oil and other liquid spills, and as an absorbent for pet litter.

The present rate of world production of fuller's earth is about 1.7 Mt/year; main producers are USA, UK, Mexico, and Spain.

In general, the term <u>kaolin</u> embraces, at least for statistical purposes, all white clays, including china clay and ball clay. Australian production in 1981 totalled 170 472 t. Australian production of paper-coating grade kaolin has been restricted to Pittong, Vic. but production from a new deposit at Gabbin, 220 km northeast of Perth, is scheduled to begin late 1982. Filler and other grades of kaolin are produced mainly at Bulla, Rowsley and Axedale in Victoria, Gulgong, Home Rule, Mudgee, and Albury in New South Wales, Mount Crawford and Birdwood in South Australia, and Mount Kokeby and Mukinbudin in Western Australia.

White kaolin has widespread application as a general-purpose and paper filler as well as in paints, caulking compounds, adhesives, plastics and ceramics.

Other clays include <u>brick clay</u> and shale (a low-grade and red-burning clay or shale used for making housebricks and other structural products), <u>fireclay</u> (used in the manufacture of refractories), <u>cement clay</u> (used in the manufacture of Portland cement), and <u>damourite</u>, a very fine-grained hydrous muscovite mica, also used as a filler in paints, plastics, and rubber.

Diatomite

There are many small deposits of diatomite in Australia and small-scale production has been almost continuous since 1896; production in 1981 was 2073 t and came from the Toowoomba Mining District, Qld, and Lillicur, Vic.

Apparent consumption of diatomite in Australia in 1981 was 14 400 t most of which was imported, mainly from USA. Diatomite ('diatomaceous earth') is a siliceous rock composed mainly of opaline skeletal remains of aquatic organisms called diatoms. Diatomite is used extensively as a filter medium to clarify and purify liquids in breweries, wineries, sugar refineries, food processing plants, dry cleaning plants, chemical and petroleum plants and swimming pools. Diatomite for this use is nearly all imported; Australian diatomite is generally of lower quality than imported material and is used mainly as a thermal and acoustic insulator in wallboards, as a thermal insulator in kilns, as a filler in paints, varnishes, synthetic plastics, and rubber, as a mild abrasive in various polishes, and as an ingredient in lightweight ceramics.

Felspar

Felspar (known mineralogically as feldspar) is the commercial name for collectively the most abundant group of rock-forming minerals. However, rocks consisting almost entirely of felspar, and which would thus be of greatest commercial interest, are rather rare. Felspar is used mainly in the glass and ceramics industries and as an abrasive. Australian resources are large and more than enough for any likely requirement. Present centres of production are Mukinbudin and Rothsay, WA, and Broken Hill, NSW. In recent years consumption has been declining because of substitution by nepheline syenite rock, and the use of recycled glass in glass manufacture.

Fluorite

The mineral fluorite, also known as fluorspar, is naturally occurring calcium fluoride (CaF_2). There has not been any production of the mineral in Australia since 1974 when Leighton Mining NL closed its small mine near Walwa, Vic., for economic reasons. Historically, fluorspar production in Australia has been on a small scale; in the previous fifty years only about 50 000 tonnes has been mined, mainly from the Chillagoe district in Queensland.

Commercial requirements have determined three grades of fluorspar as follows: acid grade - to contain not less than 98% ${\rm CaF_2}$; ceramic grade - to contain not less than 95% ${\rm CaF_2}$; and metallurgical grade - to contain not less than 80% ${\rm CaF_2}$.

Apparent consumption of fluorspar (all grades) in Australia in 1981 was 26 300 t. The steel industry is the largest consumer of fluorspar and The Broken Hill Pty Co. Ltd used about 11 300 t of metallurgical-grade material in 1981, as a metallurgical flux for removing impurities in manufacturing steel. The balance represents mostly acid-grade material used mainly in production of anhydrous hydrofluoric acid (HF). There are two HF plants in Australia, at Newcastle and Camellia, NSW. Hydrofluoric acid is an intermediate stage in the manufacture of fluorocarbons, which are used mainly as propellants in aerosol sprays, as refrigerants, and in urethane foam. The use of fluorocarbons by the aerosol industry declined markedly in 1977 because the continuing controversy about the affect of fluorocarbons on the earth's ozone layer encouraged the use of alternative propellants. Small amounts of HF are also used for pickling stainless steel, in petroleum refining, and by the glass industry. Minor quantities of acid-grade and ceramic-grade fluorspar are also used in aluminium smelting, in glass and fibreglass manufacture, in enamels for coating metal ware, and in coatings for welding-rod electrodes.

As well as importing all its fluorspar requirements, Australia also imports various fluorochemicals of which aluminium fluoride and synthetic cryolite (Na₃AlF₆), both used in aluminium smelting, are the most important. In 1980-81 the total f.o.b. value of imports of fluorochemicals was \$13.5 million. Because fluorspar is the major source of fluorine, resources are measured in tonnes of contained fluorine. Of total Australian identified resources of fluorine of 67.65 Mt, only 3.29 Mt occurs in fluorite deposits; by far the greatest portion of identified resources is contained in the fluorapatite $(\text{Ca}_5(\text{PO}_4)_3\text{F})$ which is the essential component of Australia's resources of phosphate rock. All known fluorite deposits are classified as submarginal and none are likely to be developed in the foreseeable future.

Graphite (C)

Graphite has extensive uses as a lubricant, and is also employed in many manufacturing processes, for moulding, for graphite crucibles, and in lead pencils. Local production was last recorded in 1963 and so far no high-grade deposits have been discovered in Australia, although possible resources have not been fully investigated. All Australia's requirements are met by imports, which amounted to 1460 t in 1981 (mainly from China, Korea, and Sri Lanka), plus 2090 t of artificial graphite, mainly from Canada, Federal Republic of Germany, Japan, UK, and USA.

Limestone, dolomite, and magnesite

Australian resources of these materials - the carbonates of calcium (Ca $\rm CO_3$, limestone), magnesium (Mg $\rm CO_3$, magnesite), and calcium and magnesium ((Mg,Ca) $\rm CO_3$, dolomite) - are adequate, particularly for limestone and dolomite.

Australian production of <u>limestone</u> in 1981 totalled 11.9 Mt. About 70% is used to manufacture Portland cement (production of this in 1981 amounted to 5.9 Mt), so that producing centres are generally in fairly close proximity to major popultion centres. Apart from this major use, limestone is also used as a flux in metallurgical smelting processes (about 20% of production), for the production of calcium carbide (used mainly in the production of acetylene gas) and other chemicals and, after fine-grinding, as an industrial product (sometimes referred to as whiting) used as a filler and extender in paints, plastics, and rubber compounds.

Dolomite is used mainly (about 90%) by the iron andd steel industry, as a flux in basic-oxygen furnaces, as fettling to protect the hearth of openhearth furnaces, and in the manufacture of tar-bonded refractory bricks (also for basic-oxygen furnaces). Australian production in 1981 totalled 756 568 t, most of which (about 726 000 t) was produced by BHP at Ardrossan, SA.

Magnesite is consumed mainly after calcining, either as chemically active caustic-calcined magnesite (calcined to 700-1000°C) or as inert, dead-burned magnesite (calcined to 1600-1900°C) which is used as a refractory material. Magnesite too is used mainly by the steel industry as a refractory lining in basic-oxygen furnaces, but also as a refractory lining in other types of furnaces and kilns; minor amounts are also used in the manufacture of oxychloride cement, insulating materials, and chemicals.

Australian mine production of magnesite in 1981 totalled 26 445 t, nearly all of it from New South Wales (Young and Fifield). BMR estimates that consumption of magnesite in Australia, which is partly met from imports, was 82 000 t; this includes the raw magnesite equivalent of imports of magnesium oxide and manufactured refractory products.

Mica

Although Australia's resources are probably large, production, because cheaper material from overseas has generally been available, has been minor. In 1981, mica production amounted to 354 t. While the Commonwealth Mica Pool was operating during and after World War II, a series of small mines in the Harts Range in the Northern Territory produced most of Australia's requirement. With the winding up of the Mica Pool in 1960, most mining activity stopped.

Imports in 1981 amounted to 856 t, mainly from India, China, and South Africa. In the event of an emergency, mine production could probably be revived to meet requirements. Alternative sources of supply include Argentina, Brazil, and the Malagasy Republic.

Quartz crystal and silica (both SiO2)

Australia is self-sufficient in various forms of silica used in glassmaking, foundry sands, refractory bricks, etc., but there has always been an acute Australian shortage of high-quality quartz crystal, the piezo-electric properties of which make it so very useful for stabilising frequencies in radio communications. Quartz crystal is also used in optical instruments. A wide search made by Government agencies during World War II failed to discover any substantial deposits, and an intermittent search by industry in subsequent years has met with little success. Since 1952, when production was recorded from near Glen Innes, the only recorded production of quartz crystal has been from Mukinbudin, WA - 70 tonnes in 1974. Recent developments overseas in synthesising quartz crystals have eased pressure on the need to discover natural sources.

Imports of quartzite and natural quartz amounted to 569 tonnes in 1981. Some 383 000 t of high-grade silica sand were exported in 1981, mainly to Japan, from deposits near Cape Flattery, north Queensland, and also from deposits near Perth, WA.

Sillimanite and kyanite (both Al2SiO5)

These related minerals are consumed mainly in the manufacture of highalumina refractory linings used in furnaces. Deposits of sillimanite are known
in several parts of Australia, mostly in remote localities; presently the only
production is from Mount Crawford, SA. Mineral sands in the Eneabba-Jurien Bay
area of Western Australia make up a large potential resource of kyanite,
although to date there has been no commercial recovery of the kyanite content.
However, Allied Eneabba Pty Ltd commissioned the first stage of a kyanite
separation circuit in its mineral sands operation about mid-1982 and by 1983
hope to be producing some 5000 t/year of by-product kyanite concentrate.

Australian production peaked at 3500 t in 1963 but has since steadily declined;
production was 331 t in 1981. Imports in 1981, under an item which included
kyanite, sillimanite, andalusite, mullite, and dinas earth, totalled 658 t.

South Africa, USA, France and India are major producers. It is likely that Australia could meet its own requirements in any emergency, as the main consideration of exploitation continues to be the cost of transport. The presence of markets in Japan, particularly for kyanite continues to encourage some exploration.

Talc and pyrophyllite

Although talc and pyrophyllite are chemically different (talc is a hydrous silicate of magnesium whereas pyrophyllite is a hydrous aluminium silicate), the two minerals are often discussed together because they have similar physical properties.

Australian production of talc in 1981 totalled 74 840 t; production was nearly all from Western Australia (53 718 t), by two producers - Three Springs Talc at Three Springs, and Mount Seabrook Talc from its mine northeast of Meekatharra. Mount Fitton, SA, in the northern Flinders Ranges is also an important centre of production, especially for Australian industry. Lower grade and lesser amounts of talc were also mined in South Australia at Gumeracha and Tweedie Gully; total production from South Australia in 1981 was 21 046 t.

Australia is by far a net exporter of talc; exports in 1981 totalled 82 641 t and imports 329 t.

Talc is a very versatile industrial mineral which, after milling, is used in ceramics, paints, rubber, plastics, insecticides, agricultural dusts and, of course, cosmetics. The average level of Australian consumption of talc is about 33 000 t/year.

Pyrophyllite is used mainly as a refractory. Australian production (8 146 t) was, in 1981, restricted to 2 locations - Pambula and Mudgee, both in New South Wales. Exports of pyrophyllite in 1980, unlike talc, were negligible - about 100 t.

As well as its use as a contact refractory, pyrophyllite, because of its high fusion point, it also used in vitreous china, crockery, electrical porcelain, sanitary ware, wall and floor tiles, and whiteware ceramics generally. Pyrophyllite can substitute for talc in many applications and, with its high anti-skid property, is also used in road-surfacing aggregate.

World production of talc and pyrophyllite in 1981 totalled about 6.4 Mt; major producers were Japan, USA, South Korea, USSR, France and India.

Vermiculite

This mineral has the ability to expand to many times its original volume when heated to high temperatures. It is used for fire and rot-proofing, as an insulator in electrical and heating equipment, in the manufacture of building plaster, and as a light-weight aggregate in concrete. Western Australia is the only State in which vermiculite is produced; production in 1981 was 176 t. A small amount is also imported (3715 t in 1981), South Africa being the main supplier (73%). USA and South Africa account for 90% of total western world production.

Salt & other sodium compounds

Salt (NaCl) production in Australia is all by solar evaporation, mainly of sea water but also of underground brines. Most of Australia's production is from four large operations in Western Australia; this is nearly all exported, most of it to Japan. Australia's own salt requirements are supplied by various smaller operations situated mainly in South Australia, Victoria, and Queensland.

Australia's salt industry expanded rapidly in the late 1960s and early 1970s to meet increased demand for salt from Japan's chemical industry; the expansion was confined to Western Australia where about 4.5 Mt/year of new salt production capacity was constructed and commissioned. In the mid-1970's export demand slackened and the industry was plagued by excess capacity. The Australian government than set a minimum f.o.b. price of US\$8.13/tonne for salt exports but this control was lifted a year later, in March 1977. World demand and salt prices have since improved.

Australian salt production in 1981 was 6.72 Mt; production from Western Australia accounted for nearly 85% of this. The large export-oriented operations in Western Australia are located at Dampier and Lake MacLeod (Dampier Salt), Port Hedland (Leslie Salt Co.), and Shark Bay (Shark Bay Salt Pty Ltd);

requirements of Western Australia's local markets are supplied by WA Salt Supply (1977) from Lake Deborah near Koolyanobbing and Western Salt Refinery Pty Ltd from Pink Lake near Esperance.

ICI Australia Limited is the largest of Australia's salt producers producing for Australian markets. The company produces about 500 000-600 000 t/year of salt from Dry Creek, SA for manufacturing sodium carbonate and sodium hydroxide at its nearby alkali plant at Osborne; ICI also produces about 150 000 t/year of salt from underground brine and sea water at Bajool, Qld, about 30 km south of Rockhampton, which the company uses for manufacturing sodium hydroxide at Botany, NSW, and Yarraville, Vic. Other important salt producers (and the location of their operations) are Cheetham Salt Ltd (Port Phillip Bay, Corio Bay, and Lake Tyrrell, all in Victoria), The Broken Hill Pty Co. Ltd (Whyalla, SA), Waratah Gypsum Pty Ltd (Lake MacDonnell, SA), Australian Salt Co. Ltd (Lake Bumbunga, SA), Ocean Salt Pty Ltd (Price, SA), and Central Queensland Salt Industries Ltd (Bajool and Bowen, both in Queensland).

Although consumption of salt is more evident in households and in food processing industries, the greater part is used by the chemical industry for producing sodium carbonate (soda ash), and sodium hydroxide and co-product chlorine. Sodium carbonate is used mainly in manufacturing glass but also in many other industrial applications, and sodium hydroxide is used mainly in the Bayer process for processing bauxite to alumina. Despite Australia's position as one of the world's main exporters of crude salt, domestic requirements of salt-derived sodium compounds, particularly sodium hydroxide, are largely met by imports because Australia's capacity to process salt to sodium compounds is limited by its capacity to also consume by-product chlorine. Chlorine is used in a variety of chemicals and in many applications; its more important uses are as a bleaching agent, particularly in the paper industry, and in the petrochemical industry for manufacturing vinyl chloride which is a basic building block of many plastics.

Resources of seawater-derived salt are practically limitless; brine resources have not been adequately assessed but appear to be substantial. In recent years, as a result of exploration drilling for oil and gas, extensive subterranean beds of rock salt have been identified, particularly in central and northern Australia, further adding to total resources. However, there seems little likelihood of rock salt deposits being commercially developed in the foreseeable future, particularly as investigations to date have not indicated the presence of potash, an important associated mineral of some salt deposits in other parts of the world.

Gypsum (CaSO₄.2H₂O)

The formation of gypsum usually requires semi-arid conditions. Although Australian occurrences are widespread, they are all within the region where annual rainfall is less than 500 mm. In 1981 Australia produced about 1.75 Mt of gypsum, nearly 60% of it from South Australia, where the main production centres are Lake MacDonnell and Kangaroo Island. Other important areas of production are Shark Bay, Lake Brown, Lake Seabrook, Lake Cowcowing and Lake Hillman in Western Australia, Cowangie, Nowingi, and Hattah in Victoria, and a smaller amount is produced from the Cobar Mining Division in New South Wales.

Australian exports of gypsum in 1981 totalled 620 802 tonnes and were valued at \$7.03 million; imports are negligible.

Calcined gypsum, or plaster of Paris, is widely used in the building industry for plaster board and related products, and also in the manufacture of special plasters for use in pottery, in orthopaedic and dental applications, and as statuary plaster. Gypsum is also an important ingredient in cement and is often also used as a fertiliser and soil conditioner.

Australia's gypsum resources are very large; demonstrated resources total more than 760 Mt.

Pigments and ochres

The terms as used here denote natural earth pigments such as the iron oxides, stained clays, and slate powder which are used to give colour or body to paints, plaster, cement, linoleum, and rubber. A number of small deposits have been worked over the years and Australia undoubtedly has large resources of the iron oxide variety. In recent years, red and yellow ochres have been mined in the Ulverstone-Penguin area of northwest Tasmania and red ochre has been produced in the Weld Range area of Western Australia. Production of mineral pigments in 1981 totalled 839 t. All production was red ochre from the Weld Range, W.A. Domestic consumption is small. Some 11 400 t of natural and synthetic iron oxides were imported in 1980-81.

Sulphur-bearing materials

Commercial deposits of elemental sulphur ('brimstone') and sulphur-bearing ('sour') natural gas are not known in Australia and in recent years 60-80% of demand has been met by imports, mainly from Canada and USA. Imports in 1981 of 556 000 t were valued at \$42.81 million f.o.b. Four oil companies recover sulphur from the refining of imported crude oil; 14 321 t of sulphur was recovered from such refining operations in 1980. Although combined capacity of their six recovery plants is about 52 000 t/year of elemental sulphur, actual

production depends on the sulphur content of the refinery feedstock. However, Australia has large reserves and resources of sulphurous materials such as iron sulphide (pyrite), zinc sulphide (sphalerite), and lead sulphide (galena).

Sulphur is nearly all consumed in the form of sulphuric acid, and in 1981, 23% of Australian sulphuric acid production of 2.08 Mt was from indigenous material, as by-product acid of metal-smelting operations. The metal smelters at which sulphuric acid is recovered (and the material from which it is recovered) are located at Cockle Creek, NSW (lead and zinc concentrates from Broken Hill, Woodlawn and Cobar, NSW), Port Pirie, SA, (lead concentrate from Broken Hill), and Risdon, Tas. (zinc concentrates from Broken Hill, Rosebery, Tas., and Mount Isa, Qld). Western Mining Corporation Ltd recovers sulphur as ammonium sulphate at the company's nickel refinery at Kwinana, WA. A pyrite-based acid plant, at Burnie, Tasmania which used by-product pyrite from Mount Lyell and Rosebery in Tasmania, ceased production in August 1979, for economic reasons.

The recovery of sulphur as sulphuric acid from sinter gases of indigenous sulphide minerals dates back mainly to the early 1950s when brimstone was in short supply and the Federal Government introduced incentives, by way of bounty payments, to promote self-sufficiency. Later, when changing circumstances abroad increased the supply situation, the Government announced that bounty payments would not be renewed after June 1965 but, on reconsideration, the Sulphuric Acid Bounty Act was first extended to 1969, and then to 1972, when it lapsed.

Imported sulphur is used mainly for manufacturing sulphuric acid which, together with most of the acid recovered from indigenous materials, is used for manufacturing phosphatic fertilisers, particularly single superphosphate. Of total Australian acid consumption in 1981 (2.31 Mt), 74% was in fertilisers; 15% was in general chemicals, and 11% was in metallurgical applications.

In the chemical industry sulphuric acid is used mainly for manufacturing hydrofluoric acid. As a general chemical itself, the use of sulphuric acid extends to many diverse industries and industrial activities including wool scouring, the production of drugs, explosives, glue, leather, paper, soap, glycerine, and detergents, and in lead-acid batteries. In the mineral industry sulphuric acid is used for processing ilmenite to titanium dioxide and for extracting uranium oxide (yellowcake) from its ore. It is also widely used in metallurgical applications, especially for galvanising, tin plating and other electroplating processes, copper and zinc refining, and cleaning metal surfaces for soldering and welding. About 23 900 t/year of elemental sulphur is consumed

in Australia for other-than-acid uses, of which the main ones are in insecticides, fungicides, gunpowder, as a vulcanising agent in rubber, and for manufacturing carbon disulphide.

Fertiliser minerals

In Australia, single superphosphate, despite its higher transport costs per unit of phosphorus (P) compared with double and triple superphosphate, remains the most widely used fertiliser because of Australian soils' widespread need for sulphur (S) as well as phosphorus. Other major elements added to soil as fertiliser are nitrogen (N) and potassium (K). Most of the fertilisers are chemically manufactured; potassium chloride, potassium sulphate, and sodium nitrate are exceptions to this, and minor quantities of crushed, locally produced phosphate rock are applied directly to the soil in South Australia and Queensland.

Besides the major nutrients, N, P, and K, some soils also require calcium or magnesium which is generally added as ground gypsum, limestone, or dolomite, but details of consumption are not available. Minute quantities of other elements, notably copper, zinc, manganese and iron, also play an important part in plant nutrition. Such "trace elements" are normally applied mixed with the main fertilisers.

Phosphate rock: Phosphate rock is used almost entirely for manufacturing superphosphate, production of which in 1981, in terms of single-superphosphate equivalent (9.6% P), was 3.66 Mt. Consumption of superphosphate in Australia has traditionally been subsidised by the Federal Government; presently the superphosphate bounty is \$138/tonne of available P, equivalent to \$12/tonne for single superphosphate.

Australian fertiliser manufacturers have been entirely dependent on rock imports; these have come mainly from Nauru, Christmas Island and, up to 1979 when reserves were depleted, Kiribati (previously known as Ocean Island).

Very large resources of phosphate rock were discovered in 1966, in northwest Queensland, by BH South Ltd, now a subsidiary of Western Mining Corp Holdings Ltd (WMC). The company brought its Duchess deposit to production in 1975 but due to flagging export markets and a reluctance of Australian fertiliser manufacturers to modify existing plant to accommodate a new product, failed to achieve anticipated sales and the operation was put on care-and-maintenance in 1978. Operations were resumed in the latter part of 1981, but the mine was again closed down at the end of 1982.

A small quantity of phosphate rock (4937 t in 1981) is produced each year in South Australia; this material, because of its high iron and aluminium content, is not suitable for manufacturing superphosphate and is used locally in horticultural applications.

Before mid-1981 the distribution of phosphate rock from all sources had been controlled by the British Phosphate Commissioners, an inter-government agency representing the governments of Australia, New Zealand and UK. Similarly, the Christmas Island Phosphate Commission, representative of the Australian and New Zealand governments, controlled mining operations on Christmas Island. As the result of a government-instigated enquiry into the phosphate industry, the main recommendations of which were implemented from 1 July, 1981, both the BPC and CIPC are being phased out. The BPC's role of distributing rock has been taken over by the fertiliser manufactures themselves, as the Australian Phosphate Corporation Ltd, while all operations on Christmas Island are to be carried out by a wholly Australian government-owned company called The Phosphate Mining Company of Christmas Island Ltd.

Imports of phosphate rock in 1981 totalled 1.96 Mt and were valued at \$98.4 million, f.o.b.

Australia's identified resources of phosphate rock are substantial: 2800 Mt of near-economic (paramarginal) resources, and 2480 Mt of subeconomic resources.

Potash: Potassium, together with nitrogen, phosphorus, and sulphur, is one of the four main nutrients essential for plant life. Potassium deficiencies in soil are generally rectified by applying potassium chloride or potassium sulphate. Australia has no known deposits of either of these salts and its requirements are met by imports mainly from Canada and USA. In 1980 Australia imported about 178 000 t of potassium chloride and about 22 000 t of potassium sulphate; the total value of imports including 28 807 tonnes of other potassic fertilisers, was \$22.63 million, f.o.b.

Potassium also occurs as a constituent of the mineral alunite $(\mathrm{KAl}_3(\mathrm{SO}_4)_2(\mathrm{OH})_6)$, deposits of which occur in various parts of Australia Although these deposits are not regarded as economic sources of potassium, they have, as a wartime measure, been exploited as a source of potassic fertiliser. At the end of World War II, the Western Australian Government sponsored attempts to produce commercial-grade potash from an estimated 12 Mt of alunitic red mud in Lake Campion, WA, about 50 km north of Merredin. The deposit was worked to 1949, when operations ceased for economic reasons; the venture produced about 13 000 t of potassic fertiliser from about 175 000 t of alunite.

Small amounts of alunite have also been produced from Bulahdelah, NSW; production from here stopped in 1952 after about 71 000 t had been produced in the previous 60 years.

In November 1973 Texada Mines Pty Ltd commissioned plant to produce langbeinite $(K_2Mg_2(SO_4)_3)$ from the residual brine liquor of its salt (sodium chloride)- producing operation at Lake MacLeod, WA. The project was beset by technical problems, declining export markets and ultimately by flooding. The langbeinite operation was then put on care-and-maintenance, pending further feasibility studies. About 10 000 t of material, produced and stockpiled during progressive commissioning of the plant, was sold overseas in 1976 after BHP bought a controlling interest in the company. The controlling interest of the Lake MacLeod operation has since passed to Dampier Salt (Operations) Pty Ltd, a subsidiary of CRA Ltd.

Nitrates: Australia has no known deposits of nitrates. However, many important nitrogenous compounds are manufactured in Australia, mainly from indigenous material; minor imports supplement requirements. The starting point for manufacturing nitrogenous compounds is ammonia (NH3), which can be produced or recovered from various raw materials including natural gas, refinery gas, (imported) naphtha, and water (all for their hydrogen component), and air (for its nitrogen component). The Broken Hill Pty Co. Ltd produces about 70 000 t/year of ammonium sulphate from ammonia recovered from coke-oven gas at the company's steelworks at Newcastle and Port Kembla, NSW and Whyalla, SA. Consolidated Fertilizers Ltd (at Gibson Island, Qld), WMC (at Kwinana, WA), and Eastern Nitrogen Ltd (at Newcastle, NSW) manufacture ammonia from natural gas; Kwinana Nitrogen Co. Pty Ltd (at Kwinana, WA) makes ammonia from refinery gas; Queensland Nickel Pty Ltd (at Yabulu, Qld) manufactures ammonia from imported naphtha; and Electrolytic Zinc Co. of Australasia Ltd (at Risdon, Tas.) synthesises ammonia from nitrogen and hydrogen, obtained respectively from fractional distillation of air and electrolysis of water.

The main nitrogenous fertilisers are ammonia, ammonium sulphate, urea, ammonium phosphate, and ammonium nitrate. Compounds of nitrogen are also used in industry; ammonium nitrate is used in some types of explosives and the ammonia produced by WMC and Queensland Nickel is used in metallurgical processes to recover nickel metal from its ore. Australian production statistics for individual nitrogenous compounds are not available for publication, but BMR estimates the nitrogen content of nitrogenous fertilisers produced in Australia in 1979-80 (the most recent statistics available) as 249 400 t; the nitrogen content of imports of various nitrogenous fertilisers in the same period is estimated by BMR as 28 900 t.

Consumption of nitrogenous fertilisers has increased markedly since 1966 when the Commonwealth Government introduced the Nitrogenous Fertiliser Subsidy Act which provided a benefit of \$78.74/t of contained N to consumers of nitrogenous fertiliser; the steady increase of consumption is partly due to the use of nitrogen in new applications, especially wheat, other cereals, and pasture. However, the Industries Assistance Commission (IAC) recommended in 1975 that the subsidy be phased out over a period of three years. After deferring its decision in 1976, the Government reduced the subsidy to \$60/t of contained N from 1 January 1977. A further reduction in 1978 was also deferred, but from 1 January 1979 the subsidy was reduced to \$40/tonne ofcontained N, and from 1 January 1980 to \$20/t contained N, at which level it has remained.

THE ROLE OF GOVERNMENT IN ASSISTING MINERAL EXPLORATION AND DEVELOPMENT

The Division of National Mapping in the Department of National Development and Energy provides a focus for the various Government organisations engaged in topographical mapping. Overall coordination of the topographic mapping program, both Commonwealth and State, is provided by the National Mapping Council, consisting of the Director of National Mapping (Chairman), the Director of Military Survey, the Commonwealth Surveyor General, the Hydrographer RAN, the Directors of Mapping in New South Wales and Tasmania, and the Surveyors General in the other States and the Northern Territory; there is complete interchange of mapping data between Commonwealth and State members of the National Mapping Council.

The Commonwealth undertakes all topographic mapping within its own territories and is active in most States; the Commonwealth mapping organisations are the Division of National Mapping which has the primary responsibility, and the Royal Australian Survey Corps. The basic scale of topographic mapping is 1:100 000 with 20 m contours: about 1300 maps have been published. The whole of Australia is covered by 1:250 000 maps, but only about one-third are contoured. The 47 maps covering Australia at the 1:1 million scale are kept up to date. Some 830 map areas at 1:100 000 scale have also been covered as orthophoto maps, which look like mosaics of air photographs, but have distortions removed to make them true to scale. Maps at larger scales are produced by the Army and the States, but only for limited areas. Air photographs and Landsat imagery for the whole of Australia are also available.

National Mapping also makes bathymetric maps of the continental shelf at 1:250 000, with a contour interval of 10 m; 68 maps have been published and 36 more map sheet areas have also been surveyed.

National Mapping publishes thematic maps of interest to the minerals industry, notably "Energy Resources", "Coal Resources" and 'Minerals Other Than Fuels", updated annually; and the "Geology", "Mineral Deposits" and "Mineral Industry" maps in the Atlas of Australian Resources. A series of thirteen leaflets describing all Natmap's products is available on request from Natmap Sales, P.O. Box 31, Belconnen, A.C.T. 2616.

The Bureau of Mineral Resources, Geology & Geophysics of the Department of National Development & Energy was established in 1946; BMR has recently been given a new and enhanced role, becoming a geoscientific research organisation with a substantial capacity to undertake the more sophisticated scientific studies required to support the fullest development of Australia's mineral resources. It will develop an integrated scientific understanding of the geology of the Australian continent, the Australian offshore area and the Australian Antarctic Territory, as a basis for mineral exploration. BMR will also undertake assessments of Australia's mineral resources and will become the primary national source of geoscience data.

Both Commonwealth and State agencies have undertaken regional geological mapping in the past. Programs were agreed upon in consultation between EMR and the State Geological Surveys, but the work, being an integral part of scientific research programs, was necessarily a good deal slower than that of the topographic mapping program. By now over 90 percent of the continent has been covered at 1:250 000 scale. Mapping of complex areas at 1:100 000 scale is now well advanced in several regions. In pursuance of its new role, BMR is withdrawing from systematic geological mapping; such work will now be carried out by State Geological Surveys.

Regional geophysical surveys have been carried out mainly by BMR, and a great deal of work has been done using airborne equipment. The ultimate aim is to provide nation-wide coverage of gravity, magnetic, radiometric, and seismic measurements. BMR completed a reconnaissance marine geophysical survey of the Australian continental margin several years ago. Private companies and State Geological Surveys have also made important contributions.

State governments assist mineral search by providing, under certain conditions, services such as assay and drilling services and metallurgical test work.

Another important though indirect form of Commonwealth assistance is through taxation concessions, the general purpose of which is to encourage exploration and development. The general situation regarding Commonwealth income tax in the mining industry is as follows:

- . The income tax rate is 46% of taxable income.
- Petroleum exploration expenditure is deductible against assessable income from any source.
- For other mineral exploration, other than for gold, there is an immediate deduction of mineral exploration expenditure incurred anywhere in Australia, against income from mining activities only.
- All capital expenditure at the mine site (except exploration expenditure, which is written off immediately as above) of both general mining and petroleum mining can be written off on a straight line basis at a rate of 10% per year of the prime cost. Certain plant is eligible for straight line depreciation at annual rates of 20% and 33 1/3% of prime cost. In the case of a mine with an estimated life of less than 10 years, the miner can write off the capital expenditure by annual instalments over the life of the mine.
- For capital expenditure away from the mine site (e.g. for transport facilities or for certain port facilities) the capital expenditure can be deducted over 10 years or 20 years at the option of the taxpayer.
- The 'investment allowance' for new items of equipment (which applies to all industries) is 18 percent of the value of almost all depreciable equipment installed before 1 July 1986.

Particular minerals have, in the past, been given specifically-favourable taxation treatment in the form of a 20% exemption from tax, because it was felt that there was a national need to foster exploration for them; and gold mining as a special case has been free of income tax since 1924. The 20% exemption from tax for particular minerals was removed in 1973, but profits from gold mining are still tax free.

The government has, at various times, also intervened to promote further processing in Australia. Such was the case for the beach-sand industry. In the early days of its history the industry exported a mixed concentrate the low value of which reflected a low degree of processing; following the introduction of certain export controls, such concentrates are now separated into components rutile, zircon, and monozite the unit value of which is increased by the further processing.

Government stockpiling has also been employed occasionally as a means of encouraging production, e.g. monazite and beryl; no current Government stockpiling is in force, although the Commonwealth Government has supported an industry-run stockpiling scheme for zircon.

Policies of export control have been applied with flexibility since 1960 and a policy of permitting partial exports of ores, even when known reserves were low, has brought satisfactory results in terms of increased resources for iron ore, manganese, and uranium.

SUMMARY OF MINERAL RESOURCES AND MINERAL PROCESSING

A broad summary of mineral resources (which are not necessarily economic at present) and capacities for mineral processing in Australia, directed particularly toward the performance of the mineral industry in times of emergency, has been attempted in Table 2. Discussions of the magnitude of resources present problems because no realistic estimate of identified resources in Australia is yet available for many of the minerals concerned. For several reasons, published figures tend to be ultra-conservative. BMR is carrying out more realistic assessments and has completed and published first assessments of identified resources of black coal, beach-sand minerals, tin, iron ore, tungsten, antimony, and chromium. In Table 2 identified resources have been classified under general categories based on the expected life of known resources at current rates of production, as follows:

Very large - sufficient for more than 100 years

Large - sufficient for 30-100 years

Adequate - sufficient for 15-30 years

Small - sufficient for 5-15 years

Very small - less than 5 years

In some cases, the uncertainty of reserves is indicated.

The table draws attention to a number of cases where mineral resources are available but where there is no associated capacity to produce the metal or processed material needed by the manufacturing industry.

TABLE 1: VALUE OF EXPORTS BY AUSTRALIAN STANDARD INDUSTRIAL CLASSIFICATION (\$1m)

ASIC Divisions/Sub-divisions	1978-79	\$	1979-80	\$	1980-81	\$	1981-82	Z
Agriculture, forestry, fishing and hunting								
Agriculture	2514		4325		3942		4025	
Forestry and logging	1		2		3		4	
Fishing and hunting	25		26		22		17	
Total	2540	17.8	4352	23.1	3966	20.7	4046	20.7
Mining								
Metallic	1561		1863		1729		1941	
Coal	1524		1678		1975		2291	
Other (a)	122		100		102		411	
' Total	3207	22.5	3641	19.3	3806	19.9	4643	23.7
Manufacturing								
Food, beverages and tobacco	3418		3852		4064		3687	
Chemical, petroleum and petroleum products	588		770		853		910	
Basic metal products	2316		3255		2862		2886	
Other manufactures	1650		2147		2558		2663	
Total	7972	56.0	10024	53.1	10337	53.9	10146	51.8
Other industries (b)	352	2.5	588	3.1	(c)832	4.3	471	2.4
Non merchandise	170	1.2	265	1.4	228	1.2	280	1.4
Total	14241	100.0	18871	100.0	19169	100.0	19586	100.0

⁽a) Construction materials, other non-metallic minerals, and oil and gas.

⁽c) Includes oil and gas.

⁽b) Wholesale and retail trade, business services, waste and scrap n.e.c., secondhand goods.

	Availabi	lity			Pro	ocessing	
	Distribution	Identified resources	Current raw material imports	Level of processing	Distribution	Current imports	Possible disad- vantages in emergency
Energy miner	als		,				
Petroleum (a) Crude Oil	Wide but mainly Bass Strait	Med ium	About 30% of requirement - crude and refined products	Full range of refinery prod- ucts and petro- chemicals	Well distrib- uted	Some refinery products, heavy crudes	Major supplies offshore. Import of heavy crudes
(b) Natural Gas	Wide, but some with long dis- tances to markets	Large	- ,	Sales gas. LPG for export and home market. Etheline for petrochemicals.	Expanding. LNG export to commence 1985-86.		-
Uranium	Northern Australia, WA, SA	Large	-	U ₃ 0 ₈ (yellow cake) radio- isotopes	Northern Australia, Sydney	Radio-isotopes	Reserves wide- spread but current plant only in NT.
Coal	Mainly Eastern Australia	Very large	Some high- quality anthracite	Coke, coal gas, char, briquettes	Coke-Qld, NSW, SA, Char - Vic. WA		No chemical plants
Oil Shale	Eastern Australia	Large	-			-	-
Ferrous	*			*			
Iron ore	Well distribu- ted but largest resources in WA	Very large	- - - - -	Ores concent- trates, pellets, and sinter to steels and fabrications	Steel - well distributed	Ferroalloys, special steels	• ; • ,
Nickel	.WA, Qld	Very large	, -	Concentrates, matte, metal, oxide, sulphide by-product	WA, Qld	Metal and alloys	Metal available but remote from most industrial centres
Chrome	WA, small NSW, Qld	Large metallurg- ical and chemical	Bulk of requirements	-	-	Ferrochromium	Largely depend- ent on imports.

	Availabi	l ity			Pro	cessing	** <u> </u>		
	Distribution	Identified resources	Current . raw material imports	Level of processing	Distribution	Current imports	Possible disad- vantages in emergency		
errous (co	ontinued)	,							
langanese	Groote Eylandt, NT	Large (metallur- gical)	Battery- grade	Concentrates, ferromanganese and silico- manganese sinter and alloys	NT, Tasmania	Some ferro- manganese and metal	Main reserves in NT. No battery- grade. No metal capacity.		
ungsten	King Island, Tas., and Qld. Minor-NSW, WA.	Adequate	-	Concentrates including artificial scheelite	-	Tungsten	Small tungsten carbide capacity (but could be increased)		
olybdenum on-ferrous	Minor-NSW, Qld, Tas.	Very small	Bulk of requirements			Ferromolybd- enum, molybdic trioxide	No domestic capacity of acid and ferro- molybdenum in emergency.		
in	Well distributed - mainly Tas.	Adequate	-	Concentrates and metal	Metal - Sydney; lower quality metal at Greenbushes	Minor	Major deposits not on main- land. Only one refinery of highgrade tin.	*	
ead	Well distributed - mainly eastern Australia		-	Concentrates, bullion, and metal	Metal - SA, Bullion NSW, Qld.	-	-		
ilver	Well distributed - mainly eastern Australia		-	Metal	SA; some metal from scrap - NSW Vic., WA.	-	-		
inc	Well distributed - mainly eastern Australia	Large			Metal - Tas., NSW, SA	-	-		
opper	Well distributed - mainly eastern Australia		amounts		Metal - Qld, NSW	-	-		
old	Mostly in WA but also NT, Tas.			bullion.	Mostly WA (Perth); also SA, NSW	-	-		

	Availat	oility			F	rocessing	
	Distribution	Identified resources	d Current raw material imports	Level of processing	Distribution	Current imports	Possible disad- vantages in emergency
Mineral sar	nds					· · · · · · · · · · · · · · · · · · ·	
Titanium	E and SW coasts	Adequate		Concentrates, upgraded ilmenite, pigments	Pigment - WA, Tas.	Metal and small tonnages of special-type pigment.	No metal capacity
Zirconium	E and SW coasts	Adequate	-	Concentrates	, ·	-	No metal or oxide capacity
Monazite	E and SW coasts	Adequate		Concentrates	-	·	
Light metal	!s					,	
Aluminium	Northern and SW Australia	Very large	-	Alumina, metal	Metal - NSW, Vic., Tas., Qld.	Minor shapes	Major resources N. Aust. Alumina (WA, Qld) remote from smelters
Magnes i um	Well distributed (magnesite)	Adequate	About 60% magnesite	No metal produced	· - .	All metal	Metal can be produced as in World War II
Fertiliser/	industrial mineral	<u>s</u>					
Phosphorus (phosphate rock)	NW QId, NT	Very large	Nearly all requirements	Fertiliser	All States	Some mixed fertilisers	Domestic resources mainly in NW Qld, NT.
Potassium	WA	Appear adequate	All require- ments	Fertiliser	All States	Some mixed fertilisers	Deposits remote from factories.
Sulphur	(Sulphides) well distributed	Elemental nil, sulphide large	60-70% of requirements	Acid	All States	Small amounts of acid	
Salt	Well distributed	Unlimited	- * ,	Salt, sodium hydroxide, chlorine, sodium carbonate	NSW, Vic.,	Some chlorine, 70% caustic soda require- ments.	

.

	Avail	ability				Processing	
	Distribution	ldentlfled resources	Current raw material imports	Level of processing	Distribution	Current imports	Possible disad- vantages in emergency
Fertiliser	/industrial miner	als (continued)					
Asbestos	NSW, WA	Chrysotile (short fibre) adequate; Crocidolite	Small	Fibre grades		,	-
			requirements	-	-	-	-
Fluorspar	WA, QId	Adequate	All requirements	Hydrofluoric acid	NSW	~	Deposits low grade and in remote locations
Minor meta	ls .				*		
Vanadium	WA, Qld (oil shale and uranium)	Large	, -	Vanadium pentoxide product suspended	ion -	All vanadium & composites	-
Bismuth	Mainly NT	Adequate	-	Bismuth concentrates containing gold & copper	-	All metal	Small metal capacity
Cobal†	Eastern Australia, WA	Adequate (from nicke! ores)	-	Oxide and sulphide by- products	Tas., WA, Qld	Cobalt, cobalt alloys, oxides and hydroxides.	No metal or alloy capacity
Mercury	Eastern Australia	Small but uncertain	-	Metal (by-product)	Tas.	Almost all requirements	Very little normal production - could be increased
Mica	Central and Western Australia	Adequate	-	-	-	All grades	No current opera- tion but could be produced
Cadm ium	NSW, Tas, Qld	Adequate	-	Metal (by-product)	NSW, SA, Tas.	-	-
Antimony	NSW, Victoria	Adequate	Very small	Metal (by-product) contained in antimonial lead	SA	Metal plus oxides	-

	Availability			Processing			
	Distribution	Identified resources	Current raw material imports	Level of , processing	Distribution	Current imports	Possible disad- vantages in emergency
Minor meta	ls (continued)						
Beryllium	NSW, WA	Small but uncertain	-	No processing	-	Any metal required	No metal capacity
Tantalum	WA	Large	Bulk of requirements	Upgraded Ta ₂ 0 ₅ •	WA	All metal	No metal capacity
Columbium	WA	Large	Bulk of requirements	Upgraded Cb ₂ O ₅ •	WA	All metal	No metal capacity
Lithium	WA .	Probably adequate	Bulk of requirements	=	-	All metal	No metal capacity

.