1984/8 6.1

BMR PUBLICATIONS COMPACTUS (LENDING SECTION)

*This is the only hand copy of this record. Copies 1-5 are on microfiche.

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

023443

Record 1984/8

RECORD

A DUAL WATER WIRELINE LOG INTERPRETATION MODEL, COMPUTER PROGRAM DW.

by

G.R. MORRISON

Record 1984/8

A DUAL WATER WIRELINE LOG INTERPRETATION MODEL, COMPUTER PROGRAM DW.

Ъу

G.R. MORRISON

Table of Contents

		Page Number
1.	Introduction	1.
2.	Background and Theory of the Dual Water Model	2.
3.	Derivation of the Water Saturation Equations.	6.
e _a .	(i) Case 1 when Rwb < Rwf and development of the theoretical water saturation equation.	6.
	(ii) Case 2 when Rwb > Rwf and development of the "approximate" water saturation equation.	8.
4.	auxiliary Equations used in the Program.	1C.
	(i) Bound and Free Water Resistivities.	10.
	(ii) Volume of Shale.	10.
	(iii) Bound Water Saturation.	11.
	(iv) Effective Porosity.	11.
	(v) Effective Water Saturatio .	. 12.
5.	Empirically Based Equations used in the Program.	13.
	(i) Total Porosity and Matrix Density.	13.
	(ii) True Formation Resistivity.	14.
	(iii) Hydrocarbon Correction.	15.
	(iv) Averaging of Pay, Effective Porosity and Water Saturation.	16.
	(v) Net Hydrocarbon Pore Thickness.	17.
6.	Operating Instructions for the Dual Water Wireline Log Interpretation Model, Computer Program "DW"	19.
7.	Example program compilation, loading and run.	21.
8.	Example results.	22.
	(i) Example 1, no micro-spherically focussed log	20
	present.	22.
	(ii) Example 2, a complete logging suite is present.	25.
9.	Program Print-out and Explanation of each Segment.	29.
10.	Program Flowchart.	51.
11.	Bibliography.	56.
12.	Appendices	57.
	Appendix 1, A List of the Variables used in this Record and their Definitions	57
	Appendix 2, Input Data Format	60

1. Introduction

Development of the "Dual Water" wireline log interpretation model started in May 1983 and was adapted over a period of ten months so that it could cope with a wide variety of field conditions. The computer program itself is written in Fortran 77 language and is based on the "Cyberlook" program used by the Schlumberger wireline well logging company. The main sources of information in the form of equations and theoretical explanation of the model have come from Schlumberger publications. The aim of the program is to determine effective water saturation and porosity from raw wireline log data.

The dual water model is not intended to replace the program LOG4 (a shaly-sand log interpretation program) written by L.E. Kurylowicz in 1978. It is, however, presented as an alternative log interpretation model, as the water saturation equations used in the "dual water" model program (program DW) are derived from a different source to the Simandoux equation used in LOG4. The dual water model has two advantages over the LOG4 program. Firstly, the water saturation equation in the dual water model can be used world wide (theoretically), whereas the Simandoux water saturation equation in LOG4 has been developed for the type of conditions found in Indonesia and Australia. Secondly, the dual water model equations appear to be a lot more robust than the LOG4 equations, in that they can handle 100% shaly formations and 100% water filled reservoir sands without encountering the arithmetic problems found with the LOG4 program.

The dual water model has been designed to be completely compatible with LOG4 data files and hence no extra effort is required to run the DW program. The model has found a place in BMR's log interpretation capability and is currently used to calculate an initial estimate of porosity and water saturation over an entire hydrocarbon bearing interval. LOG4 is then used for a more qualitative calculation of these parameters over specific reservoir sands.

2. Background and Theory of the Dual Water Model

The name, "dual water model" is derived from the two types of water present in a shaly-sand formation. (Note: the terms "shale" and "sand" are used in the nomenclature of a log interpreter, rather than being strictly geological. Here, a sand is used to define any porous reservoir rock, while shale is used to describe a mixture of silt and clay and is regarded as having little or no porosity). The two waters involved are (i) the free connate formation water attached by surface tension to the reservoir sand and (ii) the immovable water which is bound to the shale interspersed within the sand. This latter water is bound by the alignment of the dipolar water molecule and the behaviour of the ions dissolved in this water to the electric field generated by the overall negative charge of the clay crystals.

The clay mineral family consists mainly of montmorillonite, kaolinite, vermiculite, illite and chlorite. Each of these five minerals has an overall negative charge (in their dehydrated form) except chlorite. The reason for the negatively charged clay crystal is due to the process of ionic substitution. In montmorillonite for example, the A1³⁺ ion can be substituted by the Mg²⁺ ion in the clay crystal lattice. This substitution would result in one excess electron charge unit. This process occurs in all the negatively charged clay minerals. In chlorite however, there is an excess of positively charged ions in the crystal lattice and this explains the net positive charge of the chlorite crystal. However, the chlorite crystal lattice rarely forms completely and as a consequence, partially formed chlorite crystals are neutralized by hydrated cations in the same manner as the rest of the clay mineral family (Hausenbuiller, 1978).

The Waxman-Smits model first proposed in 1967, suggested that a shaly formation behaved like a clean formation (i.e. a porous sand

containing conductive water) except that the bound water appears to be more conductive than expected from its bulk salinity. The dual water model is an improvement over the Waxman-Smits model, as it better fits their experimental data (J.L. Dumanoir).

In terms of the negatively charged clay minerals, this unexpected increase in conductivity is due to the overall negative charge of the dehydrated clay crystal and the behaviour of the ions dissolved in the free formation water near the clay crystal surface. Figure 1 (W.R. Almon, 1981), shows the local ionic concentration as a function of distance from the clay surface. This figure shows how the positively charged ions are attracted to the negative charge of the clay crystal while the negatively charged ions are repelled. The zone in which the cation concentration exceeds the anion concentration is described by the distance Xd and is known as the "diffuse layer" or Gouy layer. The distance Xd has been found to be inversely proportional to the square root of the salinity of the free formation water (W.R. Almon, 1981).

i.e.
$$Xd \propto \left(\frac{1}{\text{salinity}}\right)^{\frac{1}{2}}$$

The positively charged ions are kept some distance from the clay crystal surface by the bound water. Around each clay crystal is a thin layer of water molecules which align themselves in the electric field generated by the overall negative charge of the clay crystal. This thin layer of water is said to be adsorbed to the clay surface. Beyond the adsorbed water is the layer of positively charged ions which are also surrounded by water molecules and are aligned in the electric field of the positive ions. This latter water is known as the water of hydration. Figure 2 (W.R. Almon, 1981) shows the relationship between the clay crystal, positive ions and water molecules. The distance Xh is known as the Helmholtz plane and it describes the minimum possible distance from the clay crystal to the first layer of positively charged ions. The distance Xd = Xh only when the salinity of the free formation water is large enough.

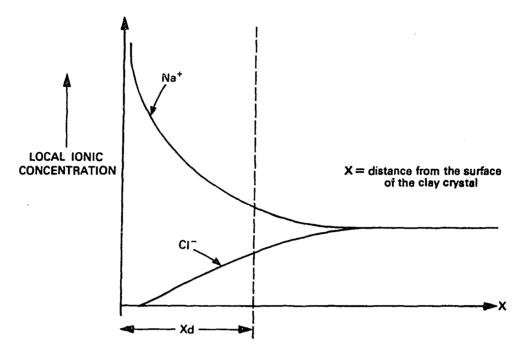


Fig. 1. Local ionic concentration as a function of distance from the clay crystal surface.

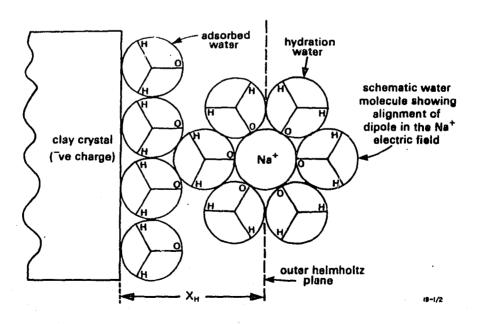


Fig. 2. Schematic view of outer helmholtz plane (ref. W.R. Almon, 1981. Fig. 1 & 2).

Although the distance Xh may be in the order of 6Å (for Na⁺), such a fine layer soon becomes significant if the surface area to volume ratio of the clay crystal is taken into account. Calculation of this area to volume ratio yields a figure in the order of 6300 acres per cubic foot compared to 0.1 to 0.2 acres per cubic foot for an average reservoir sand. (J.L. Dumanoir).

The main conclusions derived in this section are summarised by the three points below:

- (i) The conductivity of the clay crystal is due to the presence of the positive ions near the clay crystal surface. The exception being fully formed chlorite clay crystals.
- (ii) The numbers of sodium ions within the distance Xh is directly related to the surface area of the sodium clay crystal (e.g. kaolinite, illite and montmorillinite).
- (iii) Water far from the clay crystal surface has the same properties as the free formation water i.e. distances greater than Xd.

3. Derivation of the Water Saturation Equations (reference Schlumberger 1983 course notes: "Log Evaluation Techniques in Shaly Sands and Complex Lithologies")

The equations developed for the dual water log interpretation model are based on the saturation of the conductive fluids in the shale and the reservoir rock. The equations are derived to satisfy two cases i.e. either the bound water resistivity Rwb is less than the free formation water resistivity Rwf or visa versa. In the first case the theoretical water saturation equation is developed. This equation can be used irrespective of the relative magnitude of Rwb and Rwf however for practical purposes it is only used when Rwb < Rwf. An approximate equation for Swt is generated in case 2 when Rwb > Rwf which cuts down on computer processing time.

(i) Case 1 Rwb < Rwf: Figure 3 below dissects a shaly-sand formation into its various segments.

Clay Crystal	1	tive fluids Swt	hydro- carbon	reservoir rock
·	Øt Swb	Øt (Swt-Swb)	Øt (1-Swt)	
	tota	al porosity Øt		

Figure 3

See Appendix 1 of this report for the definition of the symbols used in the diagram above and in the following equations.

The conductivity of the fluids Cf, is obtained from summing their respective conductivities multiplied by the fraction of space they occupy within the total porous space \emptyset t.

Expanding on this statement:

$$Cf = \frac{Swt - Swb}{Swt} Cwf + \frac{Swb}{Swt} Cwb$$

The true formation resistivity is then given by the Archie equation:

$$Rt = \frac{Rf}{\emptyset t^2 Swt^2}$$

and as Rf = $\frac{1}{Cf}$

$$Rf = \frac{1}{\frac{Swt - Swb}{Swt}} Cwf + \frac{Swb}{Swt} Cwb$$

$$Rf = \frac{Swt}{Swt Cwf - Swb Cwf + Swb Cwb}$$

and Rwf =
$$\frac{1}{Cwf}$$

$$Rwb = \frac{1}{Cwb}$$

$$Rf = \frac{Swt Rwb Rwf}{Swt Rwb + Swb (Rwf-Rwb)}$$

substituting this equation for Rf into the Archie equation and cancelling excess terms yields:

$$Rt = \frac{Rwf Rwb}{\left[Swt Rwb+Swb(Rwf-Rwb)\right]Swt \emptysett^{2}}$$

$$(Rwb \ \phi t^2)Sw^2t + [\phi t^2Swb(Rwf-Rwb)]Swt - \frac{Rwf \ Rwb}{Rt} = 0$$

This is a quadratic equation in Swt, the positive root being used to calculate the total water saturation.

Solving for Swt yields:

$$Swt = \frac{-B_{-}^{+} \sqrt{B^2 - 4 AC}}{2A}$$

where $A = RwbØt^2$

$$B = [\emptyset t^2 Swb(Rwf-Rwb)]$$

$$C = \frac{-Rwf Rwb}{Rt}$$

(ii) Case 2:Rwb > Rwf

In this section an equation to approximate the theoretical water saturation equation is developed. This equation is accurate to 2 significant figures in the case when Rwb > Rwf and is used to cut down on computer processing time.

If the hydrocarbons are regarded as being non-conductive but still part of the pore space \emptyset t, Figure 3 which dissected the formation previously can now be simplified to the water wet formation shown on Figure 4 below:

Clay Crystal		ive fluids. porosity Øt	reservoir rock
	Øt Swb	Øt (1-Swb)	

Figure 4

The volume of conductive fluids is now given by $Vf = \emptyset t$ Again, the conductivity of the Fluid Cf is given by summing their respective conductivities multiplied by the fraction of space they occupy within the total porous space $\emptyset t$.

i.e.
$$Cf = (1-Swb) Cwf + Swb Cwb$$

The true formation resistivity is again obtained from the Archie equation:

$$Rt = \frac{Rf}{\varphi t^2 Sw^2 t}$$

and as
$$Rf = \frac{1}{Cf}$$

$$Rf = \frac{1}{(1-Swb)Cwf+Swb Cwb}$$

and
$$Rwf = \frac{1}{Cwf}$$

$$Rwb = \frac{1}{Cwb}$$

$$Rf = \frac{1}{\frac{(1-Swb)}{Rwf} + \frac{Swb}{Rwb}}$$

$$Rf = \frac{Rwf Rwf}{(1-Swb) Rwb + Swb Rwf}$$

$$Rf = \frac{Rwf Rwb}{[Rwb-Swb(Rwf-Rwb)]}$$

substituting this equation into the Archie equation yields an equation for Swt:

$$Swt^{2} = \frac{Rf}{\emptyset t^{2}Rt} = \frac{Rwf Rwb}{[Rwb-Swb(Rwf-Rwb)]\emptyset t^{2}Rt}$$

To summarise the two cases above, the theoretical equation for total water saturation Swt within the total pore space $\emptyset t$ is:

$$Swt = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$

where
$$A = Rwb Øt^2$$

$$B = [\emptyset t^2 Swb(Rwf-Rwb)]$$

$$C = \frac{-Rwf Rwb}{Rr}$$

This equation can be used irrespective of the relative magnitude of Rwb and Rwf. However for practical purposes, computer processing time can be cut down if this equation is used only in the case when Rwb < Rwf. In the case when Rwb > Rwf, an equation approximating the theoretical water saturation equation above can be used with only small loss in accuracy. This equation approximating Swt is:

$$Sw^{2}t = \frac{Rwf Rwb}{\int Rwb - Swb(Rwf - Rwb) |\phi|^{2}Rt}$$

The mud filtrate saturation in the invaded zone Sxo, can be determined by substituting Rmf for Rwf and Rxo for Rt in the two equations for Swt generated in this section.

4. Auxiliary Equations used in the Program

(i) Bound and Free Formation Water Resistivities, Rwb and Rwf

Rwf and Rwb are determined from the Archie equation in a clean water bearing sand and a 100% shale zone respectively. Here the shaly formation is treated as if it behaved like a clean formation consisting of clay crystals, silt and adsorbed and hydration water. The only difference being that this water is immovable or bound. Rwf is calculated externally from the program using the equation:

$$Rwf = \frac{Rt \emptyset^{m}}{a} \qquad where Sw = 100\%$$

Rwb is calculated within the program using the same equation i.e.

$$Rwb = Rsh0sh$$

where a = 1.0 and m = 2.0, which are values recommended for a shaly formation based on experimental results (J.L. Dumanoir).

The parameters Rwf, Rsh and Øsh are all entered into the program from the data file. The resistivity of the 100% shale formation Rsh should be taken from a zone adjacent to the reservoir sand.

(ii) Volume of shale, Vsh

In the computer program DW, Vsh can be calculated from either the gamma ray or the SP log (but not both logs), depending on the value of the ISP switch entered from the data file. Refer to the BMR publication "A Review of the Concepts and Practices of Wireline Log Interpretation" by L.E. Kurylowicz, 1978 for the data file format or Appendix 2 page 60 of this record.

i.e. If ISP = 0, Vsh is computed from the gamma ray log.

$$Vsh (gamma) = \frac{GR \log - GR \min}{GR \max - GR \min}$$

where GR max = gamma ray log reading in a 100% shale

GR min = gamma ray log reading in the clean reservoir rock

If ISP = 1, Vsh is computed from the SP log.

$$Vsh(SP) = \frac{SSP - SP \log}{SSP - SP \min}$$

where SSP = reservoir rock SP log response

SP min = shale base line SP log response.

The volume of shale calculated from the SP log is only used as a back-up for the gamma-ray in cases of non-radioactive clays and an unreliable gamma-ray log.

(iii) Bound water Saturation, Swb

The bound water saturation is defined as the fraction of total porosity $\emptyset t$, occupied by bound or immovable water. Swb is given by the equation:

$$. Swb = \frac{Vsh \emptyset sh}{\emptyset t}$$

where the product Vsh \emptyset sh defines the amount of apparent shale pores within the total porosity \emptyset t.

This equation reduces to

- (a) Swb = Vsh = 1.0 in a 100% shale
- (b) Swb = 0.0 in a clean reservoir rock.

(iv) Effective Porosity, Øe

The total porosity \emptyset t is the sum of the effective porosity and the apparent shale porosity \emptyset sh. The effective porosity is calculated by removing the fraction of apparent shale pores from the total porosity, the apparent shale porosity being entirely saturated with bound water.

i.e.
$$\emptyset e = \emptyset t - V sh. \emptyset sh$$

This calculation must be performed because the logs from the neutron-density tool combination once crossplotted measure Øt not Øe. (See section 5 part (i) for a definition of "crossplot". As a consequence of this crossplot, the bound water in the shale will appear to be water contained in the pores of the reservoir rock. As this water is immovable, the fraction of bound water occupying the total porous space Øt must be removed to calculate the effective porosity of the reservoir sand.

(v) Effective Water Saturation Swe

The effective water saturation is the saturation of the free formation water in the effective pores of the reservoir sand. This is calculated by removing the bound water saturation from the total water saturation Swt.

The equation below shows how Swe is calculated:

Swe =
$$1 - \frac{\emptyset t \quad (1 - Swt)}{\emptyset e}$$

This equation calculates the hydrocarbon saturation in the total pore space \emptyset t and converts it to a saturation in the effective pore space \emptyset e. From this hydrocarbon saturation the effective water saturation is calculated.

5. Empirically Based Equations used in the Program

This section details the equations used to simulate log interpretation charts as well as the equations used to correct for the effects of light hydrocarbons on the neutron-density log combination. In the following account, reference is made only to the Schlumberger log interpretation chart book (1979 edition) and Schlumberger logging tools. However, other wireline logging companies such as Gearheart Owen which operate in Australia have published similar charts and use comparable logging equipment. Schlumberger techniques and equipment are referred to here because they appear to be used by the majority of petroleum exploration companies in Australia.

(i) Total porosity Øt and matrix density pma

In the computer program DW, the total porosity and matrix density are calculated from the neutron-density logging tool combination. This tool combination however, was originally calibrated in a limestone block with water filled pore. Consequently, if the true total porosity and matrix density of a different formation is to be calculated, the readings from the 2 logging tools must be crossplotted. The neutron log porosity is corrected for the borehole environment through Schlumberger charts Por-14b or Por-14bm before being used on the crossplot. Schlumberger charts CP-1c and CP-14a are charts onto which neutron-density log readings can be plotted and Øt and pma can be obtained respectively. By crossplotting the log readings the effect of the limestone calibration has been removed.

The equations below are used to simulate the charts CP-1c, Por-5 and CP-14a respectively. A definition of the symbols used in these equations is given in Appendix 1 page 57.

Total porosity,
$$\phi_t = \frac{\phi \log corr + \phi d}{2}$$
 (Chart CP-1c)

where Ølog corr = Ø neutron log + ΣØ

IØ comes from chart Por-14b or Por-14bm

Ød = density log porosity

and 2.71 g/cc = the density of the limestone calibration block with water filled pores.

Matrix density,
$$\rho ma = \rho b - \theta t \cdot \rho mf$$
 (chart CP-14a)

The effect of a light hydrocarbon in the pores of the formation on the neutron-density tool combination is to reduce \$\psi\$t and \$\rho\$ma calculated by the equations above. The effect of shale on the response of the neutron-density tool combination is to increase \$\rho\$ma.

(ii) True formation resistivity Rt

The true formation resistivity is calculated from one of a choice of three resistivity logging tool combinations. These three choices are

(a) Induction resistivity tool, the spherically focussed log and the latterlog 8 resistivity tool. This combination can be abbreviated as ILd-ILm-LL8 and the program simulates Schlumberger chart Rint-2a (Kurylowicz, 1978).

- (b) The dual latterlog micro-spherically focussed logging tool combination. This combination is abbreviated as LLd-LLs-Rxo and the program simulates Schlumberger chart Rint-9 (Bateman and Konen, 1977).
- (c) The dual latterlog resistivity tool without the micro-spherically focussed log can also be used to calculate Rt. This combination is abbreviated as LLd-LLs and simulates the Schlumberger chart Rint-9 in the absence of an Rxo log (Bateman and Konen, 1977).

Note that Rxo can be approximated by the micro-spherically focussed log once it is corrected for the effect of the mud-cake through Schlumberger chart Rxo-2. In the case where no micro-spherically focussed log is present the saturation of the mud filtrate in the invaded zone Sxo, cannot be determined accurately. However, it has been determined empirically that at "average" residual oil saturations, $Sxo = 5\sqrt{Sw}$ (Schlumberger, 1972). This equation is used in the program to determine Sxo in the case where no mud-cake log (Rxo) is present.

(iii) Hydrocarbon Correction

As mentioned previously in section (i), crossplotted values of Øt and pma are affected by the presence of light hydrocarbons and as a consequence of this, are underestimated. To understand the reason for this "hydrocarbon effect", the measuring principles of the neutron and density logging tools must be discussed.

Firstly, the neutron porosity tool directs a beam of neutrons into the formation and 2 detectors located a measured distance from the source send a signal to the surface instrumentation. The ratio of the "counts" recorded by the 2 detectors is calculated to give (indirectly) a figure for porosity. The interaction of the neutrons with the formation depends on the amount of energy the neutron loses on collision with the nuclei of the formation material. The neutrons lose the largest amount of energy with nuclei of similar mass in "billiard ball" type collisions.

As a consequence, the neutron porosity tool measures the fraction of light nuclei (such as hydrogen atoms) present in the formation which is estimated to coincide with the porosity of the formation. This is a reasonable approximation as the vast majority of hydrogen atoms do reside in the pore space in the form of water molecules and hydrocarbons. However, in the case of light

hydrocarbons (in the gaseous phase particularly) the fraction of hydrogen atoms in the pore space is less than if the pores were occupied by water.

As a result, the neutron tool underestimates porosity in formations containing light hydrocarbons.

Similar reasons can be given for the underestimation of pb by the density logging tool in the presence of light hydrocarbons. The density tool directs a focussed beam of gamma-rays into the formation which interact with the formation material by the process of Compton scattering. Two detectors placed a measured distance from the gamma-ray source are used to send a signal to the surface instrumentation which converts this signal through a "spine and rib" plot to a formation density corrected for mudcake effects. The density actually measured by this tool pb, is expressed by the formula below:

$$\rho b = \emptyset . \rho f + (1-\emptyset) . \rho ma$$
.

Here the density of the formation ρ ma is measured as well as the density of the fluid ρ f in the pore space \emptyset . As the density of the fluid decreases below the density of the water in which the tool was originally calibrated, the density read by the tool is also decreased. In the case of heavy hydrocarbons whose density may be close to that of water, no "hydrocarbon effect" is seen. In the case of light hydrocarbons, such as gases, the density tool underestimates the true formation density. (reference: "Schlumberger Log Interpretation, Volume 1 - Principles, 1972 edition).

The maximum possible correction to pma for the presence of hydrocarbons is given by the formula for DGC (density grain corrected) below:

$$DGC = \rho*ma + Vsh (\rho sh - \rho*ma)$$

where $\rho*ma$ is the expected clean matrix density in a clean water bearing formation. DGC is usually underestimated in 100% shale formations and

overestimates the amount of hydrocarbon correction required in the reservoir rock. Because DGC tends to overestimate in the latter case, the actual hydrocarbon correction in the program is an iterative process calculated from the equations for $\Delta \rho$ and $\Delta \emptyset$ shown below:

$$\Delta \rho = -1.07 \emptyset t (1-Sxo)[(1.11-0.15P) \rho mf-1.15 \rho hr]$$

where $\Delta \rho$ = hydrocarbon correction to the density log and $\Delta \emptyset$ = hydrocarbon correction to the neutron porosity log:

$$\Delta \emptyset = \frac{-1.3\emptyset t (1-Sxo) \left[\rho mf (1-P)-1.5\rho hr + 0.2 \right]}{\rho mf (1-P)}$$

(all these variables have been defined in Appendix 1 page 57)

Within each iteration new values of \emptyset t, Sxo and Swt are calculated. No hydrocarbon correction is applied if the value of ρ ma crossplotted initially is greater than DGC. Also, no correction is applied to the neutron porosity tool if $\Delta \emptyset$ in the equation above is greater than zero. The effect of these two decisions is to stop the iterative hydrocarbon correction being applied when it is not required.

The hydrocarbon correction is applied until either convergence is attained or the corrected pma exceeds DGC. Convergence occurs if the density correction Δp is less than -0.005. This is an arbitrary figure selected by the author and it ensures that the density log is corrected for hydrocarbon effects to three significant figure accuracy. The overall iterative process for the hydrocarbon correction is displayed on the flowchart, section 10, page 51.

(iv) Averaging of Pay, Effective Porosity and Water Saturation

Gross pay interval is calculated by subtracting the minimum depth from the maximum depth entered from the data file. Gross average effective porosity and water saturation are calculated by using geometric averaging over the gross pay interval.

The formula for the geometric average of a variable "X" is given below:

$$\overline{X}$$
 = Σ Xi where NSP = the number of sample points $i=1$ NSP

Averaging of the net pay, effective porosity and water saturation is accomplished in the same manner as the gross parameters are determined, except that the data averaged has to be below certain "cut off" criteria. The three values tested for net properties are the volume of shale, effective porosity and water saturation. The current cut-off values can be seen at the top of page 38, section 9, of this record. These cut-off values can be changed by editing this section of the program or by manually over-riding them during a program run. An example of this is shown in section 7, page 21.

(v) Net Hydrocarbon pore thickness, NHPT

The net hydrocarbon pore thickness NHPT, is calculated from the formula:

$$NHPT = hØe(1-Swe)$$

where each of the variables; net pay (h), effective porosity (Øe) and effective water saturation (Swe) are calculated from the average net results mentioned in the preceeding section (iv). This NHPT result can be used to determine an initial hydrocarbons in place figure providing the reservoir area and volume factors are known.

6. Operating Instructions for the Dual Water Wireline Log Interpretation Model, Computer Program "DW".

The data files accessed by the program "DW" are entirely compatible with those used by the program LOG4. The only logs required for running the program are the gamma-ray log, neutron porosity log, density log and resistivity measurements for the invaded zone, the transition zone and the uninvaded zone. Of these resistivity measurements, the invaded zone resistivity is not an essential log but its absence means a loss of accuracy in calculating Rt and Sxo.

The SP log can be used as an alternative method for calculating the volume of shale. It is recommended for use only when the gamma ray log is unreliable (i.e. in the presence of non-radioactive shales or radioactive sands) or absent. The sonic log is not required for this program. This is because the author does not consider the sonic logging tool is as reliable for determining porosity as the neutron porosity tool. The reader is referred to the BMR publication "A Review of the Concepts and Practices of Wireline Log Interpretation", by L.E. Kurylowicz, 1978, for definitions and methods of selecting the formation and dril' ng parameters entered from the data file.

The results generated by the program "DW" are printed out on three pages.

page 1: the summary of computational parameters, an example of page 1 is shown on page 22, section 8. In this section, the formation properties and drilling details are displayed as they are read from the first seven lines of the data file.

page 2: Summary of level by level input. Here the log data read from the remainder of the data file is listed. An example of page 2 is shown on page 23, section 8 . The program "DW" is capable of processing 300

lines of log data. This is equivalent to 149.5 metres (or feet) of wireline log data entered at half metre (or feet) intervals.

<u>Page 3</u>: Here a summary of the results computed by "DW" are displayed in a level by level format. Following this are the gross and net pay results and the net hydrocarbon pore thickness. An example of page 3 is shown on page 24, section 8.

A definition of the symbols used on these three pages of output from the program appears in Appendix 1. Note that the "No. of iterations" on the page 3 heading (example on page 24) refers to the number of hydrocarbon iterations taken for Δp to reach convergence. An example program compilation, load and run is shown in section 7, page 21. The format required for the data entered into the program DW is detailed in Appendix 2, page 60.

```
RU, LOADR
                                                       load the program
  /LOADR:
           ΕB
  /LOADR:
           REL, ZDU
  /LOADR:
           EN
                 READY AT 1:37 PM NON.. 5 NAR.. 1984
   /LOADR:DU
   /LOADR: $END
 RU,DU
                                                run the program
 INPUT FILE NAME (I.E. name:SC:CRT)
WELL:919:9
                                            enter the data file name
                                                                                                                           loading and
          THE FOLLOWING CUT-OFF LIMITS HAVE BEEN SELECTED FOR AVERAGING THE NET PAY PARAMETERS:
          (1) VOLUME OF SHALE CUT-OFF= 70.%
          (2) EFFECTIVE POROSITY CUT-OFF= 6.%
          (3) EFFECTIVE WATER SATURATION CUT-OFF= 55.%
         TO CHANGE ANY CUT-OFF LINIT TYPE IN THE BRACKETED NUMBER.
         FOR NO CHANGE TYPE IN 6 (=ZERO)
                                                                 eg change the effective water
3
                                                                   saturation cutoff
         ENTER NEW EFFECTIVE WATER SATURATION CUT-OFF AS A PERCENTAGE
69.9
         THE FOLLOWING CUT-OFF LIMITS HAVE BEEN SELECTED FOR AVERAGING THE NET PAY PARAMETERS:
         (1) VOLUME OF SHALE CUT-OFF= 70.%
          (2) EFFECTIVE POROSITY CUT-OFF= 6.%
         (3) EFFECTIVE WATER SATURATION CUT-OFF= 60.%
         TO CHANGE ANY CUT-OFF LINIT TYPE IN THE BRACKETED NUMBER.
         FOR NO CHANGE TYPE IN Ø (=ZERO)
                                                                - no more changes, type zero
     NORHAL TERMINATION
     LUN Ø6 SPOOL FILE -Ø122
```

print out the spool file

compile the program

FT_&DU_,ZBU

!LP .- N

YOUR OUTPUT FILE - TFØ123

IEND FTN7X: No disasters, No errors, No warnings,

(189.1 uS/foot)

(Ø.Ø uS/foot)

(0.0 uS/foot)

NUMBER OF SAMPLE POINTS= 14. (190.9 DEGREES FAHRENHEIT) FORMATION TEMPERATURE= 88.3 DEGREES CENTIGRADE

NEUTRON LOG POROSITY CORRECTION= 0.000

HUD FILTRATE PROPERTIES

SALINITY (Z NaCl E.Q.)= .268

RESISTIVITY (OHN.N)= .015 DENSITY (6/CC)= 1.00

INTERVAL TRANSIT TIME= 620.0 us/metre

MATRIX PROPERTIES

GANHA RAY HINIHUN (API UNIT)= 70.0 CROSSPLOTTED DENSITY (G/CC)= 2.663 INTERVAL TRANSIT TIME= 0.0 uS/metre

STATIC SPONTANEOUS POTENTIAL (NV)= 0.8

SHALE PROPERTIES

GANNA RAY MAXIMUM (API UNIT) = 200.0 RESISTIVITY (OHN.N)= 10.00 CROSSPLOTTED DENSITY (6/CC)= 3.000 INTERVAL TRANSIT TIME= 0.0 uS/metre

CROSSPLOTTED NEUTRON POROSITY= .150 SPONTANEOUS POTENTIAL (MV)= 8.8

RU-FORMATION WATER RES. (CHN.M)= .8988 HYDROCARBON DENSITY (GM/CC)= .888 BOREHOLE/BIT SIZE (INCHES) = 9.880

NOTES:

(A) CUT-OFF LIMITS: (1) Sw= 55.% (2) VSH= 70.% (3) PHIeff= 6.%

(B) CROSSPLOT POROSITY IS DETERMINED FROM THE NEUTRON-DENSITY TOOL COMBINATION.

(C) VOLUME OF SHALE IS COMPUTED FROM THE GAMMA RAY (D) Rt IS CALCULATED FROM THE DUAL LATTERLOG RESISTIVITY TOOL CHART

(E) AS NO HSFL LOG IS PRESENT SXO IS CALCULATED

FROM THE FIFTH ROOT OF Sw

RUN 9001 DATE 09-02-84

DEPTH	GANNA	DENSITY	NEUTRON	SONIC	SP	<	RESISTIVITY	>
(metres)	RAY	6/CC	POROSITY	u\$/#	٧n	HSFL	SHALLOW	DEEP
 3186.ø	95.0	2.250	.205	9.9	0.6	0.0	20.0	30.9
3186.5	91.6	2.280	.235	9.8	0.0	9.9	15.0	23.9
3187.0	95.0	2.25€	.210	0.0	Ø - Ð	9.9	28.0	48.9
3187.5	82.0	2.290	.190	ø.ø	0.0	Ø.Ø	17.0	29.0
3188.0	99.0	2.300	.200	Ø. S	0.6	Ø.Ø	16.0	24.0
3188.5	90.0	2.220	.225	0.0	0.0	0.0	20.0	40.0
3189.0	80.0	2.226	.215	0.0	0.0	0.0	50.0	90.0
3189.5	80.0	2.256	.200	9.0	0.0	9.9	15.0	15.9
3190.0	100.0	2.369	.170	9.9	9.0	Ø.Ø	9.0	11.8
3190.5	199.9	2.250	.180	0.6	0.0	0.6	9.0	19.0
3191.6	97.0	2.136	.230	0.8	0.6	Ø. Ø	6.0	11.0
3191.5	80.0	2.250	.185	8.6	0.0	9.6	3.5	14.9
3192.0	70.0	2.350	.180	9.9	9.0	9.9	4.1	9.0
3192.5	89.0	2.360	.160	0.0	0.6	9.0	3.0	5.0

				RESULTS						
(metres) DEPTH	VSH	PHIxplt	RHO×p1t	DGC	RHOna	NO. OF ITERATIONS	PHIeff	Rt	Sxo	Swe
3186.0	.192	.237	2.64	2.73	2.73	16	.167	37.0	.724	.134
3186.5	.162	.243	2.69	2.72	2.72	5	.205	28.6	.731	.164
3187.0	.192	.246	2.64	2.73	2.73	13	.172	62.0	-676	.962
3187.5	. 992	. 218	2.65	2.69	2.70	9	.182	36.0	.746	.294
3188.0	.223	.220	2.67	2.74	2.74	16	.153	29.6	.746	.160
3188.5	.154	.256	2.64	2.71	2.72	1 Ø	.200	54.0	.683	.095
3189.0	.077	.251	2.63	2.69	2.69	7	.212	118.0	<u>-642</u>	.078
3189.5	.677	.235	2.63	2.69	2.69	13	.198	15.0	.812	.340
3190.0	.231	.187	2.67	2.74	2.67	ß	.153	12.4	834	.365
319#.5	.231	.225	2.61	2,74	2.64	8	.177	10.7	.825	.347
3191.0	.2Ø8	.285	2.58	2.73	2.74	28	.187	14.5	.791	.269
3191.5	.977	.227	2.62	2.69	2.69	16	.183	21.3	.793	.298
3192.0	9.000	.195	2.68	2.66	2.48	g	. 195	12.4	.847	.436
3192.5	.077	.182	2.66	2.69	2.66	Ø	.171	6.4	.916	.648
		GROS	S PAY INTE S POROSITY S WATER SA		.5 HETRES	(2	1.3 FEET)			

NET PAY INTERVAL: 6.25 METRES (20.49 FEET)
NET POROSITY: .183

NET WATER SATURATION= .227

NET HYDROCARBON PORE THICKNESS= .88592 HETRES (2.90464 FEET)

SHALE PROPERTIES

NOTES:

MATRIX PROPERTIES

GAHNA RAY HAXIMUM (API UNIT)= 200.0 RESISTIVITY (OHN.H)= 15.00 CROSSPLOTTED DENSITY (G/CC)= 2.940 INTERVAL TRANSIT TIME= 0.0 uS/metre

SPONTANEOUS POTENTIAL (mV)= 0.0

GANNA RAY MINIHUN (API UNIT) = 59.0 CROSSPLOTTED DENSITY (G/CC)= 2.658

INTERVAL TRANSIT TIME= 0.0 uS/metre STATIC SPONTANEOUS POTENTIAL (MV)= 0.0

NUMBER OF SAMPLE POINTS= 34,

SALINITY (Z NaCl E.Q.)= .040 RESISTIVITY (OHM.H)= .066 BENSITY (G/CC)= 1.88

MUD FILTRATE PROPERTIES

(Ø.Ø uS/foot) CROSSPLOTTED NEUTRON POROSITY= .200

RU-FORMATION WATER RES. (OHM.M)= .1695 HYDROCARBON DENSITY (GH/CC)= .800 BOREHOLE/BIT SIZE (INCHES)= 8.500

DUAL WATER NODEL CONFIDENTIAL

FORMATION TEMPERATURE= 90.7 DEGREES CENTIGRADE

NEUTRON LOG POROSITY CORRECTION= 0.000

INTERVAL TRANSIT TIME= 620.0 uS/metre

UELL A1 (2751.5N TO 2768.9N) SUMMARY OF COMPUTATIONAL PARAMETERS

(A) CUT-OFF LIMITS: (1) Sw= 69.2 (2) VSH= 70.2 (3) PHIeff= 6.2 (B) CROSSPLOT POROSITY IS DETERHINED FROM THE NEUTRON-DENSITY TOOL COMBINATION.

(C) VOLUME OF SHALE IS COMPUTED FROM THE GAMMA RAY (D) Rt IS CALCULATED FROM THE DUAL LATTERLOG RESISTIVITY TOOL CHART

CONFIDENTIAL UELL A1 (2751.5H TO 2768.ØH) SUMMARY OF LEVEL BY LEVEL INPUT

repth	GANNA	DENSITY	NEUTRON	SONIC	SP	<	RESISTIVITY	>
(metres)	RAY				nV		SHALLOW	DEEP
751.5	88.8	2.300	.110	9.6	0.0	3.0	9.0	11.9
752.0		2.320	-149	0.9	0.0	2.9		11.9
752.5		2.330	-140	9.8	Ø.Ø	3.9	9.0	11.9
753.0	75.0	2.320	-148	0.0	0.0	3.0	19.0	13.0
753.5		2.289	-169	0.0	0.0	2.9	10.0	15.0
754.6	70.0	2.258	.169	0.0	0.0	2.9	10.0	15.0
754.5	95.0	2.330	-160	0.0	ø.ø	4-0	9.0	12.0
755.0	80.0	2.320	.165	0.0	9.9	4.9	11.0	16.9
755.5	75.0	2.280	.150	8.8	0.0	3.0	8.0	18.8
756.8	85.0	2.320	.150	0.0	0.0	2.4	7.2	19.9
756.5	72.0	2.300	.168	0.0	Ø.ø	3.5	8.0	11.9
757.6	72.0	2.300	.155	0.0	0.0	2.6	7.0	9.5
757.5	65.0	2.300	.169	0.0	Ø.Ø	3.0	7.0	10.0
758.0		2.300	.145	0.0	0.0	2.9		11.6
758.5	75.0	2.300	.165	9.0	0.0	2.5	6.0	8.9
759.0	75.0	2.330	155 ء	0.0	0.0	3.2	6.2	9.0
759.5	71.0	2.320	.150	6.0	0.0	2.5	6.7	9.2
769.9	60.0	2.320	.155	0.0	Ø. 8	2.5	7.2	10.0
760.5	65.0	2.278	.169	Ø.Ø	0.0	2.4	7.1	10.9
761.0		2.326	.168	0.0	0.0	2.1		8.3
741.5		2.400		8.8	0.0	6.0	7.0	9.9
762.9	75.0	2.399		9.8	0.0	3.8	5.9	8.9
762.5	60.0	2.289	.165		л. п	7 5	5.3	7.5
763.0	61.0	2.280	.160	9.9	Ø - Ø	2.4		8.0
763.5	60.0	2.280	.160	Ø. Ø	Ø - Ø	2.1		6.2
764.0	65.0	2.280	.179	Ø.6	0.0	2.5		6.9
764.5		2.270	.165	9.0	Ø - Ø	2.2	4.0	6.9
765.0		2.270	.178	Ø.Ø	0-6	2.1		5.0
765.5		2.399	.165	Ø.Ø	0.0	2.1		4.5
766.9	61.0		.160	9.0	0.0	2.1	2.5	3.5
766.5	61.0	2.259	.195	9.9 9.9 9.9 9.9 9.9 9.9 9.9	Ø - 9	1.6	1.7	2.2
767.8	68.9	2.259	.295	0.0	9.9	1.5	1.7	
767.5	60.0	2.250		6.0	Ø - Ø	1.9	1.9	2.5
748.0	100.0	2.300	.170	9.0	0.0	2.0	2.2	3.9

1 486

CONFIDENTIAL WELL A1 (2751.5H TO 2768.0H) RESULTS

RUN 0001 DATE 23-02-84

(metres) DEPTH	VSH	PHIxplt	RH0×p1t	DGC	RHOna	NO. OF TTERATIONS	PHIeff	Rt	Sxo	Swe
2751.5	.149	.175	2.58	2.69	2.58	6	.145	14.1	.905	.699
2752.0	.149	.184	2.62	2.69	2.62	6	.154	14.1	.864	.563
752.5	.149	.181	2.62	2.69	2.62	ø	.151	14.1	.864	.574
753.Ø	.113	.184	2.62	2.68	2.62	1	.169	16.8	.842	.517
753.5	.043	.296	2.61	2.66	2.66	19	.174	19.7	.835	.492
754.0	.078	.215	2.59	2.67	2.67	15	.164	19.7	.854	.485
754.5	.255	.191	2.64	2.72	2.69	10	.128	16.2	.798	.521
	.149	.197	2.64	2.69	2.69	9	.143	21.4	.769	.452
755.0		.201	2.68	2.68	2.65	19	.158	13.0	.845	.699
755.5	.113	-189	2.63	2.76	2.63	ø	.152	13.2	.957	.562
756.6	.184	- 200	2.62	2.68	2.68	18	.156	14.9	.899	.588
756.5	.992		2.63	2.68	2.63	4	.172	12.6	.858	.592
757.0	.692	-197	2.62	2.66	2.67	8	.173	13.7	.825	.695
757.5	.043	.200	2.61	2.67	2.63	6	.166	14.6	.849	.575
758.6	.978	.192	2.63	2.68	2.64	Ä	.173	19.7	.858	.627
758.5	.113	-282	2.64	2.68	2.67	7	.153	12.8	.842	.636
759.8	.113	-189	2.63	2.67	2.63	ø	.172	12.2	.886	.609
759.5	.985	.189	2.63	2.65	2.64	2	.187	13.2	.865	.609
769.9	.997	.192 .2 0 9	2.60	2.66	2.64	2 8	.185	13.2	.866	.575
769.5	. ₽43		2.64	2.72	2.64	ğ	.143	10.9	1.699	.613
761.0	.255	.194	2.73	2.82	2.76	7	.963	16.2	.618	.328
761.5	.574	.191		2.68	2.68	7	.169	12.0	.727	.635
762.0	.113	.295	2.63	2.65	2.65		.196	13.4	.852	-667
762.5	.007	.208	2.62	2.65	2.64	8 8 2 9 7	.188	11.0	.871	.648
763.0	-014	-206	2.61	2.65	2.62	. 0	.281	8.8	.877	.685
763.5	.007	296	2.61		2.66	0	.184	10.2	.855	.667
764.9	.643	.211	2.62	2.66	2.64	7	.198	8.8	.874	.781
764.5	0.000	.211	2.61	2.65		7	.201	7.6	.881	.743
765.0	9.999	-214	2.62	2.65	2.64		.201	7.3	.878	.75
765.5	.007	-202	2.63	2.65	2.63	Ø	194	6.5	.905	.824
766.0	-014	-197	2.63	2.65	2.63	g 2	.226	2.4	.891	1.000
766.5	.014	.232	2.63	2.65	2.63	4	.224	4.2	.902	.869
2767.0	.064	.237	2.64	2.67	2.64	y		2.8	.882	1.902
2767.5	.007	.225	2.61	2.65	2.64	/	.210	3.3	1.000	1.000
2768.0 .	.291	.205	2.63	2.73	2.63	Ø	.147	3.3	1.000	

(54.1 FEET)

(21.31 FEET)

(1.52878 FEET)

.46628 NETRES

GROSS PAY INTERVAL= 16.5 HETRES

6.50 METRES

GROSS WATER SATURATION= .644

NET HYDROCARBON PORE THICKNESS=

GROSS POROSITY= .176

NET PAY INTERVAL=

NET POROSITY= .151 NET WATER SATURATION= .525

9. Program Print-out and Explanation of each Segment

The following 21 pages contain a print-out of the program DW used to generate effective porosity and water saturation from raw wireline log data. The text below summarises the various sections of this program and indicates the page(s) on which they appear.

	Section:	Page(s
(1)	Program introduction and definition of the variables used	30-33
(2)	read in the data-file name and the heading parameters	34
(3)	print out a summary of the computational parameters	34-37
(4)	print out the operational notes and interact with the	
	program user to determine any changes to averaging	
	cutoff values	38-40
(5)	print out the wireline log data read from the data file	40-41
(6)	start of the calculations	42
(7)	calculate crossplot porosity	42
(8)	calculate the true formation resistivity	43-44
(9)	calculate the bound water resistivity	44
10)	calculate the volume of shale	44
11)	calculate the bound water saturation	45
12)	calculate the crossplot matrix density	45
13)	calculate the density grain corrected	45
14)	calculate the water and mud filtrate saturations	45-46
15)	calculate the hydrocarbon correction to the density	
	and neutron logs	46-47
16)	calculate the effective porosity and water saturation	47
17)	write out the results line by line	47-48
18)	calculate and print out the gross pay interval,	
	gross average porosity and gross average water	
	saturation	48-49
19)	calculate and print out the net pay interval, net	
	porosity, net water saturation and net hydrocarbon	
	pore thickness	49-50

PROGRAM DW

	Thought by
C	
C	-THIS PROGRAM CALCULATES WATER SATURATION USING THE DUAL
C	WATER MODEL AND IS BASED ON SCHLUMBERGER'S "CYBERLOOK" PROGRAM.
С	-PRCGRAM DEVELOPED BY G.R.MORRISON , MAY 1983 TO FEBUARY 1984.
С	-REFERENCE THE SPWLA ARTICLE "THE LCG ANALYST AND THE
С	PROGRAMABLE POCKET CALCULATER" - BY R.M.BATEMAN AND C.E.KONEN - 1977
С	FOR THE ALGORITHM WHICH DETERMINES TRUE FORMATION RESISTIVITY
С	FROM THE DUAL LATTERLOG RESISTIVITY TOOL.
c	-REFERENCE L.E.KURYLOWICZ FOR THE ALGORITHM WHICH DETERMINES Rt
C	FROM THE INDUCTION RESISTIVITY TOOL.
C	-ALL OTHER FORMULAE ARE CARE OF SCHLUMBERGER.
C	***************************************
C	A LISTING OF THE VARIABLES USED IN THE PROGRAM APPEARS BELOW.
C	THOSE PREFIXED BY AN ASTERISK (*) APE USED IN LCG4 BUT NOT IN
c	THIS PROGRAM. THESE VARIABLES WERE INCLUDED SO THAT THIS PROGRAM
C	WOULD BE COMPATABLE WITH LOG4 DATA-FILES AND IN CASE OF
C	FUTURE DEVELOPMENT.
C	
C	NOTE:
C	TO ALTER THE PORCSITY, WATER SATURATION AND VOLUME OF
C	SHALE CUT-OFF VALUES EDIT LINES 251,252 AND 253.
C	
C	A= VARIABLE IN THE RESISTIVITY SECTION
С	B= VARIABLE IN THE RESISTIVITY SECTION
C	BE= VARIABLE IN THE RESISTIVITY SECTION
C	*BORE= BOREHOLE SIZE
C	C= EQUATION IN THE RESISTIVITY SECTION

C DELDEN = HYDROCARBON CORRECTION TO THE DENSITY LOG

DATE- DATE OF THE RUN

CC = VARIABLE IN THE RESISTIVITY SECTION

D= VARIABLE IN THE RESISTIVITY SECTION

C

C

- C DELNEU- HYDROCARBON CORRECTION TO THE NEUTRON LOG
- C DELPCR THE NEUTRON LOG CORRECTION FOR THE BORFHOLE ENVIRONMENT
- C DEN(I) = DENSITY LOG VALUES
- C DENHYD= DENSITY OF THE HYDROCARBON
- C DENMA= DENSITY OF THE MATRIX
- C DENMF= DENSITY OF THE MUD FILTRATE
- C DENSH= DENSITY OF THE SHALE
- C DEPTH(I)= LCG DEPTHS
- C DGC= DENSITY GRAIN CORRECTED
- C GPINT= GROSS PAY INTERVAL
- C GPINTIMP= IMPERIAL CONVERSION OF GPINT
- C GPINTMET = METRIC CONVERSION OF GPINT
- C GR(I) = GAMMA RAY LOG VALUES
- C · GRYMAX= SHALE GAMMA RAY READING
- C GRYMIN= CLEAN FORMATION GAMMA RAY READING
- C IHYDR= HYDROCARBON DETECTION SWITCH (SHOWS PRESENCE OF MSFL LOG)
- C *IPL= PLCT SWITCH
- C *IPORF = SWITCH FOR METHOD OF DETERMINING POROSITY
- C *IPRINT= OUTPUT PRINTING DEVICE SWITCH
- C IRM = RESISTIVITY COMBINATION SWITCH
- C ISP= 1 FOR VSH FROM THE SP; O FOR VSH FROM THE GAMMA RAY
- C *LUN= INTERMEDIATE CALCULATIONS PRINT-OUT SWITCH
- C MDPH= METRIC OR IMPERIAL DEPTH SWITCH
- C MSFL(I)= MICRO SPHERICALLY FOCUSSED LOG VALUES
- C MTAC= METRIC OR IMPERIAL SONIC VALUE SWITCH
- C MTEM= CENTIGRADE OR FAHRENHEIT TEMPERATURE SWITCH
- C NAMDAT= NAME OF THE DATA FILE ACCESSED BY DW
- C NEU(I)= NEUTRON LOG VALUES
- C NHPT= NET HYDROCARBON PORE THICKNESS
- C NHPTIMP= IMPERIAL CONVERSION OF NHT
- C NHPTMET = METRIC CONVERSION OF NHT
- C NI= THE NUMBER OF HYDROCARBON CORRECTION ITERATIONS

- C *NLTYPE= NEUTRON LOG TYPE SWITCH
- C NP= NET PAY THICKNESS
- C NPIMP= IMPERIAL CONVERSION OF NP
- C NPMET = METRIC CONVERSION OF NP
- C NNPP= NUMBER OF NET PAY POINTS
- C NSP= NUMBER OF SAMPLE POINTS
- C PHICUT= POROSITY CUT-OFF
- C PHID= DENSITY POROSITY
- C PHIE(I)= EFFECTIVE POROSITY INDEPENDENT OF LITHOLOGY
- C PHIT= TCTAL FORMATION POROSITY INDEPENDANT OF LITHOLOGY
- C PHITG= TOTAL GROSS PORCSITY
- C PHITN= TOTAL NET POROSITY
- C PHIX= CRCSSPLOT POROSITY
- C PMF = MUD FILTRATE SALINITY
- C PORNSH= NEUTRON LOG POROSITY OF 100% SHALE ZONE
- C Q= QUESTION VARIABLE FOR CHANGING A CUT-OFF LIMIT
- C RHCMA= APPARENT MATRIX DENSITY
- C RHOX= CROSSPLOT LERIVED MATRIX DENSITY
- C RILD= INDUCTION LCG DEEP RESISTIVITY
- C RILM= INDUCTION LOG MEDIUM RESISTIVITY
- C . RLD= RESISTIVITY LOG DEEP
- C RLL8= LATTERLCG 8 RESISTIVITY
- C RLS= RESISTIVITY LOG SHALLOW
- C RMF = RESISTIVITY OF THE MUD FILTRATE
- C RO= RESISTIVITY OF A CLEAN FORMATION 100% SATURATED WITH FORMATION WATER
- C ROXO= RESISTIVITY OF A CLEAN FORMATION 100% SATURATED WITH MUD FILTRATE
- C RSH= RESISTIVITY OF THE SHALE
- C RT= TRUE RESISTIVITY OF THE FORMATION
- C RUN = RUN NUMBER
- C RW= FREE FORMATION WATER RESISTIVITY
- C RWB= BOUND (SHALE) WATER RESISTIVITY
- C SP(I) = SPONTANEOUS POTENTIAL LOG VALUES

```
C
        SPMIN= VALUE OF SP IN A 100% SHALE
 C
        SSP= VALUE OF SP IN A 100% CLEAN FORMATION
C
        SW= TCTAL WATER SATURATION
        SWCUT= WATER SATURATION CUT-OFF
        SWB= BOUND (SHALE) WATER SATURATION
C
        SWE(I) = EFFECTIVE OR FREE WATER SATURATION
C
        SWTG= TOTAL GROSS WATER SATURATION
       SWIN- TOTAL NET WATER SATURATION
C
C
        SXO= MUD FILTRATE SATURATION IN THE INVADED ZONE
       *TACF= SONIC TRANSIT TIME OF THE FORMATION FLUID
C
       TACFIMP= IMPERIAL CONVERSION OF TACF
C
       TACFMET= METRIC CONVERSION OF TACF
C
      *TACMA = SONIC TRANSIT TIME OF THE MATRIX
C
      *TACSH= SONIC TRANSIT TIME OF THE SHALE
C
C
       TACSHIMP= IMPERIAL CONVERSION OF TACSH
       TACSHMET= METRIC CONVERSION OF TACSH
C
       TEM= FORMATION TEMPERATURE
       TEMIMP= IMPERIAL CONVERSION OF TEMPERATURE
       TEMMET = METRIC CONVERSION OF TEMPERATURE
       TITLE = TITLE OF THE DATA FILE
C
C
      *TT(I)= SONIC LOG VALUES
       VSH(I) = VOLUME OF SHALE; SEE ISP FOR METHODS OF CALCULATION
       VSHCUT= VOLUME OF SHALE CUT-OFF VALUE
       X= VARIABLE USED TO CALCULATE SW IF RWB RW
C
       XO= VARIABLE USED TO CALCULATE SXO IF RWB RW
C
      REAL DEPTH (300), GR (300), DEN (300), NEU (300), TT (300), SP (300),
     2MSFL(300), RLS(300), RLD(300), NP, SWE(300), VSH(300), PHIE(300)
     3, NPIMP, NPMET, NHPT, NHPTIMP, NHPTMET
      INTEGER O
```

CHARACTER#40 TITLE

```
CHARACTER#4 RUN
       CHARACTER#8 DATE
C
        READ IN THE DATA FILE NAME
       CHARACTER #20 NAMDAT
       WRITE(1.5)
       FORMAT(//,1X,'INPUT FILE NAME (I.E. name:SC:CRT)')
5
       READ(1,10)NAMDAT
       FORMAT(A)
10
       OPEN (4, FILE=NAMDAT, STATUS*'CLD')
C
       READ IN THE INITIAL VALUES
C
      READ(4, '(A40)')TITLE
      READ(4, '(A4, A8)')RUN, DATE
      READ(4,*) IPORF, IHYDR, IPL, IRM, MDPH, MTAC, MTEM, LUN, NLTYPE, IPRINT, ISP
      READ(4,*)NSP, TEM, PMF, RMF, DENMF, TACF, DELPOR
      READ(4,*)GRYMIN, DENMA, TACMA, SSP
      READ(4,*)GRYMAX, RSH, DENSH, TACSH, PORNSH, SPMIN
      READ(4,*)RW, DENHYD, BORE
C
C
       PRINT OUT A SUMMARY OF THE COMPUTATIONAL PARAMETERS.
      WRITE(6,201)
      FORMAT(5(/),50X, 'DUAL WATER MODEL')
201
      WRITE(6,501)
      FORMAT(52X,'CONFIDENTIAL')
501
      WRITE(6,202)TITLE,RUN,DATE
      FORMAT (46X, A40, 'RUN', A4, 'DATE', A8)
202
      WRITE(6,203)
203
      FORMAT (40X, 'SUMMARY OF COMPUTATIONAL PARAMETERS')
      WRITE(6,204)
```

204 FORMAT (40X, 35('-'))

```
WRITE(6,205)NSP
 205
       FORMAT (/,30X, 'NUMBER OF SAMPLE POINTS=',F4.0)
       IF(MTEM.FQ.1)THEN
       TEMIMP=TEM#9.0/5.0+32.0
      WRITE(6.206)TEM.TEMIMP
 206
      FORMAT (30X, 'FORMATION TEMPERATURE - ',F4.1,' DEGREES CENTIGRADE'
      2.5X,'('.F5.1,' DEGREES FAHRENHEIT)')
      FLSF
      TEMMET = (TEM - 32.0) * 5.0/9.0
      WRITE(6,306)TEM, TEMMET
 306 FORMAT (30X, 'FORMATION TEMPERATURE= ',F5.1,' DEGREES FAHRENHEIT'
      2,5X,'(',F4.1,' DEGREES CENTIGRADE)')
      END IF
      WRITE (6.207) DELPCR
207
      FORMAT (30X, 'NEUTRON LOG PORCSITY CORRECTION= '.F5.5)
      WRITE(6.208)
      FORMAT(/.30X, 'MUD FILTRATE PROPERTIES')
208
      WRITE(6,209)
209 FORMAT (30X, 23('-'))
      WRITE(6,210)PMF
      FORMAT (30X, 'SALINITY (% NaCl E.Q.) = ',F5.3)
210
      WRITE(6,211)RMF
211
      FORMAT (30X, 'RESISTIVITY (OHM.M)= ',F5.3)
      WRITE(6.212)DENMF
      FORMAT (30X. 'DENSITY (G/CC)= '.F4.2)
212
      IF(MTAC.EQ.1)THEN
      TACFIMP=TACF#0.305
      WRITE(6,213)TACF, TACFIMP
      FORMAT (30X, 'INTERVAL TRANSIT TIME= ',F5.1,' us/metre'
213
```

```
2,14X,'(',F5.1,' uS/foot)')
       ELSE
       TACFMET=TACF/0.305
      WRITE(6,313)TACF, TACFMET
 313
     FCRMAT(30X, 'INTERVAL TRANSIT TIME= '.F5.1,' uS/foot'
      2.15X,'('.F5.1.' uS/metre)')
      END IF
      WRITE(6,214)
214
      FORMAT(/,30x, 'MATRIX PROPERTIES')
      WRITE(6,215)
      FORMAT(30X,17('-'))
215
      WRITE(6,216)GRYMIN
216
      FORMAT (30X, 'GAMMA RAY MINIMUM (API UNIT) = ',F5.1)
      WRITE(6,217)DENMA
     FORMAT(30X, 'CROSSPLOTTED DENSITY (G/CC)= ',F5.3)
217
      IF(MTAC.EQ.1)THEN
      TACMAIMP=TACMA*0.305
      WRITE(6,218)TACMA, TACMAIMP
     FCRMAT(30X, 'INTERVAL TRANSIT TIME= ',F5.1,' uS/metre'
218
     2,14X,'(',F5.1,' us/foot)')
      ELSE
      TACMAMET=TACMA/0.305
      WRITE(6,318)TACMA, TACMAMET
318 FORMAT (30X, 'INTERVAL TRANSIT TIME= ',F5.1,' us/foot'
     2,15%,'(',F5.1,' uS/metre)')
      END IF
      WRITE(6.219)SSP
     FORMAT (30X, 'STATIC SPONTANEOUS POTENTIAL (mV)= ',F5.1)
219
     WRITE(6.220)
     FORMAT(/,30X.'SHALE PROPERTIES')
220
```

```
WRITE(6,221)
 221
       FORMAT (30X.16('-'))
       WRITE(6,222)GRYMAX
 222
       FORMAT (30X, 'GAMMA RAY MAXIMUM (API UNIT)= ',F5.1)
       WRITE(6.223)RSH
       FORMAT(30X. 'RESISTIVITY (CHM.M)= ',F5.2)
 223
       WRITE(6,224)DENSH
 224
       FORMAT (30X, 'CROSSPLOTTED DENSITY (G/CC)= ',F5.3)
       IF(MTAC.FQ.1)THEN
       TACSHIMP=TACSH*0.305
      WRITE(6,225)TACSH, TACSHIMP
     FORMAT (30X, 'INTERVAL TRANSIT TIME= '.F5.1,' uS/metre'
225
      2,14X,'(',F5.1,' uS/foot)')
      ELSE
      TACSHMET=TACSH/0.305
      WRITE(6.325)TACSH.TACSHMET
325
      FORMAT (30X, 'INTERVAL TRANSIT TIME= ',F5.1,' us/foot'
     2,15X,'(',F5.1,' uS/metre)')
      END IF
      WRITE (6.226) PCRNSH
      FORMAT (30X. 'CROSSPLOTTED NEUTRON POROSITY= '.F5.3)
226
      WRITE(6,227)SPMIN
      FORMAT (30X, 'SPONTANEOUS POTENTIAL (mV)= '.F5.1)
227
      WRITE(6.231)RW
      FORMAT(/,30X,'RW-FORMATION WATER RES. (OHM.M)= ',F6.4)
231
      WRITE(6,232)DENHYD
232
      FORMAT (30X, 'HYDROCARBON DENSITY (GM/CC)= ',F5.3)
      WRITE(6,233)BORE
233
      FORMAT (30X, 'BOREHOLE/BIT SIZE (INCHES)= '.F6.3)
```

C

SET THE CUT-OFF VALUES FOR PHI, SW AND VSH

C

```
PHICUT=0.06
      SWCUT=0.55
      VSHCUT=0.70
        SEE IF ANY CUT-OFF LIMIT NEEDS TO BE CHANGED
C
509
      WRITE(1.510)
      FORMAT (//, 10X, 'THE FOLLOWING CUT-OFF LIMITS HAVE BEEN SELECTED'
510
     2. FOR AVERAGING THE NET PAY PARAMETERS: ')
      WRITE(1.512)VSHCUT*100.0
      FORMAT(10X, '(1) VOLUME OF SHALE CUT-OFF= '.F4.0.'%')
512
      WRITE(1.514)PHICUT*100.0
      FORMAT(10X, '(2) FFFECTIVE POROSITY CUT-OFF= '.F4.0.'%')
514
      WRITE(1,516)SWCUT*100.0
516
      FORMAT (10X, '(3) EFFECTIVE WATER SATURATION CUT-OFF= '.F4.0, '%')
      WRITE(1.518)
      FORMAT(/.10X, 'TO CHANGE ANY CUT-OFF LIMIT TYPE IN THE'
518
     2, BRACKETED NUMBER. )
      WRITE(1.520)
520 FORMAT (10X, 'FOR NO CHANGE TYPE IN O (=ZERO)')
      READ(1.522)Q
522
     FORMAT(I1)
      IF(C.EQ.1)THEN
     WRITE(1,524)
     FORMAT (10X, 'ENTER THE NEW VOLUME OF SHALE CUT-OFF AS A'
524
     2. PERCENTAGE')
     READ(1,*)VSHCUT
     VSHCUT=VSHCUT/100.0
     END IF
     IF (Q.EQ.2)THEN
     WRITE(1,526)
```

```
526
       FORMAT (10X, 'FINTER NEW EFFECTIVE POROSITY CUT-OFF AS A PERCENTAGE')
       READ(1,*)PHICUT
       PHICUT=PHICUT/100.0
       END IF
       IF(Q.EQ.3)THEN
      WRITE(1.528)
      FORMAT(10X. 'ENTER NEW EFFECTIVE WATER SATURATION CUT-OFF'
 528
      2. ' AS A PERCENTAGE')
      READ(1.*)SWCUT
      SWCUT=SWCUT/100.0
      FND IF
      IF(Q.NE.O)GOTO 509
C
C
       WRITE OUT THE OPERATING NOTES FOR THE PROGRAM
      WRITE(6,530)
530
      FORMAT(/,30X,'NOTES:')
      WRITE(6,228)SWCUT*100.0, VSHCUT*100.0, PHICUT*100.0
      FORMAT(30X, '(A) CUT-OFF LIMITS: (1) Sw= ',F4.0, '% (2) VSH= '.
228
     2,F4.0,'% (3) PHIeff= ',F4.0,'%')
      WRITE(6,229)
229
      FORMAT (30X, '(B) CROSSPLCT PORCSITY IS DETERMINED FROM THE')
      WRITE(6,230)
230
    FORMAT (30X, 'NEUTRON-DENSITY TOOL COMBINATION.')
      IF(ISP.EQ.1)THEN
      WRITE(6,331)
      FORMAT (30X, '(C) VOLUME OF SHALE IS COMPUTED FROM THE SP LOG')
231
      ELSE
      WRITE(6,332)
      FORMAT (30X. '(C) VOLUME OF SHALE IS COMPUTED FROM THE GAMMA RAY')
332
      END IF
```

IF (IRM. EQ. 1. AND. IHYDR. EQ. 1) THEN

```
WRITE(6,532)
     FORMAT (30X, '(D) Rt IS CALCULATED FROM THE INDUCTION'
 532
      2. RESISTIVITY TOOL CHART')
       END IF
       IF (IRM. EQ. 2. OR. IHYDR. EQ. 0) THEN
      WRITE(6,534)
534 FORMAT (30X, '(D) Rt IS CALCULATED FROM THE DUAL LATTERLOG'
      2, ' RESISTIVITY TOOL CHART')
      END IF
      IF(IHYDR.EQ.C)THEN
      WRITE(6,536)
536 FORMAT (30X, '(E) AS NO MSFL LOG IS PRESENT SXO IS CALCULATED')
     WRITE(6,538)
      FORMAT (30X, 'FROM THE FIFTH ROOT OF Sw')
538
      END IF
C
       PRINT OUT THE LOG DATA READ FROM THE DATA-FILE
C
      WRITE(6,502)
      FORMAT (1H1, //, 48X, 'CONFIDENTIAL')
502
      WRITE(6,33)TITLE, RUN, DATE
      FORMAT (43X, A40, 'RUN '.A4, 'DATE '.A8)
33
      WRITE(6,22)
      FORMAT (40X, 'SUMMARY OF LEVEL BY LEVEL INPUT')
22
      WRITE(6.23)
      FORMAT (40X,31('-'))
23
      WRITE(6.30)
30
      FORMAT (7X, 'DEPTH', 6X, 'GAMMA', 4X, 'DENSITY', 4X, 'NEUTRON'
     2,6X, 'SONIC',10X, 'SP',7X,' ---- RESISTIVITY-----')
      IF (MDPH . EQ. 1)THEN
```

```
WRITE(6,24)
 24
       FORMAT(7X, '(metres)', 4X, 'RAY', 7X, 'G/CC', 5X, 'PCROSITY', 5X
      2, 'us/m', 11x, 'mV', 7X, 'MSFL', 4X, 'SHALLOW', 5X, 'DEEP')
       FLSE
       WRITE(6,324)
       FORMAT(7X, '(feet)'6X, 'RAY', 7X, 'G/CC', 5X, 'POROSITY', 5X
 324
      2, 'us/ft', 10X, 'mV', 7X, 'MSFL', 4X, 'SHALLOW', 5X, 'DEEP')
       END IF
       WRITE(6.25)
       FORMAT (7X,92('-'))
25
       DC 21 K=1.NSP
       REAL(4,*)DEPTH(K),GR(K),DEN(K),NEU(K),TT(K)
      1,SP(K),MSFL(K),RLS(K),RLD(K)
      WRITE (6,26) DEPTH (K). GR(K). DEN (K). NEU (K). TT (K)
      2.SP(K),MSFL(K),RLS(K),RLD(K)
      FORMAT(3X,2(F10.1),5X,F5.3,6X,F5.3,7X,F5.1
26
      2,8x,F5.1,3(F10.1))
21
      CONTINUE
C
C
       SET INITIAL VALUES TO ZERO
      PHITG=0.0
      SWTG=0.0
      PHITN=0.0
      SWIN=0.0
      NP=0.0
      NNPP=0.0
C
       PRINT OUT THE HEADING FOR THE RESULTS.
C
      WRITE(6,503)
      FORMAT (1H1, //, 41X, 'CONFIDENTIAL')
503
```

```
WRITE(6.32)TITLE.RUN.DATE
       FORMAT (35X, A4O, 'RUN', A4, 'DATE', A8)
 32
       WRITE(6,27)
       FORMAT (45x, 'RESULTS')
 27
       IF(MDPH.EQ.1)THEN
       WRITE(6,28)
       FORMAT(5X, '(metres)', 32X, 7('-'), 14X, 'NO. OF')
 28
       ELSE
       WRITE(6.328)
 328
       FORMAT(5X, '(feet)', 34X, 7('-'), 14X, 'NO. OF')
       END IF
       WRITE(6.15)
       FORMAT (5X. 'DEPTH'.8X, 'VSH'.5X, 'PHIxplt'.2X 'RHOxplt'.5X. 'DGC'
 15
      2.6X, 'RHOma', 4X, 'ITERATIONS', 3X, 'PHIeff', 5X, 'Rt', 9X, 'Sxo', 6X, 'Swe')
       WRITE(6,16)
       FORMAT(5X.108('-'))
16
C
C
        START OF THE CALCULATIONS
       DO 20 I=1,NSP
C
        CORRECT THE NEUTRON POROSITY FOR THE BORFHOLE ENVIRONMENT
C
      NEU(I)=NEU(I)+DELPOR
C
        SET THE NUMBER OF HYDROCARBON CORRECTION ITERATIONS TO ZERO
      NI=0.0
C ·
C
       THIS SECTION CALCULATES 'PHIX' THE CROSSPLOT POROSITY.
C
       CALCULATE THE POROSITY FROM THE DENSITY LCG
      PHID=(2.71-DEN(I))/(2.71-DENMF)
       CALCULATE THE CROSSPLOT POROSITY 'PHIX'
C -
```

PHIX=(PHID+NEU(I))/2.0

```
C
 C
        THIS SECTION CALCULATES RT, THE TRUE FORMATION RESISTIVITY
       IF (IRM.EQ.1.AND.IHYDR.EQ.1)THEN
        THIS SECTION IS TAKEN DIRECTLY FROM THE LOC4 PROGRAM
C
        SUBROUTINE "DIND" WRITTEN BY L.E.KURYLOWICZ
C
       RLL8=MSFL(I)
      RILM=RLS(I)
      RILD=RLD(I)
      A=(RLL8/RILD)-1.0
      B=(RILM/RILD)-1.0
      C=A/B
      BB=(0.59*A)-(2.21*C)+1.35
      CC = -((1.44*A) - (2.47*C) + 2.76)
      D=-0.5*(SQRT((EB*EB)-(4.0*CC))+BB)
      IF(D.GT.1.0)THEN
      RT=RILD
      ELSE IF(D.LT.O.4)THEN
      RT=0.4*RILD
      ELSE
      RT=RILD*D
      END IF
      END IF
C
      IF (IRM. EQ. 2. AND. IHYDR. EQ. 1) THEN
       THIS SECTION CALCULATES RT FROM THE LATTERLOG BUTTERFLY CHART
C
       REFERENCE R.M.BATEMAN AND C.E.KONEN - 1977
      A=RLD(I)/MSFL(I)
      B=RLD(I)/RLS(I)
      IF(A.LE.1.0)RT=1.7*RLD(I)-0.7*RLS(I)
      IF(B.LE.1.1)RT=1.1*RLD(I)
```

```
IF (A.GT.1.O.AND.B.GT.1.1)THEN
       C=(RLS(I)/MSFL(I))*(RLD(I)-MSFL(I))/(RLD(I)-RLS(I))
      RT = (2.18 * C * RLD(I)) / (1.78 * C-1.0)
      END IF
      END IF
C
       THIS SECTION CALCULATES RT WHEN NO MUDCAKE RESISTIVITY LOG IS PRESENT
C
       REFERENCE R.M. BATEMAN AND C.E. KONEN - 1977
      IF(IHYDR.EQ.O)THEN
      B=RID(I)/RLS(I)
      IF(B.GF.1.0)RT=1.7*RLD(I)-0.7*RLS(I)
      IF(B.LT.1.0)RT=2.4*RLD(I)-1.4*RLS(I)
      FND IF
C
C
       CHECK THAT RT IS NOT CUTSIDE MAXIMUM BOUNDS
      IF(RT.LE.O.O)RT=0.5*RLD(I)
      IF(RT/RLD(I).GT.2.0)RT=1.1*RLD(I)
C
       COMPUTE THE BOUND WATER RESISTIVITY FROM 100% SHALE
C
C
       PARAMETERS USING THE ARCHIE EQUATION.
      RWB=RSH*PORNSH*PORNSH
C
       COMPUTE THE VOLUME OF SHALE FROM EITHER THE GAMMA
      RAY OR THE SP LOG
      VSH(I)=(GR(I)-GRYMIN)/(GRYMAX-GRYMIN)
      IF(ISP.EQ.1)VSH(I)=(SSP-SP(I))/(SSP-SPMIN)
     IF(VSH(I).GT.1.0)VSH(I)=1.0
     IF(VSH(I).LT.O.O)VSH(I)=O.O
      COMPUTE THE BOUND WATER SATURATION
```

SWB=VSH(I)*PORNSH/PHIX

```
IF(SWB.GT.1.0)SWB=1.0
 C
C
        COMPUTE THE CROSSPLOT MATRIX DENSITY
      RHOX=(DEN(I)-PHIX*DENMF)/(1.0-PHIX)
C
       COMPUTE THE DENSITY GRAIN CORRECTED
C
      DGC=DENMA+VSH(I)*(DENSH-DENMA)
C
C
       EQUATE CROSSPLOT VALUES TO THE TRUE MATRIX VALUES
      RHOMA=RHOX
      PHIT=PHIX
С
C .
       IF THE VOLUME OF SHALE IS GREATER THAN THE CUT-OFF VALUE
C
       THEN JUMP OVER THE HYDROCARPON CORRECTION.
      IF(VSH(I).GT.VSHCUT)GOTO 430
C
C
       COMPUTE THE WATER AND MUD FILTRATE SATURATIONS
420
      IF (RWB.GE.RW)THEN
     RO=RW*RWB/((RWB+SWB*(RW-RWB))*PHIT*PHIT)
     ROXO=RMF*RWB/((RWB+SWB*(RMF-RWB))*PHIT*PHIT)
     SW=(RO/RT)**0.5
     SXC=(ROXO/MSFL(I))**O.5
C
     ELSE
     X=SWB*(RWB-RW)/(2.0*RWB)
     SW=(RW/(RT*PHIT*PHIT)+X*X)**O.5+X
     XO=SWB*(RWB-RMF)/(2.0*RWB)
     SXO=(RLF/(MSFL(I)*PHIT*PHIT)+XO*XO)**0.5+XO
     END IF
```

C

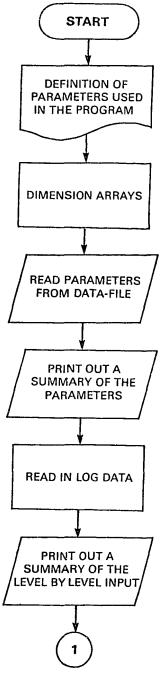
```
IF MSFL LOG IS NOT PRESENT SIMULATE SXO
       IF(IHYDR.EQ.O)SXO=SW##0.2
 C
       ENSURE SW AND SXC ARE NOT UNREALISTIC VALUES
       IF(SW.GT.1.0)SW=1.0
      IF(SXC.GT.1.0)SXC=1.0
C
       CALCULATE THE HYDROCARBON CORRECTION TO THE DENSITY LCG
      DELDEN=-1.07*PHIT*(1.0-SXC)*((1.11-0.15*PMF)
     2*DENMF-1.15*DENHYD)
C
C
       DETERMINE IF ANY HYDROCARBON CORRECTION IS REQUIRED
      IF(DELDEN.LE.-O.OO5.AND.RHOMA.LE.DGC)THEN
C
C
       CALCULATE THE HYDRCCARBON CORRECTION TO THE NEUTRON LOG
      DELNEU=-1.3*PHIT*(1.0-SX0)*(DENMF*(1.0-PMF)
     2-1.5*DENHYD+0.2)/(DENMF*(1.0-PMF))
      IF(DELNEU.GT.O.O)DELNEU=O.O
      DEN(I)=DEN(I)-DELDEN
      NEU(1) NEU(I)-DELNEU
C
       FIND THE DENSITY POROSITY
      PHID=(2.71-DEN(I))/(2.71-DENMF)
C
       FIND THE NEW TOTAL FORMATION POROSITY
     PHIT=(NEU(I)+PHID)/2.0
C
      FIND THE NEW MATRIX DENSITY
     RHOMA=(DEN(I)-PHIT*DENMF)/(1.0-PHIT)
```

```
C
        CALCULATE THE NUMBER OF ITERATIONS
       NI=NI+1
       GOTO 420
       END IF
 C
        COMPUTE EFFECTIVE POROSITY
 430
       PHIE(I)=PHIT-VSH(I)*PORNSH
       IF(PHIE(I).LT.O.O)PHIE(I)=0.0
 C
C
        IF THE EFFECTIVE POROSITY IS LOWER THAN THE CUTOFF VALUE
C
        EQUATE SXC AND SWE
       IF (PHIE (I).LT.PHICUT.OR.VSH (I).GT.VSHCUT) THEN
        SXC=1.0
        SWE(I)=1.0
       ELSE
C
        CALCULATE THE EFFECTIVE OR FREE WATER SATURATION
       SWE(I)=1.0-(1.0-SW)*PHIT/PHIE(I)
C
       CALCULATE THE EFFECTIVE MUD FILTRATE SATURATION
      -SXO=1.0-(1.0-SXC)*PHIT/PHIE(I)
       END IF
C
       CHECK THAT SWE AND SXO ARE NOT UNREALISTIC
C
      IF(SWE(I).LT.O.O)SWE(I)=1.0
      IF(SX0.LT.O.O)SX0=1.0
C
C
       WRITE OUT THE RESULTS
      WRITE(6,200)DEPTH(I), VSH(I), PHIX, RHOX, DGC, RHOMA, NI
     2.PHIE(I),RT,SXO,SWE(I)
200
      FORMAT (5X, F6.1, 2(F10.3), 3(F10.2), 7X, I2, 3X, F10.3, ,4X, F6.1
```

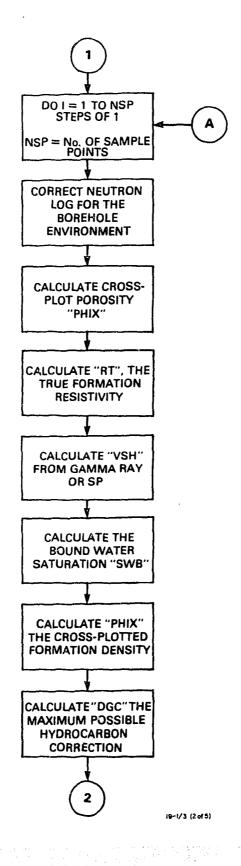
```
2,5X,F5.3,5X,F5.3)
 C
        THIS SECTION CALCULATES GROSS PAY, POROSITY AND WATER SATURATION
       PHITG=PHITG+PHIE(I)
       SWTG=SWTG+SWE(I)
 C
       CONTINUE
 20
       CALCULATE GROSS PAY INTERVAL
C
      GPINT=DEPTH(NSP)-DEPTH(1)
      IF (MDPH.EQ.1)THEN
      GPINTIMP=GPINT/0.305
      WRITE(6.100)GPINT.GPINTIMP
100 FORMAT(//.30X.'GROSS PAY INTERVAL= '.F6.1,' METRES'
     2,10X,'(',F6.1,' FEET)')
      FISE
      GPINTMET=GPINT*0.305
      WRITE(6,400)GPINT,GPINTMET
400 FORMAT (//, 30X, 'GROSS PAY INTERVAL= ', F6.1, ' FEET'
     2,11X,'(',F6.1,' METRES)')
      END IF
C
       CALCULATE GROSS AVERAGE POROSITY
C
      PHIG=PHITG/NSP
     WRITE(6,101)PHIG
     FORMAT (30X, 'GROSS POROSITY= ',F5.3)
101
C
       CALCULATE GROSS AVERAGE WATER SATURATION
C
     SWG=SWTG/NSP
```

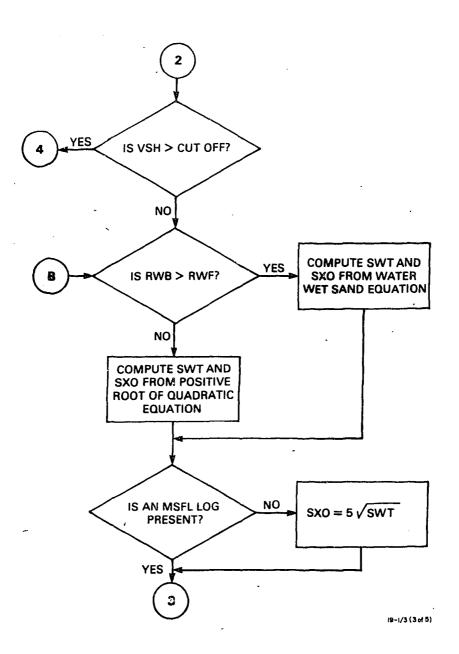
WRITE(6,102)SWG

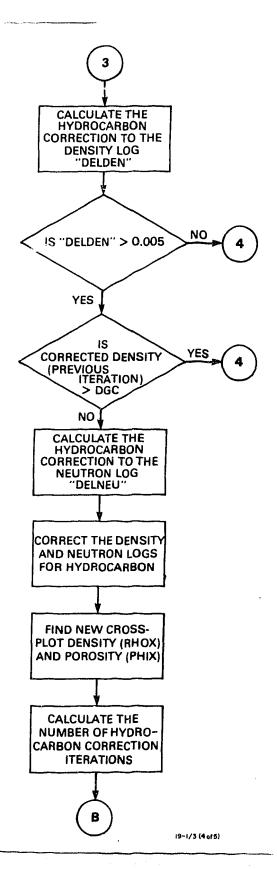
```
102
       FORMAT (30X, 'GROSS WATER SATURATION= '.F5.3)
 C
 C
        COMPUTE NET PAY, POROSITY, WATER SATURATION
 C
        AND HYDROCARBON PORE THICKNESS.
       DO 300 J=1.NSP
       IF (VSH(J).LE.VSHCUT.AND.SWE(J).LE.SWCUT.AND.PHIE(J).GE.PHICUT)THEN
       PHITN=PHITN+PHIE(J)
       SWIN=SWIN+SWE(J)
       NNPP=NNPP+1
C
C
      COMPUTE NET PAY
      IF(J.EQ.1)NP=NP+(DEPTH(J+1)-DEPTH(J))/2.0
      IF(J.EQ.NSP)NP=NP+(DEPTH(J)-DEPTH(J-1))/2.0
      IF (J.NE.1.AND.J.NE.NSP)NP=NP+(DEPTH(J+1)-DEPTH(J-1))/2.0
      END IF
300
      CONTINUE
C
C
       PRINT OUT THE NET PAY DATA
      IF(MDPH.EQ.1)THEN
      NPIMP=NP/0.305
      WRITE(6,103)NP,NPIMP
    FORMAT (/, 30X, 'NET PAY INTERVAL= ',F7.2, 'METRES'
103
     2,10X,'(',F7.2,' FEET)')
      ELSE
      NPMET=NP*0.305
      WRITE(6,403)NP,NPMET
403 FORMAT (/, 30X, 'NET PAY INTERVAL= ',F7.2, ' FEET'
     2,11X,'(',F7.2,' METRES)')
     END IF
```

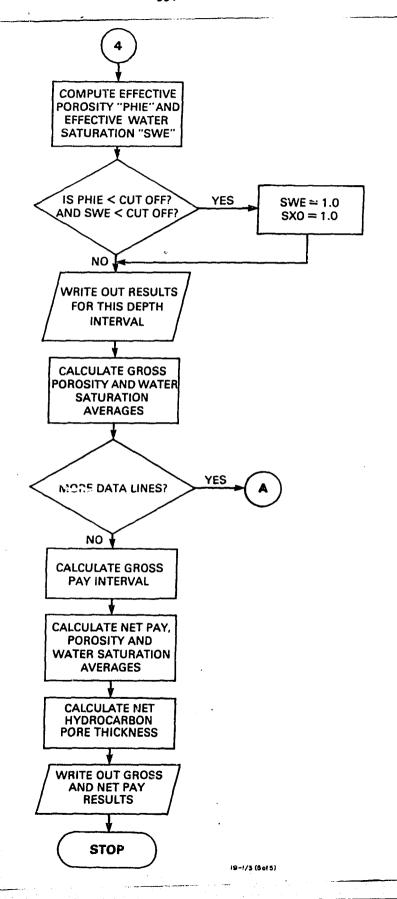

```
C
        PRINT OUT THE NET FFFECTIVE POROSITY AND THE NET WATER SATURATION
       PHIN=PHITN/NNPP
       WRITE (6, 104) PHIN
       FORMAT (30X, 'NET POROSITY= ',F5.3)
 104
       SWN=SWIN/NNPP
      WRITE(6,105)SWN
 105
      FORMAT (30X, 'NET WATER SATURATION= ',F5.3)
 C
С
       PRINT OUT THE NET HYDROCARBON PORE THICKNESS
      NHPT=NP*PHIN*(1.O-SWN)
      IF (MDPH.EQ.1)THEN
      NHPTIMP=NHPT/0.305
      WRITE(6.110)NHPT.NHPTIMP
110 FORMAT(/,30X,'NFT HYDROCARBON PORE THICKNESS= ',F10.5,' METRES'
     2,10X,'(',F10.5,' FEET)')
      FLSE
      NHPTMET=NHPT*0.305
      WRITE(6.410)NHPT, NHPTMET
410 FORMAT (/, 30X, 'NET HYDRCCARBON PORE THICKNESS= 'F10.5, 'FFET'
     2,11X,'(',F10.5,' METRES)')
      END IF
C
      CLOSE(4)
      WRITE(1,500)
      FORMAT (5X, 'NORMAL TERMINATION')
500
```

STOP


END


END\$


10. Program flowchart of the dual water wireline log interpretation model.



19-1/3 (1015)

11. Bibliography

(1) W.R. Almon, 1981

Paper titled "Diagenesis and the Petrophysical Properties of Sandstone" in course notes for "The Impact of Diagenesis on Reservoir Stimulation and Management".

Published by the Petroleum Exploration Society of Australia, 1981.

(2) R.M. Bateman and C.E. Konen, 1977

"The Log Analyst and the Programmable Pocket Calculator", paper in the Society of Professional Well Log Analysts publication, 1977.

(3) J.L. Dumanoir, no date given

Paper titled "Dual Mineral, Dual Water Model" incorporated in the "Cyberlook" section of Schlumberger course notes "Log Evaluation Techniques in Shaly Sands and Complex Lithologies", 1983.

(4) R.L. Hausenbuiller, 1978

"Soil Science, Principles and Practices", second edition, Brown Publishing Company, 1978.

(5) L.E. Kurylowicz, 1978

"A Review of the Concepts and Practices of Wireline Log Interpretation" BMR internal publication, 1978.

(6) Schlumberger Wireline Well Logging Company Publications, no authors given.

- (a) "Log Interpretation, Volume 1 Principles" 1972 edition.
- (b) "Log Interpretation Charts" 1979 edition.
- (c) "Log Evaluation Techniques in Shaly Sands and Complex Lithologies"
 1983 Course Notes.

12. Appendix 1; A List of the Variables used in this Record and their Definitions.

a = the Archie coefficient

Cf = conductivity of the fluids contained within the total porous space $\emptyset t$

Cwb = conductivity of the bound or immovable water

Cwf = conductivity of the free formation water

DGC = the maximum value Pma may take once corrected for hydrocarbons, stands for "density grain corrected"

GR log = gamma ray log reading

GR max = gamma ray log reading in a formation composed of 100%
 radioactive shale

GR min = gamma ray log reading in the clean no -radioactive reservoir rock

h = net pay thickness

m = cementation factor used in the Archie equation

NHPT = the net hydrocarbon pore thickness

NSP = number of sample points

P = salinity of the mud filtrate expressed as a fraction

PHIeff = effective porosity

PHIxplt = crossplot porosity (uncorrected for hydrocarbon effects)

Rf = resistivity of the fluid, see Cf

RHOma = matrix density (corrected for hydrocarbon effects)

RHOxplt = crossplot density (uncorrected for hydrocarbon effects)

Rmf = resistivity of the mud filtrate

Rsh = resistivity of a 100% shale formation adjacent to the reservoir sand

Rt = true formation resistivity

Rwb = bound water resistivity

Rwf = free formation water resistivity

Rxo = resistivity of the invaded zone, can be approximated by

the resistivity generated from the micro-spherically focussed

log corrected for mud cake effects

SP log = spontaneous potential log reading

SP min = SP log reading in a 100% shale formation

SSP = SP log reading in the clean reservoir rock

Sw = water saturation

Swb = bound water saturation

Swe = effective water saturation

Swt = total water saturation of the formation, includes Swb

Sxo = saturation of the mud filtrate in the invaded zone

Vf = volume of fluid within the pore space \emptyset_t , expressed as a

fraction

Vsh = volume of shale, calculated here from either the gamma ray

or the SP log

 \emptyset = porosity of the formation

Ød = porosity from the density log

Øe = effective porosity

 \emptyset log corr= neutron log porosity reading corrected for the borehole

environment

 \emptyset neutron log = porosity read directly from the neutron log

Øsh = apparent shale porosity, calculated from the neutron - density

crossplot in a 100% shale formation

Øt = total porosity of the formation, includes Øsh

 $\Delta \emptyset$ = hydrocarbon correction to the neutron porosity log

 $\Sigma \emptyset$ = correction for the borehole environment to the

neutron porosity log

ρb = density log reading (or "bulk" density)

 ρf = density of the fluid in $\emptyset t$

ohr = density of the hydrocarbon

oma = matrix density

 ρ^* ma = matrix density of the clean reservoir rock with water filled

pores

pmf = density of the mud filtrate

 ρ sh = density of shale, calculated from a neutron - density

crossplot in a 100% shale formation

Δρ = hydrocarbon correction to the density log.

Note: density values are in units of grams per cubic centimetre

gamma ray values are in API units

SP values are in millivolts

depths are in metres or feet

12. Appendix 2; Input Data Format.

The following section details the format required for the data entered into the LOG4 and DW programs. This appendix is an excerpt from the BMR publication; "A Review of the Concepts and Practice of Wireline Log Interpretation" by L.E. kurylowicz, 1978.

Line 1 - Title of up to 40 characters is entered.

Line 2 - Run number (e.g. 0001) four digits and date (21-10-78) are entered.

Line 3 - Values for various switches (IPORF, IHYDR, IPL, IRM, MDPH, MTAC, MTEM, LUN, NLTYPE, IPRINT) used in program

IPORF = 1 (Final porosity is from neutron-density cross-plot

= 2 (Final porosity is average of sonic plus neutrondensity)

= 3 (Final porosity is average of <u>Simplex</u>, plus sonic, plus neutron-density)

IHYDR = Hydrocarbon detection switch (i.e. Rxo log present) 1 = Yes; 0 = No.

IPL = Plot Switch (1 = Yes; 0 = No)

IRM = Resistivity combination in order to apply correct
 'butterfly' chart correction for Rt

1 = LL8, ILM, ILD; 2 = Rxo, LLs, LLd;

0 = No Rm log or some other resistivity combination
 is present.

MDPH = Metric depth (1 = metres; 0 = feet)

 ${\underline{\mathtt{NOTE}}}$: Simplex is the technique of optimizing the solution of a set of simultaneous linear equations (used in LOG4 only).

MTEM = Metric temperature (1 = Centigrade; 0 = Fahrenheit)

LUN = Intermediate calculations print-out (debug)

(6 = Yes; 11 = No)

No other values are permitted.

NLTYPE = Type of neutron log (1 = SNP; 2 = CNL; 3 = API units)

If NLTYPE = 3, then the constants (A,B) of the equation of best fit of API versus porosity (calibrated before-hand against either density, sonic, or core values) are entered on line 3 B.

Eqn is: Neutron porosity = A-B log (API)

IPRINT = 6, normal output printing device; = 7 for Gould printer.

ISP = is SP reliable 1 = yes, 0 = No.

Line 4 - NSP, TEM, PMF, DENMF, TACF

NSP = Number of sample points (maximum of 100 for LOG4, 300 for DW)

TEM = Formation temperature

PMF = Mud filtrate salinity (fraction in parts per million)

RMF = Mud filtrate resistivity at formation temperature

DENMF = mud filtrate density (gm/cc)

TACF = mud filtrate interval transit time

DELPOR = log porosity correction, entered as a fraction (neutron log)

Line 5 - GRYMIN, DENMA, TACMA, SSP

GRYMIN = Gamma Ray reading opposite clean sandstone section.

DENMA = Matrix density (i.e. sandstone or limestone) - gm/cc.

TACMA = Matrix interval transit time.

SSP = SP deflection in clean sandstone (maximum)

Line 6 - GRYMAX, RSH, DENSH, TACSH, PORNISH, SPMIN

GRYMAX = Gamma Ray reading opposite a nearby shale-section

RSH = Resistivity of shale section

DENSH = Density of shale

TACSH = Shale interval transit time

PORNSH = Neutron porosity reading in shale section.

SPMIN = SP deflection in shale.

Line 7 - RW, DENHYD, BORE

RW = Formation water resistivity (from DST, or cross-plot)

BORE = Bore hole diameter (inches -) size of drill bit will suffice for correction to density log readings.

Lines 8 up to 10 - DPH, GRY, DENA, PORNLI, TAC, PSP, RXO, RM, RD, CAL for LOG4

- or DEPTH, GR, DEN, NEU, TT, SP, MSFL, RLS, RLD, CAL for DW respectively

DPH = Depth (metres or feet)

GRY = Gamma Ray (API)

DENA = Density (gm/cc)

PRONLI = Neutron Porosity (porosity units or API units)

TAC = Interval transit time (microseconds/m or microseconds/foot)

RXO = flushed zone resistivity

RM = invaded zone resistivity

RD = deep resistivity (equals Rt in most cases).

IEND = -1.

 $\underline{\text{NOTE}}$: (1) that CAL is an optional input at this stage for both LOG4 and DW.

(2) DELPOR was introduced in this segment on 1 March 1983.

DELPOR is determined from Schlumberger chart Por-14a and is added to the porosity read from the neutron log to correct it for borehole environmental factors. This correction is generally in the range 0.00 to 0.05 and is usually only above 0.03 in high temperature wells. Where Por-14a in the 1977 edition of Schlumber charts is equivalent to Por-14b in the 1979 edition.

The input format for the first seven lines of data entered into the LOG4 and DW programs is shown on Table 1, page 63.

								,	•	-		Page 1 of 2
	TITLE (UP TO 40 CHARACTERS)											
ı												
	RUN	. DA	ITE								•	
2					,		,				(
	IPORF	IHYDR	IPL	IRM	МОРН	MTAC	мтем	LUN	NLTYPE	I PRINT	15P	
3	,	,	,	,	,	,	,	,	,	•		
	NSP	TEM	PMF	RMF	DENMF	TACF	DELPOR					•
4	,	,	•	•	,	·)						
	GRYMIN	DENMA	TACMA	SSP	• .	. 1	•					
5	,	,										
	GRYMAX	RSH	DENSH	TACSH	PORNSH	SPMIN					•	
6		1		•			. •					
	RW	DENHYD	BORE			•						
7	•	1			· · · · · · · · · · · · · · · · · · ·	\$ 16 S 20	. :	· ·	* *		. :	
	Notes:											

Record 1978/3

XAUS-5-414-4