1984/33

\$4

BMR PUBLICATIONS COMPACTUS
(LENDING SECTION)

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD

RECORD 1984/33

SHALLOW STRATIGRAPHIC DRILLING, GEORGINA BASIN,
1978 AND 1980

ЬУ

D.L. GIBSON

RECORD 1984/33
SHALLOW STRATIGRAPHIC DRILLING, GEORGINA BASIN,
1978 AND 1980

ЬУ

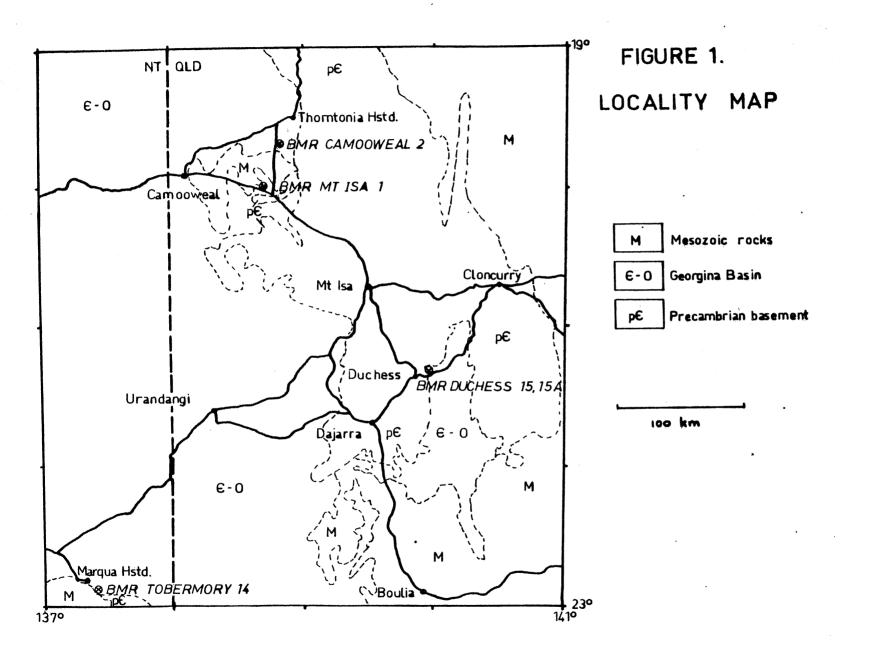
D.L. GIBSON

CONTENTS

C	* · · · · · · · · · · · · · · · · · · ·	
BMR Toberm Geochemist	Isa 1 weal 2 ss 15 & 15A nory 14	1 2 5 8 9 11
and O Nature of Wireline 1	Camooweal 2 the organic matter logs, BMR Mount Isa 1	17 19 20
		22 23 24
TABLES		
1 2	Organic analyses, BMR Mount Isa 1 Rock-Eval data, BMR Mount Isa 1	12 . 12
2 3	Kerogen analyses, BMR Mount Isa 1 and Camooweal 2	12
4	Geochemistry, BMR Mount Isa 1 and Camooweal 2	13
5	Detrital contents, BMR Mount Isa 1	
6	and Camooweal 2 XRD Mineralogy, BMR Mount Isa 1	18 23
7	XRD Mineralogy, BMR Camooweal 2	23
FIGURES		
1 .	Locality map	
2	Gas chromatograms of saturated extracts from BMR Mount Isa 1	
3	Gas chromatograms of saturated fraction of 'oil' from BMR Duchess 15A	
APPENDICES	S	
1	Detailed lithological logs, BMR Mount Isa 1	26
2	Detailed lithological logs, BMR Camooweal 2	59
PLATES		
1	Composite log, BMR Mount Isa 1	
2	Composite log, BMR Camooweal 2 Composite log, BMR Duchess 15A	
4	Composite log, BMR Tobermory 14	

SUMMARY

Four fully-cored stratigraphic holes drilled in Cambrian rocks of the Georgina Basin in 1978 and 1980 are described in this record, along with some basic data on chemistry and mineralogy. Some of the rocks from the Currant Bush Limestone in BMR Mount Isa 1 and Camooweal 2 are sufficiently rich in organic carbon to be considered to be oil shales, although since these only occur as thin beds, they can only considered to be a minor occurence. These are the first samples taken from the Camooweal oil shale occurence since its discovery in 1945.


Detailed interpretation of sediments from these holes is included in several published papers and conference proceedings which are included in the references.

INTRODUCTION

This report describes four fully cored stratigraphic holes drilled in the Georgina Basin in 1978 and 1980. Limited information on these has been given in the Georgina Research series of records (primarily Simpson, 1980b; also Simpson, 1980a; Shergold, 1979a, 1979b, 1981) and Shergold and Walter (1979), but furthur study of the cores has led to changes in the interpretation of lithology and stratigraphy, and hence this report supercedes earlier ones.

Organic-rich rocks were encountered in all the holes, but detailed study has been limited to those in BMR Mount Isa 1 and Camooweal 2, where black carbonate mudstones with organic carbon contents of up to 16% are present (Glikson & Gibson, in press; Gibson, in press; Gibson, in press; Gibson & Boreham, 1984; Gibson & Boreham, in press). The organic rich rocks in Mount Isa 1 and Camooweal 2 comprise the Camooweal oil shale occurrence, first described by Shepherd (1945), and since included in synopses of Australian oil shale as a little-known minor occurrence (e.g. Swarbrick, 1974; Raphael & Saxby, 1980; Gibson, 1981; Gibson & Rutland, 1981; Day, 1981, 1983a, 1983b).

The accompanying well logs (Plates 1 to 4) show generalised lithologies only, and irregularly bedded nodular limestone and mudstone is shown by a regularly repeating pattern of lithologies. However, the Currant Bush Limestone in Mount Isa 1 and Camooweal 2 has been logged in detail, and changes in lithology shown on the log reflect actual changes rather than being diagrammatic.

BMR MOUNT ISA 1

Location: 20°01'S, 138°40'E; west side of north-south track connecting Barkly Highway with 40-Mile Plain bore, about 0.5 km from the bore (Fig. 1).

Purpose: To investigate reports of oil shale encountered during drilling of the 40-Mile Plain bore in the early 1940's (Shepherd, 1945); to provide general stratigraphic and lithological information.

History: Drilled in late 1978, no wellsite geologist (cores marked and packed by drillers). Drillsite selected by C.J. Simpson. Cored from 30.5 m to 250.6 m (total depth).

Lithology (see also Plate 1 and Appendix 1):

- O-12.2 Cream sandy clay, with ferruginous fragments above 4.6, and chips of light grey fine dolomitic limestone below 7.6 (cuttings).
- 12.2-30.5 Light grey fine limestone (cuttings).
- 30.5-32.0 Nodular fine limestone, interbedded stylolitic black organic calcareous mudstone, skeletal wackestone.
- 32.0-41.4 Laminated grey-green calcareous siltstone or silty fine limestone, with rare thin massive beds of the same lithology. Contains sparse organic matter towards the base. Grades to:
- 41.4-42.3 Laminated tan coloured fine limestone with organic partings. Grades to:
- 42.3-44.7 Laminated green-brown silty limestone with thick massive laminae. Grades to:
- 44.7-45.3 Laminated fine limestone, with organic partings throughout, but concentrated in the lower 9 cm, along with some possible evaporite pseudomorphs.
- 45.3-45.4 Massive lime mudstone with rare spicules and skeletal fragments; large voids filled with sparry calcite; possible fenestral fabric.
- 45.4-46.2 Grey-green calcareous siltstone or silty limestone, massive in top 6 cm, then laminated with organic partings.
- 46.2-46.8 Tan nodular laminated fine limestone, with organic partings and one 7 cm bed of white micrite.

46.8-139.9

Repetitive cyclic sequence, cycles consisting of:

1. Tan, laminated, fine peloidal micritic limestone with minor organic lamellae. Laminae and thin beds of massive peloidal micrite (probably large, flat nodules); thin silicified zones (cherts), with bedding and organic matter preserved undistorted with respect to the surrounding rock may be present. Coarse pyrite common and rarer sphalerite present in cherts. Grades gradually up into:

2. Green-grey, laminated, fine silty limestone or calcareous siltstone, with increased organic content and rare early diagenetic nodules. Some laminae fining up. Grades over several cm up into:

3. Black to dark brown laminated, organicrich carbonate mudstone, with variable silt content, and minor interlaminated white to pink micrite. This lithology is later referred to as oil shale. Where silicified (rare), organic content is much lower. Grades over several mm to lithology 1 above.

Lithology 1 rarely exceeds 1 m thick in any cycle, lithology 2 ranges from 0 to 10 m, and 3 ranges from 2 to 15 cm (commonly 4 to 6 cm).

Siltstone is slumped at 52.3-52.4 m.

An unusual bed at 76.57-76.58 consists mainly of ragged analcite crystals set in a matrix of sparry calcite and barite, with scattered biotite (concentrated near the base of the bed), and detrital silt (only near the base of the bed). A volcanic origin seems most likely.

The detrital silt consists of quartz, muscovite, and rare feldspar.

- 139.9-172.2 Cycles generally as above, but some organic-rich rocks occur over intervals of 0.5 m or more, with numerous laminae of rippled fine grainstone and/or beds of massive fine limestone.
- 172.2-172.7 Organic-rich carbonate mudstone with micrite laminae in the top 8 cm.
- 172.7-176.8 Grey-green laminated siltstone, bioturbated (?) above 174.2 m, slumped from 174.2 to 174.6 m, rippled from 174.6 to 174.8 m. Organic matter extremely sparse.
- 176.8-178.5 Laminated green-grey siltstone with organic lamellae and minor slumping.

178.5-182.1	Nodular fin	e limestone	with l	aminated
	organic-rich	carbonate n	mudstone	between
	nodules.			

- 182.1-182.6 Nodular calcareous siltstone.
- 182.6-208.1 Nodular fine limestone with laminated organic-rich carbonate mudstone between nodules. Silicified in part. Minor, partly dolomitised coarse grainstone laminae and thin beds between 201.3 and 201.5 m.
- 208.1-211.4 Nodular fine limestone as above, with interbedded partly dolomitised and silicified grainstone beds.
- 211.4-214.7 As above, but all lithologies strongly dolomitised. Glauconite abundant. Grainstone becomes abundant with depth.
- 214.7-214.8 Medium to very coarse dolomite grainstone with intraclasts up to 3 cm. Glauconitic, very pyritic.
- 214.8 Erosion surface.
- 214.8-231.4 Nodular fine dolomitic limestone. Rare thin beds of stylolitic black organic carbonate mudstone or calcareous shale.
- 231.4-250.6 Dolostone, strongly silicified in places, stylolitic, partly vuggy. Mainly wackestone and mudstone above 239 m, and mainly coquina and grainstone below. Minor stylolitic black shale.

Interpreted stratigraphy:

0-12.2 Regolith.

12.2-182.6 Currant Bush Limestone.

182.6-214.8 Inca Formation.

214.8-250.6 Thorntonia Limestone.

Palaeontological determinations (by J. Shergold and J. Laurie):

84.6 <u>Diplagnostus</u> sp. indet. <u>Linarssonia</u> sp. indet.

BMR CAMOOWEAL 2

Location: 19°43'S, 138°48'E; 5.5 km southeast of Top Harris Waterhole, about 300 m east of the Yelvertoft-Thorntonia beef road (Fig 1).

Purpose: To determine whether oil shale similar to that in Mount Isa 1 is present in the Currant Bush Limestone and Inca Formation in this part of the Undilla Sub-basin; to provide general stratigraphic and lithological information.

History: Spudded 19-6-80. Cored from 3.6 m. Lost circulation at 128 m in porous dolomite, and drilled to TD of 132.4 m mainly without circulation, despite several attempts to cement cavities.

Lithology (see also Plate 2 and Appendix 2):

0-2.4 Regolith

13.9-79.4

2.4-5.7 Weathered fine silty limestone, silicified in part.

5.7-13.7 Laminated grey-green calcareous siltstone or very silty limestone, with minor organic lamellae. Occasional early diagenetic nodules. Grades to:

13.7-13.9 Tan coloured laminated fine limestone, with organic lamellae (dispersed in an early diagenetic nodule). Grades over 1 cm to:

Repetitive sequence as in Mount Isa 1: tan to pinkish coloured laminated fine limestone with organic lamellae, with intercalated massive micritic limestone and silicified patches, becoming siltier and grading up in most cases to laminated calcareous siltstone with organic lamellae, grading up to a thin dark organic-rich carbonate mudstone, which grades over a few mm to laminated limestone at the base of the next cycle.

Two cycles (bases at 36.0 and 44.7 m) have two organic mudstone beds at their tops, separated by laminated limestone.

Two organic mudstone beds (at 18.3 and 48.1 m) are separated from the underlying siltstones by thin limestone beds (17 and 3 cm respectively).

The organic content increases up most cycles, but especially towards the base of the interval, the organic mudstone may have relatively low organic content (but still higher than the underlying rocks), resulting

in a rock with alternating dark and light coloured thin laminae, rather than all dark in handspecimen.

79.4-107.0

Cycles generally similar to those above, but:
1. In many cycles, no gradation in lithologies is apparent between the organic mudstone intervals.

2. The organic mudstones are generally interbedded with laminae and thin beds of fine grainstone over intervals of up to 20 cm. The mudstones do not seem to have a particularly high organic content.

3. The laminated limestones are more organicrich than in the interval above, and as a result are grey rather than tan or pink. The tan colour is developed in rare early diagenetic nodules with expanded bedding.

107.0-118.8

Nodular siliceous fine limestone, with interbedded fine siliceous organic-rich carbonate mudstone (the latter being predominant in some parts of the core), and laminae and beds of rippled fine grainstone. Evaporite pseudomorphs at 109 m.

118.8-132.4

The descriptions given below are abbreviated from those given by Southgate in Shergold (1981) and Southgate (1983).

118.8-119.3

Breccia. Blocks of mudstone, wackestone, and a phosphatic lag in a mud matrix; veins of saddle dolomite.

119.3

Scalloped disconformity surface.

119.3-121.1

Light grey-pink recrystallised vuggy dolomite.

121.1-125.0

Mottled dolomitic limestone, dominantly burrowed mudstone with thin wackestone and packstone beds.

125.0-126.0

Cyclic sequence: grainstone and packstone grade up into phosphatic glauconitic packstone and wackestone, overlain by non-phosphatic burrowed mudstone.

126.0-130.2

Light grey-pink recrystallised vuggy dolomite.

130.2-132.4

Medium to coarse recrystallised dolomite.

Interpreted stratigraphy:

0-2.4 Regolith.

2.4-107.0 Currant Bush Limestone.

107.0-119.3 Inca Formation.

119.3-132.4 Thorntonia Limestone.

Palaeontological determinations (by J.H. Shergold):

- Onymagnostus sp. indet.
 Scrobiculate ptychagnostids
 This occurrence may or may not indicate the early
 Undillan Ptychagnostus punctuosis zone.
- Actagnostus sp. indet.

 Goniagnostus (Criotpus) of lemniscatus

 Sponge spicules.

 The agnostids probably indicate the late Floran zone of Euagnostus opimus.
- 77.7 agnostid trilobites sponge spicules

BMR DUCHESS 15 & 15A

Location: 21°22'S, 139°59'E; 200 m southeast of Engine Well; about 1 km northwest of the Duchess-Cloncurry road crossing of the Burke River (Fig. 1).

Purpose: To obtain core of the Roaring Siltstone for study of its potential as a source rock, and to determine if it contains source rocks rich enough to be oil shale; to obtain general lithostratigraphic information.

History: BMR Duchess 15 was abandoned at 11 m due to loss of circulation in a weathered zone. BMR Duchess 15 A, drilled 1 m to the west, encountered good drilling conditions to 95.5 m, where circulation was lost. The hole was then drilled without circulation, despite several attempts to cement fractures, in highly weathered siltstone and sandstone of the Roaring Siltstone. This contains a large supply of fresh water, probably derived from outcrop several km to the north, and it is probable that this has been a major factor in the weathering. The hole was abandoned at 105 m without reaching fresh Roaring Siltstone.

Lithology (see also Plate 3):

0-1.0 Sandy soil.

1.0-95.6 Light to dark grey, massive to laminated, silty fine peloidal limestone, grading to dark grey calcareous siltstone and shale. Rare fine grainstone and packstone laminae in the limestones. Organic lamellae and pyrite common. Bitumen-like material present in vugs and fractures below 50 m.

95.6-95.8 Grey-brown, laminated calcareous siltstone and silty shale, with rare fine quartz sand laminae.

95.8-95.9 Highly weathered, brown-grey, calcareous silty shale, with calcareous nodules.

95.9-96.3 Highly weathered, brown-grey, non-calcareous laminated siltstone.

96.3-97.3 Brown-grey laminated siltstone, with rare fine quartz sand laminae.

97.3-105.0 Highly weathered, yellow-brown laminated siltstone and fine quartz sandstone.

Interpreted stratigraphy:

0-1.0 Regolith

1.0-95.6 Devoncourt Limestone 95.6-105.0 Roaring Siltstone.

BMR TOBERMORY 14

Location: 22°53'S, 137°27'E. 5 km south-southwest of Black Tank, Marqua Station. Drill site is 100 m south of the peak of the more westerly of two small hills of Mesozoic rocks (Fig. 1).

Purpose: To provide core for stratigraphic, palaeontological, and lithological study of the Marqua beds (being redefined as Hay River Formation by Shergold, in press), including its potential as a black shale bearing sequence.

History: The hole was continuously cored, except for the intervals 0-3.0, 6.0-7.7, and 10.3-10.6 m. Drilling to 116 m was supervised by an on-site geologist.

Lithology (based largely on information from J.H. Shergold; see also Plate 4):

0-1.0 Soil.

1.0-13.0 Weathered grey calcareous siltstone.

13.0-85.3 Laminated dark grey calcareous siltstone, nodular in places, interbedded with pale grey to white slightly coarser laminae, and thin beds of dark grey bituminous shale (2% of the interval). Intercalated pale grey fine-grained fetid limestone. Pyrite present as grains and pods. Breccia at 33.97-.98; crystalline dolomite at 30.22-.24. The siltstone is dolomitic below 78.07 m.

85.3-86.8 Pale grey vuggy shelly dolostone (grainstone).

86.8-86.9 Breccia of fine limestone with dolomite veins.

86.9-107.3 Intercalated dark grey fine-grained fetid silty limestone. Oolitic at 91.67-.74; shelly grainstone at 102.02-102.37; pyrite, fluorite present as accessories.

107.3-107.8 Vuggy dolostone (grainstone).

107.8-109.5 Fractured and veined, bituminous, calcareous shale.

109.5-122.8 Purple, blue-grey, and buff-brown, blotchy, brecciated, and vuggy dolostone; chert nodules and layers at 109.6-110.4 and 112.8-114.3; fossiliferous at 113.6-113.8.

122.8-123.4 Aphanitic purple dolostone, with upward decreasing sand content. Gradational boundaries.

123.4-124.8	Gradation	between	lithologies	above	and
ě	below.		_		

- 124.8-128.7 Basal pebble conglomerate, passing upwards into pale grey medium to coarse sandstone with laminated and flaser bedded siltstone.
- 128.7-131.5 Dark grey medium sandstone passing upwards into pale grey siltstone. Uppermost 11 cm is olive green mudstone. Disseminated and laminated pyrite throughout.
- 131.5-143.0 Intercalated pale purple fine to medium sandstone, and purple, brown and green interlaminated mudstone and siltstone. Slumping in fine sandstone at 139.1, and in siltstone at 138.7; sandstone arkosic at 141.8-142.6 m.

Interpreted stratigraphy:

O-1.0 Regolith.

1.0-86.8 Upper Hay River Formation (Undillan-Floran).

86.8-109.5 Lower Hay River Formation (Ordian).

109.5-128.7 Red Heart Dolomite.

128.7-143.0 Adam Shale.

GEOCHEMISTRY

Samples from Mount Isa 1 were despatched for organic analysis in early 1979. Fisher assay (pyrolysis) was carried out by the ACIRL laboratory at Rockhampton (Table 1), and TOC, extract, and Rock-Eval analysis by Robertson Research (Tables 1 & 2). Gas chromatograms are shown in Figure 2.

Robertson Research concluded that 'although insufficiently immature to have generated large quantities of hydrocarbons', the samples assayed by Rock-Eval are 'potentially, very good oil source rocks....the absence of higher molecular weight n-alkanes with a pronounced odd-carbon number preference and the relative prominence of steranes and triterpanes in the gas chromatograms of the saturate hydrocarbon fraction of these samples....indicate a predominantly lower plant input resulting in a sapropelic kerogen'. The samples were classified as 'immature-early mature'. Fisher assay confirms that the richer rocks are of oil shale grade.

Furthur samples were submitted to AMDEL in 1983 for kerogen analysis. These were demineralised with hydrochloric acid and hydrochloric/hydrofluoric acid. Kerogen was isolated by floatation in chloroform. Results are given in Table 3, and on this basis, they are considered to be typical of Type II kerogens.

Total organic carbon content (Leco furnace) was also determined for a large number of samples from Mount Isa 1 and Camooweal 2 by AMDEL. These results are shown in Table 4 along with total carbon, S (combustion and measurement of SO2), Fe (atomic absorption), and trace elements (a/a). Shergold (in press) gives chemistry (including TOC, P and trace metals) of a number of samples from BMR Tobermory 14).

TABLE 1. ORGANIC ANALYSES, BMR MOUNT ISA 1.

Depth	Unit	TOC .	Fisher Assay (1/t)	Extract ppm of rock	H/C ppm of rock	H/C mg/g TOC	H/C % of extract	Alkane % of H/C
53.7883	CB Lst	0.85	7	679	35	4	5	41
55.8387	1 1	-	1	-	-	-	-	-
100.3841	1.1	-	83	_	-	-	-	- *
107.5663	1 1	16.28	101	8278	395	2	5	76
117.4349	11	13.80	82	_	-	-	-	-
119.4149	11	16.60	106	6645	810	5	12	25
138.5359	1.1	4.57	23	2598	615	13	24	19
138.6064	11	-	2	-	-	-	-	-
188.3745	Inca F.	8.99	59	4413	1030	11	23	37
188.5861	Inca F.	-	36	-		-	-	-
250 approx	Th. Lst.	3.26	-	1275	60	2	5	28

TABLE 2. ROCK-EVAL DATA, BMR MOUNT ISA 1.

Depth	Unit	TOC	Temp max. pyrol.	Hyd. Index	Oxy. Index	Prod. Index	Potential yield ppm
107.5663 119.4149 138.5359 188.3745 250 approx	CB Lst	16.28 16.60 4.57 8.99 3.26	429 432 432 430 429	703 592 797 703 739	8 9 26 3	0.04 - 0.05 0.1	114500 98500 36400 63200 24100

TABLE 3. KEROGEN ANALYSES, BMR MOUNT ISA 1 AND CAMOOWEAL 2

Sample We	ell Dep	oth	Unit	%C	%H	%N	%0	% S	%Ash	H/C	o/c
82700044 ! ! 82700052* ! ! 82700062 ! !	' 76. ' 100 ' 115 I 1 106 ' 165	.7686 0.5662 5.5460 6.5863 5.2835	Inca F	56.3 16.2 46.0 62.5 48.7	6.2 2.2 5.2 6.5	1.6 0.55 1.3 2.8 1.6	6.7 4.4 3.5	2.8 8.0 7.4	16 22 57 22 14 25	1.27 1.32 1.63 1.36 1.25 1.33	0.087 0.080 0.204 0.057 0.082 0.094 0.066

*Sample 82700052 contained practically no chloroform floatable kerogen, and analyses were therefore carried out on the total demineralised sample. Given the high ash content of the demineralised sample, the oxygen content is likely to be unreliably high.

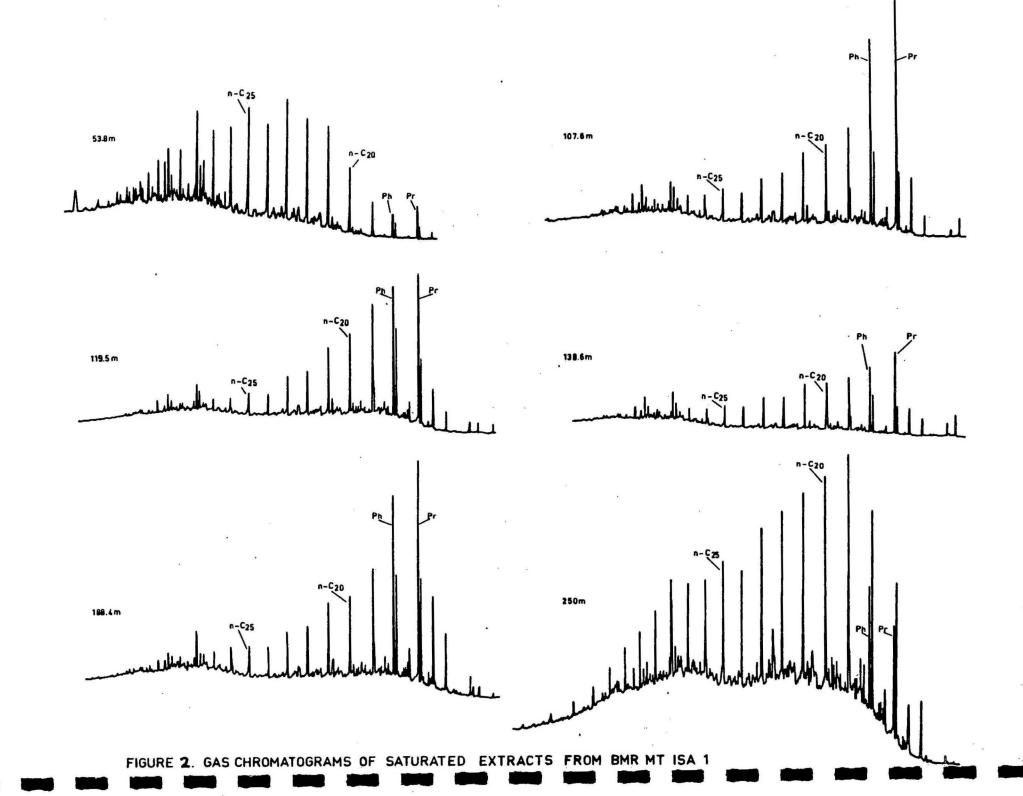


TABLE 4. GEOCHEMISTRY, BMR MOUNT ISA 1 AND CAMOOWEAL 2

Sample	827000	27 827000	28 8270002	9 82700030	82700031	82700032	82700033	82700034	82700036	82700038	82700039	82700040
Hole and	depth C.2,6.	99 C.2,13	.90 C.2,13.	93 C.2,21.18	8 C.2,21.21	C.2,21.45	C.2,21.74	C.2,22.12	C.2,36.08	C.2,54.67	C.2,54.88	C.2,55.48
Strat. Un:	it C.B. L	st C.B. L	st C.B.Lst	C.B.Lst	C.B.Lst	C.B.Lst	C.B.Lst	C.B.Lst	C.B.Lst	C.B.Lst	C.B.Lst	C.B.Lst
C total %	5.	45 11.6	11.6	14.4	8.25	8.84	9.50	11.1	14.7	12.1	5.90	6.10
C org %	0.	48 3.0	2 7.30	10.1	2.22	1.28	0.69	0.62	11.7	5.90	0.79	0.48
5%	0.	35 0.2	8 0.97	0.78	0.68	0.40	0.17	0.07	1.30	0.80	0.68	0.67
As ppm	20	80	30	70	70	70	80	120	20	<20	30	50
Bi ppm	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cd ppm	<1	<1	<1	<1	<1	<1	<1	< 1	2	3	<1	<1
Cr ppm	10	10	20	20	10	10	10	<10	20	10	10	10
Co ppm	5	< 5	5	5	10	5	< 5	< 5	30	35	5	10
Cu ppm	14	18	32	46	30	20	14	6	70	42	20	22
Fe %	1.	30 0.7	5 1.70	1.40	1.50	1.20	0.73	0.23	2.25	1.20	1.40	1.60
Pb ppm	30	35	20	35	35	40	35	35	30	20	30	30
Mn ppm	270	240	180	140	170	170	130	100	220	170	180	240
Mo ppm	1	3	11	3	2	2	2	2	14	25	3	3
Ni ppm	15	10	30	30	20	15	15	5	45	35	15	20
Ag ppm	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1
Tl ppm	20	40	20	30	30	30	40	40	25	<10	20	30
V ppm	30	60	100	130	80	60	60	. 20	190	140	40	50
Zn ppm	16	14	20	26	55	40	50	6	40	28	16	20

Sample	82700041	82700042	82700043	82700044	82700046	82700047	82700050	82700052	82700054	82700055	82700058	82700059
Hole and depth	C.2,56.02	C.2,70.66	C.2,73.97	C.2,76.81	C.2,77.75	C.2,77.79	C.2,86.80	C.2,100.59	C.2,106.70	C.2,107.88	C.2,108.78	C.2,109.83
Strat Unit	C.B. Lst	C.B. Lst	Inca Fmn	Inca Fmn	Inca Fmn							
C total %	11.2	10.9	8.15	12.0	11.2	11.1	6.10	6.40	7.75	8.00	9.30	8.35
C org %	0.20	2.70	1.35	4.80	7.75	7.05	1.07	2.10	2.34	3.86	3.48	5.90
S %	0.04	0.74	0.48	0.62	0.86	0.58	0.76	1.53	1.01	1.76	1.27	0.89
As ppm	110	80	50	20	50	40	30	< 20	30	50	80	30
Ві ррт	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cd ppm	<1	<1	1	5	95	24	2	3	2	<1	<1	3
Cr ppm	<10	10	10	10	40	40	10	10	20	10	10	20
Co ppm	<5	5	10	25	5	5	5	25	5	5	10	15
Cu ppm	8	38	44	48	200	160	40	40	50	40	34	60
Fe %	0.23	1.20	1.30	1.10	1.20	1.10	1.70	2.10	1.50	1.50	1.30	0.78
Pb ppm	35	40	35	40	25	30	30	35	35	30	25	20
Mn ppm	110	200	210	160	160	150	230	300	250	110	210	85
Мо ррт	1	11	6	12	41	20	8	20	9	19	19	15
Ni ppm	5	20	30	70	120	90	35	30	45	45	60	110
Ag ppm	<1	<1	<1	<1	2	2	<1	<1	<1	<1	<1	1
Tl ppm	40	30	30	30	20	30	20	25	20 .	10	30	<10
V ppm	40	80	240	200	930	590	230	50	320	220	200	630
Zn ppm	8	22	90	100	4700	1000	160	32	230	75	22	620

, is a second of the second of

14

C total %	7.40	6.30	8.00	13.1	8.80	12.1	7.45	8.20	9.10	17.5
C org %	3.06	3.04	3.42	9.40	0.65	6.95	0.80	0.71	0.54	13.5
		×								
5%	1.14	1.33	1.08	0.40	0.36	0.72	0.59	0.44	0.21	1.32
As ppm	60	<20	<20	20	30	40	40	40	20	<20
Bi ppm	<10	<10	<10	<10	<10	40	< 10	<10	<10	<10
Cd ppm	< 1	3	2	3	4	. 4	4	4	3	3
Cr ppm	10	20	20	20	10	20	10	10	10	20
Co ppm	5	15	30	25	30	25	25	25	20	30
Cu ppm	24	40	50	44	18	60	26	28	18	70
Fe %	1.10	1.55	2.10	1.50	1.20	1.60	1.60	1.40	0.79	1.80
Pb ppm	40	40	30	20	25	15	35	40	35	35
Mn ppm	220	250	300	190	200	160	200	190	150	170
Мо ррт	2	5	21	5	10	16	12	10	6	15
Ni ppm	25	35	40	45	30	35	30	30	25	45

<1

<10

50

32

82700069

C.B. Lst

M.I.1.81.98

82700070

C.B. Lst

<1

<10

130

34

M.I.1,93.99

82700071

C.B. Lst

< 1

< 10

40

26

M.I.1,94.22

82700072

C.B. Lst

< 1

< 10

100

44

M.I.1,94.83

Sample

Ag ppm

Tl ppm

V ppm

Zn ppm

Hole and depth

Strat. Unit

82700061

Inca Fmn

<1

20

70

10

C.2, 113.21

82700062

Inca Fmn

< 1

20

130

25

C.2, 115.57

82700065

C.2,68.16

C.B. Lst

<1

<10

140

34

82700067

C.B. Lst

<1

<10

60

38

M.I.1,50.19

=

82700074

< 1

30

110

35

M.I.1,106.60 C.B. Lst

82700073

C.B. Lst

<1

<10

60

26

M.I.1,95.23

Sample	82700075	82700076	82700077	82700079	82700080	82700081	02700083	0030000					
Hole and depth							82700083	82700084	82700085	82700086	82700088	82700089	82700090
			M.I.I,117.46	M.I.1,123.81	M.I.1,124.09	M.I.1,124.22	M.I.1,135.26	M.I.1,141.76	M.1.1,165.32	M.I.1,185.62	M.I.1,215.73	M.I.1,231.69	M.I.1,247.70
Stat. unit	C.B. Lst	C.B. Lst	C.B. Lst	C.B. Lst	C.B. Lst	C.B. Lst	C.B. Lst	C.B. 1st	C.B. Lst	Inca F.	Th. Lst	Th. Lst	Th. Lst
C total &	10.3	10.7	17.8	16.2	8.70	9.50	13.0	12.2	11.0	10.6	12.8	10.2	7.15
C org %	2.40	0.70	13.8	11.6	1.16	1.00	10.1	7.6	6.95	7.55	5.65	8.30	5.25
S %	0.44	0.14	1.45	1.15	0.42	0.27	1.43	1.21	1.79	1.77	1.54	2.37	1.68
As ppm	30	20	<20	20	<20	<20	<20	20	20	20	20	<20	20
Bi ppe	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cd ppm	4	4	3	3	5	4	3	4	3	3	4	2	2
Cr pp∎	10	<10	20	20	10	10	20	20	20	20	20	20	30
Co ppm	30	25	30	30	25	30	30	25	25	20	20	10	15
Cu ppm	28	12	80	65	22	18	60	60	70	60	65	50	32
Fe %	1.00	0.40	2.10	1.70	1.30	0.86	2.10	2.00	2.25	1.70	0.92	1.50	1.7
РЬ рр∎	30	25	20	25	45	30	15	30	40	25	30	40	. 45
Mn ppm	180	190	200	160	210	160	210	180	200	140	160	350	240
Мо ррв	10	7	29	18	9	10	27	27	18				
Ni pps	30	25	40	35	35	30				34	5	8	. 4
Ag ppm	<1						45	45	60	35	80	55	75
		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
II ppm	<10	<10	<10	<10	<10	<10	<10	<10	25	<10	<10	20	<10
V ppm	60	40	120	170	70	110	170	150 .	130	100	50	30	80
Zn pp-	22	12	38	36	30	50	40	50	60	14			
00.5						-170	, •	30	00	14	90	28	22

DETRITAL CONTENTS, BMR MOUNT ISA1 AND CAMOOWEAL 2

The insoluble content of many of the geochemical samples was determined by dissolving the carbonate component in warm HCl, and weighing the residue after washing and filtering. From this figure the organic component (1.27 x TOC - the factor was determined from the average atomic composition of the organic matter), and pyrite (1.88 x S) were subtracted to give the detrital content (Table 5). Note that repeat digestions give very closely matching results. These figures correlate very well with the non-carbonate fraction, minus organic matter and pyrite, figures determined from chemistry (assuming all inorganic carbon is in calcite), although this method gives a slightly higher figure. The correlation coefficient is 0.98. This method cannot be applied to silicified samples.

The results show that the siltstones have approximately equal detrital and carbonate fractions, and that many of the limestones have an appreciable detrital fraction. The oil shales generally have high detrital contents.

TABLE 5. DETRITAL CONTENTS, BMR MOUNT ISA 1 AND CAMOOWEAL 2

Sample	8.33x Cinorg% = calcite%	1.27 × TOC% = OM%		neoretical Detrital%	Detrital%
82700027 28 29 30 31 32 33 34 36 38 39 40 41 42 43 44 50 52 54 65 67 70 71 72 73 74 75 76 77 79 80 81 83 88 89 90	(1) 41.4 71.5 835.8 50.3 63.0	= 00% (0.3.4.8.8.6.9.8.9.5.0.6.3.4.7.1.4.7.0.3.9.8.8.0.9.7.2.1.9.5.7.8.2.5.7.1.2.3.4.7.1.0.8.0.9.7.2.1.9.5.7.8.2.5.7.1.0.6.7.1.2.3.4.7.1.2.3.4.7.0.3.9.8.8.0.9.7.2.1.9.5.7.1.2.9.8.7.0.5.7.1.2.3.4.7.1.2.3.4.7.1.3.0.7.2.3.9.8.2.5.7.1.2.3.4.7.1.3.9.8.2.5.7.1.2.3.4.7.1.3.9.8.2.5.7.1.2.3.4.7.1.3.9.8.2.5.7.1.3.0.3.4.7.1.3.0.3.4.7.1.3.0.9.7.2.1.9.8.2.5.7.1.3.0.3.4.7.1.3.0.3.0.3.4.7.1.3.0.3.4.7.1.3.0.3.4.7.1.3.0.3.4.7.1.3.0.3.4.7.1.3.0.3.0.3.4.7.1.3.0.3.4.7.1.3.0.3.4.7.1.3.0.3.4.7.1.3.0.3.4.7.1.3.0.3.3	= pyrite% (30.75.85.3.1.4.9.2.4.9.9.0.8.7.4.1.8.4.5.8.3.7.2.8.5.7.3.4.9.4.2.1.8.4.5.8.3.7.2.8.5.7.3.4.9.4.2.1.8.4.5.8.3.7.2.8.5.7.3.4.9.4.2.1.8.4.5.8.3.7.2.8.5.7.3.4.9.4.2.1.8.4.5.8.3.7.2.8.5.7.3.4.9.4.2.1.8.4.5.8.3.7.2.8.5.7.3.4.9.4.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2	Detrital% 100-(1+2+3) 57 24 53 50 46 35 26 12 58 39 55 1 8 27 41 33 55 59 55 57 31 47 42 36 45 35 27 60 54 30 69 74	by acid digestion 54 - 49,50 43 41 28 21 9 51 36 47,48 - 44,44 7,8 27 35,36 33 51 - 52 52 - 26 41 35 30 23 - 46 43 31 23 50 50

NATURE OF THE ORGANIC MATTER

The organic-rich carbonate mudstones encountered in this drilling program have organic contents of up to 16%, and yield up to 100 l/t of oil on Fisher assay. Hence they could be termed oil shales. However, they are of quite different composition from other Australian oil shales, as carbonate is the main inorganic component of the rock, silt is common, but clay minerals are rare or absent. Oil shales of the Cretaceous Toolebuc Formation of the Eromanga and Carpentaria Basins are most similar, consisting of lamellar organic material, with interstitial carbonate (coccoliths), minor silt, and clay (Ramsden, 1983; Ozimic & Saxby, 1983).

The organic matter in the rocks described in this report has been studied by Hutton (1980, 1982) from the University of Wollongong, Russell & Saxby (1980) from CSIRO, and Glikson (1983, 1984; also Glikson & Gibson, in press) from ANU. The main type of organic matter from all but Tobermory 14 is a 'vitrinite-like' maceral, which may be referred to as bituminite. Small amounts of lamellar alginite, and a maceral identified as humic acid by Glikson, are present.

Hutton (1982) describes the organic matter from Tobermory 14 as non-fluorescing 'vitrinite like material' with optical properties consistent with those of some bitumens, and interstitial bitumen with a weak brown fluorescence. Ro max. is much higher than for the organic matter from the other wells, being about 2% as opposed to about 0.2-0.5%. The high reflectivity may indicate that the Tobermory rocks are supermature with respect to petroleum generation, and this may explain some of the differences in the organic matter.

WIRELINE LOGS, BMR MOUNT ISA 1

A good set of wireline logs were taken in late 1980 and are shown on Plate 1. Log responses in the Thorntonia Limestone are fairly predictable, but there seem to be some unusual responses in the other units.

The Thorntonia Limestone displays log responses consistent with water-bearing vuggy dolomite, i.e. highly negative SP, generally low gamma, moderate to high density, high neutron and high resistivity. Some of the density minima and gamma peaks correspond to thin black shales at about 215, 220 and 231 m.

In the Currant Bush Limestone, the SP curve shows small negative deflections opposite intervals composed of a number of interbedded lithologies. Rather than indicating thick beds of porous, water-bearing rock, the deflections probably represent borehole currents flowing between thin slightly permeable laminae and siltstone beds (relatively low resistivity), past highly resistive limestone and oil shale beds. Numerous concave and convex inflexion points are present on the original logs (detail has been lost on transcription to Plate 1), strengthening this interpretation.

The gamma log clearly distinguishes between the relatively pure fine limestones and the siltstones, which contain muscovite (and hence potassium), and thus give a higher gamma count. Some of the organic-rich beds appear to correspond to gamma peaks, but the logging speed of 9 m per minute and time constant of 3 seconds means that the count from 45 cm of section is averaged, and the thin organic-rich beds, even if fairly highly radioactive, would not be expected to greatly influence the log. The peaks probably represent the siltstones directly below the organic-rich beds.

The density log shown minima opposite almost all the organic-rich beds, reflecting their high organic content. The relatively pure, fine limestones show greatest density, and the siltstones are intermediate, owing to their increased quartz content. The logging speed and time constant result in the averaging of 10 cm of section, sufficiently sensitive to pick up the organic-rich beds.

The neutron log shows many large sharply defined maxima, and is virtually paralled by the single point resistivity log, except for the interval 182-198 m. There is a fairly close correlation (allowing for a small discrepancy in log depths) between organicrich beds and neutron peaks, which would be expected from the high hydrogen content (the kerogen has hydrogen density approximately equal to that of water). However, the 3 second time constant means that the count from 45 cm of section is averaged, whereas the organic-rich beds are generally less than 10 cm thick. Hence they would not be expected to give so clear a peak. An alternative interpretation is that the peaks correlate with the fine limestones which occur immediately above almost all the organic-rich beds; this woulld account for a peak at 68-69 m which cannot be related to an organic-rich bed. However, if this interpretation is correct, the log response should be due to increased water content, and hence porosity in the limestones, a

conclusion a little difficult to accept, as the limestones are fine-grained, and have very low porosity.

The resistivity peaks also probably correlate with the limestones, although reasons for their relatively higher resistivity are not known.

The interval 182-198 m has relatively low neutron count, high resistivity, and low density. In conventional clastic rocks, this combination could indicate a gas saturated zone, but in this case the rocks are nodular fine limestone with interbedded organic-rich shales.

GEOCHEMICAL ANALYSIS OF OIL STAINED CORE FROM BMR DUCHESS 15A

(by K. Jackson)

The following analytical results were obtained:

Depth	TOC%	EOMppm	SATSppm.	AROMppm	POLARppm	Pr/Phy
59.01 91.90	1.9 0.18	5178 1158	1097 294	849 170	3320 687	1.8
	EOM SATS AROM POLAI PI/PI	sa ar R po ny pr re	tal solvent turated hydromatic hydromatic hydromatar, NSO conistane/phytologians peakromatograph.	ocarbons i carbons in taining co ane ratio	n the EOM the EOM mpounds in calculate	the EOM ed from the

The core at 59.01 m contained a viscous 'oily' material filling a vug. The analytical results, when plotted on a TOC vs total hydrocarbon crossplot (SATS + AROM) led to the interpretation of an oil-stained core. The core at 81.90 m contained a less viscous 'oily material on a parting in the core; again the analytical data led to the interpretation of an oil stained core (i.e. relatively high hydrocarbon content compared with TOC).

The gas chromatograms (Fig 3) from the SATS fractions do give us some idea on the origin of this oil. In essence, both profiles are similar, although the core at 59.01 m does exhibit higher pristane and phytane contents. I conclude that the oil stains have originated from marine source rocks of a mature nature, but certainly not from advanced levels of organic maturity. The evidence for this is:

- 1. The low pristane/phytane ratios are generally thought to be indicative of marine rocks.
- 2. The limited range of n-alkanes, only reaching around n-23; terrestrial organic matter would contain significantly higher molecular weight n-alkanes.
- 3. The relatively high pristane/n-C $_{\rm 17}$ and phytane/n-C $_{\rm 18}$ ratios are considered indicative of moderate levels of thermal maturity.

However, an alternate explanation for the more viscous nature and the high pristane and phytane contents of the 'oil' at 59.01 m is biodegradation. It has been documented that biodegradation of an oil can decrease its viscosity, and preferentially destroy n-alkanes, thus producing an apparent increase in the pristane and phytane contents. It is always difficult to assess the possible degree of biodegradation, but I feel that the 59.01 m 'oil' has suffered some degree of bacterial action. Nevertheless, the evidence of a marine source of moderate maturity is still valid, based on the results for the 'oil' extracted from the core at 91.80 m.

XRD MINERALOGY

Several samples from BMR Mount Isa 1 and Duchess 15A were analysed for mineralogy by XRD. Results are given in Tables 6 and $7.\,$

TABLE 6. XRD MINERALOGY, BMR MOUNT ISA 1

Depth	Lithology	Mineralogy
30.65	silicified laminated limestone	calcite major, quartz major, sphalerite major
55.14	laminated limestone	calcite major, dolomite minor, quartz minor
54.98	massive fine limestone	calcite major, possible dolomite and quartz trace
76.54	laminated siltstone	quartz and calcite major, dolomite minor, clays
76.55	? rock of volcanic origin	calcite, analcite, barite major, clays

It was originally thought that the last sample contained the mineral wairakite, a calcium analogue of analcite, but subsequent detailed chart traces suggested that the mineral was in fact analcite. Wairakite has been found in hydrothermal areas such as the North Island of New Zealand, at temperatures of about 180°C and low pressures, but such conditions are unlikely to have occurred in Mount Isa 1.

TABLE 7. XRD MINERALOGY, BMR DUCHESS 15A

Sample No.	Depth	Quartz	Calcite	Dolomite	Feldspar	Illite*	Kaolin	Mixed¾
82700013	21.03	XXX	XX	Χ	_	X	X	Х
14	9.89	XXX	XX	tr	-	X	X	X
. 15	32.13	XXX	XX	tr	-	X	X	X
16	42.15	XX	XXX	tr	_	X	_	?
17	65.00	XXX	XX	X	-	X	X	X
18	77.17	XXX	XX	X	-	X	X	X
19	83.37	XXX	XX	Χ	?	X	X	X
20	92.11	XXX	X	XX	_	X	X	.X
. 21	93.68	XXX	X	XX	-	X	X	Χ
22	95.28	XXX	XX	Χ	Χ	X	X	X
23	95.48	XXX	XX	X	?	X	X	X
24	95.70	XXX	XX	X	-	X	X	X
25	96.36	XXX	tr	XX	?	X	X	X
26	97.28	XXX	tr	XX	-	X	X	X

XXX, XX,X: major components, with indication of abundance in non-clay fraction. tr: trace

^{?:} possibly present

^{*} Much or all of the illite detected by XRD is probably muscovite

^{**} Mixed layer clays including smectite

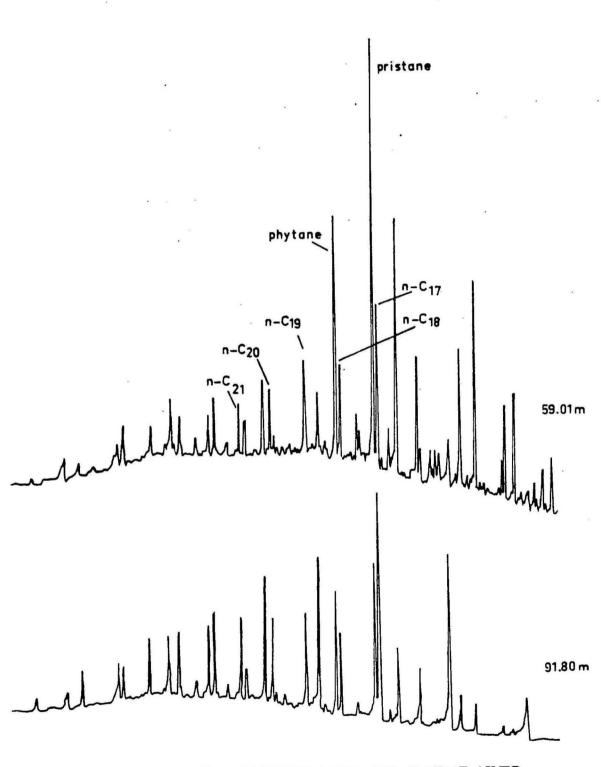


FIGURE 3. GAS CHROMATOGRAMS OF SATURATED FRACTION OF 'OIL' FROM BMR DUCHESS 15A

REFERENCES

- Day, R.W., 1981 Oil shale in Queensland. Queensland Government Mining Journal 82, 214-222.
- Day, R.W., 1983a Report on a visit to the United States of America. Geological Survey of Queensland, Record 1983/26.
- Day, R.W., 1983b Geology and potential development of Queensland oil shale. Queensland Government Mining Journal, 84(896), 463-470.
- Gibson, D.L., 1981 Oil shale in Australia its occurrence and resources. Bureau of Mineral Resources, Australia, Australian Mineral Industry Quarterly, 33(3), 105-113.
- Gibson, D.L., in press Pyrite-organic matter relationships: Currant Bush Limestone, Georgina Basin, Australia. Geochimica et Cosmochimica Acta.
- Gibson, D.L. & Boreham, C.J., 1984 Organic-rich Cambrian carbonates, Camooweal area, Georgina Basin. <u>Geological Society of Australia, Abstracts No. 12</u>, 186-187.
- Gibson, D.L. & Boreham, C.J., in press The Cambrian Camooweal oil shale, northeast Georgina Basin; nature and geochemistry. Proceedings of the Second Australian Workshop on Oil Shale, University of Queensland.
- Gibson, D.L. & Rutland, R.W.R., 1981 A review of Australia's shale oil resources. Energy, Australia's role in the Pacific Region; Australian Institute of Energy, Conference Preprints, 4.1-4.14.
- Glikson, M., 1983 The organic matter in oil shales: its nature and origin. Proceedings of the First Australian Workshop on Oil Shale, 1983, CSIRO, Lucas Heights, 39-42.
- Glikson, M., 1984 Transmission electron microscopy backed by C-isotope analysis a powerful tool in resolving the nature and source of organic matter in oil shale. Geological Society of Australia, Abstracts No. 12, 191-192.
- Glikson, M. & Gibson, D.L., in press Study of organic matter in Australian Cambrian oil shales and other lower Palaeozoic shales. Chemical Geology, accepted for publication.
- Hutton, A.C., 1980 Oil shales from Alpha, Carnarvon Creek, and Mt. Isa No 1. Department of Geology, University of Wollongong, Unpublished Report.
- Hutton, A.C., 1982 Organic petrology of samples from Camooweal 2, Duchess 15A, Mt Isa 1 and Tobermory 14. Department of Geology, University of Wollongong, Unpublished report.
- Ozimic, S. & Saxby, J.D., 1983 Oil shale methodology. An examination of the Toolebuc formation and the laterally contiguous time equivalent units, Eromanga and Carpentaria Basins. Final Report, NERDDP Project 78/2616.

- Ramsden, A.R., 1983 Microscopic petrography of oil shales at Julia Creek, northwestern Queensland. <u>Journal of the Geological Society of Australia</u>, 30, 17-23.
- Raphael, N.M. & Saxby, J.D., 1980 Australian oil shale deposits; a review. CSIRO Institute of Earth Resources, Fuel Geoscience Unit, Investigation Report 134.
- Russell, N.J. & Saxby, J.D., 1980 The chemical and petrological nature of kerogen in the Camooweal oil shale. <u>CSIRO Institute of Earth Resources</u>, <u>Restricted Investigation Report</u> 134.
- Shepherd, S.R.L., 1945 Cambrian oil shale, Camooweal. Queensland Government Mining Journal, 46, 75-77.
- Shergold, J.H., 1979a Georgina research, March quarter, 1979.

 Bureau of Mineral Resources, Australia, Record 1979/39.
- Shergold, J.H., 1979b Georgina research, June quarter, 1979.

 <u>Bureau of Mineral Resources, Australia, Record</u> 1979/53.
- Shergold, J.H., 1981 Georgina research (for the period October 1980 to October 1981). <u>Bureau of Mineral Resources</u>, <u>Australia</u>, <u>Record</u> 1981/71.
- Shergold, J.H., in press Notes to accompany the Hay River Mount Whelan Special Geological Sheet, southern Georgina Basin. Bureau of Mineral Resources, Australia, Report 251.
- Shergold, J.H. & Walter, M.R., 1979 BMR stratigraphic drilling in the Georgina Basin, 1977 and 1978. <u>Bureau of Mineral Resources, Australia, Record</u> 1979/36.
- Simpson, C.J., 1980a Georgina Research for the period October 1979 March 1980. Bureau of Mineral Resources, Australia, Record 1980/37.
- Simpson,C.J., 1980b Georgina Research for the period April-September 1980. <u>Bureau of Mineral Resources, Australia,</u> Record 1980/74.
- Southgate, P.N., 1983 Middle Cambrian phosphatic and calcareous depositional environments, the Undilla region of the Georgina Basin, Australia. PhD Dissertation, Research School of Earth Sciences, ANU.
- Swarbrick, C.F.J., 1974 Oil shale resources of Queensland. Geological Survey of Queensland, Report 83.

APPENDIX 1. DETAILED LITHOLOGICAL LOGS, BMR MOUNT ISA 1

Explanation of symbols:

- \$-	laminated calcareous siltstone with organic lamellae
S	massive organic-free calcareous siltstone
-L-	laminated fine limestone with organic lamellae
	massive fine limestone
	carbonate grainstone
	organic-rich silty carbonate mudstone (oil shale)
≠	silicification
0	early diagenetic no dules
232	slumping
-S- -L-	sloping boundary indicates gradation in lithologies

The distinction between laminated siltstone and limestone was made largely on texture (sound and feel when a metal object is scraped along the core) and colour. In general, the siltstone has a grey-green colour, and the limestone is pinkish or tan.

W	/EL	L	Mou	nt	Isa 1				She	et 1		
Фрертн	CORE	DIP	LITHOL. LOG				LITH	OLOGY				UNIT
4 6 -			-S- -L-			٠						-
- 47											v	-
•								*		×		: -
- 48			-5-						* *			
•							*					
- - 49			-L-									4
-	r		? / /- -L-									4
CO	MM	EN	ITS				,	,		· · · ·	I	-

W	/EL	L	Mou	nt Isal Sheet 2	
о⁰рертн	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
50			-L-		
-	1				_
-					-
-51			-5-		-
					: -
-				•	_
- -52					-
-					-
-			323	*	-
- 53					-
			-5-		
-					•
- 54			-L-		-
CO	MM	ΈN	TS		

W	/EL	L	Mour	nt Isa 1 Sheet	3
DEPTH	CORE	DIP	LITHOL.	LITHOLOGY	UNIT
54 -			-L-		-
- -55			- L-		-
-56			-L- ≠ -L- -L-	Micrite beds diagrammatic Oil Shale has laminated limestone interbeds	-
			<u>-`</u> L-		-
-57				Oil shale has laminated siltstone interbeds	1
58			- - -		
СО	ММ	EN	TS		

W	/EL	L	Mou	nt Isa 1 Sheet 4	
рертн	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
58 -			-S-		
- 59	į.				-
-60					-
-			-S-		-
-61					-
62					•
CO	MM	EN	TS	*	

W	/EL	L	Mour	ot Isa 1								
	-		•				· · · · · · · · · · · · · · · · · · ·	·····	4-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Shee	2+ 5	
Ѕрертн	CORE	a	LITHOL LOG			1	_ITH	OLO	GY	*		UNIT
62	ö	Ճ	27							 	- 	5
-												
-										,		
 												
-			×									
- 63									*			-
											,	: -
				,				-				
-			-S-							,		
-64												-
-				¥								
-										*		-
-												
-												
-65			_									
							G.					
-												
-			<i>-</i> S-	,								
66								,		· · · · · · · · · · · · · · · · · · ·		
60	MM	EN	115									

W	/EL	L	Мо	unt	Isa f					Sh	eet	6
₽рЕРТН	CORE	DIP	LITHOL. LOG			l	_ITH	OLOG	ìΥ	*		LIND
- - - - - -			-5- /- /- /- /- /-					,				
-68			-S-?									
- 70 CO	MM	EN	TS					440.25 4	,	*		-

W	/EL	L	Moun	t Isa l Sheet	7
ರ рертн	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
70			- L-		-
- - 71 -			-L- -L- -L-	Micrite beds diagrammatic 79.29-31 coquinite	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- - - 72			-S-		-
- 73 -					1 1 1
74 CO	ММ	ΕN	ITS		

W	/EL	L	Mod	ant Isa I		Sheet 8	
HTGEDTH →	CORE	DIP	LITHOL. LOG		LITHOLOGY		TIND
- 75			-5-	3			
- - -76							: -
- - - - 77			-5-	76.5758	Analcite/calcite/barit silt rock.	te /biotile/	-
- - - 78			-5-				
СО	MM	ΈN	TS				

- W	/EL	L	Mo	unt	Isa	1			She	cet	9	
% DEPTH	CORE	DIP	LITHOL. LOG			,	LITHO	OLOG	Y			UNIT
78 - -			-Y-					æ				
- - 79 -			-5-		× ×							
-80								, .	*			-
			· 5 ?				•				y .	-
- -81 -			-5-									-
82		٠	-5- or -L-			,						-
СО	MM	EN	ITS				,	¥				

W	/EL	L	Mour	nt Isa 1 Sheet	t 10
Врертн	CORE	DIP	LITHOL. LOG	LITHOLOGY	TINO
-			-L-	82.4772 Micrite diagrammatic 82.7276 Interbedded laminated limeston	-
- 83 -			≠ -L- ≠ ≠	micrite and oil shale	
- 84			-L- -L- ≠		
-			- 5-		-
- 85					
26 CO	MM	EN	-s- TS	·	

W	/EL	L Mo	unt Isa 1		Sheet 1	
р DEРТН	CORE	DIP LITHOL. LOG		LITHOLOGY	Sheet	UNIT
86		-5-	ı,		,	
87						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- - 88		-S-			a a constant of the constant o	
- - 89 -						1 1 1
90						
СО	MM	ENTS		er e		

WEL	L Mou.	nt Isal Sheet 12	
%DEPTH CORE	DIP LITHOL. LOG	LITHOLOGY	UNIT
91	-5-		
. 92	- L-		
93	-5-		
94	±-L-		7

·W	/EL	L	Мо	unt Isa 1 Sheet 13	
DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
94 - - -			-ج-		1
- 95 -			-5- -5- -L-		
-96 - -			<i>‡</i> , , <i>‡</i> , , , , , , , , , , , , , , , , , , ,	Micrite and silicification shown diagrammat- ically Oil shale has minor laminated limestone and micrite laminae	-
- - 97 -			-5-		-
- - 98 CO	ММ	ΕN	- ∟- TS	·	-

W	/EL	L	Mour	t Isa 1 Sheet 14	
\$6 DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
- 98			- L-		-
- 99					- -
-			-5- -L-		-
- 100			# ~L- # -L-	100.5163 Interbedded laminated limestone,	_
-101			-5- /	wackestone, and micrite.	1
-) -L-		1
102 CO	MM		≠ -5- TS		

W	/EL	L	Mou	nt Isa 1		C) 1.75	
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Sheet 15	1
್ದ DEPTH	CORE	DIP	LITHOL. LOG		LITHOLOGY		UNIT
102 -			-5-		5		-
- - -103							
-				,			
- - 104 -							-
-			-S-				- -
- 105 -					÷		-
106				,	-		-
СО	MM	ΈN	TS			×	

W	/EL	L	Mour	t Isa 1 Sheet 16	
DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
106			-5- #		, i
-			-5-		1
-107			,×, ≠		
-					1
- 108				es	1
-			-5-		•
- 109 -			8		-
-					-
LIO CO	ММ	EN	TS		-

W	/EL	L	Moun	t Isa l	y.			Sheet	17	
БDEPTH	CORE	DIP	LITHOL. LOG		*	LITHOI	LOGY	SNZET		UNIT
110			-5-					¥		-
-111				*						- -
-(12								. *		-
-			-5-					8		-
- 113										1
114					·	,	······································			-
CO	MM	ΕN	iΤ S							

W	/EL	L	Mour	nt Isal Sheet 18	
DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
- - -					
-115					
- 116					1
-			-S-		-
-117			-1-		-
118			-5-		-
СО	MM	ΈN	ITS		

W	/EL	L	Moun	+ Isa l	Sheet 19	
DEPTH	CORE	DIP	LITHOL. LOG	,	LITHOLOGY	UNIT
-119			-5- -L- # # # -5-^ /-L-			
- 121 -			Mumu Mumu ≠ L- ~~~	5tyblites 121.2565	interbedded organic_rich and organic poor laminated fine linestone	
CO	MM	EN	ITS			1

W	/EL	L	Mo	unt	15	•	١				-		SL	+	20	
_			۲.		*				·		i i			461		
DEPTH	CORE	AIC.	LITHOI LOG					ı	LIT	но	LO	GΥ				UNIT
122																
-									Đ.							-
- .													3			-
- 123			-S-								9					_
-											9					-
			- L-													
-			<i>‡</i>								,					_
- 124			-5-							14						-
-			-L-													-
-			- 1 -	•									•			-
136			- Ś- ——													-
- 125			-L- ≠												ia.	_
-			<i>≠</i> ≠	Cher	-†	dia	agra	mme	atic	•						-
			-L-												*	-
126										. —.	-				. .	
60	MM	EN	15								q.					

W	/EL	L	Mou	nt Isa 1 Sheet 21	
R DEРТН	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
126			≠ ≠ +	Chert diagrammatic	
-					
- - 127					-
-			-S-		,-
-					-
- 128 			-		-
-					-
- 129					-
-			- S-		-
-					-
13 <i>0</i>	MM	EN	ITS		_=

THE BOOD IN LITHOLOGY -131 -132 -5- -133 -134 -135 -135 -136 -137 -137 -138 -139 -130 -130 -131 -131 -132 -132 -134 -134 -135 -136 -137 -138 -139 -130 -130 -130 -130 -131 -132 -134 -134 -134 -134 -134 -134 -134 -134 -134 -135 -136 -137 -138 -1	W	/EL	L	Mour	+ Isal	48				
-131 -132 -5133 -134 -135 -136 -137 -LLLLLLLLLL				r1					Sheet i	22
-131 -132 -5133 -134 -135 -137 -LLLLLLLLLL	E	ш		OL.		×		,		,
-131 -132 -5133 -134 -135 -137 -LLLLLLLLLL	DEPT	CORI	DIP	LITH LOG			LITHOLOGY			LINO
-132 -132 -133 -134 -134 -135 -136 -137 -138 -139 -139 -139 -139 -139 -139 -139 -139	130									
-132 -51133 -5111111111-				-S-						-
-132 -51133 -5111111111-	-									-
-132 -51133 -5111111111-	-							٠		-
-S- -L- -L- -L- -L- -L- -L- -L- -L- -L-	-131									-
-S- -L- -L- -L- -L- -L- -L- -L- -L- -L-	.									-
-S- -L- -L- -L- -L- -L- -L- -L- -L- -L-						·				
-S- -L- -L- -L- -L- -L- -L- -L- -L- -L-										-
-S- -L- -L- -L- -L- -L- -L- -L- -L- -L-										
134 Micrite beds diagrammetic	[132			-S-						
134 Micrite beds diagrammetic										
134 Micrite beds diagrammatic				بد			•	ī	*	_
134 Micrite beds diagrammatic	-			71/			, ×			_
134 Micrite beds diagrammatic	- 133			- h-						-
134 Micrite beds diagrammetic	-									-
134	+			-5-			*			-
134	-			<u> </u>					×	
	134			-L- -L-	Micrite 1	oed s	diagrammetic			
		ММ	EN	ITS		÷				

W	/EL	L	Moo	nt [sa 1		
_					Sheet 23	-
DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY		TINO
134 - -			-L- O-L- -L-			1 1 1
- 13S -			≠	Chert diagrammatic		,
- 134 	•		-5-			1 1 1
- - 137 -			,			-
138			/- L-			-
СО	MM	EN	ITS			

DEPTH	CORE	DIP LITHOL. LOG	LITHOLOGY	LINIT
139		5/-L- ##~~ -S- -L-	Chert diagrammatic	
		.5	139.82 - 140.15 Interbedded oil shale, laminated limestone and grainstone shown diagrammatically	
42		-L- # - - - - - - - - - - - - - - - - -	Micrite beds diagrammatic	

٧	VEL	.L	Moun	t Isa 1 Sheet 25	
DEPTH	CORE	DIP		LITHOLOGY	UNIT
142			-5- OR - L-		
- - -143	•		# -L- # -L- # -L- # -L- -S- 0R	142.43-84 Micrite and chert diagrammatic 142.84-143.05 Interbedded oil Shale, micrite and grainstone shown diagrammatically	
- - - 144			-L- -L-	Micrite diagrammatic	
			- S -	Oil shale has minor micrite and grainstone laminae	4 4 4
- 145 -					
146			- 5 -		-
СО	MM	EN	ITS		

٧	VEL	L	Mou	nt Isa 1	
	1		1	Sheet 26	
E	ш	i.	OL.		
DEPTH	CORE	DIP	LITHOI LOG	LITHOLOGY	UNIT
146					
-					-
-			-5-	*	-
L			,	* .	
	,				
				•	
- 147					
•				,	
-					
					-
			-5-		
,, ,			-5-	*	
-148					
•					-
F			-L-	ж	-
}			- L-	Micrite diagrammatic	-
				Oil shale has micrite laminae near top,	
- 149				and grainstone near base	
-71			-5-		
				*	
•				*	-
+				*	-
-			- L-	149.97-150.03	
150				Oil shale silicified in part. Micrite and grainstone laminae	
CC	MM	EN	ITS	,	
				· ·	

W	/EL	L	Mou	nt Isa 1.	
	-		,	Sheet 27	
S DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	TINO
150				•	
-				*	-
-151			-5-	·	-
				,	•
-			-L- ≠		
- - 152 			-5- or -L-	Interbedded oilshale grainstone and micrite Shown diagrammatically	1
-		*	- L-		-
- 153			7		-
			- S-	Grainstone shown diagrammatically	-
154			0	? barite in nodule	•
	MM	EN	ITS		¥

W	/EL	L	Mou,	it Isa 1. Sheet 28	
DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
154 - -		0	-5-		-
-15S -			-S-		- -
-156				Oil shale low grade. Boundaries gradational	-
- 157		,	-5-		-
-			- L -		-
158 CO	MM	EN	TS		

WELL		
	Sheet 29	
CORE DIP LITHOL.	LITHOLOGY	UNIT
COR 159 -1 -1 -1 -1 -1 -1 -1 -		INNI
COMMENTS	161.16 - 162.60 Complex interval - mainly nicrite, thin interbeds of organic-rich laminated limestone. I com intraclast bed at 161.35, erosional feature at 161.75	-

WI	WELL Mount Isa Sheet 30							
DEPTH	CORE DIP LITHOL. LOG	LITHOLOGY	LINO					
162		1/2 Co 22 Totached accomis-rich laminated						
143		162.6082 Interbedded organic-rich laminated limestone, micrite, and grainstone						
164	-S-							
	- L- ≠ ≠	Silicification diagrammatic						
165	#							
166 COM	- S-							

W	/EL	L	Ma	nt Isa 1	
				Sheet 31	
Ε	ш		OL.		
₽́ Б В В В	CORE	PP	LITHOI LOG	LITHOLOGY	LIND
166			-S-		
-			-L-	* •	-
-			≠ + +	Silicification diagrammatic	
-167					-
-			≠	167.09-167.76 Interbedded micrite and laminated organic-rich limestone	
-					
- 168				Grainstone diagrammatic	-
-			-S-		-
- 169			ı		
-				Siltstone apparently more organic-rich at 169.66-172. and 169.96-170.18	
-			0	~	
170			-5-		-
СО	MM	EN	TS		

WELL Mount Isal Sheet 32							
DEPTH	CORE	DIP LITHOL. LOG	LITHOLOGY	UNIT			
170				,			
. 171		-5-					
			•				
- 172		-L-					
			Limestone laminae in top 8 cm of oil shale				
. 173		-5-					
174	ARAE	NTS		<u> </u>			

APPENDIX 2. DETAILED LITHOLOGICAL LOGS, BMR CAMOOWEAL 2

Symbols are as for Appendix 1.

W	/EL	L	Я	Camooweal 2 Sheet 1	
₽DЕРТН	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
-5	1		≠ -S-		
- 6			-5-	Obviously weathered to 5.7m	Bush Lst.
7	2		- s-		Cherent
CO	ММ	EN	ITS	,	

W	VEL	L	Can	nooweal 2 Sheet 2				
∞ОЕРТН	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT			
8	2				1 1			
- 9 -			-S-					
- 10 - -	3		0		nt Bush Lst.			
- = -			0 0		Curra			
CO	COMMENTS							

W	/EL	L	Cam	soweal 2 Sheet 3	
Брертн	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
-			-G-		1 1
-13	4		•		
- - - //4			-L-	Upper body of oil shale transitional over 1 cm, lower over several cm. Oil shale has minor laminae and lenses of fine 1st.	st
- 15	5		0-5-		Eurrant Bush L
16			/-L- ≠	Very gradational bdy.)
СО	MM	EN	ITS		

V	VEL	L	Camo	oweal 2	
DEPTH	CORE	DIP	LITHOL. LOG	Sheet 4 LITHOLOGY	UNIT
- - -	5		≠- <u>L</u> -	Oil shale has sharp upper bdy, and has minor laminae and lenses of fine 1st.	
- 17					
	6		≠		+.
-18			₹1 1	Massive 1st has a few < 1 cm beds of laminated 1st with organic lamellae. Oil shale has irregular laminae of coarse carbonate	wrent bush hat
- 19	7		-S-		3.
20 CO	ММ	EN	ITS		

8 рертн	CORE	DIP LITHOL.	LOG	LITHOLOGY	UNIT
- 21	9	≠ = -L		Oil shale has gradational bodys gradational bodys.	Current Bush List.
24 CO	ММ	ENTS			 <u> </u>

W	/EL	L c	amoo	weal 2 Sheet 6	
нтчэс	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
24			≠ ≠ -L-		
- 25	9		٨		-
- - 26			-S-		1 1 1
- - - 27	10		,		-
28 CO	ММ	EN'	TS		-

W	/EL	L	Camo	sweal 2 Sheet 7	
PEPTH 28	CORE	DIP	LITHOL. LOG	LITHOLOGY	TIND
-30	10		-S- s -S- -S- -L-	Massive siltstone Massive siltstone base of siltstone very difficult to determine	Current Burt 12+.
CO	MM	EN	115		

W	/EL	L	Canios	weal 2 Sheet 8	
№рертн	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
- 34	12		- L	Gradational bodys. Micrite beds diagrammatic	Current Bush List
-35			≠ -L -	Oil shale has sharp bodys Oil shale has sharp upper and gradational lower body	-
36	13		≠ ≠		•
	ММ	EN	ITS		

٧	VEL	.L	Camoo	oveal Sheet 9	
DEPTH	CORE	DIP	LOG	LITHOLOGY	LINIT
36 - -				Oil shake has rapid gradational body at top and slower gradation at base	L
-37	13				
- - 38 -		_	-5-		ant Bush Lst
- -39 -	14		0		Curri
- 40 CO	ММ	≠ ≠ ENT			

٧	VEL	L.	Camo	weal 2	
	İ	I	· ·	Sheet 10	
표	Щ		호		
₹DEPTH	CORE	DIP	LITH LOG	LITHOLOGY	LIND
40			-L-	gradational bdys.	
-					-
	14		ے		-
			-5-		-
-41				•	-
				+	•
			-L-		
-			-L-		1 2+
-42		ŧ	<i>キ・</i> レー	41.82-42.14 Micrite beds diagrammatic only	36 6
			-L-	gradational bdys	- Bush
	15		≠ -L-	gradational bdy at base, sharp at top	-
-	·z				47
-					-
-43			-5-		
-				»	
_				,	
44 CO	MM	EN	ITS		l -,
		-3.0			
<u>L</u>		 			

W	/EL	L	Camo	ower 2 Sheet 11	
DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
-45 45 47	16		-5- / - L-	43.94-44.68 Micrite beds shown diagrammatically 45.65-46.29 Micrite beds and silicification shown diagramatically	Congressive Bush Lit
48	a.		-L- -L- -L-	47.45-95 Micrite beds shown diagrammatically one micrite bed thins appreciably over width of core.	-
СО	MM	EN	ITS		٠

V	VEL	L	Cana	meal 2			Sheet 12	
DEPTH	CORE	DIP	LITHOL. LOG		·	ITHOLOGY	SHEET IL	UNIT
48			≠-L- 	48.05	Oil Shale	silicified in per	+ .	-
-			-L- or -s-?		*			
-49	17				,			
• ,	,							+91
-50 -					¥			Current Bush
- -51 -	18		-L- or -5- ?					
52								
CO	MM	EN	ITS			*	* *	

W	VEL	L	Campo	weal 2						
			:	Sheet 13						
ಸಿрертн	RE		LITHOL LOG		Ŀ					
DE	CORE	PP	들의	LITHOLOGY	LINO LINO					
- 53	18		-L- OR -S- -L- #	52.6282 Micrite shown diagrammatically Oil shale partly silicified						
- - - 54	19		-5-		- and ht					
-55			- L- ≠	Oil shale has them laminae and lenses of calcite	Lurany					
-			-5-	*						
- 56			-L-	Micrite diagrammatic	-					
СО	COMMENTS									

		Ass Mile		73						
٧	VEL	.L	Came	oweal 2 Sheet 1	/ 4.					
рертн	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT					
-57	20		+ + + + + + + · · ·	Micrite diagrammatic Micrite diagrammatic Dil shale has thin laminae and lenses of calcite	words Bush hat					
-59 -	21				3					
	COMMENTS									

٧	VEL	L	Came	ooweal2		
					Sheet 15	5
PTH	RE		LITHOL LOG			Ŀ
В БЕРТН	ပ္ပ	百	10	LITHOLOG	Ġ Υ 	UNIT
-						-
-				*		-
-			-5-			_
-				. *		-
-61	21					-
			/-L-			-
			- L-			
-						+,-
-62		*	±			7-
-						4
F		á	- 5	¥		7
 		1		*		તું -
-63	22					
[63			- L-	*		
			-5-	,		
-			OR -L-	•		
-			?			-
CO	MM	L EN	TS			L
					,	
	·					

V	VEL	L	ano	oweal 2						5	iheet	16	
DEPTH	CORE	DIP	LITHOL. LOG				LIT	HOL	OGY				UNIT
- 65	22		- S- OR -L- -S- OR -L- -S- OR -L- -S- OR -L-	Micrite	beas	di	agram	matic					-
-			-5- -L- ≠ _≠										Bush 1, 1
-67	23		-5-									•	Current
68			≠-L- ≠-L-										-
СО	MM	EN	TS									*	

W	/EL	L	Can	ooweal 2	
			نـ	Sheet 17	
DEPTH	CORE	DIP	LITHOI LOG	LITHOLOGY	TINO
68	S		11 ≠L-))
					-
-					-
- 69					-
- 01					
-			-5-		-
	24				
-70			;		<u>+</u>
•					Bunk.
				Laminated limestone has high TOC (2.7%).	1
-				9	3.
71			- S-		-
				*	
-	25				
72				e ·	-
СО	ММ	EN	TS		
			12-20-02		

٧	VEL	L	Canio	oweal 2	
	T			Sheet 18	
дрЕРТН	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
- 73	25	4	-5- -L- ≠	73.6079 Laminated carbonate, fairly organic-rich	Lat
- 74 - - 75	26	10°	1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	73.92 - 74.91 Slumped siltstone	Current Burk
- 76 CO	ММ	60° 45° EN	-L-		

W	/EL	L	Camos	weal 2	
L.,				Sheet 19	
DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	UNIT
76 - -77 -78 -79	26	45	-5- -5-	Oil shale has grainstone laminae Some slumping Massive silly fine limestone Oil shale has grainstone laminae, abundant spicules, sphalerite, Oil shale not very rich in O.M.	Current Bush ht
CO	MM	EN	TS		
				•	

Sheet 20 LITHOLOGY BOOD So SI-2864 Interbedded grainstone (80%) and organic-rich laminated limestone; minor oil shale S2 S2 S3 S2-27-32 Interlaminated grainstone and oil shale COMMENTS	V	VEL	L	Cam	soveel 2	
80 -5128 -1111111111		,			Sheet 20	
80 -5128 -1111111111	I			OL.		
28 -81 -L	DEPT	CORE	DIP	LITH LOG	LITHOLOGY	UNIT
81.2844 Interbedded grainstone (80%) and organic rich laminated limestone; minor oil shale -582 -82 -83 -883 -8883 -883 -88-	80				*	
81-28-44 Interbedded grainstone (80%) and organic-rich laminated limestone; minor oil shale -5155555555				-5-		
81-28-44 Interbedded grainstone (80%) and organic-rich laminated limestone; minor oil shale -5132 -132 -132 -32 -32 -32 -32 -332 -3						
81-28-44 Interbedded grainstone (80%) and organic-rich laminated limestone; minor oil shale -5132 -132 -132 -32 -32 -32 -32 -332 -3		20		≠ - L-	*	
81.28-44 Interbedded grainstone (80%) and organic-rich laminated limestone; minor oil shale -5182 -5182 -5555555555	0.	20		7	•	
-5- -1- -5- -5- -83 +-1- -5- -82.27-32. Interlaminated grainstone and oil shale				-L-	*	
-5- -1- -5- -5- -83 +-1- -5- -82.27-32. Interlaminated grainstone and oil shale					81.2844 Interbedded grainstone (80%) and	
-55583 = -1555555555-	_				minor oil shale	
= -5- = -5- # -1- # -82.2732 Interlaminated grainstone and oil shale -5-	-			-5-	· ·	2 -
# 32.27-32. Interlaminated grainstone and oil shale 29 -5- 84	_ 82			-1-	i,	7
# 82.27-32 Interlaminated grainstone and oil shale	-			≠		4 -
# 82.27-32 Interlaminated grainstone and oil shale	_		*			1 6
# 82.27-32. Interlaminated grainstone and ail shale -S- 84	-			-5~	,	3
# 82.27-32. Interlaminated grainstone and ail shale -S- 84	_					-
29 -S- 84	- 83			≠-L-	£	
29 -S- 84	-			≠		
84 -S-	-				82.27-32. Interlaminated grainstone and oil shall	و ا
	-	29		-5-		
 	<u>.</u>			J	•	
COMMENTS					*	
*	CO	MM	EN	TS	. *	

W	/EL	L	Camo	مسعما 2		
		r	r		Sheet 21	
Ŧ	111		OL.			
₽рертн	CORE	DIP	LITHC LOG	LITHOLOGY		UNIT
84	29					
-			-5-	*		
-						-
-			- L-	*		-
- 85				and the same tie madule		-
			\bigcirc	early diagenetic nodule		
-			-L-	interlaminated grainstone and oil shale		
-						- 간
-86			0			anh
-						+
						7
-						-
- 87	30		-5-	4		_
 		*				_
			*			
_						-
88				· · · · · · · · · · · · · · · · · · ·		
CO	MM	EN	TS			
	-					

COMMENTS

· W	WELL Campower 2							
				Sheet 23				
[№] DЕРТН	CORE	OIP	LITHOL. LOG	LITHOLOGY	LINI			
92 - -			- L-		-			
•					-			
-93 -								
•	32		-1-		+ -			
- 94 -			_		1 Gust 1			
	,				- (2003			
-95 -	,		0		_			
	33		## -L-	96.8793 T hade to be done to	-			
% CO	ММ	EN	-L-	95.8792 Interlaminated grainstone and dark laminated limestone (organic-rich)	-			
,								

W	/EL	L	Came	oweal 2	
^Я DЕРТН	CORE	DIP	LITHOL. LOG	Sheet 2	TINO
96 - - -97	33		-		
- -98 -	34		# O -5% - 2	Evaporite pseudomorphs	Current Burk Lst
- 99 - -	4				
	ММ	EN	ITS		

I

DEPTH	CORE	d)	LITHOL. LOG	LITHOLOGY	TIMIT
leo	34	0	-S- or -L-		
	35		-S-08 - L	Interlaminated grainstone and oil shale	Constant Bush Lat
03	*		-6-		
104			ITS	· · · · · · · · · · · · · · · · · · ·	<u> </u>

W	/EL	L	Cano	oweal 2 Sheet 2	۲
DEPTH	CORE	DIP	LITHOL. LOG	LITHOLOGY	TIND
104			-L-		
lo5	36		-5- or	interlaminated grainstone and oil shale	bne
106			-L-		t Gust Limes
			-S- DA -L-		resing
107	37			106.98.113.74 Nodular interbedded black shale, fine limestone and grainstone. Silicified. 113.74-117.46 Interbedded black shale and fine limestone. Silicified. Not radular. 117.46-118.76 Interbedded fine Siliceous limestone and black shale. Nodular.	Inca Fmn
	MM	EN	TS	inca Fran not logged in detail.	

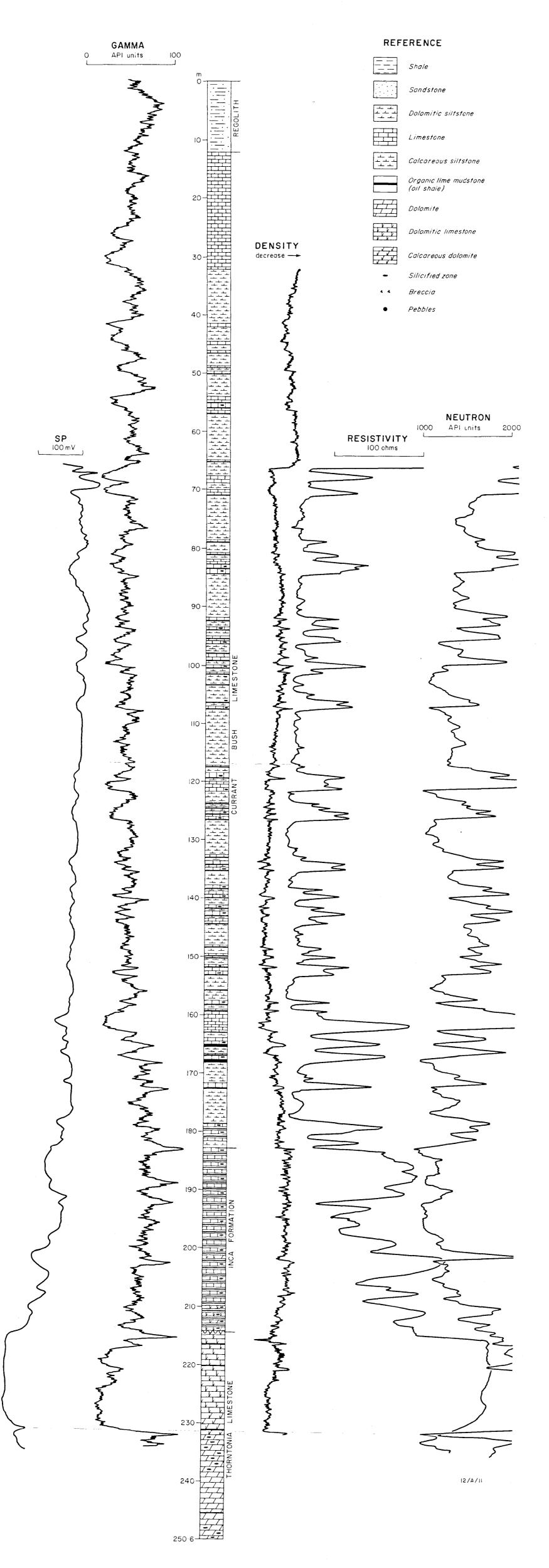
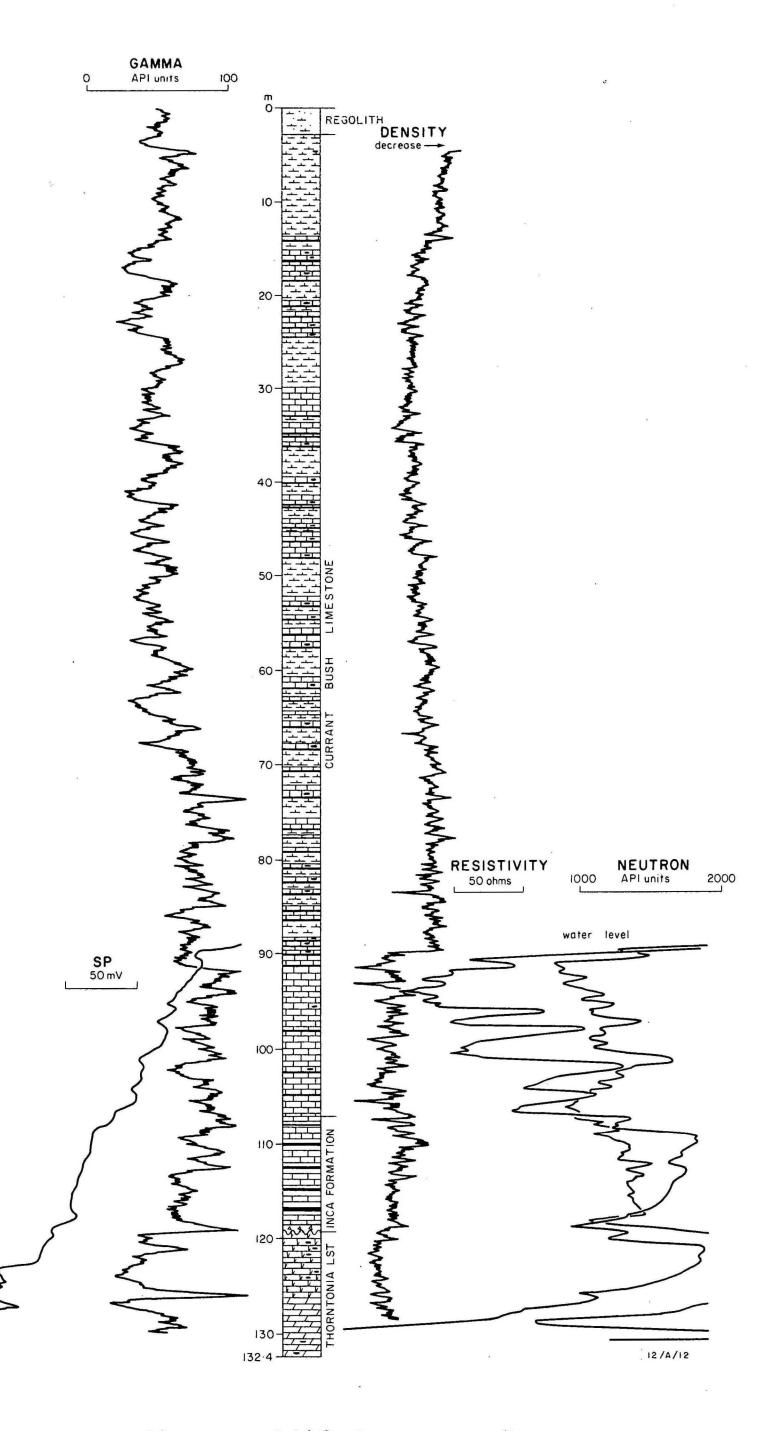



Plate 1. BMR Mount Isa 1

Plata 2. BMR Campowaal 2

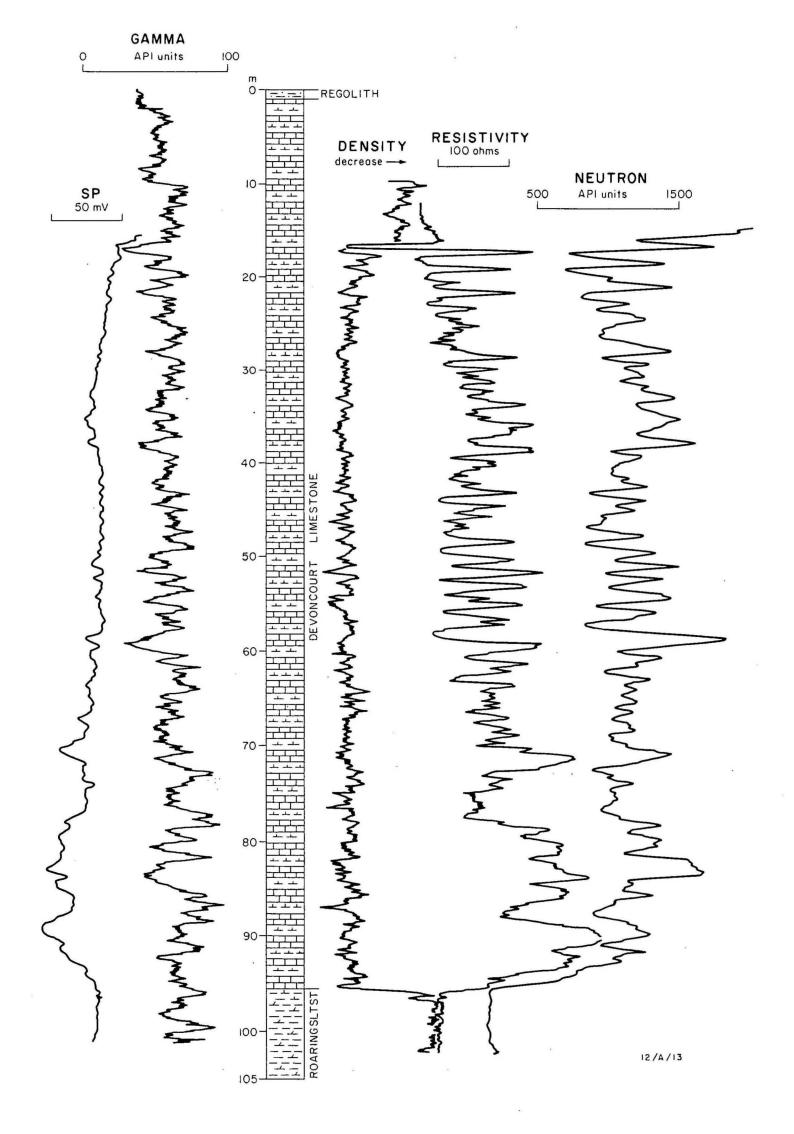


Plate 3. BMR Duchess 15 A

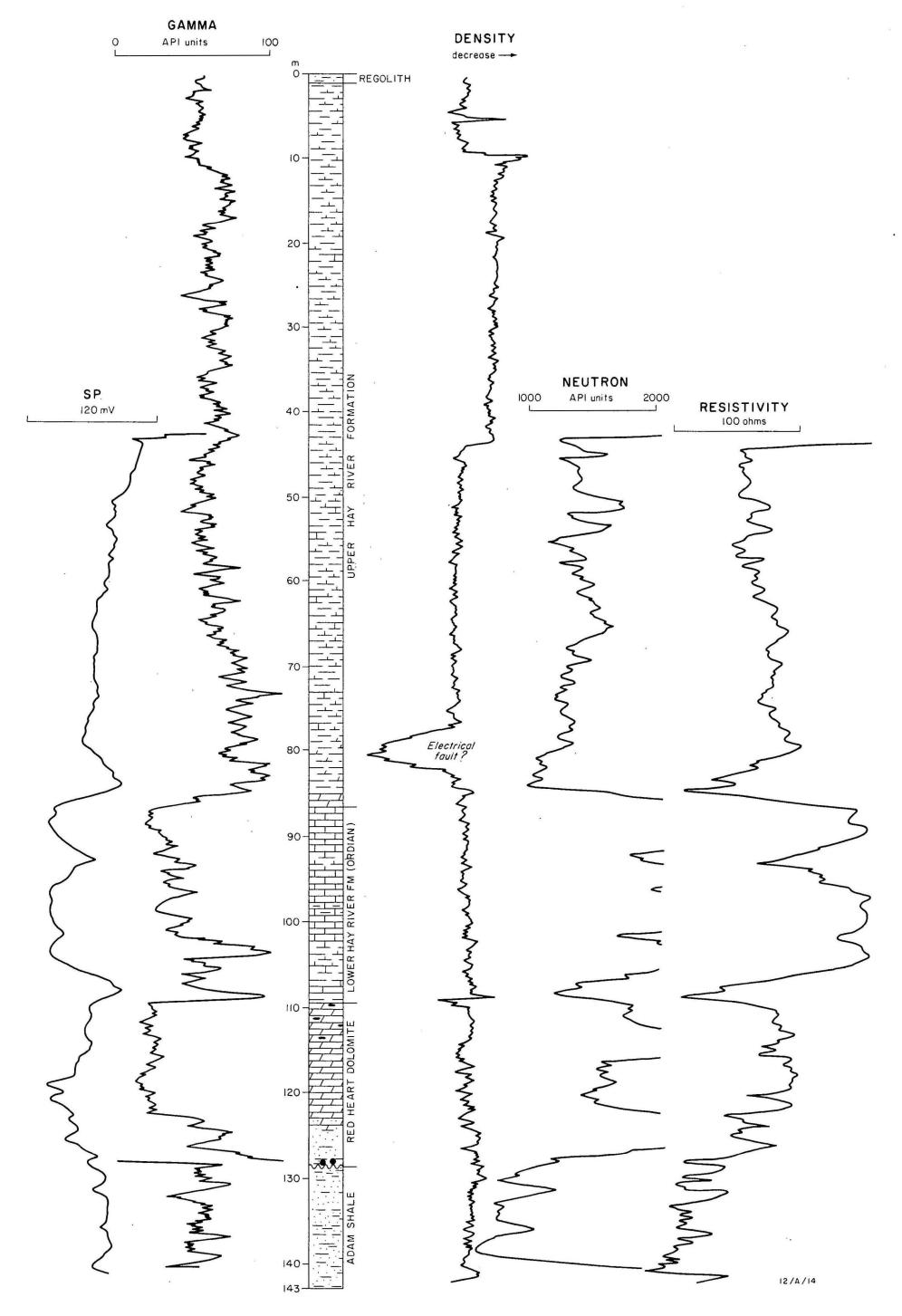


Plate 4. BMR Tobermory 14