

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD

RECORD 1985/3

NEW ENGLAND, NEBINE RIDGE AND MURRUMBIDGEE BATHOLITH CRUSTAL SURVEYS, 1984: OPERATIONAL REPORT

Ву

R.Bracewell and D.M.Finlayson

The information contained in this report has been obtained by the Bureau of Mineral Resources, Geology and Geophysics as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director.

RECORD 1985/3

NEW ENGLAND, NEBINE RIDGE AND MURRUMBIDGEE BATHOLITH CRUSTAL SURVEYS, 1984: OPERATIONAL REPORT

Ву

R.Bracewell and D.M.Finlayson

.

ABSTRACT

This is a record of three refraction profiling surveys undertaken by BMR in 1984, one in the New England Fold Belt, Northern NSW in April, a second over the Nebine Ridge, Queensland in June, and a third along the Murrumbidgee Batholith near Canberra. The aim of the investigations was to delineate crustal structures within the New England Fold Belt and Nebine Ridge, and test drilling and recording techniques near Canberra in hard-rock areas.

The surveys used a total of 17 BMR shots and 4 blasts from Ravensworth coal mine as energy sources to make seismic recordings at 149 sites in the combined surveys. The seismic traverse ran for 300 km north-south in the New England survey, 96 km east-west normal to strike over the Nebine Ridge, and for about 100 km north-south along the Murrumbidgee Batholith.

This record describes the field work and equipment used, and tabulates the station and shot data. No interpretation is given here: the Record is merely a document of the seismic operations to supplement the interpretation reports and for reference.

CONTENTS

1.	Introduction - New England - Nebine Ridge - Murrumbidgee Batholith	Page 1 1 1 1
2.	Seismic Survey Planning and Design - New England - Nebine Ridge - Murrumbidgee Batholith	2 2 2 2
3.	Seismic Recording Operations - New England - Nebine Ridge - Nebine Ridge DFS-4 wide-angle reflection recording - Nebine Ridge expanding spread experiment - Murrumbidgee Batholith crustal survey - Recording equipment	3 3 4 4 4 5
4.	Shots - New England - Nebine Ridge - Murrumbidgee Batholith	5 5 6 6
5.	Surveying Operations	6
6.	Acknowledgements	7
7.	References	7
	TABLES	
1.	Recording station data. (a) New England (b) Nebine Ridge (c) Nebine Ridge expanding spread (d) Murrumbidgee Batholith	
2.	Shot data. (a) New England (b) Nebine Ridge (c) Nebine Ridge expanding spread the hardcopy of record	
_	the hardopy of recor	<u>a 1000/0.</u>

3. Recording Equipment

FIGURES

- Recording traverses, Nebine Ridge/New England region. Geology and survey design, New England. Nebine Ridge ray path design. Recording traverse, Murrumbidgee Batholith survey. 1. 2. 3.

1. INTRODUCTION

In April and June 1984 the BMR undertook deep seismic refraction and wide angle reflection investigations of the crust in the New England Fold Belt and Nebine Ridge regions. They were the first such surveys to be carried out in those areas.

The survey used 16 BMR shots as sources and, in addition, blasts at Ravensworth colliery were used for the New England study. 33 portable field seismographs were deployed along 396 km of traverse. The positions of traverses for both surveys are shown in Fig. 1.

In February-March 1984, prior to the New England Survey, some estimate of BMR's drilling capabilities in hard-rock areas was required. A preliminary survey was therefore conducted on the Murrumbidgee Batholith near Canberra involving one shot.

NEW ENGLAND

This survey is the first deep seismic investigation of the New England Fold Belt and will provide a useful constraint on our understanding of its tectonic development and a comparison of the crustal structure with other regions of the Australian continent. In particular, comparisons with the adjacent Lachlan Fold Belt will be used to investigate trends in crustal growth with time.

Seismic velocities derived for the crust and upper mantle will be used in the interpretation of proposed vertical reflection profiles across the Fold Belt, and for improving the location of earthquakes within the central block.

The survey line shown in Fig. 2 follows, approximately, the New England Highway from near Warwick in the north to Woolbrook in the south. It lies wholly within the Wooloomin-Texas Block (Zone B) and crosses the Permian intrusives of the New England Batholith, Tertiary volcanics including basalt and dolerite around Guyra, Carboniferous sediments around Armidale and back into the New England Batholith around Woolbrook.

NEBINE RIDGE

This survey aims to investigate the deep crustal structure of the Nebine Ridge by correlating wide angle reflection and deep refraction data with the coincident, vertical-reflection profiling obtained by the BMR reflection crew (Fig. 3).

The Nebine Ridge is located between the Eromanga and Surat Basins. The surface expressions of the basement ridge form the Maranoa anticline. Sediments of the Rolling Downs and Injune Creek groups unconformably overlie the basement rock.

MURRUMBIDGEE BATHOLITH

Because of the extensive hard-rock areas in the New England region, it was decided to assess BMR's capacity to drill shot holes in such areas. A test drillhole was put down on Booroomba Station near Tharwa, into the exposed granite of the Murrumbidgee Batholith. It was also decided to record the shot along the length of the Batholith and onto the Berridale Batholith southwest of Cooma (Fig. 4).

SEISMIC SURVEY PLANNING AND DESIGN

NEW ENGLAND

Clive Collins of the BMR visited the proposed survey area in December 1983. He returned in February 1984 with Doug Finlayson with the purpose of:

- 1) Reconnoitring the survey area;
- 2) Determining shot site positions: owners of suitable sites were contacted and access for the BMR drilling crew was arranged;
- 3) Determining the suitability of selected sites for seismograph stations.
- 4) Arranging with Ravensworth open-cut coal mine to deploy a seismograph for monitoring mine blasts. The mine had been used as an energy source in previous surveys and was known to be effective.

The line was 300 km long. For recording purposes it was divided into two equal sections, giving an average station interval of 4.8km with 33 seismographs.

The shots were sited at the northern and southern ends of the line with one in the centre. Two offset sources were used; a BMR shot 100 km north of the line and the Ravensworth open cut coal mine 150 km to the south. This configuration of sources and receivers provided a reversed 400 km traverse with intermediate shots providing shorter-range upper crustal data (Fig. 2).

NEBINE RIDGE

The survey was planned to coincide with the 1984 BMR reflection survey from Charleville to Toowoomba. The shot holes were drilled and loaded by the reflection drilling crew as they traversed the survey area. The same survey line and station pegs were used as for the reflection survey.

The seismic traverse crosses normal to the strike of the Nebine Ridge. The spatial layout of recorders and shots was designed to facilitate wide angle reflection and deep refraction investigations over approximately 75 km of subsurface (Fig. 3).

The survey was also designed to tie in with the vertical reflection and expanded spread reflection investigations undertaken by the reflection crew. The expanded spread was centred about peg 2333.

MURRUMBIDGEE BATHOLITH

The shot on Booroomba Station was on the Murrumbidgee Batholith. Recording was conducted southward along the Batholith and onto the Berridale Batholith. The survey objective was to determine structure in the batholith in a reconnaissance experiment. Three of the recording stations were set up as 3-component stations to establish more clearly the S-wave structure.

7

3. SEISMIC RECORDING OPERATIONS

NEW ENGLAND

(See Table la for recording station data).

There were 4 survey personnel, each with 8 or 9 recorders plus a shot timing unit. The line was divided into northern and southern sections, each section taking about 5 days to complete. Each person had to deploy his seismographs after obtaining permission from the land owner. The sites were located within 1 km diameter areas as indicated on a 1:100000 topographic map. Land use in the survey area is mainly for sheep grazing, fodder crops and fruit growing. Consequently, access and communications were good though they deteriorated as the line passed through areas of high relief with deep valleys in the north.

63 sites were occupied by portable field seismographs programmed to operate from 0700 to 1800 each day. Three Tandberg and one Akai recorders failed to operate satisfactorily. The tape transport failures (see comments in Table 1a) were mainly due to damp weather. Moisture on the stationary tape overnight caused it to stick to the rubber idler wheel. On start up at 0700 hr the tape would wrap round the idler instead of being taken up by the spool. Other failures were either electronic in nature or due to low battery voltage.

During deployment of the northern section of the line the weather deteriorated; rain and wind persisted for a few days. This held up operations as wind-generated microseismic noise was unacceptably high.

NEBINE RIDGE

(See Table 1b for recording station data).

Land use in the survey area is for sheep and cattle grazing. The terrain is flat and covered with medium to dense forest. The survey line ran eastwest, approximately 70 km south and parallel to the Warrego Highway. As it ran mainly along existing fence lines access was good. Unfortunately heavy rain in the second week reversed this situation and delayed survey completion by one week. The situation was aggravated by only one vehicle having a winch.

Mitchell served as survey base camp, although, during continuous operation, survey personnel set up camp along their designated section of the line. 65 sites were occupied by recorders throughout the survey. The line was divided into 2 sections:

A -- Peg 2333 to 2909 (inclusive). B -- Peg 1757 to 2333 (inclusive).

33 sets occupied each section giving a recorder interval of 1.5 km or 18 pegs. Each section was 48 km long (Fig. 3).

After deployment of seismographs in the first section heavy rain fell for a day effectively cutting off access to the sets. After a few days spent locating shots it was dry enough to drive in and switch the sets on. The first 6 shots were fired the next day.

The deployment of sets and shot firing along the second section went according to plan. Only offset sources at 144 km and 96 km were fired into this section.

NEBINE RIDGE DFS-4 RECORDING OF WIDE-ANGLE SHOTS.

It was arranged for the BMR reflection crew to record the shots of the first spread on their DFS 4 recording system. Their spread was located between pegs 3577 and 3624. The shot firer sent a radio message to the observer giving him the proposed firing time plus a suitable start up delay appropriate to the distance between the shot and recording spread.

NEBINE RIDGE EXPANDING SPREAD EXPERIMENT

(See Table 1c for recording station data)

Eight seismographs were deployed to record the shots of the Nebine Ridge expanding spread and the production shots for the CDP profiling over the same time period (15 - 23 May). The purpose of the experiment was twofold: firstly to compare records of the expanding spread shots on refraction instruments with those recorded on the DFS-4 using the arrays of geophones routinely deployed for the CDP profiling; secondly to obtain supplementary information about the underlying structure using recordings of the production shots on the refraction seismographs.

The refraction recorders were deployed at locations 2183,2195,2206,2218,2229, 2241,2252 and 2264 (1 km apart) to record the expanding spread shots to the east of the mid-point of the expanding spread (location 2333). The refraction equipment was then deployed at pegs 2402,2414,2425,2437,2448,2460,2471 and 2483 to record the expanding spread shots at the mid-point and to the west of the mid-point. About 75 of the production shots and all of the 19 shots of the expanding spread were recorded at the two separate deployments of the refraction instruments.

In a second experiment seven refraction seismographs were deployed at five locations, separated by 1 km over a period two weeks (30 May to 13 June). At two locations (3154 and 3178) two recorders were deployed; one used a vertical component seismometer and the other an array of 16 vertical component geophones. There were two objectives of this experiment. The first was to compare records on the usual refraction equipment with those obtained on the refraction recorders attached to the geophone array configuration normally used in CDP profiling. The second objective was to determine the distance range over which the CDP production shots could be recorded.

MURRUMBIDGEE BATHOLITH CRUSTAL SURVEY

(See Table 1d for recording station data).

Recording stations were established at approximately 5 km intervals southward from the shot on Booroomba Station (Fig. 4). 21 sites were set up, three of them with 3 seismometers set up in a 3-component configuration (vertical, horizontal along the axis of recording, horizontal across the axis of recording).

4. RECORDING EQUIPMENT

Four types of equipment were used (Table 3);

1) 6 - Precision Instrument 4 channel (PI) FM tape recorders;

2) 15 - Akai, 4 channel FM tape recorders;

- 12 Tandberg 4 channel FM tape tape recorders;
- 4) Shot timing equipment consisting of a BMR seismic amplifier (TAM 5), Hellige Heloscripter He 16 chart recorder and a Labtronics radio receiver to provide VNG time signals.

Details of the deployment of recorders are contained in Tables 1a,b,c,d. The BMR FM tape recorders are described by Finlayson & Collins (1980).

5. SHOTS

NEW ENGLAND

(See Table 2a for New England shot data)

BMR crews drilled the shots, 2 each at Warwick, Deepwater and Woolbrook and an offset shot at Oakey, 100 km to the north of Warwick. The details of these shots are given in Table 2a. The offset source was received by the first deployment of recorders. Each deployment received shots from Warwick, Deepwater and Woolbrook. Useful blasts were also detected from Ravensworth during the first and second deployments.

BMR shots were drilled in patterns with a minimum distance of 10m between holes and 100 m between shots. Holes were drilled to depths of 40 to 60 m and loaded with up to 150 kg of explosive, ensuring that not less than 15 m of stemming remained above the charge.

The Ravensworth open cut colliery owned by Costain Australia Ltd, regularly blasts sandstone, shale, and conglomerate overburden and coal. This energy source was known to be useful for seismic recording from the 1980 BMR Lachlan Fold Belt study (Finlayson and others, 1980). Up to 120 tonnes of explosive are used in blasting mainly during the 11.30-12 noon lunch break and at the end of the day shift at 4.30 pm.

An Akai recorder was located at the mine site to monitor mine blasts. Surface velocities could be estimated from previous surveys so it was not necessary to time any blasts with the portable shot timing equipment. The mine monitor was disturbed during the first week by kangaroos. The seismometer was uprooted and seismic cable severed in places. However, recording was restored just prior to the shots on 5 April.

The motor of the mine monitor (set 11) was not operating correctly. Consequently, good records are not available. The records used to determine times were severely distorted and times may not be accurate. Hence other shots from the Hunter Valley that were recorded at Cooney Observatory have also been listed in Table 2a. These may be of use when it comes to interpreting data because in many cases the recordings are better than those known to have been fired at Ravensworth.

NEBINE RIDGE

(See Table 2b for Nebine Ridge shot information).

The sources at pegs 1757, 2909, 2333, 3053, 3341 and 3197 were shot into the first spread of recorders (pegs 2333 to 2909). Shots at 3509 and 4061 were recorded by receivers between pegs 1757 and 2333 during the second deployment. The subsurface coverage this gives is shown in Fig 3. Shot holes were drilled in patterns with a minimum of 10 m between holes and 30 m between shots at the same peg.

MURRUMBIDGEE BATHOLITH

Various attempts were made to drill shot holes directly into the Murrumbidgee Batholith exposed at the surface on Booroomba Station near Tharwa. A BMR Mayhew 1000 drilling rig was used, fitted with an air hammer and button bits. After several attempts over a few days the experiment was abandoned. It became obvious that with drilling rates of about 5 m per day any attempt to drill shot holes was going to take a long time and be prohibitively expensive.

Eventually a shothole was drilled in river gravel and alluvium next to the granite outcrop. The shot data are as follows:

Latitude; 35 deg 28.88 min south, Longitude 149 deg 00.50 min east, Hole depth; 32 m Charge size; 100 kg Elevation; 730 m Shot time; 14 h 40 m 33.38 s EST on 2 March.

6. SURVEYING

NEW ENGLAND

It was a simple task to pin-point station sites onto 1:100 000 topographic maps and scale the latitudes and longitudes off these back in Canberra. The co-ordinates had an estimated accuracy better than 100m.

NEBINE RIDGE

The line had previously been surveyed for the BMR reflection crew and all pegs were left intact. The peg interval was 83.333 metre. Latitudes and longitudes were determined from this detailed survey work.

MURRUMBIDGEE BATHOLITH

The same surveying procedures were followed as for the New England survey described above.

G

ACKNOWLEDGEMENTS

BMR staff wish to acknowledge their appreciation of the help and assistance given by companies and landowners during these 1984 surveys. In particular, they wish to thank Costain Australia Ltd. (Drilling and Blasting Engineer - Paul Toomey), Miss D.J.Pentecost ("Plainview" near Oakey), B.A. & I.H.Sands (Allora near Warwick), John Bastardi ("Coolamon" near Deepwater), Steve Scott (Woolbrook), and John Hyles (Booroomba Station near Canberra). The help and assistance of the Parks and Wildlife Rangers of the Department of the Capital Territory is also appreciated.

REFERENCES

- Finlayson, D.M. & Collins, C.D.N., 1980 A brief description of BMR portable seismic tape recording systems. Aust. Soc. Expl. Geophys. Bull., 11, 75-77.
- Finlayson, D.M., Collins, C.D.N & Denham, D., 1980 Crustal structure under the Lachlan Fold Belt, southeastern Australia. Phys. Earth Planet. Int., 21, 321-342.

TABLE 1a

NEW ENGLAND CRUSTAL SURVEY 1984, RECORDING STATION DATA.

Station No.	Set No.	Latitude deg min	Longitude deg min	Elev m	Time on d h m	Time off d h m	Gain db	
01	12	28 17.20	151 57.50	510	09 12 56	11 12 36	90	
02	05	28 20.33	151 55.90	600	09 12 28	11 11 52	90	
03	27	28 24.83	151 56.40	810	09 11 45	11 11 08	90	
04	13	28 27.50	151 54.79	820	09 10 47	11 10 33	90	
05	17	28 30.22	151 56.05	920	09 10 17	22 09 58	90	Day 22 should read 11
06	06	28 33.20	151 55.74	920	09 09 48	11 09 25	90	VNG failure for small period before 11 09 25
07	33	28 35.92	151 56.03	920	09 09 20	11 08 37	90	Radio and clock channel noisy.
08	26	28 38.10	151 56.33	840	09 08 40	11 08 12	90	
09	30	28 40.92	151 56.60	840	08 10 30	11 13 16	90	Radio interference on seismic channel.
10	19	28 43.38	151 55.76	810	08 11 55	11 12 27	90	
11	14	28 47.31	151 55.68	980	08 14 05	11 11 40	90	Motor oscillating : not digitized.
12	02	28 49.43	151 57.28	880	08 15 55	11 10 50	90	Noisy recorder : not digitized.
13	24	28 50.86	151 55.01	890	08 17 04	11 10 17	90	Tape transport failure.
14	25	28 53.82	151 57.02	920	07 15 07	11 09 32	90	Clock poor. High frequency noise in places.
15	01	28 58.00	151 55.58	830	07 14 07	11 08 49	90	
16	18	29 01.13	151 55.98	825	07 12 37	11 08 07	90	
17	23	29 03.22	151 55.10	930	08 10 01	11 08 04	90	Radio interference on seismic channel.
18	21	29 05.49	151 55.72	1040	08 11 30	11 10 00	90	
19	04	29 09.50	151 54.78	910	08 12 43	11 09 25	90	Noisy site. VNG fault at 11 09 15.
20	20	29 12.06	151 52.92	520	08 15 02	11 11 20	90	
21	15	29 13.17	151 54.77	540	08 07 00	11 13 58	90	
22	32	29 17.70	151 54.30	790	08 07 00	11 12 59	90	
23	03	29 19.60	151 54.98	960	07 10 48	11 14 46	90	10 minutes slow (i.e. reading 11 14 50
24	22	29 22.79	151 54.22	950	08 07 00	11 15 36	90	at 11 15 00).
25	29	29 23.97	151 53.13	960	09 14 10	11 12 45	90	
26	09	29 27.88	151 54.48	990	09 13 12	11 11 35	90	Tape transport inoperative at pick up. On day 10 recorder switches on at 10 16 25.
27	28	29 30.22	151 52.31	1030	09 12 35	11 11 00	90	
28	80	29 32.90	151 51.85	1110	09 12 40	11 10 30	90	Motor oscillating during shots 07 and 08.
29	16	29 36.00	151 51.93	1020	09 11 40	11 09 55	90	

TABLE 1a (continued)

Station No.	Set No.	Latitude deg min	Longitude El deg min m	ev Time on d h m	Time off d h m	Gain db	
30	07	29 39.42	151 53.89 119		11 09 16	90	No VNG at 11 09 16
31	05	29 41.21	151 51.48 109		11 08 40	90	
31	10	29 41.21	151 51.48 109		06 07 53 06 08 26	90	
32	13 12	29 43.12 29 45.68	151 50.60 102 151 49.81 107		06 08 57	90 90	
33 34	26	29 48.15	151 49.81 107		06 09 37	90	Tape transport fault.
35	20 17	29 51.38	151 48.44 112		06 10 10	90	Tape chansport raute.
36	33	29 54.43	151 45.08 115		06 11 01	90	Motor oscillating during shots 02,03,04 a
37	06	29 56.80	151 44.12 116		06 11 33	90	110001 000111401119 aut 1119 011000 02,00,01 a
38	27	29 59.90	151 43.52 137		06 12 13	90	
39	18	30 01.89	151 43.51 133		08 23 13	90	2 days 10 hours fast. Therefore only shot is within the recording period.
40	01	30 03.88	151 42.79 136	0 04 14 40	06 13 53	90	• .
41	25	30 07.33	151 41.50 129		06 12 17	90	
42	14	30 09.36	151 40.24 131		06 11 36	90	
43	30	30 12.05	151 38.82 131		06 10 55	90	
44	02	30 14.28	151 38.31 132		06 10 19	90	
45	24	30 16.69	151 37.36 130		06 09 21	90	Machine failure.
46	19	30 20.16	151 36.90 129		06 08 24	90	
47	20	30 22.92	151 35.25 126		06 08 25	90	
48	31	30 24.86	151 34.04 115		06 09 50	90	
49 50	21	30 26.93	151 35.58 116		06 10 32	90	Panding 1 hour fact i o 0/ 12 01 ic 0/ 1
50 51	04	30 29.73 30 32.30	151 32.37 109 151 30.60 102		06 12 15 06 12 20	90 90	Reading 1 hour fast, i.e. 04 12 01 is 04 1 Machine failure. Oscillating motor.
51 52	23 15	30 32.30	151 30.60 102		06 12 20	90	riacilline latture. Oscillating motor.
52 53	32	30 35.36	151 30.48 103		06 13 03	90	
53 54	03	30 40.32	151 28.27 104		06 14 27	90	Running 10 minutes slow
55	22	30 43.28	151 27.51 104		06 15 03	90	Low channel noisy.
56	07	30 45.71	151 26.46 106		06 07 58	90	Low Shamer Horoge
57	29	30 48.38	151 25.18 108		06 08 38	90	

TABLE la (continued)

Station	Set	Latitude	Longitude E	v Time on	Time off Gain
No.	No.	deg min	deg min	d h m	d h m db
58	08	30 51.15	151 25.37 10		06 09 25 90
59	16	30 53.14	151 24.42 10 ⁴		06 10 00 90
60	10	30 55.80	151 23.22 10 ⁴		06 10 34 90
61	28	30 57.36	151 23.72 10	03 13 00	05 17 16 90
62	09	30 59.82	151 23.38 9		05 16 49 90
53	11	32 26.06	151 02.23 1:		05 11 00 90
53	11	32 26.06	151 02.23 1:		12 09 26 90

TABLE 1b

NEBINE RIDGE CRUSTAL SURVEY 1984 , RECORDING STATION DATA

					 -		
Peg	Stn.	Set	Latitude	Longitude	Time on	Time off	Gain
No.	No.	No.	deg min	deg min	d h m	d h m	db
			·	_			
1757	01	33	26 50.32	146 26.06	26 08 53		96
1775	02	17	26 50.34	146 26.97	26 09 24		96
1793	03	12	26 50.43	146 27.86	26 09 42		96
1811	04	13	26 50.56	146 28.75	26 09 53		96
1829	05	27	26 50.69	146 29.65	26 10 03		96
1847	06	06	26 50.81	146 30.55	26 10 14		96
1865	07	26	26 50.94	146 31.44	26 10 26		96
1883	80	05	26 51.07	146 32.33	26 10 33		96
1901	09	19	26 51.20	146 33.23	26 12 54		96
1919	10	01	26 51.39	146 34.10	26 12 22		96
1937	11	30	26 51.48	146 35.00	26 11 39		96
1955	12	02	26 51.57	146 35.90	26 11 13		96
1973		25	26 51.67	146 36.80	26 10 40		96
1991	14	14	26 51.76	146 37.70	26 10 12	27 10 25	96
2009	15	24	26 51.85	146 38.60			
2027	16	18	26 51.94	146 39.50	26 09 15		96
2045	17	09	26 52.03	146 40.40	26 08 51		96
2063	18	29	26 52.26	146 41.26	26 09 19		96
2081	19	10	26 52.60	146 42.08	26 09 46		96
2099		80	26 52.93	146 42.91	26 10 14		96
2117	21	28	26 53.27	146 43.73	26 10 42		96
2135	22	07	26 53.60	146 44.56	26 11 18		96
2153	23	16	26 53.93	146 45.39	26 11 44		96
2171	24	11	26 54.26	146 46.22	26 12 30		96
2189	25	15	26 54.45	146 47.09	25 14 07		96
2207	26	04	26 54.57	146 47.99	25 13 27		96
2225	27	31	26 54.69	146 48.88	25 12 39		96
2243	28	23	26 54.82	146 49.78	26 08 30		96
2261	29	20	26 54.93	146 50.68	26 08 22		96
2279	30	21	26 55.05	146 51.57	26 08 14	27 10 17	96

Tape tangled around capstan.

TABLE 1b (continued)

Peg Stn. Set Latitude Longitude deg Time on Time off Gain No. No. deg min min min
2297 31 22 26 55.16 146 52.47 25 14 50 27 10 38 96 2315 32 32 26 55.28 146 53.37 25 15 17 27 10 52 96 2333 33 03 26 55.32 146 54.27 25 15 30 27 11 12 96 for shots 8 & 9. 2333 34 03 26 55.32 146 54.27 21 14 22 24 12 06 96 for shots 1 - 7. 2351 35 21 26 55.40 146 55.17 21 13 30 25 09 55 96 12v supply low at pick up. 2369 36 20 26 55.59 146 56.07 21 13 10 25 06 28 96 Clock is 3 hour slow. 2387 37 22 26 55.58 146 56.97 21 11 35 24 16 30 96 2405 38 32 26 55.68 146 57.87 21 10 43 24 16 15 96 2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 32 25 09 59 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2531 45 11 26 56.19 147 05.07 21 09 47 25 12 15 96 2567 47 08 26 56.50 147 05.07 21 09 47 25 12 15 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2315 32 32 26 55.28 146 53.37 25 15 17 27 10 52 96 2333 33 03 26 55.32 146 54.27 25 15 30 27 11 12 96 for shots 8 & 9. 2333 34 03 26 55.32 146 54.27 21 14 22 24 12 06 96 for shots 1 - 7. 2351 35 21 26 55.40 146 55.17 21 13 30 25 09 55 96 12v supply low at pick up. 2369 36 20 26 55.49 146 56.07 21 13 10 25 06 28 96 Clock is 3 hour slow. 2387 37 22 26 55.58 146 56.97 21 11 35 24 16 30 96 2405 38 32 26 55.68 146 57.87 21 10 43 24 16 15 96 2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 15 03 96 2478 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2531 44 11 26 56.19 147 03.27 21 08 33 25 09 59 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.60 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2615 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.75 147 10.48 22 12 23 25 15 12 96
2333 33 03 26 55.32 146 54.27 25 15 30 27 11 12 96 for shots 8 & 9. 2333 34 03 26 55.32 146 54.27 21 14 22 24 12 06 96 for shots 1 - 7. 2351 35 21 26 55.40 146 55.17 21 13 30 25 09 55 96 12v supply low at pick up. 2369 36 20 26 55.49 146 56.07 21 13 10 25 06 28 96 Clock is 3 hour slow. 2387 37 22 26 55.58 146 56.97 21 11 35 24 16 30 96 2405 38 32 26 55.68 146 57.87 21 10 43 24 16 15 96 2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 42 25 10 20 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 00.57 21 10 42 25 13 24 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2615 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.75 147 10.48 22 12 23 25 15 12 96
2333 34 03 26 55.32 146 54.27 21 14 22 24 12 06 96 for shots 1 - 7. 2351 35 21 26 55.40 146 55.17 21 13 30 25 09 55 96 12v supply low at pick up. 2369 36 20 26 55.49 146 56.07 21 13 10 25 06 28 96 Clock is 3 hour slow. 2387 37 22 26 55.58 146 57.87 21 10 43 24 16 15 96 2405 38 32 26 55.68 146 57.87 21 10 43 24 16 15 96 2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 47 25 12 15 96 2549 46 28 26 56.60 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.75 147 10.48 22 12 23 25 15 12 96
2351 35 21 26 55.40 146 55.17 21 13 30 25 09 55 96 12v supply low at pick up. 2369 36 20 26 55.49 146 56.07 21 13 10 25 06 28 96 Clock is 3 hour slow. 2387 37 22 26 55.58 146 56.97 21 11 35 24 16 30 96 2405 38 32 26 55.68 146 57.87 21 10 43 24 16 15 96 2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2615 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.75 147 10.48 22 12 23 25 15 12 96
2369 36 20 26 55.49 146 56.07 21 13 10 25 06 28 96 Clock is 3 hour slow. 2387 37 22 26 55.58 146 56.97 21 11 35 24 16 30 96 2405 38 32 26 55.68 146 57.87 21 10 43 24 16 15 96 2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2633 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2639 51 18 26 56.70 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2387 37 22 26 55.58 146 56.97 21 11 35 24 16 30 96 2405 38 32 26 55.68 146 57.87 21 10 43 24 16 15 96 2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2630 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2639 51 18 26 56.70 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2405 38 32 26 55.68 146 57.87 21 10 43 24 16 15 96 2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2423 39 04 26 55.77 146 58.77 21 10 18 24 15 48 96 2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 <td< td=""></td<>
2441 40 31 26 55.87 146 59.67 21 09 59 24 15 23 96 2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2585 48 10 <td< td=""></td<>
2459 41 23 26 55.96 147 00.57 21 09 43 24 15 03 96 2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 <td< td=""></td<>
2477 42 15 26 56.01 147 01.48 21 08 34 24 14 02 96 2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2621 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2495 43 16 26 56.10 147 02.37 21 08 33 25 09 59 96 2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 <td< td=""></td<>
2513 44 11 26 56.19 147 03.27 21 08 42 25 10 20 96 2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2621 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2531 45 07 26 56.23 147 04.17 21 09 10 25 10 59 96 2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2621 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2549 46 28 26 56.30 147 05.07 21 09 30 25 11 51 96 2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2621 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2567 47 08 26 56.40 147 05.97 21 09 47 25 12 15 96 2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2621 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2585 48 10 26 56.50 147 06.87 21 10 10 25 12 37 96 2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2621 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2603 49 29 26 56.60 147 07.77 21 10 42 25 13 24 96 2621 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2621 50 09 26 56.65 147 08.67 21 11 16 25 13 47 96 2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2639 51 18 26 56.70 147 09.58 22 12 34 25 15 39 96 2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2657 52 02 26 56.75 147 10.48 22 12 23 25 15 12 96
2675 53 30 26 56.80 147 11.39 22 12 39 25 14 43 96
2693 54 24 26 56.86 147 12.29 22 13 16 25 13 58 96
2711 55 14 26 56.91 147 13.20 22 13 54 25 13 17 96
2729 56 25 26 56.95 147 14.10 22 15 30 25 12 51 96 Seismometer disturbed by cattle.
2747 57 01 26 57.01 147 15.01 22 14 13 25 12 25 96
2765 58 19 26 57.05 147 15.91 22 14 22 25 11 24 96
2783 59 33 26 56.83 147 16.78 22 14 43 25 11 57 96 Seismometer cable chewed; aerial dis
2801 60 26 26 56.62 147 17.65 21 11 12 25 08 46 96 One minute fast.

TABLE 1b (continued)

Peg Stn.	Set	Latitude	Longitude	Time on	Time off	Gain	
No. No.	No.	deg min	deg min	d h m	d h m	db	
2819 61	12	26 56.65	147 18.56	21 11 21	25 09 10	96	One minute fast
2837 62	27	26 56.81	147 19.44	21 11 48	25 09 34	96	
2855 63	13	26 57.00	147 20.32	21 12 10	25 10 00	96	
2873 64	06	26 57.08	147 21.22	21 12 32	25 10 20	96	
2891 65	05	26 57.16	147 22.13	21 12 36	25 10 38	96	
2909 66	17	26 57.24	147 23.03	21 14 47	24 15 52	96	
DFS-4 sei 3577 3624	smic sp	oread (48 cha 26 58.58 26 58.83	nnels) 147 56.52 147 58.87	western-most eastern-most			

TABLE 1c

NEBINE RIDGE EXPANDING SPREAD EXPERIMENT, RECORDING STATION DATA.

Peg No.	Stn. No.	Set No.		Longitude deg min	Time on d h m	Time off d h m	Gain db
2183 2195 2206 2218 2229 2241 2252 2264 2402 2414 2425 2437 2448 2460 2471 2483 3130 " " 3142	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17	18 14 24 02 25 01 30 19 18 14 24 02 25 01 30 19 01 ""	26 54.42 26 54.49 26 54.65 26 54.65 26 54.72 26 54.87 26 54.95 26 55.72 26 55.72 26 55.78 26 55.97 26 55.97 26 56.00 26 56.04 26 57.82	146 46.90 146 47.39 146 47.94 146 48.54 146 49.08 146 50.23 146 50.83 146 57.72 146 58.32 146 58.87 146 59.47 147 00.02 147 00.62 147 01.17 147 01.78 147 34.71	15 10 00 15 10 41 15 11 19 15 12 33 15 13 08 15 13 44 15 14 50 15 15 35 20 11 15 20 11 58 20 12 49 20 13 29 20 14 40 20 15 13 20 15 55 20 16 42 30 13 49 35 13 34 40 08 10 44 07 52 30 12 01 36 09 24 40 08 23 44 08 06 30 12 05	17 18 10 17 17 54 17 17 36 17 17 14 17 16 57 17 16 37 17 16 12 17 15 46 23 13 08 23 12 41 23 12 19 23 11 56 23 11 35 23 10 01 23 10 52 31 10 52 32 10 52 32 08 09 39 18 40 40 18 01 44 16 21 32 08 27 39 18 30 40 17 51 44 16 32 32 08 24	96 96 96 96 96 96 96 96 96 96 96 96 96 9
11		11 11	11	n n	36 09 37 40 17 53	39 18 34 40 17 53	96 96
3154	19	19	26 57.84	147 35.32	44 08 11 30 10 45	44 16 34 32 08 40	96 96

17 15 46 reading 28 16 46 at pick up.

Geophone string run over by drilling rig. Tape wrapped around capstan.

Rigs drilling nearby.

TABLE 1c (continued)

Peg	Stn.	Set	Latitude	Longitude	Time on	Time off	Gain
No.	No.	No.	deg min	deg min	d h m	d h m	db
3166	20	02 " 14 " " 30 " " " "	26 57.83 26 57.83 26 57.79	147 35.93 " 147 35.93 " 147 36.53	35 14 13 40 08 43 44 08 23 30 16 00 35 14 39 40 09 01 44 08 49 30 15 56 35 14 33 40 09 06 44 08 45 30 16 38 32 09 06 35 14 50 40 09 20 44 09 04	39 18 21 40 17 41 44 16 44 32 08 55 39 18 02 40 17 26 44 17 06 32 08 58 39 18 00 40 17 24 44 17 05 32 09 06 35 14 50 39 17 30 40 17 16 44 17 16	96 96 96 96 96 96 96 96 96 96 96 96

TABLE 1d
MURRUMBIDGEE BATHOLITH SURVEY, RECORDING STATION DATA

Statn. No	Set No	Latitude deg mins	Longitude deg mins	Elev m	Time on d h m	Time off d h m	Gain db	Comments
1	29	35 32.98	149 02.54	1383	30 13 02	31 15 57	90	
2	33	35 34.60	149 01.57	680	31 11 19	31 16 32	90	
3	20	35 37.45	149 00.90	940	01 13 29	02 16 41	90	North- South component.
3	18	H	11	940	01 13 51	02 16 42	90	East-West component.
3	07	11	ŧf	940	29 14 51	31 17 04	90	Vertical component.
4	09	35 40.03	148 59.08	920	29 15 52		90	No tape drive.
5	19	35 42.12	148 59.72	920	01 15 55	02 14 46	?	East-West component.Seismometer replaced.
5	16	U	11	920	01 16 24	02 14 44	96	North-South component.
5	02	11	11	920	29 16 25	31 15 08	96	Vertical Component.
6	11	35 43.96	148 58.89	1000	30 17 26	31 17 41	96	
7	12	35 47.35	148 57.70	1130	30 14 13	31 15 39	96	East-West component.
7	06	11	"	1130	30 14 56	31 15 51	96	North-South component.
7	01	11	11	1130	30 14 41	31 15 48	96	Vertical component.
8	15	35 49.77	148 57.39	1150	30 16 01	31 16 53	96	
9	25	35 51.99	148 54.17	1200	29 15 45	31 17 20	96	
10	28	35 54.18	148 53.63	1587	29 14 00	31 16 17	96	
11	30	35 57.92	148 54.10	1000	29 17 20	31 18 09	96	
12	23	36 01.93	148 53.67	1060	29 16 37	34 12 25	84	
13	26	36 04.17	148 53.05	1150	29 15 21	34 12 53	84	
14	05	36 06.62	148 54.28	1160	29 13 54	34 13 21	96	
15	27	36 08.13	148 53.00	1200				
16	24	36 11.00	148 51.22	1230	29 10 47	34 14 18	84	
17	03	36 13.65	148 49.56	1160	29 16 41	34?	96	Disturbed by cattle.
18	04	36 16.36	148 48.18	1040	29 15 43	34 10 51	96	Tape ran out.
19	14	36 18.35	148 50.36	920	29 13 52	34 11 17	96	Tape ran out.
20	13	36 20.53	148 51.39	880	29 12 49	34 12 22	96	
21	10	36 23.44	148 51.05	900	29 10 30	34 11 47	96	Tape ran out.

TABLE 2a

NEW ENGLAND CRUSTAL SURVEY 1984, SHOT INFORMATION

Shot Location No.	Time d h m s	Size Latitude t deg min		
01 Woolbrook 02 Deepwater 03 Oakey 04 Ravensworth 05 Ravensworth 06 Warwick 07 Ravensworth 08 Ravensworth 09 Woolbrook 10 Warwick 11 Deepwater	05 09 40 02.54 05 10 00 10.21 05 11 52 46.88 05 11 53 17.59 05 16 11 10.15 10 11 37 03.46 10 13 20 52.65 10 16 46 34.32 10 17 05 10.11	28.2 32 26.70 1.82 30 59.80	151 54.50 151 43.68 151 02.55 151 02.64 151 57.79 151 02.64 151 02.60 151 23.38 151 57.79	990 400 124 124 520 124 124 930 520
16 Hunter Valley 07 Ravensworth	d h m s 05 11 52 47.00 05 11 53 17.82 05 12 29 16.96 05 13 01 01.88 05 13 11 39.76 10 11 09 52.12? 10 11 33 30.50 10 11 37 03.64 10 12 59 18.78	11 53 50.0 12 29 48.4 13 01 36.2 13 12 10.4 11 10 27.2 11 34 04.0 Poorly recor	32.18 31.44 34.32 30.64 35.08 33.5 ded	s - 27.0 27.5 27.5 30.2?

Note: In the lower part of the Table there are listed the times of all Ravensworth and Hunter Valley shots recorded at Cooney Observatory. The exact location of the Hunter Valley shots is not known but the data are included in case they may be useful at a later stage.

TABLE 2b

NEBINE RIDGE CRUSTAL SURVEY 1984, SHOT INFORMATION

Shot Location	Time	Size	Latitude	Longitude
No. (Peg No.) o	d h m s	kg	deg min	deg min
02 2909 03 2333 04 3053 05 3341 06 3197 07 3509 08 3509	22 15 55 09.78 23 10 00 10.07 23 10 20 10.14 23 15 30 10.07 23 16 45 09.69 23 17 00 10.10 23 17 30 10.29 26 13 08 09.59 26 16 42 10.15	400 150 150 150 300 300 400 700 1000	26 50.32 26 57.24 26 55.32 26 57.82 26 57.53 26 57.70 26 58.23 26 58.23 26 58.88	146 26.06 147 23.03 146 54.27 147 30.25 147 44.72 147 37.48 147 53.12 148 20.66

TABLE 3 RECORDING EQUIPMENT, NEW ENGLAND AND NEBINE RIDGE CRUSTAL SURVEYS 1984.

Set Nos	Recorder Type	Seismometer Type	Amplifier Type	Clock	Polarity (see Note)
1 to 9	Akai	Willmore Mk.III	TAM 5	NCE 3	Mass down Signal down
10 to 1	5 "	Willmore Mk.II	TAM 5	NCE 3	11
16 to 2	l Precision Instrument	Willmore Mk.II	TAM 5	NCE 3	П
22 to 23	7 Tandberg	Willmore Mk.II	Geotech	NCE 3	II
28 to 33	3 Tandberg	SIE (New Eng 2 Hz Sur	gland Geotech rvey)	NCE 3	11
u ·		Willmore (Neb Mk.III	oine Ridge Survey)		

Note: 1) Mass down applies for an impusive P-wave arrival.
2) Signal down refers to the trace played back from tape through the Siemens analogue recorder.

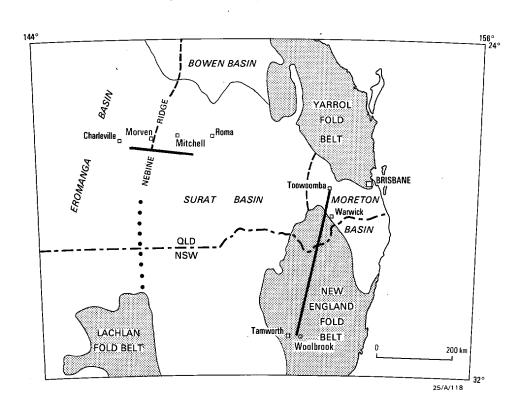


Fig.1 Recording traverses, Nebine Ridge/New England region

Record 1985/3

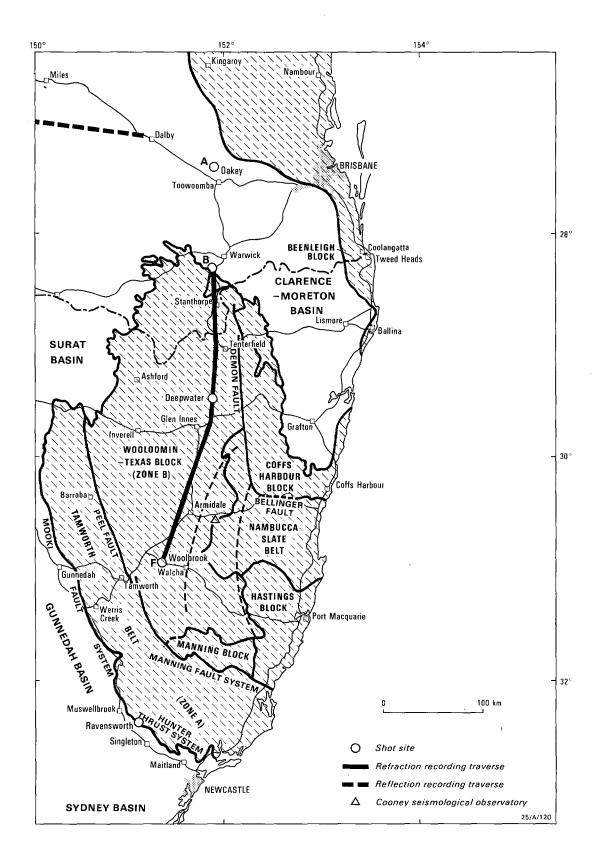


Fig. 2 Geology and survey design, New England

NEBINE RIDGE WIDE ANGLE REFLECTION/REFRACTION SURVEY

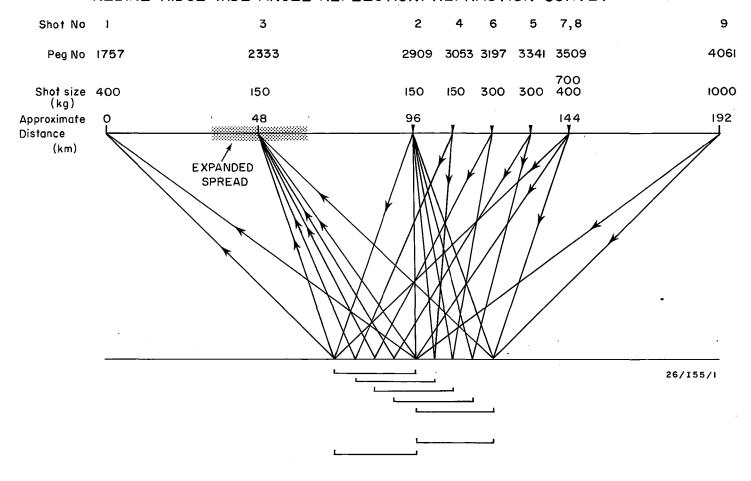


Fig.3 Nebine Ridge ray path design

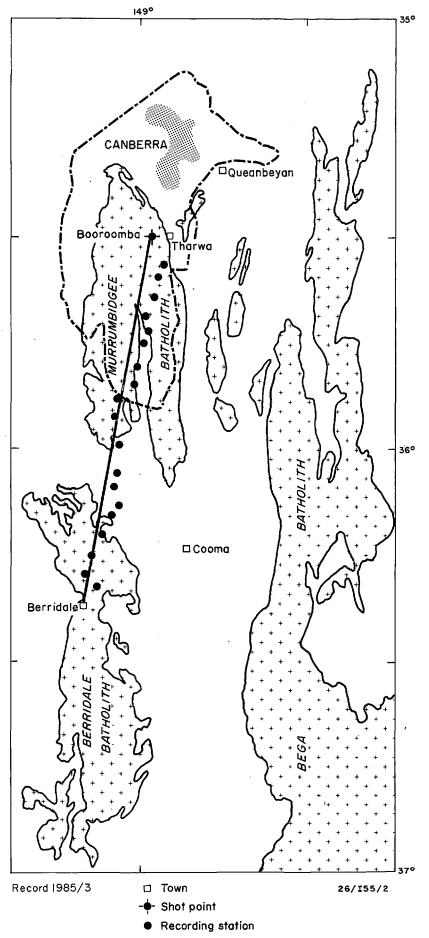


Fig.4 Recording traverse, Murrumbidgee Batholith survey