1987/1 Copy 4





# BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

# **RECORD**

RECORD 1987/1

FIRST ORDER REGIONAL MAGNETIC SURVEY

OF PAPUA NEW GUINEA

March/April 1985



by

A.P. Hitchman, L.P. Bibot

04

The information contained in this report has been obtained by the Bureau of Mineral Resources, Geology and Geophysics as part of the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director.

### RECORD 1987/1

#### FIRST ORDER REGIONAL MAGNETIC SURVEY

OF PAPUA NEW GUINEA

March/April 1985

by

A.P. Hitchman, L.P. Bibot #



# Port Moresby Geophysical Observatory, Papua New Guinea Geological Survey

#### **SUMMARY**

A first-order magnetic survey was made by BMR and the Port Moresby Geophysical Observatory of the PNG Geological Survey throughout PNG in March and April 1985. Results suitable for the reliable definition of the Earth's vector field and its secular variation were obtained at 6 stations, and used for the production of regional charts at epoch 1985.0.

Travel was by commercial airline and at the stations hire cars were used.

At each station a three-component fluxgate variograph and a base station total-intensity magnetometer were operated for about three days; magnetograms were calibrated by frequent absolute observations; and sun observations were made to determine the true azimuth of reference marks used in determining declination. Earlier stations were connected to present stations to extend the time-series where possible.

The value of magnetic elements observed, preliminary mean hourly values for declination, horizontal intensity, total intensity and vertical intensity, and adopted station values at the epoch of occupation are given.

# **CONTENTS**

# Summary

|      |                                                       | Page |
|------|-------------------------------------------------------|------|
| 1.   | Introduction                                          | 1    |
| 2.   | Preparations                                          | 1    |
| 3.   | Equipment                                             | 2    |
| 4.   | Station occupations                                   | 3    |
| 5.   | Recommendations                                       | 6    |
| 6.   | Data Reduction                                        | 8    |
| 7.   | References                                            | 8    |
| Арр  | endices                                               |      |
| 1.   | Itinerary                                             | 9    |
| 2.   | Freight and Excess Baggage                            | 9    |
| 3.   | Survey Equipment                                      | 10   |
| 4.   | Station Descriptions                                  | 11   |
| Tab  | les                                                   |      |
| 1.   | Magnetograph recording - 1985                         | 18   |
| 2.   | Instrument comparisons and preliminary corrections    | 18   |
| 3.   | Station details                                       | 19   |
| 4.   | Reference marks and azimuths                          | 19   |
| 5.   | Value of magnetic elements                            | 20   |
| 6.   | Declination - Preliminary Mean Hourly Values          | 22   |
| 7.   | Horizontal Intensity - Preliminary Mean Hourly Values | 23   |
| 8.   | Total Intensity - Preliminary Mean Hourly Values      | 24   |
| 9.   | Vertical Intensity - Preliminary Mean Hourly Values   | 25   |
| 10.  | Adopted station values at epoch of occupation         | 26   |
| Figu | ıres                                                  |      |
| 1.   | PNG First Order Stations                              | 27   |
| 2.   | Diagram of survey equipment                           | 28   |

#### INTRODUCTION

The BMR publishes geomagnetic epoch charts of the seven vector components of the magnetic field in the Australian region. These are updated approximately five yearly. The reoccupation of six first order stations in Papua New Guinea between March 12 and April 7 1985 collected data for the current update. The values of the Earths main field are needed to an accuracy of better than 5nT (0.5') overall, to provide reliable estimates of the secular variation.

The stations visited were (Fig 1) Wewak, Momote, Kavieng, Aropa, Daru and Gurney, all of which were last occupied in 1981.

At each station a three component EDA fluxgate variometer, proton precession magnetometer, and ancilliary equipment were set up and a minimum of two nights magnetically quiet magnetograms obtained.

Absolute observations to calibrate the magnetograms were made throughout the occupation, together with sunshots at all stations.

Travel between stations was by commerical airlines, and hire cars were used for local transport. The itinerary for the survey is in Appendix 1.

The survey was organized in cooperation with the Port Moresby Geophysical Observatory and the two-man field party consisted of Luke Bibot, a geophysicist from the Observatory and the author, from the Geomagnetism Section, Division of Geophysics, BMR.

#### 2. PREPARATIONS

The survey was planned for April/June which is the best time weather-wise. In PNG the wet season is between January and March/April, with NW monsoonals blowing, May is less windy, and in June the SE Trade winds begin.

Ian Ripper, OIC PMGO, arranged the local logistics, starting six months in advance.
These included

- \* customs clearance a letter to the Controller of Customs in Port Moresby informing him of our arrival and a list of equipment and it's value itemized by box.
- \* accommodation booked in advance at all stations. This may be inconvenient if there are any delays during the survey, but is necessary since few hotels/motels service most of the stations and last minute accommodation is sometimes not available.
- \* hire cars booked in advance at all stations. These are most often obtained from the major companies, but also from local business people at some smaller stations. Advance booking is necessary since cars are at a premium.
- \* Provincial Government contacts courtesy is the main reason for informing the provincial governments of our activities, though it is useful to have a contact if any problems arise.
- \* Permission to access stations permission was received from the Civil Aviation Authority HQ to work at each airport.

L

\* flights - it was necessary to inform Air Nuigini of movements and

baggage excess so the 200 kg of equipment could be accommodated on flights.

Preparations in Canberra through the BMR travel clerk involved

- \* organizing travel to and within PNG.
- \* obtaining an official passport and entry visa (takes about 3 weeks).
- \* arranging miscellaneous charges orders to cover freight/excess baggage costs (AUD6000). The 1985 costs are set out in Appendix 2.

#### Other preparations included

- \* approval from the Secretary of PNG Department of Minerals and Energy for direct cooperation of PMGO personnel on the survey.
- \* obtaining approval for the survey from the Secretary, Department of Resources and Energy. The forms 'Request for Approval of short-term Duty Overseas' are available from the BMR OIC General Services.
- \* obtaining a course of anti-malarials, and typhoid shots (from the Commonweath Medical Officer).
- \* preparing the equipment for the survey. Appendix 3 has a list of the equipment needed.
- \* arranging petty cash (\$2000) for hire cars and incidental items.

#### 3. EQUIPMENT

#### RECORDING EQUIPMENT

The variometers used on the survey were a portable three component (X,Y,Z) EDA FM-100B fluxgate magnetometer, and an Elsec proton precession magnetometer Model 595 with a toroidal head. The EDA recorded the field continuously and the PPM recorded once every minute on a Tigraph 100 chart recorder (6 channels). A Doric Trendicator monitored the temperature of the EDA sensors using a Thermilinear YSI series 700 thermistor mounted in the head. A BMR-built Dick Smith clock provided hourly timemarks on the chart. Figure 2 is a diagram of the equipment.

Details of the magnetograph recording at each station are in Table 1.

The variographs were housed in convenient buildings with access to 240 V AC power, with the sensors as far from sources of artificial disturbance as possible. These buildings were usually on airports and included, at different stations, hangars, workshops and Bureau of Meteorology facilities.

#### ABSOLUTE INSTRUMENTS

Absolute calibration of the magnetograms was by an Askania declinometer, La Cour quartz horizontal magnetometer (QHM), and Geometrics and Austral proton precession magnetometers. These instruments were compared before and after use in the field at Canberra Magnetic Observatory. A secondary QHM was taken and used once at each station to keep a check on instrument differences (Table 2).

The instruments used to calibrate the recording equipment were

QHM 305, 173

Н

D Dec 640506/Circle 508810 F PPM Geometrics 816 1025, Austral 528

Preliminary instrument corrections are in Table 2.

For sunshots and rounds of angles the Hilge & Watts theodolite No. 66006 was used.

#### 4. STATION OCCUPATIONS

Appendix 4 contains descriptions of all stations visited. Latitude, longitude and local meridian times are in Table 3. The reference marks and their azimuths, which were used in declination observations, are collated in Table 4, and in Table 5 the value of magnetic elements obtained from absolute observations made at each station are tabulated (preliminary instrument corrections applied).

#### Wewak D (12-17/3/85)

The recording equipment was set up in the unused meteorological balloon-filling hut to the west(W) of the terminal. The key is available from the Met OIC. The hut is not secure and is close to a residential area and an infrequently used road. The EDA head was placed to the W of the shed. The Elsec base station could not be tuned. Replacing the oscillator improved the performance but did not solve the problem. No F recording was obtained for the station. The 1/100ths digit on the Doric was losing segments, making it occasionally difficult to read the temperature.

Station D has a brass marker and separate footpads. They are about 3 cm below ground level, covered with soil and grass, but easily located using the station discription. Permission to access it was given by the OIC General Services whose office is in the terminal building at the airport.

The mark used for declination observations was the RHS of an antenna to the NE. There are also two windsocks which could be used. In all cases the bases of the reference marks are obscured by scrub.

Absolutes (H,D,F), sunshots (AM,PM) and a round of angles were completed.

The Provincial Government contact was Phillip Kanora (Ph  $862200 \times 236$ ). We paid him a courtesy call only.

The Sepik Motel (862422) cost K55 per night including breakfast. It is about 10km from the airport and probably the best motel available (others are the Wewak Hotel and the Windjammer).

The motel was also the Avis agent and provided a hire car which cost about K60 per day. A car is essential.

#### Momote D,E (17-21/3/85)

The recording equipment was set up in the office of the fuel depot. The depot is to the W of the terminal, next to a WWII shed. The office is secure with padlocked outside fence and locked door, and has plenty of room inside. During the occupation there were no commercial flights to or from the airport, so activity round the fuel depot was minimal. The keys were obtained from the depot supervisor through the Airport OIC. The sensors for the EDA and Elsec were set up to the W and SW of the office respectively. The Elsec was very noisy (unserviceable).

Station D was located. Measurements were made from the ARP which is an inconspicuous concrete block in the ground (brass plaque probably removed by

a slasher or grader). The Airport OIC knew exactly where it was. The station is above ground level inside the cone markers, tilted over, and has no footpads. A new station (E) was put in outside the cone line. It has separate marker and footpads, about 3 cm below ground level. Station E was used as the main station. The station differences measured were

|   | Stn D-E |
|---|---------|
| D | 6.0'    |
| Н | 63 nT   |
| Z | 43 nT   |

Permission to work in the airport grounds was obtained from the Airport OIC.

The reference mark used was a windsock to the north. Two other windsocks to the W and SE are also suitable as marks.

Absolutes, AM sunshots and a round of angles were completed.

The Provincial Government was in turmoil at the time of the occupation, and no contact was made.

Accommodation was arranged at the Lorengau Hotel (409093). Lorengau is about 40 km from Momote airport, and the road is rough. It takes 35 minutes to travel from the airport to town. The hotel charged K33 per night (bed only), and the rooms were small and dark but tidy. There is another hotel in Lorengau that is apparently better but more expensive.

The hotel was the Avis agent and provided a car at about K60 per day. A car is essential.

There is a tavern (Momote Tavern) very close to the airport that sells cold drinks and snacks.

#### Kavieng C (21-25/3/85)

The Meteorological balloon-filling shed used to house the recording gear in 1981 was unsuitable because of visitors cars at the Met observers home and office nearby. A better site for the equipment was found in one of two huts at the unused Department of Civil Aviation transmitter at the southern end of the runway. The hut on the left (as seen from the road) was used for the equipment. It is the same hut that the PMGO seismograph is in, though this was not operational during the occupation. There was little interference from cars on the seldom used road nearby. This location proved to be quite good. The key to the hut is available from the Met observer.

The sensors for the EDA and Elsec were placed to the SE and NE of the hut. All of the equipment operated satisfactorily except that the F trace on the Tigraph ceased recording one night though the Elsec continued to give sensible numbers. After ventilating the PPM by removing the case and swapping the Tigraph lead to it, the original configuration worked again.

Permission to look for and work at the station was given by the supervisor of a Department of Works and Supply gang. Station C was located from the measurements. It has separate marker and footpads, at ground level.

The reference mark used was the base of a windsock to the SE. A windsock to the NE is also suitable as a mark.

Absolute observations, PM sunshots and a round of angles were completed on C.

The Provincial Government contact was Martin Benoa (942111 x 250). A courtesy contact only.

The Kavieng Hotel (942199) charged K47 per night for a spacious, air-conditioned, clean, well-lit room in the new wing. Rooms in the old section cost about K35. All meals are extra. The hotel was about 3 km from the airport.

The hire car was provided by Budget, the hotel is the agent. It cost about K40 per day. A car is essential.

#### Aropa C (25-29/3/85)

The Bougainville Copper Ltd (BCL) hangar at the Aropa airport was used to house the recording equipment and proved to be a reasonable site. The equipment was placed in the NE corner of the hangar (front left as seen from apron). This is probably the best location in the hangar so sensors can be placed at relatively quiet sites, however there is little protection from wind and driving rain. Each evening and morning generators supplying power to the hangar are switched over. This did not affect the equipment badly (ie clock, baselines) but caused the Tigraph to initiate its systems check (causing untidy records). The sensor location (Elsec and EDA heads placed to NE and E of hangar respectively) was quiet though the records were affected if the hangar doors were opened wide and by the fuel tractor driving past each time a flight came in (once or twice a day). The hangar is probably the best site at the airport for housing the recording gear. Permission to use it was obtained from Jack Dalby the hangar manager (BCL in Loloho 972152) and the key is available from him or from the Bougair hanger (next to the BCL hangar).

Station C near the Met enclosure was located. During the occupation footpads were added. The station is now a triangle of concrete incorporating the marker above ground level and footpads at ground level. Station B on the beach side of the runway has been washed away so was not occupied.

The mark used for declination was the centre base of a windsock to the N.

Absolutes and AM sunshots were completed on the station.

The contact at the Provincial Government (in Arawa) was Phil Lodge (971109). He was helpful and interested.

Accommodation was at the Davara Hotel (956175) at Toniva Beach about 15 km from the Aropa airport. The rooms were spacious and clean though poorly lit and cost K58 a night bed only. It is a very good hotel.

The Davara was also the agent for Avis and provided a car for K50 per day. A car is essential.

#### Daru C,D (30/3 - 2/4/85)

The Met observers office was used to house the recording equipment, with the sensors placed in his backyard. This location proved satisfactory though the observers transmitter caused full scale deflection of all traces for a minute or so each hour. An alternative (better) site is the Met balloon-filling hut (used in '81). If this is to be used it will be necessary to carry about 60 m of extension lead to get power from the Met office. It is also likely that the only site for the sensors will be very overgrown (thorny bushes about 1m high), though it should be possible to borrow some bush knives to clear space. One good night of recording was obtained (F was occasionally noisy) due to the Met dog disturbing the EDA head on the first night and effects of heavy rain on the last night.

Both stations were located (C and D). D has separate concrete marker and footpads, and was used as the primary station. It was about 2 cm below

ground level and in an area of thick scrub. This area is only cleared once a year. Station C has only a brass marker in concrete. It is 2 cm below ground level and situated just inside the cone line. No observations were made on C due to the malfunctioning recording equipment.

The mark used was the windsock to the S.

Observations completed on D were absolutes and AM and PM sunshots.

There was no Provincial Government contact.

Accommodation was at the Wyben Hotel (659055) near the wharf at the northern end of the island. Rooms are plain, spacious and well lit. The cost was K45 per night for bed only. There is no other accommodation available except the Daru Guest House close to the airport but it is not recommended.

The hotel also agreed to provide a car, however on our arrival it had been lent to another party instead. Transport during the occupation was by the hotel bus, the Talair pilot and by walking (30 mins airport to hotel). This was inconvenient though not impossible. Apparently a local company 'Daru Trading' will hire out cars (expensively).

#### Gurney F (3-7/4/85)

There is no continuous power at the airport. The recording equipment was set up in Alotau in the Provincial Government Information Office which is detached from the main office complex. The EDA head was positioned E of the office. This proved to be a quiet site. The Elsec did not operate properly and no F recording was made. The occupation was during the Easter weekend so the nearby car park (about 30 m away) was unused. Mr Levi George the Provincial Planner (611112) arranged for us to use the site, and keys are available from the Liason Officer (the Information Office OIC).

Station F at the airport has plaque and footpads in concrete, covered by 3 cm of grass/dirt. It is (was) painted orange.

A windsock to the SW was used for a mark. There is also a distant windsock to the W which is often obscured by the heat haze.

Absolutes and sunshots (AM and PM) were completed.

The provincial Government contact was Levi George, the Provincial Planner (611112).

Accommodation was at the Masurina Lodge in Alotau. The cost was K58 per night for an unselfcontained, fan cooled room and K72 for a s/c airconditioned room. Cost includes all meals. K58 rooms are reasonably lit and compact.

The hired car was obtained through a local company 'Bay Cabs' at reasonable rates. Apparently it is also possible to arrange a car through Avis in Port Moresby.

#### 5. RECOMMENDATIONS

Since meteorological facilities are used at a number of stations preparation for future surveys should include a letter to Met HQ (in Port Moresby) to

- i) inform HQ of our needs and make sure facilities are still available.
- ii) ask permission to use them.

G

iii) ask HQ to inform outstations of our arrival.

Ideally contact should also be made with the observers at the outstations to ensure this information is passed to them. The following Met facilities are used to house the recording instruments

- \* Wewak balloon filling hut.
- \* Kavieng DCA transmitter hut, key from Met OIC.
- \* Daru balloon filling hut, power from Met office.

At Momote housing for the equipment can best be arranged through the Department of Works and Supply Airport OIC. For this reason he should be forewarned of the survey.

The Bougainville Copper Ltd (BCL) people should also be given some prior warning about the survey since their hangar is the most suitable site at the Aropa Airport to set up the gear. This initial contact could also inquire about the possibility of running the BCL generator to supply power to the shed continuously during the occupation.

The Milne Bay Provincial Government in Alotau provided an office in which the recording equipment was set up since at Gurney airport there is no continuous power. They should also be contacted prior to arrival at Gurney.

It is necessary to book flights, hotels and cars in advance. Flights are infrequent to most stations (once or twice a week) and are often full, though this depends a lot on the time of year (school holidays, beginning/end of financial quarter). It is also very important that the airline be informed in advance of the survey itinerary so that arrangements can be made to accommodate the survey gear on each flight. To ensure the equipment accompanies the same flight as the survey party it is necessary to send it as excess baggage. This is very expensive but essential.

All excess baggage and freight costs were paid by Miscellaneous Charges Orders issued by QANTAS. A total of \$4920 was needed to cover these costs. The MCOs were issued in Australian dollars (AUD). This was not a problem, however it was often inconvenient especially if exchange rates were not immediately available. It would be preferable for the MCOs to be issued in New Guinea Kina (NGK). Payment in AUD is necessary for costs from Canberra to Port Moresby (\$1300 excess baggage in '85) but for the rest of the trip charges are in NGK (K2600 for excess baggage/freight in '85).

Hotels may be booked-out so it is preferable to book in advance as there is often only one or two suitable hotels/motels in each town.

If cars are hired pre-booking is necessary since they are in demand. Major companies (Avis/Budget) operate at Wewak, Lorengau (Momote), Kavieng and Kieta. A car at Alotau can be arranged through Avis in Port Moresby. No car rental companies operate at Daru though a car may be hired from the Wyben Hotel (only one is available) or from a local company, 'Daru Trading' (expensive). Payment was by cash, however if hire cars are used in future it may be possible to arrange payment to the major companies in some other form, perhaps using warrants.

The cars generally tended to be small and on one occasion there wasn't one available at all. This was an inconvenient though not impossible situation. It may be possible to use cars from the Government car pool at each station. It would be necessary to arrange this through the PMGO and it may be that only a PNG Government officer is allowed to drive them. This should not be a problem if someone from PMGO is on the survey. Payment, if not made by PMGO, would need to be worked out.

#### 6. DATA REDUCTION

Observations were vetted as they were made, to pick up obvious errors and inconsistencies. The observed data (absolute observations and azimuth determinations) were used with data scaled off the magnetograms to derive preliminary calculations of the baselines in three components (D,H,F) to assess the adequacy of the occupation before the station was closed.

On return to the BMR the magnetograms were digitized, all data recalculated and preliminary instrument corrections (Table 2) applied to the absolute observations. Data reduction then followed the same proceedure as was used to reduce data collected to produce the 1980.0 Epoch charts (McEwin 1984). Baselines and mean hourly values(MHV) tables (Tables 6,7,8,9) and plots were produced. The data reduction was checked by plotting the values of the magnetic elements(Table 5) derived from the absolute observations onto the MHV plots. If correct these values should exactly coincide with the MHV plot. Night time quiet station values were then derived:

The value of the geomagnetic field around local midnight most closely approximates the quiet level of the field, but to account for magnetic disturbance during station occupation the morphology of the of the mean hourly value plots were compared with plots of observatory data covering several months. The 'night time' quiet station value was adjusted to more accurately reflect the longer term quiet field level at the station, as

indicated by the observatory data" (McEwin 1984).

Port Moresby Geomagnetic Observatory data was used for this comparison as the observatory is in similar magnetic latitudes.

#### 7. REFERENCES

McEwin, A.J., 1984, First Order Magnetic Survey of Australia for Epoch 1980.0, March 1978 - July 1979 - Operations Reports. Bureau of Mineral Resources Australia Record, 1984/15.

#### Appendix 1

#### Itinerary

| Date    | From         | To           | Dep  | Arr  | Flight |
|---------|--------------|--------------|------|------|--------|
| 10/3/85 | Canberra     | Sydney       | 0700 | 0735 | TN422  |
| , -,    | Sydney       | Port Moresby | 0835 | 1350 | QF95   |
| 12/3    | Port Moresby | Wewak        | 1100 | 1305 | Px126  |
| 17/3    | Wewak        | Manus Is     | 1700 | 1755 | Px272  |
| 21/3    | Manus Is     | Kavieng      | 1820 | 1910 | Px276  |
| 25/3    | Kavieng      | Rabaul       | 0730 | 0805 | Px227  |
|         | Rabaul       | Kieta        | 1430 | 1525 | Px226  |
| 29/3    | Kieta        | Port Moresby | 1550 | 1735 | Px255  |
| 30/3    | Port Moresby | Daru         | 1220 | 1345 | Px185  |
| 2/4     | Daru         | Port Moresby | 1740 | 1900 | Px188  |
| 3/4     | Port Moresby | Gurney       | 1445 | 1600 | Px194  |
| 7/4     | Gurney       | Port Moresby | 1625 | 1740 | Px195  |
| 9/4     | Port Moresby | Sydney       | 1530 | 2030 | Px003  |
| 10/4    | Sydney       | Canberra     | 0835 | 0915 | TN421  |

Airlines TN TAA QF QANTAS Px Air Nuigini

#### Appendix 2

Freight and Excess Baggage Costs

There was about 180 kg of equipment which was transported as excess baggage on each leg of the survey except the last (Port Moresby to Canberra) when it was freighted. Sending the equipment as excess baggage ensured that it always travelled on the same flight as the field party.

|                                 | NGK | AUD    |
|---------------------------------|-----|--------|
| Canberra - Port Moresby         |     | 1265   |
| Port Moresby-Wewak              | 300 | 418    |
| Wewak-Manus Is                  | 219 | 310    |
| Manus Is-Kavieng                | 208 | 300    |
| Kavieng-Kieta                   | 207 | 294    |
| Kieta-Port Moresby              | 431 | 605    |
| Port Moresby-Daru               | 209 | 293    |
| Daru-Port Moresby               | 208 | 300    |
| Port Moresby-Gurney             | 67  | 98     |
| Gurney-Port Moresby             | 188 | 271    |
| Port Moresby-Canberra (Freight) | 526 | 765    |
|                                 |     | \$4919 |

The round trip air ticket, from Canberra to Canberra, cost \$2383.

At the time of the survey the exchange rate was about AUD 1.42 per Kina.

#### Appendix 3

#### Survey Equipment

#### 1. Recording Box 1

Tigraph chart recorder
EDA head
spikes short + long with banger
EDA/Doric cable
1 extension lead
tape measure

#### 2. Recording Box 2

Elsec console
Doric
Elsec power supply and lead
Elsec head and cable
clock
distribution board
tool kit
EDA console and lead
Elsec head pole (3 pieces)
Fluke multimeter
jewellers screwdrivers

#### 3. Esky

radio calculator with handbook and cards BMR manual 18 tent pegs aluminium poles (8 pieces) purple head fly hammer compass stanley knife spare Tigraph paper (1 roll) hacksaw soldering iron and flux continuity tester 4 station markers theodolite 5m nylon rope masking tape brass pipe (15 x 9 in)

#### 4. Absolute Box

Askania circle 508810 QHMs 305,173 Dec 640506 Geometrics 816/1025 PPM digital stopwatch observing fly absolute forms pencilling boards (2) brass screws (1 pair) picker

#### 5. Spares Box

circuit breaker level tissue paper Rustrak recorder + lead manual adaptor lead spare OHM thermometer calculator paper (2 rolls) Rustrak paper (2 rolls) damping corks (2) f<sub>1</sub>y brass screws (2 pairs) Elsec cards + oscillator extension lead Tigraph paper (2 rolls) masking tape (3 rolls) D-cell batteries (24) connectors banana pin leads brass rods (3) Austral PPM 528 manual analog stopwatch envelope of copies raincoat

#### 6. Tripod Bag

7.

theodolite tripod Askania tripod PPM head tripod observing shelter poles

lined A4 paper (2 pads)

# graph paper (2 pads) notebook pencil sharpener rubber bands BMR ID card envelopes (6)

Stationery

manila folders (3)
station info folders (6)
survey admin folder
pencils (4)
biros (2)
marker pen
paper clips
erasers (2)
TA claim forms
petty cash forms
attendance records (4)

Nautical Almanac information

## Appendix 4

The following pages detail the location of each station and the reference marks used in making  ${\sf Declination}$  observations.

The state of the s

WINDSOCK

<u>Table 1</u>

Magnetograph recording - 1985

|         | Start       | End         | Remarks                                                                                    |
|---------|-------------|-------------|--------------------------------------------------------------------------------------------|
| Wewak   | 0009 13 Mar | 0026 15 Mar | Good record (X,Y,Z,T) Good record (X,Y,Z,T) Good record (X,Y,Z,F,T) Tost 14 hrs on F trace |
| Momote  | 0419 18 Mar | 0121 20 Mar |                                                                                            |
| Kavieng | 2342 21 Mar | 0310 24 Mar |                                                                                            |
| Aropa   | 0232 26 Mar | 0212 28 Mar | Good record (X,Y,Z,F,T) Record affected by radio lost 6 hrs on F trace (X,Y,Z,F,T)         |
| Daru    | 0108 31 Mar | 0700 01 Apr |                                                                                            |
| Gurney  | 0348        | 2105 05 Apr | Good record (X,Y,Z,T)                                                                      |

 $\underline{ \mbox{Table 2}} \\ \mbox{Instrument comparisons and preliminary corrections}$ 

| Station                        | Date    | Instrument A   | Instrument B    | B Differen | nce A-B<br>nT/H*10exp5 |  |  |  |  |
|--------------------------------|---------|----------------|-----------------|------------|------------------------|--|--|--|--|
|                                | (       | DUARTZ HORIZON | ITAL MAGNETOMET |            | ,                      |  |  |  |  |
| Canberra                       |         | 460            | 305             | -24.8      | 105                    |  |  |  |  |
|                                |         | 461            | 305             | -23.9      | 101                    |  |  |  |  |
|                                |         | 462            | 305             | -28.1      | 119                    |  |  |  |  |
|                                |         | 462            | 173             | -3.3       | 14                     |  |  |  |  |
| Wewak                          | 14-3-85 | 305            | 173             | 42         | 113                    |  |  |  |  |
| Momote                         | 20-3-85 | 305            | 173             | 39         | 106                    |  |  |  |  |
| Kavieng                        |         | 305            | 173             | 38         | 104                    |  |  |  |  |
|                                | 27-3-85 | 305            | 173             | 39         | 107                    |  |  |  |  |
|                                | 1-4-85  | 305            | 173             | 42         | 116                    |  |  |  |  |
| Gurney                         |         | 305            | 173             | 38         | 107                    |  |  |  |  |
| Canberra                       | 13-5-85 | 461            | 305             | -22.2      | 94                     |  |  |  |  |
|                                |         | 461            | 173             | -4.2       | 18                     |  |  |  |  |
|                                |         | DECLIN         | OMETER          | Minute of  | Arc                    |  |  |  |  |
| Canberra                       | 6-3-85  |                | 640506          | -0.8       |                        |  |  |  |  |
|                                | 18-4-85 |                | 640506          | -2.0       |                        |  |  |  |  |
| PROTON PRECESSION MAGNETOMETER |         |                |                 |            |                        |  |  |  |  |
| Canberra                       | 6-3-85  | MNS2.3         | Geom 1025       | -6 nT      |                        |  |  |  |  |
| Janborra                       | 0 0 00  | MNS2.3         | Aust 528        | -8 nT      |                        |  |  |  |  |
|                                | 18-4-85 | MNS2.3         | Geom 1025       | -3 nT      |                        |  |  |  |  |

#### CORRECTIONS ADOPTED

HS= QHM 305 - 0.00103 H HS= QHM 173 - 0.00016 H DS= Dec 640506 - 1.4' FS= Geom 816/1025 - 4 nT FS= Austral 528 - 8 nT

Table 3
Station details

| Station                                                | Latitude | Longitude | Local Meridian Time<br>Hour Minute |
|--------------------------------------------------------|----------|-----------|------------------------------------|
| Wewak D Momote D E Kavieng C Aropa C Daru C D Gurney F | -03 35.2 | 143 40.1  | 02 25                              |
|                                                        | -02 04.0 | 147 25.4  | 02 10                              |
|                                                        | -02 04.0 | 147 25.4  | 02 10                              |
|                                                        | -02 34.8 | 150 48.3  | 01 57                              |
|                                                        | -06 18.3 | 155 43.5  | 01 37                              |
|                                                        | -09 05.2 | 143 12.2  | 02 27                              |
|                                                        | -09 05.2 | 143 12.2  | 02 27                              |
|                                                        | -10 18.7 | 150 20.3  | 01 59                              |

 $\frac{\text{Table 4}}{\text{Reference marks and azimuths}}$ 

| Aropa C        |    |     |    |    |
|----------------|----|-----|----|----|
| PSM            |    | 192 |    |    |
| Windsock to N  | RM | 356 | 34 | 28 |
| Daru D         |    |     |    |    |
| Windsock to S  | RM | 145 | 51 | 10 |
| Station C      |    | 254 | 35 | 30 |
| Gurney A       |    |     |    |    |
| Windsock to SW | RM | 227 | 43 | 50 |
| Kavieng C      |    |     |    |    |
| Windsock to SE | RM | 125 | 59 | 30 |
| Windsock to NW |    | 331 | 24 | 56 |
| Momote D       |    |     |    |    |
| Windsock to N  | RM | 3   | 14 | 26 |
| Station B      |    | 235 | 16 | 11 |
| Momote E       |    |     |    |    |
| Windsock to N  | RM | 6   | 46 | 22 |
| Station A      |    | 55  | 16 | 11 |
| Windsock to SE |    | 134 | 17 | 05 |
| Windsock to W  |    | 323 | 37 | 43 |
| Wewak D        |    |     |    |    |
| Antenna to NE  | RM | 73  | 57 | 51 |
| Windsock to E  |    | 110 | 22 | 43 |
| Windsock to W  |    | 294 | 17 | 39 |

Table 5
Value of magnetic elements

|                              |    | UT                                                                                                           | D                                                                                                                | UT                                                                                                           | Н                                                                                                                                   | UT                                                                                                           | F                                                                                                                          |
|------------------------------|----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Aropa C<br>26 Mar            | 85 | 0611<br>0639<br>0653<br>2240<br>2322<br>2341                                                                 | 08 34.1E<br>34.0<br>34.0<br>32.0<br>32.6<br>32.8                                                                 | 0623<br>0631<br>0702<br>2304<br>2313<br>2350<br>2359                                                         | 36387<br>36388<br>36382<br>36393<br>36395<br>36400<br>36398                                                                         | 0600<br>0643<br>0645<br>2221<br>2328<br>2330                                                                 | 40827<br>40827<br>40827<br>40829<br>40835<br>40836                                                                         |
| 27 Mar                       | 85 | 0008<br>0252<br>0320<br>0340<br>041<br>0452<br>0521<br>0540<br>0608<br>2318<br>2351                          | 32.8<br>34.0<br>34.3<br>33.5<br>33.2<br>34.2<br>33.4<br>33.3<br>31.4<br>31.8                                     | 0304<br>0312<br>0351<br>0411<br>0503<br>0512<br>0551<br>0558<br>2331<br>2342                                 | 36398<br>36394<br>36384<br>36384<br>36374<br>36364<br>36363<br>36363<br>36398<br>36397                                              | 0013<br>0238<br>0325<br>0327<br>0423<br>0444<br>0527<br>0530<br>0613<br>2308<br>2355<br>2357                 | 40841<br>40837<br>40831<br>40826<br>40822<br>40812<br>40813<br>40807<br>40829<br>40836                                     |
| 28 Mar                       | 85 | 0009<br>0031                                                                                                 | 32.0<br>33.2                                                                                                     | 0017<br>0024                                                                                                 | 36388<br>36393                                                                                                                      | 0036                                                                                                         | 40823                                                                                                                      |
| Daru D<br>31 Mar<br>01 Apr   | 85 | 0437<br>0506<br>0536<br>0610<br>2254<br>2332<br>0008<br>0047<br>0254<br>0352<br>0406<br>0434<br>0041<br>0111 | 05 40.4E<br>41.0<br>39.4<br>40.3<br>37.8<br>38.4<br>37.5<br>38.3<br>39.5<br>39.5<br>39.8<br>39.7<br>38.9<br>39.4 | 0448<br>0458<br>0551<br>0602<br>2305<br>2324<br>0024<br>0036<br>0322<br>0344<br>0418<br>0425<br>0055<br>0103 | 36181<br>36179<br>36180<br>36177<br>36166<br>36167<br>36180<br>36191<br>36213<br>36211<br>36201<br>36201<br>36201<br>36162<br>36160 | 0423<br>0512<br>0525<br>0617<br>2238<br>2338<br>2352<br>0055<br>0239<br>0357<br>0359<br>0440<br>0033<br>0116 | 43512<br>43507<br>43509<br>43508<br>43498<br>43503<br>43501<br>43510<br>43528<br>43521<br>43518<br>43514<br>43486<br>43496 |
| Gurney A<br>04 Apr<br>05 Apr |    | 0616<br>0649<br>0704<br>0732<br>2340<br>0004<br>0040<br>0125<br>0150<br>0240<br>0350<br>0413<br>0427<br>0456 | 07 11.3E<br>11.7<br>11.6<br>10.8<br>09.5<br>10.0<br>10.7<br>10.6<br>10.5<br>10.5<br>10.4<br>10.0<br>11.7         | 0631<br>0639<br>0714<br>0723<br>2350<br>2356<br>0103<br>0115<br>0203<br>0229<br>0358<br>0405<br>0438<br>0447 | 35484<br>35488<br>35487<br>35488<br>35525<br>35528<br>35528<br>35536<br>35536<br>35536<br>35533<br>35524<br>35520<br>35520          | 0602<br>0654<br>0656<br>0737<br>2328<br>0028<br>0029<br>0131<br>0141<br>0341<br>0417<br>0419<br>0500         | 43252<br>43252<br>43251<br>43268<br>43278<br>43278<br>43279<br>43287<br>43287<br>43277<br>43275<br>43270                   |

| Kavieng C<br>22 Mar | 85 | 0233<br>0321<br>0558<br>0630<br>0648<br>0710                 | 06 23.6E<br>24.0<br>23.1<br>22.7<br>23.1<br>23.2             | 0245<br>0309<br>0607<br>0619<br>0656<br>0702         | 36566<br>36566<br>36536<br>36532<br>36531<br>36526          | 0219<br>0329<br>0541<br>0637<br>0638<br>0714<br>2250 | 39139<br>39133<br>39110<br>39104<br>39104<br>39099<br>39120 |
|---------------------|----|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
| 23 Mar              | 85 | 2303<br>0014<br>0053<br>0251<br>0333<br>0358<br>0439<br>0644 | 22.8<br>23.1<br>25.5<br>24.2<br>23.8<br>25.0<br>23.2<br>23.8 | 0027<br>0038<br>0302<br>0324<br>0416<br>0428<br>0652 | 36550<br>36558<br>36545<br>36532<br>36540<br>36537<br>36531 | 0002<br>0059<br>0236<br>0338<br>0340<br>0446<br>0631 | 39129<br>39123<br>39111<br>39103<br>39103<br>39099<br>39104 |
| 24 Mar              | 85 | 0714<br>0050<br>0116<br>0137<br>0217                         | 23.5<br>23.4<br>23.7<br>23.5<br>25.2                         | 0701<br>0101<br>0108<br>0159<br>0209                 | 36530<br>36564<br>36662<br>36570<br>36559                   | 0719<br>0034<br>0122<br>0127<br>0223                 | 39100<br>39126<br>39130<br>39127<br>39127                   |
| Momote D            |    |                                                              | 05 10 05                                                     | 0710                                                 | 26071                                                       | 0041                                                 | 20200                                                       |
| 18 Mar              | 85 | 0656<br>0733                                                 | 05 18.9E<br>19.8                                             | 0712<br>0723                                         | 36871<br>36876                                              | 0641<br>0741                                         | 39320<br>39309                                              |
| 19 Mar              | 85 | 0157<br>0223                                                 | 20.6<br>20.6                                                 | 0208<br>0216                                         | 36935<br>36932                                              | 0139<br>0227                                         | 39368<br>39373                                              |
| Momote E            |    |                                                              |                                                              |                                                      |                                                             |                                                      |                                                             |
| 18 Mar              |    | 0001                                                         | OF 11 7F                                                     | 0011                                                 | 2002                                                        | 2349                                                 | 39302                                                       |
| 19 Mar              | 85 | 0001<br>0037<br>0440<br>0520<br>0710<br>0739                 | 05 11.7E<br>12.7<br>12.3<br>11.5<br>11.9<br>11.7             | 0011<br>0024<br>0458<br>0511<br>0723<br>0731         | 36853<br>36854<br>36852<br>36855<br>36830<br>36831          | 0048<br>0418<br>0525<br>0702<br>0745<br>2358         | 39312<br>39317<br>39303<br>39287<br>39280<br>39299          |
| 20 Mar              | 85 | 0013<br>0053                                                 | 11.4<br>12.4                                                 | 0021<br>0042                                         | 36849<br>36853                                              | 0059                                                 | 39309                                                       |
| Wewak D             |    |                                                              |                                                              |                                                      |                                                             |                                                      |                                                             |
| 13 Mar              | 85 | 0349<br>0527<br>0559<br>0633<br>0719<br>2245<br>2326         | 04 26.2E<br>24.8<br>25.5<br>26.1<br>26.0<br>23.8<br>23.6     | 0335<br>0539<br>0549<br>0650<br>0708<br>2305<br>2315 | 37168<br>37146<br>37140<br>37138<br>37137<br>37170<br>37168 | 0359<br>0513<br>0613<br>0618<br>0725<br>2227<br>2333 | 40662<br>40648<br>40639<br>40638<br>40638<br>40664<br>40670 |
| 14 Mar              | 85 | 0142<br>0332<br>0701<br>0728<br>2308                         | 25.3<br>26.0<br>25.2<br>25.9<br>23.2                         | 0131<br>0322<br>0713<br>0720<br>2323<br>2352         | 37202<br>37192<br>37154<br>37154<br>37160<br>37158          | 0149<br>0338<br>0647<br>0734<br>2251                 | 40688<br>40682<br>40659<br>40656<br>40655                   |
| 15 Mar              | 85 | 0005                                                         | 24.8                                                         |                                                      | <u>-</u>                                                    | 0013                                                 | 40673                                                       |

DECLINATION EAST

MEAN HOURLY VALUES PRELIMINARY

1985 MARCH

UT 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Mean

|            | UT    | 00 01 02                 | 03 04 05                 | 06 07 08                              | 09 10 11                   | 12 13 14                   | 15 16 17                   | 18 19 20                                | 21 22 23 24                | Mean       |
|------------|-------|--------------------------|--------------------------|---------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------------|----------------------------|------------|
| WEWAI      | K     |                          |                          |                                       | 4 Deg + tabu               | lar values in              | 0.1 Min                    |                                         |                            |            |
| 13<br>14   | Q     | 246 258 26<br>242 250 25 | *                        | •                                     | 254 253 251<br>258 256 254 | 250 249 248<br>251 250 251 | 247 247 248<br>249 250 248 | 246 247 247<br>248 249 250              | 244 236 235<br>247 239 235 | 251<br>252 |
| момо       | TE    |                          |                          |                                       |                            | lar values in              |                            | 2.2 2.1 4.1                             |                            |            |
| 18<br>19   |       | 189 214 22               | 164 169<br>5 211 183 177 | 176 180 185<br>182 177 183            | 179 175 171<br>175 165 158 | 167 167 166<br>154 157 161 | 167 166 163<br>168 168 163 | 160 163 171<br>163 164 167              | 162 161 167<br>160 154 169 | 174        |
| 20         | Q     | 182                      | 2 200 000 000            | · · · · · · · · · · · · · · · · · · · |                            |                            |                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,50 .5, ,0,                | •••        |
| KAVIE      | ENG   |                          |                          |                                       | 6 Deg + tabu               | lar values in              | 0.1 Min                    |                                         |                            |            |
| 22         | Q     | 219 228 23               | 4 233 230 231            | 234 235 237                           | 235 234 233                | 234 234 234                | 232 233 234                | 234 232 229                             | 225 225 228                | 232        |
| 23         |       | 232 236 23               | 8 238 238 240            | 239 239 237                           | 237 236 237                | 236 236 236                | 236 235 235                | 234 233 228                             | 225 227 229                | 235        |
| 24         |       | 232 236 24               | 1                        |                                       |                            |                            |                            |                                         |                            |            |
| AROPA      | 4     |                          |                          |                                       | 8 Deg + tabu               | lar values in              | 0.1 Min                    |                                         |                            |            |
| 26         |       |                          | 337 331 345              | 347 337 330                           | 322 324 332                | 330 330 335                | 335 333 331                | 331 336 329                             | 320 315 319                |            |
| 27         |       | 318 325 33               | 0 335 339 335            | 333 340 335                           | 319 327 331                | 324 327 334                | 335 338 339                | 333 338 342                             | 321 316 320                | 331        |
| 28         |       | 319 326                  |                          |                                       |                            |                            |                            |                                         |                            |            |
| DARU       |       |                          |                          |                                       | 5 Deg + tabu               | lar values in              | 0.1 Min                    |                                         |                            |            |
| 31<br>1985 | APRII | 386 38                   | 9 390 394 400            | 405 404 400                           | 394 392 392                | 393 389 390                | 391 388 387                | 388 385 385                             | 382 376 379                |            |
| 1          |       | 395 404 40               | 8 409 411 411            | 406                                   |                            |                            |                            |                                         |                            |            |
| GURNE      | Υ     |                          |                          |                                       | 7 Deg + tabu               | lar values in              | 0.1 Min                    |                                         |                            |            |

112 110 106

100 98 98

99 101 101 101 103 102 100 100 100

106 104 105

97 96 98

98 98 98

97 97 97

25

#### HORIZONTAL INTENSITY

MEAN HOURLY VALUES PRELIMINARY

|    | 1985 MARCH | •<br>I      |                     |             |                       |               |             |             |                 |     |
|----|------------|-------------|---------------------|-------------|-----------------------|---------------|-------------|-------------|-----------------|-----|
|    | uτ         | 00 01 02    | 03 04 05            | 06 07 08    | 09 10 11              | 12 13 14      | 15 16 17    | 18 19 20    | 21 22 23 24 Mea | in  |
|    | WEWAK      |             |                     |             | 37000. + tabu         | lar values in | nT.         |             |                 |     |
|    | 13 Q       | 142 164 171 | 162 153 146         | 136 132 124 | 118 123 126           | 129 131 138   | 137 139 141 | 142 144 147 | 152 161 172 14  | ·3  |
|    | 14         | 184 199 206 | 199 183 176         | 167 155 154 | 159 158 148           | 144 137 145   | 144 140 147 | 158 165 155 | 154 156 167 16  | 3،  |
|    | MOMOTE     |             | _                   |             | <b>3</b> 6000. + tabu | lar values in | nī.         |             |                 |     |
|    | 18         |             | 909 896             | 884 875 876 | 877 879 881           | 881 882 883   | 885 886 888 | 888 888 891 | 895 898 906     |     |
|    | 19         | 922 926 935 | 935 927 911         | 901 896 890 | 888 881 874           | 866 866 879   | 889 884 888 | 884 886 888 | 888 892 901 89  | 16  |
|    | 20 Q       | 916         |                     |             |                       |               |             |             |                 |     |
| 23 | KAVIENG    |             |                     |             | 36000. + tabu         | lar values in | nī.         |             |                 |     |
|    | 22 Q       | 560 564 568 | 563 548 539         | 531 529 527 | 527 529 527           |               | •           | 536 535 534 | 541 548 560 53  | 9   |
|    | 23         | 562 560 549 | 539 529 529         | 532 529 528 | 526 523 521           | 518 516 518   | 518 520 522 | 523 527 533 | 535 543 555 53  | , 1 |
|    | 24         | 563 568 560 |                     |             |                       |               |             |             |                 |     |
|    | AROPA      |             |                     |             | 36000. + tabu         | lar values in | nT.         |             |                 |     |
|    | 26         |             | 398 392 387         | 383 381 381 | 372 365 369           | 369 376 372   | 375 377 379 | 375 371 376 | 375 383 397     |     |
|    | 27         | 405 406 400 | <b>390 37</b> 7 364 | 357 358 361 | 357 355 361           | 363 366 368   | 380 376 374 | 374 374 377 | 383 384 390 37  | 5   |
|    | 28         | 379 384     |                     |             |                       |               |             |             |                 |     |
|    | DARU       |             |                     |             | 36000. + tabu         | lar values in | nT.         |             |                 |     |
|    | 31         | 195 202     | 196 182 174         | 173 167 129 | 107 124 135           | 142 139 143   | 148 150 148 | 151 156 151 | 153 162 171     |     |
|    | 1985 APRIL |             | 240 407 470         | 1 77        |                       |               |             |             |                 |     |
| `  | 1          | 182 197 213 | 210 193 178         | 173         |                       |               |             |             |                 |     |
|    | GURNEY     |             |                     |             | 35000. + tabu         | lar values in | nT.         |             |                 |     |
|    | 4          |             | 497 483             | 482 486 491 | 489 493 504           | 499 500 496   | 499 505 506 | 505 502 500 | 506 514 523     |     |
|    | 5          | 532 533 534 | 527 517 514         | 511 510 507 | 507 504 505           | 499 511 508   | 511 512 514 | 518 517 521 |                 |     |

PRELIMINARY

#### TOTAL INTENSITY

#### MEAN HOURLY VALUES

|    | 1985 MARCH |          |              |                |                                                                   |
|----|------------|----------|--------------|----------------|-------------------------------------------------------------------|
|    | UT 00      | 01 02    | 03 04 05     | 06 07 08       | 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Mean              |
|    | KAVIENG    |          |              |                | 39000. + tabular values in nT.                                    |
|    | 22 Q 1     | 27 131 1 | 37 132 119 1 | 13 107 99 9    | 7 97 98 101                                                       |
|    | 23         | 1        | 12 104 103 1 | 04 104 99 94   | 4 94 91 90 88 87 88 88 90 92 94 96 100 104 110 119                |
|    | 24 1       | 25 128 1 | 24           |                |                                                                   |
|    | AROPA      |          |              |                | 40000. + tabular values in nT.                                    |
|    | 26         |          | 840 837 8    | 30 826 826 821 | 7 821 816 817 818 824 821 824 826 827 823 820 822 821 828 835     |
|    | 27 8       | 39 840 8 | 35 831 823 8 | 15 810 811 810 | 0 811 810 811 814 817 817 827 824 822 822 822 827 831 831 834 822 |
|    | 28 8       | 24 828   |              |                |                                                                   |
| 24 | DARU       |          |              |                | 43000. + tabular values in nT.                                    |
|    | 31         | 515 5    | 17 512 506 5 | 04 501         | 482 490 483 487 489 491 490 491 492 498 501                       |
|    | 1985 APRIL |          |              |                |                                                                   |
|    | 1 5        | 04 512 5 | 22 522 512 5 | 00 495         |                                                                   |

MEAN HOURLY VALUES PRELIMINARY

| 1985 M<br>U | MARCH<br>JT |     | 01  | 02  | 03  | 04   | 05    | 06   | 07   | 08   | 8   | 09     | 10  | 11   | 12     | 13   | 14    | 15  | 16  | 17    | 18  | 19  | 20  | 21  | 22    | 23    | 2 M | lea |
|-------------|-------------|-----|-----|-----|-----|------|-------|------|------|------|-----|--------|-----|------|--------|------|-------|-----|-----|-------|-----|-----|-----|-----|-------|-------|-----|-----|
| WEWAK<br>F  |             |     |     |     |     |      |       |      |      |      |     | - 1600 | 00  | tabu | ılar v | alue | es in | nT. |     |       |     |     |     |     |       |       |     |     |
| 13          | Q           | 522 | 558 | 540 | 51  | 0 48 | 9 485 | 48   | 2 48 | 85 4 | 485 | 483    | 507 | 515  | 512    | 518  | 527   | 525 | 527 | 7 525 | 528 | 531 | 536 | 548 | 3 546 | 530   |     | 51  |
| 14          |             | 507 | 504 | 504 | 48  | 8 47 | 1 497 | 7 50 | 0 49 | 98 ! | 503 | 516    | 507 | 495  | 507    | 512  | 528   | 519 | 524 | 530   | 545 | 543 | 527 | 530 | ) 53′ | 1 533 |     | 5 ′ |
| момоте      |             |     |     |     |     |      |       |      |      |      |     | - 1300 | 0   | tabu | ılar v | alue | es in | nT. |     |       |     |     |     |     |       |       |     |     |
| 18          |             |     |     |     |     | 60   | 8 609 | 61   | 2 6  | 14 6 | 622 | 618    | 617 | 617  | 621    | 623  | 623   | 627 | 627 | 625   | 623 | 624 | 637 | 641 | 630   | 619   |     |     |
| 19          |             | 630 | 635 | 639 | 63  | 3 63 | 0 626 | 63   | 2 6  | 27 6 | 631 | 618    | 616 | 605  | 607    | 618  | 632   | 635 | 636 | 640   | 631 | 640 | 639 | 636 | 633   | 3 637 |     | 62  |
| 20          | Q           | 632 |     |     |     |      |       |      |      |      |     |        |     |      |        |      |       |     |     |       |     |     |     |     |       |       |     |     |
| KAVIENG     |             |     |     |     |     |      |       |      |      |      |     | - 1300 | 0   | tabu | lar v  | alue | s in  | nT. |     |       |     |     |     |     |       |       |     |     |
| 22          | Q           | 827 | 840 | 863 | 876 | 6 88 | 5 883 | 87   | 4 85 | 58 8 | 360 | 869    | 887 | 892  | 892    | 894  | 885   | 880 | 905 | 916   | 919 | 919 | 894 | 896 | 872   | 2 854 |     | 88  |
| 23          |             | 845 | 838 | 822 | 82  | 7 86 | 0 863 | 87   | 4 87 | 72 8 | 367 | 878    | 889 | 883  | 885    | 892  | 903   | 903 | 905 | 912   | 916 | 919 | 916 | 898 | 887   | 7 880 |     | 88  |
| 24          |             | 856 | 845 | 854 |     |      |       |      |      |      |     |        |     |      |        |      |       |     |     |       |     |     |     |     |       |       |     |     |
| AROPA       |             |     |     |     |     |      |       |      |      |      |     | - 1800 | 0   | tabu | lar v  | alue | s in  | nT. |     |       |     |     |     |     |       |       |     |     |
| 26          |             |     |     |     | 450 | 0 44 | 2 432 | 43   | 9 44 | 43 4 | 450 | 445    | 447 | 453  | 459    | 466  | 466   | 471 | 471 | 467   | 466 | 464 | 463 | 466 | 459   | 451   |     |     |
| 27          |             | 455 | 443 | 440 | 443 | 3 45 | 3 456 | 44   | 5 45 | 55 4 | 458 | 461    | 466 | 467  | 466    | 469  | 469   | 485 | 479 | 479   | 482 | 479 | 487 | 490 | 475   | 469   |     | 46  |
| 28          |             | 451 | 458 |     |     |      |       |      |      |      |     |        |     |      |        |      |       |     |     |       |     |     |     |     |       |       |     |     |
| DARU        |             |     |     |     |     |      |       |      |      |      |     | -2400  | 0   | tabu | lar v  | alue | s in  | nT. |     |       |     |     |     |     |       |       |     |     |
| 31          |             |     | 90  | 96  | 93  | 3 7  | 9 96  | 91   | 0 11 | 15   | 82  | 65     | 110 | 147  | 152    | 152  | 155   | 158 | 152 | 155   | 164 | 161 | 132 | 141 | 138   | 107   | ,   |     |
| 1985 A      | PRIL        |     |     |     |     |      |       |      |      |      |     |        |     |      |        |      |       |     |     |       |     |     |     |     |       |       |     |     |
| 1           |             | 84  | 67  | 99  | 124 | 113  | 3 107 | 12   | 1    |      |     |        |     |      |        |      |       |     |     |       |     |     |     |     |       |       |     |     |
| GURNEY      |             |     |     |     |     |      |       |      |      |      |     | -2400  | 0   | tabu | lar va | alue | s in  | nT. |     |       |     |     |     |     |       |       |     |     |
| 4           |             |     |     |     |     | 72   | 7 729 | 729  | 72   | 27 7 | 727 | 726    | 724 | 722  | 722    | 722  | 721   | 720 | 721 | 724   | 724 | 724 | 724 | 723 | 719   | 713   |     |     |
| 5           |             | 717 | 717 | 717 | 720 | 723  | 721   | 723  | 3 72 | 24 7 | 27  | 724    | 723 | 723  | 724    | 722  | 723   | 722 | 722 | 723   | 722 | 724 | 724 |     |       |       |     |     |

 $\frac{\text{Table 10}}{\text{Adopted station values at epoch of occupation}}$ 

|           | Z      | F     | D      | Н     |
|-----------|--------|-------|--------|-------|
| Wewak D   | -16438 | 40621 | 4 25.1 | 37147 |
| Momote D  | -13636 | 39331 | 5 16.3 | 36892 |
| Kavieng C |        | 39105 | 6 23.3 | 36526 |
| Aropa Č   |        | 40834 | 8 35.0 | 36388 |
| Daru D    |        | 43497 | 5 39.0 | 36163 |
| Gurney F  | -24723 | 43275 | 7 10.2 | 35518 |



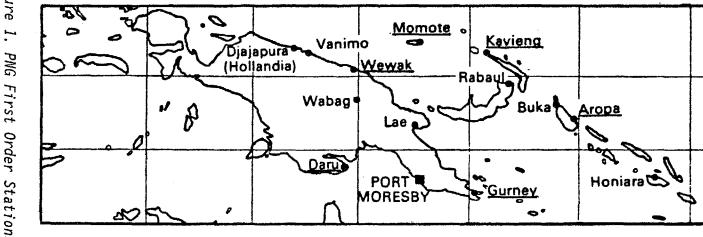



Figure 1. PNG First Order Stations
Stations underlined were occupied in 1985.

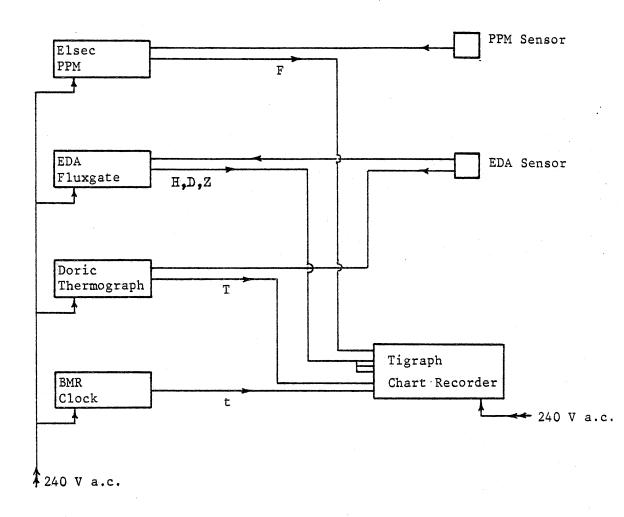



Figure 2. Diagram of survey equipment