
FIGURE 3

Studies in Hydrogeology

SEDIMENTOLOGY AND DIAGENESIS OF SEDIMENTS ENCOUNTERED BY VIC. D.M. PIANGIL WEST 1. SWAN HILL AREA, MURRAY BASIN, SOUTH EASTERN AUSTRALIA B. M. RADKE

1987/25 Copy 4 BUREAU OF MINERAL RESOURCES,
OIVISION OF CONTINENTAL GEOLOGY
RECORD 1987/25

RECORD 1987/25

Division of Continental Geology Groundwater Series No. 3

SEDIMENTOLOGY AND DIAGENESIS OF SEDIMENTS ENCOUNTERED BY VIC. D.M. PIANGIL WEST 1 MURRAY BASIN, SOUTHEASTERN AUSTRALIA

by

B.M. Radke

Consultant Geologist GPO Box 953 Canberra ACT 2601

This report is submitted in fulfilment of the requirements of the Sedimentology of the Geera Aquitard Study
Murray Basin Hydrogeological Project
Division of Continental Geology
Bureau of Mineral Resources

1987

FOREWORD

JOINT COMMONWEALTH - STATES MURRAY BASIN HYDROGEOLOGICAL PROJECT

The Murray Basin Hydrogeological Project is a long-term study which was established to improve the understanding of the groundwater regime of the basin by examining it as a single entity, unencumbered by State boundaries. The project is being undertaken jointly by the South Australian, Victorian and New South Wales geological surveys and water authorities, and by the Division of Continental Geology of the Commonwealth Bureau of Mineral Resources.

The Murray Basin contains some of the most important agricultural land in Australia and currently generates several billion dollars annually in agricultural revenue. Unfortunately, both the clearing of natural vegetation and irrigation have been accompanied by rising groundwater-tables and discharge of saline waters. In order to develop an understanding of the systems in which these salinity problems have developed, it is fundamental that the relationships between aquifer geometry, groundwater flow and distribution of surface discharge be fully understood. It is now believed that several active and fossil groundwater discharge sites are related to flow disruption and upward leakage created at permeability barriers formed where the deeper aquifers are truncated stratigraphically or are significantly thinned by concealed basement barriers.

One of the research objectives for 1986-87 has been to investigate the disruption of groundwater flow in the Renmark Aquifer by marginal-marine fine clastics of the Geera Clay. The Geera Clay is thickest in an arcuate belt extending from southern Victoria, through northwest Victoria into southwestern New South Wales, and into adjacent areas of South Australia. The resultant stratigraphic thinning of the Renmark Aquifer is thought to find surface expression in a broad band of surface groundwater discharge features.

As a contribution to the investigation of the Geera Clay, the BMR Division of Continental Geology has collaborated with the Victorian Department of Industry, Technology and Resources to obtain core samples from the unit. Piangil West 1 was drilled by the Victorian Department of Mines with a financial contribution from BMR. The following report contains descriptive sedimentology and diagenesis prepared as a contribution to the collaborative study. Other reports on the results of the Piangil drilling will be released in the near future.

Peter J. Cook
Chief
Division of Continental Geology

CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	1
REGIONAL GEOLOGICAL SETTING	2
LITHOSTRATIGRAPHY	5
GENERAL STATEMENT	5
Lithologies	5
Macrofauna	5
Ichnofauna	8
LITHOFACIES	8
Lithofacies A	9
Lithofacies B	9
Lithofacies C	12
Lithofacies D	12
Lithofacies E	13
Lithofacies F	13
DEPOSITIONAL ENVIRONMENT MODEL	14
DIAGENESIS	16
GENERAL STATEMENT	16
Clays	16
Glauconite	17
Goethite/Phosphate	17
Carbonates	20
Chert	21
Sulphates	21
Pyrite	24
Resinous organic material	28

	Page
POROSITY	29
PARAGENESIS	30
GENERAL DISCUSSION	30
CONCLUSIONS	31
ACKNOWLEDGEMENTS	31
REFERENCES	32
APPENDICES	
I Detailed litholog of Piangil West 1 Borehole	33
II Macrofauna	57
III XRD mineralogic determinations (AMDEL)	65
IV Petrographic descriptions of 32 sampled horizons in Piangil West 1	69
V Photography of drillcore	85
VI Drillcore samples	91
TABLE	
Table 1 Geochemical Analyses from Piangil West 1 Borehole	25
Table 2 Mineralogy of 13 clays	67
FIGURES	
Figure 1 Piangil West 1 Borehole: geographic location and position of	
the thickest section of Geera Clay	3
Figure 2 Cainozoic stratigraphy and regional aquifers of the Murray Basin	
(based on Brown, 1983)	4
Figure 3 Lithostratigraphic log of Piangil West 1 Borehole opposite page	5
Figure 4 Macrofaunal log of Piangil West 1 Borehole	6
Figure 5 Log of depositional events, ichnofauna, and macroscopic	
diagenetic features, Piangil West 1 Borehole	7
Figure 6 Interpreted depositional environments, Piangil West 1 Borehole	15
Figure 7 Log of diagenesis and paragenesis, Piangil West 1 Borehole	18
Figure 8 Mineralogic log of Piangil West 1 Borehole	19
PLATES	
Plate 1 Bioturbation fabrics	10-11

		Page
Plate 2	Diagenetic features	22-23
Plate 3	Diagenetic features	26-27
Plate 4	Macrofauna of Lithofacies A,B and D	58-59
Plate 5	Macrofauna of Lithofacies C	60-61
Plate 6	Macrofauna of Lithofacies E and F	62-63
Plate 7	Representative sections of split core from 67.57 to 154.5 metres	
depth		86-87
Plate 8	Representative sections of split core from 154.5 to 185.88 metres	
depth		88-89

ABSTRACT

In Piangil West 1, the cored Geera Clay sequence is predominantly dark carbonaceous burrow-mottled silts and muddy silts (65%), with minor unconsolidated sands, mud and clay. Plastic smectite-rich clay comprises only 6% of the sequence.

Deposition of the sequence was by micro-progradational (shoaling-upward) cycles during a rise in relative sea level to produce shallow intertidal flat, estuarine channel, subtidal-intertidal restricted marine and supratidal facies in a convoluted embayed configuration. As the rate of relative sea-level rise diminished, the environments were subjected to more reworking and a simpler, subparallel coastal configuration developed with more open marine, supratidal and paralic conditions established.

Bioturbation enhanced porosity in the fine siliciclastic sediments. Early porosity ranged from 0% in the clays, to about 5-10% in the silts, up to 30% in sands. With early diagenetic cementation by clays, carbonate and pyrite, and subsequent compaction of the sequence, porosity was drastically reduced to a present range of 0-7% as interparticle and burrow interparticle porosity types.

During early diagenesis, low permeability vertically up-sequence was made possible by burrow porosity. Lithofacies D with thick clay beds, was a permeability barrier. Depending on the spatial configuration of Lithofacies B (channel sands), these sands may have been a bypass to the clay barrier until occluded by cement later in diagenesis.

Late diagenetic events (post compaction) include continued calcite and dolomite cementation, and almost total occlusion of larger burrow types by pyrite, traces of arsenopyrite, and resinous organic material.

INTRODUCTION

This report documents a sedimentological and petrographical study of the Late Oligocene - Late Miocene sequence intersected in Piangil West 1 Borehole, SWAN HILL 1:250 000 Sheet, northwestern Victoria. Detailed logs of lithologies, sedimentary structures, depositional events, general macrofauna, general ichnofauna, mineralogy, diagenesis, and paragenesis are presented. Additionally, interpreted depositional environments and diagenetic history of the sequence are discussed.

The objective of the study has been to provide detailed sedimentological and diagenetic descriptions of the Geera Aquitard and contiguous units. This information will then be integrated with other specialized investigations as part of a program aimed at furthering understanding of the role of the Geera Clay in influencing groundwater flow in the Renmark Aquifer (Figure 2), and investigating the relationships between aquifer geometry, groundwater flow, and surface discharge of saline waters.

Piangil West 1 borehole is one of a series of regionally-spaced stratigraphic holes across the Murray Basin to further knowledge of the Geera Aquitard and Renmark Aquifer; of their geometry, stratigraphy, diagenetic history, and hydrogeological characteristics.

Piangil West 1 is located on the SWAN HILL 1:250 000 Sheet at 35° 03' 9.5"S latitude, 143° 13' 07"E longitude. The grid reference is 54YG 015184 on the 7527 NYAH 1:100 000 Sheet. The borehole is sited adjacent to the north side of the road, in the centre of a western embayment of a salina, 8.5 kilometres west of Piangil township (Figure 1).

R.L. 51 m AHD (ground level)

Drill Rig Bourne 1250

Average core diameter 75mm

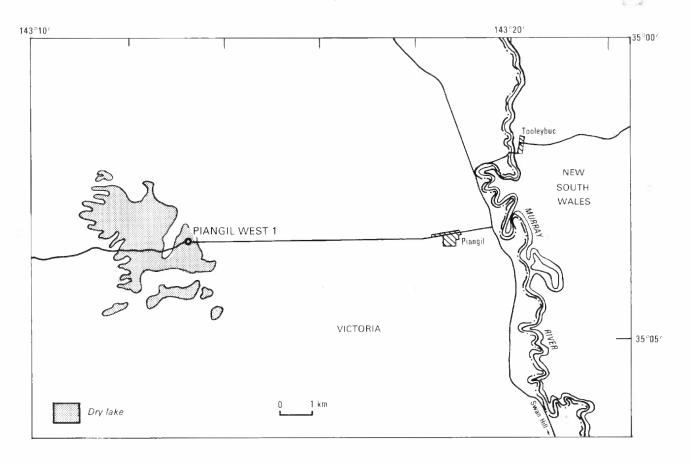
Total depth at the time of completion of logging, was 185.88 metres (late January, 1987). Drilling has subsequently resumed but new material has not been examined and described in this report because of time limits imposed on this contract.

Core recovery from the drilling was non-existent to 67.3 metres, and less than 30% down to 120 metres. Beyond this depth, core recovery exceeded 80%. Because of the soft and relatively unconsolidated nature of the sediments, no cuttings could be recovered. Core material is stored in BMR core and cutting repository, Fyshwick, catalogued as Swan Hill BMR No.1.

Photographs of representative sections of the core are presented in Appendix V, Plates 7 and 8. Core sampling was conducted for several studies, specifically: petrographical, clay mineralogical, geochemical, pore fluid, geochemical, foraminiferal and palynological determinations.

Intervals sampled for these studies are listed in Appendix VI.

This report utilizes the petrographical, mineralogical, total organic carbon, and geochemical data.


REGIONAL GEOLOGICAL SETTING

The Geera Clay has an arcuate distribution across the Murray Basin (Brown and Stephenson, 1986) extending from the Flinders Ranges in South Australia east-southeastwards and then increasingly southerly to the Grampians in Victoria. Geera Clay reaches thicknesses exceeding 160 metres and Piangil West 1 is sited over the broadest belt of thickest section (Figure 1).

Brown (1985) considered the Geera Clay to have been deposited under shallow and marginal marine, interdistributary bay, lagoonal and tidal flat conditions. These environments formed an arcuate coastal belt bordering fluvial marsh, fluvial-deltaic and fluvio-lacustrine plains (Olney Formation of the Renmark Group), but restricted from open marine conditions by platform carbonate shoals and a restricted platform lagoonal belt (Winnambool Formation; Brown, 1984).

Basement tectonic elements and infrabasins below the Murray Basin also have a basin-wide arcuate trend from the northeast, arcing in a southwesterly, southerly, then southeasterly direction towards the Lachlan Fold Belt.

Piangil West 1 is sited just east of where the Geera Aquitard overlies shallow basement in a region of constriction to the westward groundwater flow in the underlying Renmark Aquifer (Figure 2).

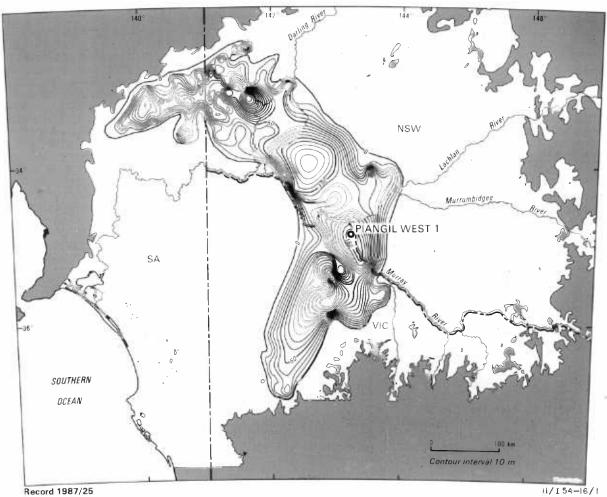
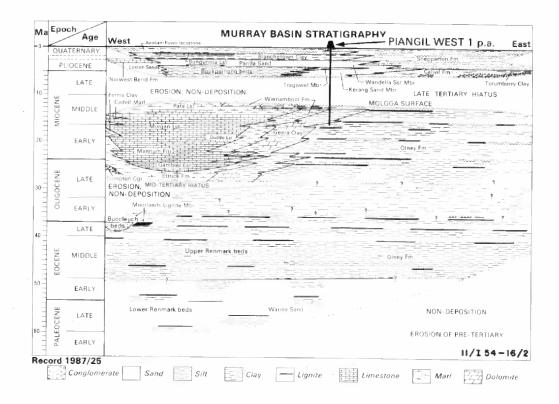



Fig. 1 Piangil West 1 borehole: geographic location and position on the thickest section of Geera Clay

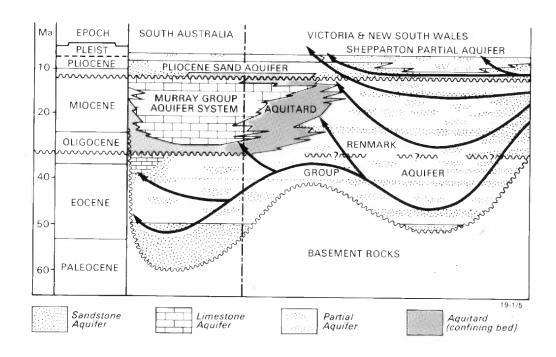


Fig.2. Cainozoic stratigraphy and regional aquifers of the Murray Basin (Based on Brown, 1983)

LITHOSTRATIGRAPHY

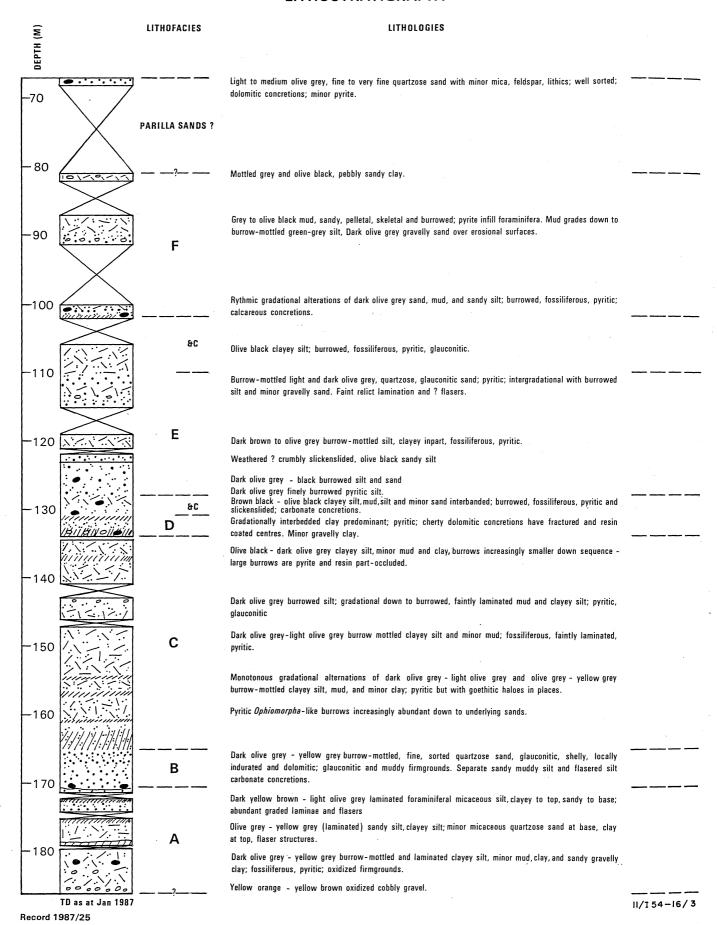


Fig. 3 Lithostratigraphic log of Piangil West 1 borehole.

LITHOSTRATIGRAPHY

GENERAL STATEMENT

The sequence between 81.5 metres and 185.88 metres is discussed in this section. The cored sand above, at 67.0 - 68.3 metres, is assigned to the Parilla Sands (Victorian terminology).

Lithologies

The sequence from 81.5 to TD 185.88 metres is characteristically dark and carbonaceous, olive black to dark olive grey, burrow-mottled with light olive grey or yellow grey colours, and is dominated by firm to semiconsolidated silts and muddy silts (65%), with lesser unconsolidated sands (15%), mud (14%) and plastic clays (6%). These are presented in stratigraphic context in Figure 3, and in the detailed litholog (Appendix I).

Low core recovery in the upper cored sequence severely reduces the confidence of lithostratigraphic classification, especially in the absence of electric logs.

Macrofauna

The fauna is rarely present beyond trace amounts in the sequence but is quite distinctive. Faunal elements, in approximate decreasing abundance are:

pelecypods - articulated, disarticulated, fragmented clams and pectins, fragmented and abraded oysters;

gastropods - complete and fragmented fusiform, turreted, conoidal, small orthostrophic, and pupaeform types;

echinoids - partly intact, disarticulated and fragmented irregular echinoids, cidarid and unspecified spines;

bryozoa discoidal, branching, articulated branching, planar and encrusting forms;

foraminifera - agglutinated, calcareous, and ?chitinous types;

malacostracans - complete, disarticulated and fragmented assemblages of decapod (crab) and unidentified (possibly shrimp) types;

ostracods - complete and disarticulated;

corals - solitary scleractinian forms;

scaphopods - complete and fragmented;

fish or cetacean? - teeth;

brachiopods - terebratulid types.

Preservation of the calcareous fauna is poor because of partial dissolution of the tests. Although mould impressions in the moist core may replicate surfaces in equisite detail, the skeletal material is friable or powdery and deteriorates, like the sediment, very quickly on drying.

Wood fragments are rare but are tabulated with the fauna for convenience.

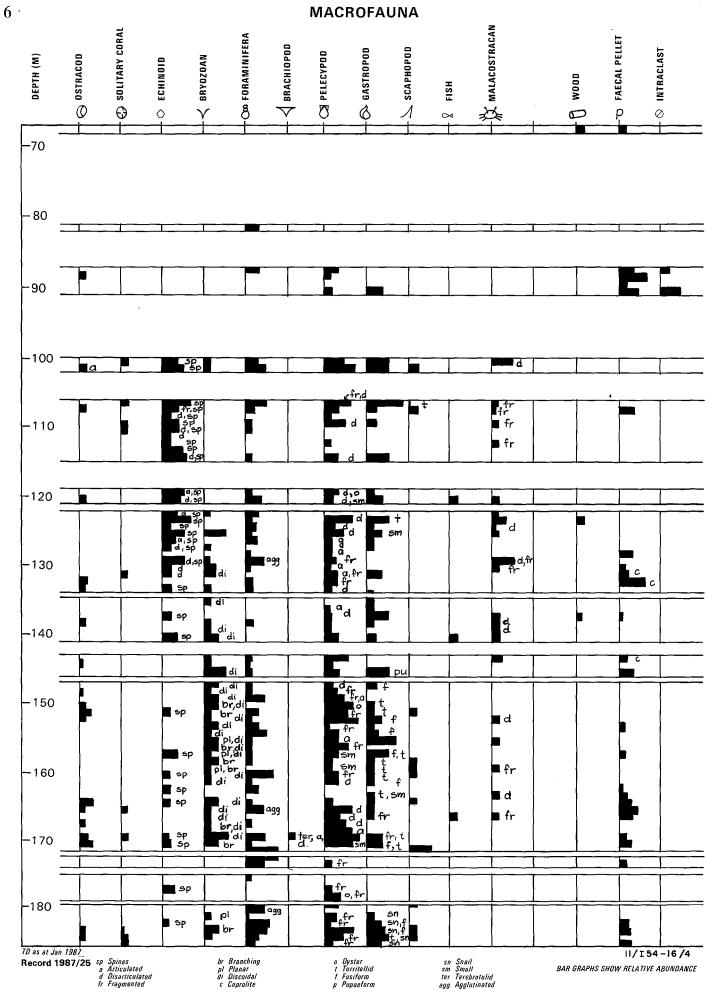


Fig. 4 Macrofaunal log of Piangil West 1 borehole.

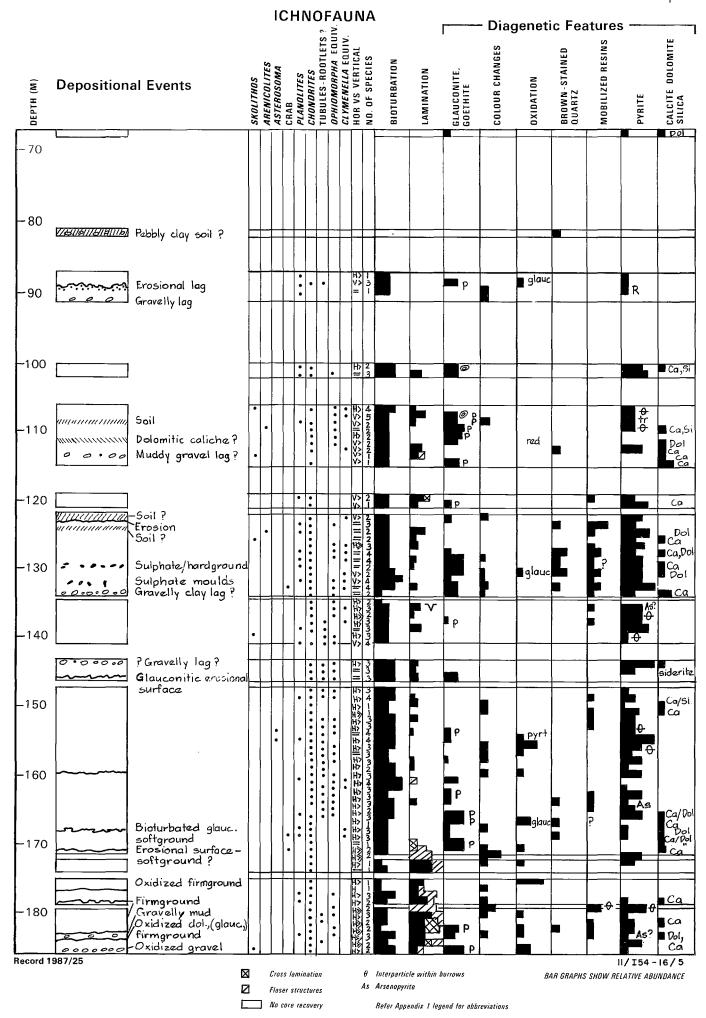


Fig. 5 Log of depositional events, ichnofauna, and macroscopic diagenetic features, Piangil West 1 borehole

The stratigraphic distribution, relative abundance, and morphological types of this fauna are presented in Figure 4 and characteristic elements are illustrated in lithostratigraphic context in Plates 4, 5 and 6 of Appendix II.

Ichnofauna

Bioturbation is prolific and moderately diverse in types within the sequence contributing up to over 30% modification of the sediment. In most lithofacies variation in bioturbation abundance is cyclic and is used as a parameter in lithofacies interpretation. Few ichnofossils have been identified with certainty but most have been categorized into species equivalents (Figure 5) for stratigraphic and environmental consideration.

Chondrites is ubiquitous in varying diameter, orientation and sediment infill types (Plate 1d).

Ophiomorpha-like vertical and horizontal burrows are typically pyritized and original porosity is commonly preserved.

Surface morphology of these burrows varies with sediment. In unconsolidated sediment the burrow wall has been pelleted. Smooth burrow walls (Plate 1a) which are the most common, indicate a firmer substrate.

Very fine tubules approximately 0.1mmD and outlined by pyrite, are bifurcate, anastomosing, arcuate or irregular in trace and either totally confined to parting surfaces, or penetrate through laminae. Their origin is enigmatic, whether a fine animal trace, or plant rootlet, but they are restricted to Lithofacies C and the lower part of Lithofacies A.

Other distinctive but less common ichnofossils have similarities to Clymenella, Planolites, Asterosoma, Skolithos, and Arenicolites.

The predominant burrow orientation of the ichnofauna changes from horizontal-dominant in Lithofacies A, B and C, to varying vertical-horizontal intermixtures in Lithofacies D and lower E, to vertical-dominant in upper Lithofacies E, and back to vertical-horizontal intermixtures in Lithofacies F (Figure 5). Burrow orientation indicates the relative rates of erosion and deposition against bioturbation. Where horizontal burrows predominate, sedimentation has been at a steady rate and the burrowers have been able to maintain activity in suitable laminae. A predominance of vertical burrows, *Skolithos* ichnofacies, suggests continually changeing sediment surfaces as a result of erosion and rapid deposition which forces the infauna to reposition to their optimum depth below surface. This creates a predominance of vertical escape burrows (Ekdale, & others, 1984).

Some of the diversity of bioturbation types and internal structures is illustrated in Plate 1.

LITHOFACIES

Six lithofacies are recognized, nominally A to F up-sequence. Lithofacies differentiation is based on lithology or cyclical lithological patterns, sedimentary structures, ichnofauna and ichnofaunal cyclicity, and fauna. In shallow near-shore

environments, the fauna is less significant than ichnofauna as a key to environments because of the reworking and transport of skeletal material.

In the Piangil West 1 sequence, lithofacies differentiation is relatively subjective because of the subtlety of changes selected as characteristics. Lithofacies A, B and D are the most distinctive of the sequence.

Lithofacies A

Characteristics: Lamination, both fining up and coarsening up, crosslamination, and flaser bedding in brownish black and yellow brown micaceous silts characterize this lithofacies which has abundant agglutinated foraminifera on parting surfaces. Bioturbation is minor, small, and horizontally predominant.

Lithologies: Colour-laminated and occasionally burrow-mottled foraminiferal micaceous silts, clayey silts and very fine sandy silts of dark olive grey, brown black or dark yellow brown interlaminated with lighter pale yellow brown or yellow grey.

Cycles: Fining upwards sequences of 2.4 metres average thickness, are of three types:

- 1) Over an irregular and prominent erosional surface on hardground or firmground, basal sandy silt grades up to silty clay.
- 2) unconsolidated very fine micaceous quartzose sand grades up to a clayey silt.
- 3) a coarse conglomeratic silt grades up to an oxidized and indurated clayey dolomicrite.

Discussion: Lithofacies A is 15.2 metres thick, between 170,7 and 185.88 metres depth. This is a Geera Clay facies and is interpreted as intertidal-high intertidal tidal flat deposits which have had a continued steady sediment supply. During slower influx of sediment and or emergence, firm and hardgrounds developed and exposed silts were resorted into coarsening-upwards laminae. With greater supply of silty sediment, flasers and fining upward laminae predominated.

Lithofacies B

Characteristics: White flecked and shelly dark olive grey fine quartz sands, varying from muddy to silty, are unconsolidated and friable except in thin intervals where indurated by dolomite. There is an absence of malacostracan and scaphopod debris, and *Ophiomorpha*.

Lithologies: Burrow-mottled dark olive grey and yellow grey skeletal fine quartz sand is dominant, with minor muddy silt and sandy muddy silt. The sand particle size increases up from the base, grading from very fine-fine sand to medium-fine sand.

Cycles: Two cycles averaging 2.65 metres thick, overlie irregular erosional surfaces on firm mud (burrowed in places). The basal sediment may be a muddy silt or sand which

PLATE 1

Bioturbation Fabrics

a. Pyritic cast of a dwelling burrow within mud. The burrow was probably created by a malacostracan.

X 0.8; from 163.5 metres

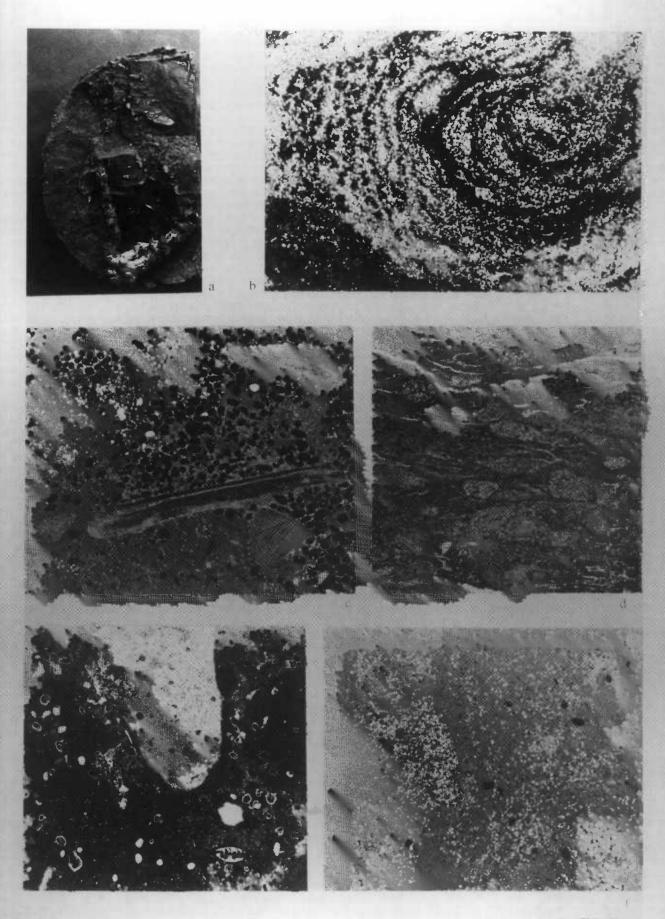
b. Cross-section of back fill in a burrow within a sorted very fine quartzose sand. Dark laminae are now micritic carbonate and indicate concave alternations of sand and mud pushed behind the animal as it moved through the sediment.

field of view is 8 mm wide; from 67.1 metres

c. Varied textures within a burrow-mottled micrite. Quartz sand is unevenly scattered throughout a grumous micrite, indicating an original pelleted texture. Infilled burrows around mollusc fragments are pellet-rich.

Photomicrograph, field of view is 8 mm high; from 101.48 metres

d. Compacted bioturbated silty mud with burrows infilled by silt and muddy silt. Subhorizontal cracks are a post-drilling desiccation phenomenon.


Photomicrograph, field of view is 8 mm high; from 120.64 metres

e. Dark silty dolomitic micrite containing glauconitic ooids and pellets contrasts a burrow/boring which is silt infilled and cemented by glauconite. The host is interpreted as a dolomitic hardground.

Photomicrograph, field of view is 8 mm high; from 183.8 metres

f. Bioturbated silty-sandy grumous micrite containing burrows with mud centres (*Clymenella*-like). The host sediment was originally pelletal mud prior to compaction.

Photomicrograph, field of view is 8 mm high; from 109.25 metres

PLAIL

grades up through cross-stratified fine quartz sand (shelly bands of disarticulated pelecypod valves, bryozoa, and turritellid gastropods are scattered through the sand) to an upper burrowed sandy silt firmground in which the burrows have remained open to the subsequent depositional events.

Discussion: Lithofacies B is 5.4 metres thick, between 170.7 and 165.3 metres depth.

The lack of any thickness of cross-stratified sediment and the preservation of irregular relief in the underlying firmground imply that these are channel sands of low velocity regime, but not deep enough to meet the subtidal niche of scaphopods. These cycles probably reflect broad shallow tidal channels which have subsided through compaction of the underlying muds, resulting in deposition of thicker sands.

Lithofacies C

Characteristics: The monotonous and faintly laminated dark olive grey muds and silts have characteristic vertical fine pyritized tubules throughout a partly laminated sediment. Scattered pyritized *Ophiomorpha* tubes are ubiquitous, with some *Clymenella*-like burrows.

Lithologies: Silts and muds are colour-mottled from burrowing, and are dark olive grey, light olive grey, and olive grey-yellow grey combinations. Silts have slightly more varied bioturbation than very uniform micaceous muds. Minor clay occurs in thin bands. Some silt horizons are indurated.

Cycles: The changes in bioturbation abundance are cyclic. This is not as apparent with lithological changes. The base to cycles is usually lighter coloured mud which grades up to a glauconitic silt with an upper dark erosional surface. Cycles average 2.7 metres thick and are apparent from sharp colour changes across the erosional surfaces.

Discussion: Lithofacies C is 31.3 metres thick between 165.3 and 134 metres depth. Nine cycles are recognized. The general diminution of burrowing activity within the clayier sediments may be due to decreased oxygenation within the sediment, making it inaccessible to most infauna. The very fine pyritized tubules are probably small *Chondrites*, traces of animals which are most tolerant of anaerobic bottom water and sediment environments (Bromley and Ekdale, 1984). *Ophiomorpha* shrimps could burrow beneath an oxygenated surface into reducing environments. Such conditions were probably in a tidal lagoon which had infrequent water exchange.

Lithofacies D

Characteristics: Diversely and prolifically bioturbated glauconitic silts contrast the thick non-bioturbated clay bands. Crumbly gravelly clay bands, sulphate moulds and pseudomorphs, minor desiccation cracks, and dolomite-calcite-chert nodules are characteristic.

Lithologies: Olive black to dark olive grey, brown black carbonaceous clays, both uniform and lightly bioturbated are compact to crumbly and gravelly. The olive black clay is slickensided, especially around concretions. The olive black, brown black muddy silts are prolifically burrow-mottled and colour-mottled in light yellow brown and light olive grey.

Cycles: The cyclic sequence is uncertain because contacts are indistinct. However the olive black clay with fine pyritized tubules appears to be at the base, grading up to muddy silt and glauconitic silt.

Discussion: Lithofacies D is 6 metres thick. The presence of sulphate moulds, desiccation cracks, and very limited bioturbation indicate an upper intertidal evaporative pond which is restricted to normal tidal exchange but is periodically flooded with sands or silts when, with drops in salinity, there is a corresponding boom in infaunal bioturbation.

Lithofacies E

Characteristics: This is a silt-dominated unit with minimal clayey silts and muds. Reddish black, crumbly or clotted horizons with soil or dolomitic caliche fabrics are recurrent. *Malacostracan* debris is most abundant in this lithofacies and bioturbation is prolific (Plate 1d,f). Flaser structures and gravel lags are minor features.

Description: The silts are predominantly dark black to dark olive grey and burrow-mottled with light olive grey tones. The carbonaceous sediments range from:

laminated and micaceous silts, to

sandy silts, and

dolomitic and glauconitic silty fine to very fine sands.

Laminated silts and intensely burrowed clayey silts are more characteristic in the upper part of the lithofacies. Cyclical patterns are not very apparent although repeated fining up from silty sand to silt occurs. Lamination and bioturbation structures alternate in approximately one metre cycles throughout the interval regardless of sediment changes.

Discussion: Lithofacies E is 26 metres thick, between 128 and 102 metres depth. Core recovery was 61% and the type of nonrepresented sediments is significant in the overall character of the unit. The Lithofacies is ascribed to the Geera Clay as a unit of more consistent episodic tidal flat deposition which exceeded bioturbation rates, as indicated by the rhythmic laminated/flasered and burrow-dominant alternations.

Lithofacies F

Description: Thin rhythmic fining upward sequences are characteristic in the dark olive grey to grey black carbonaceous silts, micaceous silts, fine to medium quartz ooid sands, and brown black to grey black clay of this lithofacies. The silts and muds have a distinctive friable gritty peaty appearance. Carbonate nodules occur in the sands.

Cycles: Cycles average 0.55 metre thickness, as fining upward sequences from quartz and quartz ooid sand up to sandy muddy silts and are carbonaceous. Few cycles have a reworked sand above the upper muddy silt.

Discussion: Lithofacies F is 20.5 metres thick between 102 and 81.5 metres depth. Only 27% core recovery is available, making this characterization of the unit tenuous at best.

Seven thin sand to silt cycles are identified and a thicker reverse-graded cycle with an upper gravelly lag clay occurs at the top of the unit.

The thin cycles and gravelly lag in black clay indicate perhaps regressive or progradational conditions with shallow water as would be encountered in sand shoal and landward tidal salt marsh-paralic conditions.

This lithofacies is tentatively assigned to the Bookpurnong beds. The expected disconformable contact with the Geera Clay is thought to lie within a 4 metre core loss between lithofacies E and F.

DEPOSITIONAL ENVIRONMENTAL MODEL

The sediment for the Geera Clay is presumed to have originally come from the southeast Australian Highlands but has been considerably modified during transportation across the extensive fluvial-deltaic and fluvial-lacustrine environments of the Olney Formation. Consequently a particle-size range of fine siliciclastics is to be expected. The sequence lacks any autochthonous carbonate contribution from open marine conditions and this is in agreement with the palaeofacies model of Brown (1984, 1985) where platform carbonate shoals isolate a restricted platform lagoon adjoining the tidal flats.

The spatial distribution of macroenvironments within the Geera Clay (Lithofacies A, B, C, D and E) is speculative when based on one hole. There is, however more certainty of juxtaposed microenvironments on the basis of Walther's Law (Walther, 1893/94).

One interpretation is offered in Figure 6. Lithofacies A, B, C and D are transgressive facies deposited during a period of relative sea level rise, with minimal erosion and reworking of sediment within the depositional setting and shoaling-upwards cycles average 2.4 to 2.7 metres thick. Bioturbation is dominantly horizontally oriented. The Geera Clay environment is envisaged as a complex flooded coastline with convoluted broad and shallow estuaries and tidal channels (Lithofacies B) with adjoining small intertidal-subtidal levees. These demark extensive areas of more restricted shallow marine conditions with predominant anaerobic sediment interfaces (Lithofacies C). Such areas shoaled up to high intertidal-supratidal flats which were in part evaporitic. Episodic flooding returned conditions to marine intermittently and sustained a fluctuating ichnofauna (Lithofacies D). Limited sulphate, chert and dolomite precipitation occurred within the sediment.

Elsewhere along the shoreline to the lagoonal Winnambool environment, broad intertidal flats had active sediment movement and winnowing, and also formation, burial and re-emergence of firmgrounds and hardgrounds (Lithofacies A).

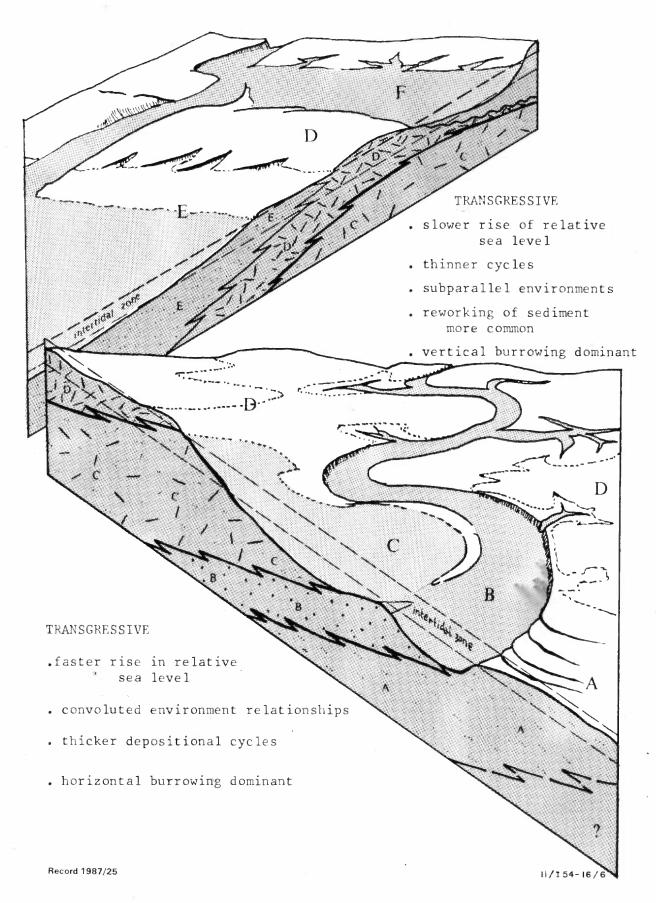


Figure 6 Interpreted Depositional Environments

The rate of rise in relative sea level is considered to have reduced during deposition of Lithofacies D in the borehole section, and as a result, Lithofacies D and E were still transgressive, but had thinner shoaling-upward cycles (1-0.55m) because of more active redispersal of sediment. As a consequence, environments tended to be of simpler spatial geometry and subparallel. This contributed to a more efficient exchange of the water mass, maintained an oxygenated sediment surface, and stimulated greater infaunal activity. Additionally, most of the glauconitic particles were oxidized. Because of the increased sediment mobility and erosional events, vertical burrows predominated (Skolithos facies). Lithofacies E sedimentation ranged from low intertidal to supratidal with periodic development of soil and caliche overprints adjoining Lithofacies D conditions.

Lithofacies F is envisaged as a restricted marine saltmarsh-paralic environment with a high organic matter influx from land sources.

DIAGENESIS

GENERAL STATEMENT

Diagenesis is discussed under diagenetic process and product categories and is then placed in time context in Figure 7, with a following discussion of paragenesis.

Clays

The clays and clay fraction of muds in the sequence are dominantly smectites (and smectites with a minor proportion of interstratified illite), subdominant kaolinite, mica-illite-glauconite, and minor mixed layer smectite-illite.

Whole sediment samples were separated into the clay and clay fraction and Figure 8 shows variations of mineralogy of sediments downhole. Where quartz was not dominant in the non-clay fraction, then clay minerals predominated. Unfortunately analyses are from two sources and there may be slightly differing interpretations on abundance of smectite and mixed-layer smectite-illites.

In Lithofacies A, mixed-layer smectite/illite component and kaolinite are approximately equally proportioned, with accessory mica/illite. (It is uncertain if this difference from Lithofacies C, D, and E is real or one of interpretation differences).

Lithofacies C, D and E (AMDEL analyses) are very similar in clay mineral ratios in having smectites dominant, kaolinite subdominant, and accessory or trace mica/illite/glauconite. Some smectites in upper C and middle of D Lithofacies have a minor proportion of interstratified illite.

Lithofacies F (1 sample) has a clay fraction dominated by equi-proportioned kaolinite and mica/illite.

Discussion: Interpretation of origins of clays of the sequence is difficult because of the multiple overprints of diagenesis, climatic conditions of provenance and the original source of the clay. Glauconite is common in the sequence. This is to be expected when an abundance of detrital mica is available in the sediment. The predominance of smectites may be a diagenetic overprint, reflecting uptake of magnesium from seawater or

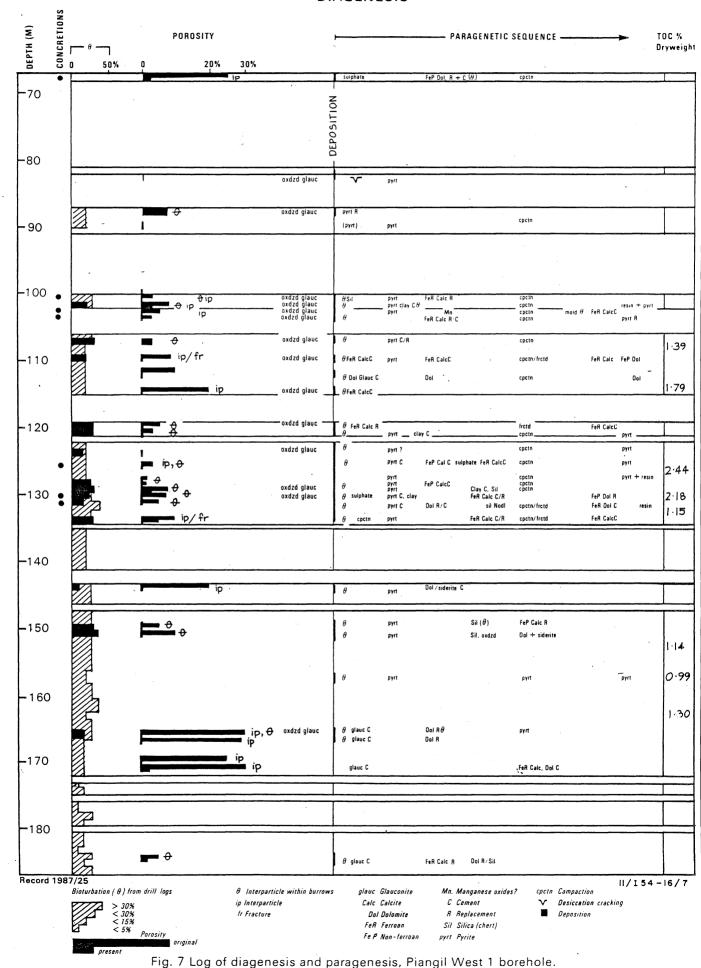
groundwaters, or indicate a volcanic source. If the smectite is diagenetic, it would indicate Mg-rich connate waters. However, smectite-rich soils are usually indicative of desertic soils (Grim,1968). Additionally, the presence of magnesium and calcium will tend to inhibit kaolinite formation. Perhaps the kaolinite and part of the illite are unchanged transported components of the sediment and may be related to climatic and soil conditions of the adjoining fluvial plains. Kaolinite can form in laterosols, requiring warm, humid, wet conditions. With cooler, moist conditions as in podzols, illite becomes slightly dominant over kaolinite. Truswell & others (1985) come to an interpretation of Geera Clay climate being a drier type of rainforest growing under mildly seasonal moisture regime, a climate in which podzolic to slightly lateritic soils could form.

In Lithofacies F, the application of soil type characteristics would suggest a podzolic source because of the equi-proportioned kaolinite and illite. This would imply cool damp climatic conditions in the Late Miocene and Early Pliocene.

Glauconite

Glauconite is both a predepositional and postdepositional phase in eogenesis. Its most pronounced occurrence is as coatings on sand and silt particles, ooids, and as a replacement of faecal pellets (Plate 1c,d), coprolites (Plate 4a) and grapestones. Much of this early predepositional glauconite is partly or wholly oxidized to goethite in the topmost sand of Lithofacies B, and in almost all occurrences in Lithofacies D, E and F (Figure 7). Glauconite has also precipitated in and replaced bioturbated eroded hardgrounds and firmgrounds. These surfaces may also be dolomitized and or oxidized.

An early very pale green, poorly crystalline clay, presumed glauconite, is an important porefill cement within burrow interparticle porosity, interparticle porosity in sands, and in intraskeletal porosity.


Discussion: Petrographic evidence suggests that oxidation of glauconite to goethite occurred in varying degrees before deposition. Most environments interpreted in the sequence are very shallow marine to intertidal. Mildly reducing conditions (Eh 0 to -150 mV, pH 7-8) are required for glauconite formation. Although the bottom-water environments are more likely oxidizing, the prolific bioturbation and production of mixed organic matter and clays in faecal pellets would have produced numerous surfaces of changeing Eh conditions to facilitate its precipitation. The abundance of early framboidal pyrite is consistent with such microenvironments.

Goethite/Phosphate

Goethite is evident as a product of syndepositional glauconite oxidation, especially in Lithofacies F, E, D and to a lesser degree in B. Phosphate is uncommon but where present is in trace amounts, with manganese?, in goethitic particles (EDAX analysis of pellets at 99.5m). Phosphate is also present as a trace with pyrite and arsenopyrite in burrow geodes (0.2% at 132.77m).

Discussion: The abundance of goethitic coatings on sand and silt, and replacement of pellets (some slightly phosphatic), is indicative of the mobility of these particles within the shallow marine - tidal regime after glauconitization, and the time of exposure to oxidizing conditions prior to burial. EDAX analysis of pellets shows varying degrees of oxidation of glauconite, and of minor phosphate and manganese scavenging by these particles.

DIAGENESIS

MINERALOGY

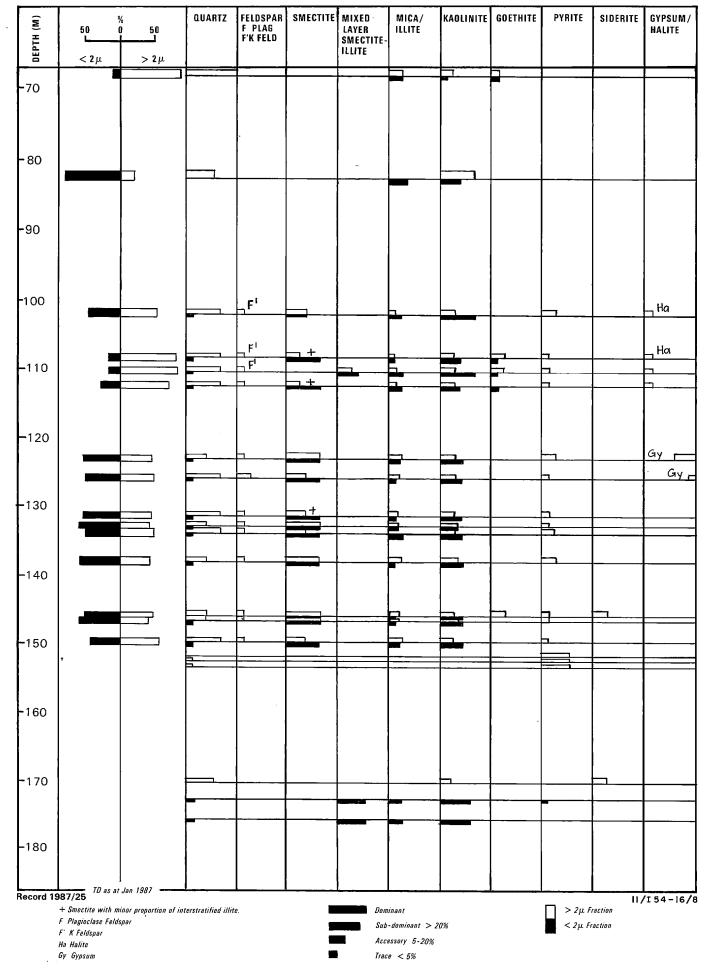


Fig. 8 Mineralogic log of Piangil West 1 borehole.

Carbonates

Concretions and Indurated Horizons: Concretions occur either within homogeneous silts or clays, or close to a porosity transition-usually in the more porous sand or silt adjoining a contact with a less permeable sediment. Nodules are spheroidal to ellipsoidal and commonly range in diameter from 40-100 mm. Very large concretions may be misidentified as indurated beds because of the core provided. Seven petrographic samples above 132 metres are concretions (Figure 7, Appendix IV) and were selected because they preserve pre-compaction textures.

Concretions are usually composed of one phase of carbonate and contain replacement/micrites which may obliterate original textures unless sand or coarse silt-sized siliciclastic particles are the dominant components. Additional replacement phases may be present, such as patchy dolomite in calcitic micrite, or chert replacement in the centre of dolomitic nodules.

Calcite: Calcite is the most common carbonate within the sequence but this is in very small amounts, % of the sequence as scattered nodules and patchy induration of porous sands and silts.

The main carbonate fabric is micrite, with accessory druse cements, and rare radiating needle fabrics.

Micrite forms nodules that replaced the fine siliclastics, forming nodules. This fabric is pervasive, commonly having grumous texture, but it is uncertain if this reflects earlier pelletal muds and silts. Micrite replaces very fine siliclastics but only embays and partly replaces coarse silt and sand.

Druse Cement is the most common porefill cement, competing with clay cements in burrow interparticle porosity and in occluding interparticle porosity of sands and silts. More elongate crystal form drusy cements which heal fracturing in nodules following compaction (Plate 3b).

Radiating needle fabrics are rare but occur in intraskeletal porosity with manganese dioxide? in remnant porosity. These fabrics are probably early high magnesium calcite precipitates (Plate 2f).

The calcite is predominantly ferroan, as expected with abundant iron in the sediment, but this also indicates an absence of, or low, sulphate activity in the precipitating waters, as is usually common in fresh water.

One interval, the zone with known sulphates in Lithofacies D and lower E (Figure 7) has initial nonferroan calcite. When sulphate is present in porefluids, pyrite and nonferroan calcite will precipitate whereas in the absence of sulphate ions, the iron is incorporated into the lattice to form ferroan calcite (Davies, 1971). Ferroan calcite is ubiquitous elsewhere in the section, and implies an absence of sulphate, most probably by reduction prior to pyrite precipitation.

Dolomite: Dolomite is less common than calcite (<1% of sequence) but has minor distribution in nodules and in indurated bands. Micritic fabrics are dominant as precipitate/replacement in early diagenetic nodules, and in glauconitic burrowed crusts and horizons with clotted textures.

As a cement, it has a sucrosic rhombic fabric, and fills pores and replaces clay cements within burrow interparticle porosity.

In concretions, dolomitic micrite has gradational transitions with the host sediment. The centres of concretions may be chert with gradational change to the outer dolomite (Plate 3e).

At one occurrence at 129.73m, dolomite replaces palimpsest poikilotopic authigenic sulphate forms, 0.5-3mm tabular outlines filled with fine sucrosic dolomite, within a silty clay host.

Discussion: Dolomite is predominantly ferroan poor, and occurs in glauconitic bioturbation horizons which are interpreted as hardgrounds. These have been eroded, and reincorporated in situ, confirming syndepositional development. The nonferroan composition and very fine sucrosic textures indicate early marine precipitation, which is in accord with the early chert precipitated as silicic gels. One horizon, 111.6 metres, has clotted colour and texture and is considered to be caliche after a probable firmground-hardground.

Dolomite replacement and cementation late in diagenesis is post compaction.

Siderite: Traces of siderite were detected with XRD at 145.8m and 170.0m (Figure 7) and are considered an accessory to late-stage dolomitization, probably under high organic freshwater conditions.

Chert

Chert is almost exclusively a replacement phase within the centres of micritic dolomitic concretions. It is microcrystalline and may exhibit several phases of concentric accretion, with corresponding variable preservation of palimpsest textures. The chert was apparently a gel at time of replacement, with resultant shrinkage and synaeresis cracking (Plates 2d,3e). The occurrence in Lithofacies C (Plate 2d) shows chert replacing the glauconitic/goethitic wall of a burrow, with associated iron staining.

Discussion: Chert appears to be a minor replacement phase within the sequence. Because it is almost invariably within dolomitic replacements, estimation of its timing is difficult, but appears by its occurrence to be an early diagenetic replacement within early dolomite in concretions and hardgrounds.

Sulphates

Evidence for precipitated sulphates within the sequence is minimal. As the core material dried out, white efflorescences developed over some finer clastics indicating quite saline porefluids. XRD analyses of muds and clays repeatedly showed traces of halite and gypsum in Lithofacies E. Halite is presumed attributable to these efflorescences and consequently implies very saline pore fluids in Lithofacies E.

Three horizons do have evidence of former sulphate emplacement

67.1m in the Parilla Sands?; see Plate 2b: columnar subhedral crystals of dolomite in a felted fabric within a dolomitic concretion. Although this superficially appears like interparticle cement within a sand, the almost regular crystal orientations and their dual porefill/replacive nature are suggestive of this being a dolomitized anhydrite nodule.

PLATE 2

Diagenetic Features

a. A uniform silty - very fine sand (grainstone texture) comprises angular quartz particles with embayed surfaces. These are suggestive of dissolution and/or calcite replacement.

Photomicrograph, field of view 1.5 mm high; plane-polarized light

from 114.4 metres

b. Columnar subhedral crystals of dolomite (after anhydrite?) generally occlude interparticle porosity as well as penetrating and replacing quartz particles.

Photomicrograph, field of view 0.5 mm high; crossed polars

from 67.1 metres

c. Relict pelleted texture in a carbonate concretion is contrasted by early diagenetic pyrite porefill (black) between the pellets. This cement has prevented obliteration of the texture by subsequent early compaction which occurred elsewhere in the host sediment.

Photomicrograph, field of view 2.0 mm high; crossed polars

from 125.22 metres

d. Burrow with silicified iron-stained walls. Fracturing within the chert is a synaeresis effect.

Photomicrograph, field of view 7.4 mm high; plane-polarized light

from 150.9 metres

e. Framboidal pyrite is a geopetal sediment within zooecia of a bryozoan (intraskeletal porosity). The remaining porosity was subsequently occluded by a ferroan calcite druse cement

Photomicrograph, field of view 580 microns wide; plane-polarized light

from 101.48 metres

f. Remnant intraskeletal porosity within a gastropod chamber, after partial infill by detrital sand and mud, is finally occluded by needle-like calcite crystals (pseudomorphs after aragonite?) and later opaque manganese dioxide.

Photomicrograph, field of view 580 microns wide; plane-polarized light

from 101.48 metres

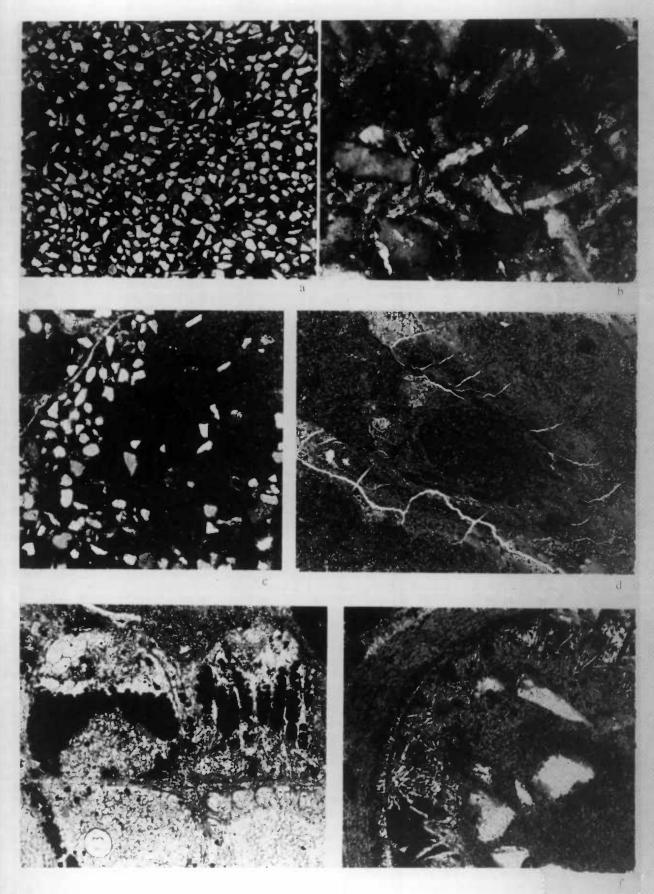


PLATE 2

- 129.73m in Lithofacies D: Within a carbonate concretion, palimpsest rectangular and composite rectangular forms 0.5-3mm long are preserved by a micritic dolomite within a silty micrite. These structures crosscut sedimentary fabrics, and envelop particles. Tabular shapes appear to be poikilotopic replacements within the sediment with no evidence of displacement of any kind. Consequently this appears to have occurred prior to and perhaps during early carbonate nodule growth.
- 132.35-.5m in Lithofacies D: a mottled green grey dark yellow brown muddy silt has mesoscopic tabular to columnar vugs. The oxidized mottled colour and texture are believed indicative of an exposed surface-soil or evaporative pan in which gypsum crystals grew, displacing the host, and were later redissolved. These vugs have no infilling sediment or cement, and it is probable that sulphate dissolution was significantly post-depositional.

Discussion: Lithofacies E has the only occurrences of existing halite and gypsum as indicated by the limited number of XRD determinations. Gypsum is present at horizons 125.8 metres, and above at 122.9 metres where it exceeds 20 % of the sediment. These samples are just above Lithofacies D where there is evidence of former sulphates.

The occurrences in Lithofacies D - E suggest that sulphate-rich connate fluids and groundwaters existed early in diagenesis; this interpretation is supported by the initial absence of non-ferroan carbonates. It remains speculative whether the existing sulphate in Lithofacies E is evaporitic, an early diagenetic groundwater precipitate, or a more recent phase related to the present groundwater system.

Pyrite

Pyrite is ubiquitous as an eogenetic and mesogenetic diagenetic phase in the sequence, and is most abundant in Lithofacies C, D, and E where it is predominantly a porefill cement and a minor replacement phase.

As a porefilling cement, pyrite occurs in framboidal habit (framboids approx. 30 microns diameter) within intraskeletal porosity (Plates 2e,3a,4c,4d), burrow porosity (Plates 1a,3c,3d), burrow interparticle porosity and interparticle porosity. It is most obvious as porefill in large burrows where it most commonly has framboidal habit, often intermixed with resinous organic matter. Some horizontal segments of *Ophiomorpha* burrows are incompletely occluded and contain pyrite and minor arsenopyrite in delicate compound needle-like habit as fringe cements, almost always in association with resinous organics. Such crystalline aggregates are usually very friable inside of the outer replacement shell because the resin interpenetrates most crystal-crystal boundaries.

Pyrite can totally replace skeletal components, pellets or nuclei of glauconitic ooids. One type of bioturbation, very fine bifurcate traces (approx. 0.1mmD), can only be recognized by their preservation as thin pyritic films or tubules. These are of undetermined rootlet or animal origin.

Discussion: Once anaerobic conditions are established within the sediment, detrital iron-bearing minerals are able to be solubilized by bacterial or inorganic processes. With hydrogen sulphide production from either bacterial sulphate reduction or decomposition of organic sulphur compounds from dead organisms, iron sulphides and pyrite will precipitate quickly to form framboids and geopetal framboid cements.

When the core was unwrapped from cold storage and warmed up, the exposed surfaces very quickly changed colour, darker by 1 tonal increment of the Rock colour

TABLE 1: GEOCHEMICAL ANALYSES FROM PIANGIL WEST 1 BOREHOLE

SAMPLE	C u p p m	M n p p m	F e %	A s p p m	U ppm	C r p p m	V p p m	
DEPTH								
109.00	1 3	2 2 0	9	2 5 5	4	1 3 0	3 7 0	
132.77*	5	5 0	2 0	1 0 0 0 0	-	-	1 0	pyrite crystals
135.80	1 4	4 9	2 . 4	3 3	4	1 3 5	170	
136.52	1 8	2 2 5	13.1	1 1 0	4	8 6	1 0	
163.5A	4	1 4	34.7	1950 .	4	1 4 5	170	pyritized burrow ¹ / ₂
163.5B Metres	1 8	7 5	5 . 2 5	9 4	8	1 3 5	5 3 0	host sediment

Analyses by AMDEL

Bismuth and Gold below detection level Bi (10), Au (0.05 ppm) all samples

*132.77 m Semiquantitative spectrographic analysis
Additional elements Co (20), Ni (80), Pb (30), Sb (30), P (2000), A1 (1500),
Mg (200), Si (4000 ppm)

PLATE 3

Diagenetic Features

a. Gastropod within quartzose silt. Intraskeletal porosity is occluded by pyrite (lower, white) and resin (upper, black) which migrated into this porosity. This resin is brittle and crazed, indicating loss of moisture or other volatile components.

Photomicrograph, field of view 1.44 mm high; reflected light

from 100.73 metres

b. Healed fracture within a calcitic concretion (ferroan calcite) is occluded by fibrous ferroan calcite.

Photomicrograph, field of view 2.8 mm high; crossed-polars

from 133.5 metres

c. Cross section of horizontal cylindrical burrow (*Ophiomorpha*- like) occluded by pyrite and resin. Gravity-settled pyritic framboids form a geopetal surface in the lower part of the burrow. The upper area is a spongy intermesh-work of framboidal pyrite, resin and porosity. This overall fabric suggests that the resin was or became immiscible with the groundwater and floated within the porosity.

Photomicrograph, field of view 1.44 mm high; reflected light

from 127.75 metres

d. Detail of upper part of (c) showing discrete and interpenetrating framboids within a resin matrix.

Photomicrograph, field of view 600 microns high; reflected light

from 127.75 metres

e. Dolomitic concretion with nucleus of crazed chert, lies within a muddy silt. Synaeresis cracks are thinly coated with dolomitic druse cement and or a resinous film.

x 0.44; from 130.5 metres

f. Detail of e, showing fracture within chert that is coated with a film or desiccated crust of black resin (diterpenoid compounds). Speckled area is open porosity.

Photomicrograph, field of view 1.76 mm high; reflected light

from 130.5 metres

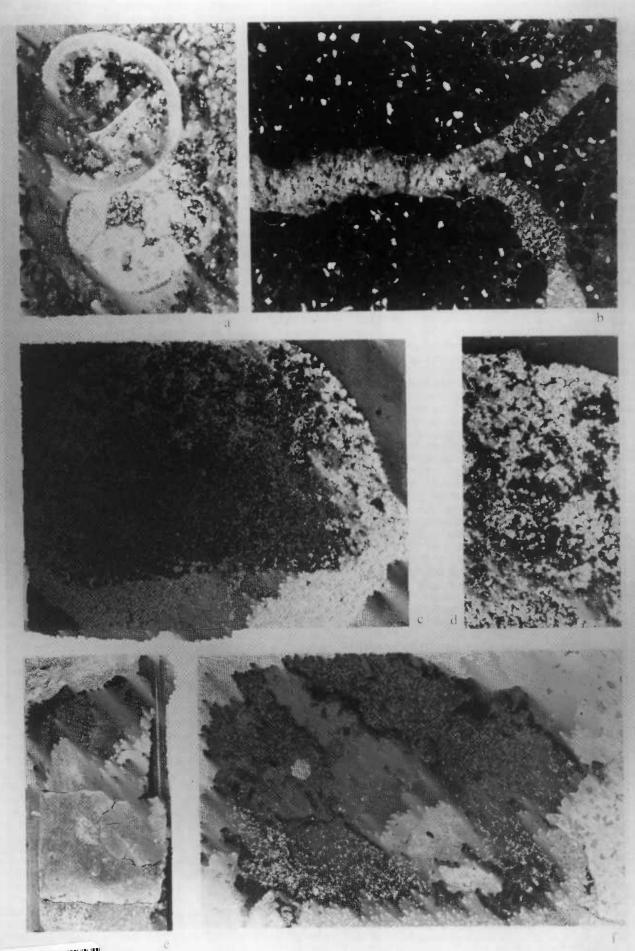


PLATE 3

chart, and this slowly penetrated the core over time. During drilling, 'rotten fish' and 'garlic' odours were unavoidably noted by the drillers. It is likely that traces of hydrogen sulphide were being released through the drilling mud. This phenomenon, in conjunction with the core darkening on exposure, suggests precipitation of very fine sulphides during the sudden temperature, pH and Eh change with exposure. The principal phases which may have formed at room temperature and neutral pH by the reaction of H₂S and HSwith fine-grained goethite or dissolved ferrous iron are black mackinawite and greigite (Berner, 1971).

The 'garlic' odour is attributed to arsenopyrite which occurs with pyrite in scattered intervals of Lithofacies D (1% as at 132.77 metres), Lithofacies C (0.2% as at 163.5 metres) and possibly in Lithofacies A (Figure 5, Table 1). The presence of arsenic and mobilized resinous material suggests a later diagenetic phase for arsenopyrite. The source of arsenic remains unresolved.

Resinous organic material

This organic material occurs microscopically as non-fluorescent opaque black blobs with a granular texture, and a dull grey reflectance under incident light (R₀% of 0.3-0.4%). Where visible to the naked eye, the resin has a bright vitreous lustre on conchoidal fractures of its crazed habit. One gas chromatographic analysis of a resinous extract in chloroform indicated a total absence of saturated hydrocarbons but the presence of diterpenoids (C20) and high concentrations of C35 compounds. The resinous material is most readily observed as a late void-occluding phase in intraskeletal porosity (Plate 3a), in synaeresis cracks within dolomite-chert nodules (Plate 3e,f) or in the larger horizontal burrows of Ophiomorpha and related malacostracans (Plate 3c,d). In the latter occurrence, framboidal pyrite is commonly associated. In other instances the resin is only a thin desiccated film over needle-like pyrite and arsenopyrite crystals within burrows where the porosity has not yet been totally occluded. The resin is more widespread in occurrence within burrow interparticle porosity in association with disseminated finely crystalline pyrite, and within the finer clastic host sediments. Resinous stains occur below the 120 metre level of the borehole in the lower 10 metres of Lithofacies E, Lithofacies D, scattered throughout Lithofacies C and in the lower part of Lithofacies A (Figure 5). Total organic carbon levels in the sequence are higher, up to 2.5% dry weight, near the Lithofacies D-E boundary (Figure 7). However it is unknown whether this TOC anomaly is a direct indication of the resin or perhaps the source material of the mobilized resin.

The occurrence documented in Plate 3c, above a geopetal accumulation of pyritic framboids and intermixed with pyrite in a spongy texture is strongly indicative of a later (mesogenetic) stage of emplacement as fluid which was both immiscible with and less dense than the groundwater.

Discussion: The origin of the resinous material remains speculative. In composition, the resin is most likely a derivative from wood or tree saps. Its habit and paragenetic associations are both in accordance with its migration up to relatively late stage (mesogenetic of Choquette and Pray, 1970). Possible sources are either the host sediment, or the underlying Renmark Group.

1) Geera Clay as a source: Wood fragments were observed only in three horizons, 67, 123, and 137 metres depth and although possible, these meagre occurrences do not seem significant. However, Truswell & others (1985) note that the pines, Araucariaceae, are consistently represented in the microflora and locally reach

frequencies as high as 35% within the Geera Clay in Oakvale 1. The aerial dispersal of such species is believed limited and *Araucaria*, at least, is only well recorded from within *Araucaria*-dominated forests. On this reasoning they inferred transport of pollen material to be entirely by water. In such a situation, it is possible that exuded resins from such forests may have also had similar transportation. This, however does not explain the predominance of later diagenetic occurrences without any associated evidence for pre-existing resin accumulations in the host sediment.

2) The Renmark Group as a source: As fluvial deltaic and fluvio-lacustrine derived sediments, this unit has potential for wood-derived diagenetic products. The Renmark Group interdigitates with and underlies the Geera Clay (Figure 2). If the resins have migrated from here, it may have been lateral migration along aquifers and into the aquitard as well as vertical migration from the underlying aquifer. The resin probably migrated in a low viscosity state, whether emulsified in water or borne by organic solvents, until it was trapped in blind pockets of porosity where it separated out and floated above the groundwater in this porosity or just slowly lost more volatile components leaving it to harden and desiccate in situ.

POROSITY

The sequence has very low porosity which is predominantly interparticle porosity within burrows. Because of the spatial separation between burrows, and their resultant infrequent intersection, this remnant porosity does not contribute much to permeability of the sequence. Most intervals are 0%, less than 1%, and a few reach 7% porosity. This contrasts with original (eogenetic) porosity which was much more variable, from 30% interparticle porosity in sands, down to 5-10% burrow interparticle porosity in muddy silts, and muds.

Reduction of porosity from early diagenesis to present, from 7-30% down to 3-% was mainly by cementation in bioturbation and porous sands, as well as by compaction of soft pellets in the finer host sediment. Cements are predominantly clays and carbonate.

Porosity estimates are qualitative, based on limited petrographic examination (Appendix IV) and summarized in Figure 7. A more consistent documentation (but less accurate) is available in the detailed litholog of Appendix I.

In the lowermost Lithofacies A, primary burrow interparticle porosities (Plate 1e) of about 5% are reduced to approx. 2% by clay (glauconite?) and minor dolomite porefill.

The very fine quartz sands of Lithofacies B had initially high (25-30%) interparticle porosity which has been reduced to 0-3% (1% interparticle and 2% intraskeletal) by precipitation of both clay (glauconite?) and ferroan calcite. The calcite precipitation was relatively late, most probably in groundwaters with low sulphate content. Clay precipitation may have been much earlier, sourced from recrystallization of clays already present in the sediment.

Lithofacies C is now virtually impervious with no apparent porosity except in loose networks of *Ophiomorpha* burrows, pyritized and resin filled, but with relict porosity in some places. Initial burrow interparticle porosity was 5-10% of the sediment.

Present porosity in Lithofacies D ranges from 0 to 3%. Originally burrow interparticle porosity was 5-10%. Clays and minor pyrite now occlude this earlier porosity. Two clay horizons constitute significant vertical permeability barriers. They have minimal bioturbation. An interstratified muddy silt has at present, and possibly back to the eogenetic phase, sulphate mould porosity which does not appear interconnected sufficiently to increase permeability.

Early porosity in Lithofacies E was variable, from 20 to 0%. This was predominantly burrow interparticle porosity, 3.6% (standard deviation 3.2%, n=7) and minor interparticle porosity of 9.6% (standard deviation 9.6%, n=3). This has been reduced to 0.15% (0.3% standard deviation, n=10) with the precipitation of early pyrite, clays and manganese dioxide?, and late ferroan calcite.

Lithofacies F also had variable original porosity of 0-8% (3.3% mean, 3.5% standard deviation, n=7) as predominantly burrow interparticle porosity with minor intraskeletal porosity. Porosity has remained unvaried or slightly reduced in burrows but lost from former intraskeletal porosity (Plate 2e,f). Present porosity is estimated to be 1.6% (standard deviation 2.8%, n=7). Reduction of porosity was mainly by calcite and pyritic cements.

PARAGENESIS

The paragenesis of the sequence is summarized in Figure 7. The most dramatic diagenetic changes appear early, with syndepositional glauconitization and subsequent oxidation of sediments and hardgrounds, followed by early post-depositional pyrite precipitation, growth of carbonate nodules, and initiation of cementation in burrow and interparticle porosity by clays and carbonate. After compaction of the sediment, cementation and replacement by clays and carbonate continued at a slower rate, with final pyrite and resin occlusion of remaining porosity.

GENERAL DISCUSSION

Porosity has been consistently reduced with time. During early diagenesis, there was probably vertical permeability, albeit low, up through the sequence, via burrow interparticle porosity in the muddier sediments, to the clay beds of Lithofacies D. These have not been burrowed and consequently remained impermeable. The upper Lithofacies would have been permeable to vertical fluid migration.

Lateral porosity and permeability was initially high in the sands (Lithofacies B, and intervals of C and E) but this would have been strongly influenced by the geometry of the sand bodies, their continuity, and diachroneity within the sequence. Apart from speculation on depositional facies models based on one hole, additional drilling and stratigraphic logging would be necessary to build a more reliable understanding of sediment body geometry.

Lithofacies D and the lower part of E appear to be the most impermeable barrier to upward migration of groundwater during early diagenesis. The presence of halite and gypsum above, but not below Lithofacies D (Figure 8), is congruent with this model.

With a general occlusion of porosity throughout the sequence since early diagenesis, vertical permeability has been greatly reduced, and lateral permeability remains only within specific intervals.

CONCLUSIONS

- 1. The cored sequence is characterized by dark and carbonaceous semiconsolidated silts and muddy silts (65%), unconsolidated and partly indurated sands (15%), mud (14%), and black plastic clays (6%).
- 2. Generally the clays and clay fraction of muds comprise dominant smectite, sub-dominant kaolinite, minor mica-illite-glauconite and mixed layer smectite-illite.
- 3. Six Lithofacies are recognized in Piangil West 1 borehole. Lithofacies A to E are considered Geera Clay, and Lithofacies F Bookpurnong beds. This is overlain by the Parilla Sands.
- 4. Deposition of the sequence was by micro-progradational cycles (shoaling-upward cycles) during a rise in relative sea level to produce shallow intertidal flat, shallow estuarine channel, subtidal-intertidal restricted marine and supratidal facies in a convoluted embayed configuration. As the rate of sea-level rise diminished, the transgressive environments were subjected to more reworking and a simpler subparallel coastal configuration developed with more open marine, supratidal and paralic conditions being established.
- 5. Bioturbation in the fine siliciclastic sediments enhanced the original porosity of the sequence. Early porosity ranged from zero in the clays, to about 5-10% in the silts, and up to 30% in sands. Burrow interparticle porosity predominated, with additional interparticle porosity in sorted coarse silts and sands. The combined effect of early diagenetic cementation by clays, carbonate and pyrite, and subsequent compaction of the sequence reduced porosity to an existing range of 0-7% as interparticle and burrow interparticle porosity types.
- 6. Clays, glauconite, pyrite, calcite and dolomite precipitated in the sediment at an early stage. Carbonate and minor pyrite precipitation continued as both replacement and porefill during compaction to very late diagenesis when pyrite, resinous organic matter, and traces of arsenopyrite occluded remaining porosity.
- 7. During early diagenesis, vertical permeability in the sequence was low, created in part by the ubiquitous bioturbation. Lithofacies D, with clay bands up to 1.5 metres thick, would have been a permeability barrier. Depending on spatial configurations of Lithofacies B (shallow channel sands), there may have been bypass permeability to this barrier until later in diagenesis when the sands were totally occluded by cement.
- 8. The possibility of vertical groundwater flow, at least for the earlier part of diagenesis, is supported by the occurrence of late resinous matter in burrow porosity. The resin material has most probably been derived from woody tissue that is prolific in the underlying Renmark Group.

ACKNOWLEDGEMENTS

Thanks are extended to the Victorian Department of Industry, Technology and Resources which undertook the drilling of Piangil West 1 bore. Thanks are also extendry

to Ken Heighway, Arthur Wilson, and Frank Kane of BMR for their cooperation in logistics and technical assistance. Michael Doyle kindly undertook the photography and printing of macrofossil specimens. Isopach and stratigraphic data in Figures 1 and 2 were provided by Campbell Brown and the text was edited by John Perry.

REFERENCES

- Berner, R.A., 1971 Principles of chemical sedimentology. New York, McGraw Hill, 240 p.
- Bromley, R.G., & Ekdale, A.A., 1984 Chondrites: a trace fossil indicator of anoxia in sediments. *Science*, v. 224, p. 872-874.
- Brown, C.M., 1983 Discussion: a Cainozoic history of Australia's southeast highlands. *Journal of the Geological Society of Australia*, 30, 483-486.
- Brown, C.M., 1984 Murray Basin. BMR 84, Yearbook of the Bureau of Mineral Resources, Geology and Geophysics.
- Brown, C.M., 1985 Murray Basin, southeastern Australia: stratigraphy and resource potential a synopsis. *Bureau of Mineral Resources, Australia, Report*, 264,24p.
- Brown, C.M., & Stephenson, A.E., 1986 Murray Basin, southeastern Australia: subsurface stratigraphic database. *Bureau of Mineral Resources, Australia, Report*, 262, 60p.
- Choquette, P.W., & Pray, L.C., 1970 Geological nomenclature and classification of porosity in sedimentary carbonates. *American Association of Petroleum Geologists*, *Bulletin*, v. 54, p.207-250.
- Davies, P.J., 1971 Calcite precipitation and recrystallization fabrics their significance in Jurassic limestones of Europe. *Journal, Geological Society of Australia*, 18, 279-292.
- Ekdale, A.A., Bromley, R.G., & Pemberton, S.G., 1984 Ichnology: trace fossils in sedimentology and stratigraphy. *Society of Economic Paleontologists and Mineralogists, Short Course*, 15, 317p.
- Grim, R.E., 1968 Clay Mineralogy, McGraw Hill, New York, 596p.
- Truswell, E.M., Sluiter, I.R., & Harris, W.K., 1985 Palynology of the Oligocene-Miocene sequence in the Oakvale-1 corehole, western Murray Basin, South Australia. *BMR Journal of Australian Geology and Geophysics*, 9, p. 267-295.
- Walther, J, 1893/94 Einleitung in die Geologic als historiche Wissenschaft. Beobachtungen uber die Bildung der Gesteine und ihrer organischen Einschlusse: *Jena, Gustav Fische*r, 1055p. (3vols.).
- Wentworth, C.K., 1922 A scale of grade and class terms for clastic sediments. *Journal of Geology*, v.30, p. 377-392.

APPENDIX I

DETAILED LITHOLOG OF PLANGIL WEST 1 BOREHOLE

EXPLANATION AND LEGEND

Format

The stratigraphic log is arranged in 8 columns, being from left to right:

- 1. Depth below surface in metres and sampled intervals
- 2. Graphic litholog
- 3. Sedimentary structures
- 4. Macrofauna
- 5. Colour
- 6. Degree of induration
- 7. Lithological description
- 8. Diagenetic features

Scale

The scale on the left hand side indicates depth below surface in metres. Sample intervals are of 4 types:

- P Petrographic
- X Mineralogic
- G Geochemical

TOC Total Organic Carbon

conglomerate conglomerate conglomerate sand clay mud calcareous dolomitic concretion synaeresis cracks

Gradational changes between lithologies have no line separating symbols as used for abrupt changes. Where the contrast is apparent but not abrupt, a dashed line is used for separation. Non-planar contacts are designated with relief and cross section comparable to their form.

Sedimentary Structure Log

Sedimentary structures are designated in graphic form in their relative orientation and abundance observed.

1	cross-stratification
Ξ	lamination
\leq	cross-lamination
±	lamination with fining upwards of particle size
₹	lamination with coarsening upwards of particle size
\ll	disturbed bedding
22	erosional surface
	flaser structures
7	desiccation crack
XX.	slickenslided cellular texture
63	skeletal hash
~	erosional relief

Bioturbation

€Ð

variably-oriented small tubules ≥ 0.5 mm diameter

variably-oriented medium tubules and complex burrows, 1-2 mmD

a large tubes ≥ 4 mm D

medium or large burrow with central mud trace

very large burrow infilled by variety of sediment types ≥ 10 mm

very fine traces, ubiquitously pyritized, frequently bifurcate, penetrating bedding or being confined to laminar parting surfaces. rootlets? or very fine burrows?

very large boring/dominichnia with concentrated mud-rich striations around a pyritic centre

```
\leq 10\% Approximated % abundance of all bioturbation in the sediment
      pyritized burrow
 Macrofauna
 Brachiopod
 Bryozoan
      discoidal colony
      planar colony
      branching colony
Coprolite
Echinoid
      spine
Foraminifera
      agglutinated
Fish
Gastropod
      fusiform
      turreted
      pupaeform
      snail
Malacostracan
Ostracod
Pelecypod
      ostrea
Pellet
Plant material
Scaphopod
Scleractinian, solitary coral
Wood fragment
General subscripts
```

р١

br

Sp

B

t

рu

Sn

0

Р

a	articulated
ab	abraded

disarticulated

d

fr fragment
gl glauconitic
hs hash
sm small

Colour

mtl

The colour of wet core is determined by visual comparison with the Geological Society of America Rock-Colour Chart, documented by both an abbreviated descriptive term and the numerical designation in square parentheses. Where the rock is variegated due to bioturbation, lamination or speckled by coloured particles, the colour variations are qualified accordingly.

1t light dk dark m medium olv olive gу grey blk black grn green brown brn yel yellow red red/reddish ptchy patchy

mottled

Degree of Induration, Coherency

Eleven categories or combinations thereof are used to indicate the mechanical and textural properties of the wet core.

indrtd

indurated

frbl

friable

cmpct

compact

fiss

fissile

uncons

unconsolidated

crmbl

crumbly

slick

slickenslided

waxy

waxy

plstc

plastic

cnchdl

conchoidal fracturing

sucrosic

sucrosic gritty appearance along broken surface

Lithological Description

The lithology is qualified by descriptive adjectives, indicating component particles, sedimentary structures, and their relative abundance (underlining - greater abundance, parenthesis - reduced abundance). Additional qualification of any component or structure is given in square brackets immediately following the feature to be qualified.

Most of the abbreviations used are standard BMR abbreviations. As a general rule of thumb, the abbreviation is derived by removing vowels. abbreviated nouns are indicated by upper case and abbreviated adjectives by lower case.

Particle sizes are documented in accordance with the classification of Wentworth (1922).

mm 256		
	cbl	cobble
64		
	pbl	pebble
4		
	g	granule
2		
	vc	very coarse sand
1		
	С	coarse sand
0.5		
	m	medium sand
0.25	 f	Pina and
	T	fine sand
0.125	vf	rionii fina sand
		very fine sand
0.0625-		
	slt	silt
2μ		
	с	clay

Abbreviations for Lithological Description

ang	angular	Ptchs	patches
Biotrbn	bioturbation	pel	pelletal
Concrt	concretion	por	porous
Clay	clay	pyrt	pyritic
Cmnt	cement	Pyrt	pyrite
dissem	disseminated	pebbl	pebble
frctd	fractured	rndd	rounded
facetdn	faceted	Replmnt	replacement
frmbdl	framboidal	Snd	sand
glauc	glauconitic	Sndst	sandstone
Gastrp	gastropod	Slt	silt
intbdd	interbedded	Sltst	siltstone
Intrclst	intraclast	subang	subangular
intlmn	interlaminated	subsph	subspheroidal
lmntd	laminated	srt	sorted
Lmntn	Lamination	skltl	skeletal
Xlmntnd	crosslamination	staind	stained
lrg	large	slick	slickenslided
Mud	mud	tublr	tubular
Mdst	mudstone	trace	trace
mtl	mottled	Text	texture
Nodl	nodule		
Nucl	nucleus		
Orgncs	organic material		

Diagenetic Features

These are generally recorded in the last column but, where necessary, follow the lithological description separated by colon or full stop.

APPENDIX 1
Detailed Litholog of Piangil West 1 Borehole

			Detaile	d Litholog	of Plangil	West	t 1 Borehole	1
DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA		DEGREE OF Indur- Ation	DESCRIPTION	DIA- GENESIS
67 -	P ► X ►			Ø P]	olv blk [572.1] It olv gy [575.2] It olv gy [575/2] (mtl) m olv gy	plst/frb concr. uncons	Snd. ((srt)), f. slt. qtz[(mic), unif]. Concrtn, cl Sltst. (qtz); pyrt Cent in Nodl Snd. vf. slt. qtz [subeng], fldsp, mic; unif srt Snd. vf-f. qtz [subendi], (fldsp), (mic) [glauc], (lith); unif. srt.	Pyrt
68 –	X ≻				lt olv gy [515/2]		Srd. vf-f. qtz[mdd-submdd]. (fldsp) 5%. (mic) [Biot. Musc.]5%; incr suberg particles downsection.	
-] X,P ►			8?	gy blk [12] atl olv blk[512/1]	plstc	Clay: (srd) ₁₀ , ptbl [ang, Sitst. m snd]; qtz [mrdd, brn staind surfaces], org -rich;cmbly	
82 -		(,,0)			and one displaying	·		
_			000	8 p? 7	gy blk [N2] olv blk [572/1]	plstc/ crmbl	Mai? smilO% [qtz, m. maid], foram Biotrin, 2mmD, Slt [por, srt] infill; mtl.	pyrt Forums
88 -	P ≻			Ø 🖰 Pgl	gy blik [N2]	cmpet	Mud? (srd), pel [owdzd Glauc], skitl; Pyrt repl skitl frags + tubules [frmtdl Text]	Pyrt
89 –	P►		``\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>P</u> ල ල	gan gy blk[501/1] mtl dk olv gy[572/2] ptchy dk yel bra olv blk [572/1] m olv gy [574/2] dk olv gy [573/1] darkening to gy blk [32]	plstc plstc plstc plstc	Sit. qtz, pel2% [glauc, gm blk], intreist [mut]; biotrin Mtl of Sit, snd [qtz], mic pel 5-10% abrupt colour chage Snd, vf-sit, qtz, mic, (cl), pel; (srt), unif mtl Sit, sd [vf qtz], pel. Sit, sd [qtz], (pel), cl	Ermbell Pyrt
-	Record 19	87/25					, II	/154-16/9

		`						2
ОЕРТН (М)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF Indur- Ation	DESCRIPTION	DIA- GENESIS
99 –								
_	P ≻			(P) Ø Ø P(V)B	dk olv sy [572/2] sy blk [72] mt olv sy [573/2] olv sy blk [72] mt dk yel bm [10/R2/2]	crubl frbl	Sit. snd [vf], qtz, pel, introlst [dk gy mud], cl, mic. Grvl, snd [vc], grmn/pbbl [sil Sitst, mid, fretd], matrix of vf Snd. cl Snd, vf-sit [qtz, coated grains], biotrin Mil	
100 -		7.2.4	00	¥¥ d	gy blk [N2] mtl		Sit, cl. (pel). (mic)	fruiddl Pyrt
		/\/\/ @		. Ø				calc/ Concrtn
-	P ► P ►			BOSP BAS	dk olv gy [5/2/2] dk olv gy [5/2/1]	waxy cons	Snd, f-m, coid [glanc pyrt Nucl]; calc Cant Slt, cl. (srd) [vf qtz], mic; blk glanc coated gruins);	Pyrt
101				8 807	dk olv gy [5/2/1]	crup) wexy	Biotrtn, lemD, subvert/noriz, pyrt or sit + srd infill Sit, srd [coated grains]; mtl Biotrtn, irreg, > lemD, ve srd + skitl infill Mtd, mtl [lemD patches],	freidl Pyrt
	P >		· · · (=)	0 8 0fr0 8v	bm blk [5YR2/1]	crubl	Mud, snd [coated grains]; Biotrin, reddish slt • snd infill	pyrt Blebs
	X ►		0 0 = V	8(0)0sp 00sp8?	dk olv blk(5Y1/1)	crmbl waxy	Snd, cl; snd Clay intlmntd, Clay, * Snd, clay, slt [blk pel] * Slt, cl, (glauc), qtz	calc pyrt Blebs in Biotrtn
102	P >			8 0d 8 0a	bm blk [51R2/1] gy blk [N2]	fiss waxy (fiss) waxy	Clay, slt, (snd), (skltl), (pel), mic Biotrin, v thin, infill, Slt-Snd vf. Concrin, in snd, slt Mid	pyrt Concren pyrt sm Biotrin Pyrt, Calc
				-				
				ı	,			
103-								
	·							

108 - TOC	DIA- GENESIS	DESCRIPTION	DEGREE OF Indur- Ation	COLOUR	FAUNA	SEDIMENTARY STRUCTURES	LITHOLOGY	SAMPLE	DEPTH (M)
TOP - P - C - C - C - C - C - C - C - C -								· -	. [
TOC P P			anahdl				7 /		
107 - P S & B & B & O O S & S & D & O O S & S & D & O O S & S & D & O O O O O O O O O O	frankil part cus to Biotrin	[blk glaxe], mic;Biotrtn 2-4mm D, infill							- 4
Sit, sp. (sp.), pal - cond (plane); edit incom, selful Sit, que, ger Cod P	Pyrt	mtl Biotron 1-2mm D, 10-15 mm D, concrure infill)	MEDG.		880d ⊙sp &	(≡)° (≡)	/./-		
Sit. cl. of Graph, with get graph of the control	pyrt Biotrin	Slt. (srt): Biotrbn 1-2 mmD. infill Slt. srt. skltl	MENG.	olv blk [512/1]	8+01080 1800 fr	حيال ال≡		P >	107
Toc Sp & 8 dx civ gy (5021) capec successed Sit, cl. v* ent. nat. (egs. eng) pai (glana) cl. v* ent. nat. (egs. eng) eng (glana) cl. v* ent. nat. (egs. eng) eng (glana) cl. v* ent. nat. (egs. eng) eng (egs. eng)	freidl Pyrt in lrg Biotrie	Slt, qtz, [arg.], pel • coid [glauc]; stl; Biotrin, infill Slt, qtz, <u>srt</u>	mands.	dk olv gy [5/2/2]		80° N			
Secretarial Silicotani, rectical, Seale, Sports formed all acts at Six (earl), Immor of bile poory of the poor of the poory of the poory of the poory of the poory of the poor of the poory of the poor of the poory of the poor of the poory of the poory of the poor of the poory of the poory of the poor of the p		Clay? (dx clay lines on outside of core below)	plstc?						1
Color of State Colo	complete Replant of vertical nar- by funial Pyra	Biotrtn, vertical, 4mmD, pyrt; horzntl		dk olv gy [572/1]	(0d p (0sp 88) 41%	° (≡)		TOC➤	108-
asso Net-term and oliv gr (594/2) Sit. ci. Sta (or part) gal (gaue) intends in the method and in Sign of the little intends. Sintends and state and state of the part of the cate in the cate (in the cate (in 2 mil), infull srg sit. (srg) Sit. ci. Sta (or part) gal (gaue) intend in the cate (in 2 mil), infull srg sit. (srg) Sit. ci. Sta (or part) gal (gaue) intend in the cate (in 2 mil), infull srg sit. (srg) Sit. ci. Sta (or part) gal (gaue) intend in the cate (in 2 mil), infull srg sit. (srg) Sit. ci. Sta (or part), infull srg sit. (srg)	frebdl pyrtin lrg vertical + (horizntl) Biotrbn	Snd <u>[srt</u> , reddish qtz] and gy (srt) Slt Biotr i n infill Slt, snd, <u>srt</u> , brn + Slt, (srt),	1 1	vf unif Mtl, lightening with				X ►	
Do over [54/2] Over [54/2] Individ Micrite, sit, qtz [mid], sic, pel [glaxc]; fretd	pyrt lrg vert. Biotrbn	intbodd, intland reddish Clay + vf Biotron	clotted	meso Mtl-brn/	(0)			G >	109 -
dc olv gy [573/2] sucrosic contents and sucr	Calc + ? Sil	Micrite, slt. qtz [mdd], mic, pel [glauc];fretd	indrtd	olv gy [5x4/2]	Na		H.:	P 🕿	. [
de olv gy [573/2] biotrtn mtl olv gy Description of the plane String	dissem frmbil Pyrt	Sit, cl, snd [qtz, midd, vf], pel [glauc, red, oxdzd]. m-lng Biotrtn infill <u>srt</u> bm vf Snd	waxy	dk olv gy [5Y2/2] mtl lt olv gy	Od to fr	0 0 0		• • •	
Slt. (vf-f snd), glauc Snd ((srt)), qtz [f-vf, subong, gm pel [glauc] Snd. ((srt)), qtz [f-vf, mdd, mic, pel [glauc]; biotrtd Mnd matrix. Snd. ((srt)), qtz [f-vf, mdd, mic, pel [glauc]; biotrtd Mnd matrix. Snd. (srt), qtz, mic, pel;Biotrtn, 1-4mmD);infill Snd srt. Snd. stt, qtz [f-vf, mdd - subong], nic, pel [glauc], mnd matrix Biotrtn subtly apparent. Clayler to base	patches dissum fimbdl Pyrt	prolific Biotrbn, 1-2 mmD, subhoriz, infill srt Slt		biotrum mtl	0	000			110-
dx olv gy [572/2] plstc Srd, ((srt)), qtz [f-vf, mdd, mic, pel [glauc]; biotrtd Mxd matrix. Od olv gy [573/2] sucrosic Srd(srt), qtz, mic, pel;Biotrtn,1-4mmD);infill Srd srt. dx olv gy [575/2] dx olv gy [575/2] sucrosic Srd, slt, qtz [f-vf, mdd - subarg], nic, pel [glauc], mxd matrix Biotrtn subtly apparent. Clayler to base		i			od, sp	1100		X >	
atl it olv gy [575/2] dx olv gy [572/2] darkens to botton Sind, sit, qtz [f-vf, mdd - subong], mic, pel [glauc], mud maturix Biotutn subtly apparent. Clayler to base		Snd, ((srt)), qtz [f-vf, mdd, mic, pel [glauc];	plstc	ok olv gy [572/2]	_				ا
dk olv gy [5]2/2] darkens to botton plstc/ sucrosic mul matrix Biotrin subtly apparent. Clayler to base	Dol, reduced		sucrosic	olv gy [5/3/2] mtl lt olv gv [5/5/2]	⊘d	\\° 1/ ·•	∓ 1	P ►	7
		Srd, slt, qtz [f-vf, mdd - subong], mic, pel [glauc], mul matrix Biotrin subtly apparent. Clayier to base	plstc/ sucresic	dk olv gy [5/2/2]		0 0			112 -
							.\		

DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESI:
2			•				,	<u>.</u>
		7. (±)	(≡) ♥ 。	(0 sp 0	olv blk [5/2/1]	cmput/ plstc	Slt, smd, cl. qtz (vf-slt,mud-subang),mic, cl matrix; (Calc)	freidl Pyrt [nodl + diss
1	X►	/: \ . \ \ \		((0))	olv gy [5Y3/2] mtl. It olv gy	cmpet	intlantd Md; Slt, Snd [vf-f, subang-craid]; Biourtn 3 cmD, infill, Snd, <u>srt</u> , vf qtz, uncons	pyrt tubes 3 : encl dissem Pyrt
	•		Volla	((o sp))	olv gy [5:3/2] mtl Biotrtn lt olv gy [5:5/2]	cmpct/ sucrosic	Mil Slt, snd. [vf-f qiz, subang, bm * clear], aic, slt/cl matrix: Biourbn, infill slt, snd [vf-f, srt, uncons]	pyrt core in Biotrbn • scattered hos tubes
,]								
_		·						
		0,00		♦sp	lt olv gy [573/2] olv gy [573/2] mtl Biotrtn	plstc;	Snd, qtz [f-vf], (srt), and atrx, clast? intlantd Mnd [((sklt))] and Slt; [srt.qtz]	calc
1 -			300		olv gy [514/2]		lighter coloured, biotrotd	
	P	+ + +	0	0d 6 ○sp 86fr0d,sp	olv gy [5;4/1] olv gy [5;3/2]	frbl indrtd	Srd, vf. <u>srt</u> , qtz [subong-subsph], (pel), [glauc + pyrt], intrelst [mud lumps]; var calc Omnt in bends Slt, (cl), qtz	calc Cmnt
-	TOC>			, , , , , ,		plstc		interparticle
				, .			presumed plate Mud which is pressed against base of indurated Sndst at 114.35m: Possible also that unconsolidated sand occurs between Sndst and Mud.	
5								
		·			V			
_								
_					·			

DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESIS
119 –			// °° °.	(⊙ sp,d) Øo & 8	bm bik (5\R2/1)	waxy carpet	Slt, cl. <u>mtrx</u> , qtz [subong], mic (srt); Biotrtn v small, infill Slt, [qtz, <u>srt]</u>	dissom frabil Pyrt in Biotiti
				(0) o a	dk bm gy [51R3/1] (mtl)	wexty/ capact	Slt. (srt), mic. qtz [subang]; small Biotrtn, snfill Slt, srt. pyrt; lrg Biotrtn, >2mmD	Pyrt + resin
120 -				8 0 a	dk ovl gy [573/1] mtl, olv gy [574/1]	Capet/ wavy	Slt, (srt), qtz [ang, subsph], ((cl)), mic; Biotutn 1-1}cm, infill Slt, <u>srt</u> , uncors,	dissem Pyrt
		/\/		(Od)sm .⊙sp,d 003≠	olv blk [5/2/1] biotrbn Mtl lt olv gy [5/6/2]	cmpct/ waxy	Slt, cl. qtz [ang], mic [biotite musc], skltl [hash 5%] mtl 2 tone Slt [<u>srt</u>] in Biotrtn [subhoriz,.5-1.5mm0]	pyrt repl shells, patch
	₽			(8) 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	olv gv [574/1] olv blk [572/1] bloutin Mil lt olv gv [575,2]	indrtd capet/ waxy	Sltst, and, mud lumps, pel [glauc]; over biotrbtd Mud, Slt, (srt), qtz, mic [biot + musc, f-m and] Biotrin, subhoriz., .5-lumD, infill, lt. srt, qtz mic	Pyrt; fraction of, Pyrt, ng; Soltl + featin
121-			-				· v. soft	
				. /		unaans		
122-				sYod	olv gy [5Y3/2] biourtn Mtl	crwbl/ slick	Snd, slt, (srt), qtz [ang, subsph], peaty? mic;	fræbdl Pyrt my Biotrtn
			-1076	Ød Ø ◇sp	lt olv gy [514/2] hamog by Biotu tn	cmpet/ ermbl	Biotron infill Snd (vf-f, qtz, ang. subsph) por crumbly zones slickensidad dk reddish gy + Pyrt; clotted (soil?)	(Pyrt) in skiti Hash
123-	X >		10105	(ofr) 於8	olv gy [5/3/2] olv blk [5/2/1]	cumbl plstc	Srd, slt, vf-f qtz, skltl hash, mic Srd, peaty, cl, (srt); qtz [f], glauc pel	dissem Pyrt
123-			0000	O o sp o sp,a D	olv blk [5/2/1] dk olv gy [5/2/2]	ampet frbl	Slt. (srt), peaty, qtz [ang], mic [biot * musc]; Biotrtn sm, infill, Slt. srt. qtz	resin? • Pyrt inside Gastipå
_				OF SEE	lt olv bm [5:5/6] biotrhn infill dk gy [5:2/2] mtl	capet	Snd, vf. (srt). qtz [ang], mic; mtl towards bottom infill, Snd [vf-f qtz, yel, submodd], por Slt, snd, qtz. [ang], mic, (srt).; Biotrtn infill Pyrt or Snd-Slt, srt, qtz, resin	pyrt • rosin stains in Cristin
124-			00	O OSP BA	dk yel bm [101R3/2] olv blk [5Y2/1]	waxy/ cmpct	Snd [vf-f], Sit, qtz [ang, nonsph], (mic), Cl;	Pyrt + resin
	P >			8 (8) Ofr (Od)0 sp	dk ovl gy [5Y2/2] biotrbn Mtl		Biotrin 10%, v sm; (Lantn with subhoriz pyrt debris	in Cestrpds; dissem fruball Pyrt
				((3)) ofr	lt olv gy [514/2]	wesky.	Slt, cl?, and [vf], qtz [ang,] mic (srt); Biotrbn, 1-2 mmD,[fodichnia], infill Srd [vf qtz, ang],ant, por, frbl	pyrt skiti Hash. Ing Pyrt Bioto
125 —			00 60	₩d		waxy; corpot	•	

<u> </u>						,		6
DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF Indur- Ation	DESCRIPTION	DIA- GENESIS
	P►		0 0 0	&Bagg &Y	olv gv [5Y3/2]	indrtd	Pokst, skltl. slt. (mud)	
			9/10/10	OYOSP	olv gy [5Y2/2]	ampet	Slt, qtz [ang, clear], mic; Biotrbn small, subboriz, 1-1}mmD infill	vf dissam Pyr: repl Sklt1
				•	lt olv gy [5\5/2]		Slt srt	i i i i i i i i i i i i i i i i i i i
			ໍຸ່້	Od Osm	bin blk [5/R2/1]	waxy	Slt, (srt), qtz [ang], mic [biot + musc]	(pyrt) Replant
			,	Σ ΡΙ	olv blk [5Y2/1]	WEDGY	Biotrbn smaller to bottom, subhoriz; infill, Slt,	of Biotrun
	X ≻		0					
100	TOC>				dkolvgy [⋽Y2/2]	ompet/	 Slt, (srt), qtz [Lang], mic [biot + musc];	fimbal pyrt (tr.:
126 -				کم₄ ^{⇔ sp}		waxy	Biotrin v small, infill Slt, qtz, srt	in Bioteta
				(Oa) \circ 5p δ			,	1
				⊚ hs				i i
			0000	0 113	olv blk [5Y2/1]	waxy	Slt. (srt), qtz [ang], mic [biot + musc];	Pyrt Replant of
_				(8)	0.1V 0.1K [51.27.1]	1	small subheriz Bietrum th/out.	lrg Biotrbn
		<u> </u>	0000					}
			000-0			}		1
407				(g) (gg)	dk olv gy [5Y2/2]	waxy/	Sit (srt), qtz [ang, clear], mica [m Snd];	Pyrt +
127 –			71	(O) (M) (⊙irregular)	mtl Biotrbn lt olv gy [574/4]	ampet	Biotrum, of dissem pyrt in <u>srt</u> Slt	resin in Ophiomorphia
i					,			
				(0d) (ohs)	olv blk [5Y2/1]	waxy/ cmpet	Slt, (srt), qtz [slt-f snd, arg; lrg grains brn staind], mic, skitl	Pyrt + resin in
			ا م م م	(0 d, sp)		ļ .		<u>Ophionorph</u> n
			000					
	P►	: • • •	5000					1
			000	((Od,0)	olv blk [5Y2/1] mtl Biotrbn	waxy/ ompot	Sit, (srt), qt2 [sit-vf srd, ang], glauc; Pyrt	+ resin
128 –	P►	1///	0000	(Q 2b)(Q) V	dk yel bm [10\R4/2]		Biotrbn 1-2mmD, infill Slt. qtz, [ambor colrd), srt	in <u>Ophiomo</u> gyka
120 -	TOC>	ンベン	(15%	(-)	bm blk [5\R2/1]	waxy/ cnchdl	Mid, qtz [ang. Slt-f snd. brown staind], pel [glauc]: Biourtn subboriz, sn. pprt	pyrt lrg Biotrbr
				(p)	ı	}	+ slt infill	1
			2%					1 1
_			<u></u>	(0a) p	olv blk [5Y2/1]		Manager for the Advisor of the	
		1.7.5	(E). , (/.	(Oa) p	ala ku (mna)	empet/ enchdl	Slt, d, qtz [ang], pel [glauc], mic	Pyrt Skltil + lrg Biotata
			ໍ	(გ)	olv blk [5½2/1]		Sit, (cl), qtz [sit-vf, ang], pol [glauc], mic; Biotrbn infill snd [(srt), f, glauc]	pyrt Biotrtn
			0000	(0)	_	[.		{ }
129 –	P►	0./0.	00000	(7) a	bm blk[5YR2/1]mtl	clotted	Much, homog; <u>Biotro</u> n infill Snd, (srt), vf-f, qtz, mic [50%], por; resin or Goothite?	dissem pyrt. Comt in Biotrio
120	F >	>:1>:	(-)000	8agg	_ dk yel bm [10\R3/1]		Med (Acres) or Fo 2	
		- · · · · · · · · · · · · · · · · · · ·	5-10%	(Ofr) hs	bm blk[51R2/1] olv blk [512/1]	aspet i	Mud, (lmntd), qtz [ang], mic Slt, cl. qtz [ang], (srt), pel [glaux],mic;	[
			0000	ohs y	Coro pre [215/1]	GILCE	Biotrhn infill f-vf Sad, (set), but could qtz,fbl	Pyrt Slick; resin Coethur?
		[:\:\:	000	(\$ sp)(\$	Columbia form			}
			000	(03p)	olv blk [5/2/1] mtl lt olv gy[5/5/1]		Snd, slt - vf [qtz, ang], pel [m, glauc], mic; Biotron, sm; infill Snd, f, qtz [awg], srt, por, vf	pyrt Biotriu
	P ➤	~ - 1	1/ 000	od s	olv blk [572/1] mtl Biotrbn lt olv gy [575/1]	gritty	pyrt Cmrt; m, Snd, f, qtz, <u>srt, calc</u> Mud + calc Nodule,; Biotrbn .25% infill Slt, (srt), m snd [glauc].	Slickenslides calc Concru
	, ,	17/2/7	- 15%	⊅Sosp ⇒fr	oner 5/6/1 dk yel bm[10/84/2]	ampet	mani (Brant).	
130 -					<u> </u>			ļ.
. 55			0000	∯ fr,p	olv blk [5Y2/1] mtl Biotrtn	waxy	Sit, (srt), (cl), qtz [ang, (brown-stained)],	resin in Brytanse:
			n o w	ðaγ	lt yel bm[10YR5/4]	ampet .	pel [m, glanc]; Biotron infill Slt, qtz, brown coated, srt, por, frol	+ Biotrbn
				(10) 00	olv blk [5Y2/1]+ [10YR7/4],[10YR3/2]	waxy	Slt, cl, gtz; Biotrbn infill Snd, vf-f, gtz,	resin +Pyrt in
_	Ρ ▶	THE		(V) od (8)	lt olv gy [5Y4/2]	brittle	Slt. cl, qtz, pel [glauc] + Nodl [Pckst-Wokst]	Biotrbn
			0//211		dv bilk [5y2/1] dk yel bm[10YR4/2]	slick	Mod, qtz [ang]; Biotrbn infill Slt, snd qtz, resin,	Cale/Dol
		シナぐ	0 %		_ ox yet bm[10/R4/2]		pel [glauc oxdzd]	Sil Slick Pyrt
			00		olv blk [5Y2/1] lrg biotrbn			
131-		1/1/	00		dk yel bm[10YR4/2]	(fiss)		} 1
		トバング	0)/ 10/1	(λ)	olv blk [5Y2/1]		Clay, (slt), (mic); Biotrbn infill Slt - f-Snd, frbl, por	pyrt skltl Hash
•	X ≻	175	1 Cano	0d (0)a,fr	mtl dk yel bm[10 YR 4/2]		Clay, as above, with >30% Biotuan; infill Slt, and, frol, <u>srt</u> , por.	[[
			٥				and and but]
ل.	Record 19	B7/25	l	<u> </u>	L		l	/I 54-16/14
								•

DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESIS
_			50%	Ydi &	olv blk [572/1] mtl dk yel brn[10774/2]	cmpet emmbl	Sit, (cl), qtz [ang], mic; Biotrin infill Sit, snd, (cl), (srt) Biotrin, 2-4 mmD, infill Snd [qtz, subang,vf],por, srt[vari]	
132	T0C ≻			& Oa⊕ () (Ofr)(O?) p	olv blk [5Y2/1] mtl Biotrin dk yel bm [10M4/2]	cmpct/ (fiss)	Sit, qtz [ærg, vf smd], glæmc (srt) Sit, smd (srt), qtz [ærg, brown, to msmd], pel [m, glæmc], Biotrbn infill, Smd, vf, srt, por	dissom Pyrt Pyrt + resin in Skltl Pyrt + resin in Biotron
				(Ofr)p () 8	gm gy [5055/1] mtl Biourbn dk yel bm[10774/2]	cmpet	Sit, cl, snd [f-vf qtz, ang], pel [m snd, glauc]; Biototo infill Snd (srt), cl, slt; clay bands around burrows	disson Pyrt repl (Sklt1).
	XG►			j	dk olv gy[5Y3/1]	anchall/ (fiss)	Clay, (slt), Biotrbn infill, Slt, qtz, <u>srt</u>	pyrt infill Ophiomorpha
133 –		1000	03 03	(8fr)	dk olv gy[572/1] [573/1]	plstc/ brecc	Clay, mic, (slt), crmbl appearance; clasts [tabular, 1.5 x .5cm; Sltst, dol, pyrt, facetd]	
		10,0	05		olv blk [572/1]	plstc/ crmbl	Clay, slt, snd [glauc pel], mic Ptchs; clasts [.5 x 2.5cm, Sltst, calc, facetd + freid]	
_	P►	70×40mm	٥			L.	Clast of Mdst, glauc, skitl, biotrbtd; fretd	dol + calc Count
134-	X >			(Ød)	olv blk[572/1] mtl dk yel bm[10074/2]	empet/ enchall	Clay, (slt), (skit! hash); Biotrin infill slt [feldsp + qtz], srt, por: py Cmnt; Slick	dissom Pyrt Pyrt + resin in In Biotrin
. 1			° ° ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′	(_Ö)	olv blk [5Y2/1] (mtl)	ampet/ anchdl	Slt, (cl), gtz, Biotr i n infill Slt, <u>s</u> rt-srt.	
135-			10%	(6)	olv blk [5/2/1] sl mtl lt olv gy [5/4/2]	ampet :	Slt, (cl), qtz, mic, ((srt)); Biotrin infill Slt, srt per, frbl	of pyrt Cant, in Biotrin
100	G►			& Ydi	dk blk [5Y2/1] (mtl) .10% olv gy [5Y4/2]	empet	Slt, cl. qtz [ang], (mic), (srt); possible dession Crack; faint Lemon; Biotron, small, infill by Slt, <u>srt.</u>	Arsonopyritu'', rosin + pyrt Biourbn
136-					olv blk [572/1]		Slt, cl. ((srt)), of 'tracks' along parting surface ('5% of surface), Biotrin capetd, slt + part infill	
_	G►			(Oa)	olv blk [5½/1]	ampet	Clay, slt; pyrt infill in large Biotr i n slt, <u>srt</u> infill in sm Biotr i n	pyrt Ing Biotita.
137				(8)	olv blk [5x2/1]	cnchdl capet	Biotrhn infill by Slt [qtz + feldsp, srt, por] or Fyrt + resin	Pyrt + resin
_	Record 19	87/25		(O SP) & (Dd)			11.7	154-16/15

DEFIN (W)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESIS
4						1		
	χ >	シンス	10 m	(q) (qe()	dk olv gy [5Y3/1]	plstc/ www	Mud, <u>cl</u> , (pol); possible f root traces	Part in time
	,		0 ~ 0	8	olv blk [5Y2/1]	(fiss)/	Mud, cl., hanog, fiss; slickensides	
8 -			10001	8 43 於	dk olv gy [5/3/1] mtl	crntol	Slt. (cl), (mic) [blk]; Biotran 10%, vari	Pyrt
- 1					olv gy [514/2] olv blk [512/1]	cmpct cmbl		dissen fyrt
	1		≡0	(V) 8	OLV OIL ()IE/1)			pyrt root tmos?
4	I	, %	000		dk olv gy [513/1]	ampet	Slt, (cl), unif, Ptches pel; (Biotrum) small, slt infill	(pyrt) Biotu
		: \ !//:/:	O 1 25%	II				
- }			8	0 0		} }		
9 -		11	(=) \(\)	数d	dk olv gy [573/1]	empet/ enchdl.	Sit, (cl), qtz [ang, nonsph]; tf root? thross	pyot traces
			(=)	12√ Ω	•			
		7.	\mathcal{A}_{\sim} 0 λ	Ydi ⊘?	·	} }		
4		\\\\.\.\.\.\	\frac{1}{2}	ı	dk olv gy [5Y3/1]	conch	Slt. (cl), qtz [mxkl, uni] hamog	
		さたこ	7			}		
į		1:2	<i>Α</i> , λ		dk olv gy [5Y3/1]	ampet	Sit. (cl), qtz, pyr [dissem]; vf tubules	pyrt traces
ю –	i		۸ ګر 🖘	∞ \				
			000000	Ydi o sp	olv blk [512/1] mtl .	(fiss) empet	Slt, (cl), qtz; Biotrin more vari but fine tubules/traces predom.	
		1	04000	8 X V B		}	usares/traces precim.	
4	,		0 0	Ü				
	1		0 3		olv blk [5Y2/1]	ampet	Slt, gtz, mnfic[vf], (srt) - srt	Pyrt in Biot:
								}
41 -				li .		} }		
4	1					1		-
								1
		}	,					
-			·			1		
			1					
4		[1 1		
				!				
		}						
		ł						
		ļ						1

DEPTH (M	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESIS
143-							Srd or Sit? possibly related to clast at 1/13.6m	
144	P►			0 0 (8Y)	dx olv gy [573/1] olv blk [572/1] dx olv gy [573/1] ((mtl)) wh speckled	plstc capet/ (fiss)	Sit, cl. qtz. clasts; Covertus 1 cmD, irrog, pert + skill; of plant mostlets? Biotitn, lug + v sm, repl by Part intermed burrows have part rins, Sit [set] centres Sit. (cl), qtz [ang. set], mic [vf sit, Biot].	Pyrt 1991 skittl Hush Pyrt
		7/7	(=)0×	(8 0) Y V		anpet	Sit, (cl), qiz [ang, minne f smi] <u>expetd</u>	pyrt commun, mpl of fired.
145			(≡) (≡)		dk olv gy [513/1] dk olv gy [513/1]	cmpct/ (fiss)	Mid, (slt), uni, Biotrbn? wh pyrt umocs	
-	X >	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100 S	Ydi O	olv gv [5/4/2] biotum (Mti) It olv gv [5/5/2]	ompet/ fiss	Mud, unif, (mtl), biotrbid, colour mil Mud, qtz, [ang, slt + vf snd], pel [glauc] glauc Grepostoric in ptdis	Glauc
146 –	X×	75.5	X S	Y & Puða & Ydi Od	dk olv gy [513/1] Biotrůn (Mtl)	conpect	giauc erosional surface Slt, cl, qtz [subwug], srt, mic [vf]; Biotubn	finidl Pyrt in lrg Biotri
147-						i		
			2000 X 20	Of B	dk olv gy [5Y3/1] biotrtn Mtl 1t olv gy [5Y5/2]	cmpct cmpct/ fiss	Sit, cl, qtz [ang,] mic. [sit Biot], srt; mtl Biotrtn, infill Sit, srt, qtz + feldsp, por, frbl	
			0000	Vdi Od	olv blk [572/1] dk olv gy [573/1]	cmpet/ fiss	Mid, capetd, homeg; of part tabules	pyrt
148 –			0000	191 09	mtl olv gy [574/2]	cmpet/ cnchdl cmpet/ cnchdl	Slt, cl, qtz [fv slt]; faint Mtl, biotrhn infill Slt, v wh, <u>srt</u> Slt, cl, <u>qtz</u> [vf slt]; ((otl)) Biotrhn mostly 0.5mmD triules; lrg bollow tries	Pyrt + resin in 1rg tubules,
-			20%	(@?)	dk olv gy [5Y3/1] mtl olv gy [5Y4/1] dk olv gy [5Y3/1] lt olv gy [5Y5/1]	ampet	Slt, cl, qtz [ang]; mtl from m-lng Biotrin; infill Slt, <u>srt</u> , qtz, por, fri, lt olv gy	pyrt in horiz <u>Ophic</u> worph <u>a</u>

DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF Indur- Ation	DESCRIPTION	DIA- GENESIS
149 –				Ofr 30 Ydi Oa	olv gy [573/2] olv gy [5Y3/1] mt1 gv gm [10YM6/4]	cnupet	Slt, qtz [uni, ang], ((cl)), (srt), colour lmntn 'distorted by >2 phases m Biotrbn; 2nd phase more distinctive infill - Slt, qtz, srt, por; (sm Biotrbn) infill Slt, wh, srt	
	X ► P►	1-11		8 7 8	olv gy [5/4/2] yel gy [5/6/2] mtl	indrtd	Slt, qtz, (cl), (mic), srt, becoming clayey below indurated zone	Sil
			0 0 0 0 lighter	g Ydi	olv gy [5Y3/1] (mtl) biotrin gy orn [10Y86/4]	cnchdl	Slt, qtz [ærg], (srt), (cl); (Biotrum) increasing down section; infill Slt, srt qtz, por; Biotrum v sm. wh slt infill;	((pyrt)) tubulcs
150 -			o o o o	(B) (Bfr)	olv gy [573/2] lt olv gy [575/2]	ampet/ anchdl	Slt. qtz. (srt), (cl); speckld biotrtn Mtl; infill Slt. <u>srt</u> .	(pyrt) horiz Biotrbn)
			- ~10% to	Öfr St	ol blk [5Y2/1] m olv gy [5Y4/2] mtl	plstc	Slt, qtz, (mic), cl; homog colour	(Pyrt + resin) in Biotrbn
			darker	Ƴdi,br Öd	olv gy [5Y3/2]	ampet/ enchall	Sit, qtz. (mic), cl; uni except for Biotrun [vf port rims]	
151-	P►		O (2) O (2) Biotron (algae OYdi Bot 1	It olv gy [5/5/2 m olv gy [5/4/2] dk olv gy [5/3/1] mtl olv blk [5/2/1]	indrtd cupet crubl	Wickst qtz [vf slt, subeng], unif indrtd Slt; qtz, srt. (cl), (mic)	calc Cmnt
			= ~ ~ ~	8 Ofr osp OYbr	-	ampet	Slt, gtz. (srt), ((cl)), (mic) [Biot]; colour Lmntn; - no Biotrin in dk band	(Calc)
	X >		KO O O O O O O O O O O O O O O O O O O	g (0) 0	dk olv gy [5Y3/1]		Slt, gtz, (srt), cl; Biotrin infill Slt, qtz, srt; vf traces pyrt Rgolmnt; v sm Biotrin infill Slt, wh	Pyrt
152-	i		2 -30%	Ø	homog, increasingly lighter		Slt. qtz. (srt), (cl); Biotron (text diffmoe)	
	X >	1	homog	Ydi Ø 0 <u>Ø</u> a &f	olv gy [5/5/1] olv gy [5/4/2] (mtl) [5/5/2]	anchall	slt, qtz. cl, homog Slt, qtz. (srt), ((cl)), mic [Biot]; Biotrbn physos, infill Slt, qtz, srt, (mic), por	Pyrt Pelecyprals Pyrt + rosin
	X ➤		15%	9 8 Of 0 20 d	dk olv gy [573/1] mil olv gy [574/1]	capet	Slt, cl. qtz, (srt); Biotutn 2mD in subforiz clusters. Infill Slt, srt; vsn Biotutn infill Slt, <u>w</u> h, <u>srt</u> , dk contrus; Ptoks of pel Pyrt	Pyrt
153	TOC ≻		(E) o }		dk olv gy [573/1] (Mtl) by Biotrbn olv blk [572/1]	cmpet/ enchdl	Slt, (cl), <u>qtz</u> , Pyrt; vari Biotr i n; (Lemin)	Pyrt in lig Biordia
-				g Ydi (B)() a	dk olv gy [5Y3/1]	ompet :	Sit, (cl), qtz [subsph, arg], mic [musc], mafic; (Biotran), v sm infill Sit, wh, srt	Pyrt
154 –			100	(p)	lt olv gy [5/5/s] dk olv gy [5/3/1]	empet/ ermbl	Slt, qtz, cl. (pcl) [glauc], (strintions); Biotrum infill Slt, srt	
				8	to brn blk [5x75/1] lrg Mtl It olv gy [575/2]	ampet/ slick	Slt.qv.(cl),(mic),(pol)[glauc];Biotrin vari;infill Slt, srt, qtz [subsph], por. frbl; to v wh Slt	dissem Pyrt
		\1<1\c	0. 7	8 ∆∧qi 8 Qt	olv gy [5Y4/1] (mtl) v lt olv gy [5Y6/2]	ampet	Sit, qtz (cl), (mic); (Biotrbn) infill Sit, qtz, srt	dissem Pyrt in Biotrbn dissem Pyrt
155 -	Record 198	37/25	الله الله		olv gy [5Y4/1] ((mtl))	ampet/ (fiss)	Slt, qtz, cl, mic [Musc], mafics	stain of oxdzd Pyrt

Record 1987/25

Œ I	ni	LITHOLOGY	SEDIMENTARY	FAUNA	COLOUR	DEGREE	DESCRIPTION	DIA-
DEPTH (M)	SAMPLE	EHHOLOGI	STRUCTURES		÷	OF INDUR- ATION	5255 116N	GENESIS
155-		1./:/.	7000	ට් ය රී රී		capet	Slt. grz, (cl), (srt); (Biotrbn)	onded stairs on port surfaces
			0000		olv gy [514/2]	cmpet/ cmbl		
		1//	100 00%	(p)	olv gv [574/2] mtl yel gv [576/2]		Slt. qtz. (cl:. (srt), patt <u>rel</u> Biourtm, infill slt qtz + f, (srt), pel Ptches; v sn Biourtm infill wh Slt	of dissem fort
				& Ydist	lt olv gv [5:5,2] mtl lt gv om [10:R8:4]	ampet	Slt. qtz. (cl), mic [Biot], enfic; Biotth of infill wh Slt. srt: dx structions	oxizid Pyrt Fe staind Biotzin
156 -		-	0	Tpl &	lt olv gv [5:5/2] mtl v lt olv[5:6/2]	empet, enchdl	Sit, qtz, srt, (mic), pyrt; Biotrtn (colour Mtl)	Pyrt Biotron oxdon staining
130	,	· ·	0 7 A	Ofr Ydi,br	olv gy [574/2] mtl	cnchdl	Biouton, v sm. wh	
		1//		Od 8 Vdi	olv gy [517/2]		Slt. qtz, (cl), mafic; Biotron vf, wh slt infill	oxdzd halo on pyrt traces
1	·	: 17.	00		olv gr [514/2]	empet		e.
			ا کی کی	(Osm)	olv gv [5:3, 2]	enehdl	Mai, giz, v unifem; ((Biotim))	(Pyrt)
157-			1 1 0	·	dk olv gy [5:3/1] ((mtl))	cnchdl		
			0000		olv blk [5\2/1]	cnchdl/ fiss	Mid, minor Biotron but lrg pyrt <u>Oxhiomorpha</u>	Pyrt
	TOC ➤	7				riss		
-	P►	1//	(=) ->-\(\hat{\omega}_{\subseteq} ->\(\sigma\)	8 0 sm	L L		Sit, cl; qtz [subsph. mdd], (mic), (mafic), pyrt traces; pel Ptches	pyrt Biotrbn
			<u>ک</u>	of Ydi,plo	dk, olv gy [5Y3/1]	ampet		-
158-			0	<u>Ot</u> osp	olv gv [574/2] (mtl)	Ļ	Slt, calc, <u>qtz</u> , (mafic), (cl), <u>skltl;</u> Biotr bn [dk striations]	
		1	200	Ø √br 8	olv gv [573/1]	cnchdl	Slt. qtz [subsph], (mafic), (cl)	r
		1/1	0000	1	olv gy [573/2] mtl yel gy [577/2]		Slt, qtz, <u>cl</u> , (mafic); mtl by distinct bifurcate Biotrin, horiz, infill Slt, qtz, mic, srt	
		•• / •• ••	0	Ybr'	olv gv [513/2]	L		
			0 0		olv blk [5/2/1] mtl yel gv [5/7/2]	capet		
159 ~			Boho	Øt Osm	olv gy [573/2] mtl yel gy [516/2]		Slt, qtz, cl, mic [Biot], striated; Biotron, horiz	Pyrt
			2030%	Usm	olv gy	cmpet/ crmbl		
			>30%	⇒\$€fr			Slt. qtz [subsph], (cl), mic [Biot]	Pyrt
			0 2 0	Øt /	dk olv gy [5Y3/1]		Slt, <u>qtz</u> . (mic) [Biot], (cl) Mxi, f snd (Qtz, Musc, Phlogpt]	
		12/29		71	olv blk [5Y2/1]		Mud, f and [Qtz, Musc, Philogot]	
160-		1:12	0°02	Ybr,pl	olv gy 5Y3/2	compet		
		1.4.	N. Co	OSP Ot			Sit. grz, [subsph], (cl), (pel) [glauc]; skltl. ptobes	cxdzd rizs on Pyrt
		<u>ن</u>	000	/8 Vdi	olv gv [513/2]		Slt. qtz, calc, (mic), skltl; <u>Biotrtn</u> , infill Slt,	
-		17:1/	0000000	8 8	mtl lt olv gy [575/2]		srt	
			000	g P	olv gy [513/1] mtl yel gy		Slt. qtz. (cl); <u>Biotain</u> , infill Slt (srt); pel [glauc] ptchs	
161-		1./.1	~ 0		[5:6/2]			

11/I 54-16/19

DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESIS
161-			0 > 0		dk olv gy [5Y3/1]	r		
_			230%	Od Ydi B O Of	dk olv gy [573/1] mtl lt olv gy [575/2)		Slt, snd [subsph]. cl; mtl + biotrb:d	
162 –			~ 10%			cupet	Slt, and [qtz, subsph], calc, (cl); Biotrbn 3cmD prominent infill Slt, por	Pyrt in horiz Biotrtn
			7 ° ° °	පී (p) පී	olv blk [572/1] mtl lt olv gy [575/2]	cnchall ;	Sit, qtz [s.dsph], (cl), (mic) [Biot]; pel Puches	Pyrt • resin in Biotrin
163 —			7	≎ sp	olv blk [5v2/1] homog		Mid, slt; Biotrin [vf traces - 'rootlets?', gart], lng Biotrin	Pyrt
	TOC ➤			⊅€d		ampet/ (fiss)	Mid, cl. uniform	resin + Part
	G►	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1000 mg	Øt,sm p	olv blk [572/1] red/bluish ptches . dk olv gy [573/2]		Mid, slt, pol [glanc]; Piches Sod [m, qtz, brown stained]; Biotelin invill and Mid	in Biotrkn Goethite or Bitum 19
164 —			, (C)		(K 010 gy [513/2]	anahal/ .		
			2 2	0 sp 0	olv blk [5/2/2] uniform except for large pyrt + Biotrbn	aspetd	Mu2, slt [q:2 • fold?], cl	Pyrt • resin in lrg Biotrla.
_		//-/		006p		fiss/ (cmpct)	Sit, qtz [sakepk, mid], cl; numerous of part traces on bodding partings	Pyrt in lrg Biotrbn
165 —			2 4	Ydi / 8 Yp 8 o			v sm. Biotrin, infill wh Sit	
		1.	- h	Г	L		Mad. cl, qtz. (mic)	
	P ≻		3000	විd දිං ₉₉ ⊕ & Ø වීd	dk olv gy [1072/2] speckled wh dk olv gy [1072/2] mt olv gy [574/1]	<u>ompet</u> / (frbl)	Srd, srt, m-f. qtz, feldsp, pel [glauc], por; Biotrin; some pyrt areas, ptdrks of grn clay	Pyrt
166 –				8 0d(p) Ydi 0d,a ≫fr	olv blk [572/1] gm blk [562/1] biotrbn Mtl	(fiss)	Slt, qtz [vf-m], (cl), pel [glauc], snd to top	pyrt vf Biotitin (rootlets?)
		/	0 0	р	lt ol gy [5V4/2] gm blk [5G2/1] Biotrbn Mtl	ampet	Sit, snd, (set), qtz [m, ang-rndd, honey coloured] (pel) [glauc], mtrx?; <u>Biotretid</u> , infill by Snd, pel [oxdzd glauc], qtz, (srt)	
_	i		000	Ydi	lt olv gv [515/2]		1	
167	P >	(')	س د و	Od p Ofr	olv gy [5Y4/2] speckled	frol uncons	Srd, qtz [m, arg], pel [glasc], (skltl), mtrx, srt, por.	/154-16/20

DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION ·	DIA- GENESIS
167 –				8d ∞?	olv blk [5Y2/1] mtl, speckled olv gy [5Y4/2]	ampet	Slt. <u>cl</u> , with ACS Hiourin , infill/Srd, qtz [f-m, ang-modd], glazz,	Pyrt
			000	Sagg Y Od	speckled		uniformly biotrbtd	
168 —		بى ئى		Od Od	olv gv mtl [573/2 + 574/2] gn blk [502/1] ntl olv gv [574/2]	cmpet crmbl	Srd, (srt), cl. slt, qtz [f-z, mdd], Biotrin (vnri), infill Srd, srt, por, qtz	
108					()1,721	ampet	Slt, Swi	
		•	ρ () φ?	Øa	olv gy [5Y4/2] <u>mtl</u> brn blk [5YR2/1]	compet combl	Sod, m, qtz (ang-subroòd), por, srt; Biourtn lng (infill Mad + mad glauc Sod)	
-			φ; φ;	Ø Ydibr Ø	dk olv [10Y2/2] spekld wh fleeks	fitel empet embl	Sod, vf-f, (set), qtz [subsph, sixing, bm staind] skitl frymts, (feldsp), (mic), por, frbl	
169 -	P >	. · · · · · · · · · · · · · · · · · · ·	000	\(\begin{align*} \be	yel gy [5y6/2] speckld, biotrbn	indrtd	Sodst, f. qtz + feldsp [subang, subsph], cant [dol/cale]; Biotrfm, thin, infill by Sud + mud	dol/cale Omu
	P ≻		.5 03	D V Sp 0866f0	dk olv gy[10Y3/2] wh speckled	frbl/ erumbl	Srd, set, vf-f, qtz [ang, subsph], pel [glauc], skitl [v sm. frymnts], frbl	
-				0 8 8t 0 ad 8t Ydi ⊕ 7	dk olv gy [10Y3/2], speckled wh, mtl lgm blk [5G2/1]	combl/ frbl	Sid, set, f. quz [avg. norsph], pel [glauc], skitl, (mic), por, fibl	
170 —	X►	×.·.		8 Vdi 8		indrtd	Sndst, vf-f, (set), qtz [ang], pol [glauc]; Xstrat, por	
	1		000	Ø&t Ybr(ċsp) M		ermbl/ frbl	Sod, gtz, pel [glawe], skitl	
-			300	ofr p Of OsmO	olv gy [5Y3/2] speckled wh	indrtd	Srd, vf, qtz [ang], pol [glauc, oxdzd],(skltl),srt; small sph Concrtns	cale Cant in Concrtns
		~~\\\	=c	008p	dk bm gy [5YR3/1] mtl dk gy [N2] m yel bm [10YR4/4] wh speckled	cmbl/ frbl	. Slt, and, (srt), (cl), qtz, pel [glauc], colour dunges [weathrd];striated;Biotrin infill Slt, art	
171 -			12 20%	(Osp) 8 1?	ok om gy [5xR3/1] mtl lt olv gy [5x6/1]	ampet/ (fiss)	Slt, qtz [arg], $\underline{\text{mic.}}$ (cl); flasor; Biotth infill Slt, $\underline{\text{srt.}}$, $\underline{\text{mic.}}$ qtz,	Pyrt [µ balls]
-			,					
172								
					111150041			
	X►			a.	olv blk [572/1] yel gy [576/2] olv gy [574/1]	plstc	Slt, (cl), overlying erosional surface? on clay	
		1.1.		<u>8</u> <u>8</u> (V)	bm blk [5YR2/1]	ompet/ fiss	Sit (ent) are found (el) (1)	
173 –				8	brn blk [5YR2/1] lmtd +mtl		Slt. (srt), qtz [srg], {cl}, (mic); læmtd, Flasers, Xlmtn apparent; intlantd Slt. srt, qtz, foræms [pyrt infill], mic	Pyrt [µballs] Pyrt [µballs]
ļ	Record 198	37/25	<u> </u>		1t olv gy [575/1]	ampet/ fiss	11/	1 54 -16/21

DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESIS
-			° → X	8	dk yel bm[10%R2/2] intimntd 1t olv gy [5%/1]	ompot/ (fiss)	Sit, qtz, (cl), mic, (srt); coarsening up or down to Sit, srt, qtz, mic, foram; graded + inverse graded laminae and flasers.	
174 –		-1-1-		Ofr (8) p	dk yel bm[10/R2/2] Biotrin It olv gy [5/6/1]	cmpct/ frbl	Slt. snd [vf-m], qtz [ang], pel [glauc], mic, (cl)	i
-								
175 -								i
_	X►		R		olv gy [574/1] banded yel gy [577/2]	plstc	Clay, (slt), (mic), colour mtl/brdd variegated oxidized surface	
176 –		1/2/	° ° ≡ °	8	olv gy [574/2] olv gy [574/2] mtl yel gy [538/1] lt ol gy [575/2]	ampet/ frol ampet	Slt, <u>srd</u> [vf], qtz [suborg, subsph], mic, mafic Intlantd Slt (srt) - <u>srt</u> Slt, sod [vf], qtz [suborg, subsph], mic. mafic.	
-			≤° Si≡		olv gy [5:4/2] mtl yel gy[5:6/2] lt olv gy [5:5/2]	ampet	Sit. qtz. (mic), (cl), (srt); [Biotrim), lummn Sit. (srd) [vf], qtz [arg, subsph], mic [Masc],	
177 -						uncons	sit	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(\daggeright sp)	olv blk [572/2] biotrtn Mtl yel gy [576/2]	empet/ ermbl	Sit, qtz. (cl), srt; f lmntd, biotrbtd; flasers?; intlmntd, Sit, <u>srt</u> , <u>qtz</u> , mic	
			O PO O	(> sp)		embl plstc		
178 -			00 =	Ofr, ab	lt olv gy[575/2]	uncons	Snd, vf gtz. (meric), srt Snd, vf, srt, gtz [subeng, subsph], mic [Misc], meric, por	
_	j	٠٠٠ ١٠٠٠ ١٠٠٠	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	⊠	bm blk [5782/1] bm blk [5782/1] olv gy [574/1]	cmpet	Slt. cl. qtz, mica [Biot], intlmntd Slt, srt, qtz; biotrbtd	Pyrt in Biotata Pyrt + resin
179 –			?	0 00,fr	dk yel bm [10 YR2/2]; mtl p yel bm [10/R6/2]	cmpet	Slt, <u>cl</u> ; biotrbtd, flasers [(srt) slt infill]; lrg Biotrbn infill vf srd, <u>srt</u>	in Biotrin

DEPTH (M)	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESIS
180 -			~ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	(1?) ⁸ (8) (Ofr)	dk yel bm[10183/2] p yel bm[10186/2]	compact	Slt. qtz, mic [Biot + Musc], mafic, ((srt)), cl; structures diffintd with Slt, (srt)	Pyrt in Biotrio
-				(8) 8 agg	dk yel bm [10\m2/2] intlantd gy om [10\m6/4]	cmpct/ fiss cmpct/ (fiss)	Sit, <u>qtz</u> . (mic), (mufic), cl. (srt)	
181 –				(8)	dk olv gy [573/1] olv blk [572/1]	cnapet	Sit. (srt), <u>gtz</u> . <u>cl</u> . (mic); minor Mtl, biotrbin	
			III O O O O O O O O O O O O O O O O O O	(8) (Off) Osn Ypl Ofr	olv gy [573/2] biotrhn mll yel gy [5/6/2]	ampet	infill Stt [srt] Slt, qtz. [rndi], (cl), (mic) [Biot + Musc], (srt); v thin Lordn + Xlandn: (Biotrbn) infill Stt,	Pyrt + resin in Biotutn calc + part veining in
182 –					olv gy [514/1] vel gy [516/2]	ampet/ (fiss)	<pre>srt; qtz, (mafic), pcr. Sit, qtz, (cl), ({mic}), ((srt)), Lunton Sit, srt, frbl, por, striated</pre>	Concrtn (Pyrt + resin) in
_				& & & & & & & & & & & & & & & & & & &	đk olv gy [573/1]	ampet	Sit. qtz [c srd], (pel) [glauc], (mafic), (cl), (srt); Biotitn .5%, infill Sit, qtz, srt	Biotrbn
183 –			0	(8) (0 sp) (0 fr) p	olv bik [572/1] mtl one patch yel gv [576/2] olv bik [572/1]	plstc/ crmbl (fiss)	Mid lumps and midbonds into mixed Sit, qtz [vvf * m srd, brown stained srd], (mafic), cl, pel [oxizi glauc], few lrg clasts of Srdst Sit, (srt), qtz, (p), (cl), (Biotrbn) apparent	Pyrt
_				(8) ((6 sn) (6) Ofr (6 sn,f	<pre>dk olv gy [5Y3/1] biotrin Mtl lt olv gy [5Y5/2] [5Y6/2-5Y4/2] mtl [5Y3/1-5Y6/2]mtl</pre>	apet frbl apet	srt Slt. Slt. (srt), qtz. (mafic), Mtl biotrtn; infill Slt. srt. fri, por	Pyrt(Arsavgy?) in Biothn
184	P►	-/2\1		6 08pY Ybr/p Y008	yel gy [576/2] olv blk [572/1] spkld, biotrbd It olv gy [575/2]	indrtd capet/ (fiss)	dol indrtd surface, oxizd, biotrbtd, lag of Skitl * glauc fel in dol Mudst. Lag decreases down from surface Slt, (srt), qtz, (mafic), (cl); srt slt Lumtn	Dolomite resin in Selt1 dissem Pyrt
-				000 000 000 000 000	bm blk (5782/1) biotrbtd yel gy [576/2]		Slt, (srt), gtz [wf], (mic), (mafic) (cl); fiss mic partings; Biotton + Louto have Slt, srt, por, qtz, (mud clast).	pyrt traces in Biotrbn
185 -			~ (≡)	Osn, sm 1?	dk olv gy [4Y3/1] mtl yel gy [5Y6/2]		Slt. (srt), qtz. (mafic), (mic), (cl); Biotrin infill Slt. srt. per, uncers.	
	Record 19	87/25					(1,	/1 54 - 16/2

	SAMPLE	LITHOLOGY	SEDIMENTARY STRUCTURES	FAUNA	COLOUR	DEGREE OF INDUR- ATION	DESCRIPTION	DIA- GENESIS
		TP as at 1 Jan. 87		&t (Ofr) &p (8) (Osn) &sn Ofr	dk olv gy [572/2] yel gy [576/2] yel gy [576/2] yel om [10 YH7/6] yel om [10 YH7/6]	cmpct cmpct cmpb)	Sit, (srt), qiz, (mic), (pel) [glaxe]; limin + Biotrin of Sit, srt, per, streaked with clay; small erosional ledge 1 cm deep. Sit, (srt), (srd), qiz [ang, inreg], (mafic), cl, pel [glaxe]; Biotrin infill Sit, srt, per Conglon, mix Sit ((srt)), srd [qiz, glaxe Pel], cobbles [indd sph, calc Sitst]	part traces i Bioteth
-								
			!					
	Record 19							/I 54-16

APPENDIX II

MACROFAUNA

Some characteristic and more obvious components of the macrofauna of the sequence are documented in plates 4, 5, and 6 under lithofacies categories.

In general, the preservation of the calcareous macrofauna is very poor because of partial dissolution of the carbonate. The elements are friable or powdery and deteriorate quickly on drying.

This documentation is intended to provide some record, albeit incomplete, of the distinctive fauna.

PLATE 4

Microfauna of Lithofacies A, B and D

Lithofacies A

- a. Parting in laminated micaceous silt with agglutinated foraminifera.
- x 2; from 172.8 metres

b-e. Agglutinated for aminifer a with pyritic framboids within tests.

x 2; from 172.8 metres

Lithofacies B

- **f-i**. Terebratulid brachiopod, external views of pedicle valve (f), brachial valve with predatory boring (g), anterior sulcus (h), and lateral views of shell (i).
- x 6.7; from 169.7 metres
- j. Internal mould of opposite valve, pelecypod
- x 6.7; from 167.7 metres

Lithofacies D

- k. Glauconitic and phosphatic? coprolites
- x 4; from 131.94 metres
- 1. Fragmented leg segment of a malacostracan
- x 4; from 129.05 metres
- m. Discoid cheilostome bryozoan, obverse side, zooecia pyrite-infilled.
- x 8; from 129.35 metres
- n. Encrusting cheilostome? bryozoan
- x 10.7; from 129.35 metres

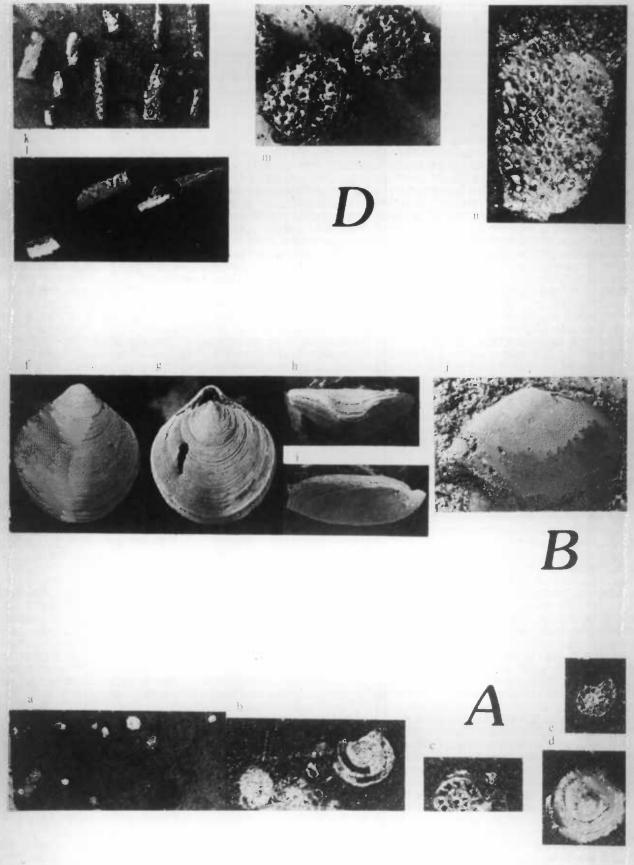


PLATE 4

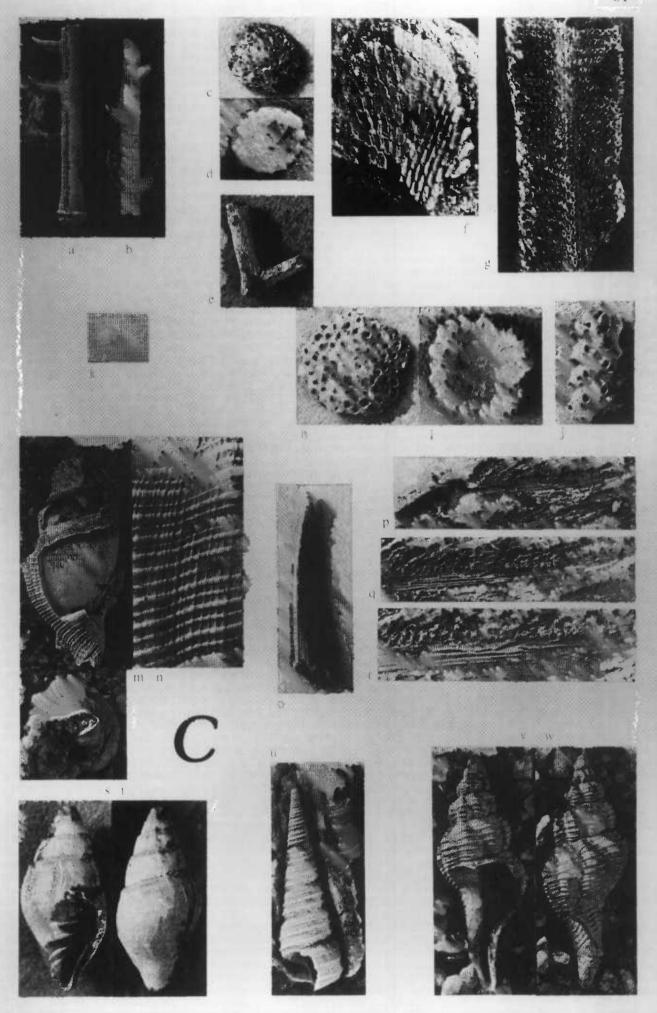


PLATE 5

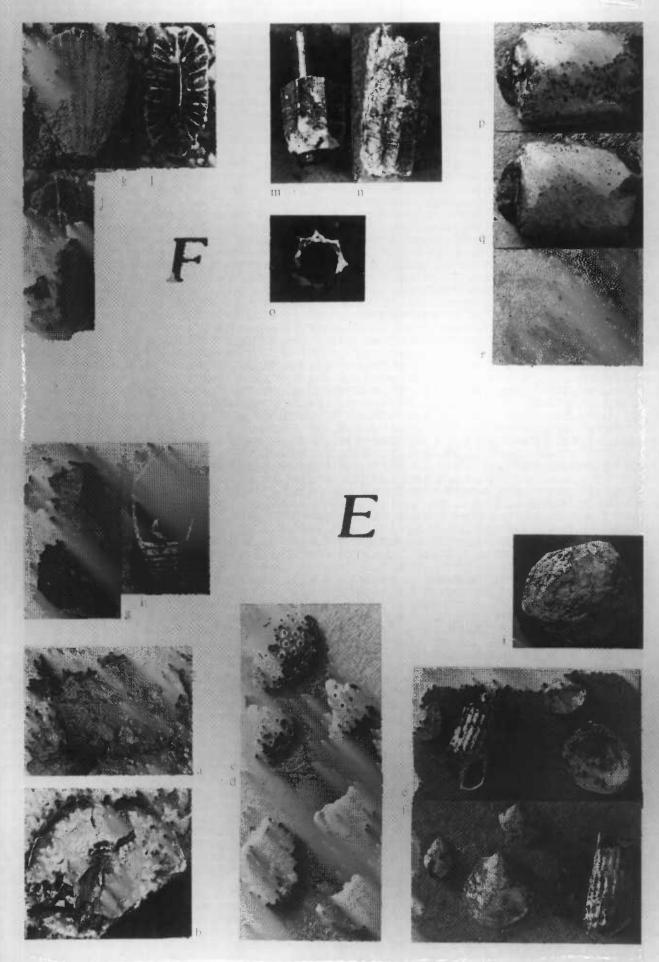
Macrofauna of Lithofacies C

- a,b Spurred shafts of cidarid (echinoid) spines; x 4.3; from 151.3 metres
- c,d Discoid cheilostome bryozoan, obverse, reverse sides; x11.5; from 135.9 metres
- e Branched cyclostome? bryozoan; x 11.5; from 157.9 metres
- f,g Encrusting cheilostome bryozoan; f. x 8.6; from 157.9 metres
 - g. x 4.3; from 155.85 metres
- h,i Discoid cheilostome bryozoan, obverse and reverse sides
- x 11.5; from 147.2 metres
- j. Branched and articulated? cheilostome bryozoan; x 11.5; from 151.3 metres
- **k.** Small pelecypod; x 11.5; from 157.9 metres
- I,m. Fusiform siphonostomatous gastropod; x 2.9; from 152.37 metres
- n. rib and costate ornament detail; x 11.5; from 152.37 metres
- o. Apatitic fish or cetacean tooth; x 8.6; from 140.0 metres
- p,q,r Malacostracan pincer appendage, mould, part pyritic
- x2.2, 4.3, & 8.6; from 138.95 metres
- s,t Conoidal siphonostomatous gastropod, aperture/adaperture views
- x 11.5; from 147.2 metres
- u. Turreted gastropod; x 4.3; from 157.9 metres
- v,w. Fusiform siphonostomatous gastropod, aperture/adaperture views
- x 5.8; from 147.2 metres

PENIES

PLATE 6

Macrofauna of Lithofacies E and F


Lithofacies E

- a. Irregular echinoid, external dorsal view of petal; x 2.1; from 119.77 metres
- **b.** Irregular echinoid, view of ventral interior with peristome; x 2.1; from 119.77 metres
- c,d Fragmented cheilostome bryozoan, obverse and reverse sides
- x 8.5; from 107.0 metres
- e,f Turreted gastropod (aperture and adaperture views), taxodont pelecypod (internal and external opposite views)
- x 8.5; from 107.7-108.1 m
- g,h Multispiral pupaeform gastropod; x 8.5; from 126.9-127.1 m
- i. Pelecypod, opposite side; x 2.8; from 129.1 metres

Lithofacies F

- j,k,l Solitary scleractinian coral (end, side and top views); x 4.3; from 101 metres
- m,n,o Scaphopod, longitudinally costate (side views and cross-section), pyrite infilled
- x 11.4; from 100.75metres
- **p,q** Decapod malacostracan, ventral and dorsal views of segment of pincer-bearing assemblage; x 5.7; from 101.15 m
- r Ornament of decapod segment (p,q)
- x 28.5; from 101.15 m

* R 8 7 0 2 5 1 7 *

PLATE 6

APPENDIX III

XRD Mineralogic Determinations by AMDEL

MINERALOGY OF 13 CLAY SAMPLES

1. INTRODUCTION

Thirteen samples of dark-coloured clays received from Mr. F.M. Kane of the Bureau of Mineral Resources were to be examined by X-ray diffraction procedures for detailed clay mineralogy (Code MC2).

2. PROCEDURE

The samples were air-dried at room temperature. Portion of each was powdered finely and used to prepare an X-ray diffractometer trace which was interpreted by standard procedures.

Further, weighed subsamples were taken and dispersed in water with the aid of deflocculants and an electric blender, and allowed to sediment to produce $-2~\mu m$ e.s.d. size fractions by the pipette method. The resulting dispersions were examined by plummet balance to determine their solids contents, and were then used to produce oriented clay preparations on ceramic plates. Two plates were prepared per sample, both being saturated with Mg⁺⁺ ions, and one in addition being treated with glycerol. When air-dry, these were examined in the X-ray diffractometer. Additional diagnostic examinations were carried out and consisted of examination of the glycerol-free plate after heating for one hour at 550°C .

3. RESULTS

The results are given in Table 1, which lists the following:

- (a) The mineralogy of the total sample, as derived from examination of the bulk material, with supporting evidence as available. The minerals found are listed in approximate order of decreasing abundance, using the semiquantitative abbreviations given. Coverage of clays may be incomplete, and for full clay mineralogy Section (c) should be consulted. This section (a) is for information on non-clay minerals and to give a general idea of the makeup and proportion.
- (b) The proportion of the sample found to separate into the $-2~\mu m$ size fraction, as determined by the plummet balance. The figure obtained applies only to the pre-treatment and dispersions conditions used.
- (c) The mineralogy of the -2 μ m fraction, given as in Section (a).

4. REMARKS

Note that there is no sharp distinction between Sm, Sm^+ and ML, which represent successively increasing proportions of illite interstratified with the smectite layers.

Table 2 : BULK AND -2 µm MINERALOGY OF 13 CLAYS

Sample		ngil 21 1.80m		gil 30 .30m		gil 36 .20m		gil 41 .45m		gil 56 .90m		ngil 66 5.80m		gil 85 .20m		gil 92 75m
Bulk Mineralogy:	Q Sm K Py F' M Ha	D SD A Tr-A Tr	Q Sm+ G K M Py F' Ha	D A A A Tr Tr Tr	Q K ML G M F' Py Ha	D A A A Tr Tr Tr	Q Sm+ K M Py F Ha	D A A Tr Tr Tr	Sm Q Gy K M Py F'	D SD SD A A A	Q Sm K F' M Py Gy	D SD A A Tr-A Tr	Q Sm ⁺ K M F' Py	D SD A Tr-A Tr	Sm Q K F'P M Py	D SD A-SD Tr-A Tr-A
-2 μm fract. %:		46		19		18		29		51		50		52		59
Mineralogy:	K Sm M Q	D SD Tr-A Tr	Sm+ K M G Q	D SD Tr Tr Tr	K ML M G Q	D SD A Tr Tr	Sm ⁺ K M G Q	D SD A Tr Tr	Sm K M Q	D SD Tr-A Tr	Sm K M Q	D SD Tr Tr	Sm ⁺ K M Q	D SD Tr Tr	Sma K M Q	D SD Tr-A Tr
Sample		ngil 97 3.75m	137	.7m.	145	. 8m	146	. Om	149	.35m			_			
Bulk Mineralogy:	Q Sm K Py M FF'	D SD A Tr-A Tr	Sm Q K M Py F'	D SD A-SD A A Tr	Sm Q K G? Sid M Py F'	D SD A A A Tr-A Tr	Sm Q K M Py P'	D SD A-SD Tr-A Tr	Q Sm K M FF' Py	D SD A A Tr-A	F' G Gy Ha K M	Gy Gypsum Ha Halite K Kaolinite				
-2 μm fract. %:		50		59		51		57		15	Py Pyrite Q Quartz					
Mineralogy:	Sm K M Q	D SD A Tr	Sm K M Q	D SD Tr Tr	Sm K M Q	D SD Tr Tr	Sm K M Q	D SD Tr Tr	Sm K M Q	D SD Tr-A Tr	Si Sm Sm	Smecti + Smecti	te te with :	minor prop d illite		

SEMIQUANTITATIVE ABBREVIATIONS:

- D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.
- SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.
- A = Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- Tr = Trace. Components judged to be below about 5%.

APPENDIX IV

PETROGRAPHIC DESCRIPTIONS OF 32 HORIZONS IN PIANGIL WEST 1

PETROGRAPHIC SAMPLE at 67.1 metres depth Type: stained TS

Description: Bioturbated very fine and sorted quartzose sand with subspherical dolomitic nodules. Burrows are sand-lined, 5mmD, with a periphery 14-30mmD of concentrically striated sandy pelletal dolomitic micrite. Wackestone-Packstone texture?

concentrically stricted saidy penetar dolonitie interite. Wackestone 1	acksione texture.
Particulate Components:	Abundance %
Quartz, v fine sand, angular	70
Mica, thin books and flakes	5
Pellets, v fine sand-sizes, goethitic	5
Cement/Matrix: Dolomite cement, idiotopic-subidiotopic	20
Diagenesis: Ferroan dolomite, encloses and penetrates into quartz a crystals, 0.25mm long. These generally follow interparticle porosity as within the quartz framework.	
Porosity: Original interparticle porosity	25
Intermediate occlusion by cementation	
Present	2
Paragenesis: A relatively late precipitation of fine non ferroan dolor Muddy peripheries to burrows were replaced and the original pelletal obliterated.	

PETROGRAPHIC SAMPLE at 81.8 metres depth Type: TS

Description: Very sandy and pebbly clay overlies a sandy and clotted burrowed sandy claystone. The clotted fabric is 1.5-0.15mmD centred.

•	
Particulate Components:	Abundance %

Quartz, silt- v fine sand, angular-rounded, spherical; many particles rounded coarse sand, goethitic coatings to form superficial ooids and some grapestones 21

Cement/Matrix: Matrix of silty clay: a pelletal to irregular cellular texture is defined by dessication fractures? and or pyritic reaction rims 79

Diagenesis: Goethitic (oxidized glauconite) ooid laminae on sand particles

Pyrite, scattered replacement of particles, now oxidized in rims and stains extend into the surrounding clay

Cellular liesegang rings mimic outlines of clay clots because of concentrations of an unidentified v finely crystalline mineral.

Porosity: Original	0
Intermediate	0

Present 0

Paragenesis: Glauconite oxidized to goethite prior to precipitation of liesegang ring cements. Pyrite precipitated early, with subsequent oxidation.

Interpretation: Claystone was partly indurated at time of sedimentation. It is indeterminate whether the gravelly clay was deposited over a firmground, or if it was the resultant lag from an erosional event.

PETROGRAPHIC SAMPLE at 88.0 metres depth Type: TS

Description Burrowed sandy-silty clay. Burrows are infilled by v. fine to fine pelletal sand. The clay is variably sandy. Patches of low sand content are densely striated with pyritized trace borings/rootlets which tend to be subparallel and subhorizontal.

Particulate Components:	Abundance %			
Quartz, v fine -fine sand, angular to subangular coated particles	20			
Goethitic, fine -medium sand	5			
Cement/Matrix: silty clay matrix	75			
Diagenesis: Pyrite replaces pellets; reaction rims in the host clay alo fine burrow? tubules	ng the margins of			
Porosity: Original burrow interparticle porosity	7			
Intermediate	7			
Present	7			
Paragenesis: Glauconitic pellets oxidized to goethite before deposition. Finely crystalline pyrite was an early replacement phase in the clay and oxidized possibly during early diagenetic exposure. Interpretation: Soil overprint on a burrowed clay.				

PETROGRAPHIC SAMPLE at 89.15 metres depth Type: TS

Description: Uniform silty very fine sand (packstone texture).

Particulate Components:

Quartz, v fine sand & silt, angular	55
Pellets, goethitic, fine-coarse sand, scattered distribution	5
Mudlumps, 1.1mmD, impregnated with silt	< 5
Cement/Matrix: silty clay matrix throughout	35
Diagenesis: pyrite, minor disseminated v fine crystals	
Porosity: Original	0
Intermediate	0
Present	0
Paragenesis: compacted in part (squashed mudlumps)	

Abundance %

PETROGRAPHIC SAMPLE at 99.5 metres depth Type:TS

Description: Gravel interbanded with v fine quartzose sand (Packstone-Grainstone texture).

Particulate Components: Abundance %

Gravel, granules and minor pebbles	50
a) sandy dolmicrite (palimpsest pelletal fabric)	
b) glauconitic pelletal clay with fine pyritic tubules	
c) dolomitic calcrete?	
Quartz, metamorphic?,v coarse rounded subsherical sand	5
Quartz, v fine angular	10
Pellets,goethitic, v slightly phosphatic	5
Cement/Matrix: Clay	30
Diagenesis: Pyrite, replacing pellets and some clasts in disseminated form	
Porosity: Original	0
Intermediate	0
Present	0
Paragenesis: No erosional surface was observed, therefore unsure of origin presume this is a lag deposit concentrated from normal muddy sand deposition	
PETROGRAPHIC SAMPLE at 100.52 metres Type: TS	
Description: grainstone texture. Some have a compact sand centrefill with a concentric peripheral zone of mud.	ì
Particulate Components: Abund	lance %
Quartz, silt to v fine sand, angular, with brown surface staining (goethite?)	20
Mica flakes and thin books	<2
Pellets, goethitic (palimpsest grummous texture to matrix	
Skeletal: gastropods(mud and pellet filled); echinoid spines and plate fragmer foraminifera; malacostracan and pelecypod fragments	nts;
Cement/Matrix: Micrite with grumous texture (unsure if originally pelletal or mud)	grainstone 78
Diagenesis: Pyrite: lines burrows that are carbonate infilled; scattered fram skeletal pores	boids in
Ferroan calcite/dolomite replaces and obliterates original textures	
Porosity: Original :intraskeletal	<1
Intermediate	
Present (cement occluded)	0
Paragenesis: 1) deposition of oxidized pellets and ooids	
2) bioturbation	
3)fibrous chalcedony lines gastropod intraskeletal porosity	
4) framboidal pyrite precipitated in skeletal pores	
5) replacement of host sediment by ferroan calcite	
6) calcite druse cement in intraskeletal porosity	

PETROGRAPHIC SAMPLE at 100.73 metres depth Type: TS

Description: Burrow-mottled v fine quartzose silt with v fine sand patches. Burrows, 1mmD, comprise about 20% sediment, and are infilled with sorted v fine to fine sand (grainstone texture).

Particulate Components:	Abundance %
Sand-sized components occur both in burrows and scattered irregularly	throughout silt.
Quartz, silt, v fine - fine sand, angular, tabular to subspherical, many	
goethite-coated	10
Pellets, goethite, fine sand sized, ellipsoidal to spheroidal	
Skeletal: gastropods (pyrite-filled); malacostracan pieces	
Cement/Matrix: Clay matrix; pyrite is a minor cement in burrows	
Diagenesis: Resin, inside gastropod porosity as crazed opaque nonflu	iorescent residu
Pyrite, framboidal in intraskeletal porosity, replacement in matrix, disseframboidal cement in burrows, replacement of nuclei in pellets and ooi	
Porosity: Original intraskeletal, burrow interparticle	7
Intermediate	?
Present burrow interparticle	<4
Paragenesis: 1) oxidation of glauconite before and during deposition	ı
2)porosity enhanced by burrowing	
3) pyrite starts to precipitate in porosity	
4) some clay cement in burrows	
5) compaction	

PETROGRAPHIC SAMPLE at 101.48 metres depth Type: stained TS

6) pyrite and resin occlusion of remaining intraskeletal porosity

Description: Micrite, burrow mottled with sandy grainstone-packstone textures. Burrows, 0.4mmD, are infilled with quartz-rich grainstone, and 5mmD types infilled by pelletal wackestone. Abraded skeletal fragments are scattered throughout the micrite.

Particulate Components:	Abundance %
Quartz, coated grains and ooids, mostly in burrows	10
Grapestone, goethitic, 1.2mm, ellipsoidal	3-20
Pellets, goethitic, 1.2-0.3mm, ellipsoidal-spheroidal, varied distribution	า
Skeletal; pelecypod, echinoid, gastropod, bryozoan fragments	5
Cement/Matrix: Micrite, ferroan calcite (originally pelleted)	65
Diagenesis: Ferroan calcite, replacing host siliciclastic	
Pyrite, porefill cement in patches of micrite, revealing palimpsest pelletexture that was probably originally pervasive.	etal grainstone
Manganese oxides?, opaque radiating crystals replacing parts of molluporefill in moldic porosity.	sc fragments or

Porosity: Original intraskeletal (bryozoa), interparticle in host pelletal sediment 5
Intermediate skeletal moldic 1

Present, occluded 0

Paragenesis: 1) oxidation of glauconitic pellets before and during deposition

- 2) pyrite commences precipitation as framboids in interparticle and intraskeletal porosity
- 3) compaction commences
- 4) moldic porosity from carbonate dissolution
- 5) manganese dioxide precipitation commences

6) replacement of sediment by ferroan calcite

7) calcite druse cement porefill of remnant porosity

, i i

PETROGRAPHIC SAMPLE at 102.15 metres depth Type: stained TS

Description: Calcitic concretions occur in compacted burrow-mottled silty very fine sandy mud which has faint relict lamination from sandy and clayey alternations. Concretions have sandy packstone texture.

Particulate components in host:	Abundance %
Quartz, coarse - v fine sand - silt	30
Intraclasts of sandy packstone carbonate, 3.2mmD	
Pellets, goethitic, medium to coarse sand-sized	
Particulate components in concretion:	
Quartz, v fine sand-silt, angular, coated and ooids	15
Muscovite flakes	<1
Pellets, goethitic, fine sand-sized	1
Skeletal; disarticulated thin-shelled pelecypods, gastropod, foraminife articulated ostracod material	ral, and < 1
Cement/Matrix of concretions: Micrite, ferroan calcite, grumous tex	ture 85
Diagenesis: Pyrite, minor replacement of ooid nuclei and framboida interparticle porosity in burrows; opaque mineral (MnO ₂ ?), porefilling burrow interparticle porosity; ferroan calcite, micritic texture, replaces some quartz particles	g intraskeletal and
Porosity: Original burrow interparticle	3
Intermediate	
Present occluded	0
Paragenesis: 1) oxidation of glauconitic pellets	
2) bioturbation	
3) localized calcite replacement in concretions	
4) compaction commences	
5) pyrite precipitates in porosity (predominant in clay)	

PETROGRAPHIC SAMPLE at 107.0 metres depth Type: TS

Description: Burrowed muddy silt. Burrows are of two types: 0.3 mmD mud-filled, subhorizontal, 20% of sediment 1mmD silt-filled (finer silt than in host sediment), oblique to horizontal, 10% of sediment.

Particulate Components:	Abundance %
Quartz, coarse silt - v fine sand, subangular v fine silt	45
Muscovite, thin books	
Pellets, goethitic, 0.3mmD, ellipsspheroidal	1
Skeletal; scaphopods, disarticulated echinoids and ostracods	
Cement/Matrix: mud (silt & clay)	55
Diagenesis: pyrite: v fine disseminated in mud	3

irregular replacement of matrix from initial precipitation in interparticle porosity on margins of burrows; replacement of skeletal fragments

Porosity: Original burrow interparticle 3
Intermediate reduced

Present reduced ~2

Paragenesis: early oxidation of glauconitic pellets, burrowing, pyrite cement and replacement, compaction

PETROGRAPHIC SAMPLE at 109.25 metres depth Type: stained TS

Description: Burrowed silty-sandy micrite. Burrows are: horizontal, 1.3-3mmD, *Clymenella*-like (mud-centred with concentric outer sand-lined grainstone); vertical, *Phycodes*-like burrows 10-20% of sediment, few but large. Original texture of host is presumed grummous.

Particulate Components:	Abundance %
Quartz, mixed igneous and met., v fine sand-silt, vari shaped	20
Range from uncoated to coated ooids, gradational with	
Pellets, goethitic, medium sand-sized	1
Skeletal, pelecypod, complete but small	
Cement/Matrix: micrite	79
Diagenesis: pyrite, framboidal cement and replacement in burrow integrated porosity	terparticle 0.5
Ferroan calcite, micritic replacement or syndepositional precipitate?	79
Porosity: Original burrow interparticle porosity	8
Intermediate fracture porosity	~2
Present occluded	0
Paragenesis: 1) Oxidation of pellets	
2) calcite cementation in burrows	
a) thin layer of druse cement	
b) pyrite framboids	
c) ferroan calcite cement	
3) compaction and fracture	
4) calcite cementation healing fractures ferroan followed by nonferroar	ı dolomite

PETROGRAPHIC SAMPLE at 111.6 metres depth Type: stained TS

Description: Bioturbated dolomitic grainstone-packstone. Burrows are 4mmD, subvertical, wackestone texture around the periphery. Pellet quartz sand infill of burrows is better sorted, with an absence of mudlumps or fewer than the host sediment. Burrow infill is more oxidized.

Particulate Components:	Abundance %
Quartz, igneous and met., v fine sand - silt, angular, equant, to shard-li	ike with embayed
(corroded) surfaces, coated	30
Mudlumps, 0.9mmD, rounded, in host	60
Pellets, goethitic, 0.3-0.5mmD, spheroidal, in burrows	40

Skeletal, disarticulated echinoid pieces

Cement/Matrix: host has clay/glauconitic matrix with locally compacted mudlumps.

Burrows have compacted pellet matrix with some glauconitic cement.

Diagenesis: clay, not apparently crystalline, glauconite? in burrows. Dolomite, nonferroan micrite with clotted appearance

Porosity: Original burrow interparticle porosity

Intermediate reduced
Present 0

Paragenesis: 1) surface dolomitization to form firmgrounds

- 2) bioturbation producing dolomitic mudlumps
- 3) dolomitic micrite precipitation continued in host
- 4) clay precipitation in burrows

Interpretation: Firmground which was later modified in soil profile to a caliche.

PETROGRAPHIC SAMPLE at 114.4 metres depth Type: TS

Description: Uniform silty very fine sand of grainstone to packstone texture.

Particulate Components:

Abundance %

~ 10

Quartz & minor feldspar, v coarse silt - v fine sand angular, tabular - equant, corroded surfaces, some mud-coated **60**

Mudlumps, 1mmD, compacted, distorted 5

Mica flakes <1

Pellets, goethitic,0.3-0.5mmD, ellipsoidal to spheroidal

1

Skeletal, foraminifera, fragmented gastropods echinoid spines and disarticulated pieces

Cement/Matrix: Ferroan calcite cement pervasive

JU

Diagenesis: Ferroan calcite cement, very finely crystalline druse extending from calcareous muddy coatings of particles

Porosity: Original interparticle

20

Intermediate reduced

Present occluded 0

Paragenesis: Corrosion of quartz particles, mud-coated before deposition, and calcite cementation continued

Interpretation: Probably sediment was exposed to alkaline low-salinity groundwater very early after deposition

PETROGRAPHIC SAMPLE at 120.6 metres depth Type: stained TS

Description: Burrowed silty micrite. Burrows comprise approximately 30% of sediment, are 1-2mmD, subvertical, subhorizontal, with varying infills: v fine silty pelletal sand, sandy silty pelletal grainstone and micrite

Particulate Components:

Abundance %

Quartz and Feldspar, v fine sand to silt:

20

2

rounded, subspheroidal, stained in burrow, subangular, subspheroidal in host

Pellets, goethitic, medium to v fine sand-sized

Skeletal, malacostracan fragments

< 1

Cement/Matrix: Micrite	78
Diagenesis: Ferroan calcite, micrite, pervasive cement (v fine druse and fibroccluding fractures in host	ous)
Porosity: Original burrow interparticle	5
Intermediate fracture	~1
Present occluded	0
Paragenesis: 1) oxidation of glauconitic pellets	
2) carbonate micrite precipitation	
3) porefill by v fine ferroan calcite cements	
4) fracture of firmgrounds5) occlusion of fracture porosity by ferroan calcite	

PETROGRAPHIC SAMPLE at 120.64 metres depth Type: TS

Description: Burrowed and compacted silty mud with wackestone texture. Silt particles are aligned. Burrows comprise 30% of sediment, are compacted to elliptical section, 1mmD, horizontal orientation, infilled by: v coarse silt packstone-grainstone, v fine silt and clay packstone-wackestone

Particulate Components:	Abundance %
Quartz, v fine silt, angular, tabular	10
Coarse silt	?
Pellets, 0.2mmD	minor
Skeletal, echinoid and fish fragments, foraminifera and small pelecypoo	ds ?
Cement/Matrix: Clay	~ 90
Glauconite, cement in burrows	?
Diagenesis: Pyrite:	2
framboids in burrow porosity; replacement within clay host	
Porosity: Original burrow interparticle	3
Intermediate	
Present occluded by cement, compaction	0
Paragenesis: Pyrite precipitated in burrow porosity; compaction; pyrite continued as patchy replacement	rite precipitation

PETROGRAPHIC SAMPLE at 124.2 metres depth Type: TS

Description: Bioturbated mud with burrows comprising 15% of sediment, 1mmD, horizontal, infilled by v fine sandy mud (wackestone texture).

Particulate Components:	Abundance %
Quartz, v fine sand and silt, angular to subangular, coated grains to ooid	is 15
Mica flakes	2
Pellets, goethitic, medium sand-sized	0.5
Skeletal, pelecypod fragments, foraminifera	< 1
Cement/Matrix: Mud throughout(quartz and mica silt, clay)	80
Diagenesis: Pyrite, scattered, as well as in centres of burrows	1

Dolomite, patchy	
Porosity: Original	0
Intermediate	0
Present	0
Paragenesis: Oxidation of pellets, sedimentation, comp burrows	action pyrite replacement in

PETROGRAPHIC SAMPLE at 125.22 metres depth Type: stained TS

Description: Carbonate concretion in a host mud. Concretion is a burrowed sandy skeletal packstone-wackestone. Burrows are sand-lined and infilled with micrite.

Particulate Components:	Abundance %
Quartz, v fine sand - silt, angular, irregular shards	30
Pellets, mud, fine- medium sand-sized	0.5
Skeletal; discoid, planar and branching bryozoa, pelecypod fragments, gastropods, echinoid spicules	foraminifera, 20
Cement/Matrix: Micrite, pervasive, ferroan calcite	50
Fibrous calcite cement in bryozoa	~1
Diagenesis: Pyrite: patchy porefill between pellets (burrows? or relies sediment texture?); replacement of bryozoan tests	cts of original
Resin, in bryozoa as late porefill after calcite	
Ferroan calcite; pervasive replacement micrite radiating fibrous crysta	ls in bryozoa
Porosity: Original intraskeletal	1
burrow interparticle	1
interparticle around pellets	>1
Intermediate moldic	2
Present solution enhanced moldic	0.5
Paragenesis: 1) Bioturbation	
2) pyrite precipitation as porefill commences	
3) aragonitic cement?	
4) ferroan calcite micrite replacement and cement	
5) compaction	
6) pyrite replacement, further cementation and resin influx	

PETROGRAPHIC SAMPLE at 127.75 metres depth Type: Polished Stub

Description: A horizontal cylindrical burrow of *Ophiomorpha*, infilled with pyrite and resin in a geopetal fabric. The lower third is a dense pyrite sediment with a horizontal upper surface, overlain by a porous intermixture of pyrite framboids in resin. This intermixed texture coarsens to the top and sides of the burrow.

Interpretation: Burrow porosity remained open to fluids well after compaction when resin was mobilized with water movement while pyrite was precipitating. The resin partly separated out and rose to the upper part of the cavity. Pyrite continued precipitating as long as groundwater could permeate through this porosity.

......

PETROGRAPHIC SAMPLE at 127.95 metres depth Type: TS

Bioturbated sandy mud, slightly compacted. Burrows comprise about 25% of the sediment, are 2-5mmD, horizontal, with similarities to *Teichicthus*, and are infilled by sandy packstone.

Particulate Components:	Abundance %
Quartz: v fine sand - silt, angular, tabular	20
fine silt	?
Mica flakes throughout	1
Pellets, goethitic, 0.15mmD	1
Skeletal; oyster fragments	<1
Cement/Matrix: Mud, host sediment and burrow infill	77
Calcite cement	very minor
Diagenesis: Pyrite: occluding porosity around pellets in burrows, dis framboids replacing mud in burrows	seminated
Clay, cement occluding burrow porosity	
Porosity: Original burrow interparticle	< 0.5
Intermediate	
Present occluded	0
Paragenesis: Pyrite and minor calcite precipitation until compaction	1

PETROGRAPHIC SAMPLE at 129.0 metres depth Type: TS

Compacted, bioturbated silty mud (wackestone-mudstone texture). Burrows comprise about 30% of sediment and are variably sized from 0.3-1.5-4mmD, generally horizontal, and infilled by v fine quartzose pelletal sand.

generally norizontal, and immed by vinie quartzose penetal saild.	
Particulate Components: Abu	ndance %
Quartz and feldspar, silt and v fine sand, angular to subrounded, some have coatings: v fine sand and coarse silt	goethitic 15
v fine silt	20
Mica flakes	1
Pellets, goethitic, fine-medium sand-sized, spheroidal, predominant in burn	rows 2
Skeletal, agglutinated foraminifera	< < 1
Cement/Matrix: Clay	60
Diagenesis: Pyrite; selective as a porefill andreplacement in burrow interporosity	particle 2
Clay, light green, also in burrow porosity	
Porosity: Original burrow interparticle	7
Intermediate occlusion by cements	
Present	< 3
Paragenesis: 1) oxidation of glauconitic particles	
2) deposition, bioturbation	

- 2) deposition, bioturbation
- 3) framboidal pyrite precipitating in burrows
- 4) clay and ?silica precipitation

5) compaction

PETROGRAPHIC SAMPLE at 129.73 metres depth Type: TS

A calcareous concretion of bioturbated sandy micrite occurs within a bioturbated mud. Burrows comprise 25% of the sediment, are subvertical to subhorizontal in orientation, 1.5-3mmD, and some have compacted margins. Infilling is sandy pelletal grainstone.

Particulate Components:

Abundance %

goethitic coatings	25
Mica flakes, carbonate-coated	1
Pellets, goethitic, fine-medium sand-sized	1
Skeletal: echinoid spines, foraminifera	<1
Intraclasts, dolomitic indurated fragments, very large, tabular	5

Ouartz, coarse silt - fine sand, angular nonspheroidal, embayed margins, some with

Cement/Matrix: Calcite cement, v fine druse in burrows

Calcite micrite replaces host mud

Diagenesis: Pyrite, framboids in burrow interparticle porosity

Calcite; v fine druse cements, replacement micrite

Sulphates?, crystal moulds 1.5-3mm long, prismatic, in the host silty clay

7 **Porosity:** Original burrow interparticle Intermediate compacted, occluded

Present

Paragenesis: 1) reworking of an earlier ferroan dolomitic crust into intraclasts;

oxidation of glauconitic ooids and pellets.

- 2) bioturbation
- 3) displacive sulphate growth
- 4) pyrite precipitation in porosity
- 5) cementation/replacement by ferroan calcite
- 6) sulphate replaced by nonferroan dolomite

Interpretation: Dolomitic hardground in salt flat environment

PETROGRAPHIC SAMPLE at 130.5 metres depth Type: stained TS

Description: Dolomitic chert concretion, synaeresis cracked, within a clayey silt. The dolomitic micrite has approximately 15% burrows, 2.5mmD, subhorizontal, infilled by coarse silt and pelletal dolomitic packstone. There are grumous patches throughout the micritic concretion.

Particulate Components:	Abundance %
Quartz, coarse silt, v angular and embayed, shard-like	10
Muscovite flakes	0.5
Mudlumps, glauconitic	<1
Pellets: carbonate and goethitic, medium sand, ellipsoidal	< 1
Cement/Matrix: Mud, now dolomite and chert, palimpsest pellet pac	ekstone 88
Pyrite, porefill in pellet-filled burrows as framboids (20 microns D)	

Diagenesis: Pyrite, burrow interparticle porosity porefill, early, precompact	ion 0.5
Chert, pervasive and total replacement, 2-3 phases of accretion	50
Dolomite, original precipitate as sediment?, precipitation continued to post-ecompaction	arly 40
Resin, black, crazed, thin coating and crust on surfaces of synaeresis cracks	<1
Porosity: Original burrow interparticle	5
Intermediate	
Present post lithification fractures in concretions	5
Paragenesis: 1) pyrite precipitation	
2) dolomitization in burrows and host sediment	
3) chert replacement in phases of gel precipitation	
4) gel shrinkage and fracture	
5) dolomite cementation in part in fractures	
6) resin migration	

PETROGRAPHIC SAMPLE at 133.5 metres depth Type: stained TS

Description: A calcitic and dolomitic concretion in mud. The concretion is a sandy silty clotted micrite. Burrows comprise 30% of the sediment, average 1.5mmD, are subhorizontal, and infilled by a sorted sandy pelletal grainstone-packstone.

Particulate Components:	Abundance %
Quartz, v fine-fine sand, angular, sunrounded, some coated with goethi	ite 25
Mudlumps,1-3.5mmD, variably distorted	?
Pellets, goethitic, medium sand-sized	5
Skeletal; bryozoan and decapod pieces	<1
Cement/Matrix: Micrite (compacted mudlumps?)	59
Calcite cement, coarse druse in burrows	10
Diagenesis: Pyrite, framboids (10-30 microns) in burrows;	
Calcite, coarse drusy cement in burrows; ferroan, vein infill in fractured	l concretions
Porosity: Original interparticle	10
Intermediate fracture	5
Present recemented	0
Paragenesis: 1) bioturbation and slow compaction	
2) pyrite precipitation commences	
3) pervasive ferroan calcite cementation and replacement	
4) compaction, fracturing of concretions	
5) ferroan calcite continued to occlude porosity	

PETROGRAPHIC SAMPLE at 143.6 metres depth Type: stained TS

Description: Clast from a gravelly flasered silt is a laminated sandy micrite with 10% burrows (1.5mmD) and infilled by pelletal mud.

Particulate Components:	Abundance %
Quartz and Feldspar, v fine to fine sand, angular	10

0

Pellets?, 20-50 microns D, spherical, recrystallized

Cement/Matrix: Micrite, replacement of pellets?

Diagenesis: Pyrite, patchy replacement and porefill along laminae in sandier horizons Siderite?, part poikilotopic cement between ?pellets

Porosity: Original interparticle

Intermediate

Present occluded

Paragenesis: Initially pyrite precipitation and then sideritic cementation as well.

.....

PETROGRAPHIC SAMPLE at 149.45 metres depth Type: stained TS

Description: Variably bioturbated silty micrite. Burrows comprise 20-30% of the sediment, up to 2.2mmD and horizontal, and 1.4mmD and vertical (*Teichichnus*?).

Particulate Components:	Abundance %
Quartz and Feldspar, coarse silt, angular	15
Mudlumps, coarse sand-sized	20
Pellets	?
Cement/Matrix: Calcitic micrite; Calcite cement in burrows	
Diagenesis: Calcite and Chert replacement	40
Pyrite, scattered replacement - margins of small burrows	< 1
Porosity: Original burrow interparticle	5
Intermediate	
Present	0
Paragenesis: Deposition, bioturbation, followed by early pyrite pre Silicification then selective of burrow porosity; calcite replacement.	ecipitation.

PETROGRAPHIC SAMPLE at 150.9 metres depth Type: TS

Present

Description: Burrowed silty dolomitic mudstone. Burrows comprising 30-40% of the sediment, are variably sized from 0.15-0.4-3.2mmD. Some burrows are composite, with thinner tubules intertwined within the soft infilling sediment.

thinner tubules intertwined within the soft infilling sediment.	•	
Particulate Components:	Abundance %	
Quartz, silt	15	
Skeletal: calcareous algal tubules and encrustations		
Cement/Matrix: Micrite in burrows	5?	
Mud	80?	
Diagenesis: Dolomite, small rhombs, sucrosic texture, pervasive		
Chert, pervasive in host, especially rimming large burrows, synaeresis cracks, goethitic (and phosphatic?) staining associated.		
Pyrite, early precipitate as scattered framboids in the margins of burrows. Oxidation is apparent as diffused haloes of goethite around framboids.		
Porosity: Original burrow interparticle	10	
Intermediate		

Paragenesis: 1) deposition and bioturbation of sediment

- 2) pyrite commences precipitation
- 3) silicification and dolomitization extensive, indurating exposed surface. Algal encrustation and boring.
- 4) oxidation of pyrite

Interpretation: This horizon was a syndepositional hardground with active silicification and dolomitization

PETROGRAPHIC SAMPLE at 165.35 metres depth Type: TS

Description: Burrowed sandy pelletal packstone. Burrows comprise approximately 15% of sediment. Original sediment texture was grainstone, now compacted to packstone.

Particulate Components:

Abundance %

Quartz, v fine to fine sand, angular subrounded

Pellets, glauconitic and goethitic, medium sand-sized, most have concentr internal reaction rims of undetermined mineralogy

< 2

Skeletal: agglutinated foraminifera, solitary corals, pelecypod fragments

30

Cement/Matrix: Glauconite cement pervasive except in burrows

Glauconite, pervasive, two phases; a rim cement on particles, separated **Diagenesis:** from later porefill by a zone of undetermined composition (opaque), identical to the zonation in pellets

Dolomite, sucrosic with rhombs microns, in burrows as replacement of matrix

Porosity: Original interparticle, burrow 30

Intermediate

Present occluded 0

1) some oxidation of glauconitic pellets **Paragenesis:**

- 2) bioturbation
- 3) glauconite cementation
- 4) replacement dolomitization in burrows
- 5) replacement pyritization

This horizon is a reworked firm or hardground. Old exposed burrows Interpretation: have oxidized margins.

PETROGRAPHIC SAMPLE at 166.9metres depth Type: TS

Uniformly burrowed pelletal sand. Burrows are indistinct, approximately **Description:** 6mmD, and are apparent by a slight concentric pattern in sand orientation within the grainstone texture.

Particulate Components:

Abundance %

Quartz and Feldspar, fine - v fine sand, angular-subrounded, pitted surfaces	40
Pellets, glauconitic, pyritic, medium sand-sized	30
Grapestone, glauconitic and goethitic	< 2
Skeletal, pelecypod fragments (abraded)	< 1
Cement/Matrix: Glauconite cement pervasive	28

Diagenesis: Glauconite, poorly crystalline cement	
Dolomite, small rhombs throughout glauconitic cement	
Porosity: Original interparticle	30
Intermediate	
Present cement porefill	0
Paragenesis: Grainstone, following bioturbation, porosity occluded by earl glauconitic cement. Replacement by dolomite as disseminated rhombs throu glauconite.	ghout the
PETROGRAPHIC SAMPLE at 169.0 metres depth Type: TS	
Description: Calcitic fine - v fine quartzose sandstone with grainstone texts	are.
•	dance %
Quartz and Feldspar, fine-v fine sand, shards angular -subrounded, equant, c	oated 60
Mica, thin books	1
Mudlumps, coarse sand-sized, originally soft	3
Skeletal: foraminifera, minor fragments of ostracods	2
Cement/Matrix: Ferroan calcite cement	25
Diagenesis: Ferroan calcite, very coarse druse cement, invades and replace of quartz sand	s margins
Porosity: Original interparticle	25
Intermediate	
Present cement occlusion	0
Paragenesis: Deposition, compaction, then total induration	
	••••••
PETROGRAPHIC SAMPLE at 169.35 metres depth Type: TS	
Description: Homogeneous pelletal skeletal quartzose sand with grainston	e texture.
Particulate Components: Abun	dance %
Quartz and Feldspar, fine-v fine sand, angular, tabular to equant	60
Pellets: glauconitic, medium to coarse sand	2
goethitic, v fine - medium sand-sized	8
Skeletal: fragmented/complete gastropods, disarticulated ostracods, variably-pelecypod fragments, disarticulated oysters, bryozoa, echinoid spines	-sized
Cement/Matrix: Glauconite cement	27
Diagenesis: Glauconite, pervasive as cement/matrix	
Dolomite, patchy cement	
Porosity: Original interparticle	27
intraskeletal	4
Present	3
Interpretation: Originally a grainstone texture, the sand was almost totally by glauconite	occluded

PETROGRAPHIC SAMPLE at 175.55 metres depth Type: polished stub

Description: Pyritized burrow (*Dominichnia*).

Diagenesis: Pyrite present as euhedral tetrahedra grading to subhedral crystals where crystal growth interference has resulted. Only walls of burrow have been replaced.

.....

PETROGRAPHIC SAMPLE at 183.8 metres depth Type: TS

Description: Silty dolomitic micrite. Minor burrows are distinct and large (8 by 16 mm), infilled by silty grainstone, and flecked with resin. Texturally, the sediment is a colour-mottled wackestone with patches of mudstone or locally packstone where it is glauconitic.

Particulate Components:	Abundance %	
Quartz and Feldspar, silt-sized, angular, equant		
in burrows	70	
in host	5	
Pellets, glauconitic, medium sand-sized, some with unusual irregular n	nuclei 20	
Skeletal, bryozoa	<1	
Cement/Matrix: Calcite, v finely crystalline throughout	80	
Dolomite, matrix in discrete patches (large clasts?)		
Clay, (glauconite?) cement in burrows		
Diagenesis: Ferroan calcite, replacement of mud and a cement?		
Dolomite, non-ferroan, micrite		
Clay, porefill in burrows		
Chert, in small patches associated with dolomite		
Porosity: Original burrow interparticle	5	
Intermediate		
Present	2	
Paragenesis: There appears to be a repeated sequence of bioturbation, synsedimentary dolomitization, erosion and reworking. Calcite replacement and clay precipitation appears to follow after deposition.		

Interpretation: Dolomitized muddy hardground where glauconitic replacement of pellets was incomplete.

APPENDIX V

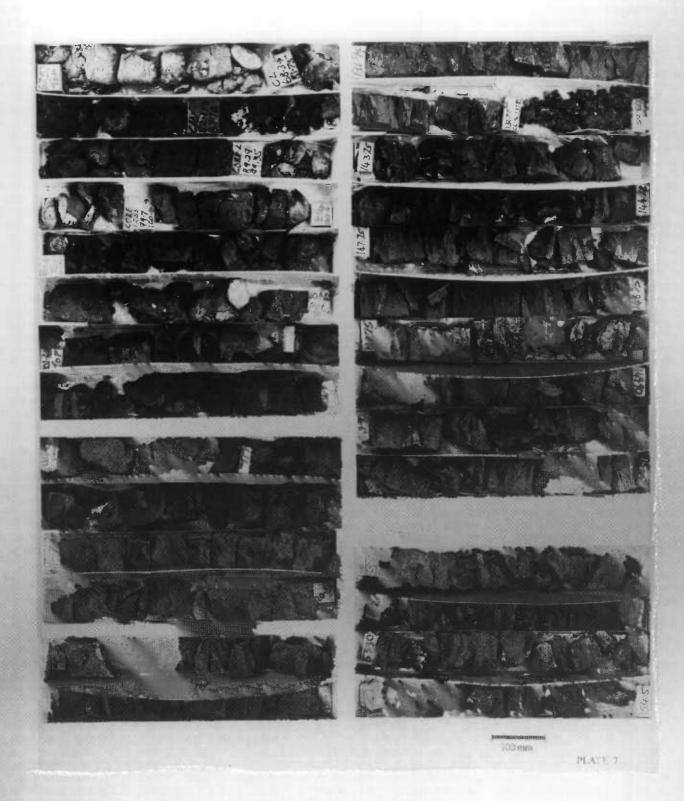

PHOTOGRAPHY OF DRILLCORE

PLATE 7

Representative sections of split core from 67.57 to 154.5 metres depth.

metres depth

Parilla Sands	?	
		81.5
Lithofacies F	00. 00 00 00 00 00 00 00 00 00 00 00 00	102
Lithofacies E		128
Lithofacies D		134
Lithofacies C		165.3

* R 8 7 0 2 5 1 9 *

Representative sections of split core from 154.5 to 185.88 metres depth

PLATE 8

	metres depth
	134
 Lithofacies C	
	165.3
Lithofacies B	170.7
Lithofacies A	185.88

100mm

PLATE 8

APPENDIX VI

DRILLCORE SAMPLES

PETROGRAPHIC SAMPLES

Depth in hole m

67.1	Thin Section	125.22	Thin section
81.8	11	127.75	Polished Stub
88.0	11	127.95	Thin section
89.15	tt	129.0	11
99.5	**	129.73	11
100.52	11	130.5	*1
100.73	11	133.5	**
101.48	11	143.6	tt.
102.15	11	149.45	11
107.0	11	150.9	11
109.25	11	165.35	II.
111.6	**	166.9	11
114.4	"	169.0	Ħ
120.6	11	169.35	11
120.64	11	175.55	Polished stub
124.2	11	183.8	Thin Section

MINERALOGIC DETERMINATIONS (XRD)

BMR

*AMDEL

Depth in hole m

67.3	132.75
67.6	133.75
67.9	137.7 *
68.2	145.8 *
101.8*	146.0 *
108.3*	149.35
110.2*	151.7
112.45*	152.37
122.90*	152.87
128.80*	170.0
131.2 *	172.45
	175.43

TOTAL ORGANIC CARBON ANALYSES

Sample Depth (metres)	BMR NO
108.00	3712
114.40	3703
125.95	3704
128.10	3705
132.00	3706
153.35	3707
157.30	3708
163.30	3709

GEOCHEMICAL DETERMINATIONS

Depth (metres)

109.00 132.77 135.8 136.52 163.5A 163.5B

FORAMINIFERA SAMPLES

Interval (metres)	Interval (metres)
87.78	150.23
101.67	151.67
102.1525	153.78
106.2535	154.67
107.115	157.67
109.67	160.56
119.253	162.34
120.115	165.01
122.89	169.34
125.225	171.23
126.2535	172.56
129.34	172.8 - 173.0
133.56	173.34
138.34	175.9 - 176.0
147.12	182.34
149.01	183.01
	184.01
	184.56
	185.23

PALYNOLOGY SAMPLES

Depth. (m) 68.0	Depth (m) 113.8
820	119.9
89.0	123.4
99.5	127.1
100.0	129.2
100.9	133.0
101.2	138.0
101.5	143.8
101.8	149.0
102.0	154.0
106.2	164.0
106.5	169.4
110.2	174.0
	179.0
	184.0

PORE FLUID GEOCHEMISTRY SAMPLES

Sample No. & Depth in metres							
1 67.5	52 123.1	103 139.1	154 157.6	205 175.4			
2 67.5	53 123.4	104 139.4	155 157.9	206 175.7			
3 67.8	54 123.7	105 139.7	156 158.2	207 176.0			
4 68.3	55 124.0	106 140.0	157 158.5	208 176.3			
5 81.8	56 124.3	107 140.3	158 158.8	209 176.6			
6 82.1	57 124.6	108 140.6	159 159.1	210 176.9			
7 87.7	58 124.9	109 143.8	160 159.4	211 177.2			
8 88.0	59 125.2	110 143.9	161 159.7	212 188.5			
9 88.3	60 125.5	111 144.2	162 160.0	213 177.8			
10 88.6	61 125.8	112 144.5	163 160.3	214 178.1			
11 88.9	62 126.1	113 144.8	164 160.6	215 178.4			
12 89.2	63 126.4	114 145.1	164 160.9	211 78.7			
13 99.4	64 126.8	115 145.4	166 161.2	217 179.1			
14 99.7	65 127.1	116 145.7	167 161.5	218 180.2			
15 100.0	66 127.4	117 146.0	168 161.8	219 180.5			
16 100.3	67 127.7	118 146.3	169 162.0	220 180.8			
17 100.6	68 128.0	119 147.1	170 162.4	221 181.1			
18 100.9	69 128.4	120 147.4	171 162.7	222 181.4			
19 101.2	70 128.7	121 147.7	172 163.0	223 181.7			
20 101.5	71 129.0	122 148.0	171 63.3	224 182.0			
21 101.8	72 129.3	123 148.3	174 163.6	225 182.3			
22 102.1	73 129.6	124 148.6	175 163.4	226 182.6			
23 106.2	74 129.9	125 148.9	176 164.2	227 182.9			
24 106.5	75 130.1	126 149.2	177 164.5	228 183.2			

25 106.8	76 130.5	127 149.5	178 164.8	229 183.5
26 107.1	77 130.8	128 149.8	179 165.1	230 183.8
27 107.7	78 131.1	129 150.1	180 165.7	231 184.2
28 108.0	79 131.4	130 150.4	181 166.0	232 184.5
29 108.3	80 131.7	131 150.7	182 166.3	233 184.8
30 108.7	81 132.0	132 151.05	183 166.6	234 185.1
31 109.0	82 132.3	133 151.3	184 166.9	235 185.4
32 109.3	83 132.6	134 151.6	185 167.2	236 185.7
33 109.6	84 132.9	135 151.9	186 167.5	
34 109.9	85 133.2	136 152.2	187 167.8	
35 110.2	86 133.5	137 152.5	188 168.1	
36 110.5	87 133.8	138 152.8	189 168.4	
37 111.8	88 134.5	139 153.1	190 168.7	
38 112.1	89 134.8	140 153.4	191 169.0	
39 112.3	90 135.1	141 153.7	192 169.3	
40 112.6	91 135.4	142 154.0	193 169.6	
41 112.9	92 135 .7	143 154.3	194 169.9	
42 113.8	93 136.0	144 154.6	195 170.2	
43 114.1	94 136.3	145 154.9	196 170.5	
44 119.0	95 136.7	146 155.2	197 170.8	
45 119.3	96 137.0	147 155.5	198 171.1	
46 119.6	97 137.3	148 155.8	199 172.3	
47 119.9	98 137.6	149 156.1	200 172.6	
48 120.2	99 137.9	150 156.4	201 172.9	
49 120.5	100 138.2	151 156.7	202 173.2	
50 120.8	101 138.5	152 157.0	203 173.5	
51 122.8	102 138.8	153 157.3	204 173.8	