

MATURATION LEVELS OF SOME PROTEROZÒIC ORGANIC MATTER IN NORTHERN AUSTRALIA: IMPLICATIONS FOR OIL EXPLORATION I. H. CRICK

BMR ICATIONS COMPACTI IDING SECTION)

RAL RESOURCES

RAL RESOURCES

RAL RESOURCES

RAL RESOURCES

RAL RESOURCES

RAL RESOURCES

DIVISION OF CONTINENTAL GEOLOGY

RECORD 1988 152

DIVISION OF CONTINENTAL GEOLOGY

RECORD 1988 152

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

RECORD 1988/53

Maturation levels of some Proterozoic organic matter in northern Australia: implications for oil exploration.

BY

I. H. CRICK

Division of Continental Geology Bureau of Mineral Resources, Geology and Geophysics.

TABLE OF CONTENTS

ABSTRACT	oage 2
INTRODUCTION	2
REGIONAL GEOLOGY	2
SAMPLES AND METHODS	5
RESULTS	6
DISCUSSION	9
CONCLUSIONS	11
REFERENCES	12
PLATE 1. Photomicrographs of organic matter	14
APPENDIX A - Location of samples	15
APPENDIX B - Petrographic descriptions of organic matter	16
APPENDIX C - Reflectances (maximum) of organic matter	18
APPENDIX D - Reflectances (random) of organic matter	19
APPENDIX E - Rock Eval analyses	20

ABSTRACT

Reflectance measurements and Rock Eval analyses on organic matter contained in fine-grained sediments in core samples from the Proterozoic northern Lawn Hill Platform and eastern Victoria Basin indicate that the organic matter is mature. Any hydrocarbon accumulations that may have occurred in the past would not have become thermally degraded and therefore the oil prospectivity of these regions is enhanced.

Reflectance measurements from the Proterozoic South Nicholson Basin indicates the organic matter is slightly overmature whereas measurements from the central Lawn Hill Platform indicates the organic matter is well overmature.

INTRODUCTION

Most organic matter in Precambrian sediments in Australia is overmature and much of it is clearly graphitic and contained in greenschist or higher metamorphic facies rocks. In such regions, the possibility of finding commercial quantities of hydrocarbons are remote and any oil that may have formed in the past has, at least, been totally thermally degraded. However, in northern Australia large areas of middle Proterozoic sediments are sub-greenschist facies and in the McArthur Basin (Fig. 1) the organic matter is almost immature in places (Crick et al., 1987, 1988; Crick, 1988). Assessment of the level of maturation of organic matter contained in the sediments in any region is therefore the first step towards assessing that regions hydrocarbon potential.

REGIONAL GEOLOGY

Victoria River Basin

The Victoria River Basin (Fig. 1) contains up to 3500 m of mostly flat-lying or very mildly deformed carbonate and terrigenous sequences separated by several disconformities and consisting mainly of sandstone, siltstone, shale, dolomite, claystone and conglomerate (Sweet, 1977; Plumb et al., 1981). Deposition took place between 1300 and 1000 Ma (Page et al., 1984).

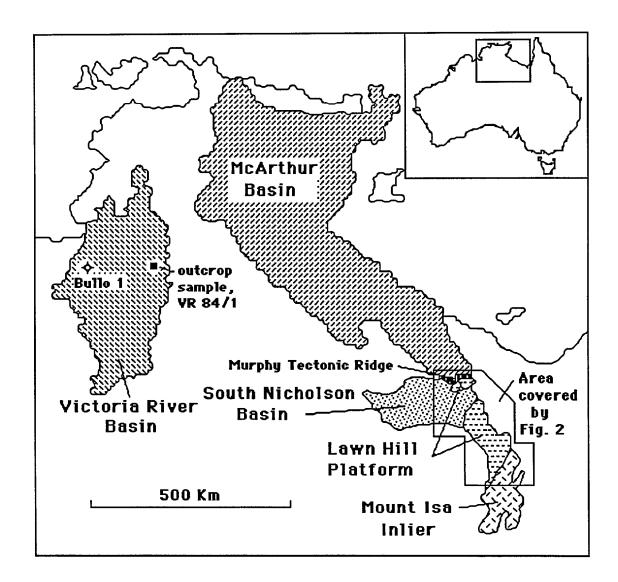


Figure 1. Map of northern Australia showing locations of the Victoria River, McArthur, and South Nicholson Basins, Lawn Hill Platform and Mt Isa Inlier, together with location of the well, Bullo 1, and VR84/1 outcrop sample in the Victoria River Basin.

South Nicholson Basin

Sediments of the South Nicholson Basin (Fig. 1) unconformably overlie the Lawn Hill Platform Cover and consist of alternating sandstones and micaceous siltstones and minor pisolitic iron formations (Plumb et al, 1981; Harms, 1965). The South Nicholson Group is a correlative of the Roper Group in the McArthur Basin to the north (Plumb et al., 1981) which has a minimum depositional age of 1429 ± 31 Ma (Kralik, 1982; Page et al., 1984).

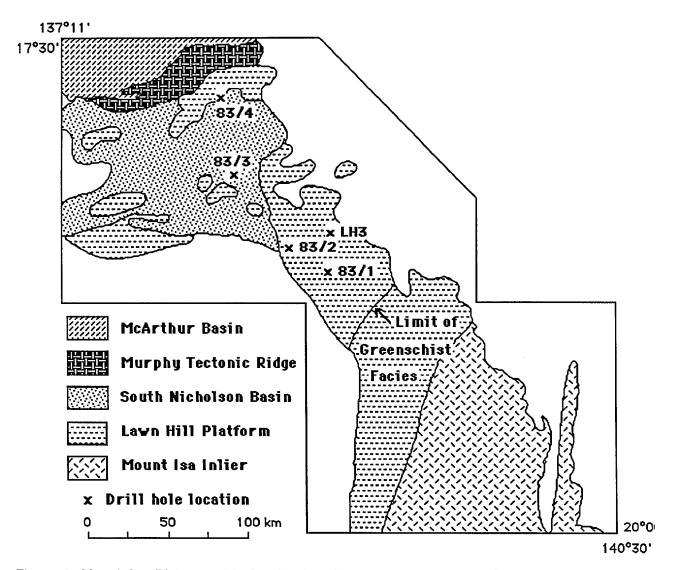


Figure 2. Map (after Blake, 1987) showing location of drill holes in the South Nicholson Basin and Lawn Hill Platform used in this study.

Lawn Hill Platform Cover

The Lawn Hill Platform Cover (Fig. 1) contains up to 8500 m of mainly mildly deformed basal volcanics overlain by carbonates and terrigenous sediments, separated by several unconformities (Hutton and Sweet, 1982). The age of one of the basal volcanic units (Carters Bore Rhyolite) is 1678 ± 1 Ma (U-Pb, zircon) and sedimentation was presumably completed before regional metamorphism between 1620 Ma and 1500 Ma (Page et al., 1984).

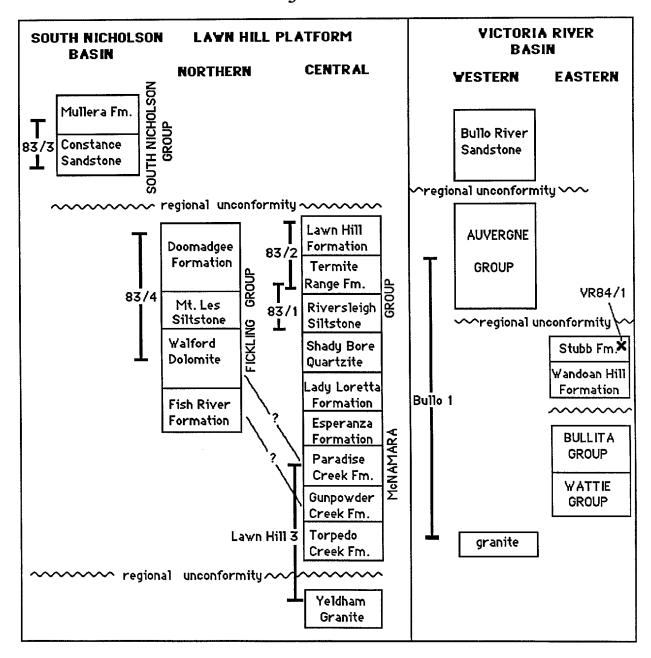


Figure 3. Stratigraphy of the South Nicholson Basin, Lawn Hill Platform (excluding basal sequences) and the Victoria River Basin (after Sweet, 1977; Hutton and Sweet, 1982) showing stratigraphic positions of the drill holes.

SAMPLES AND METHODS

Most samples used in this study come from continuously cored stratigraphic drilling by Amoco and the Geological Survey of Queensland in the Lawn Hill Platform Cover and the South Nicholson Basin (DDH's Amoco 83/1-4, GSQ LH3) and from Queensland Petroleum Pty. Ltd. one dry wildcat well (Bullo 1)

in the Victoria River Basin (Figs. 1, 2; App. A). Grey to dark-grey claystone to very fine-grained sandstone were preferentially selected for analyses.

One sample (VR84/1) comes from relatively unweathered outcrop (lan Sweet, pers comm.) on the eastern side of the Victoria River Basin (Fig. 1; App. A) as no drill core is available from that area.

Samples from the Lawn Hill Platform and South Nicholson Basin were analysed by Rock Eval pyrolysis using standard techniques. Organic petrographic observations were made on polished rock specimens mounted in cold-setting resin using a Leitz Orthoplan Pol microscope in both white and blue-ultraviolet modes. Reflectance measurements were made with a Leitz MPV1 photometer, at x500 magnification using plane-polarized and non-polarized monochromatic light at 543 nm (band-width = 22 nm) and calibrated by McCrone Specular Reflectance Standards (spinel - 0.416%, yttrium aluminium garnet - 0.916%, and gadolinium gallium garnet - 1.710% reflectance).

Maximum reflectance measurements were made on some samples from the Lawn Hill Platform and South Nicholson Basin using plane-polarized incident white light and reflectances using non-polarized incident white light were made on selected samples from all areas. All measurements were made on organic matter perpendicular to bedding.

Measuring maximum reflectances requires rotation of the stage through 360° whilst keeping the measuring field (set at 1μ square) over the surface being measured, which is a precise manual task when small pieces of organic matter are involved, as no microscope stage can be centred perfectly at high magnifications. Measuring reflectances using *non-polarized* incident white light has the advantage that no rotation of the stage is required and is thus considerably easier. However the incident white light is slightly polarized due to reflection off mirror and/or prism surfaces prior to impinging on the sample and thus these measurements are not as precise as maximum reflectances.

RESULTS

The organic matter in these rocks, when examined in reflected light mode perpendicular to bedding, commonly consists of elongate (up to 500μ long), thin (generally1-5 μ wide), whisps of black to silvery forms disseminated through the rock together with vitrinite-like irregularly-shaped (generally 1-20 μ in size) grains (App. B; Plate 1). None of the organic matter fluoresces although medium to faint mineral fluorescence is common. In one sample from the Doomadgee Formation, northern Lawn Hill Platform (DDH 83/4, 104.6m), highly

fluorescing fluid inclusions are evident in some mineral grains indicating the presence of liquid hydrocarbons. Similarly shaped organic matter is observed in



Figure 4. Mean reflectances, measured in non-polarized incident white light (mean Ro%) versus depth for the Lawn Hill Platform Cover and South Nicholson Basin.

the McArthur Basin (Crick et al., 1988) where it is called non-fluorescing lamalginite and bitumen respectively. Bitumen which surrounds mineral grains (matrix bitumen) occurs in a few specimens and vein bitumen occurs in one only. Thucholite grains, formed by the polymerization of bitumen around a radioactive mineral, is also present in a number of the samples (Plate 1-6). Some lamalginite contain central lumens (Plate 1-7) suggesting they have formed from a single cell.

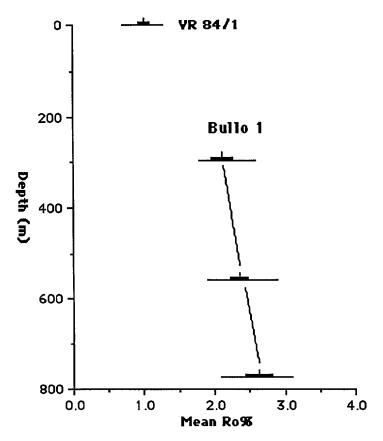


Figure 5. Mean reflectances, measured in non-polarized incident white light (mean Ro%) versus depth for the Victoria River Basin.

Reflectance measurements were made on the lamalginite and bitumen (App. C, D; Figs. 4,5). Mean reflectances, measured in non-polarized white light, range from 0.84% to 4.36% and when these measurements are compared to maximum mean reflectances from the same specimens a good correlation (R=0.98) is obtained (Fig. 6).

The reflectance results for lamalginite and bitumen from the outcrop specimen, VR84/1, have probably not been significantly affected by weathering as research into the effect of weathering on coals has shown that there are no significant differences between vitrinite reflectances from naturally weathered outcrops of coal with that of the same unweathered coal obtained at greater depths (Chandra, 1962).

Rock Eval pyrolysis of samples from the Lawn Hill Platform Cover and the South Nicholson Basin are given in Appendix E. The maturation index, Tmax, derived from Rock-Eval analyses, represents the temperature of maximum evolution of hydrocarbons during pyrolysis (Espitalie et al., 1977). Tmax measurements are unreliable in samples of low pyrolysis yields (<0.2 kg/tonne) and are also affected by the migration of hydrocarbons commonly causing a

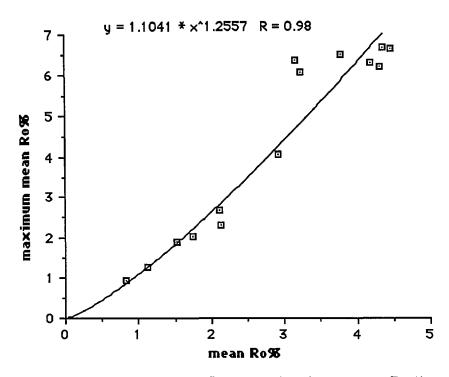


Figure 6. Maximum mean reflectances (maximum mean Ro%) versus mean reflectances measured from incident non-polarized light (mean Ro%) for organic matter in the Lawn Hill Platform Cover and the South Nicholson Basin.

suppression of the Tmax values (Clementz, 1979). The presence of migrated hydrocarbons is indicated from the Production Index (PI) which is the ratio of S1 to S1 + S2 where S1 is the amount of free hydrocarbons released during pyrolysis (Espitalie et al., 1977).

Most of the Tmax values are invalid due to S2 values being less than 0.2 kg/tonne or due to the presence of migrated hydrocarbons (PI > 0.2). Only three samples from the top of DDH 83/3 and two from DDH 83/4 have Tmax values where S2 > 0.2 and PI < 0.2. However, in the case of DDH 83/3, the three values were derived from broad S2 peaks suggesting that residual asphaltenes as well as kerogen is present and are therefore not accurate.

DISCUSSION

In the McArthur Basin, the onset of hydrocarbon generation occurs at a mean maximum reflectance value of about 0.15% for fluorescing lamalginite and a Tmax value of ca. 435° C; the base of the oil-window occurs at a mean maximum reflectance value of about 1.4% for bitumen and/or non-fluorescing lamalginite and a Tmax value of ca. 470°C (Crick et al., 1988). Provided the organic matter

Region/Formation,	Reflecta	ances (%)	Tmax	4
Maturity	mean	max. mean	(°C)	Maturity
South Nicholson Basin Mullera Formation	1.5	1.9	nrd	overmature
Constance Sandstone	1.8 - 2.1	2.1 -2.7	nrd	overmature
Northern Lawn Hill Platform Doomadgee Formation	0.8	0.9	456	mature
Mt Les Siltstone	1.1	1.2	459	mature
Central Lawn Hill Platform Lawn Hill Formation	2.9, 3.2	4.0, 6.1	nrd	overmature
Termite Range Formation	3.2, 3.8	4.8, 5.9	nrd	overmature
Riversleigh Siltstone	4.2 - 4.4	6.3, 6.7	nrd	overmature
Gunpowder Creek Formation	4.5	6.6	nrđ	overmature
Victoria River Basin				
Angalarri Siltstone	2.1 - 2.6	2.8-3.7	nrd	overmature
Stubb Formation	1.00	1.1	nrd	mature

Table 1. Maturation levels for organic matter in the South Nicholson Basin, Lawn Hill Platform and Victoria River Basin. (nrd = no reliable data; maximum mean values are those measured except for the Victoria River Basin which are calculated).

in the Proterozoic rocks discussed here behaves in a similar manner to that of the McArthur Basin with respect to these maturation indices, then organic matter from the Stubb Formation, Doomadgee Formation and Mt Les Siltstone are within the oil window whereas the remainder are overmature (Table 1).

The differences in maturation levels of organic matter from the Lawn Hill Platform and South Nicholson Basin can probably be explained mostly in terms of depth of burial and a relatively similar geothermal history. The Lawn Hill Platform Cover is thinnest adjacent to the Murphy Tectonic Ridge and thickens considerably towards the central Lawn Hill Platform where it reaches a maximum thickness of 8500 m (Hutton and Sweet, 1982). It is likely that no great

thicknesses of younger rocks ever overlay the Fickling Group in the northern Lawn Hill Platform as the organic matter observed in it is mature and not overmature. Organic matter in the South Nicholson Group has slightly higher maturation levels than in the older Fickling Group suggesting that it was more deeply buried but these levels are significantly less than levels in the McNamara Group from the central Lawn Hill Platform.

In the Victoria River Basin, it is likely that no great thicknesses of sediments ever overlay the Stubb Formation in the east. However in the west, the Auvergne Group and younger sediments were significantly thicker or palaeogeothermal gradients were higher than to the east given the greater maturation level of organic matter from DDH Bullo 1.

CONCLUSIONS

- 1. Organic matter maturation levels for the northern Lawn Hill Platform near the Murphy Tectonic Ridge and on the eastern side of the Victoria River Basin are mature and therefore any hydrocarbons that may have accumulated in these regions would not have been thermally degraded. The potential for finding hydrocarbons in these regions is therefore enhanced.
- 2. Maturation levels from the South Nicholson Basin are just overmature and there may be areas where the organic matter is mature within this basin.
- 3. Maturation levels from the central Lawn Hill Platform and from the Angalarri Siltstone on the western side of the Victoria River Basin are overmature.

REFERENCES

- BLAKE, D.H., 1987. Geology of the Mount Isa Inlier and environs, Queensland and Northern Territory. BMR Bulletin 225.
- CHANDRA, D., 1962. Reflectance and microstructure of weathered coals. Fuel, 41 (2), London, 185-193.
- CLEMENTZ, D.M., 1979. Effect of oil and bitumen saturation on source rock pyrolysis.

 AAPG Bull., 60, 608-626.
- CRICK, I.H., BOREHAM, C.J., and POWELL, T.G., (1987). Assessment of Hydrocarbon Source Potential, McArthur Basin. Ch. 2, in: Powell T.G. (ed.), Petroleum Geology and Geochemistry, Middle Proterozoic McArthur Basin. BMR Record 1987/48.
- CRICK, I.H., BOREHAM, C.J., COOK, A.C. and POWELL, T.G., (in press). Studies on Petroleum Geology and Geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia II: Assessment of Source Rock Potential. AAPG Bulletin.
- ESPITALIE, J., DEROO, G. and F. MARQUIS, 1986. ROCK EVAL PYROLYSIS

 AND ITS APPLICATIONS. Institute Francais du Petrole, publication no. 27299,

 English Translation.
- HARMS, J.E., 1965. Iron ore deposits of the Constance Range. In: J. McAndrew (Editor), Geology of Australian Ore Deposits. 8th. Commonwealth Min. Metall. Congr., Melbourne. 2dn. ed., 264-269.
- HUTTON, L.J. and SWEET, I.P., 1982. Geological Evolution, Tectonic Style, & Economic Potential of the Lawn Hill Platform Cover, Northwest Queensland. BMR Journal of Australian Geology & Geophysics, 7, 125-134.

- KRALIK, M., 1982. Rb-Sr age determinations on Precambrian carbonate rocks of the Carpentarian McArthur Basin, Northern Territory, Australia.

 Precambrian Research, 18, 157-170.
- PAGE, R.W., MCCULLOCH, M.T. and BLACK, L.P., 1984. Isotopic record of major precambrian events in Australia. Proceedings of the 27th Internation Geological Congress, Volume 5, 25-72, Precambrian Geology.
- PLUMB, K.A., DERRICK, G.M, NEEDHAM, R.S. and SHAW, R.D. 1981. The

 Proterozoic of Northern Australia. In Hunter, D.R., (Ed.) Precambrian of
 the Southern Hemisphere. Developments in Precambrian Geology, 2,
 Elsevier, Amsterdam, 205-307.
- SWEET, I.P., 1977. The Precambrian Geology of the Victoria River Region, Northern Territory. BMR Bulletin 168.

- Plate 1. Photomicrographs of organic matter in polished blocks perpendicular to bedding, white reflected light mode; all at the same magnification, scale bars = 20μ .
- 1-1. Victoria River Basin, Auvergne Group, Angalarri Siltstone; DDH Bullo 1, 557.3m; isolated strands of non-fluorescing lamalginite.
- 1-2. Victoria River Basin, Stubb Formation, outcrop sample VR 84/1; an isolated strand of non-fluorescing lamalginite.
- 1-3. Central Lawn Hill Platform, Riversleigh Siltstone; DDH 83/1, 631.0m, strands of non-fluorescing lamalginite.
- 1-4. Central Lawn Hill Platform, Gunpowder Creek Formation; DDH Lawn Hill 3, 152.7m, vein bitumen.
- 1-5. Central Lawn Hill Platform, Termite Range Formation; DDH 83/2, 540.2m, matrix bitumen surrounding rounded quartz grains.
- 1-6. South Nicholson Basin, Mullera Formation, DDH 83/3, 54.7m; a thucholite grain showing a mineral (?zircon) nucleus.
- 1-7. South Nicholson Basin, Constance Sandstone, DDH 83/3, 292.0m; non-fluorescing lamalginite composed of two bifurcating strands.
- 1-8. Northern Lawn Hill Platform, Doomaggee Formation, DDH 83/4; a strand of non-fluorescing lamalginite.

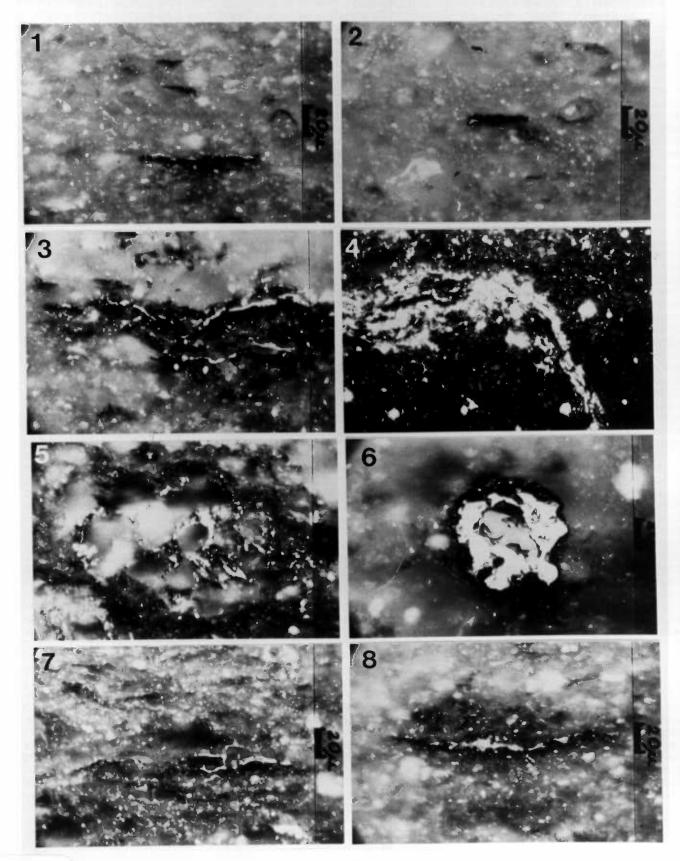


PLATE 1

TE

REGION/DDH/ DEPTH(m)	FORMATION	LAT., LONG.
Central Lawn Hill	Platform	
8 3 / 1 0-77.8 77.8-655.4 TD	Termite Range Fm. Riversleigh Sltstn.	18°52'S, 138°41'E
8 3 / 2 0-360.9 360.9-550.4 TD	Lawn Hill Fm. Termite Range Fm.	18°45'S, 138°42'E
Lawn Hill 3 0-95 95-434 434-451 451-460 TD	Paradise Creek Fm. Gunpowder Creek Fm. Torpedo Creek Qtzte. Yeldham Granite	18°43'S, 138°53'E
Northern Lawn H	ill Platform	
83/4 0-215 215-299 299-597.6 TD	Doomadgee Fm. Mt. Les Sltstn. Walford Dolomite	17°51'S, 138°09'
South Nicholson	Basin	
8 3 / 3 0-59 59-574.2 TD	Mullera Fm. Constance Sst.	18°20'S, 138°18'S
Western Victoria	River Basin	
Bullo 1 (pers. comm. 0-803 803-880 880-969.7 TD	Ian Sweet) Angalarri Sltstn. Jasper Gorge Sst granite (basement)	15°36'S, 129°38'S
Eastern Victoria I	River Basin	
outcrop sample VR 84/1	Stubb Fm.	15°37'S, 131°10'S

APPENDIX A. Location of drill holes and outcrop sample site, with formation logs.

DDH/Dep	th(m) Descriptions of Organic Matter	Organic Matter Measured for Reflectances
8 3 / 1 49.3	Irregularly shaped bitumen grains up to ca. 30 μ , generally \leq 10 μ , patchy to disseminated.	bitumen
311.5	Irregularly shaped bitumen grains up to ca. 40 μ generally \leq 10 $\mu,$ patchy to disseminated.	bitumen
415.8	Irregularly shaped bitumen grains up to ca. 50 μ generally \leq 7 $\mu,$ patchy to disseminated.	bitumen
631.0	Dispersed, non-fluorescing lamalginite up to 200 x 5 μ , generally less than 100 μ long, some disseminated bitumen \leq 10 μ .	non-fluorescing lamalginite
83/2 84.2	Irregularly shaped bitumen grains up to ca. 10 μ generally \leq 5 μ , patchy to disseminated, in places as matrix bitumen.	bitumen
344.8	Dispersed to patchy bitumen up to ca. 50 μ , some non-fluorescing lamalginite, up to 90 x 20 μ .	non-fluorescing lamalginite bitumen
540.3	Irregularly shaped bitumen grains up to ca. 30 μ generally ca. 15 $\mu,$ patchy to disseminated.	bitumen
83/3 54.7	Irregularly shaped bitumen grains up to ca. 30 μ generally \leq 10 μ , patchy to disseminated.	bitumen
292.0	Non-fluorescing lamalginite, commonly thin (\leq 1 μ), wavy, up to ca.100 μ long, some shorter fatter lam., rare double walls, rare disseminated bitumen \leq 15 μ .	non-fluorescing lamalginite, bitumen
444.4	Non-fluorescing lamalginite up to 250 x 3 μ , generally \leq 50 μ long, rare disseminated bitumen < 10 μ .	non-fluorescing lamalginite bitumen
473.75	Non-fluorescing lamalginite up to 120 μ long, generally \leq 50 μ long, rare disseminated bitumen < 15 μ , and thucholite.	non-fluorescing lamalginite bitumen
83/4 104.6	Non-fluorescing lamalginite up to 500 x 30 μ , generally \leq 50 μ long, patchy to disseminated bitumen < 15 μ , rare matrix bitumen and thucholite.	non-fluorescing lamalginite
287.6	Non-fluorescing lamalginite up to 30 x 5 μ , patchy to disseminated bitumen < 5 μ , rare thucholite.	non-fluorescing lamalginite bitumen

APPENDIX B. Petrographic descriptions of the organic matter from the Victoria and South Nicholson Basins, and the Lawn Hill Platform

DDH/D	epth(m)	Descriptions of Organic Matter	Organic Matter Measured for Reflectance	es:
Lawn	Hill 3			
	152.7	Vein bitumen up to 20 $\boldsymbol{\mu}$ wide, gradating into matrix matrix bitumen in places.	vein bitumen	
Bullo	1			
	297.6	Non-fluorescing lamalginite up to 500 x 5 μ , rare disseminated bitumen < 7 μ .	non-fluorescing lamalginite bitumen	
	557.3	Non-fluorescing lamalginite up to 100 x 5 μ , rare disseminated bitumen < 5 μ .	non-fluorescing lamalginite	
	772.6	Non-fluorescing lamalginite up to 500 x 3 μ , rare disseminated bitumen < 7 μ .	non-fluorescing lamalginite bitumen	
VR 8	4/1			
	outcrop	Non-fluorescing lamalginite up to 50 x 3 μ , rare disseminated bitumen, < 7 μ , and thucholite.	non-fluorescing lamalginite bitumen	

APPENDIX B (ctd.). Petrographic descriptions of the organic matter from the Victoria and South Nicholson Basins, and the Lawn Hill Platform.

DDH/Formation 83/1	Depth(m)	max mean	Ro%95%min	95%max	X-min	X-max	no.
Termite Range Fm.	49.3	6.486	5.846	7.125	5.60	7.40	7
Riversleigh Sltstn.	415.8	6.309	5.831	6.788	5.00	7.40	11
•	631.0	6.671	5.978	7.365	5.60	7.80	7
83/2							
Lawn Hill Fm.	84.2	4.057		4.531	3.40	5.00	7
	344.8	6.067	5.638	6.495	5.20	6.80	9
Termite Range Fm.	540.3	6.360	5.951	6.769	5.40	7.20	10
83/3							
Mullera Fm.	54.7	1.898	1.768	2.028	1.70	2.30	11
Constance Sandstone	292.0	2.057	1.887	2.227	1.70	2.50	10
	444.4	2.690	2.407	2.973	2.00	3.40	10
	473.8	2.311	2.117	2.505	1.80	2.60	9
83/4							
Doomadgee Fm.	104.6	0.926	0.852	1.000	0.68	1.07	12
Mt Les Siltstone	287.6	1.274	1.181	1.367	0.93	1.40	10
LH3							
Gunpowder Creek Fm.	152.7	6.622	5.592	7.652	5.00	9.00	9

APPENDIX C. Mean maximum reflectances measured (max mean Ro%), 95% confidence limits of the means (95%min, 95%max), range (X-max, X-min) and number of measurements (no.).

DDH/Formation De	epth(m) np	mean Ro	% 95%mi1	n 95%max	X-min	X-max	no.
83/1							
Termite Range Fm.	49.3	3.788	3.657	3.919	3.20	4.40	25
Riversleigh Siltstone	311.5	4.321	4.054	4.588	3.40	5.10	19
2	415.8	4.196	3.957	4.435	3.20	5.20	23
	631.0	4.363	4.155	4.570	3.40	5.20	16
83/2							
Lawn Hill Fm.	84.2	2.927	2.789	3.047	2.50	3.40	15
	344.8	3.235	3.096	3.373	2.60	3.80	23
Termite Range Fm.	540.3	3.165	3.038	3.292	2.60	3.60	20
83/3							
Mullera Fm.	54.7	1.531	1.469	1.592	1.24	1.70	22
Constance Sandstone	292.0	1.751	1.668	1.835	1.40	2.16	25
	444.4	2.102	2.037	2.166	1.82	2.40	24
	473.8	2.137	2.066	2.208	1.76	2.36	21
83/4							
Doomadgee Fm.	104.6	0.835	0.780	0.890	0.56	1.02	19
Mt Les Siltstone	287.6	1.115	1.035	1.194	0.84	1.56	22
LH3							
Gunpowder Creek Fm.	152.7	4.461	4.311	4.611	3.80	5.10	23
Bullo 1							
Augalarri Siltstone	297.6	2.108	1.955	2.261	1.80	2.60	13
	557.3	2.353	2.221	2.485	1.90	2.90	19
	772.6	2.629	2.433	2.824	2.10	3.10	14
VR 84/1							
Stubb Fm.	outcro	p 1.001	0.937	1.065	0.70	1.28	21

APPENDIX D. Mean reflectances measured from non-polarised incident light (np mean Ro%), 95% confidence limits of the means (95%min, 95%max), range (X-max, X-min) and number of measurements (no.)

APPENDIX E Rock Eval Results

Abbreviations:

S1 = free hydrocarbons released on heating to 300°C

S2 = hydrocarbons released on pyrolysis

S3 = carbon dioxide released on pyrolysis

Tmax = temperature of maximum release of hydrocarbons

released on pyrolysis

PI = Production Index

HI = Hydrogen Index

OI = Oxygen Index

TOC = Total Organic Carbon

WELL BULLO NO 1

BASIN VICTOR	RIA RIV			WEL	L BULLO N	10 1	
*********	******	********	******	*****	******	*****	******
10	DEPTH UD LD		X S C	Si KG PE	S2 R TONNE	83	ORG C
********	******			******	******	*****	*****
	· F(DRMATION					
1683	627.7 6	27.7 4		0.00	0.00	.11	. 17
1684	79B.7 7	98.7 3 96.8 3	335	0.00	0.00	0.00	.22
1685	696.8 6	98.7 96.8 2	221	0.00	0.00	0.00	• 09
1686	470.4 4	70.4 1 78.4 2	177	0.00	0.00	.05	.07
1687	378.4 3	78.4 2	222		0.00		.12
1688 1689		41.1 2 72.6 2	268 268	.20	0.00	.01	-06
	//2.6 /	/2.0	200	• 10		0.00	.18
					VR 84/	l	
<u> </u>						:	!
: A: QTY	:TMAX: 5 1	: 52	: ១៤· :	: P I :	S2/53 :	PC:	TOC :
:: ;VR 84/1:191.		01: 0.12		0.08	0.02:	0.01:	;
, .vk 84/1.191.	4. 440. 0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ,	. 5	0.02.	0.01.	•
BASIN	LAWN	HILL FL			WELL 8	₹/1	

*********	****	********	******	*******	******	******	*******
ID	DEPTH-M		MAX	Si	S 2		ORG C
	UD	LD [DEG C	K	PER TON	NE	%
**********	*********	******	******	******	*****	******	*****
							~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		FORMATION	1 IERMITE	ERANGE		•	
1758	49.3	49.3	275	0.00	.02	0.00	0.00
	•	FORMATION	Letucee	EICH COI			
		1 01/11/11/11/11	A MIAGUPI	-EIGH 221			
1759	311.5 3	11.5	337	0.00	.04	0,00	0.00
1760	335.8 3	35.8	275	0.00	01	0.00	
1761	371.7 3 415.8 4 446.7 4	71.7	270	v01	.01	0.00	_
1762	415.8 4	15.8	270	.01	.02	0.00	
1763	446.7 4	46.7	235	0.00	.01		
1764	631.0 6	31.0	233	0.00	.01	0.00	
	,						
BASIN	LAWN H	III PL			WELL 83	/2	
						-	
*******	*******	******	******	******	*****	******	******
ID	DEPTH-M		1A X	Si	52	SJ	ORG C
•	UD L	.D DE	G C	, KG	FER TONN	E	%
*******	******	******	******	k*******	*****	******	******
	· F	ORMATION	LAWN HIL	_L,			
1765	84.2 . 8	14.2 5	521	0.00	. 11	0.00	0.00
1766		'6.B	319	0.00	.02	0.00	0.00
1767			339	0.00	.04	0.00	0.00
1768			305	0.00	.02	0.00	0.00
1769			346	.01	.06	0.00	0.00
1770			299	.01	.03	0.00	0.00
. 1771	344.8 34	14.8 2	275	.02	.06	0.00	0.00
	F	ORMATION	TERMITE	RANGE			
1772	479.9 47	79.9	437	0.00	0.00	0.00	0.00
1773			325	0.00	0.00	0.00	0.00
-							

BASIN	Lnw	//4 11			MELL 03/4		
*******	*****	k*****	*******	******	******	*****	******
ID	TEPTI QU	H−M LD	TMAX DEG C	S1 KG	S2 PER TONNE	SJ	ORG C %
*****	******	******	*******	*******	*******	******	*****
. •	•	FORMAT	ION DOOMAL	OGEE		•	
1781	92.1	92.1	452	.03	.12	0.00	0.00
1782	104.6	104.6	456	. 14	.88	0.00	1.04
1783	110.1	110.1	465	0.00	.12	0.00	0.00
1784	117.4	117.4	447	.33	.54	. 24	- 68
1785	146.0	146.0	436	.54	1.30	1.86	0.00
1786	149.8	149.8	429	. 48	1.47	1.34	0.00
1787	157.0	157.0	447	.43	1.44	.37	0.00
1788	163.6	163.6	440	.74	1.85	.23	0.00
1789	173.9	173.9	443	1.27	2.38	. 24	0.00
1790	182.6	182.6	461	8.09	23.38	•77	0.00
		FORMAT	ION MT. L	ES			
1791	221.9	221.9	454	. 43	.58	.30	0.00
1792	224.5	224.5	455	.66	1.21	.22	0.00
1793	229.7	229.7	457	.62	1.03	. 14	2.14
1794	237.1	237.1	446	.04	.10	0.00	0.00
1795	250.5	250.5	363	.02	.05	0.00	0.00
1796	285.6	285.6	362	0.00	.06	0.00	0.00
1797	287.7	287.7	459	.34	1.94	1.09	4.07
1798	291.2	291.2	458	.49	1.34	2.74	3.61
1799	295.1	295.1	462	. 40	1.10	2.96	2.50
		FORMA	TION WALFO	RD DOL			
1800	310.1	310.1	450	.02	.09	2.47	0.00
1801	312.9	312.9	365	.01	.03	2.06	0.00
1802	337.6	337.6	350	.01	.05	1.99	0.00
1803	349.5	349.5	313	.02	.04	1.42	0.00
1804	360.4	360.4	276	0.00	.01	1.46	0.00
1805	528.9	528.9	310	.03	.04	1.08	0.00
1804	564.5	564.5	249	.02	0.00	.71	0.00
1B07	572.5	572.5	245	.04	.03	.52	0.00

BASIN	LAV	NN HILL	PL		WELL	L 83/4		
*****	*****	******	******	******	******	*****	*****	******
DEPTH M	ORG C %	S1+S2 KG/T	S2/S3	ΡI	TMAX DEG C	HI	01	ID-NO
********	*******	******	******	******	******	******	*****	*****
	•	FORMA	TION DOOM	ADGEE				
92.1 104.6 110.1 117.4 146.0 149.8 157.0 163.6 173.9 182.6	0.00 1.04 0.00 .6B 0.00 0.00 0.00	.15 1.02 .87 1.84 1.95 1.87 2.59 3.65 31.47	2.25 .70 1.10 3.89 8.04 9.92 30.36	.20 .14 0.00 .38 .29 .25 .23 .29	452 456 465 467 436 429 447 440 443 461	85 79	0 35	1781 1782 1783 1784 1785 1786 1787 1788 1789
		FORMA	ATION MT.	LES				
221.9 224.5 229.7 237.1 250.5 285.6 287.7 291.2 295.1	0.00 0.00 2.14 0.00 0.00 0.00 4.07 3.61 2.50	1.01 1.87 1.65 .14 .07 .06 2.28 1.83 1.50	1.93 5.50 7.36	.43 .35 .38 .29 .29 0.00 .15 .27	454 455 457 446 363 362 459 458 462	48 48 37 44	7 27 76 110	1791 1792 1793 1794 1795 1796 1797 1798 1799

FORMATION WALFORD DOL

.04

.01

.03

.03

.01

. • 04

0.00

.06

.11

.04

.06

.06

.07

.02

.07

.01 .

.18

. 25

.17

.43

. 57

310.1

337.6 · 349.5

360.4

528.9

564.5

572.5

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

450

365 350

313 276

310

249

245

1800

1801

1802

1803

1804

1805

1B06

1807

BASIN	LA	WN HILL P	L		WELL LAWN	HILL N	J 3
*****	*****	******	*******	******	*****	*****	******
in	DEPT: UD	H-M LD	TMAX DEG C	S1 KG	S2 PER TONNE	S 3	ORG C %
*****	******	******	******	******	******	*****	******
		FORMAT	ION GUNFO	IDER CREEK			
1633 1634 1635 1636 1637	126.1 152.7 160.0 410.0 430.0	126.1 152.7 160.0 410.0 430.0	403 223 265 264 265	.21 .57 .26 .04	.09 0.00 0.00 .01 0.00	.25 .24 .18 .14	0.00 0.00 0.00 0.00

BASIN	SH NICHOLSON	WELL 83/3

BASIN	SH NICHOLSON			WELL 83/3			
*****	******	******	******	******	********	*****	******
aı	T930 au	-I-M LD	TMAX DEG C	S1 KG	52 PER TONNE	5 3	ors c %
******	******	******	******	*******	******	******	******
		FORMAT	ION MULLE	RA			
1774 1889	54.7 56.9	54.7 56.9	463 455	.03 .02	.33 .22	.07 0.00	.70 .87
÷		FORMAT	ION CONST	ANCE SST			
1775 1890	61.8 263.2	61.8 263.2	475 474	.01 .01	.27 .09	.01	0.00
1776 1891 1777	270.9 277.5 296.0	270.9 277.5 296.0	359 302 375	0.00 0.00 .01	.02 .02 .13	0.00 0.00 0.00	0.00 0.00 0.00
1778 1892	444.4 450.8	444.4 450.8	334 393	.01	.05	0.00	0.00
1893 1779	452.1 460.3	452.1 460.3	393 347	0.00	.10	0.00	0.00
1894 1780 1895	469.2 473.7 486.1	469.2 473.7 486.1	412 395 337	0.00 .01 .01	.11 .15 .07	0.00 0.00 0.00	0.00
1876	492.2	492.2	378	.02	.13	0.00	0.00

BASIN	SH NICHOLSON													

DEFTH M	ORG C %	S1+S2 KG/T	S2/S3	ΡI	TMAX DEG C	HI	01	ID-NO						

FORMATION MULLERA														
54.7 56.9	.70 .87	.36 .24	4.71	.08 .08	463 4 55	47 25	10 0	1774 1889						
FORMATION CONSTANCE SST														
61.8 263.2 270.9 277.5 296.0 444.4 450.8 452.1 460.3 469.2 473.7 486.1 492.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.28 .10 .02 .02 .14 .06 .12 .10 .05 .11 .16	27.00	.04 .10 0.00 0.00 .07 .17 .08 0.00 0.00 0.00 0.00	475 474 359 302 375 334 393 347 412 395 337 398			1775 1890 1776 1891 1777 1778 1892 1893 1779 1894 1780 1895 1896						