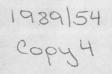


BMR PUBLICATIONS COMPACTUS
(LENDING SECTION)

Bureau of Mineral Resources, Geology & Geophysics



Record 1989/ 54

GEOCHEMICAL SAMPLING IN THE ARUNTA BLOCK, 1980-8

by

R.G.Warren

ined in this report has been obtained by the Bureau of Mineral Resources. Geology and Geophysics as part of the policy rnment to assist in the exploration and development of mineral resources. It may not be published in any form or used in or statement without the permission in writing of the Director.

Record 1989/ 54

GEOCHEMICAL SAMPLING IN THE ARUNTA BLOCK, 1980-8

by

R.G.Warren

© Commonwealth of Australia, 1990

This work is copyright. Apart from any fair dealing for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Inquiries should be directed to the Principal Information Officer, Bureau of Mineral Resources, Geology and Geophysics, GPO Box 378, Canberra, ACT 2601

CONTENTS

Abstract

Introduction	1
Part I The Southern Province	4
(a) The Alice Springs* and MacDonnell Ranges Sheet	areas 4
(b) Casey Inlier	5
(c) Southern Illogwa Creek Sheet area	5
Part II Central Province	6
(a) Felsic rocks in the western part of the Strang	ways Range
Special Sheet area	6
(b) the northern part of the central zone	7
Part III The Northern Province	8
(a) Northeastern Northern Province	8
(i) Eastern Huckitta Sheet area	8
(ii) Central Huckitta Sheet area	10
(iii) Western Huckitta Sheet area	10
(iv) Central-northern Alcoota Sheet area	11
(b) Granite in the Barrow Creek Sheet area	12
(i) The Crawford-Osborne Ranges area	12
(ii) The Barrow Creek district	13
(iii) The Ivy Mine area	14
(iv) Area south of Ooralingie Bore	14
(v) The microgranite at the 278km quarry site	e 15
(c) The Reynolds Range area	15
Part IV The Ngalurbindi Hills - Yalyirimbi Hills region	
(northern margin of the Ngalia Basin)	17

^{*} For brevity the names of 1:250 000 Sheet areas are indicated by bold type and those of 1:100 000 Sheet areas by italics.

Part V Geological reconnaissance of the area south of the	
Ngalia Basin between the Stuart Highway and Mount Wedge	20
(a) Outcrops southwest of Sheppard Bore	20
(b) Area near No 3 Bore, Anburla	22
(c) Outcrops in the Mount Harris district	24
(d) Outcrops near No 1 Bore, Anburla	26
(e) Outcrops in the Rembrandt Rock - Wirmbrandt Rock area	28
(f) Hill 9 km north of Joker Bore	30
(g) Stuart Bluff Granite	31
Acknowledgements	32
References	33
APPENDICES	
1 Analyses of samples collected in 1984-6	
2 Analyses of rocks from the Huckitta Sheet area	
(collected 1980 field season)	
3 Analyses of samples collected from the Papunya-Ellenberg Range	
section of the Deep Seismic Line	
FIGURES	
1 Arunta Block, showing areas described in the text.	2
2 Southern margin of the Ngalia Basin, showing the areas of	
small outcrops.	20
3 Distribution of rock-types in the outcrops southwest of	
Sheppards Bore.	21
4 Distribution of rock-types in the area near No 3 Bore, Anburla.	23
5 Distribution of rock-types in the Mount Harris district.	25
6 Distribution of rock-types near No 1 Bore, Anburla.	27
7 Distribution of rock-types in the Rembrandt Rock district.	29
8 Distribution of rock-types in the outcrops northwest of Joker	
Bore.	31

ABSTRACT

Geochemical samples, mainly of granites, but which included some mafic rocks and supracrustals, was carried out in the Arunta Block, central Australia in 1984-5. This record presents the data from the collecting program, together with previously unpublished analyses of samples from the Huckitta Sheet area. Analyses of samples collected from outcrops adjacent to the section of the Deep Seismic line which followed the road from Papunya west to the Ellenburg Range (Mount Liebig and Mount Rennie Sheet areas) are presented in Appendix 3.

The felsic rocks can be subdivided on their geochemical signature in a normal suite of potassic granites and meta-extrusives; an enriched suite with low K/Rb, high K, Rb, U, Th, and REE; and a suite characterized by high Sr and low Y, which appears to be localized in the southeastern Arunta Block.

Outcrops along the southern and northern margins of the Ngalia Basin were examined in more detail. Rocks cropping out along the southern margin include orthogneiss (southwest of Shepherds Bore, Rembrandt Rock area), mature and immature sediments (Mount Harris), and supracrustal granulites (northern part of the Hermannsberg Sheet area), as well as the previously reported granites. Pressure is estimated at 3-5 kbars in the southern part of the Napperby Sheet area, 7 kbars in the northern part of the Hermannsberg Sheet area. Outcrops along the northern margin of the Ngalia Basin east and west of Napperby HS are predominantly Napperby Gneiss, an orthogneiss which was deformed in an westerly trending belt (and less deformed north and south of this belt), before intrusion of microgranite.

INTRODUCTION

Material suitable for whole-rock chemistry was collected from the Arunta Block in the 1984 and 1985 field seasons. The chief aim of the project was to supplement existing data, and to extend coverage into areas for which there were no data. The sampling program concentrated on rocks of igneous parentage, particularly on granites. Some mafic units and a few supracrustal rocks were included. The project was thus intended to provide data with which to investigate links between igneous rocks and metallogenesis, to consider comparisons with the other Proterozoic terrains of north Australia, and to provide guidance for future geochronological sampling. This Record contains brief comments on the samples and the areas from which these were collected. The sampling program has provided 132 additional analyses from the Northern Province, 11 from the Central Province and 23 from the Southern Province, presented in Appendix 1. Appendix 2 contains 54 previously unpublished analyses of rocks from the Huckitta Sheet area. Analyses of samples collected from outcrops adjacent to the section of the Deep Seismic line which followed the road from Papunya west to the Ellenburg Range (Mount Liebig and Mount Rennie Sheet areas) are presented in Appendix 3.

The tectonically important region south of the Harry Creek Deformed zone (south of Bald Hill) has not been sampled; nor has the economically interesting Mount Doreen Sheet area which has not as yet been mapped. No samples have been analysed from the granites east of the Tarlton Fault, but as these granites are severely weathered (Warren, 1980), drilling would be necessary to obtain fresh material.

Observations on two areas crossed by the BMR central Australian seismic line are included in the Record: Part IV deals with the Napperby Gneiss along the northern margin of the Basin; and Part V describes the small, scattered outcrops south of the Ngalia Basin (southern Napperby and northern Hermannsberg Sheet areas).

Two factors hindered locating outcrops suited to geochemical sampling. Firstly, intense weathering throughout the Arunta Block has particularly affected biotite-rich granites/orthogneisses which are susceptible to weathering along foliation to the extent that, even if feldspars are fresh, biotite is iron-stained along the cleavage. Secondly, all the granites (except perhaps some enriched granites) are metamorphosed, most

are deformed, and overprinting in granitic rocks close to shear zones is widespread. As access to outcrops is commonly along valleys which follow shear zones, the more easily sampled outcrops are also more liable to be deformed. The degree of deformation considered acceptable was somewhat arbitrary: though the intent was to reject rocks affected by deformation, in some areas, particularly in the Southern Province, nearly all outcrops have suffered late deformation, and in such areas samples were collected, regardless of deformation.

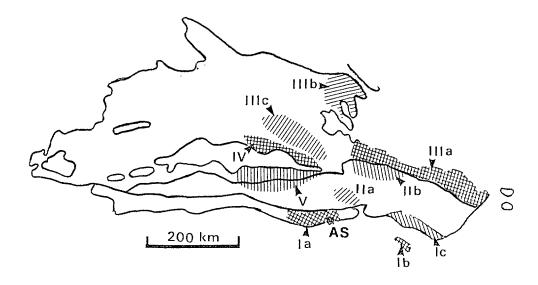


Figure 1. The areas of the Arunta Block covered in the survey:-

- I Outcrops in the Southern Province
 - (a) in the Alice Springs and MacDonnell Range Sheet areas,
 - (b) the Casey Inlier,
 - (c) The Illogwa Creek Sheet area
- II the Central Province
 - (a) Western part of the Strangways Range Special Sheet area.
 - (b) Northern part of the Central Province
- III the Northern Province
 - (a) northeastern area, from the Jervois Granite to the Woodgreen Granite
 - (b) the southwestern Barrow Creek Sheet area
 - (c) the Reynolds Range
- IV The northern margin of the Ngalia Basin
- V The outcrops south of the Ngalia Basin

In the text that follows normal granites, the most widely distributed chemically distinctive suite of granites in the Arunta Block, are characterized by high K, K/Rb of 150-250, high Y, and low Sr. Enriched granite is used as a descriptive term for granites characterized by many

(or all) of the following:- high K₂O, Rb, Y, Zr, Th, U, REE, and F. Many of the enriched granites also have high Sn, Nb, and Zn. Some have high Li and Cs, though this is not diagnostic, appearing to be a regional characteristic in the southern Barrow Creek, Mount Peake and northern Napperby Sheet areas. Especially, the Barrow Creek Granite, and, less markedly, the granite Egp in this region are enriched granites with high Li, Cs, and also U. The Alice Springs Granite is characterized by low K/Na and Y and high Sr; thus it belongs to a distinctively different suite that includes the Atnarpa Igneous Complex, the Huckitta Granodiorite and possibly the Entia Gneiss. A single sample from the Mount Liebig Sheet area that indicates the Alice Springs suite may extent westward is amongst those listed in Appendix 3.

PART I: THE SOUTHERN PROVINCE

(a) The Alice Springs & MacDonnell Ranges Sheet areas.

Samples for geochemistry were collected in the Southern Province from near the Stuart Highway, near Old Hamiliton Downs, and in the Alice Valley northwest of Boggy Hole Bore.

Relatively fresh rock is available from the road cuts made during the re-alignment of the Stuart Highway north of Alice Springs, though most of the rocks exposed in these cuts are so intensely deformed and retrogressed as to be unsuitable for geochemistry. A sample (84914045) was collected from porphyroblastic gneiss 3 km north of 10 Mile Bore where material dumped from the road cuts is variable in deformation, but relatively uniform in composition. In outcrop this gneiss is similar to the Burt Bluff Gneiss, the analysis is not very different to that of the Burt Bluff Gneiss collected near the 25 km post on Larapinta Drive. No suitable outcrops of Burt Bluff Gneiss were obtained north of the Chewings Range: all promising outcrops were stained along the well developed cleavage. Light coloured granite bodies within the Burt Bluff Gneiss north of Fish Hole have a chemical signature which indicates these are leucocratic units within the Burt Bluff Gneiss.

Fine-grained biotite gneiss (84094043) collected from outcrops beside the track to Old Hamiliton Downs HS ressembles biotite gneiss near 10 Mile Bore, but is less migmatized. The analysis indicates a meta-tuff.

Quartzofeldspathic gneiss was collected from outcrops south of the Chewings Range in the MacDonnell Ranges Sheet area. 84094014 was collected from Paf, which at the sample site (GR 215739) is a garnet-bearing leucogneiss with muscovite. As the unit is cut off by a narrow shear zone at the sample site, the muscovite may be retrogressive. This granite is finer grained than the Alice Springs Granite, but its chemistry indicates affinity with the Alice Springs Granite. The remaining samples were collected from Pap, a unit of strongly deformed quartzofeldspathic gneiss, usually grey, but in places, pink. Some outcrops contain epidote, either in seams or replacing plagioclase throughout the rock. In thin section mafic minerals include garnet and/or brown-green hornblende, indicating amphibolite facies

metamorphism. Ep is chemically similar to the porphyroblastic gneiss that crops out north of 10 Mile Bore and to the Burt Bluff Gneiss.

The Alice Springs Granite was sampled east of the Old Telegraph Station and from a quarry near the Stuart Highway. The sample from the quarry is a light-coloured even-grained granite, that from east of the Old Telegraph Station is a megacrystic rapakivi granite with pink K feldspar crysts rimmed by white plagioclase. The granite is unusual among Arunta granites in that it is sodic, with $Na_2O>K_2O$, high Sr and low Y and REE. Its chemical affinities are with the Atnarpa Complex to the east and the Huckitta Granodiorite in the eastern Harts Range.

(b) Casey Inlier

The Casey Inlier in the northwest of the Hale River Sheet area consists of granite and metasediments unconformably overlain by Amadeus Basin sequence rocks. Exposures in the north are in small hills and boulders in a soil covered plain. About 11km south of Casey Bore there is a marked scarp, caused by active erosion. South of this scarp, the exposures are more extensive. In the extreme south of the Inlier, exposures are covered by sand dunes. The Casey Granite crops out in the north of the Inlier, metasediments (including quartzite and granular conglomerate) in the south and east. The Casey Granite is a gneissic megacrystic type (85094274A, 4276) which is more foliated in the north. A finer grained, slightly more leucocratic phase intrudes the northern outcrops. Some outcrops contain xenoliths of fine-grained biotite rock. Aplites, pegmatites, and rare narrow quartz veins occur within the granite. In thin section the granite contains microcline, quartz, altered plagioclase, biotite, epidote, and metamorphic hornblende enclosing sphene euhedra. Accessory mineral include allanite and traces of late hornblende. Sphene in the groundmass has overgrowths of light coloured sphene surrounding euhedral cores. Nominated type outcrops are 12 km south of Casey Bore, where 85094276 was collected from tors west of the track.

(c) Southwestern Illogwa Creek Sheet area

The Atneequa Granite Complex (Shaw and others, 1982) intrudes metamorphic rocks in the southwest of the Illogwa Creek Sheet area. As the name suggests the unit includes several types. Most of the outcrops

are dark, medium-grained granite with small, scattered K feldspar crysts (85094278, 4281, 4284). A lighter coloured megacrystic variant occurs south and east of Bullhole Dam and leucogranite (85094282B) intrudes the darker phase southwest of Albarta Bore. Diorite, cropping out north of Oolera Spring, was placed in the Atneequa Granite Complex by Shaw and others (1982). A sample, 85094279, collected from the diorite is a fine grained amphibolite (transitional amphibolite grade with both actinolite and blue-green hornblende), the chemistry of which indicates it is unrelated to the Atneequa Granite Complex.

The Aremra Granodiorite is a very deformed tonalite-granodiorite (85094283) near Leaky Bore. It contains abundant blue-green to browngreen hornblende with late biotite and epidote. Outcrops were too weathered for geochemistry.

PART II CENTRAL PROVINCE

(a) Felsic rocks in the western part of the Strangways Range Special Sheet area

Three felsic units in the western part of the *Strangways Range* Special Sheet area were collected for geochemistry. Many of the units covered by this Sheet had previously been sampled during the mapping program (Shaw and others, 1979)

The Oolbra Orthogneiss north of the Narbib Deformed Zone is a well foliated biotite gneiss, in places folded and/or strongly deformed. A fresh sample (84914130) was collected 1km south of the road to the Garden HS (GR 900246). At this locality the Orthogneiss is a megacrystic dark gneiss with two generations of K feldspar crysts. The Oolbra Orthogneiss ressembles the Burt Bluff Gneiss to the south and is chemically similar though it is a little enriched in Sr and REE; it also ressembles the Napperby Gneiss to the northwest.

The Wuluma Granitoid south of Saltbush Bore is a medium-grained evengrained pink granite (84914130). Close to its margin it becomes more variable in composition and texture, and includes large bodies of mafic and felsic granulite. The specimen collected in this survey contains 71.28 weight percent SiO₂; the previous analysis of this unit (Shaw and others, 1979) is much more mafic. Both have very high K/Rb ratios (237 & 268), which nevertheless may be consistent with the origin from a mobilized migmatite complex as suggested by Shaw and others (1979), given that their source is in the Erontonga Granulite, which is characterized by high K/Rb. 84914130 is also very enriched in Ba, and in this respect ressembles the Gumtree Granite; the sample collected by Shaw and others (1979) carries only 820 ppm Ba.

The Gum Tree Granite was collected from the age determination site south of Harry Creek (GR 996282). At this locality the granite (84914131) is a strongly deformed and recrystallized megacrystic orthogneiss with abundant biotite and pink K feldspar. Allanite is present in the sample but the granite is not especially enriched in REE or thorium. North of the blast site the Gum Tree Granite is megacrystic but less deformed, and north of the Garden road the outcrops are fine-grained and aplitic.

(b) The northern part of the Central Province

A sample (73902012) of the granitoid within the Bleechmore Granulite was collected from the blast site previously used for age determination. At this locality the granitoid is a garnetiferous migmatite. Retrogression of garnet to biotite may be related to a fracture zone about 50 m to the north. A second sample (85902013) was collected north of New Bore from the same locality as the age determination sample (73902013), where the granitoid is garnetiferous but not as extensively migmatized.

Garnetiferous migmatitic quartzofeldspathic gneiss (73902009) was collected from the age determination site in the Kanandra Granulite north of Mount Swan Trig. and a second sample (84904060) from a blast site about 1 km southwest of the Trig. Garnet in both these specimens is extensively retrogressed to biotite. The age determination site is about 100 m south of a narrow shear zone, so that retrogression in 73902009 is probably the result of later deformation. A medium-grained, even-grained dark granofels with K-feldspar, biotite, plagioclase, quartz, and hornblende; and a biotite-mafic granulite 984904059A&B) were collected about 1 km north of Mount Swan.

PART III THE NORTHERN PROVINCE

(a) Northeastern Northern Province

The northeastern Arunta Block in the Huckitta Sheet area was mapped in 1980 (Shaw and others, 1984), and some geochemical samples were collected (Appendix 2). These showed the area contains a range of granite types, all metamorphosed, including some F-rich granites. Only three granites from the Alcoota Sheet area had been analysed previous to this survey.

(i) Eastern Huckitta Sheet area

Outcrops of Attutra Metagabbro straddle the Lucy Creek road about 7 km north of Jervois Mine. The unit is generally a coarse-grained plagioclase-amphibole rock, some specimens of which contain minor phlogopite, quartz and magnetite. Shaw and others (1984) also reported relatively unmetamorphosed outcrops. Small bodies of fine-grained mafic rock cutting the Bonya Metamorphics west of the Attutra Metagabbro may be offshoots of the main intrusion. The Attutra Metagabbro is intruded by dykes of Jervois Granite and by an amphibolite dyke. A possible correlate of the Metagabbro occurs about 4 km south of Mount Mascotte (859094257).

All granite east of the Jervois Range has been assigned to the Jervois Granite (Smith, 1964; Shaw and others, 1984). Shaw and others (1984) nominated three reference areas. Of these, the area 3.5 km north of Mount Cornish was not included in the survey. Jervois Granite in the outcrops south of the Bellbird Mine is fine-grained, even-grained, and biotite-rich, with numerous dark fine-grained biotite-feldspar xenoliths. Outcrops become lighter-coloured towards the southeast, but without significant change in composition. The xenoliths (85094266A&D) appear to be comagmatic with the granite. Hornblende-bearing metatonalite (84094073A) cropping out adjacent to the main road north of Mount Cornish is considered part of this unit. Samples from tors between the main road and the track east from Unca Bore and from the age determination site of Hurley and others (1961) have higher SiO2 and K/Rb than in the Bellbird phase. Superficially these outcrops ressemble the Jinka Granite rather than the Jervois Granite, but are chemically more akin to the Jervois Granite.

Small intrusions, dykes and sills of fine-medium grained granodiorite (86094343, 88094344) intrude the lineated sequence northeast of Jervois Mine. These are compositionally distinct from the Jervois Granite, with relative flat element distribution patterns, but are nevertheless Srdepleted. 84094073B, from an isolated boulder close to the Plenty Highway has a similar element distribution pattern.

Fine-grained felsic quartzofeldspathic rocks occur at several localities in the eastern part of the Huckitta Sheet area. Since these are interlayered with metasediments they are either volcanic rocks or meta-arkose. Leucocratic quartzofeldspathic rock (85094267A) forms pods and layers in the strongly lineated sequence north of Jervois Mine. The single sample of this unit appears chemically distinct from the Jervois Granite, and possibly from the acid volcanics rocks in the Bonya sequence to the west. Massive quartzofeldspathic rock, interpreted by Shaw and others (1984) as meta-volcanics, extends north from Bonya Bore to near Tashkent prospect. The sample 85094264 collected east of Bonya Bore is considerably enriched in Cu, Pb and Zn relative to felsic rocks in this district, possibly indicating affinities with the Jervois lodes. The strongly lineated glassy rocks cropping out immediately to the west of White Violet Prospect are also regarded as metavolcanics. These and the fine-grained pink quartzofeldspathic gneiss in the Mascotte Gneiss west of White Violet prospect appear chemically related to the metavolcanic rocks in the Bonya Bore area. The metavolcanic rocks in the Bonya Hills carry slightly high W values. Though these values are higher than those found in the meta mafic volcanic rocks immediately adjacent to the scheelite prospects, they are not so high as to demonstrate a source for the mineralization.

A small outcrop of megacrystic granite with hornblende-bearing migmatitic segregations 6 km west of Eurolley Bore has been correlated with the Jinka Granite (Smith, 1964; Dobos, 1978). However its chemical affinities lie with the meta-acid volcanics extending north from Bonya Bore, and therefore it is better regarded as one of the older granites in the area.

The Kings Legend Amphibolite is a layered mafic unit within the Bonya sequence. Geochemical samples have been collected from the poikiloblastic layer from near Ramseys prospect (85094261), near

Marrakesh (80093533) and immediately west of Samakand (85094262A). The fine-grained upper unit was collected just east of Samakand (85094262B).

(ii) Central Huckitta Sheet area

The main outcrops of Jinka Granite are in the Jinka Plain north and south of the Elyuah Range, with a nomimated type area about 5 km northeast of Grant Bluff. Samples collected from this area (Shaw and others, 1984; 80093519, 20 & 21, see Appendix 2) are enriched in F and have low K/Rb. A darker phase collected from a blast site east of Gap Bore and immediately under the Late Proterozoic unconformity shows the same enrichment in K, Rb and Th. The Jinka Granite is the easternmost of the enriched granites that extend across the Northern Province. The granite in drill core from the fluorite prospects is intensely altered, with pink K feldspar, muscovite and chlorite. The source of the fluorite is most probably the Jinka Granite, with its high fluorine content.

(iii) Western Huckitta Sheet area

Additional samples have now been collected from the Dneiper Granite. The sheet-like gneissic granite mapped as Egg appears to be part of the Dneiper Granite, which becomes progressive more leucocratic as it is traced westwards.

Additional samples were collected from the unnamed granites in the east of the *Dneiper* Sheet where Egr was mapped out as a weathered granite with red photo-tone and reddish poorly exposed outcrop; while Egy, Egc and Egk all are reasonably fresh units. Egk is distinct in outcrop, being crowded with numerous small laths of K feldspar, and chemically, being enriched in K, Rb, REE, U and Th. The simplest relationship on field evidence between Egr, Egy and Egc is that Egr is more weathered Egy, and Egc is the leucocratic equivalent of Egy. The chemical data support this, and all are now considered to be part of a single suite, for which the name Alinajera Suite is recommended. Ega, south of the Delny-Mount Sainthill Fault is considered equivalent to Egc.

One sample of the amphibolite within the Cackleberry Metamorphics was analysed. Though the unit physically ressembles the Kings Legend Amphibolite, in its sheet-like form and its porphyroblastic texture, its chemical affinities are with the Attutra Metagabbro.

CRA exploration investigated a small tin occurrence southeast of No 2 Bore on Mount Swan Station. The granite in the vicinity of the prospect, exposed in low but fresh boulders in a plain of Tertiary sediments, is a medium-grained, poorly foliated granite. The predominant dark-grey biotite-rich phase (84094061A) is cut by minor dyke-like lighter coloured bodies (84094061B). These samples do not have the usual characteristics of tin granites, and the Mount Swan Granite to the north is not enriched in Sn. The source of the tin therefore remains enigmatic. A sample (84094056) collected from the charnockite in the Perenti Metamorphics near Tower Rock, some 15km to the north, appears most closely related to the granite near the tin prospect, but is at much higher metamorphic grade.

The blast site in the Mount Swan Granite from where the sample,F53/11/3, dated by Hurley and others (1961) had been obtained was relocated: material from this locality is very similar to the previous sample 80096559 collected nearby, but more enriched in Rb and Th. The southern Mount Swan Granite has not been sampled, but the radiometric map (Wyatt, 1974) indicates the southern outcrops have the same high Th and U content as the northern outcrops. The Mount Swan Granite is therefore included with the enriched granites. The outcrops of megacrystic granite south of the Delny-Mount Sainthill Fault previously assigned to the Mount Swan Granite (Shaw and others, 1975) lack the characteristic signature of enriched granites and are more closely allied to the Jervois Granite.

(iv) Central-northern Alcoota Sheet area

The Copia and Mount Ida Granites were collected west of the Bundey River. The Copia Granite is a markedly foliated granite with a strongly lineated fabric. It is considered the oldest granite in the area, and is correlated with the Dneiper Granite to the east and the Crooked Hole Gneiss (not sampled) to the west.

Mount Ida Granite was collected from blast sites west of Western Watering Point. The Mount Ida Granite shows chemical characteristics (high K, Rb, Th and U and low K/Rb) which indicate it is closely related to the Mount Swan Granite and likewise is classified as an enriched granite. However it is unusual in that it lacks the characteristic K feldspar laths of enriched granites. The garnet-muscovite granite

72902006 which occurs in the same area was collected: it was mapped as part of the Mount Ida Granite, but is chemically distinct, with very low Ca and Sr, and is therefore more probably related to the pegmatites which form large intrusive bodies in the district.

The Woodgreen Granite was regarded during regional mapping as a composite body. Two phases were collected from southwest of West Bore: the dark megacrystic phase (84904047) considered the characteristic Woodgreen and a fine-grained light-coloured phase (84904048) which ressembles a microgranite, but is not enriched. A third phase intermediate between the two occurs in the same area but outcrops were not suitable for chemical analysis. The Woodgreen Granite includes large bodies of fine-grained leucocratic quartzofeldspathic gneiss with large garnet porphyroblasts west of West Bore: these may be equivalent to the garnet-bearing phase previously reported (Shaw and others, 1975). Although the radiometric map (Wyatt, 1974) indicates high Th and U in the area where the Woodgreen Granite crops out, the megacrystic phase shows no especial enrichment in U, but has slightly high Th and REE; the leucocratic phase is high in U. Both have high K/Rb, more typical of the less enriched suite.

(b) Granites in the Barrow Creek Sheet area

Granite constitutes the major part of the outcrops assigned to the Arunta Block in the Barrow Creek Sheet area (Smith & Milligan, 1964).

(i) The Crawford-Osborne Range area

Fresh granite and porphyry crops out in small hills and at plain level between the Crawford and Osborne Ranges in the northwest of the Sheet area. Dark porphyry (85094235) with K feldspar crysts to 3 mm in a tough glassy matrix, 3 km southeast of Claypan Bore, appears to be unmetamorphosed in the field. However, in thin section, it is completely recrystallized, with clots of biotite, biotite-epidote, biotite-sphene, epidote, and rare biotite-muscovite in a equant polygonal matrix of quartz, feldspars, biotite, epidote, and apatite.

A tonalite to granite complex crops out northwest of Claypan Bore. The most melanocratic phase (85094232A) is a plagioclase-biotite rock with

little quartz and no K feldspar. This phase is intruded by a leucocratic phase containing microcline crysts 2 km south of the bore at the northwest of the Osborne Range and by a co-magmatic leucogranite to the southeast of the Bore. Elsewhere there is continuous gradation from tonalite to leucotonalite. No contacts between the tonalite complex and the metasediments of the Osborne Range were found. Strongly lineated dark orthogneiss with K megacrysts cropping out as low boulders amongst mulga 11 km southeast of Claypan Bore is considered to be the deformed megacrystic phase of the tonalite complex. Isolated outcrops of leucocratic tourmaline-bearing granite about 7 km southeast of Claypan Bore have a chemical signature that generally suggests these are at the high silica end of the same suite as the Osbourne Range complex. The single sample is enriched in U & Th relative to the "normal" Osbourne Range samples, but lacks the characteristics of the Barrow Creek Granite.

(ii) The Barrow Creek district

The Barrow Creek geological map shows an extensive area of Barrow Creek Granite in the district surrounding Barrow Creek township. In outcrop this district appears to contain two granite units. A gneissic biotiterich megacrystic unit crops out at the Barrow Creek Racecourse and in the pediment of the mesas capped by Central Mount Stuart Beds southeast of the racecourse. Similar strongly foliated granite crops out about 7 km southeast of Ooralingie Bore. The second unit is less gneissic, physically ressembles the late enriched granites, and similarly has high U, Th, RE and low K/Rb. It appears to intrude the gneissic granite southeast of the racecourse. However both types, and indeed all samples from the Barrow Creek district and the microgranite at the southeastern corner of Stirling Stn, have high Li, higher than normal for Arunta granites by a factor of 5X to 10X, and also unusually high caesium. The area of outcrop of the Barrow Creek Granite gives a distinct high on the radiometric maps of the region. However the Barrow Creek Granite is not characterized by the high REE content that marks most enriched granites. Moreover the suite of samples from the Barrow Creek Granite is unique amongst the Arunta collection in that it shows a distinct trend of decreasing K/Rb with increasing silica content, suggesting a fractionated suite.

High Li values, though not as elevated as those in the Barrow Creek Granite, have been reported in samples collected in the Mount Peake Sheet area to the west (Stewart and others, 1980), where Pontifex (1966) identified lithium minerals in pegmatites. Granite in the Anmatjira Range is higher in Li than granite collected south of the Range which it otherwise ressembles. Thus a province of Li-enriched granites extends from southeast of Ooralingie Bore through Barrow Creek and Aningie at least to Mount Leichhardt and includes the northern part of the Napperby Sheet Area. Pegmatites in this area may be prospective for lithium minerals.

(iii) The Ivy Mine area

Deeply weathered granite exposed in low rises northwest of the Ivy Mine is a coarse-grained leucocratic two-mica granite cut by numerous pegmatites. Tourmaline is locally abundant.

Small tin mines (Ivy and related workings) about 12 km north of Barrow Creek are in weathered metasediments, predominantly two-mica quartz schists but including minor fine-grained, even-grained muscovite-biotite-feldspar-quartz rock, which may be a volcanoclastic sediment, or more likely a fine-grained felsic tuff. The layered units are intruded by quartz veins parallel to the layering. Abundant tourmaline is developed along the walls of the veins and small outcrops of black, fine-grained tourmaline rock occur in the vicinity of the workings.

(iv) Area south of Ooralingie Bore

Weathered granite crops out out as basement beneath the Central Mount Stuart Beds northeast of Mount Octy. Near Adnera Waterhole a coarse-grained even-grained garnetiferous two-mica granite intrudes fine-grained quartzofeldspathic gneiss. This granite physically ressembles the pegmatite-related granite near Western Watering point on the Alcoota Sheet area. Outcrops are too weathered to sample.

Medium-grained two-mica granite near the southeast corner of Stirling Stn, which contains high U and Th, is considered to be part of the Lienriched Barrow Creek Granite.

(v) The microgranite at the 278 km quarry site

A small plug of micro-granite at 278 km on the proposed Alice Springs to Darwin railway was drilled to appraise the material for ballast. The drill core is heavily fractured and the granite is weathered, with pink feldspar and greenish biotite. The freshest available material was selected from the base of DD 5 at 33.6-34.6 m. Analysis of this (85094287) shows that the microgranite is chemically similar to the granite suite and acid volcanic rocks in the Osborne Range.

(c) The Reynolds Range area

A number of granite samples were selected for chemical analysis during the regional mapping program in the Reynolds Range area (Stewart and others, 1980). The initial delineation of units of granite s.l. involved structural and metamorphic criteria. On chemical criteria the granites present a much more simple picture: essentially the granites can be resolved into two types: the normal Arunta suite, and enriched granites, which are extensively developed north of the Anmatjira Range. The intention was to supplement the existing collection in order to provide a more even coverage of the area, but the field campaign proved difficult, mainly because of the absence of suitably fresh outcrops. Weathering was more severe and extensive than is indicated in reports on the area. Differences in flora appear not to correlate with chemical suites, but possibly correlate with SiO₂ content. Spinifex colonizes some siliceous granites, where it is commonly associated with Acacia monticola.

The Anmatjira Orthogneiss as presently mapped extends the length of the Anmatjira Range. Metamorphic grade increases to the southeast, so that muscovite occurs in the northwest (e.g. near Black Hill) and garnet in the southeast (e.g., near Blue Bush Dam.); and there is an area of low pressure high temperature metamorphism, interpreted as a regional hornfelse by Stewart and others (1980), in the Mount Stafford district. The Anmatjira Orthogneiss has been described as in part, an augen gneiss and in part, a rapakivi granite. In outcrop it is a megacrystic granite with white rounded K feldspars and locally a strong foliation, as at the type locality near Ingallan Spring. In the southeast the Anmatjira Orthogneiss intrudes the Possum Creek Charnockite, and is intruded by the leucocratic Aloolya Orthogneiss, which on chemical criteria is

consanguineous with the Anmatjira Orthogneiss. Northeast of The Reward Mine the type Anmatjira Orthogneiss is intruded by granite with high U, Th , K, and Rb. On the northern edge of the Range, younger, fine-grained enriched granite (85924227) occurs in sheets folded with the main Anmatjira Granite. Closer to the Reward, the younger unit crops out as tors of megacrystic granite, which are very weathered.

Three units of granite have been mapped out in the valley been the Anmatjira and Reynolds Ranges. The Harverson Granite, has been mapped as cropping out in tors in rolling hills between the Anmatjira and Reynolds Ranges northwest of Pine Hill homestead. The Harverson Granite was considered the youngest granite in the area, because it is apparently not cut by metamorphosed mafic dykes, which intrude the other granites. However the mafic dykes terminate against a poorly exposed shear zone, and the Harverson Granite is not markedly different from the Airy Orthogneiss and Yaningidjara Orthogneiss though some outcrops of Airy Orthogneiss are more deformed, and the Yaningidjara Orthogneiss is at higher metamorphic grade, and so contains garnet. All three exhibit rapakivi texture, contain rafts of fine-grained quartzofeldspathic gneiss, and are covered by the same broad radiometric low. In the type area the Harverson Granite is a very coarse-grained megacrystic granite with rounded K feldspars set in a matrix of greenish plagioclase, pale blue quartz, biotite and muscovite. Rimmed feldspar (rapakivi texture) is present in outcrops at the type locality. Biotite, which forms rounded aggregates to 1 cm, may in part pseudomorph garnet. The granite intrudes Lander Rock Beds 2 km southeast of Algamba Bore without either a chilled margin or obvious hornfelsing. The outcrops mapped as Harverson Granite are less chemically diverse than the Yaningidjara Orthogneiss, which includes very siliceous outcrops, thus resembling the southeastern exposures of Anmatjira Orthogneiss and Aloolya Orthogneiss.

Outcrops of granite intrude the Reynolds Range Group in the upper Woodford River valley (85924189) and southwest of White Hill. These outcrops are extensively migmatized with garnet and garnet-quartz symplectites enclosed within the melt. Chemically this granite correlates with the main phase of Napperby Gneiss to the south and the Boothby Orthogneiss to the east. However a sharp radiometric high over the easternmost of these outcrops indicates that there may also be microgranite.

The Boothby Orthogneiss is a gneissic megacrystic granite cropping out east and west of the Stuart Highway north of Aileron. Locally it contains garnet and migmatites with garnet-quartz symplectites. At Mount Boothby and west of Prowse Gap it forms sheets, folded in with the metasediments it intrudes. The Boothby Orthogneiss (e.g., specimens, 84924097, 099 and 102) has a chemical signature similar to the Napperby Gneiss; the Boothby Orthogneiss is probably best regarded as the eastern, higher metamorphic grade extension of the Napperby Gneiss. A small body of charnockite (84924105) and garnetiferous orthogneiss which intrudes mafic granulite south of Aileron has been mapped out as a separate unit, chemically it is part of the Boothby Orthogneiss. Granite mapped as Boothby Orthogneiss northwest of Aileron contains euhedral K feldspars, suggesting affinities with the enriched granites, which are also apparent in the analysis of 84924103 from the age determination site in this area. North of Prowse Gap the Boothby Orthogneiss intrudes fine-grained grey gneiss (84924098) which may be igneous (meta-tuff) but belongs to a different suite from the Boothby Orthogneiss. Migmatized grey gneiss (84924100, Aileron Metamorphics) at the age determination site north of Aileron is unusual: this is very low in K20 and Rb, and high in Na_2O and CaO (for the SiO_2 content) and may be a reworked tuff or immature sediment.

The Napperby Gneiss is described below, in Part IV. No sample was collected from the type locality at 20 Mile Waterhole (a geological monument).

PART IV THE NGALURBINDI HILLS - YALYIRIMBI HILLS REGION. (Northern margin of the Ngalia Basin)

The Ngalurbindi and Yalyirimbi Hills straddle the Central Australian Seismic line west and east of Gidyea Bore. Outcrops have been assigned to the Ngalurbindi Orthogneiss (Ngalurbindi Hills) and Napperby Gneiss (Yalyirimbi Hills) (Stewart and others, 1980). In the east, the Napperby Gneiss intrudes metasediments, mainly calcareous rocks, of the Wickstead Creek Beds. Major and minor shear zones with west to west-northwest trends cut across all units. Movement across these was in places considerable, juxaposing different units; and retrograde metamorphism involving hydration is locally intense adjacent to the shear zones.

Stewart and others (1980) described considerable heterogeneity within both the Ngalurgbindi Orthogneiss and Napperby Gneiss. Some of the variation can be ascribed to variation in metamorphic grade, some to regional or local deformation, and some to retrogression. The area mapped as Napperby Gneiss includes at least three distinct units, and the major unit grades from more mafic at the western end to leucocratic at the eastern end. Outcrops northwest of Limestone Bore and near Mica Dam mapped as Ngalurbindi Orthogneiss are superficially similar to nearby outcrops of Napperby Gneiss, though they are darker. The specimen analysed from the Ngalurbindi Orthogneiss has a chemical signature generally similar to the Napperby Gneiss, though somewhat higher in Li (60 ppm as opposed to 10-30 ppm in the Napperby Gneiss).

The principal units within the outcrops mapped as Napperby Gneiss are:-

- 1. 20 Mile Waterhole type (type locality) is a layered migmatitic gneiss. Two episodes of migmatitic segregation have occurred; early migmatites are parallel to the foliation, a second generation cuts across the foliation. The gneissic fabric has been folded into flatlying tight to isoclinal folds and then by one or more open upright fold episodes. Outcrops assigned to this unit were sampled immediately south of Anna Reservoir (85924196), on the Aileron-Napperby boundary fence (85924200), in the headwaters of Wallaby Creek (84924188), east of Napperby HS (85924162C & 4163A) and north of 20 Mile Waterhole (85924183B). The gneissic granite cropping out along the seismic line is considered part of this unit, as is the intensely migmatized unit at the age determination site (72921019). This unit, delineated from the remaining units only by virtue of its strong deformation, crops out between the Napperby Structure and a quartz-filled fracture about 10 km to the north. Strongly lineated granite west of Napperby HS and near Sugarbag Bore may be part of this unit.
- 2. Dark, megacrystic granite is a coarse-grained, poorly foliated granite with rounded K feldspar crysts to 4 cms. Samples of this unit were collected southeast of 20 Mile Waterhole (85924155), southeast of Anna Reservoir, 85924198A&B) and northwest of Napperby homestead (85924167). This granite appears more biotite-rich than the 20 Mile Waterhole exposures, but chemical analyses indicate essentially no difference. Similar granite crops out close to the track northwest from Gidyea Bore and north of the fault north of North 20 Mile Waterhole.

- 3. Light coloured granite intrudes the strongly deformed granite in the area from Gidyea Bore northwards and eastwards beyond Georges Yard. This unit was sampled in Napperby No 9 (86924353), drilled near Gidyea Bore.
- 4. Dark grey strongly foliated biotite-quartzofeldspathic gneiss or orthogneiss (84924089) occurs northwest of Napperby HS. Locally the unit contains small rounded K feldspar crysts. It is cut by migmatites (more than one generation) and by pegmatites. Contacts in Napperby Creek suggest this is the oldest unit, and is intruded by the gneissic unit. However, as the two are chemically very similar, this unit may be a metavolcanic co-magmatic with the Napperby Gneiss.
- 5. Granite containing small laths of K feldspar occurs as small bodies within the Napperby Gneiss. Southeast of 20 Mile Waterhole this unit intrudes the megacrystic unit. The very weathered outcrops near the seismic line 6 km south of Napperby HS belong to this unit, as do outcrops adjacent to the fault south of Limestone Bore. This unit (84924085, 85924156A) has the signature of the enriched granites. Both physically and chemically it ressembles the granite Egk in the Huckitta Sheet area.
- 6. Microgranite forms small bodies within the Napperby Gneiss. Outcrops vary from dark (e.g., immediately east of Napperby HS 85924163B) to light-coloured. The unit is always even-grained, and by comparison with the enclosing Gneiss, fine-grained. Characteristically this unit contains monazite, and so is responsible for the peaks on the radiometric map over the Yalyirimbi Range. The fine-grained felsic rock sampled for age determination north of Rabbit Well is part of this unit.
- 7. Leucogranite forms small outcrops of unfoliated sugary granite in the area east of 20 Mile Waterhole. This may be mobilizate related to pegmatites.

Metamorphic grade is generally amphibolite, probably reaching granulite in the area near Rabbit Well. Metamorphic grade also increases in the area north of North 20 Mile Waterhole, where garnet is present in the migmatitic segregations.

T,

PART V GEOLOGICAL RECONNAISSANCE OF THE AREA SOUTH OF THE NGALIA BASIN BETWEEN THE STUART HIGHWAY AND MOUNT WEDGE.

Outcrops south of the Ngalia Basin occur in small hills rising above a plain of sheet sand, localized dunes, flood-outs and calcrete (Fig. 2). On the existing 1:250 000 geological maps these scattered outcrops are shown as mainly or completely granite. Glikson (1983) remapped the outcrops in the northern part of the Hermannsberg Sheet area, and reported that these were predominantly high grade metamorphic rocks. This survey is in agreement with Glikson's (1983) appraisal, but there is a greater diversity of rock types, particularly an abundance of metasediments, than was previously reported. The outcrops in the southern part of the Napperby Sheet area contain some granite, but also metasediments.

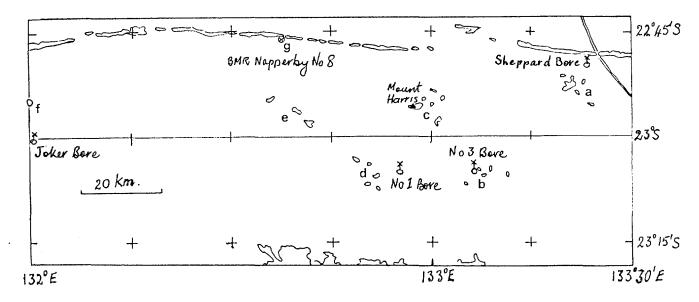


Figure 2. Distribution of outcrops in the region south of the Ngalia Basin. (a) southwest of Sheppard Bore, (b) near No 3 Bore Anburla (c) at Mount Harris (d) near No 1 Bore, Anburla, (e) the Rembrandt Rock-Wirmbrandt Rock district, and (f) north of Joker Bore. Granite in core from a hole drilled at the base of the Hann Range adjacent to Napperby Creek (g) was also analysed.

(a) Outcrops southwest of Sheppard Bore

The outcrops southwest of Sheppard Bore are predominantly migmatitic quartzofeldspathic gneiss which have been intruded by a small granite body. Several large veins of jaspery, limonite-stained, quartz form isolated ridges in the north, east and southeast of the area (Fig. 3).

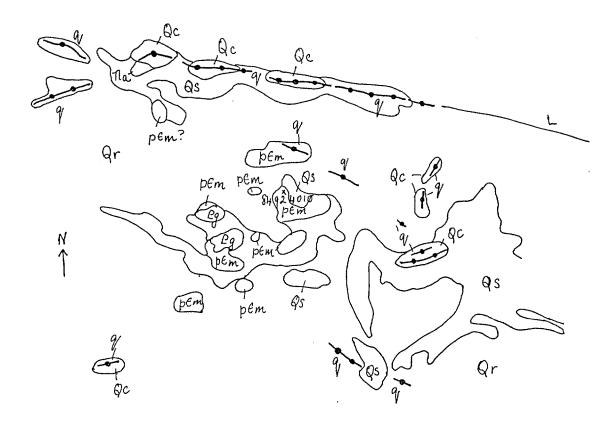


Figure 3. Distribution of rock units in the area southwest of Sheppards Bore. Scale approx. 1:80 000.

Tertiary and Quaternary units common to Figures 3 to 8. Qh Recent lake sediments. Ql Calcrete. Qc Coarse slope deposits. Qr Red soils (with mulga groves). Qs Sand sheet and dunes. Tla Laterite.

The quartzofeldspathic gneiss is a grey gneiss consisting of biotite, hornblende, two feldspars and quartz. It varies from finely-layered fine-grained to medium-grained, more coarsely-layered gneiss with scattered rounded megacrysts of potassium feldspar. Some late migmatites with quartz and feldspar, best developed in the coarser-grained outcrops, cross-cut and kink the foliation.

These quartzofeldspathic gneisses have been affected by one or more deformations after formation of their foliation (which may itself be tectonic). The main foliation is, in various outcrops, folded about small folds with steep plunges, crenulated, and disrupted by late migmatites.

Hornblende, indentified optically as hastingsite, indicates that the metamorphic stage in which the cross-cutting migmatites formed was upper amphibolite. The formation of interfolia migmatites indicates the earlier stage in which this foliation formed was also high grade.

The quartzofeldspathic gneiss is more compositional uniform over its outcrop area than a volcanogenic unit would be, and moreover lacks the interlayered basic units which characterise the Strangways Metamorphic Complex to the southeast. The quartzofeldspathic gneiss is therefore interpreted as a deformed orthogneiss, similar to the Oolbra Gneiss and the Burt Bluff Gneiss. Similar rocks crop out southeast of Mount Harris and as a raft in granite northwest of Rembrandt Rock.

The small body of granite which occurs in the west of the scattered outcrops is a medium-grained slightly gneissic granite with small rimmed potassium feldspar crysts. In thin section it contains both orthoclase and microcline, hornblende (hastingsite), partly replaced by biotite which in part defines a metamorphic foliation. Allanite is a minor accessory mineral. Numerous dark femic xenoliths appear in hand specimen to be formed of fine-grained biotite. The granite incorporates thin siliceous layers with fine internal layering, possibly cherts or calcsilicate bodies. On airphotos the granite can be distinguished by the larger bare surfaces developed over it as compared to those on the quartzofeldspathic gneiss.

(b) Area near No 3 Bore, Anburla

The outcrops in the vicinity of No 3 Bore on Anburla (Fig. 4) are all granulite or retrogressed granulite: they include felsic and mafic rocks and metasediments. The small hill 8 km east of the bore was not visited. The remaining outcrops can be considered as two groupings: the two hills about 3.5 km east-northeast of the bore, and the two hills east and west of the bore together with the hill about 4 km southwest of the bore.

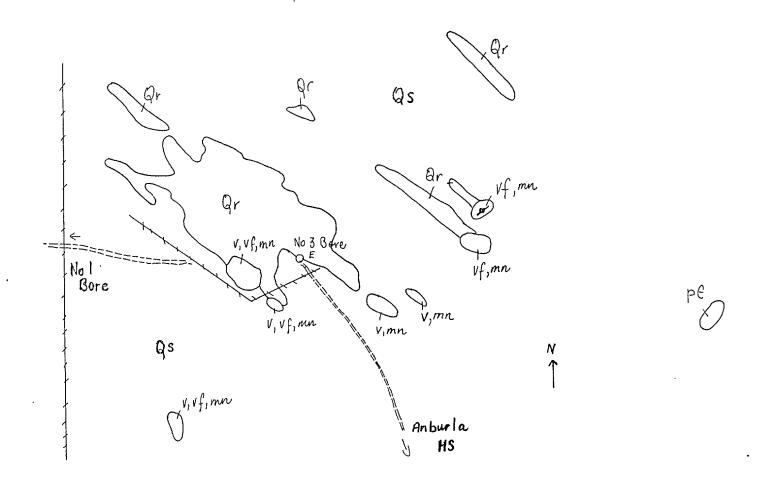


Figure 4 Distribution of rock units near No3 Bore, Anburla. Scale approx. $1:80\ 000$. \mathbf{v} garnetiferous gneiss, \mathbf{vf} garnet-bearing quartzofeldspathic gneiss, \mathbf{mn} mafic granulite.

The two hills northeast of the bore consist mainly of coarse-grained quartzofeldspathic rocks, commonly with garnet. Some also contain orthopyroxene. Large feldspar megacrysts occur in some outcrops. Mafic granulite forms irregular boudinaged pods within the quartzofeldspathic gneiss, and there are minor outcrops of metasediments, including calcsilicate rock.

The two hills to the east and west of the Bore and the hill to the southwest contain a suite of garnet-bearing rocks. The predominant rock-type is migmatitic gneiss containing biotite, garnet, plagioclase, K feldspar and quartz. Compositional variants include biotite-sillimanite-bearing rocks, feldspar-garnet-quartz and garnet-quartz rocks. Cordierite-bearing rocks are a minor component of the outcrops; and

there are rare calc-silicate rocks. Mafic granulite occurs as boudinaged pods within the garnetiferous gneisses, becoming locally abundant in the hill just to the southwest of the bore.

The metamorphic grade is granulite, of high T, low P type. The leucosomes in the migmatites contain euhedra of garnet within the quartz-feldspar segregations.

These outcrops are very similar to units such as the Kanandra Granulite within the Strangways Metamorphic Complex (Division 1). They are considered to be metamorphosed volcanic rocks, with interlayered immature sediments and calc-silicate lenses.

(c) Outcrops in the Mount Harris district

The western end of the ridge that contains Mount Harris (Fig 5) is grey fine-grained quartzofeldspathic gneiss or biotite-quartzofeldspathic gneiss, generally with a strongly developed near-vertical lineation. Coarse-grained opalescent blue quartzite forms a prominent ridge to the south of the main ridge and occurs as small lenses or discontinuous layers within the main ridge. At the eastern end of the main ridge the principal rock type is sillimanite-bearing granofels, and pods and layers of quartzite form prominent ridge caps. The quartzite bodies may be conformable, but this is uncertain as contacts between quartzite and other metasediments are obscured by scree.

Exposures are poor, but the outcrop pattern suggests a large scale fold at the eastern end of the main ridge. The steep lineation at the western end of the main ridge is parallel to the axes of small scale folds with axial plane striking 40° . The quartzite lacks the well developed lineation of the gneisses.

The main ridge is intruded by a coarse-grained megacrystic granite which forms tors along the south side of the ridge. An excellent cross-cutting relationship with the quartzite is exposed at the eastern end of the main ridge. Fresh granite is grey, with white feldspars, including rounded microcline crysts to 5 cm, abundant black biotite and pale blue quartz.

The small hill to the northeast of Mount Harris contains a fine-grained, even-grained granite. Small pods of metasediments and the megacrystic granite from Mount Harris occurs as rafts and xenoliths in this granite. The granite consists of perthitic microcline, plagioclase, biotite, muscovite and monazite. The monazite, and associated high Th and U

account for the sharp peak over this body on the radiometric map.

Figure 5. Distribution of outcrops in the Mount Harris district. Scale approx. 1:80 000.

The low hills about 7 km southeast of Mount Harris contain strongly foliated quartzofeldspathic gneiss with rounded K feldspar megacrysts.

Foliation strikes $0-10^{\circ}$, with near-vertical dip. A small body of well foliated gneiss which crops out about 2km east-northeast of Mount Harris may be part of this unit, but is more probably a poorly exposed shear zone in the megacrystic granite.

The metamorphic grade is amphibolite. Sillimanite, possibly with cordierite, occurs in the main ridge. Clots of biotite in the same rocks may have replaced cordierite or garnet. Muscovite is present in some of the granite, and epidote is locally developed. The presence of perthite but absence of orthoclase suggest conditions were lower amphibolite.

The quartzofeldspathic gneiss and sillimanite gneiss may be metatuffs. The coarse grainsize of the quartzite indicates it is more likely to be a metamorphosed clean sandstone than a meta-chert. The units at Mount Harris, taken together, ressemble the grey gneiss, megacrystic Burt Bluff Gneiss and Chewings Quartzite in the vicinity of Old Hamilton Downs HS at the western edge of the Alice Springs Special geological map (Offe, 1983), but are lower in metamorphic grade. Stewart (1982) has suggested the quartzite should be correlated with the Mount Thomas Quartzite in the Reynolds Range. The other metasedimentary units are less mature than either the Lander Rock Beds or Pine Hill Formation in that area.

Analyses suggest there is little difference between the megacrystic granite and the quartzofeldspathic gneiss, and these in turn are similar both to the quartzofeldspathic gneiss southwest of Shepherds Bore and to the Napperby Gneiss (See below.) The megacrystic gneiss is very similar physically to the megacrystic phase of the granite in the Rembrandt Rock district. The fine-grained granite northeast of Mount Harris has chemical characteristics that indicate affinities with the microgranites in the hills east of Napperby HS, north of the Ngalia Basin.

(d) Outcrops near No 1 Bore, Anburla

A number of small hills containing granulites, predominantly of metasedimentary origin, occur some 6-10 km west of Nol Bore on Anburla (Fig. 6). Coarse-grained garnet-quartzofeldspathic gneiss and coarse-grained granitoid occur in the small hill about 1 km south of the track leading westwards from the bore. The next hill southwesterly contains

strongly lineated charnockite and mafic granulite with thin layers of quartzose gneiss. Mafic granulite and light-coloured biotite-bearing mafic granulite occur in the next hill southeastwards, but at the western end of this hill garnet-bearing quartzose gneiss predominates. Some of these garnet-bearing gneisses contain cordierite and/or sillimanite and there is also garnet-quartzite. Both the mafic granulite and the garnet-bearing gneisses are in part migmatized. The three hills north of the track all consist of garnet-bearing gneiss, with minor to rare mafic granulite. Many of these garnet gneisses also contain sillimanite and some contain cordierite.

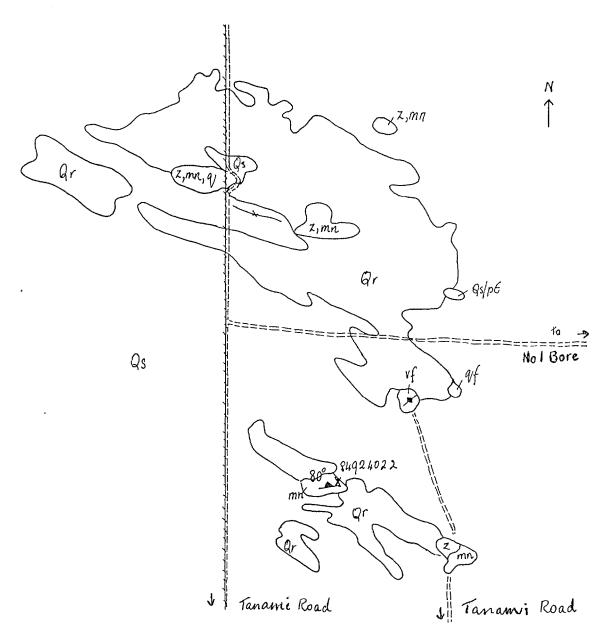


Figure 6. Distribution of rock units west of No 1 Bore, Anburla. Scale approx 1:80 000. mn mafic granulite, q metaquartzite, qf quartzofeldspathic gneiss, vf garnetiferous quartzofeldspathic gneiss z sillimanite-bearing gneiss.

Outcrops in the northernmost hill show two phases of folding: an early near-isoclinal fold generation with upright, steeply plunging axial traces is folded by a second generation of open, shallowly plunging folds. Shallowly plunging lineations in the mafic granulites may be related to the second generation.

The metamorphic grade is granulite, but biotite is locally very abundant, particularly in the garnet-bearing rocks. Late hydration appears to have been locally intense. Co-existing garnet and cordierite have mg of 35 and 83.5 respectively. These values are similar to those at the Edwards Creek Prospect in the northern Strangways Range where the pressure was estimated as 7-8 kbars (Warren, 1982). The high ${\rm TiO}_2$ content of the biotite (3.13-5.15 weight percent at mg 69) indicates high temperature.

These outcrops are best correlated with the metapelites interlayered with mafic granulites that crop out between Anburla Creek and Valley Bore to the southeast. They appear more iron-rich than the Lander Rock Beds to the north, but less aluminous and less iron-rich than the Harts Range Group.

(e) Outcrops in the Rembrandt Rock - Wirmbrandt Rock area

Outcrops in the Rembrandt Rock - Wirmbrandt Rock area are almost entirely granite, with minor xenoliths and small rafts of metasediments and quartzofeldspathic gneiss.

Rembrandt Rock is a large exfoliated tor of leucocratic granite with rare K feldspar crysts (to 3 cms) in a medium-grained matrix of lilac quartz, pale pink K feldspar, plagioclase and minor biotite (labeled Eg_3 in Fig. 7). The outcrops include a body of fine-grained leucogneiss on the northeast side of the hill. The lower hills to the north contain coarse-grained megacrystic granite (Eg_1) consisting of large (to 10 cm) rounded K feldspar crysts set in a coarse matrix of lilac quartz, black biotite, plagioclase and pale pink K feldspar. The elongate hill 5 km northwest of Rembrandt Rock consists mainly of the megacrystic phase, but also contains a finer-grained less mafic phase at the eastern end. Xenoliths include sillimanite-bearing metasediments, garnet quartzite, fine-grained quartzofeldspathic gneiss or orthogneiss (84924078). The southern part of Wirmbrandt Rock and nearby tors consist of a medium-

grained megacrystic granite (Eg_2) crowded with sub-hedral K feldspar laths to about 4 cm in a matrix of grey quartz, abundant biotite, plagioclase, K feldspar and rare garnet. This unit carries small (to 10 cm) xenoliths of fine-grained slightly foliated mafic rock. The northern part of Wirmbrandt Rock consists of the same coarse megacrystic gneiss as crops out to the northeast.

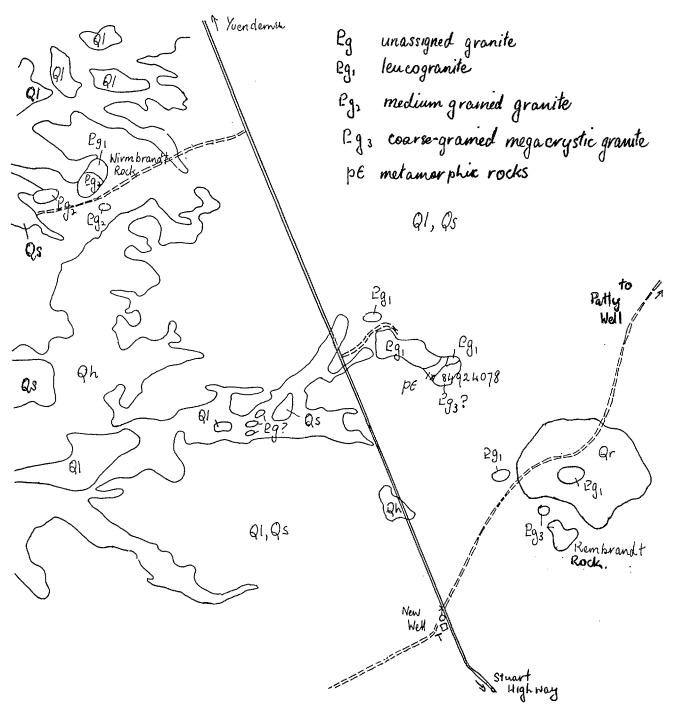


Figure 7 Distribution of rock types in the Rembrandt Rock - Wirmbrandt Rock area. Scale approx 1:80 000.

All the granites are metamorphosed. The metamorphic grade is amphibolite. Co-existing garnet and cordierite have mg of 12.6 and 65.2

respectively. Pressure is therefore estimated as being in the 3-4 kbar range, at an high-enough temperature to stabilize sillimanite. A relic early quartz-spinel assemblage in cordierite-bearing rocks also indicates high temperatures.

The granites in the Rembrandt Rock district may form a single suite. Eg_2 ressembles the late enriched granites that occur along the northern margin of the Ngalia Basin, but the specimen that was collected lacks allanite, which characterizes such granites.

(f) Hill 9 km north of Joker Bore

The small hill 9 km north of Joker Bore consists of metamorphic rocks intruded by a dark biotite-rich granite and by small bodies of leucogranite. The metamorphic rocks include quartzofeldspathic gneiss, biotite-quartzofeldspathic gneiss, meta-pelites with garnet, sillimanite and cordierite, and rare quartzose and calc-silicate rocks. Only one mafic rock was located: a small pod of dark norite with biotite and late hornblende. Muscovite occurs in some of the metasediments and in both metasediments and granite at the northern end of the hill.

The granite and the sediments are deformed. The foliation dips shallowly to the north, and the strongly developed lineations plunge shallowly to the east. These outcrops are unusual in the Arunta Block, dips and lineations are more commonly steep.

The metamorphic grade is lower amphibolite. Co-existing cordierite and garnet have mg of 68 and 15.6, indicating pressure slightly higher than at Rembrandt Rock. The TiO₂ content of biotite is low (approx. 3 weight percent at mg 46), suggesting lower temperatures than at Rembrandt Rock, though hornblende in 84924005B is brown, generally indicative of high temperature. The muscovite, occurring close to a minor shear zone in the centre of the hill, and at the northern edge, another possible fracture trace, is considered to be a product of late local retrogression.

The metasediments are considered to be Division 2 or uppermost Division 1. The megacrystic granite contains more biotite than the megacrystic granite near Rembrandt Rock, but is tentatively correlated with it. Outcrops were too weathered for analysis.

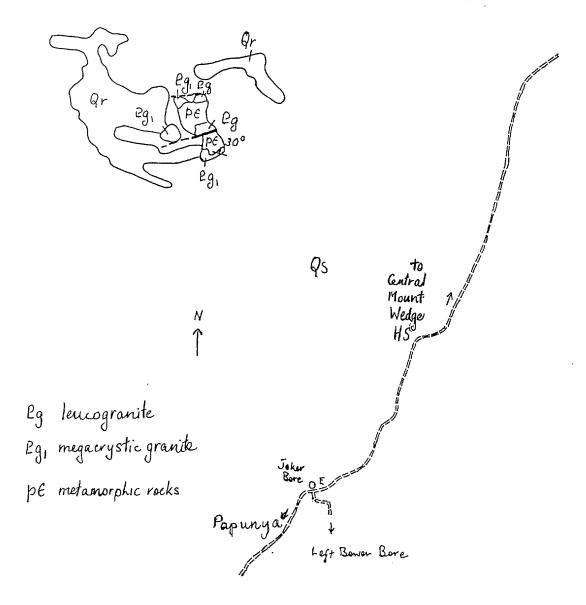


Figure 8. Distribution of Rock types in the outcrops 9 km north of Joker Bore. Scale approx 1:80 000.

(g) Stuart Bluff Granite

Granite in core from BMR Napperby No 8 has been analysed (86924346, Appendix 1). It is a megacrystic pink poorly-foliated coarse-grained unit which in thin section contains abundant K feldspar, altered plagioclase, quartz, biotite, almost entirely replaced by chlorite, and minor muscovite. The K feldspar is perthitic orthoclase which has partly inverted to microcline. The fine-grained minerals replacing plagioclase include white mica, clinozoisite and calcite. Fluorite occurs in a vein in the core, but not in the thin section from the interval taken for chemical analysis. The metamorphic grade is greenschist, possibly

prograde, rather than retrograded from higher conditions. This granite is similar to the leucogranite in the Rembrandt Rock district to the southeast.

ACKNOWLEDGEMENTS

The assistance of the staff of the Northern Territory Geological Survey is gratefully acknowledged; in particular R. Thompson who provided the sample from the evaluation of the 278 km quarry site, S. Wyche who provided valuable information on the distribution of granite in the Barrow Creek Sheet area, and M.J. Freeman who drew my attention to the granite exposed in the Casey Inlier. Obtaining the data put together in this Record would not have been possible without the assistance of the fieldhands who helped collect the samples and the technical assistants who prepared these for analysis. Analyses were carried out by J.G. Pyke, J. Haladane, W. Pappas and T.I. Slezak in the BMR laboratories.

REFERENCES

- Dobos, S.K., 1978. Phase relationships, element distribution, and geochemistry of metamorphic rocks from the northeast Arunta Block.

 Thesis PhD Macquarie.
- Glikson, A.Y., 1983 Bedrock geology of the Glen Helen, Narwietooma and Anburla 1:100 000 Sheet areas. Bureau of Mineral Resources, Australia Australia 1:100 000 special map.
- Hurley, P.M., Fisher, N.H., Pinson, W.H. & Fairburn, H.W., 1961 Geochronology of Proterozoic granites in the Northern Territory. Part 1: K-Ar and Rb-Sr age determinations. Bulletin of the geological Society of America, 72, 653-662.
- Offe, L.A., 1983 Geology of the MacDonnell Ranges 1:100 000 Sheet area Northern Territory. Bureau of Mineral Resources, Australia Record 1983/4.
- Pontifex, I.R., 1965 Mineralogical examination of a lithium-bearing pegmatite, Anningie Tin Field, N.T. Report 89 in Bureau of Mineral Resources, Australia Record 1965/209.
- Shaw, R.D., Langworthy, A.P., Offe, L.A., Stewart, A.J., Allen A.R. & Senior, B.R., 1979 Geological Report on 1:100 000-scale mapping of the southeastern Arunta Block, Northern Territory. Bureau of Mineral Resources, Australia Record 1979/47.
- Shaw, R.D., Freeman, M.J., Offe, L.A. & Senior, B.R., 1982 Geology of the Illogwa Creek 1:250 000 Sheet area, central Australia Preliminary Data, 1979-80 Surveys. Bureau of Mineral Resources, Australia Record 1982/23.
- Shaw, R.D., Warren, R.G., Senior, B.R. & Yeates, A.N., 1975 Geology of the Alcoota 1:250 000 Sheet area. Bureau of Mineral Resources, Australia Record 1975/100.

- Shaw, R.D., Warren, R.G., Offe, L.A., Freeman, M.J. & Horsfall, C.L., 1984 Geology of Arunta Block in the southern part of the Huckitta 1:250 000 Sheet Area, central Australia Preliminary Data, 1980 survey. Bureau of Mineral Resources, Australia Record 1984/3.
- Smith, K.G., 1964 Progress report on the geology of Huckitta 1:250 000 Sheet area. Bureau of Mineral Resources, Australia Report 67.
- Smith, K.G. & Milligan, E.N., 1964 Barrow Creek, N.T. Bureau of Mineral Resources, Australia 1:250 000 geological Series, SF/53-6.
- Stewart, A.J. 1981. Reynolds Range Region. Bureau of Mineral Resources, Australia 1:100 000 geological Map Series.
- Stewart, A.J., Offe, L.A., Glikson, A.J., Warren, R.G. & Black, L.P., 1980 Geology of the northern Arunta Block, Northern Territory.

 Bureau of Mineral Resources, Australia Record 1980/83.
- Warren, R.G., 1981 Tectonic setting of the easternmost Arunta Block.

 Bureau of Mineral Resources, Australia, Report 221.
- Wyatt, B.W., 1974 Preliminary report on airborne magnetic and radiometric survey of Alcoota 1:250 000 Sheet area N.T. 1972.

 Bureau of Mineral Resources, Australia Record 1974/33.

APPENDIX 1

Analyses of rocks collected in 1984, 1985 & 1986

Sample number Lithology	84094023 charnocki.	84094034 quartzofe. gneiss (ortho	84094035 quartzofe. gneiss (ortho	84094036 quartzofe. gneiss (ortho	84094037 quartzofe. gneiss
Map name Grid reference	Narwietoo. 787429	MacDonnell Ranges 302718			MacDonnell Ranges 264746
GIIG TETETETICE	101423	502710	300740	303747	204/40
SiO2	60.87	70.58	77.62	72.46	71.22
TiO2	1.34	.43	.10	.28	.33
A1203	14.81	13.70	12.25	13.97	14.85
Fe203	2.47	1.94	.56	1.07	1.38
FeO MnO	7.27 .11	1.20 .12	.16	.68	.78
MgO	2.68	1.01	.05 .09	.04 .60	.05
CaO	4.88	2.14	.26	2.06	.71
Na2O	2.19	2.74	3.95	3.27	2.55 4.01
K20	1.94	4.56	4.26	4.65	3.69
P205	.21	.11	.01	.05	.07
LOI	1.05	1.07	.55	.84	- '
Rest	.28	.21	.10	.20	.21
Total	100.10	99.81	99.96	100.17	99.85
O=F,S,Cl	.00	.00	.00	.00	.00
Total	100.10	99.81	99.96	100.17	99.84
	Trace eleme	nts in part	s per milli	on	
Ва	704	668	123	697	792
Li	18	34	10	18	_
Rb	92	225	308	211	162
Sr	168	107	21	223	274
Pb	15	34	24	25	22
Th U	31 .50	20	23	26	24
Zr	355	6.50 176	4.00 82	3.00 136	3.00
Nb	18	16	18	11	146 11
Y	30	44	51	31	28
La	86	46	27	57	47
Ce	157	97	56	105	91
Nd	54	35	19	32	30
Sc	30	13	<2	7	
V	164	45	<2	21	28
Cr	54	19	2	3	4
Co	26	10	3 6 6	5 6	-
Ni	23	18	6	6	-
Cu Zn	29 123	27 62	29	<2 32	
Sn	123	3	29	32	2
W	2 3 <3	20	4 7	3 4	3 5 3
Mo	<3	<3	<3	3	3
Ga	21	13	16	14	14
As	.50	<.50	<.50	.50	.50
S		- .	– 5	-	100
Be	- 2 <2	3	5	2 <2	-
Bi	<2	2	<2	<2	-

Sample number Stratigraphic unit	84094038	84094040	84094041	84094054 Dneiper Granite	84094055 Mount Swan Granite
Lithology	quartzofe. gneiss (ortho	quartzofe. gneiss (ortho	garnet- bearing leucogran.	granite gneissic	granite
Map name	MacDonnell Ranges	MacDonnell Ranges	-	Dneiper	MacDonald Downs
Grid reference		217746	215739	045096	100119
SiO2	71.82	73.47	74.39	69.72	69.36
TiO2	.31	.22	.10	.71	.59
A1203	14.28	13.30	14.29	13.30	13.70
Fe203	1.38	.92	.66	2.68	1.85
FeO	.61	.61	.32	2.11	2.44
MnO	.04	.04	.06	.06	.06
Mg0	.64	.53	.27	.97	.63
CaO	2.17	1.42	1.51	2.36	2.08
Na2O	3.33	3.69	3.80	2.65	2.48
K20	4.41	4.23	3.55	4.55	5.93
P205	.07	.05	.05	.16	.18
LOI	.84	1.15	1.28	1.03	1.09
Rest	.20	.16	.19	.21	.34
Total	100.10	99.79	100.47	100.51	100.73

Ba	707	425	911	632	542
Li	19	12	21	29	22
Rb	180	217	116	236	534
Sr	241	210	324	93	9.0
Pb	25	19	10	21	48
Th	27	30	19 6	26	133
Ü	4.50	6.00	.50	5.50	25.00
Zr	142	108	65	251	413
Nb	10	12	10	14	37
Y	30	22	15	53	100
La	48	46	25		120
Ce	91	80	49	54	211
Nd	29	21	49	104	393
		21	13	38	118
Pr	- 7	_	- 5 6 <2 3 5 7 26 <2 2 3	- 12	- 10
Sc	200	4	5	13	12
V	26	20	6	40	24
Cr	4	5 7	<2	11	3
Co	4 7 8 2	7	3	10	3 8 7
Ni	8	8 2	5	11	
Cu	2	2	7	7	12
Zn	31	31	26	57	53
Sn	2	2	<2	6	4
M	3	2 3 3	2	4	6
Мо	31 2 3 3	3	3	4	3
Ga	14	14	14	17	12 53 4 6 3 18
As	<.50	<.50	.50	.50	.50
S	-	-		-	_
F'	-	-	_	_	-
S F Cl	-	-	-	_	_
Be	· 2 <2	2	<1	2	4
Bi	<2	<2	<2	<2	<2
Hf	-	-	_	_	_
Ta	-	-	_	-	-
Cs	•••	-	-	-	-

Sample number Stratigraphic unit	84094056 Perenti Metamorph.	84094057 Perenti Metamorph.	84094061A	84094061B
Lithology	charnocki.	Sillimani. gneiss	granite	granite
Map name	MacDonald Downs	MacDonald Downs	Dneiper	Dneiper
Grid reference	076117	076119	134003	134003
SiO2	65.30	61.71	64.64	72.00
TiO2	1.05	.75	1.11	.33
A1203	13.30	19.18	13.28	13.71
Fe203	2.65	3.15	2.75	1.12
FeO	4.44	3.99	4.86	1.51
MnO	.10	.06	.10	.03
MgO	1.50	2.38	1.52	.74
CaO	2.78	.54	3.78	1.71
Na20	2.86	1.10	2.48	2.85
K20	4.32	5.08	3.78	5.05
P205	.26	.11	.27	.09
LOI	.86	1.93	1.62	1.15
Rest	.22	.20	.22	.19
Total	99.64	100.18	100.41	100.48

Ва	657	391	. 539	565
Li	14		,009	
	100	42	22	19
Rb	190	363	204	263
Sr	62	32	109	130
Pb	12	6	23	41
Th	15	21	26	36
U	2.50	4.50	5.50	50
Zr	361	162	201	8.00
Nb	16	102	281	155
IND	10	17	16	10
Y	62	34	62	27
La	51	49	54	58
Ce	98	93	107	103
Nd	38	41	40	28
Pr	-	-	-	20
Sc	18	14	20	7
V	60	84	75	31
Cr	14	104	19	17
Co	16	22	17	7.7
Ni	11	39	11	9
Cu	3	3	18	9 9 <2 36 5 5 <3 16 2.00
Zn	66		89	26
Sn	4	45 6 3 <3	09	36
M	5	3	8 6	5 5
Mo	Ã	/3	6	5
Ga	4 17	25	5 17	< 3
As .	.50	23	1 /	16
S	-50	<.50	4.00	2.00
F	_	_	_	-
Cl	_	_	_	-
Be	3	5	-	_
Bi	3 <2	1	3 2	4 <2
Hf	_	<u> </u>	۷	<2
Ta	_	-	_	_
Cs	_		-	-
Co	-	_	-	_

Sample number Stratigraphic unit	84094062 Pgk	84094064A Dneiper Granite	84094066 Cackleber. Metamorph.	84094067 Pgk	84094068 eq Pgk?
Lithology Map name Grid reference	granite Dneiper 298026	granite Dneiper 303043	amphiboli. Dneiper 362976	granite Dneiper 369965	granite Dneiper 370961
01-01-01-01-00					0,000
SiO2	73.21	69.34	48.21	71.45	67.32
TiO2	.26	.64	.62	.39	.73
A1203	13.75	13.45	14.97	13.27	13.62
Fe203	1.02	2.31	1.67	1.59	2.14
FeO	1.11	2.02	8.89	1.60	2.89
MnO	.02	.06	.18	.03	.06
MgO	.40	.89	9.79	.50	1.12
CaO	1.54	2.36	13.41	1.54	2.24
Na20	2.99	2.33	1.13	2.46	2.37
K20	4.95	4.77	.35	5.58	5.36
P205	.06	.16	.06	.13	.25
LOI	.61	.98	1.01	1.00	1.22
Rest	.19	.29	.28	.35	.33
Total	100.11	99.60	100.57	99.89	99.65
O=F,S,Cl	.00	.03	.00	.03	.00
Total	100.11	99.57	100.57	99.85	99.65

Ba Li	394 35	690 26	105 • 17	526 47	795 57
Rb	336	241	18	349	365
Sr	83	109	131	92	139
Pb	50	30	4	42	28
Th	86	29	1	105	64
U Zr	9.50 207	6.00 242	<.50 18	12.00 295	4.00
Nb	13	15	<1	16	396 23
Y	44	50	15	41	23 72
La	80	63	2	160	164
Ce	142	119	13	302	299
Nd	37	42	7	94	90
Pr			3	94 -	90
Sc	- 5	12	52	7	13
V V	13	37	259	17	48
Cr	13 3 6 6 <2	13	917	5	12
Co	6	13	54	11	12
Ni	6	9	196		11
Cu	<2	9 3	2	6	18
Zn	36	59	70	45	62
Sn	6	59 6	2	3	8
W	36 6 3 <3	4	<2	3	8 3
Мо	<3	<3	<3	<3	4
Ga	17	17	15	3 6 45 3 3 <3 15	17
As	<.50	.50	1.00	.50	.50
S F	-	-	10.00	-	-
F	-	700	<100	800	-
C1	-	-	54		- 5
Be	4 <2	3 <2	1	4	5
Bi	<2	<2	<1	<2	<2
Hf	_	_	<2		_
Ta	-	-	<2	-	-
Cs	-	-	7	-	

Sample number	84094069	84094070	84094071	84094072B	84094073A
Stratigraphic group Stratigraphic unit	Pgc	Pgc	Bonya Bonya	Jervois	Jervois Granite
Lithology	granite	granite	Metamorph. quartzofe. gneiss		granite (hbe tonalite)
Map name	Dneiper	Dneiper	Jervois Range	Jervois Range	Jervois Range
Grid reference	434917	448904	093855	475822	504851
SiO2 TiO2 Al2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O P2O5 LOI Rest Total O=F,S,Cl Total	74.85 .36 12.42 1.67 .96 .03 .39 1.20 2.79 4.67 .05 .67 .28 100.34 .03	72.11 .51 12.50 2.54 1.32 .05 .49 1.68 2.77 5.00 .09 .82 .30 100.18 .03	71.56 .50 11.98 2.28 2.94 .02 .61 1.57 1.60 5.26 .10 1.47 .22 100.11 .00	74.04 .06 13.71 .50 .18 .01 .18 1.00 2.86 6.15 .03 .84 .13 99.69 .00 99.69	57.66 1.01 16.84 3.03 5.02 .11 2.71 5.38 3.14 2.42 .22 2.25 .18 99.97 .00 99.97
	Trace elem	ents in par	ts per milli	on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As	787 13 225 67 24 34 5.00 286 158 66 123 45 8 9 4 9 3 2 8 8 5 3 14 .5 0	793 8 222 78 21 28 5.50 324 16 63 59 120 41 - 11 10 3 10 2 4 49 8 5 3 15 <.50	*805 16 230 37 6 28 5.50 344 18 83 28 62 25 13 17 10 10 7 4 8 6 7 3 17 .50	278 10 274 100 66 29 9.50 67 7 39 31 62 18 - 3 2 2 7 3 25 17 < 2 4 <3 15 <.50	368 13 127 245 13 8 2.50 229 12 33 29 57 24 - 27 121 24 24 27 121 24 24 27 121 24 24 27 121 24 27 121 24 27 121 24 20 20 20 20 20 20 20 20 20 20
S F Cl Be Bi Hf Ta	600 - 4 <2	700 - 4 <2 -	- - 2 <2 -	<200 - 4 <2 -	- - - 3 <2 -
Cs	-	-	-		-

Sample number Stratigraphic unit	84094073B Jervois Granite	84094074 Jervois Granite	84094075 Jervois Granite	84094076 Jervois Granite
Lithology Map name	granite Jervois Range	granite Jervois Range	granite Jervois Range	granite Jervois Range
Grid reference	504851	264857	269853	273849
SiO2	71.85	68.81	68.56	68.31
TiO2	.17	.44	.45	.51
A1203	14.65	14.60	14.50	14.50
Fe203	.78	1.52	1.70	1.56
FeO	.92	2.56	2.48	3.20
MnO	.03	.07	.07	.08
Mg0	.53	.95	.86	.97
Ca0	1.99	2.29	2.24	2.44
Na2O	3.73	3.08	3.27	3.23
K20	3.84	4.29	3.97	3.64
P205	.06	.16	.17	.20
LOI	1.09	1.47	1.39	1.53
Rest	.18	.22	.22	.23
Total	99.82	100.46	99.88	100.40

${\tt Trace\ elements\ in\ parts\ per\ million}$

Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc	560 56 95 357 17 6 1.50 91 5 13 19 34 12 6	726 61 198 101 24 21 4.00 224 12 58 53 95 37 -	629 58 197 99 27 26 3.50 258 14 68 60 118 45 -	637 58 195 103 28 2.50 285 15 80 65 127 49
V ~	11	24	20	24
Cr	5 8	10	8	9
Co	8 17	10 8 7	10	10
Ni Cu	19	7	8 5 58	9 7
Zn	92	60	58	70
Sn	<2	4	4	5
W	3	4	4	6
Мо	3	4		3
Ga	3 3 16	17	4 17	5 6 3 18
As	.50	1.00	.50	1.00
S	-	_	-	-
F	<200			
Cl	-	<u>-</u>	-	_
Be	4	3 <2	4	3 <2
Bi	<2	<2	<2	<2
Hf	-	_	_	-
Ta		-	_	_
Cs	_	_	_	_

Sample number Stratigraphic unit Lithology	84904047 Woodgreen Granite granite	84904048 Woodgreen Granite granite	84904049 Copia Granite granite	84904050 Mount Ida Granite granite	84904051 Copia Granite granite
Map name Grid reference	(megacrys. Woodgreen 350170	fine grained Woodgreen 350170	gneissic Utopia 660140	Utopia 680170	Utopia 660170
SiO2 TiO2 A12O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest	62.85 1.02 14.59 3.50 2.93 .08 1.84 3.83 2.50 4.39 .34 1.31	75.32 .28 12.71 .80 .55 .02 .48 1.86 2.15 5.05 .04 .65	68.88 .63 14.17 1.53 2.85 .05 .97 2.01 2.41 5.13 .16 1.03	73.85 .18 12.96 .75 1.19 .01 .24 1.07 2.26 6.42 .06 .94	75.95 .27 11.71 1.60 .98 .03 .13 .76 2.41 5.40 .03 .55
Total O=F,S,Cl Total	99.55 .00 99.55	100.10 .00 100.10	100.06 .00 100.06	100.10 .00 100.10	100.04 .00 100.04

Ba	1240	582	845	279	923
Li	19	4	41	17	20
Rb	247	210	223	368	202
Sr	328	180	133	48	62
Pb	32	47	19	64	21
Th	44	113	• 24	99	23
Ω .	5.00	13.00	2.50	39.00	2.00
Zr	287	250	238	197	286
Nb	23	3	24	19	9
Y	62	3 9	39	26	27
La	129	35	74	57	59
Ce	233	69	132	105	116
Nd	76	20	46	30	41
Pr	-	-	-	_	
Sc	18	4	12	6	10
A	101	11	44	7	2
Cr	19	5	14	<2	<2
Co	17	5 6	9	6	<2 6
Ni	17	6	12	3	<2
Cu	25	<2	<2	2	4
Zn	87	24	46	33	4 47
Sn	11,	<2		2	3 2
M	4	3 <3	6 3 4	4	2
Мо	11 ₄ 5 19	<3	4	<2 6 3 2 33 2 4 3	<3
Ga	19	13	16	14	13
As	.50	<.50	<.50	1.00	.50
S	_	_	-	.01	_
F	-	-	-	-	<200
C1	-	-	-	-	_
Be	. 3	2	2	<1	3 <2
Bi	<2	<2	<2	<2	<2
Hf	-	_	-	-	-
Ta	-	_	-	-	
Cs	_	-	_	***	_

Sample number Stratigraphic group	84904052	84904059A Strangways Metamorph.	Metamorph.	84904060 Strangways Metamorph.
Stratigraphic unit	Copia Granite granite	Complex Kanandra Granulite granulite	Complex Kanandra Granulite mafic granulite	Complex Kanandra Granulite garnet quartzofe.
Map name Grid reference	Utopia 661170	Delny 910850	Delny 910850	gneiss Delny 910870
Si02 Ti02 Al203 Fe203 Fe0 Mn0 Mg0 Ca0 Na20 K20 P205 LOI Rest Total	71.24 .65 13.06 2.20 1.75 .06 .76 2.62 2.88 3.91 .14 .88 .22	58.11 1.53 14.29 4.81 4.77 .10 1.92 5.30 2.09 4.32 .70 1.78 .54 100.26	48.30 .67 17.66 1.87 7.38 .16 7.27 11.69 2.00 .79 .19 1.98 .28	73.16 .25 13.98 .54 1.40 .03 .59 1.27 2.23 6.32 .07 .33 .16

Ва	647	2981	825	564
Li	21	3	10	8
Rb	176	81	18	
Sr	75	315		234
Pb	16		342	118
Th	27	19 1	14 6	46
Ω.	3.50	.50		26 2.50
Zr	322	247	1.00	2.50
Nb	17	347	88	119
Y	64	20	<2	5 22
La	62	83	19	22
Ce		80	52	39
Nd	121	211	85	78
Dw	43	106	21	24
Sc	13	-	_	-
V		27	38	4
Cr	20	125	180	19
Co	8 7	<2	196	9 7 8 <2
Ni	7	21	43	7
	8	2 19	142	8
Cu	104	19	59	<2
Zn	42	93	65	29
Sn	9	4	<2	<2
W	5	4	<2	4
Мо	3	<3	5 15	4 3 14
Ga	15	18	15	1.4
As	9 5 3 15 <.50	.50	1.00	<.50
S	-	~	_	-
F	-	•••	_	_
C1		-	_	_
Be	3 <2	2 <2	1	1 <2
Bi	<2	<2	<2	<2
Hf	_	-	_	-
Ta			_	_
Cs	-	_		_

Sample number Stratigraphic unit Lithology	84914042 Burt Bluff Gneiss granite	84914043 quartzofe.	84914045 eq Burt Bluff quartzofe.	84914128 Oolbra Orthognei. quartzofe.	-
		gneiss	gneiss	gneiss	
Man namo	Nlico	(grey Alice	(porph Alice	(ortho	Direct.
Map name	Alice Springs	Springs	Springs	Burt	Burt
Grid reference	634717	498874	Springs	996248	926372
SiO2	69.63	69.87	66.74	71.92	71.28
TiO2	.40	.48	.81	.40	.32
A1203	14.88	14.56	14.20	13.22	14.35
Fe203	1.40	1.40	2.25	1.14	.90
FeO	1.18	1.52	3.00	2.29	1.56
MnO	.07	.02	.08	.04	.01
Mg0	.86	.73	1.19	.57	.71
CaO	2.47	2.09	3.66	1.93	2.20
Na20	3.37	2.88	2.54	2.41	2.90
K20	4.58	5.16	4.25	5.13	4.56
P205	.10	.15	.25	.12	.11
LOI	.86	1.03	1.07	.65	.98
Rest	.21	.38	.29	.20	.39
Total	100.01	100.27	100.33	100.02	100.27
	Trace eleme	nts in part	s per milli	on	
Ва	741	1501	1191	582	2044
Li	23	9	22	15	6
Rb	223	161	169	255	141
Sr	217	345	222	94	120
Pb	27	32	26	27	33
Th	27	73	24	34	63
U	4.00	1.00	3.00	4.00	4.50
Zr	164	384	276	196	309
Nb	11	7	13	14	9
Y	35	12	42	34	42
La	41	178	69	84	132
Ce	75	291	123	155	237
Nd	25	78	45	49	63
Sc	9	7	17	10	7
V	34	37	62 7	24	23
Cr Co	3 7	7 7	14	8 10	4 8
Ni	6	8	9	7	4
Cu	9	11	8	4	2
Zn	42	48	71	51	39
Sn	2	<2	3	<2	2
W	4	<2	3	2	2
 Mo	4	3	4	3	4
Ga	13	17	17	16	16
As	1.00	<.50	.50	<.50	<.50
Be	1	2	3	2	2
Bi	<2	<2	<2	<2	<2

Alice Springs

		•		
Sample number	84914131	84914144	85914290A	85914290E
Stratigraphic unit	Gumtree	Alice	Alice	Alice
	Granite	Springs Granite	Springs Granite	Springs Granite
Lithology	granite	granite	granite	granite
Map name	Laughlen	Alice	Alice	Alice
map name	Daugniten	Springs	Springs	Springs
Grid reference	996282	874837	836833	836833
SiO2	69.49	73.14	71.55	73.26
TiO2	.46	.20	.20	.21
A1203	14.18	14.98	15.66	14.99
Fe203	1.56	.75	.60	. 68
FeO	1.48	.73	.79	.81
MnO	.03	.03	.04	.04
MgO	.71	.45	.34	.37
CaO	2.17 2.90	2.00	2.12	2.04
Na20 K20	5.33	4.42 2.77	4.65 2.75	4.43 2.54
P205	.15	.05	.06	.05
LOI	.77	.58	.88	.85
Rest	.57	.24	.20	.19
Total	99.80	100.34	99.84	100.46
O=F,S,Cl	.00	.02	.00	.00
Total	99.80	100.32	99.84	100.46
	Trace elem	ents in par	ts per milli	Lon
Ba	2703	638	674	577
Li	7	34	56	56
Rb	244	107	100	95
Sr	469	515	524	497
Pb Th	55	18	18	18
U	69 5.00	9 1.50	$\begin{smallmatrix}7\\1.00\end{smallmatrix}$	6 1.00
Zr	373	100	105	107
Nb	25	5	5	6
Y	43	13	12	11
La	274	24	20	20
Ce	433	49	36	38
Nd	96	15	14	15
Pr	_		<3	<3
Sc	7	6	4	4
V Cr	28 2	6 12 4	11 <2	4 12 2 6 <2 2 34
Co	Q Q	Ω Q	\\ <u>\</u>	2 6
Ni	9 5	5	6 <2	<2
Cu .	7	3	2	2
Zn	50	33	2 31	34
Sn	3	<2	2	<2
M	3 3	2	3	4
Мо	4	8 5 3 33 <2 2 2 3 18	2 3 <3	<3
Ga	17	18	19	18
As	1.00	.50	.50	<.50
S F	-	100	·· <100	<100
r Be	_ 3	400 3	4	<u>-</u> 4
Bi	3 <2	3 <2	<1	1
Cs	-	_	<3	<3
	•		•	-

Sample number Stratigraphic unit	84924010	84924030	84924078	84924081 Napperby Orthognei.	84924085 Napperby Orthognei.
Lithology	quartzofe. gneiss (?meta	granite	quartzofe. gneis 		
Map name	Aileron	Napperby	Napperby	Reynolds Range	Napperby
Grid reference Other data	338690	640570	615610 large xenolith	609133	832071
Si02 Ti02 Al203 Fe203 Fe0 Mn0 Mg0 Ca0 Na20 K20 P205 L0I Rest Total O=F,S,C1 Total	70.58 .56 13.04 1.47 2.04 .04 .83 2.14 2.25 5.38 .12 .88 .22 99.55 .00 99.55	75.39 .34 12.26 .92 1.14 .02 .40 1.18 2.34 5.44 .06 .62 .17 100.28 .00 100.28	70.81 .57 13.31 1.27 2.76 .05 .94 2.12 2.15 4.70 .15 1.11 .37 100.31 .06 100.25	72.84 .36 13.29 .72 1.84 .03 .51 1.66 2.16 5.27 .12 .77 .21 99.78 .00 99.78	72.03 .29 13.89 .99 1.28 .01 .41 1.38 2.28 6.32 .12 1.07 .23 100.30

	Trace element	s in parts	per million		à
Ba	618	188	700	751	273
Li	20	29	22	19	16
Rb	330	383	269	289	428
Sr	83	37	110	83	53
Pb	32	39	35	32	66
Т'n	43	85	29	31	192
U	9.00	8.50	1.50	3.50	17.00
Zr	240	189	216	178	248
Nb	15	12	13	10	13
Y	51	27	43	44	43
La	62	94	58	48	152
Ce	123	178	114	97	286
Nd	40	51	41	32	82
Pr			<u>-</u>	-	_
Sc	11	6	10	7	5
V	44	15	49	22	13 3 6 8 2
Cr	11	4	18	9	3
Co	12	6	13	7	6
Ni	12 5 6	8 <2	8 5	9 8	8
Cu	6	<2	5	8	2
Zn	49	38	59	39	39
Sn	8 5 <3	<2	3 3	4	9 2
W	5	. 3	3	3	2
Mo	<3	<3	4	3	<3
Ga	15	15	15	15	17
As	.50	<.50	<.50	<.50	<.50
S	_	-	-	-	-
F	-	-	1500	-	_
C1	_	_	_	_	-
Be	4	2	4	3	2
Bi	<2	<2	<2	<2	<2
Hf	-	-	-	-	-
Ta	-	-	-	-	
Cs	_	_	-	-	_

		•			
Sample number Stratigraphic unit	84924088 Napperby Orthognei.	84924096 Aileron Metamorph.	84924097 Boothby Granite	84924098 Aileron Metamorph.	84924099 Boothby Orthognei.
Lithology	granite	granite micro	granite (sheared)	quartzofe. gneiss (grey	
Map name	Aileron	Aileron	Aileron	Aileron	Aileron
Grid reference	937056	254897	284108	284108	280053
GIIG Telefence	337030	234051	204100	204100	200033
SiO2	73.13	72.77	72.03	67,20	74.12
TiO2	.40	.49	.47	1.11	.29
A1203	13.37	12.74	13.18	13.08	13.22
Fe203	1.16	1.64	1.34	3.58	.66
FeO	1.44				
		1.44	1.76	2.92	1.51
MnO	.01	.03	.03	.07	.02
MgO	.52	.46	.72	1.08	.49
Ca0	1.60	1.56	1.48	2.87	1.41
Na2O	3.00	1.78	1.93	2.40	2.19
K20	4.34	6.41	5.70	4.37	5.63
P205	.15	.08	.09	.32	.12
LOI	.78	.44	.96	1.01	.57
Rest	.25	.24	.33	.38	.18
Total	100.15	100.08	100.02	100.39	100.41
O=F,S,Cl	.03	.00	.05	.06	.00
Total	100.12	100.08	99.96	100.33	100.41
		* -			

Ba		702	193	456	693	467
Li		10	7	11	21	50
Rb		230	595	378	229	365
Sr		78	33	73	165	66
Pb		18	48	38	31	35
Th		27	140	55	30	34
U.		4.00	29.00	4.00	3.50	6.50
Zr		188	286	194	285	146
Nb		12	15	12	18	9
Y		47	90	46	44	41
La		41	120	62	59	37
Ce		84	230	123	124	77
Nd		32	68	42	48	26
Pr			_		_	
Sc		- 8	9	- 8	12	- 6
V		24	26	41	56	20
Cr		11	3	. 17	13	10
Со		11	8	12	17	7
Ni		6	7	7	8	10
Cu		<2	2	5 43	7	
Zn		12	33	43	90	9 35 7 3 3
Sn			9	8	5	7
W		8 4 3	6	8 5 3	2	ત્રં
Мо		3	<3	3	4	3
Ga		16	15	16	20	16
As		<.50	<.50	<.50	.50	<.50
S	•	_	_	-	_	_
F		600	-	1300	1400	-
Cl		_	-	_	-	_
Ве		4	3	3	4	3
Bi	•	<2	<2	<2	<2	3 <2
Hf		_	-	-	-	_
Ta		-	-	-	-	-
Cs				-	_	

Sample number Stratigraphic unit	84924100 Aileron	84924102A Boothby	84924102B Boothby	84924103 Pgp mapped as Boothby	
Lithology	quartzofe. gneiss (migma		granite	granite	charnocki.
Map name Grid reference	Aileron 254023	Aileron 330919	Aileron 330919	Aileron 263977	Aileron 284908
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest Total O=F,S,C1 Total	68.36 .57 15.51 1.56 2.76 .05 1.13 4.48 3.78 1.20 .13 1.58 .11 101.22 .00 101.22	73.84 .38 13.02 .71 1.96 .03 .69 1.62 1.87 5.13 .12 .64 .18 100.19 .00 100.19	73.69 .35 13.18 .74 1.76 .02 .66 1.48 1.86 5.49 .12 .54 .19 100.08 .00 100.08	71.55 .25 14.45 .94 .85 .01 .50 1.24 3.08 6.02 .16 .86 .28 100.19 .02 100.17	67.63 .62 14.20 1.83 3.16 .06 1.65 3.38 2.20 3.78 .16 .72 .31 99.70 .04 99.66
	Trace eleme	ents in part	s per milli	on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S F Cl Be Bi Hf Ta Cs	131 23 78 167 7 2 1.00 203 12 21 22 38 12 - 14 41 8 12 9 2 46 5 3 4 19 <.50 - 3 <2	595 27 250 81 32 30 2.00 155 9 41 42 87 27 7 29 16 9 13 7 39 2 3 3 15 4.00 	641 24 263 84 34 28 2.50 143 39 41 79 28 67 10 99 35 27 10 99 35 41 5 32 32 32	610 7 290 168 62 84 11.00 217 10 51 112 193 50 6 10 3 9 6 4 16 6 2 <3 15 <	788 6 187 175 12 10 .50 188 9 14 42 80 28 - 18 81 32 17 17 15 56 5 2 4 16 <.50 900 3 <2

Sample number Stratigraphic unit Lithology	84924106 Aileron Metamorph. mafic granulite	84924107 Aileron Metamorph. mafic granulite	84924114 Harverson Granite granite	84924115 Harverson Granite granite	84924124 Airy Orthognei. granite
Map name	Aileron	Aileron	Reynolds Range	Reynolds Range	Reynolds Range
Grid reference	283903	277891	796337	806328	969224
SiO2	50.76	50.22	75.94	75.28	72.54
TiO2	.73	1.35	.20	.20	.31
A1203	13.19	14.82	12.41	12.70	13.67
Fe203	.98	2.02	.62	.55	.78
FeO	8.56	10.12	1.34	1.22	1.62
MnO	.16	.17	.03	.02	.02
Mg0	11.69	6.49	.35	.37	.60
CaO	9.79	10.72	.88	1.06	1.50
Na20	1.77	2.13	2.05	2.10	2.10
K20	1.02	.79	5.13	5.37	5.34
P205	.06	.17	.12	.11	.13
LOI	1.37	1.05	.97	.94	.98
Rest	.64	.19	.16	.16	.27
Total	100.72	100.24	100.20	100.08	99.86
O=F,S,Cl	.12	.00	.00	.00	.04
Total	100.60	100.24	100.20	100.08	99.82

Ва	93	133	229	380	490
Li	9	17	80	46	33
Rb	44	42	459	356	313
Sr	71	102	45	66	74
Pb	5	5	33	34	35
Th	71 5 1	5 1	24	26	30
U	1.00	1.00	7.50	4.00	3.50
Zr	61	118	99	102	149
Nb.	61 2	8	12	8	9
Y	22	42	50	43	42
La	22 7	17	25	33	36
Ce	18	37	52	68	77
Nd	18 7	18	16	23	27
Pr	3		<u>-</u>	-	_
Sc	42	45	6	5	5
V	232	295	14	5 13	24
Cr	1336	164	7	9 8	13
Co	56	52	6	8	11
Ni	249	63	8	6	11
Cu	120	62	10	8	7
Zn	67	84	42	8 38	37
Sn	<2	3	•13	7	5
M	<2	2 7	··· 8	5	4
Мо	6		3	3	3
Ga	<2 6 14	19	17	5 3 14	5 4 3 16
As	.50	.50	1.00	1.00	<.50
S F	1186.00	-	-	-	-
F	1300	-	-	-	1000
Cl	443	-	-	-	_
Ве	2	3	3	3 <2	2
Bi	<2 <2 <2 4	<2	<2	<2	<2
Hf	<2	-	-	-	_
Ta	<2	-	-	-	-
Cs	4	-	-	-	-

Sample number Stratigraphic unit	84924126 Possum Creek Charnocki.	84924133C Aileron Metamorph.	84924135A Possum Creek Charnocki.	84924139 Pgp
Lithology	charnocki.	sillimani. quartzofe.		granite
Map name Grid reference	Tea Tree 953368	Tea Tree 245137	Tea Tree 951357	Tea Tree 110287
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5	67.37 .98 12.72 1.50 4.77 .07 1.58 3.60 2.03 4.36 .21	77.64 .14 12.43 .57 1.01 .01 .18 .99 2.19 4.33 .11	68.28 1.03 12.87 1.61 4.16 .06 .99 2.91 1.92 5.20	72.69 .36 13.05 .85 2.20 .03 .47 1.70 2.24 5.39
LOI Rest Total	.21 .88 .22 100.29	.38 .10 100.08	.29 .62 .26 100.20	.09 .79 .26 100.12

Ва	464	218	7.60	401
Li	7		768	431
		19	13	57
Rb	263	273	223	433
Sr	57	48	58	69
Pb	26	24	31	61
Th	32	17	20	91
U	4.00	3.50	1.50	19.00
Zr	291	77	398	268
Nb	16	6	19	42
Х .	70	20	66	150
La	65	23	82	102
Ce	133	46	162	210
Nd	46	15	59	83
Pr	_	_	_	_
Sc	22	3	16	1.0
V	103	3	76	10 17
Cr	26	3	9	
Co	21	6	16	8
Ni	16	4	8	5
Cu	20	3 3 3 6 4 3	18	3 8 5 3
Zn	72	34	75	70
Sn	6	34 9 2 <3	3	9
W	6 5 5 17	2	. 4	0
Mo	5	- 2 - 2	• 4	9 <3
Ga	17	10	5 16	23
	11	18		21
As	<.50	<.50	.50	<.50
S F	-	_		_
	_	_	-	
Cl Be	_	-	_	5 <2
Bi	2 2	<1	2 <2	5
	2	<2	<2	<2
Hf		-	-	-
Ta	-	_		-
Cs	_	_		_

Sample number Stratigraphic unit Lithology	85921017 Napperby Orthognei. granite	85924153 Napperby Orthognei. granite micro	85924155 Napperby Orthognei. granite	85924156A Napperby Orthognei. granite micro	85924156B Napperby Orthognei. granite micro
Map name	Napperby	Napperby	Napperby	Napperby	Napperby
Grid reference	616108	864038	864038	859051	859051
SiO2 TiO2 A12O3 Fe2O3 FeO MnO MgO CaO Na2O	72.17 .51 13.31 4.06 <.01 .04 .65 1.89 2.19	71.87 .32 13.48 1.34 1.65 .02 .31 1.05 1.91	73.08 .42 13.08 1.11 1.96 .04 .54 1.55 2.10	72.66 .36 13.63 1.03 1.75 .02 .56 1.26 2.01	72.33 .34 13.73 1.24 1.48 .02 .48 1.21 2.07
K20	4.09	6.64	5.30	5.99	5.99
P205	.15	.13	.10	.16	.15
LOI	.80	1.16	.88	1.11	1.11
Rest Total	.22 100.08	.27	.21	.23	.24
0=F,S,Cl	.00	100.15	100.37	100.77	100.39
Total	100.08	.00 100.14	.00 100.37	.00 100.77	.00 100.39
10001	100.00	100.14	100.37	100.77	100.39

Do	523	242	400	412	400
Ba Li	35	243 24	489 24	413 14	426
Rb	347	497	394	401	16
Sr	68	46	60	65	402 65
Pb	27	58	36	49	49
Th	36	174	46	114	113
U	4.50	46.00	6.00	15.00	15.00
Zr	318	269	213	264	256
	21	26	16	19	
Nb Y	36		42		19
La	51	102 130	59	75 102	74 107
Ce	97	265	108	197	
Nd	46		49	86	188 88
		119 32			
Pr	10 7	6	12 7	23 6	24
Sc V	27	10	27		6
V Cr	27	<2		16	15 6 3 15 43
Co	9	\Z 5	9	4 6	0
Ni	1	5 2	O E	3	2
Cu	9 8 4 16	7	9 8 5 10 47	12) 1 E
	68	54	10	12 44	13
Zn	15				4.3
Sn W	15	11 7	9	12	12
	5 5 19	3	9 3 3 16	5	12 5 3 17
Mo		18	3	<3	ئ 17
Ga	19			17	
As S	<.50 <100	<.50 100	<.50 <100	<.50 <100	<.50
Be	7100	2			<100
Bi	2 1	<1	4 2	3 1	1
Cs	12	4	10	6	2 1 6
Ge	12	_	10	-	-

Sample number Stratigraphic unit Lithology	85924162C Napperby Orthognei. deformed granite (quartzof.	85924163A Napperby Orthognei. granite gneissic	85924163B Napperby Orthognei. granite micro	85924167 Napperby Orthognei. granite	85924172A Napperby Orthognei granite micro
Map name	Napperby	Napperby	Napperby	Reynolds Range	Reynolds Range
Grid reference	777083	696088	698087	517183	641162
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest Total	72.61 .41 13.29 1.21 1.66 .03 .47 1.59 1.85 5.28 .14 1.09 .22 99.85	71.51 .53 13.27 1.47 2.28 .04 .53 1.92 2.00 5.02 .13 .81 .23 99.74	71.01 .28 13.96 1.09 1.49 .02 .29 1.40 1.94 6.80 .07 1.30 .29 99.94	70.78 .55 13.30 1.31 2.73 .06 .84 1.97 1.85 4.88 .13 1.17 .24 99.81	72.96 .23 14.10 .81 .97 .02 .27 1.34 2.19 6.27 .12 1.00 .19
	Trace eleme	nts in part	s per milli	on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S Be Bi Cs Ge	785 26 290 78 34 29 3.50 228 12 43 77 36 87 20 86 4 11 43 74 <3 15.50 <100 3 100 3 100 4 11 43 11 11 11 11 11 11 11 11 11 11 11 11 11	592 19 359 66 36 48 5.50 336 19 41 69 122 52 14 7 27 68 4 860 63 48 60 61 60 61 60 61 60 61 60 60 60 60 60 60 60 60 60 60	356 13 447 54 92 284 55.00 303 17 17 194 328 126 36 4 8 < 25 49 3 2 4 18 < 100 2 100 3 100 3 100 2 100 2 100 3 100 3 100 3 100 3 100 3 100 3 100 3 100 3 100 3 3 3 3	731 60 282 95 295 35 5.50 235 13 50 71 125 61 14 10 39 17 11 8 12 57 65 3 16 .50 <100 4 14 -	330 26 346 58 59 120 14.00 196 35 71 130 51 13 4 9 2 5 3 12 31 18 4 3 16 <.50 <100 3 5 100 110 110 110 110 110 110 110 110 1

Sample number Locality	85924175 Mount Harris	85924177A Mount Harris	85924178	85924183A	85924188 Rembrandt Rock
Stratigraphic unit				Napperby Orthognei.	-14 -11
Lithology	granite micro	granite	quartzofe. gneiss (ortho	granite migmatitic	granite
Map name	Aileron	Napperby	Napperby	Reynolds Range	Napperby
Grid reference	959588	935635	959588	802135	641580
SiO2	72.77	70.48	73.76	72.16	79.96
TiO2	.21	.62	.34	.46	.24
A1203	14.05	13.38	12.71	13.17	10.29
Fe2O3	.87	1.94	1.05	1.62	.71
FeO	.88	1.94	1.34	2.22	.76
MnO	.02	.04	.03	.04	.01
Mg0	.18	.89	.42	.61	.17
Ca0	1.19	2.07	1.40	1.70	.69
Na20	2.18	1.59	1.91	2.11	1.82
K20	6.33	4.95	5.39	4.79	4.79
P205	.04	.13	.07	.16	.03
LOI	.74	1.18	.81	1.00	.57
Rest	.21	.26	.20	.21	.12
Total	99.67	99.47	99.43	100.25	100.16

Ва	456	813	469	636	110
Li	8	8	21	25	21
Rb	375	270	370	323	363
Sr	75	100	62	67	28
Pb	72	37	34	36	36
Th	194	75	50	27	55
υ.	25.00	6.50	9.00	6.00	6.00
Zr	209	292	190	256	119
Nb	4	14	12	14	10
Y	14	43	56	43	21
La	88	101	69	39	48
Ce	131	172	126	73	93
Nd	41	71	57	33	34
Pr	12	18	14	8	34
Sc	3	8	6	8 7	3
V	5	42	21	27	7
Cr	12 3 5 <2	10	8 6	11	2
Co	4	12	6	8	5
Ni	4 2 5	8	4	6 4 65	3 7 2 5 3 2
Cu	5	25	4	4	2
Zn	34 5 4	44	31	65	21
Sn	5	7	7	16	2
W	4	5 3 17	5	3	<2
Мо	3	3	<3	<3	<3
Ga	18		16	17	13
As	<.50	<.50	<.50	<.50	<.50
S	<100	<100	<100	<100	<100
Be	1	2	3	2	2
Bi	<1 3	<1	1	<1	<1
Cs ·	3	6	7	9	9
Ge	-	_	-	-	-

Sample number Stratigraphic unit Lithology Map name	mnigmatite Reynolds	Lander	85924193 Yaningidj. Orthognei. granite		85924198A Napperby Orthognei granite Aileron
Grid reference	Range 996106	073124	080144	093003	047981
SiO2 TiO2 Al2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O P2O5 LOI Rest Total	73.54 .34 13.04 .84 1.74 .03 .36 1.34 2.34 4.98 .13 .72 .20 99.60	77.83 .07 12.49 .22 .43 <.01 .96 .40 2.41 3.64 .08 .88 .05 99.46	74.36 .24 12.96 1.16 .98 .03 .40 1.18 2.36 5.33 .09 .96 .15	71.92 .27 14.31 1.36 1.08 .02 .67 1.95 3.64 3.13 .04 .93 .15	72.78 .38 13.24 .92 1.77 .03 .43 1.42 2.29 5.55 .12 .74 .19 99.86
	Trace eleme	nts in part	s per milli	on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S Be Bi Cs Ge	780 15 241 62 32 29 5.00 190 12 52 42 80 36 7 6 4 6 36 3 3 3 <16 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <10	46 8 101 25 10 13 7.00 71 4 48 11 24 9 3 <3 <2 <2 3 <2 <2 8 6 5 3 15 <.50 <100 3 <100 <100 <100 <100 <100 <100 <	410 10 280 101 33 30 3.00 125 6 51 32 63 27 8 5 15 8 7 6 33 33 3 4 5 15 8 7 6 7 6 6 7 6 7 6 7 6 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	350 10 166 176 13 56.50 151 7 31 46 80 28 7 5 25 4 8 9 13 6.50 <100 <100 3 14 	433 36 377 52 36 39 5.00 185 12 43 44 83 37 10 7 22 7 8 5 7 41 15 5 3 15 <.50 <100 41 15 15 10 100 100 100 100 100

Sample number	85924198B	85924199	85924200	85924203	85924206B
Stratigraphic unit	Napperby	Napperby	Napperby	Yaningidj.	Yaningidj.
T - 2 to 1	Orthognei.	Orthognei.	Orthognei.		
Lithology	granite micro	granite micro	granite	granite	granite
Map name	Aileron	Aileron	Aileron	Tea Tree	Tea Tree
Grid reference	045897	032006	993069	121168	043193
SiO2	72.61	69.77	73.80	77.85	73.36
TiO2	.21	.45	.28	.23	.36
A1203	13.95	14.23	13.43	11.41	13.45
Fe203	.62	.87	.88	.55	.80
FeO	.91	1.99	1.22	1.25	1.87
MnO	.02	.02	.03	.01	.03
MgO	.28	.57	.39	.25	.63
CaO	1.05	1.51	1.45	.79	1.57
Na20	1.86	2.43	2.72	1.84	2.05
K20	7.48	6.32	4.57	5.28	5.28
P205	.24	.19	.11	.08	.10
LOI Rest	.81	1.16	.91	.54	.64
Total	.17 100.21	.29 99.80	.19 99.98	.14 100.22	.19
IOCAI	100.21	99.00	99.90	100.22	100.33

Ba Li Rb Sr	411 24 420 59	440 30 399 92	658 30 308 72	169 48 457 30	596 21 262 82
Pb	55 29	56 174	· 28 · 26	31 28	35 34
Th U	9.50	174 12.00	26 4.50	8.20	34 4.50
Zr	115	355	158	115	177
Nb	7	17	9	9	8
λ,	56	42	44	51	38
La	31	170	38	24	43
Ce	61	312	70	45	80
Nd	28	134	32	19	37
Pr	7	36 5	7 5	19 3	9 5
Sc V	4 7 3 5 24 3	18	15	10	27
Cr	3		6	5	15
Co	5	4 8 3	6 7	5 5 3 35	8
Ni	24	3	5	5	8 8 9
Cu	3	6	11	3	9
Zn	23	56	31	35	32
Sn	9	6	16	9	4 2
W	23 9 5 <3	4 3	10	4	2
Mo	13	3 19	<3 15	<3 14	<3 16
Ga As	<.50	<.50	<.50	<.50	<.50
S	<100	<100	<100	<100	<100
Be	3	3	. 4	2	3
Bi	<1 5	1	1	<1	<1
Cs	5	4	9	5	5
Ge	-		-	-	_

Sample number Stratigraphic unit Lithology Map name		85924210 Yaningidj. Orthognei. granite Tea Tree		85924212A Anmatjira Orthognei. granite Reynolds Range	85924213B Anmatjira Orthognei. granite Reynolds Range
Grid reference	043196	995222	273888	797425	Kange
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest Total	77.15 .23 11.61 .46 1.08 .02 .38 1.25 1.48 5.07 .06 .65 .12	73.76 .27 13.43 .81 1.31 .03 .55 1.55 1.79 5.16 .09 .87 .18	73.26 .30 13.41 .82 1.58 .03 .47 1.45 2.07 5.23 .13 1.32 .18	73.65 .30 13.00 .77 1.57 .02 .38 .99 2.25 5.47 .10 1.10 .18 99.78	74.74 .26 12.99 .71 1.04 .01 .43 .58 2.54 5.34 .10 .99 .17
	Trace eleme	nts in part	s per milli	on	·
Ba Li Rb Sr Pb Th U Zr Nb Y · La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S Be Bi Cs Ge	280 24 251 72 31 15 3.00 115 6 24 22 39 16 4 3 11 7 6 5 3 30 3 3 13 <.50 <100 2 <1 <3 -	682 20 242 94 36 25 3.50 129 6 27 35 65 28 7 5 22 13 8 7 35 22 13 8 7 35 23 3 4 4 -	485 47 330 73 33 29 5.00 153 10 42 35 68 31 7 6 18 10 8 6 7 38 8 11 3 16 1.50 <100 4 155 -100 4 155 -100 4 155 -100	367 34 482 48 24 35 13.00 136 10 46 34 65 30 7 6 18 8 7 5 4 17 21 11 <3 16 .50 <100 41 17 -17 -17 -17 -17 -17 -17 -17	268 528 39 18 31 13.00 126 26 52 23 55 15 9 4 6 11 36 26 52 23 55 15 9 4 6 11 36 12 46 12 46 11 11 11 11 11 11 11 11 11 11 11 11 11

Sample number	85924222	85924226A	85924227	85924228	85924229
Stratigraphic unit	Pgp	Pgp	Anmatjira Orthognei.	Anmatjira Orthognei.	
Map symbol Lithology	Pgp granite	Pgp granite	granite fine	granite	granite
Map name	Reynolds Range	Reynolds Range	grained Reynolds Range	Reynolds Range	Reynolds Range
Grid reference	865593	911504	904437	946407	948402
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest	73.34 .25 12.70 1.14 1.64 .06 .09 1.31 2.56 5.63 .04 1.09	77.28 .08 12.43 .41 .68 .03 .01 .85 2.25 5.59 .03 .59	74.92 .30 12.65 .74 1.08 .02 .18 .97 2.05 6.59 .03 .74	72.36 .47 13.20 .65 2.40 .03 .59 1.59 1.91 5.66 .10 .69	77.82 .23 11.30 .41 .67 .01 .27 .77 1.78 5.52 .09 .62
Total	100.15	100.37	100.47	99.84	99.64
Ba Li Rb	Trace elem 660 64 355	ents in part 226 38 367	136 25 650	407 38 407	262 35 437
Sr Pb Th	78 39 53	45 51 19	23 50 106	61 36 44	51 34 31
U Żr	10.00 385	12.00 83	19.00 253	5.00 176	14.00 108
Nb Y	43 101	15 114	. 12 65	12 37	8 55
La Ce	121 233	29 56	57 113	50 92	24 44
Nd Pr	111 29	25 6	46 12	42 10	
Sc V	9 <2	4	5 9	7 37	24 6 3 10
Cr Co	<2	<2 <2 2	<2 4	15 8	4 4
Ni Cu	4 2 3	2 <2 5	<2 3	5 12	4 4 3 9 23 9 6 3
Zn Sn	8 7	35 5	20	42 8	23
W	7 6	10 <3	16 6 <3	3 <3	6
Mo Ga	23 .50	20 <.50	15 <.50	14	12 <.50
As S	<100	<100	<100	<.50 <100	<100
Be Bi	7 1 8	4 1	4 1	3 <1	4 1
Cs Ge	o -	8 -	25 -	16 -	5 -

Sample number Locality	85090541A W Eurolly	85094174A	85094230	85094231	85094232A
Stratigraphic unit	Bore Jervois	Jervois		Burt Bluff	
Lithology	Granite ? migmatitic granite	Granite ? granite dyke	Gneiss granite	Gneiss granite fine	Complex granite tonalite
Map name	Jervois	Jervois		grained MacDonnell	Crawford
Grid reference	Range 149963	Range 344007	Ranges 487821	Ranges 497822	740740
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest Total O=F,S,C1	70.72 .41 13.41 1.91 2.62 .09 .37 2.22 2.73 3.98 .11 1.10 .25 99.92 .00 99.92	70.02 .40 14.99 1.50 2.06 .05 .86 2.68 3.59 2.58 .12 1.18 .21 100.24 .00	74.49 .22 12.76 1.01 1.10 .04 .34 1.26 2.47 5.20 .04 1.05 .17 100.15 .00	74.04 .23 12.75 1.06 .91 .03 .31 .99 1.84 6.16 .02 1.33 .16 99.83 .00 99.83	64.35 .97 14.74 2.87 4.86 .09 1.63 3.41 2.78 2.94 .18 1.58 .25 100.65 .00
	Trace eleme	nts in part	s per milli	on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S Be Bi Cs Ge	827 34 175 89 16 28 3.00 331 15 106 83 154 77 18 12 4 2 6 <2 8 82 <7 3 19 <.50 <100 31 31 41 42 42 53 43 44 45 47 47 47 47 47 47 47 47 47 47	672 38 132 198 16 21 3.00 267 7 14 48 74 29 7 6 27 10 4 5 79 22 <3 20 <.50 <100 1 9 -	354 43 319 45 37 40 6.00 140 . 86 49 95 47 10 615 75 4 433 36 <3 15 50 <100 4 100 100	215 41 255 41 35 68 9.00 136 10 48 112 197 81 23 7 6 <2 5 <3 27 7 5 <3 13 <.5 <100 3 <100 4 4 4 4 4 5 6 6 7 6 7 6 7 6 7 7 8 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	535 40 211 127 21 23 6.00 308 15 52 57 110 54 12 18 71 40 18 13 33 75 7 7 4 19 <.50 100 4 126

Sample number Stratigraphic group	85094232B	85094233A	85094233B	85094233C	85094235A Hatches Creek Group
Stratigraphic unit	Ali Curung Complex	Ali Curung Complex	Ali Curung Complex	Ali Curung Complex	Mount Strzeleck. Volcanics
Map symbol Lithology	granite	granite	granite	granite	Phqp meta porphyry
Map name Grid reference	Crawford 740740	Crawford 780720	Crawford 770730	Crawford 770730	Crawford 950580
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest Total O=F,S,C1	74.46 .26 12.63 1.01 1.23 .03 .32 1.19 2.28 5.46 .07 1.02 .17 100.13 .00	76.39 .16 12.03 .72 .77 .02 .07 .68 2.60 5.44 .02 .86 .19 99.95 .00 99.95	72.65 .37 13.12 1.69 1.48 .05 .56 1.28 2.13 5.04 .10 1.31 .21 99.99 .00 99.99	68.07 .72 13.91 2.19 3.56 .08 1.53 2.29 2.47 4.19 .23 1.06 .29 100.59	70.56 .55 12.78 2.01 3.19 .07 .62 1.74 1.91 5.31 .14 .96 .25 100.09
	Trace eleme	nts in part	s per milli	on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S Be Bi Cs Ge	478 16 224 86 30 25 4.50 153 16 49 53 101 46 12 5 8 2 5 <4 27 7 5 4 15 2.00 <11 7 -	655 10 302 49 33 31 6.50 151 11 57 54 99 45 12 6 2 2 2 2 2 8 36 5 7 <3 14 .50 <100 4 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	794 20 255 84 23 7.00 196 12 46 45 82 38 9 7 20 14 8 3 14 54 8 8 <3 16 1.00 <100 4 1 <3 -	649 32 217 106 25 23 6.00 252 12 53 58 49 11 13 47 26 14 8 12 79 4 5 3 17 <.50 700 4 1 3 -	819 15 233 79 12 26 6.50 377 17 74 58 110 13 13 15 10 8 3 7 42 7 7 3 19 <.50 100 4 1

Sample number Stratigraphic group	85094235B Hatches Creek	85094235C Hatches Creek	85094236	85094240	85094241A
Stratigraphic unit	Group Mount	Group Mount Strzeleck. Volcanics	Ali Curung Complex	Barrow Creek Granite	Barrow Creek Granite
Map symbol Lithology	Phqp meta	Phqp meta	granite	granite	granite
Map name Grid reference	porphyry Crawford 950580	prophyry Crawford 950580	Taylor 000520	Barrow 850220	Barrow 870190
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest Total	70.81 .56 12.87 2.58 2.44 .05 .47 2.13 1.97 4.83 .14 .88 .24 99.97	70.93 .55 12.94 1.78 3.45 .08 .56 1.80 2.34 4.72 .14 .87 .24	76.76 .13 12.20 .63 .58 .02 .05 .79 2.16 5.78 .01 .89 .17	73.99 .15 13.94 .76 .90 .04 .34 .68 2.62 5.21 .15 1.11 .17 100.06	68.17 .64 14.41 1.40 3.57 .07 1.14 1.65 2.02 4.85 .12 1.67 .25 99.96
	Trace eleme	ents in part	s per milli	.on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S Be Bi Cs Ge	805 10 189 96 13 27 6.50 378 17 74 55 107 55 13 12 14 10 - 2 15 30 7 - 7 17 .50 <100 4 <1 4 -	758 14 232 86 11 27 6.50 377 17 73 58 112 55 12 12 15 10 - 2 568 8 - <3 17 .50 <100 4 <1 3 -	357 12 460 34 41 60 14.00 117 10 46 54 90 34 10 3 <2 4 29 9 8 3 16 13.00 <100 7 2 10	139 146 507 33 34 25 27.00 87 16 44 25 49 23 54 63 44 <25 49 23 55 4 63 47 2.50 <100 7 51 -	630 192 274 101 30 26 5.00 207 13 39 48 87 41 10 11 53 33 14 10 11 72 7 6 <3 17 <.50 <100 4 100 11 11 72 7 6 100 100 100 100 100 100 100 100 100 1

Sample number Stratigraphic unit	85094241B Barrow Creek Granite	85094242 Barrow Creek Granite	85094246 Barrow Creek Granite	85094251 Jinka Granite	85094253 Bonya Metamorph.
Lithology	granite	granite	granite	granite	meta sediment
Map name	Barrow	Barrow	Home of Bullion	Jinka	Jinka
Grid reference	870190	820190	180740	863884	989973
SiO2	71.81	72.84	74.18	69.07	56.28
TiO2	.28	.16	.11	.51	.99
A1203	14.00	14.33	13.91	14.09	18.79
Fe203	1.16	.83	.78	1.91	7.78
FeO	1.51	.88	.48	2.11	2.44
MnO	.04	.03	.05	.03	.05
MgO	.55	.29	.24	.78	3.01
CaO	1.00	.74	.75	1.40	.56
Na2O	2.39	2.50	2.66	2.40	.68
K20	5.75	5.45	5.36	5.40	5.85
P205	.11	.17	.12	.21	.12
LOI	1.22	1.03	1.11	1.49	3.90
Rest	.27	.18	.16	.31	.25
Total	100.09	99.43	99.91	99.71	100.70

Ва	359	214	134	606	705
Li	177	152	139	32	49
Rb	468	483	427	449	327
Sr	63	48	36	83	97
Pb	47	37	47	24	20
Th	102	20	19	95	16
U	21.00	26.00	38.00	14.00	3.00
U Zr	240	92	78	439	166
Nb	21	16	16	32	13
Y	74	36	71	82	30
La	100	26	25	147	35
Ce	183	51	44	277	67
Nd	80	24	22	125	30
Pr			5	34	30 7
Sc	5	5	4	8	17
V	15	7	5	27	97
Cr	7	5 7 2 5	5 4 5 2 4	4	115
Co	7	5	4	11	33
Ni	21 5 15 7 7 2 8 47	<2	<2	2	67
Cu	8	5	14	31	5
Zn	47	40	` 34	18	71
Sn	17	23	13	9	4
M	9	13	18	9 7	<2
Мо	<3	<3	<3	3	<3
Ga	19	17	15	20	26
As	.50	<.50	2.00	<.50	<.50
S	<100	<100	<100	<100	<100
Be	6 1	5	9 6	5	
Bi		4	6	<1	3 1 5
Cs	28	49	39	5	5
Ge ·	-	-	_		_

Sample number Stratigraphic unit	85094254 Bonya Metamorph.	85094256 Mascotte Gneiss	85094257A	85094257B
Lithology	meta sediment		amphiboli.	amphiboli.
Map name	Jinka	Ĵinka	Jinka	Jinka
Grid reference	008927	008853	013833	013833
SiO2	58.27	75.11	49.43	46.13
TiO2	.78	.30	.72	.55
A1203	20.27	11.78	18.89	18.99
Fe203	5.04	1.74	2.38	1.89
Fe0	4.02	1.12	6.25	7.42
MnO	.08	.02	.14	.15
Mg0	2.60	.35	5.02	8.57
Ca0	.50	.43	10.84	9.82
Na2O	.89	2.17	2.00	1.11
K20	4.34	5.80	1.77	2.29
P205	.11	.02	.09	.06
LOI	3.11	.95	2.87	3.28
Rest	.24	.25	.19	.24
Total	100.25	100.04	100.59	100.50
O=F,S,Cl	.00	.00	.00	.03
Total	100.25	100.04	100.59	100.47

Ва	₁ 656	777	204	145
Li	40	7	27	29
Rb	233	222	121	113
Sr	56	38	112	137
Pb	19	11	12	4
Th	21	56	5	<1
Ü	4.00	8.00	2.00	1.00
Zr	160	445	91	43
Nb	14	21	4	2
Y	38	117	28	15
La	1 47	64	11	15 5 12
Ce	82	126	25	12
Nd	40	72	15	8
Pr	10	15	3	<3
Sc	20	9	35	28
V	102	<2	156	143
Cr	94	<2	259	273
Co	30	7	40	58
Ni	42	<2	63	198
Cu	67	9 .	52	58
Zn	107	9 13	64	68
Sn	7	2	< 2	<2
W	4	10	2 4 . 16	<2
Мо	<3	5 18	4	4
Ga	28	18	. 16	14
As	<.50	<.50	<.50	<.50
S .	<100	<100	100	600
Ве	4	3	1	<1
Bi	1	<1	<1	<1
Cs	5	<3	3	3
Ge	-	-	-	-

Sample number Locality	85094258 White Violet	85094260A	85094260B	85094261	85094263A
Stratigraphic unit	Bonya	Bonya Metamorph.	Bonya Metamorph.	Bonya Metamorph.	Bonya Metamorph.
Lithology	quartzofe. gneiss	quartzofe.		amphiboli.	
Map name	Jervois Range	Jervois Range	Jervois Range	Jervois Range	Jervois Range
Grid reference	094856	184894	184894	100895	116859
Si02 Ti02 A1203 Fe203 Fe0 Mn0 Mg0 Ca0 Na20 K20 P205 L0I Rest Total O=F,S,C1 Total	71.58 .48 11.65 1.78 2.42 .03 .46 1.44 .33 7.63 .09 1.74 .32 99.95	74.63 .18 12.25 1.43 .90 .06 .09 1.61 1.57 5.75 .01 1.65 .32 100.45	74.53 .18 12.19 1.38 .95 .06 .14 1.69 1.10 6.17 .01 1.45 .35 100.20 .00	51.73 1.62 16.24 3.31 8.42 .16 3.76 8.61 2.32 1.60 .17 2.12 .22 100.28 .00	50.35 1.17 14.71 3.35 10.31 .20 5.68 10.67 1.64 .44 .16 1.73 .24 100.65 .01
	Trace elemen	nts in part	s per milli	on	
Ba Li Rb Sr Pb Th U Zr	1672 9 273 45 6 25 5.50 369	1452 35 262 112 11 30 5.50 251	1774 37 278 103 12 31 5.00	228 22 134 144 4 8 2.50	340 5 16 148 14 2 <.50

Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr	1672 9 273 45 6 25 5.50 369 17 6 36 72 39 8 12 11 4	1452 35 262 112 11 30 5.50 251 19 109 102 180 88 22 <2 <2 <2 <2 <2	1774 37 278 103 12 31 5.00 248 20 12 99 173 81 23 4 2 <2 6 <2 3 18	228 22 134 144 4 8 2.50 198 10 38 29 59 30 5 30 285 41	340 5 16 148 14 2 <.50 146 7 14 19 44 22 4 40 312 56
Cu Zn	31 12	6 21	3 18	141 48	121 205
Sn	12 7	8		2 2 6 20	<2
W Mo	6 3 16	11 <3	12 <3	2 6	<2 8 18
Ga	16	18	16	20	18
As	<.50	<.50	<.50	<.50	<.50
S Be	<100	<100 4	<100	100 2	200 <1
Bi	2 1	1	1	1	<1
Cs	<3	<3	4 1 <3	18	<3
Ge	_		-	-	-

Sample number Stratigraphic unit Lithology	85094263B Bonya Metamorph. amphiboli.			85094266D Jervois Granite tonalite	85094267A Bonya Metamorph. quartzofe.
110101099	ampiiizoii.	gneiss	xenolith	xenolith	gneiss
Map name	Jervois -	Jervois	Jervois	Jervois	Jervois
Grid reference	Range 118859	Range 177819	Range 264856	Range 264856	Range 343001
SiO2	52.41	76.14	64.48	64.13	77.12
TiO2	1.14	.14	.63	.84	.12
A1203	15.74	11.35	15.68	15.41	12.35
Fe203	2.95	1.22	1.93	1.94	1.14
FeO	8.46	.73	4.31	4.86	.60
MnO	.27	.07	.12	.13	.02
MgO	4.22	.15	2.08	1.79	.05
CaO	10.56	2.51	3.02	3.21	1.42
Na20	2.28	2.67	2.97	3.18	3.21
K20	.69	2.88	2.87	2.75	3.56
P205	.18	<.01	.15	.24	<.01
LOI	1.61	1.86	1.67	1.51	.50
Rest	.22	.29	.21	.22	.21
Total	100.73	100.01	100.12	100.21	100.30
O=F,S,Cl	.00	.00	.00	.00	.00
Total	100.73	100.01	100.12	100.21	100.30

Ba	318	1263	316	382	897
Li	14	15	86	71	13
Rb	32	145	244	228	115
Sr	186	112	111	111	79
Pb	3	67	16	15	14
Th	3 5	26	11	13	33
Ŭ	.50	3.00	5.00	2.50	7.00
Zr	178	212	168	236	185
Nb	9	18	11	14	13
Y	9 32	94	46	55	101
La	35	79	33	37	53
Ce	62	145	50	70	104
Nd	29	69	26	35	53
Pr	6	17	4	7	13
Sc	34	4	15	16	5
V	244	<2	71	78	2
Cr	67	<2	59	8	5 2 <2
Co	43	4	18	18	7
Ni	52	<2	24	10	<2
Cu	109	38	102	110	12
Zn	146	129	99	99	28
Sn	<2	7	5	6	3
W	<2	8 3 17	4	4	3 8
Мо	7	3	<3	3 20	<3
Ga	18	17	19	20	17
As	<.50	<.50	<.50	<.50	<.50
S	<100	<100	100	100	<100
Be	3	5 1	5	4	5
Bi	<1		1	<1	<1
Cs .	<3	8	21	15	<3
Ge	-	-	-		-

Sample number Stratigraphic unit Lithology Map name Grid reference		85094268 Attutra Metagabbro amphiboli. Jervois Range 362008			
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Rest Total O=F,S,C1	50.57 1.65 14.73 2.06 7.31 .20 7.52 11.29 1.90 .78 .34 1.88 .25 100.48	49.71 1.37 14.29 4.57 8.86 .26 6.52 10.45 1.25 .92 .12 1.95 .30 100.57 .04	49.88 .44 14.78 1.73 6.90 .18 9.30 13.15 .94 .51 <.01 2.42 .19 100.42 .00 100.42	48.76 .38 19.67 1.76 5.33 .14 7.12 13.53 1.19 .64 <.01 2.08 .18 100.78 .00	50.51 .42 19.66 1.69 6.10 .15 5.60 11.85 2.09 .63 .02 1.80 .15
	Trace eleme	nts in part	s per milli	on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S Be Bi Cs Ge	85 28 27 196 4 5 3.50 234 10 45 27 57 32 5 36 218 501 34 122 3 78 42 <2 7 17 <.50 <100 2	110 33 34 102 7 1 <.50 88 2 42 7 21 14 <3 52 334 271 50 49 206 118 <2 <2 <2 3 17 <.50 800 2 <1 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	71 43 34 112 3 <1 <.50 16 <2 15 2 6 5 7 257 458 48 81 42 60 2 <2 <3 14 <.50 <100 1 <1 7 -	73 46 54 127 6 <1 <.50 23 2 12 4 9 4 <3 40 179 437 41 77 15 72 <2 2 6 16 <.50 <100 2 1 23 -	159 34 34 142 5 1 1.50 28 <22 14 4 9 5 <33 41 179 86 37 64 50 59 <22 <4 18 <.50 100 2 <1 10 -

Sample number Locality	85094270B	85094271A	85094272	85094274 Casey Inlier	85094276
Stratigraphic unit	Attutra Metagabbro amphiboli. Jervois	granite	Jervois Granite granite	Casey Bore Granite granite	Casey Bore Granite granite Todd
Map name Grid reference	Range 356995	Jervois Range 503873	Jervois Range 488880	Todd 280410	340360
SiO2 TiO2 A1203 Fe203 Fe0 Mn0 Mg0 Ca0 Na20 K20 P205 LOI Rest Total O=F,S,C1 Total	49.80 .55 20.28 1.92 5.90 .14 5.31 11.73 2.15 .71 .02 1.88 .16 100.55 .00	69.70 .46 14.21 1.27 1.38 .04 .55 1.57 2.78 5.82 .09 1.09 .31 99.27 .00	71.43 .46 13.54 1.19 1.38 .04 .64 1.29 2.62 5.67 .09 1.31 .30 99.96	69.32 .42 14.44 1.71 1.54 .06 1.12 2.48 2.94 4.22 .09 1.34 .21 99.89 .00 99.89	68.48 .50 14.47 1.97 1.43 .07 1.11 2.40 2.74 4.67 .13 1.41 .26 99.64 .00 99.63
	Trace eleme	nts in part	s per mill:	ion	
Ba Li Rb Sr Pb Th U Zr Nb Y La Cee Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S Be Bi Cs Ge	352 36 38 148 6 <1.50 28 <2 14 3 9 4 <3 37 223 65 38 67 49 61 2 2 3 18 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <	1313 30 199 144 21 17 3.00 394 11 28 90 153 59 17 6 17 3 6 2 8 44 <2 3 40 <10 <10 <10 <10 <10 <10 <10 <1	1190 199 131 29 22 3.50 362 12 28 107 188 70 18 6 17 3 6 42 2 4 6 15 <100 3 <1 <3 -	737 24 190 215 23 24 2.50 156 11 30 45 84 37 8 8 45 12 9 5 2 46 3 17 <.50 <100 4 <3 -	921 24 217 228 24 29 5.00 223 12 34 55 97 38 8 10 45 2 9 < 4 53 16 6 < .50 100 43 -< .50

,

•

Sample number	85094278	85094279	85094281	85094282	85094284
Stratigraphic unit	Atneequa Granite		Atneequa Granite	Atneequa Granite	Atneequa Granite
Lithology	granite	diorite fine, meta	granite	granite	granite
Map name	Limbla	Limbla	Limbla	Limbla	Limbla
Grid reference	405725	223801	401772	218889	144943
SiO2	65.08	52.20	73.15	68.88	63.64
TiO2	.95	.82	.36	. 44	.69
A1203	14.58	15.65	13.05	14.50	15.68
Fe203	2.99	2.18	1.29	2.29	3.38
Fe0	1.96	6.78	.67	1.42	2.45
MnO	.12	.22	.04	.08	.23
Mg0	1.42	6.21	.34	1.16	1.77
CaO	2.36	8.33	1.08	3.04	3.26
Na2O	2.58	2.28	1.92	2.56	2.33
K20	5.47	1.85	6.51	4.25	3.91
P205	.35	.10	.08	.14	.37
LOI	1.70	3.37	1.11	.99	1.89
Rest	.38	.26	.30	.25	.29
Total	99.94	100.25	99.90	100.00	99.89
O=F,S,Cl	.00	.00	.00	.00	.00
Total	99.94	100.24	99.90	100.00	99.89

Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga	1536 33 206 303 25 23 4.00 412 22 46 106 192 84 20 12 47 2 10 <2 7 82 4	373 36 127 136 122 7 1.50 107 5 26 20 34 19 <3 36 193 330 35 4 15 230 <2 <2 5 18	1339 24 191 148 29 18 2.00 338 6 9 100 181 67 19 4 15 <2 5 <2 6 30 <2 37 11	1032 24 152 300 22 15 2.50 162 11 32 50 91 41 9 11 51 6 10 5 7 52 3	1018 58 220 277 27 4 3.50 274 14 41 24 53 29 3 13 71 14 13 6 57 80 2 54
	4 4	<2 5	3 7	5 3	5 4
		18		16	18
As	.50	3.50	<.50	1.00	3.00
S	<100	100	<100	<100	<100
Be	5 1	2	2	3	3
Bi		<1	<1	<1	1
Cs	. <3	<3	<3	6	11
Ge	-	-	-	-	

Sample number Locality	85094287 Railway Quarry	85902013	85904249
Stratigraphic group	2	Strangways Metamorph. Complex	
Stratigraphic unit		Bleechmore Granulite	
Map symbol		pCs	+1
Lithology	granite	garnet- bearing quartzofe.	tonalite granite
Map name	Taylor	Alcoota	Woolla
Grid reference	270370	260560	760430
Drill hole	DD5		
Depth	278m		
SiO2	72.72	72.79	64.74
TiO2	.30	.23	1.10
A1203	12.93	14.36	13.68
Fe203	1.93	.79	2.99
FeO MnO	1.01 .05	1.46 .04	4.57 .11
Mg0	.35	.66	1.46
CaO	1.23	2.08	3.69
Na20	2.57	2.71	2.17
K20	5.05	4.19	3.67
P205	.06	.05	.26
LOI	1.29	.58	1.40
Rest	.23	.17	.23
Total	99.72	100.11	100.07

Ba . Li Rb Sr	923 13 253 69	706 11 161 139	654 55 161 106
Pb	7	35	21
Th	25	16	15
U	5.50	1.50	4.00
Zr	275	113	301
Np Y	15 52	7 21	15 56
La	54	30	41
Ce	100	55	79
Nd	45	24	40
Pr	10	6	9
Sc		š	16
v	8 7	23	72
Cr	4	17	20
Co	4 6	7	19
Ni	<2	13	8
Cu	9	8	8 22
Zn	38	43	90
Sn	7	43 2 2 2 <3	4 5 <3
W	8 <3	2	5
Мо	. <3	<3	<3
Ga	16	16	18
As	4.50	<.50	3.00
S	<100	<100	<100
Be Bi	4 <1	2 <1	∠ 1
Cs	<3	<3	2 1 9
Co	``J	\3	9

Sample number Stratigraphic group	72902005	72902006	72902009 Strangways Metamorph. Complex	
Stratigraphic unit	Mount Ida Granite		Kanandra Granulite	Bleechmore Granulite
Map symbol Lithology	granite	granite (pegmatoi.	pCsk garnet quartzofe. gneiss	pCs garnet quartzofe. gneiss
Map name	Utopia	Utopia	Delny	Alcoota
Grid reference	661170	680170	910855	390760
SiO2	74.26	76.67	75.56	70.99
TiO2	.15	.01	.06	.46
A1203	12.95	13.29	12.51	13.83
Fe203	.81	.24	.43	1.24
FeO	.96	.14	1.78	3.62
MnO	.01	.03	.07	.09
MgO	.23	.07	.51	1.12
Ca0	1.03	.37	1.80	2.23
Na2O	2.26	2.59	2.08	1.90
K20	6.24	5.66	3.98	4.03
P205	.05	.07	.03	.04
LOI	.81	.64	.68	.51
Rest	.17	.14	.16	.28
Total	99.93	99.92	99.65	100.34
O=F,S,Cl	.00	.02	.00	.00
Total	99.93	99.90	99.65	100.34

Ba	222	16	649	1461
Li	28	32	5	7
Rb	374	569	117	152
Sr	48	8	120	160
Pb	65	33	33	23
Th	82	6	7	14
U	49.00	2.00	1.00	.50
Zr	149	27	203	272
Nb	13	25	2	7
Y	81	28	2 46	272 7 30
La	62	28 3 9 <3 3 <2 4	26	28
Ce	121	9	43	50
Nd	38 3 3	<3	13	15
Sc	3	3	11	11
V	3	<2	8 10 8	45
Cr	<2	4	10	28
Co		7	8	14
Ni	<2		5	12
Cu	2	<2	<2	14
Zn	41 2 5 <3	5 <2 5 35	12	
Sn	2	35	<2	46 <2 3 4 14
W	5	14 3 21	4 <3	3
Mo	<3	3	<3	4
Ga	14	21	11	14
As	.50	.50	<.50	<.50
F	<200	400	-	_
Ве	. 2	2	<1	<1
Bi	<2	<2	<2	<2

Sample number Stratigraphic unit	86094343 Jervois Granite ?	86094344 Jervois Granite ?	86094352	86924351	86924353
Lithology	granite ; granite (fine grained)	granite ; granite ; (fine ; grained)	granite	granite	granite
Map name	Jervois Range	Jervois Range	Hermannsb.	Napperby	Napperby
Grid reference Drill hole Depth	350010	350005		BMR Nappe8 141.80-140	
SiO2 TiO2 A12O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O P2O5 LOI Rest Total O=F,S,Cl	72.90 .17 14.53 .91 .73 .03 .46 2.07 3.89 3.03 .04 .94 .19 99.89 .01 99.88	71.02 .29 14.91 .97 1.58 .04 .79 2.45 3.68 2.95 .08 1.08 .23 100.07 .01	71.41 .30 14.13 1.01 1.17 .03 .63 1.71 2.57 5.88 .08 .97 .33 100.22 .02	72.18 .20 14.01 .89 1.25 .02 .66 .32 2.37 6.49 .11 1.29 .32 100.11 .05	72.25 .20 14.88 .31 1.22 .03 .44 1.08 2.34 6.11 .24 .93 .18 100.21 .02 100.19
	Trace eleme	ents in part	s per milli	.on	
Ba Li Rb Sr. Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Co Ni Cu Zn Sn W Mo Ga As S F Cl Be Bi Hf Ta Cs	745 18 109 162 35 26 11.00 134 4 14 27 45 16 4 10 3 5 2 3 2 3 2 2 0 .50 300 100 95 2 <1 4 <2 5	734 30 139 200 2 22 7.00 192 6 15 34 62 23 7 5 22 8 6 3 <1 5 3 <2 <2 <2 <1 5 0 0 0 0 0 0 0 0 0 0 0 0 0	889 13 306 158 39 83 11.00 228 11 24 110 198 70 21 5 23 7 43 42 <18 6.00 400 75 2<5 5 <25	310 11 552 49 46 71 50.00 146 22 71 55 112 46 12 5 9 3 4 1 12 19 5 20 23.00 1100 99 3 4 <2 6	302 30 281 70 56 23 30.00 104 9 19 28 56 24 6 3 4 2 3 2 1.00 13.00 92 3.00 13.00 92 30.00 14 48 62 20 10 10 10 10 10 10 10 10 10 1

APPENDIX 2

Analyses of specimens collected from the Huckitta 1:250 000 Sheet area, 1980

ample number ratigraphic unit thology	80091450 Bonya Metamorph. meta volcanic (quartzof. Jervois	80091451 granite	80091452 Jervois Granite ? granite	80091453 Jervois Granite ?	80091454 Xanten
ratigraphic unit thology up name	Bonya Metamorph. meta volcanic (quartzof.		Jervois Granite ?	Jervois Granite ?	Xanten
ratigraphic unit thology up name	Metamorph. meta volcanic (quartzof.	granite	Granite ?	Granite ?	
np name	meta volcanic (quartzof.	granite			Granite
	_		granice	granite	leuco granite
	Range	Jervois Range	Jervois Range	Jervois Range	Jervois Range
id reference	183892		144940	148934	221864
.02	75.56	71.22	72.91	57.12	78.31
					.15
					12.49
					<.01
					.17
					<.01
		• •			.35
					3.34
					3.50 .32
					<.01
					.31
					<.10
					.30
	-	_	-	_	.52
	.44	.30	.18	.26	.07
otal	100.58		99.55		99.83
F,S,Cl	.07	.03	.02	.02	.00
otal	100.51	100.05	99.53	99.46	99.83
	102 102 1203 2203 20 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	102	102 .12 .41 1203 11.77 13.35 203 .90 1.41 20 .78 2.98 20 .02 .10 30 .45 .71 30 1.07 2.13 320 2.51 2.19 20 5.97 4.49 205 .01 .10 20+ .47 .68 20- <.10	102 .12 .41 .09 1203 11.77 13.35 14.39 203 .90 1.41 .61 20 .78 2.98 .52 20 .02 .10 .05 30 .45 .71 .56 30 1.07 2.13 .75 30 2.51 2.19 3.02 20 5.97 4.49 5.49 20 .97 4.49 5.49 20 .47 .68 .70 20 .51 <.10	102 .12 .41 .09 .92 1203 11.77 13.35 14.39 17.75 203 .90 1.41 .61 3.56 20 .78 2.98 .52 3.44 30 .02 .10 .05 .09 30 .45 .71 .56 2.66 30 1.07 2.13 .75 5.32 320 2.51 2.19 3.02 3.20 30 5.97 4.49 5.49 2.12 205 .01 .10 .28 .26 20+ .47 .68 .70 2.24 20- <.10

Ва	1161	794	143	311	52
Li	10	27	82	45	13
Rb.	239	189	470	125	6
Sr	133	93	41	296	149
Pb	13	13	54	10	9
Th	33	28	14	7	61
U	4	2	8	4	3
Zr	209	314	78	422	111
Nb	20	1.4	18	7	15
Y	98	90	15	16	56
La	92	91	13	18	4
Ce	172	169	37	39	14
Nd	61 2 3	62	11	17	11
Sc	2	9 6	2	11	<2
V	3	6	2 5 5 2	95	2 3 2
Cr	<2	<2	5	45	3
Ni	4 6	3 4	2	19	
Cu		4	39	23	4
Zn	20 5	101	40	79	9 4
Sn	5	<2	3	2	4
W	-	_	_		-
Мо	<3	<3	<3	<3	<3
Ga	14	16	12	22	15
As	<1.00	<1.00	<1.00	1.00	<1.00
F	1700	500	.,. 500	<200	
Ве	•	_	-	_	
Bi	-	-		_	_

Sample number Stratigraphic unit	80091455	80091456 Attutra Metagabbro	80091457 Unca Granite	80091458 Attutra Metagabbro
Lithology		amphiboli.		amphiboli.
Map name	Jervois Range	Jervois Range	Jervois Range	Jervois - Range
Grid reference		364004	329989	364004
SiO2	59.13	49.33	76.72	46.39
TiO2	.81	.48	.08	1.21
A1203	18.16	20.95	11.89	15.59
Fe203	6.98	1.24	.87	3.05
FeO	1.50	5.99	.58	9.17
MnO	.09	.15	.02	.22
Mg0	3.08	5.23	.41	8.05
Ca0	.64	11.63	.52	13.45
Na2O	1.15	1.69	2.98	1.29
K20	3.72	1.03	4.92	.18
P205	.13	.06	.01	.02
H2O+	3.29	1.80	.42	.80
H2O-	.25	<.10	<.10	<.10
CO2	.30	.19	.20	.30
LOI	-	-	-	1.33
Rest	.25	.12	.30	.18
Total	99.48	99.89	99.92	101.23
O=F,S,Cl	.00	.00	.06	.00
Total	99.48	99.89	99.86	101.23

Ba	778	137	494	29
Li	128	47	21	7
Rb	254	75	292	10
Sr	85	160	26	142
Pb	21	5	16	<2
Th	16	<2	28	<2
Ü	1	<1	2	<1
Zr	152	32	135	6
Nb	11	<2	20	<1 6 <2
Y	21	12	103	10
La	24	<2	42	<2
Ce	56	10	91	<3
Nd	21	10 5 27	39	<3
Sc	19	27	<2	47
V	89	146	2	403
Cr	85	69	<2	361
Ni	44	47	2 3	50
Cu	3	25	3	21
Zn	90	70	35	76
Sn	3	<2	3	<2
W	_	-	_	_
Мо	<3	3	<3	5
Ga	23	18	21	17
As	1.00	<1.00	<1.00	2.00
F	_		1400	-
Ве	-	_	_	_
Bi	-	-	-	_

Sample number Stratigraphic unit Lithology Map name	amphiboli. Jervois	80091459C Attutra Metagabbro amphiboli. Jervois		80093520 Jinka Granite granite Jinka	80093521 Jinka Granite granite Jinka
Grid reference	Range 409981	Range 409981	816934	817938	821939
SiO2 TiO2 Al2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O P2O5 H2O+ H2O- CO2 LOI Rest Total O=F,S,Cl Total	47.94 .27 23.55 1.18 4.02 .13 4.22 13.02 2.02 .91 .03 1.96 <.10 .42 - .09 99.76	47.80 .31 25.38 1.01 2.77 .09 2.93 12.21 2.13 1.70 .03 2.80 <.10 .1410 99.40 .00 99.40	70.23 .38 13.63 1.32 1.78 .03 .97 1.20 2.19 6.05 .15 .98 <.10 .26 - .42 99.59 .08 99.50	67.75 .60 14.19 1.60 2.76 .04 1.17 1.57 1.90 5.67 .24 1.14 <.10 .22 - .63 99.48 .15 99.33	67.82 .59 14.00 1.56 2.82 .04 1.09 1.73 1.92 5.91 .25 1.31 <.10 .35 - .58 99.97 .13
	Trace eleme	nts in part	s per mill	ion	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W Mo Ga As F Be Bi	70 29 555 198 5 <2 <1 6 <2 <3 <3 26 111 65 31 11 50 <2 - 3 19 <1.00	142 42 116 242 6 <2 1 8 <2 4 <2 3 16 80 9 22 9 42 2 -<3 19 <1.00	323 472 655 28 87 14 261 22 666 98 197 62 7 18 4 11 15 11 <3 14 <1.00 2000	592 15 433 91 222 78 6 469 25 62 112 224 72 6 33 4 12 25 7 - 19 <1.00 3500 -	605 18 418 89 15 92 8 479 26 53 130 255 84 7 31 <2 4 16 18 5 <3 16 1.00 3000

Sample number Stratigraphic unit Lithology	80093533A Bonya Metamorph. amphiboli.	80093533C Bonya Metamorph. calc silicate rock	80093534 Jervois Granite granite	80093540A Jervois Granite granite granodior.	80093540B Jervois Granite granite
Map name Grid reference	Jervois Range 082904	Jervois Range 082904	Jervois Range 254857	Jervois Range 503873	Jervois Range 503873
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O+ H2O- CO2 LOI Rest Total O=F,S,C1 Total	52.72 1.25 14.74 2.07 9.37 .21 5.01 9.70 2.35 .27 .22 1.14 <.10 .10 - .16 99.31 .00 99.31	70.35 .43 14.58 .66 1.92 .06 1.21 3.64 4.75 .67 .16 .74 <.10 .11 - .13 99.41 .00 99.41	65.33 .57 15.21 1.40 3.81 .10 1.56 2.89 3.26 3.24 .21 1.34 <.10 .46 -32 99.70 .05 99.66	64.56 .86 14.33 1.65 4.19 .08 1.77 3.64 2.55 3.56 .34 1.28 <.10 .27 -25 99.33 .00 99.33	72.52 .29 13.19 .66 1.34 .03 .79 1.36 2.51 5.24 .09 .68 <.10 .17 - .28 99.15 .04 99.11
	Trace eleme	ents in part	s per mill	ion	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W Mo Ga As F Be Bi	126 2 4 197 2 7 <1 183 8 32 30 65 22 30 243 73 47 43 46 <2 - 4 18 5 00 - -	105 10 39 148 5 22 23 22 8 23 69 100 39 5 33 6 4 13 20 <2 -<3 16 2.00	589 38 188 123 18 28 3 294 12 64 64 124 44 11 31 9 8 13 72 3 - <3 19 1.00 1100	667 32 173 167 11 40 6 389 20 32 100 185 56 8 64 14 9 15 62 5 - <3 18 <1.00	555 22 255 100 19 48 7 200 15 23 100 192 14 3 14 <2 2 5 31 3 - <3 15 <1.00 900

Sample number Stratigraphic group	80093541		80096112D Strangways Metamorph. Complex	80096163	80096179 Strangways Metamorph. Complex
Stratigraphic unit	Jervois Granite	Kanandra Granulite	Kanandra	Pgg?	Kanandra Granulite
Map symbol Lithology	granite	mafic granulite	mafic granulite	granite	pCsk mafic granulite
Map name	Jervois Range	Dneiper	Dneiper	Dneiper	Dneiper
Grid reference	494873	004913	061838	417863	405874
SiO2 TiO2 A1203 Fe203 Fe0 Mn0 Mg0 Ca0 Na20 K20 P205 H20+ H20- CO2 LOI Rest Total O=F,S,Cl	72.35 .40 13.03 .95 1.54 .06 .81 1.41 2.31 5.48 .10 .71 <.10 <.10 35 99.50 .04 99.46	49.01 .70 27.04 1.32 3.44 .06 2.11 12.91 2.43 .36 .18 <.10 <.10 <.10 09 99.79 .00 99.79	48.07 1.52 13.60 5.07 8.72 .24 7.41 12.11 2.40 .36 .19 .44 <.10 .16 - .17 100.46 .00 100.46	64.15 .75 15.51 2.00 4.02 .09 2.15 3.88 2.78 2.81 .20 .35 <.10 .26 - .33 99.28 .04 99.25	51.89 1.33 13.78 4.27 8.12 .19 6.56 8.84 2.87 .59 .17 .35 <.10 .33 - .21 99.50 .00 99.50
	Trace eleme	nts in part	s per milli	on	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W Mo Ga As F Be Bi	1016 29 207 129 17 14 318 9 28 106 176 55 3 15 <2 45 2 <3 13 <1.00 900 -	129 8 2 379 5 <2 <1 23 <2 10 8 19 6 10 68 18 6 5 30 <2 <3 <1 00 -	87 7 2 119 3 <2 119 3 <2 <1 105 3 34 9 22 7 38 312 176 63 49 94 2 4 17 <1.00	869 20 149 227 20 14 <1 225 12 22 75 128 37 13 56 40 19 579 4 <3 19 <1.00 900	477 12 18 250 6 <1 <1 92 2 18 26 43 14 18 167 227 87 47 93 <2 - 3 17 1.00

Sample number Stratigraphic unit	80096234 Dneiper Granite	80096238A Cackleber. Metamorph.	80096243	80096260A Cackleber. Metamorph.	80096285A Pd
Map symbol Lithology	granite	calc silicate rock	Pga granite	cordierite anthophyl. rock	Metanorite
Map name Grid reference	Dneiper 464890	Dneiper 458904	Dneiper 455876	Dneiper 466908	Jinka 593877
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O+ H2O- CO2 LOI Rest Total O=F,S,Cl	64.96 1.10 13.61 3.77 4.24 .11 2.00 3.31 2.64 2.58 .27 1.03 <.10 .1627 100.05 .03 100.01	53.20 1.08 14.72 4.60 7.08 .16 5.66 8.27 2.56 .39 .13 1.26 <.10 .18 - .15 99.44 .00 99.44	71.95 .48 12.86 1.17 2.15 .06 .89 2.00 2.46 4.81 .09 .49 <.10 .30 - .27 99.98 .03 99.95	59.95 1.10 13.23 1.34 9.42 .09 9.87 .29 .65 .63 .24 2.05 <.10 .16 -32 99.34 .05 99.29	51.29 1.32 14.90 1.76 8.84 .17 6.73 9.07 2.51 1.05 .14 1.01 <.10 .46 - .19 99.44 .00 99.44

j

Trace	erements	111	parts	per	willion

Ba	478	168	680	27	271
Li.	9	4	9	50	4
Rb	180	15	257	40	52
Sr	127	197	79	4	190
Pb	15	6	23	2	6
Th	22	8	27	16	2
U	4	i	3	3	<1
Zr	186	106	250	295	88
Nb	12	4	11	11	5
Y	55	28	46	46	22
La	56	28	40	19	15
Ce	104	41	78	46	23
Nd	37	16	28	14	11
Sc	17	37	4	25	19
V	61	235	19	95	141
Cr	21	54	8	454	263
Ni	10	47	4	124	118
Cu	25	13	7	2	69
Zn	81	64	43	50	93
Sn	7	2	6	5	<2
W	_	-			-
Mo	-	_	<3	<3	-
Ga	20	15	13	18	17
As	1.00	<1.00	<1.00	1.00	1.00
F	. 800	-	800	1300	_
Be	_		-	_	_
Bi	_	-	-	•	•••

Sample number Locality	80096323 Yam Creek	80096342	80096358	80096409	80096446
Stratigraphic unit		Pgr	Pgy	Pgy	Pgy
Lithology	granite	granite	granite	granite	granite
Map name	Dneiper	Dneiper	Dneiper	Dneiper	Dneiper
Grid reference	363911	397927	433950	456937	490970
SiO2	73.36	73.64	67.34	71.14	72.07
TiO2	.35	.28	.73	.50	.45
A1203	12.75	12.48	13.71	13.26	13.00
Fe203	.56	.74	1.63	.86	1.05
FeO	1.48	1.76	3.22	2.62	2.13
MnO	.03	.05	.07	.07	.06 \
Mg0	.89	1.17	1.45	1.07	.97
CaO	1.24	.66	2.37	1.61	1.60
Na20	2.09	1.93	2.51	2.90	2.31
K20	5.77	5.95	4.86	4.47	5.04
P205	.08	.04	.15	.11	.11
H2O+	.51	.55	1.29	.54	.51
H2O-	.11	<.10	<.10	<.10	<.10
CO2	.22	.13	.17	.16	.11
LOI	-	-	_	-	-
Rest	.22	.35	.34	.26	.27
Total	99.66	99.73	99.84	99.57	99.68
O=F,S,Cl	.03	.06	.05	.04	.04
Total	99.63	99.67	99.79	99.53	99.64

Ва	400	825	748	394	471
Li	15	23	23	21	17
Rb	282	353	293	300.	323
Sr	91	72	121	67	76
Pb.	31	22	20	25	28
Th	38	25	27	33	35
Ü	<1	4	4	6	6
Zr	152	201	297	209	173
Nb		8	13	12	10
Y	6 7	21	37	16	28
La	74	44	46	54	52
Ce	134	80	85	102	101
Nd	36	24	27	30	30
Sc	3	4	8	5	5
V	19	9	44	26	23
Čr	á	<2	23	9	
Ni	9 6 <2	2	10	9 6	8 6 3
Cu	۷,3	10	9	4	3
	34	44	55	52	42
Zn	<2	9	5	6	6
Sn W	\Z	9	5		-
	<3	<3	<3	<3	<3
Mo		11	16	15	13
Ga	14 <1.00	<1.00	<1.00	<1.00	<1.00
As F	600	1400	1100	900	1000
r Be	-	1400	1100	900 -	1000
Bi		_		· —	
DI	-		_	-	_

Sample number Stratigraphic unit	80096461 Pgy	80096483 Pgy	80096492 Pgk	80096520 Ilappa	80096539
Lithology Map name Grid reference	granite Dneiper 465003	granite Dneiper 426013	granite Dneiper 388026	Dyke Swarm metadoler. Dneiper 363003	metanorite Dneiper 305970
SiO2 TiO2 Al2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O P2O5 H2O+ H2O- CO2 LOI Rest Total O=F,S,Cl Total	71.84 .43 12.71 .71 2.35 .06 1.02 1.39 2.27 5.36 .08 .87 <.10 .25 - .27 99.61 .04	70.26 .45 13.32 .66 2.70 .05 1.18 1.84 2.26 5.22 .11 .92 <.10 .22 - .28 99.47 .04 99.43	70.75 .37 13.68 .79 1.97 .05 .86 1.31 2.28 5.86 .13 .85 <.10 .13 -37 99.40 .06 99.34	53.19 .95 15.25 .65 9.04 .17 6.36 7.71 .53 1.85 .09 3.27 <.10 .19 - .16 99.41 .00 99.41	50.88 .23 14.23 .96 5.26 .14 11.67 12.02 .96 1.03 .03 1.60 <.10 .4828 99.77 .00 99.77
	Trace elem	ents in par	ts per mill	ion	
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd SC V Cr Ni Cu Zn Sn W Mo Ga As F Be Bi	507 14 324 77 29 38 12 182 9 23 47 90 29 4 23 13 8 4 36 5 <3 14 <1.00 900	533 23 318 86 31 31 31 62 9 25 54 99 31 6 31 16 8 11 49 7 <3 15 <1.00 1000	355 24 468 76 49 97 15 240 17 39 102 191 59 4 20 9 5 3 35 14 - <1 17 <1.00 1500 -	108 33 156 128 4 6 <1 69 4 17 15 25 10 23 150 178 113 31 83 3 - <3 -1 00 -	92 16 63 94 2 2 <1 28 <22 10 6 11 4 34 113 1142 219 92 38 <2 - <3 11 2.00

Sample number Stratigraphic group	80096543C	80096556	80096559	80096584 Strangways Metamorph. Complex	80096585
Stratigraphic unit	Dneiper Granite	Dneiper Granite	Mount Swan Granite		Marshall Granite
Lithology	granite	granite	granite	quartzofe.	
Map name	Dneiper	Dneiper	MacDonald Downs	Jinka	Jinka
Grid reference	276981	068078	090150	576830	598875
SiO2	70.49	68.01	71.32	73.13	73.64
TiO2	.59	.77	.35	.29	.37
A1203	13.45	13.23	13.29	13.69	12.34
Fe203	1.53	2.27	1.09	1.11	1.63
Fe0	2.52	3.12	1.91	.84	1.22
MnO	.06	.09	.04	.02	.02
Mg0	1.12	1.48	.91	.89	.64
CaO	2.28	2.47	1.30	2.07	1.15
Na2O	2.18	2.05	2.00	2.93	2.68
K20	4.11	4.40	6.32	4.26	5.31
P205	.14	.18	.12	.06	.06
H2O+	.61	1.27	.55	.25	.42
H2O-	<.10	<.10	<.10	<.10	<.10
CO2	.10	.13	.23	.17	.11
LOI	-	-	_	-	_
Rest	.31	.31	.35	.21	.15
Total	99.49	99.78	99.78	99.92	99.74
O=F,S,Cl	.04	.04	.05	.00	.01
Total	99.45	99.74	99.72	99.92	99.73

i

Ba	705	606	388	711	388
Li	19	21	17	18	3
Rb	233	247	477	225	243
Sr	103	113	71	191	53
Pb	16	22	43	39	6
Th	30	28	97	61	4
U	5	5	25	3	ī
Zr	217	265	270	273	254
Nb	10	12	16	4	5
Y	41	45	14	<2	41
La	60	52	95	61	15
Ce	111	98	184	96	26
Nd	35	34	52	24	11
Sc	7	9	5	2	4
V	60	49	12	13	8
Cr	11	19			8 5 2 5 12 <2
Ni	6 3	8	9 3 3	8 3 3	2
Cu	3	12			5
Zn	29 6	71	34	25	12
Sn	6	6	<2	4	<2
W	-	-	-	-	-
Mo	<3	<3	<3	<3	<3
Ga	. 16	15	15	17	16
As	1.00	1.00	<1.00	<1.00	<1.00
F	1000	1000	1300	_	200
Be Bi	-	***	-	-	

Sample number Locality	80096586	80096600 Marshall orebody	80096601	80096602	80096603
Stratigraphic unit	Marshall Granite	Bonya Metamorph.	Bonya Metamorph.	Bonya Metamorph.	Bonya Metamorph.
Lithology	granite	schist	schist	schist	schist
Map name	Dneiper	Jervois Range	Jervois Range	Jervois Range	Jervois Range
Grid reference	513900	Range	Range	Kange	Range
Drill hole		UC4	UC4	UC4	UC4
SiO2	70.09	56.86	58.25	48.89	52.77
TiO2	.54	.73	.76	1.11	.52
A1203	12.74	16.15	17.25	14.51	12.97
Fe203	2.01	5.84	3.38	4.84	14.19
FeO	2.55	3.08	4.88	8.06	4.65
MnO `	.05	.16	.22	.43	.64
MgO	.92	2.57	3.24	9.04	2.67
CaO	1.92	2.04	1.33	1.79	6.24
Na20	2.46	.64	1.00	.16	.40
K20	5.20	7.85	5.32	5.61	2.08
P205	.12	.17	.16	.10	.11
H2O+	.90	2.45	2.90	4.11	1.97
H2O-	.10	<.10	.16	.11	<.10
C02	.10	1.37	.15	.61	.36
LOI	-	-	-	-	
Rest	.24	.24	.27	.30	.33
Total	99.94	100.15	99.27	99.67	99.90
O=F,S,Cl	.03	.00	.00	.00	.00
Total	99.91	100.15	99.27	99.67	99.90

	Trace ele	ments in par	ts per milli	.on	
Ва	488	640	692	292	679
Li	4	76	138	331	76
Rb	263	395	388	603	313
Sr	60	28	56	45	112
Pb	9	7	12	4	25
Th	41	19	21	<2	19
U	4	6	3	1	4
Zr	290	143	189	64	111
Nb	12	11	12	2	7
Y	_	28	19	<2	35
La	46	61	42	6	31
Ce	98	113	93	13	74
Nd	36	41	32	4	24
Sc	8	16	16	23	12
V	14	77	80	201	74
Cr	6	75	79	126	54
Ni	4 7	40	46	111	29
Cu	7	3	3	3	738
Zn	20	110	171	329	176
Sn	2	3	<2	2	5
W	-	-	-	-	-
Mo	<3	<3	<3	3	4
Ga	16	21	21	17	18
As	<1.00	<1.00	<1.00	<1.00	1.00
F	700			_	
Be			-		-
Bi	_		***	-	-

Sample number Locality	80096604	80096605	80096606 Marshall lode	80096607	80096608
Stratigraphic unit	Bonya	Bonya	Bonya	Bonya	Bonya
Lithology	metamorpn. schist	Metamorpn. schist	Metamorph. Schist	metamorph. schist	metamorpn. schist
Map name	Jervois	Jervois	Jervois	Jervois	Jervois
Drill hole	Range UC4	Range UC4	Range UC4	Range UC4	Range UC4
SiO2 TiO2	68.99 .23	62.66 .72	56.08 .70	55.51 .39	62.94 .74
A1203	10.61	17.90	15.93	9.08	17.12
Fe203	6.35	3.36	7.73	16.65	5.16
FeO	5.37	4.77	.4.17	8.44	3.10
MnO MgO	.42 1.64	.40 3.16	.36 3.51	3.71 1.41	1.37 .92
CaO	.29	.31	.87	.76	.30
Na20	.37	.22	.52	.15	.35
K20	3.17	3.64	4.98	2.03	4.87
P205 H2O+	.06 1.80	.19 2.56	.21 3.48	.39 .92	.18 2.05
H2O-	<.10	<.10	-	<.10	<.10
CO2	.22	.16	.69	.20	.24
LOI Rest	.22	- 20	4.00	- 01	-
Total	99.74	.28 100.33	.25 103.48	.21 99.85	.34 99.68
					23.00
	Trace eleme	nts in part	s per milli	on	
_					
Ba	781	942	513	767	1220
Ba Li	781 107	942 166	513 141	767 92	1220 179
Li Rb	107 258	166 251	141 383	92 216	179 613
Li Rb Sr	107 258 15	166 251 16	141 383 33	92 216 13	179 613 29
Li Rb	107 258 15 9	166 251 16 22	141 383 33 19	92 216 13 22	179 613 29 38
Li Rb Sr Pb Th U	107 258 15 9 23 2	166 251 16 22 22	141 383 33 19 16 4	92 216 13	179 613 29 38 17 5
Li Rb Sr Pb Th U	107 258 15 9 23 2	166 251 16 22 22 3 169	141 383 33 19 16 4	92 216 13 22 7 1	179 613 29 38 17 5
Li Rb Sr Pb Th U Zr	107 258 15 9 23 2 166 7	166 251 16 22 22 3 169	141 383 33 19 16 4 138	92 216 13 22 7 1 84 7	179 613 29 38 17 5 173
Li Rb Sr Pb Th U	107 258 15 9 23 2 166 7 35	166 251 16 22 22 3 169 12 26	141 383 33 19 16 4 138 11	92 216 13 22 7 1 84 7 16	179 613 29 38 17 5 173 19
Li Rb Sr Pb Th U Zr Nb Y La Ce	107 258 15 9 23 2 166 7 35 27 64	166 251 16 22 22 3 169 12 26 30 71	141 383 33 19 16 4 138 11 18 40 92	92 216 13 22 7 1 84 7 16 43 90	179 613 29 38 17 5 173 19 10 33 75
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd	107 258 15 9 23 2 166 7 35 27 64 20	166 251 16 22 22 3 169 12 26 30 71 25	141 383 33 19 16 4 138 11 18 40 92 29	92 216 13 22 7 1 84 7 16 43 90 28	179 613 29 38 17 5 173 19 10 33 75 28
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc	107 258 15 9 23 2 166 7 35 27 64 20 <2	166 251 16 22 22 3 169 12 26 30 71 25	141 383 33 19 16 4 138 11 18 40 92 29	92 216 13 22 7 1 84 7 16 43 90 28 <2	179 613 29 38 17 5 173 19 10 33 75 28 12
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65	92 216 13 22 7 1 84 7 16 43 90 28	179 613 29 38 17 5 173 19 10 33 75 28 12 82
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34 20	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37 2	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20 5	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19 7
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6 5 13	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34 20 190	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37 2	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20 5	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19 7 52
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6 5 13 176 2	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34 20 190	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37 2 343 3	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20 5 203 <2	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19 7 52 4 -
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6 5 13 176 2 - <3	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34 20 190 5	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37 2 343 3 - <3	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20 5 203 <2	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19 7 52 4 - <3
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W Mo Ga	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6 5 13 176 2 <3 15	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34 20 190 5	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37 2 343 3 - <3 20	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20 5 203 <2	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19 7 52 4 - <3 25
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W Mo Ga As F	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6 5 13 176 2 - <3	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34 20 190 5	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37 2 343 3 - <3	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20 5 203 <2	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19 7 52 4 - <3 25 1.00
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W Mo Ga As F Be	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6 5 13 176 2 <3 15 1.00	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34 20 190 5 <3 21 1.00	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37 2 343 3 -<3 20 1.00	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20 5 203 <2	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19 7 52 4 - <3 25
Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W Mo Ga As F	107 258 15 9 23 2 166 7 35 27 64 20 <2 27 6 5 13 176 2 <3 15 1.00	166 251 16 22 22 3 169 12 26 30 71 25 12 75 62 34 20 190 5 <3 21 1.00	141 383 33 19 16 4 138 11 18 40 92 29 14 74 65 37 2 343 3 -<3 20 1.00	92 216 13 22 7 1 84 7 16 43 90 28 <2 55 39 20 5 203 <2	179 613 29 38 17 5 173 19 10 33 75 28 12 82 83 19 7 52 4 - <3 25 1.00

Ruby mine

Sample number Locality Stratigraphic group Stratigraphic unit Lithology Map name Grid reference Bibliographic ref.	79091888A Harts Range Riddock Amphiboli. amphiboli. Quartz Shaw	79091888B Ruby Mine Riddock Amphiboli. amphiboli. Quartz	79091889 Ruby Mine Riddock Amphiboli. amphiboli. Quartz	
SiO2 TiO2 A12O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O+ H2O- CO2 Rest Total	42.33 .03 32.23 .68 1.16 .05 4.10 16.28 .61 .87 .03 1.49 .18 .15 .21	44.62 .10 22.14 1.54 3.90 .14 8.73 12.56 1.01 1.55 .02 2.43 .10 .52 .38 99.74	42.00 .10 20.07 3.38 3.35 .11 15.60 11.91 1.06 .28 .03 2.12 <.10 .14 .24 100.39	61.50 .01 21.30 .32 .52 .03 1.90 10.50 1.83 .20 .01 .57 .23 .28 .14
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Sc V Cr Ni Cu Zn Sn W Mo Ga As Be Bi	186 5 26 402 7 2 1 9 <2 <2 <2 4 8 <3 7 15 761 100 3 15 <2 - <3 17 <1.00	nts in part 171 5 50 178 6 8 <1 14 <2 3 18 34 11 12 58 1835 276 3 45 <2 - <3 15 2.00	s per milli - 3 4 94 2 <2 <1 15 <2 3 <2 <3 12 71 1428 - 4 10 <2 - <3 13 <1.00	152 4 5 345 16 23 <1 26 <2 2 10 13 3 4 10 363 72 5 10 <2 <3 <1 26 <2 2 2 2 2 2 3 4 3 5 5 5 5 6 7 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8

APPENDIX 3

Samples collected along the Papunya-Kintore road

Sample number	88094401C	88094400A	88094404	88094405A
Lithology	Dolerite	Quartzofe. gneiss	Quartzofe. gneiss	granite
Map name	Mount Rennie	Mount Rennie	Mount Rennie	Mount Liebig
SiO2 TiO2 Al2O3 Fe2O3 Fe0 MnO MgO CaO Na2O K2O P2O5 LOI Rest Total O=F,S,Cl Total	47.31 .46 19.68 .87 6.58 .12 9.72 12.71 1.58 .13 .05 .76 .28 100.25 .02	66.46 .93 13.83 2.61 3.65 .10 1.50 3.63 2.88 3.67 .21 .58 .23 100.28 .00 100.28	67.62 .90 13.04 2.47 3.51 .11 1.09 3.07 2.93 3.78 .19 1.15 .23 100.09 .00	75.91 .02 13.68 .32 .14 .07 .13 1.19 4.08 3.87 .01 .34 .21 99.97 .00
	Trace elemen	nts in parts	per millic	on
Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Nd Pr Sc V Cr Mn Co Ni Cu Zn Sn Mo Ga As S Be Ag Bi Hf Ta Cs Ge	31 4 3 138 3 <2 <.50 26 273 11 <2 6 3 - 28 146 446 1007 71 273 96 52 <2 <2 <2 <2 <1 50 50 <1 2 4 2 4 4 4 5 6 5 6 6 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	646 20 170 148 26 24 3.00 237 12 54 48 89 41 9 18 87 15 757 75 12 21 74 5 <2 20 3.00 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <10	645 33 181 128 26 24 5.00 263 14 58 56 100 46 11 13 45 8 933 48 7 3 83 5 <2 18 1.50 <100 3 1 <2 11 <2 8 <1	1217

Sample number	88094407A	88094407B	
Lithology	quartzofe.		
Map name	gneiss Mount	gneiss Mount	
•	Liebig	Liebig	
SiO2	69.74	69.97	
TiO2	.55	.57	
Al203 Fe203	13.67 1.41	13.39 1.28	
FeO	2.35	2.44	
MnO	.07	.07	
MgO CaO	.95 2.44	.95 2.50	
Na2O	2.75	2.66	
K20 P205	5.07 .10	5.29 .10	
LOI	.67	.65	
Rest	.23	.23	
Total	100.00	100.10	
	Trace elemen	nts in parts per millior	n
Ba	435	444	
Li Rb	23 349	17 352	
sr	86	91	
Pb	36	38	
Th U	75 10.00	72 15.50	
Zr	269	285	
Nb Y	14 66	15 64	
La	63	72	
Ce	132	129	
Nd Pr	47 12	50 16	
Sc	10	10	
V C~~	41 10	41 10	
Cr Mn	533	531	
Co	84	50	
Ni Cu	11 13	10 18	
Zn	51	47	
Sn	9 <2	9 <2	
Mo Ga	16	19	
As	.50	1.00	
S Be	<100 3	<100 3	
Уd	<1	<1	
Bi	<2	<2 12	
Hf Ta	12 <2	<2	
Cs	12	11 <1	
Ge	<1	\1	