
1990/78 COPY4



# Bureau of Mineral Resources, Geology & Geophysics



Record 1990/78

THE STRUCTURE AND TECTONICS OF THE TUMUT REGION, N.S.W: DATA RECORD AND SUMMARY OF INVESTIGATIONS 1986-1989.

P.G. Stuart-Smith

BMR PUBLICATIONS COMPACTUS (LENDING SECTION)

1990178 COPY4

contained in this report has been obtained by the Bureau of Mineral Resources. Geology and Geophysics as part of the policy Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in a company prospectus or statement without the permission in writing of the Director.

### Record 1990/78

THE STRUCTURE AND TECTONICS OF THE TUMUT REGION, N.S.W: DATA RECORD AND SUMMARY OF INVESTIGATIONS 1986-1989.

P.G. Stuart-Smith



#### © Commonwealth of Australia, 1990

This work is copyright. Apart from any fair dealing for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Inquiries should be directed to the Principal Information Officer, Bureau of Mineral Resources, Geology and Geophysics, GPO Box 378, Canberra, ACT 2601.

### **CONTENTS**

| ABSTRACT                                                                | i  |
|-------------------------------------------------------------------------|----|
| INTRODUCTION                                                            | 1  |
| AIMS AND SCOPE OF STUDY                                                 | 1  |
| GEOLOGICAL SETTING AND STRATIGRAPHY                                     | 4  |
| Stratigraphy of the Tumut Synclinorial Zone and adjacent areas          | 4  |
| Changes in stratigraphic nomenclature usage                             | 11 |
| ORGANISATION OF FIELDWORK AND MAP PRODUCTION                            | 12 |
| Rock terminology and classification                                     | 13 |
| RESULTS                                                                 | 14 |
| PALAEOZOIC GEOLOGICAL HISTORY OF THE TUMUT REGION                       | 15 |
| Cambrian to Ordovician basement                                         | 15 |
| Ordovician to Early Silurian deposition                                 | 15 |
| Early Silurian deformation                                              | 15 |
| Early Silurian extension and formation of the Tumut Basin               | 17 |
| Emplacement of the Coolac Serpentinite                                  | 17 |
| Gabbro and granitoid intrusion                                          | 18 |
| Late Silurian deformation                                               | 18 |
| Devonian felsic magmatism and strike-slip faulting                      | 18 |
| CONCLUSION                                                              | 18 |
| ACKNOWLEDGEMENTS                                                        | 19 |
| REFERENCES                                                              | 19 |
| APPENDICES                                                              |    |
| 1. Details of samples collected for isotopic and palaentological dating | 23 |
| 2. Tumut seismic reflection profile                                     | 24 |
| 3. Bullawyarra Schist: microprobe analyses                              | 26 |

| 4. | Clinopyroxene microprobe analyses                                               | 28 |
|----|---------------------------------------------------------------------------------|----|
| 5. | Modal composition of arenites                                                   | 32 |
| 6. | Whole-rock geochemical analyses                                                 | 33 |
| 7. | List of petrographic samples                                                    | 34 |
| FI | GURES                                                                           |    |
| 1  | Schematic structural map of New South Wales                                     | 2  |
| 2  | Schematic diagram showing range of interpretations for the formation and        |    |
|    | closure of the Tumut Trough                                                     | 3  |
| 3  | Generalised geology of the Tumut Region                                         | 5  |
| 4  | Diagrammatic stratigraphy of the Tumut 1:100 000 Sheet area (from               |    |
|    | Basden 1990b)                                                                   | 9  |
| 5  | Diagrammatic Palaeozoic stratigraphy of the southern part of the Tumut          |    |
|    | Synclinorial Zone and adjacent areas                                            | 11 |
| 6  | Location of Maps 1-7                                                            | 12 |
| 7  | Palaeozoic timescale                                                            | 13 |
| 8  | Summary of Palaeozoic geological history of the Tumut region                    | 16 |
| T  | ABLES                                                                           |    |
| 1. | Summary of Palaeozoic stratigraphy of the Tumut region                          | 6  |
| M  | IAPS                                                                            |    |
| 1. | Structural Geology of the Bullawyarra Schist (1: 25 000 scale map)              |    |
| 2. | Structural Geology of the Coolac Serpentinite Belt (1: 50 000 scale map)        |    |
| 3. | Structural Geology of the Tumut Seismic Traverse (1: 100 000 scale map)         |    |
| 4. | Structural Geology of the Gilmore-Bumbolee Creek Traverse (1: 50 000 scale map) |    |
| 5. | Structural Geology of the Slaughterhouse Creek Area (1: 25 000 scale map)       |    |
| 6. | Structural Geology of the Gilmore Fault Zone (1: 100 000 scale map), Sheet 1    |    |
| 7. | Gilmore Fault Zone, Sheet 2: Enlargements (1: 25 000 scale maps) and Structural |    |
|    | Profiles                                                                        |    |

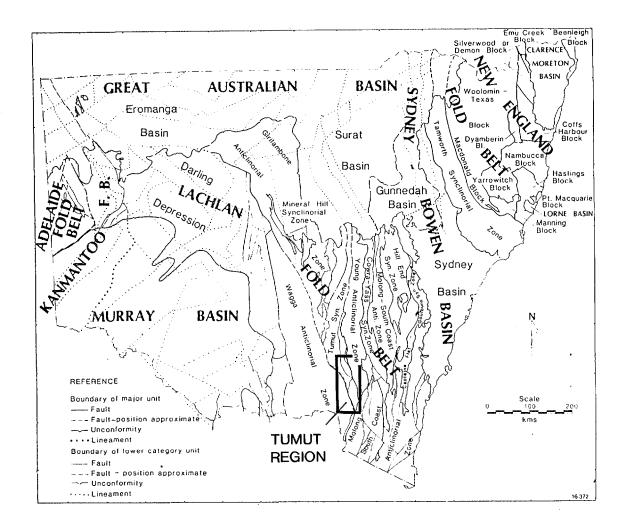
#### **ABSTRACT**

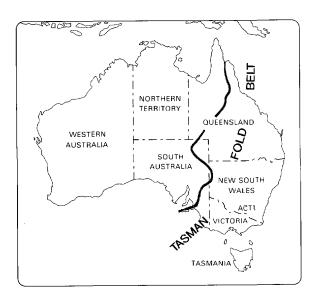
The Tumut region contains the southern portion of the Tumut Synclinorial Zone, a fault-bounded belt of Ordovician to Silurian volcanics and flyschoid metasediments, located in the Lachlan Fold Belt (LFB), southeastern Australia. The presence of an interpreted Silurian ophiolitic suite in association with flysch is unique to this part of the LFB and has led to a variety of proposed tectonic models. Most of these models incorporate the *Tumut Trough*, a palaeogeographic feature which was thought to be floored, at least in part, by oceanic crust and which was the site of a thick accumulation of flysch. With the aim of resolving structural and stratigraphic problems in the region, this study addresses the deformation history of the two main blocks which comprise the Tumut Synclinorial Zone (the Jindalee and Tumut Blocks) and the major bounding fault zones (the Mooney Mooney and Gilmore Fault Zones) and a new tectonic model for the region is proposed.

#### INTRODUCTION

This record summarises the results and presents data relevant to structural and stratigraphic investigations carried out by the **Bureau of Mineral Resources** in cooperation with the **Australian National University** in the Tumut region between May 1986 and May 1989. The work formed part of the Tumut deep crustal seismic reflection profile study and contributed to: a project to evaluate the role of extension tectonics in orogenic processes in Australia; and to a broader study of the Lachlan Fold Belt (LFB) now a National Geoscience Mapping Accord (NGMA) Project.

Understanding the tectonic history of the Tumut region is vital in any account of the development of the (LFB) within the Tasman Fold Belt. The main reason for this is the presence of an interpreted Silurian ophiolitic suite in association with flysch which is unique to this part of the LFB. Elsewhere, Silurian deposition was characterised by bimodal volcanic sequences in basins separated by shallow-marine sediments and subaerial volcanics on intervening highs (Cas 1983, Powell 1983). Considerable interest has also centred on the Gilmore Fault Zone, which is a major crustal feature, possibly a terrane boundary, forming the eastern margin of the Wagga Metamorphic Belt (WMB; Wagga Anticlinorial Zone of Degeling & others, 1986; Fig. 1). The zone extends for 100's of km and is the locus of gold mineralisation in a variety of geological settings.


The Tumut region contains the southern part of Tumut Synclinorial Zone (Scheibner 1985), an Early Palaeozoic tectono-stratigraphic province in the southeastern part of the LFB, southeastern New South Wales, Australia (Fig. 1). The region has been a focus of geological investigations in the LFB over the past 20 Exploration has concentrated on prospecting principally for base and precious Academic institutions, in particular, University, the Australian National University of Sydney and the University of Technology, Sydney, (formerly the NSW Institute of Technology) have also been active in the region. In all, seven Ph.D. theses, five M.Sc. theses, and over thirty Honours theses have been completed in the area. These previous investigations, largely petrological, covering geochemical, sedimentological and economic aspects with minor detailed, but localised structural studies, were reviewed by Basden (1986) and culminated in production of the Tumut 1:100 000-scale geological map (Basden 1990a) and accompanying explanatory notes (Basden 1990b).


Despite the considerable geological effort there is a wide range of views on the tectonic setting and evolution of the region. It has been regarded as either: a zone of fore-arc collision with a continental margin (Crook 1980a); or a subsequently closed small oceanfloored rift in a back-arc environment (Scheibner 1973, Ashley & others 1979, Gilligan & Scheibner 1978); or a transtensional pull-apart basin (Powell 1983, Packham 1987); or an intracratonic rift (Lightner 1977, Wyborn 1977); or a suspect terrane (Basden & others 1987). In most of these models the Tumut Synclinorial Zone represents palaeogeographic feature -- the *Tumut Trough*, which was the site of a thick accumulation of flysch, felsic and mafic volcanics on an ophiolitic substrate during the Early to Late Silurian. The fore-arc model of Crook (1980a) [based on models of fore-arc evolution by Karig & Sharman (1975) and Dickinson & Seely (1979), and models of continental crustal evolution by Crook (1974, 1980b)], differs from other models by invoking subduction of a marginal sea crust formed during rifting and the interpretation of the trough sequence as an accretionary prism developed in front of a westfacing volcanic arc. In all models, trough closure, deformation and emplacement of the ophiolitic suite took place during the Siluro-Devonian Bowning Orogeny. The various models for development and closure of the Tumut Trough are shown schematically in Fig. 2.

#### AIMS AND SCOPE OF STUDY

Because of its apparently unique geological history, understanding the tectonic development of the Tumut region, in particular the concept of a *Tumut Trough*, is essential in any tectonic reconstruction of the LFB. Its importance has been recently emphasised by Packham (1987).

"The Tumut Trough is of profound significance in the understanding of the tectonic evolution of the fold belt but lack of detailed published stratigraphic and structural information make it impossible to arrive at an interpretation of its history".





**Fig. 1.** Schematic structural map of New South Wales (after Degeling & others 1986) showing location of the Tumut region within the Lachlan Fold Belt.

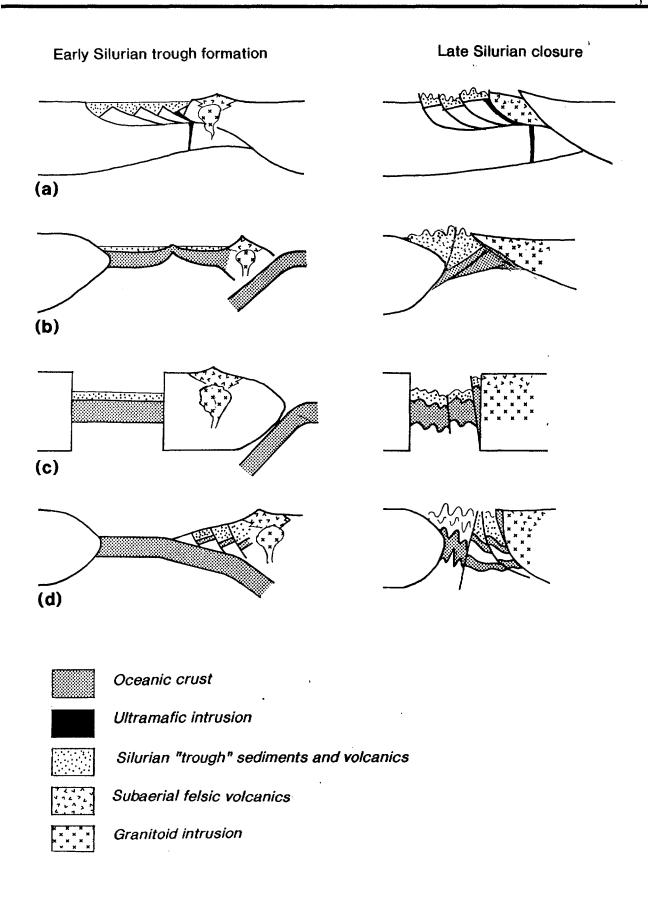



Fig. 2. Schematic diagram showing the range of interpretations for the formation and closure of the Tumut Trough.. (a) Intracratonic rift (e.g. Wyborn 1977; Lightner 1977). (b) Back-arc basin (e.g. Scheibner 1973; Basden 1978; Ashley & others 1979). (c) Pull-apart basin by dextral transtension (e.g. Powell 1983). (d) Fore-arc basin - collision (Crook 1980a). Note: terrane accretion models (e.g. Basden & others 1987) could be represented by either one of or a combination of the above.

The "lack of detailed....information" has been a major factor in the diversity of tectonic models proposed for the region. Specifically, this dearth of information falls into five main areas as follows:

(a) Poorly understood stratigraphy in places owing to structural complexity.

(b) The lack of a comprehensive regional framework of the structural and metamorphic history. Previous investigations, although detailed in places, were not tied into a regional picture.

(c) The lack of work on the nature and history of faulting in the region, in particular the major NW-trending faults such as the Mooney Mooney and Gilmore Fault Zones.

(d) Poor understanding of the nature of the relationship between the basement Cambrian-Ordovician Jindalee Group and cover rocks.

(e) Poor age constraints owing to the lack of age-specific fossils and concise isotopic dates (mostly K-Ar mineral ages).

The **scope** of this study is to address problems (a) to (d) by determining the structural and metamorphic evolution of the Ordovician and Silurian sedimentary-volcanic sequence, basement inliers and the Coolac ophiolite suite with particular emphasis on the Gilmore and Mooney Mooney Fault Zones, in the better exposed southern portion of the Tumut Synclinorial Zone.

A representative collection of samples has been made during the survey for palaeontological and isotopic age determination, the latter in collaboration with R.I. Hill (ANU, Research School of Earth Sciences, Canberra). Results of isotopic analyses available to date are included. However, a comprehensive geochronological investigation remains for the future and is not considered within the scope of this study. A list of samples collected for either palaeontological or isotopic investigation with relevant details is given in Appendix 1.

In May 1987 a seismic survey was conducted by the Bureau of Mineral Resources (BMR) and the Australian National University across the Tumut region. The survey was primarily designed to determine the attitude of the bounding faults and the crustal structure beneath the Tumut Trough. Operational details of the seismic survey are given by Leven & Rickard (1987) and a preliminary interpretation of the seismic results is presented by Leven & others (1988a & b). Unmigrated, migrated and interpreted

line diagrams are given in Appendix 2. To assist interpretation of the seismic results a geological traverse was chosen to coincide with the seismic traverse. Details of structural and stratigraphic studies carried out on this traverse are given by Stuart-Smith (1988).

#### Specific aims of this study are:

(a) To determine the Early Silurian extensional history of the *Tumut Trough* by examining the structural and metamorphic history of basement inliers and their relationship to cover units.

(b) To determine the nature and timing of the Coolac Serpentinite emplacement and the history of movement of the Mooney Mooney Fault Zone.

(c) To determine the structural and metamorphic history of the Ordovician and Silurian sedimentary-volcanic rocks of the Tumut Synclinorial Zone.

(d) To determine the nature and history of movement of the Gilmore Fault Zone.

(e) To synthesise the structural, sedimentary and metamorphic history of the Tumut region into a tectonic model.

# GEOLOGICAL SETTING AND STRATIGRAPHY

The geological setting of the Tumut region is shown in Figs. 1 & 3. The region covers the southern part of the Tumut Synclinorial Zone which consists of two blocks, the Jindalee and Tumut Blocks\*, separated by the Killimicat Fault. These blocks are bounded by the NW-trending Mooney Mooney and Gilmore Fault Zones which separate the Synclinorial Zone from, respectively, the Goobarragandra Block to the east and the Wagga Metamorphic Belt (Wagga Anticlinorial Zone of Degeling & others 1986) to the west. The Goobarragandra Block comprises mainly Silurian granitoids and their coeval waterlain to subaerial volcanics, and Silurian shallow-marine sediments and mafic intrusions. The Wagga Metamorphic Belt consists of Ordovician flyschoid metasediments and volcanics, and Silurian granitoid felsic and mafic intrusions (Basden 1982, 1986, 1990b).

<sup>\*</sup> The Jindalee and Tumut Blocks correspond to, respectively, the Jindalee and Gocup Blocks of Basden (1990b) and the, respectively, Jindalee and Tumut Terranes of Basden & others (1987).

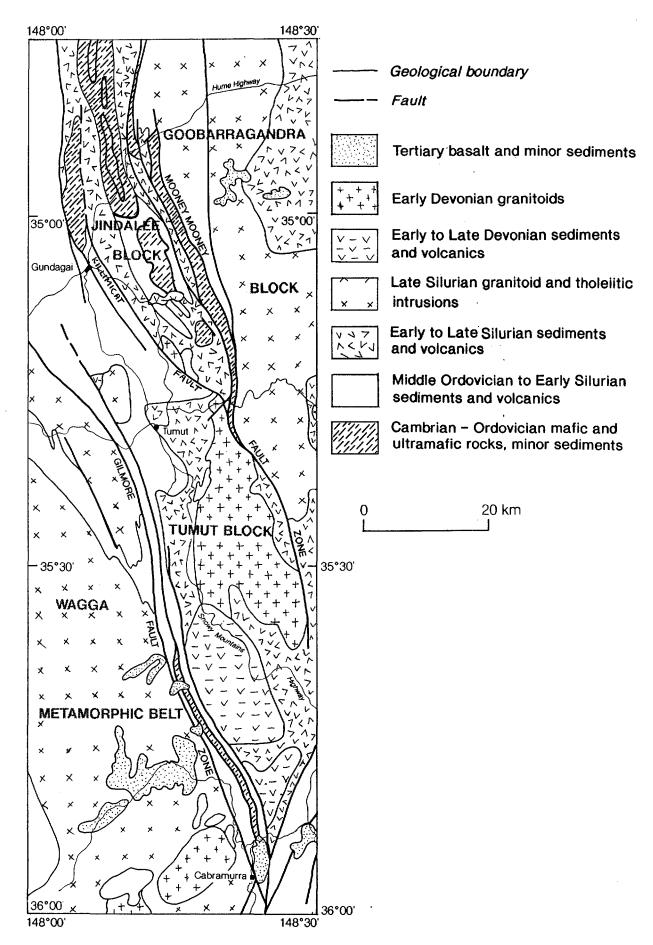



Fig. 3. Generalised geology of the Tumut region.

 Table 1. Summary of Palaeozoic stratigraphy of the Tumut region.

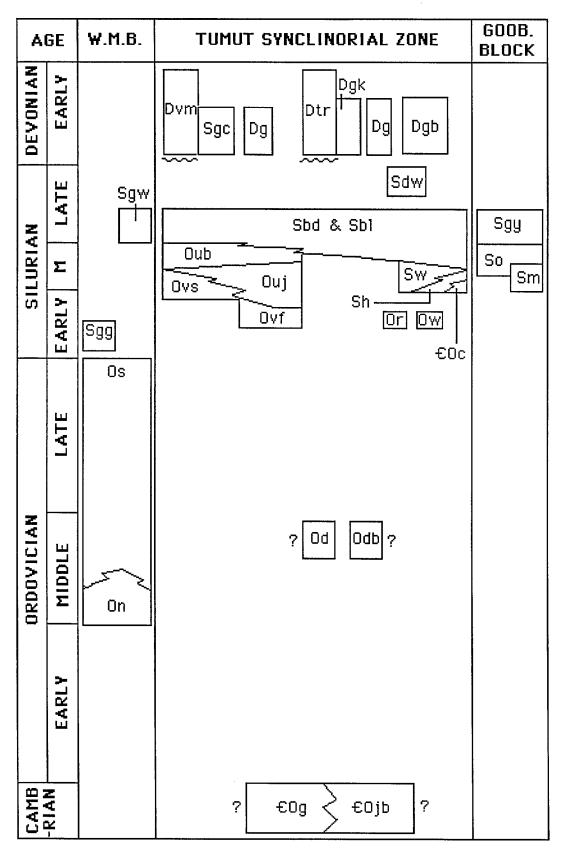
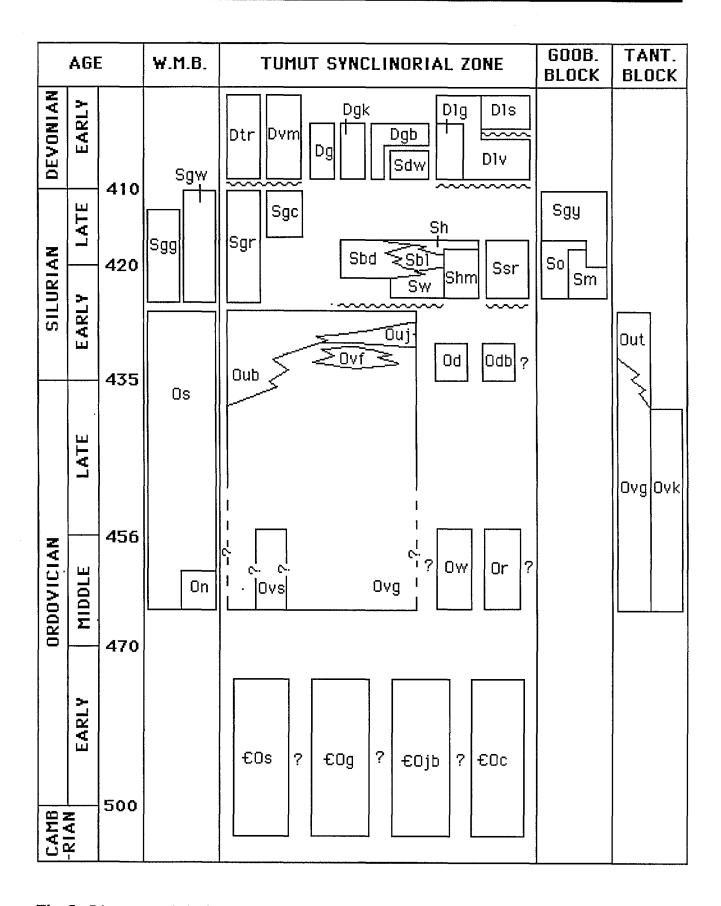

|                     | Unit                                            | Description                                                                                                                                                                    | Field relationships                                                                                     | Thickness<br>(m) | Remarks                                                                                                                        |
|---------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| CAIN-<br>OZOIC      | T                                               | Basalt, minor limonitic pebble conglomerate, hematitic ironstone, sandstone, siltstone and sandy clay at base.                                                                 | Unconformably overlies older u                                                                          | nits <40         | Forms flat-lying caps.                                                                                                         |
|                     |                                                 |                                                                                                                                                                                | UNCONFORMITY                                                                                            |                  |                                                                                                                                |
|                     | (Dg)                                            | Fine-grained biotite granite; coarse-                                                                                                                                          | Intrudes Oub and Ovg. Faulted                                                                           |                  | Forms minor intrusive bodies and                                                                                               |
|                     |                                                 | grained leucogranite.                                                                                                                                                          | against older units.                                                                                    |                  | tectonic slices within the Mooney<br>Mooney Fault Zone. Part of Dgb?                                                           |
|                     | Killimicat Granite (Dgk)                        | Fine- to medium-grained equigran-<br>ular granite.                                                                                                                             | Intrudes Or, Sw and Sbd.                                                                                |                  | Similar chemically to Dgb (Basden, 1986).                                                                                      |
|                     | Bogong Granite<br>(Dgb)                         | Massive fine to medium-grained leucogranite, medium to coarse-grained equigranular biotite granite. Metasediment hornfels rafts.                                               | Intrudes Sbd, Sbl, Oub, COe ar                                                                          | nd Ow            | I-type granite. Age 410±16 Ma (K-Ar on biotite; Ashley et al 1971).                                                            |
|                     | Benwerrin Diorite<br>(Sdw)                      | Medium-grained diorite and quartz-diorite.                                                                                                                                     | Intrudes Ow and intruded by Dg (Willcock 1982).                                                         | <b>j</b> b       | Part of I-type Boggy Plain Supersuite (Basden 1986). Coeval with Dgb.                                                          |
| VONTAN              | Lobs Hole<br>Adamellite<br>(Dgl)                | Porphyritic granophyric leucogranite.                                                                                                                                          | Intrudes Dlv.                                                                                           |                  | Subvolcanic intrusion comagmagmatic with Dlv (Barkas 1976).                                                                    |
| EARLY DEVONIAN      | Byron Range<br>Group<br>(Dls)                   | Shale, limestone and arenite.                                                                                                                                                  | Unconformably overlies Ssr and basal part of Dlv. Faulted again Oub.                                    |                  | Shallow-marine (Moye et al 1969).                                                                                              |
| Ħ                   | Boraig<br>Group<br>(Dlv)                        | Rhyolite, rhyolitic tuff, siltstone, shale, volcanilithic arenite, and cobble conglomerate.                                                                                    | Unconformably overlies Ssr and Sbd. Unconformably overlain Dls (Moye et al. 1969). Faulted against Oub. | by               | Shield volcanic complex (Owen et al 1982).                                                                                     |
|                     | Minjary Volcanics<br>(Dvm)                      | Rhyolitic tuff and ignimbrite, polymictic conglomerate and arenite.                                                                                                            | Unconformably overlies Sgc an<br>Oub. Faulted against Ovg and C                                         |                  | Late Early Devonian (early to mid. Siegenian) fossils (Barkas 1976). Shallow-marine to subaerial environment (Basden 1986).    |
|                     | Gatelee Ignimbrite<br>(Dt r)                    | Rhyolitic ignimbrite, minor basal polymictic conglomerate.                                                                                                                     | Unconformably overlies older units.                                                                     | 100              | Forms remnants of a subhorizontal ignimbrite sheet (Ashley <i>et al</i> 1971; Kennard 1974).                                   |
|                     |                                                 |                                                                                                                                                                                | UNCONFORMITY                                                                                            |                  |                                                                                                                                |
|                     | Gocup Granite<br>(Sgc)                          | Fine to coarse-grained biotite granite; minor coarse-grained muscovite-biotite granite.                                                                                        | Intrudes Oub. Unconformably overlain by Dvm (Barkas 1976) Faulted against Ovg.                          | ).               | S-type granite (Wyborn pers comm)<br>Age 409±2 Ma (K-Ar on biotite;<br>Richards <i>et al</i> 1977).                            |
|                     | Rough<br>Creek<br>Tonalite (Sgr)                | Coarse-grained equigranular chloritised biotite tonalite.                                                                                                                      | Allochthonous fault slices.<br>Intrudes Ovg.                                                            |                  | Late synkynematic S-Type granitoid (Wyborn 1977).                                                                              |
| JRIAN               | Wondalga<br>Granodiorite<br>(Sgw)               | Medium-to coarse-grained biotite granodiorite.                                                                                                                                 | Intrudes On and Os.                                                                                     |                  | Late synkynematic I-type granitoid (Basden 1986).                                                                              |
| EARLY/LATE SILURIAN | Green Hills<br>Granodiorite<br>(Sgg)            | Coarse-grained equigranular muscovite-biotite granodiorite.                                                                                                                    | Intrudes On and Os.                                                                                     |                  | Late synkynematic S-type granitoid (Wyborn 1977; Basden 1986). Ages 406±6 Ma, 419±6 Ma, 422±6 Ma (K-Ar on biotite; Webb 1980). |
| EARL                | Young Granodiorite<br>(Sgy)                     | Massive coarse-grained equigran-<br>ular granodiorite. Minor net-vein<br>complexes with fine to medium-<br>grained quartz diorite. Mylonitic<br>within the Jugiong Shear Zone. | Intrudes €Oc, Shm. Gradation with Sbd.                                                                  | al               | S-type granite. Age 417±6 Ma (K-Ar on biotite; Evernden & Richards, 1962). Coeval with Sbd.                                    |
|                     | Micalong Swamp<br>Basic Igneous<br>Complex (Sm) | Dolerite, gabbro and aplite.                                                                                                                                                   | Intrudes So; intruded by Sgy.                                                                           |                  | Dyke complex. Age 430±9 Ma. (K-Ar on homblende, Owen & Wyborn 1979).                                                           |
|                     | North Mooney<br>Complex<br>(Shm)                | Gabbro and dolerite. Minor diorite, trondjhemite and albitite.                                                                                                                 | Intrudes €Oc, Sbd, Sbl, and Sh<br>Tectonic inclusions in €Oc.                                           | 1.               | Sheeted-dyke complex (Brown 1979) Age 426±6 Ma. (K-Ar on hornblende; Webb 1980).                                               |

Table 1 continued.


|                          | Unit                                 |         | Description                                                                                                                                                                                                                                                                                                    | Field relationships                                                                                                          | Thickne         |       | Remarks                                                                                                                                  |
|--------------------------|--------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Honeysuckle<br>Beds<br>(Sh)          |         | Massive dark green fractured altered metabasalt. Foliated near fault contacts. Pillow structures common. Minor interbedded metashale, silty slate, argillite, graded mafic tuff and rare fine- to coarsegrained quartz-poor arenite. Polymictic sedimentary breccia (basalt and dacite clasts) common at base. | Intruded by Shm and Sgy<br>Conformably overlies Sbl;<br>local basal breccia. Intertor<br>with and overlies Sbd.              |                 | 500   | Subaqueous basalt flows and minor intercalated sediments. Water depth < 1000 m (Basden 1986).                                            |
| URLAN                    | Blowering<br>Formation               | (Sbd)   | Porphyritic dacite crystal tuff; porphyritic medium-grained intrusive dacite.                                                                                                                                                                                                                                  | Conformable upright sequer overlies Sw and intertongue Sbl and Sh. Intrudes structunderlying Ow. Unconforn overlies Oub.     | s with<br>rally | 1000  | Flows and subvolcanic intrusions.<br>Coeval with Sgy and correlative of<br>429±16Ma Goobarragandra Volc-<br>anics (Owen & Wyborn (1979). |
| EARLY/LATE SILURIAN      |                                      | (Sbl)   | Brown meta-shale and slate with<br>silty laminae and graded very fine<br>to coarse-grained quartz-intermed-<br>iate arenite. Minor dacite flows,<br>mafic and felsic tuff,and meta-<br>basalt                                                                                                                  | Conformable upright sequer overlying and intertongueing Sbd. Underlies Sh and intru by Shm in north. Unconfort overlies Oub. | g with<br>ded   | 750   | Proximal sedimentary volcaniclastic sequence. Early Middle Ludlovian conodonts in allochthonous limestone clasts (Lightner 1977).        |
| щ                        | Wyangle For (Sw)                     | mation  | Shale, mudstone, fine to coarse-<br>grained quartz-poor to quartz-<br>intermediate arenite, polymictic<br>conglomerate, diamictite and rare<br>hornblende andesite.                                                                                                                                            | Unconformably overlies and faulted against Ojb. Underliintertongues with and intrud by Sbd.                                  | es.             | 500   | Allochthonous limestone blocks in diamictite contain conodonts of probable late Llandoverian to early Wenlockian age (Lightner 1977).    |
|                          |                                      |         | Shale, slate, chert, graded coarse-<br>grained volcanilithic arenite and<br>conglomerate.                                                                                                                                                                                                                      | Unconformably overlain by and Dls. Faulted against Or                                                                        |                 | 1000  | Late Wenlockian to early Ludlovian (Labutis 1969).                                                                                       |
|                          | Goobarragand<br>Volcanics<br>(So)    | ira     | Dacite, volcanic breccia, tuff, volcaniclastic sediments.                                                                                                                                                                                                                                                      | Intruded by Sgy and Sm.                                                                                                      |                 | 1000+ | Subaerial and ignimbritic fissure eruptions. Age 429±16 Ma. (Rb-Sr whole-rock; Owen & Wyborn 1979)                                       |
|                          |                                      |         |                                                                                                                                                                                                                                                                                                                | UNCONFORMITY                                                                                                                 |                 |       |                                                                                                                                          |
|                          | (Od)                                 |         | Medium-grained leuco-quartz-<br>diorite.                                                                                                                                                                                                                                                                       | Intrudes Ovg,                                                                                                                |                 |       | Minor intrusion associated with Ovg                                                                                                      |
|                          | Blacks Flat Di<br>(Odb)              | iorite  | Medium- to coarse-grained biotite-<br>hornblende diorite.                                                                                                                                                                                                                                                      | Intrudes COjb.                                                                                                               |                 |       | ?Thermal event 417±6 Ma (K-Ar on hornblende, Webb 1980).                                                                                 |
|                          | Tumut Ponds<br>Beds<br>(Out)         | ,       | Graded thickly bedded fine-to coarse-grained quartz-intermediate arenite, slate and minor quartz-rich arenite.                                                                                                                                                                                                 | Lateral equivalent of Oub. formably overlies Ovg.                                                                            | ?Con-           | 1000+ | Deep-marine turbidite sequence.                                                                                                          |
| ORDOVICIANEARLY SILURIAN | Bumbolee Cre<br>Formation<br>(Oub)   |         |                                                                                                                                                                                                                                                                                                                | gues with Ouj and Ovg. Int<br>by Dg and Sgc. Lateral equi                                                                    | ruded           | 2000+ | Deep-marine turbidite sequence.<br>Trace fossils of indeterminate age<br>(Atkins 1974).                                                  |
| /ICIAN)                  | Jackalass Slat<br>(Ouj)              | e       | Dark grey slate with silty laminae.<br>Rare fine-grained quartz-rich and<br>quartz-intermediate arenite.                                                                                                                                                                                                       | Conformably overlies Ovg a<br>underlies Oub. Intertongue<br>Ovg and Oub.                                                     |                 | 1000  | Distal facies of deep-marine turbidite sequence.                                                                                         |
| ORDO                     | Frampton Vol<br>(Ovf)                | lcanics | Meta-rhyolite, meta-rhyodacite, and siliceous slate.                                                                                                                                                                                                                                                           | Intertongues with Ovg. 100                                                                                                   |                 | 100   | Subaerial to shallow-water environment (Basden 1986). Age 425± Ma (U-Pb zircon).                                                         |
|                          | Brungle Cree<br>Metabasalt (O        |         | Meta-basalt, minor chert and meta-dolerite.                                                                                                                                                                                                                                                                    | Unconformably overlain by                                                                                                    | Sw.             | <1000 | Flows and subvolcanic intrusions.                                                                                                        |
|                          | Wermatong<br>Metabasalt<br>(Ow)      |         | Metabasalt, chert, chert-basalt<br>breccia; minor dolerite (Basden<br>1986).                                                                                                                                                                                                                                   | Intruded by Dgb (Goldsmit<br>Sdw (Willcock 1982) and S<br>Structurally overlain by Sbo                                       | Sbd.            | ~800  | Low-K tholeiite (Basden 1986). ?Correlative of Ovs and Or.                                                                               |
|                          | Snowball Mei<br>Igneous Com<br>(Ovs) |         | Metabasalt; minor meta-micro-<br>gabbro, chert, siltstone and volcan-<br>ilithic arenite (Basden 1986).                                                                                                                                                                                                        | Intertongues with Oub and Intruded by Dg.                                                                                    | Ovg.            | ~1000 | Low-K tholeiite (Basden 1986).<br>?Correlative of Ow and Or. Forms<br>lenses within probable deep-marine<br>turbidite sequence.          |

### Table 1 continued.

|                     | Unit                                                             | Description                                                                                                                                                                                                                                                                                                                                                 | Field relationships 7                                                   | hickness<br>(m) | Remarks                                                                                                                                          |
|---------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ORDOVICIAN-         | Gooandra Volcanics<br>Z(Ovg)                                     | Meta-andesitic lapilli and crystal lithic tuff, meta-andesite, meta-basalt, meta-rhyolite, meta-rhyolitic tuff, meta-dacite, polymictic conglomerate, silty slate, fine to coarsegrained quartz-intermediate and finegrained quartz-rich arenite; rare jasper, laminated black chert and marble.                                                            | and Sgr. Faulted against Oub? Lateral equivalent of On.                 | vf,<br>by Dg,   | Forms discontinuous volcanic aprons within probable deep-marine turbidite sequence. ?Late Darriwilian to ?early Gisbornian (Owen & Wyborn 1979). |
|                     | Kiandra<br>Group<br>(Ovk)                                        | Fine- to coarse-grained and pebbly mafic volcaniclastic metasediments, silty slate.                                                                                                                                                                                                                                                                         | Faulted against Ovg.                                                    | <5000           | Deep- to shallow-marine, locally subaerial. Late Darriwilian to ?late Gisbornian (Owen & Wyborn, 1979).                                          |
| ORDOVICIAN          | Nacka Nacka<br>Metabasic Igneous<br>Complex (On)                 | Amphibolite, metagabbro.                                                                                                                                                                                                                                                                                                                                    | Intruded by Sgw and Sgg.<br>Lateral equivalent of Ovg.                  |                 | Ages 465±6 Ma and 467±6 Ma (K-Ar on hornblende, Webb 1980).                                                                                      |
| Q                   | (Os)                                                             | Phyllite, biotite hornfels, banded quartz-albite-hornblende-biotite hornfels, chlorite schist, albite-biotite-muscovite hornfels.                                                                                                                                                                                                                           | Intruded by Sgw and Sgg.<br>Interdigitates with On.                     |                 | Metamorphosed quartz-rich flysch.<br>Gisbornian fossils in same sequence<br>to west (Sherwin 1968).                                              |
|                     | Turnut Ponds<br>Serpentinite<br>(COs)                            | Serpentinite, talc schist, serpent-<br>inised harzburgite, metabasalt and<br>amphibolite inclusions.                                                                                                                                                                                                                                                        | Faulted against other units.                                            |                 | Age unknown. Forms allochthonous tectonic slices within the Gilmore Fault Zone. ?Part of the Jindalee Group.                                     |
| CAMBRIAN-ORDOVICIAN | Coolac Serpentinite (COc)                                        | Massive well-jointed harzburgite with rare primary layering, schistos serpentinite, minor tale schist and rodingite dykes. Minor wherlite, pyroxenite and lherzolite in north. Common tectonic inclusions of gabbro, dolerite and diorite (Shm); meta-basalt (Sh); fine-grained quartzite; biotite schist; and granite Anthophyllite hornfels adjacent to D | Sgy and Shm.                                                            |                 | Forms tectonic slices within the Mooney Mooney Fault Zone. ?Part of Jindalee Group.                                                              |
| CA                  | Gundagai<br>Serpentinite<br>(COg)<br>Bullawyarra Schist<br>(Ojb) | Massive and schistose serpentinite, meta-pyroxenite, carbonate-talc schist.                                                                                                                                                                                                                                                                                 | Tectonic slivers within thrust<br>Faulted against Oub, Ouj, Ovg<br>Ovf. |                 | Forms allochthonous bodies derived from basement Jindalee Group.                                                                                 |
|                     | Bullawyarra Schist<br>(Ojb)                                      | Actinolite schist (meta-basalt and meta-dolerite)                                                                                                                                                                                                                                                                                                           | Faulted against other units.<br>Intruded by Odb.                        |                 | Forms metamorphic core complexes and faulted allochthonous slices.                                                                               |



**Fig. 4.** Diagrammatic stratigraphy of the Tumut 1:100 000 Sheet area (modified from Basden 1990b). Note: symbols correspond to those in Table 1; units include only those mentioned in this report excluding Dlg, Dls, Dlv, Sgr, Shm, Ssr, Out & Ovk which do not occur in the Tumut Sheet area.



**Fig. 5.** Diagrammatic Palaeozoic stratigraphy of the southern part of the Tumut Synclinorial Zone and adjacent parts of the Wagga Metamorphic Belt, and the Goobarragandra and Tantangara Blocks in the Tumut region. Note: unit symbols correspond to those in Table 1.

# Stratigraphy of the Tumut Synclinorial Zone and adjacent areas.

The geology of the region, described by Moye & others (1969a, b & c), Ashley & others (1971), Basden (1982, 1986, 1990b), Basden & others (1978), Owen & Wyborn (1979a), Wyborn (1977a), and Degeling (1975, 1977) is shown in Fig. 3. A summary of stratigraphic units of the southern part of the Tumut Synclinorial Zone and adjacent areas is given in Table 1. The relationships of the units, as interpreted by Basden (1990b) and as used throughout this study, are show diagrammatically in, respectively, Figs 4 & 5. Significant differences in the stratigraphic position and relationships of some units from that interpreted by Basden (1990a & b) and other previous workers is indicated. No new stratigraphic terms have been introduced. However, the distribution of some units and description of others has been modified from previously published work. These changes are detailed below.

The oldest unit in the area is the Cambrian-Ordovician Jindalee Group, comprising mainly greenschist facies mafic and ultramafic rocks (Bullawyarra Schist, Gundagai Serpentinite). These rocks crop out either as inliers within the Jindalee Block, northeast of Tumut, or as fault-bounded allochthonous blocks elsewhere in the region. Extensive ultramafic belts within the Mooney Mooney Fault and Gilmore Fault Zones, respectively, the Coolac and Tumut Ponds Serpentinites, may also be part of this basement or may represent Early Silurian intrusions.

Ordovician to Late Silurian flyschoid metasediments and felsic and mafic volcanics form two tectonostratigraphic sequences either structurally emplaced over or unconformably overlying basement rocks. The older of these two sequences consists largely of undated to quartz-intermediate quartz-rich flyschoid metasediments and mafic and minor felsic volcanics. These rocks. to shallow-water deposited in deep comprise part of the environments, Ordovician-Early Silurian Molong Volcanic Arc. Units included here in this sequence are: the Nacka Nacka Metabasic Igneous Complex; Brungle Creek Metabasalt; Wermatong Metabasalt; Snowball Metabasic Igneous Complex; Gooandra Volcanics; Frampton Volcanics; Jackalass Slate; Kiandra Group; Bumbolee Creek Formation and the Tumut Ponds Beds. These strata, deformed and metamorphosed during the Early Silurian Benambran Orogeny, are overlain by dated Early/Late Silurian S-type felsic volcanics, mafic volcanics, and minor fossiliferous quartz-poor to quartzintermediate flysch (Wyangle Formation, Blowering Formation, Honeysuckle Beds, Ravine Beds). The latter volcanics and sediments form the *Tumut Basin*, an interpreted Silurian pull-apart basin. Locally tholeiitic dyke complexes (North Mooney Complex, Micalong Swamp Mafic Igneous Complex) intruded during an extension event which accompanied this later period of volcanism.

During the Siluro-Devonian Bowning Orogeny the Early/Late Silurian and older strata were meridionally folded and metamorphosed to lower greenschist facies following intrusion of S- & I-type granitoids (Wondalga, Green Hills and Young Granodiorites, Rough Creek Tonalite and Gocup Granite). These granitoids, forming only a minor constituent of the Tumut Synclinorial Zone, are the dominant rock types in the adjacent Wagga Metamorphic Belt and the Goobarragandra Block.

Early Devonian post-kinematic I-type granitoids (the Bogong and Killimicat Granites, Lobs Hole Adamellite and several minor unnamed granite bodies) intrude older units and are associated with coeval shallow-water to subaerial ignimbrite and minor sediments (Minjary Volcanics, Gatelee Ignimbrite, Boraig Group, Byron Range Group). These volcanic sequences form remnant subhorizontal sheets unconformably overlying older strata and granitoids. Minor outliers of flat-lying Tertiary basalt and minor sediments also unconformably overlie older rocks, commonly forming hill top cappings in the region.

Extensive Quaternary alluvial and colluvial deposits of sand, gravel and clay form the floodplain of the Tumut River and its tributaries in the north of the region.

# Changes in stratigraphic nomenclature usage.

Use of the term Coolac Serpentinite, defined by Ashley & others (1971), has been extended to include: all areas mapped as Coolac Serpentinite by Ashley & others (1971); the ultramafic cumulate component (dunite, wehrlite, clinopyroxenite and pyroxene-bearing gabbro) of the North Mooney Complex

(Golding 1970, Franklin 1976); and all areas previously mapped as Mooney Mooney Serpentinite (Basden & others 1978). There is no basis for the distinction between the Mooney Mooney and Coolac Serpentinites, both units forming a continuous belt broken only by later faulting and intrusive incursions of Young Granodiorite and North Mooney Complex. The ultramafic and mafic cumulate component ("Layered series" of Basden & others 1987) of the North Mooney Complex has been included in the Coolac Serpentinite as the two are genetically and spatially related and contacts between the two are gradational. Similar rocks, with the addition of lherzolite, (also occur north of Brungle Creek where they were included in the Coolac Serpentinite by Ashley & others (1971). The term North Mooney Complex is here restricted to mainly hornblende-bearing gabbroic rocks which intrude the layered ultramafic cumulates, harzburgite (Coolac Serpentinite) and other Silurian units (e.g. Honeysuckle Beds).

The term Honeysuckle Beds, originally defined by Ashley & others (1971) to include basaltic rocks and minor sediments, is retained in preference to the term Honeysuckle Metabasic Igneous Complex (Basden 1982) as intrusive gabbroic rocks included in the latter unit are here placed, together with other hornblende-bearing gabbros, into the North Mooney Complex.

Felsic volcanics and minor sediments within the Mooney Mooney Fault Zone are included in the **Blowering Formation** ("Blowering Beds" of Ashley & others (1971), 1979). Basden & others (1978) and Basden (1986, 1990a) mapped these rocks as **Goobarragandra Volcanics**. However, the latter term is here applied to subaerial volcanics cropping out farther to the east which cap and are intruded by the Young Granodiorite (Owen & Wyborn 1979a & b). The felsic volcanics in the fault zone, like those mapped as Blowering Formation elsewhere in the Tumut Synclinorial Zone, underlie the Honeysuckle Beds and are interbedded with quartz-intermediate flysch.

Interbedded flyschoid sediments, volcaniclastics, mafic and felsic volcanic rocks previously mapped as Jackalass Slate (Basden 1986, 1990a) are included in the laterally continuous Gooandra Volcanics (Owen & Wyborn 1979a) and the term Jackalass Slate is restricted to a predominantly slate sequence separating the underlying Gooandra Volcanics from the overlying

Bumbolee Creek Formation in the Jackalass slate quarry reference area.

## ORGANISATION OF FIELDWORK AND MAP PRODUCTION

To satisfy the aims of the study six field areas were chosen for detailed geological mapping and structural analysis. These areas cover parts of the Cootamundra, Tumut and Yarrangobilly 1:100 000 Sheet areas and are

#### 1:100 000 SHEET AREAS

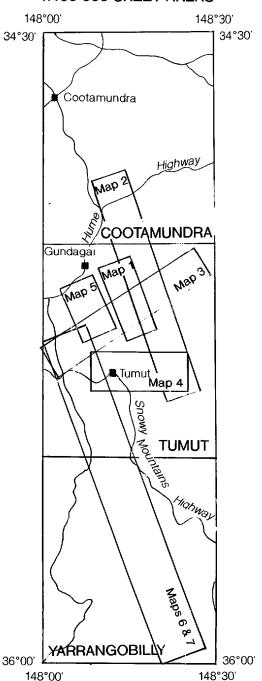



Fig. 6. Location of Maps 1-7 and areas in which detailed mapping and structural analysis was undertaken.

Results of this work are shown in Fig. 6. presented in seven maps, of varying scales, which are included. Map 1 (1: 25 000 scale) covers the two main basement inliers and contiguous cover over much of the Jindalee Block; Map 2 (1:50 000 scale) includes a ~60 km section of the southern portion of the Mooney Mooney Fault Zone and the main part of the Coolac Serpentinite; Maps 3 and 4 cover 5 km-wide traverses across the Tumut Synclinorial Zone along, respectively, the Tumut seismic traverse (1:100 000 scale), and along part of the Snowy Mountains Highway through Gilmore and Tumut, and along Bumbolee Creek (1:50 000 scale); Map 5 (1:25 000 scale) includes a complexly deformed area in the Tumut Block around Slaughterhouse Creek, north of Tumut; Maps 6 and 7 include, respectively, a regional (1:100 000 scale) map covering the southern 100 km of the Gilmore Fault Zone, and detailed (1:25 000 scale) maps and profiles of eight traverses across the zone. In addition the Indi Fault was examined along the Geehi Dam access road about 50 km southsouthwest of Cabramurra.

Grid references throughout the text are six figure AMG (Australian Map Grid) coordinates corresponding to the grid reference used on all attached maps.

All analytical data (i.e. microprobe, whole-rock geochemical and modal analyses) and list of thin section samples, included in the ORACLE database, are appended (Appendices 3, 4, 5 & 6). Thin sections, and rock powders and samples are lodged at the BMR rock store, Canberra.

The Palaeozoic timescale used in this study follows that of Veevers (1984) for all but the Silurian Period which follows that by Strusz (1989). The geochronological timescale relative to Series in the Devonian, Silurian and Ordovician Periods is shown in Fig. 7.

#### Rock terminology and classification

Sedimentary rock classification follows that of Crook (1960) and Limestone classification of Folk (1959). Granitoid and pyroclastic rock nomenclature are classified according to the nomenclature recommended by the IUGS Subcommission on the Systematics of Igneous Rocks, respectively, by Streckeisen (1973) and Schmid (1981). Terminology of fault-related rocks (e.g., cataclasite, mylonite) follows that suggested by Wise & others (1984).

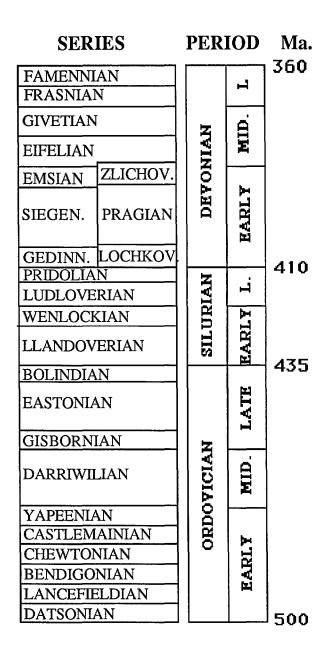



Fig. 7. Palaeozoic timescale.

All the Silurian and older rocks are metamorphosed to some degree and the prefix *meta*- is used for all rock types where the original protolith can be identified. Mineral prefixes in metamorphic and igneous rock terms (e.g., schist) are in order of increasing abundance.

#### **RESULTS**

This study was focussed on structural, stratigraphic and metamorphic aspects of Tumut region geology in an attempt to address "the lack of detailed published stratigraphic and structural information" (Packham 1987) on a key area in the Lachlan Fold Belt. The major results of the study have been presented by Stuart-Smith (1990a,b,c & in press) and Stuart-Smith & others (in prep) are summarised below.

- Rocks in the Jindalee Block form two (1) distinct domains: Cambrian-Ordovician basement and Ordovician-Early Silurian sedimentary and volcanic cover. These two domains are separated by a sharp discontinuity marking an abrupt change in rock type, structure, metamorphic grade and deformation style (Stuart-Smith 1990b). Cover sequences have undergone only one major penetrative deformation during the Late Silurian involving sub-greenschist facies metamorphism and upright folding. In contrast, the basement also underwent at least two older deformations at greenschist facies and contains distinct highstrain zones subconcordant with the basement/cover contact. The high-strain zones, characterised by a ubiquitous south-southeasttrending mineral lineation, record discontinuous history of ductile followed by brittle behaviour consistent with an extensional The structural and metamorphic discontinuity separating basement from Silurian cover is characterised by widespread cataclasis and alteration and is interpreted as a major detachment fault associated with Early Silurian lithospheric extension.
- (2)The Tumut Block forms the southern part of the Tumut Synclinorial Zone in the southeastern part of the LFB. The block contains two major tectonostratigraphic sequences: Ordovician-Early Silurian quartzrich to quartz-intermediate flysch and volcanics; and an overlying fossiliferous Early-Late Silurian volcanic sequence (Stuart-Smith 1990a, Stuart-Smith & others in prep). Rhyolite within the older sequence yields a U-Pb zircon age of about 425 Ma. Previously both of these sequences were regarded as forming part of the *Tumut Trough*. However, arenites from the two sequences are compositionally distinct and differences in clinopyroxene phenocryst compositions from mafic volcanics in both sequences reflect differing tectonic environments. Both tectonostratigraphic sequences were

- meridionally folded during the Siluro-Devonian Bowning Orogeny. An earlier deformation, characterised by thrust faulting, E-W recumbent folding and later local coaxial upright folding, is present only in the older flysch sequence. This earlier deformation is compared to the Benambran Orogeny described in Ordovician metamorphics of the WMB and is tightly constrained to about 425 Ma. Fold characteristics of this deformation are indicative of thin-skinned intraplate transpressional deformation rather than classical collisional tectonics as envisaged by some workers for the Benambran Orogeny here and elsewhere in the LFB.
- (3) The Gilmore Fault Zone is a long-lived imbricate fault system separating the Wagga Metamorphic Belt (WMB) from the Tumut Synclinorial Zone. Structures within the fault indicate dominantly transpressional movements during regional deformation in the Siluro-Devonian and mid-Devonian and/or Carboniferous (Stuart-Smith in press). The movements, in response to lateral compression, resulted in the WMB being thrust over the Tumut Block. In addition strike-slip movement may be inferred during Early Silurian regional deformation and Early Silurian extension. Common structural and metamorphic histories, and lithological correlation of rock units straddling the fault zone indicate that the Gilmore Fault Zone does not represent a terrane boundary in either the Late Ordovician or Silurian as suggested by some previous workers. Differences in geophysical expression and crustal composition across the zone can be explained by the the zone being a reactivated basement fault linked to a mid-crustal detachment.
- The Mooney Mooney Fault Zone, containing an extensive ultramafic belt known as the Coolac Serpentinite, forms the eastern margin of the Tumut Synclinorial Zone. The ultramafics together with mafic volcanics and intrusive gabbroic rocks have been previously interpreted as early Palaeozoic oceanic crust, dismembered and obducted during Siluro-Devonian deformation. However, a more complex history involving several periods of movement is evident (Stuart-Smith 1990c). The ultramafics and Early Silurian volcanics are intruded by Early Silurian gabbro dyke complexes and syn-kinematic Late Silurian granodiorite. These intrusive relationships indicate that the ultramafic rocks were present in approximately their present structural position prior to the Siluro-Devonian

deformation. The ultramafics therefore cannot represent Early Silurian oceanic crust, obducted during the Siluro-Devonian deformation, thus invalidating previous tectonic models for the region based on this interpretation. They probably represent either Early Silurian or Cambrian-Ordovician mantle-derived material emplaced within a strike-slip fault zone during Early Silurian oblique extension.

(5) The concept of an Early Silurian Tumut Trough is rejected. Instead Early/Late Silurian rocks form a pull-apart basinal sequence (the Tumut Basin), up to 2500 m thick (Stuart-Smith 1990a, Stuart-Smith & others in prep). The Silurian history of the Tumut region, previously considered unique in the LFB, is little different to other basins of a similar age throughout the LFB.

# PALAEOZOIC GEOLOGICAL HISTORY OF THE TUMUT REGION

Specific results of the study, summarised above, are incorporated here into a new geological history for the Tumut region which is shown schematically in Fig.8.

#### Cambrian to Ordovician basement

Although actinolite schist and ultramafics of assumed Cambrian to Ordovician age are the oldest rocks in the region, little can be ascertained about their origin as they occur as either faulted inliers or thrust slices. The rocks, forming structural basement to Ordovician to Early Silurian and younger strata possibly represent an Early Palaeozoic ophiolitic suite accreted to a late Proterozoic crust in the Early Ordovician (Basden 1986).

#### Ordovician to Early Silurian deposition

The Late Ordovician of southeastern Australia is characterised by extensive quartzrich flysch deposits interfingering with volcanic piles and associated volcaniclastic aprons (e.g. Cas 1983, Degeling & others 1986). These volcanics are thought to be part of a palaeo-volcanic arc: the Molong Volcanic Belt formed on thin Late Proterozoic basement at the Gondwanaland margin above a westward-dipping subduction zone (e.g. Degeling & others 1986, Packham 1987) or a migrating delaminated crust (Wyborn 1988).

In the Tumut region deep-water (below wave-base) proximal and distal quartz-rich and quartz-intermediate turbidites form part of this sequence, interfingering with mafic and felsic volcanics and associated volcaniclastic deposits. These deposits include the Nacka Nacka and Snowball Metabasic Igneous Complexes, the Kiandra Group, Brungle Creek Metabasalt, Wermatong Metabasalt, Gooandra Volcanics, Jackalass Slate, Bumbolee Creek Formation, Tumut Ponds Beds, and the Frampton Volcanics. The Ordovician and Early Silurian stratigraphy of the region has been revised substantially. Previously most of the above units were regarded as part of the Early Silurian Tumut Trough sequence. However, they are separated by a major structural discontinuity, interpreted as an unconformity, from overlying dated Early/LateSilurian volcanics and fossiliferous (late Llandoverian to early Wenlockian) quartz-poor flysch. These two tectonostratigraphic units are distinguished by distinct differences in arenite composition and differences in clinopyroxene-phenocryst compositions from mafic volcanics which reflect differing tectonic environments of formation. Mafic volcanics in the lower unit are interpreted as subduction related whereas those in the upper unit (i.e. Early/Late strata) have both intraplate and subduction related characteristics. A rhyolite flow within the Frampton Volcanics yields a U-Pb age of about 425 Ma placing an Early Silurian upper limit to the volcanic arc-related environment which characterised the Late Ordovician.

#### Early Silurian deformation

Deposition of deep-water turbidites and mafic to felsic volcanics was terminated abruptly in the Early Silurian by a deformation, characterised by lower to sub-greenschist facies metamorphism, thrust faulting, E-W recumbent folding and later local coaxial upright folding. The deformation is comparable to the Benambran Orogeny described in Ordovician metamorphics of the adjacent WMB and is tightly constrained in the Tumut region to about 425 Ma. characteristics of this deformation are indicative thin-skinned intraplate dextral transpressional deformation rather than classical collisional tectonics as envisaged by some workers for the Benambran Orogeny here and elsewhere in the Lachlan Fold Belt.

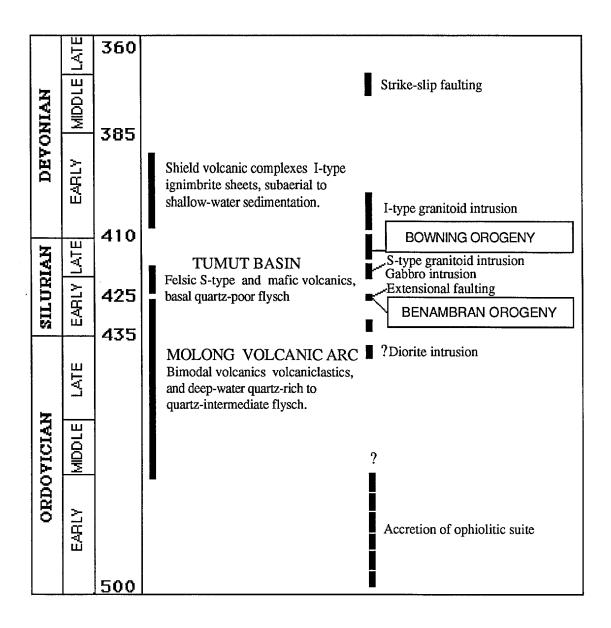



Fig. 8 Summary of Palaeozoic geological history of the Tumut region

The structural and metamorphic history of the Cambrian to Ordovician basement in the Jindalee Block involved at least two distinct deformations at greenschist facies in addition to Siluro-Devonian sub-greenschist facies metamorphism and upright folding. earliest deformation, of unknown age, predates diorite intrusion and the formation of highstrain zones and associated recumbent folding during the Early Silurian. As continuous prograde greenschist facies metamorphism is indicated for the two earlier deformations it is probable that both occurred during the High-T low-P Benambran Orogeny. conditions indicated for the metamorphism are comparable to those in the WMB. Apart from remobilisation of serpentinite locally into the thrusts, Cambrian-Ordovician basement rocks in the Tumut Block were largely detached from this deformation.

# Early Silurian extension and formation of the Tumut Basin

Crustal extension on the western margin of the Molong Volcanic Arc, mostly confined to the Jindalee Block in the Tumut region, immediately followed the Benambran Orogeny and resulted in the formation of the Tumut Basin. Evidence for this extension is preserved in inliers of Cambrian-Ordovician basement rocks and in the nature of the structural and metamorphic discontinuity separating basement This discontinuity is a and cover units. previously unrecognised, major, originally subhorizontal, fault zone characterised by massive breccias and cataclasites, and extensive chlorite and carbonate alteration. The zone is interpreted as the major detachment associated with attenuation of Ordovician-Early Silurian strata and associated basement uplift in a manner similar to that described for metamorphic core complexes. High-strain zones, subconcordant to this detachment are present in the basement and are characterised by a ubiquitous mineral-elongation lineation. These zones record a discontinuous history of ductile followed by brittle behaviour, consistent with an extensional origin. They probably represent reactivated thrust faults formed during the preceding deformation.

The indicated south-southeast to southerly extension direction, subparallels the Mooney Mooney Fault Zone consistent with the basin forming a narrow pull-apart basin, formed by dextral transtension between a jog in the Mooney Mooney Fault Zone and the Killimicat Fault. The detachment fault probably

linked into both strike-slip faults at depth, dipping southwards beneath the Goobarragandra Block. Unlike typical extension terranes, such as those associated with the Cordilleran metamorphic core complexes and back-arc terranes, the *Tumut Basin* grew in length rather than width.

Major movement on the detachment took place prior to deposition of late Llandoverian to early Wenlockian (Early Silurian) quartz-poor to quartz-intermediate (Wyangle Formation) flysch which unconformably overlies both the basement and Ordovician to Early Silurian strata. These sediments, deposited in shallow-marine conditions, exhibit rapid facies changes, filled interpreted steep-sided fault-bounded troughs and onlapped the underlying basement and attenuated cover. Basal flysch deposits were sourced from both older mafic volcanics and penecontemporaneous felsic volcanics. Later felsic and mafic volcanics were extruded filling the narrow basin formed within the Jindalee Block and covering parts of the adjacent Tumut Block. About 2500 m of strata are preserved in the basin, which extended for at least 80 km along the western margin of the Mooney Mooney Fault Zone, and was linked en echelon to a similar basin (the Yarrangobilly Basin ) to the south.

#### Emplacement of the Coolac Serpentinite

Intrusive relationships and the structural history of the Coolac Serpentinite indicate that it was emplaced into the Mooney Mooney Fault Zone during this Early Silurian extension event and not during the Siluro-Devonian Bowning Orogeny as previously interpreted. concept of a Silurian ophiolitic suite (Ashley & others 1979) incorporating the serpentinite, gabbroic rocks, basalt and minor sediments is rejected. The Honeysuckle Beds, which are supposed to represent the basaltic and sedimentary component of the ophiolitic suite, are the youngest Silurian strata in the Tumut They conformably overlie and Basin. intertongue with the Blowering Formation. Although the Coolac Serpentinite may have originated as part of an ophiolitic suite it is more appropriately interpreted as an Alpinetype body occupying a crustal suture. serpentinite possibly represents either an Early Silurian ultramafic intrusion or most likely a tectonic slice derived from the underlying Cambrian-Ordovician Jindalee Group.

#### Gabbro and granitoid intrusion

Mantle upwellings responsible for the Early Silurian deformation and subsequent extension resulted in the generation of felsic Stype and tholeiitic magmas. Extrusion of these melts into the Tumut Basin and adjoining blocks was followed by widespread intrusion of granitoid plutons and gabbroic dyke complexes. The Mooney Mooney Fault Zone was the locus of the tholeitic flows and gabbro intrusions, distinguished from their regional counterparts by lack of iron enrichment and other geochemical characteristics typical of ocean-floor basalts (Basden 1986). difference, used to support the inclusion of these rocks in a Silurian ophiolitic suite (Ashley & others 1979), can be explained by their location on a major active strike-slip crustal fracture zone. Crustal thinning, associated with extension localised on the fault zone, was sufficient to allow the passage of uncontaminated mantle-derived melts in a situation analogous to the Dead Sea leaky transform.

#### Siluro-Devonian deformation

During the Late Silurian/Early Devonian, in response to lateral compression, the WMB and the Goobarragandra Block were thrust towards one another over the Tumut Synclinorial Zone resulting in meridional folding of older strata. Thermal gradients were still high following intrusion of the Gocup Granite and other granitoids, and in the Tumut region, regional greenschist facies metamorphism accompanied the deformation.

The Mooney Mooney and Gilmore Fault Zones, trending northwesterly, oblique to the principal-compression direction, were active imbricate sinistral strike-slip systems during the deformation. Mylonitic rocks with common S-C fabrics and minor structures typical of Riedel shear geometry formed in the fault zones. Although older structures are not preserved, the faults were probably active strike-slip zones during the Early Silurian Benambran Orogeny and subsequent extension event.

The fault zones, which share a common, complex, history of deformation since the Siluro-Devonian, are interpreted to be linked to a mid-crustal detachment together with the other major faults in the region such as the Long Plain Fault. Dominantly reverse movements occurred on the Jugiong Shear

Zone and the Indi Fault both of which were orientated orthogonally to the principal-compression direction. The latter fault is continuous with the Gilmore Fault Zone.

#### Devonian felsic magmatism and strikeslip faulting

Extensive Flat-lying ignimbrite sheets and associated fossiliferous Early Devonian subaerial to shallow-water volcaniclastic sediments were deposited in the now cratonised Tumut Synclinorial Zone. The volcanics, forming shield volcanic complexes in places (Owen & others 1982), were intruded by comagmatic I-type granitoid plutons of the Boggy Plain Supersuite (Wyborn & others 1987). These felsic magmas were derived from a gabbroic source, underplated at the base of the crust during the Middle (Wyborn & others 1987).

During the mid-Devonian and/or Carboniferous, renewed lateral compression resulted in reactivation of the Killimicat Fault and the Gilmore and Mooney Mooney Fault Zones. In the latter two zones sinistral strikeslip faulting was associated with development of chloritic cataclasite locally in granitic mylonite and extensive schistose serpentinite margins to contained ultramafics (the Coolac and Tumut Ponds Serpentinites) characterised by S-C fabrics. Within the fault zones Early Devonian strata were openly folded with an axial spaced cleavage commonly developed. A total of 28 km horizontal displacement is interpreted for the Mooney Mooney Fault Zone during the mid Devonian and/or Carboniferous movement(s). The amount of displacement on the Gilmore Fault Zone, Killimicat Fault and for earlier movements on the Mooney Mooney Fault Zone is unknown. During the waning stages of sinistral strike-slip movement conjugate NE-trending dextral strike-slip faults formed in localised transpressional zones within the Mooney Mooney Fault Zone.

#### CONCLUSION

Previous tectonic models for the region were based on the presence of an interpreted Early Silurian ophiolitic suite and correlation of quartz-rich flysch with dated Early/Late Silurian volcanics. With the invalidation of both these interpretations the concept of the *Tumut Trough* is no longer applicable. The stratigraphy and structural history of the Tumut region is instead, little different than other areas of the Lachlan Fold Belt. However, the presence of

Cambrian to Ordiovician basement and the oceanic affinity of mafic volcanics and tholeitic intrusions suggests a tectonic environment not replicated elsewhere in the fold belt. The intracratonic pull-apart basin model for Early Silurian extension in the region is compatible with these features. Similar transtensional tectonic settings may apply to other Early Silurian basins in the LFB where extension was insufficient to enable crustal thining and extrusion and/or intrusion of uncontaminated mantle melts.

Late Ordovician or Late Silurian accretionary models, including the fore-arc collision model of Crook (1980a), also cannot be sustained. Common structural and metamorphic histories, and lithological correlation of Ordovician to Early Silurian rocks straddling the Gilmore Fault Zone indicate that this fault zone does not represent a terrane boundary in the Late Ordovician or Silurian as suggested by some previous workers (e.g. Degeling & others 1986). Differences in geophysical expression and crustal composition across the zone can be explained by the zone being a reactivated basement fault which corresponds, in part, to a proposed Late-Proterozoic terrane boundary (Chappell & others 1988).

Many of the outstanding stratigraphic and structural problems of the region have been resolved by this study. The dating of the Frampton Volcanics (~425 Ma.) places an Early Silurian upper age for the Molong Volcanic Arc and tightly constrains the age of the Benambran Orogeny to the late Early Silurian. However, the correlation and relationships of Ordovician to Early Silurian strata, covering a time span of ~40 Ma., still remains poorly controlled. The ages of the Cambrian to Ordovician basement, Coolac Serpentinite, gabbro dykes and granitoid intrusions are also poorly constrained. Further isotopic age dating of these rocks will be essential if hypotheses presented here are to be tested and further progress is to be made in understanding the tectonic development of the Tumut region.

#### **ACKNOWLEDGEMENTS**

This study was undertaken as part of a Ph.D. program at the Australian National University. I am particularly grateful to M.J. Rickard and M.A. Etheridge for their guiding supervision and K.A.W. Crook for pertinent advice.

H. Basden, W.E. Cameron, K.A.W. Crook, M.A. Etheridge, B.J. Franklin, R.I. Hill, J.H. Leven, G.S. Lister, B. Marshall, R. Musgrave, M.J. Rickard, P. Warner and D. Wyborn are thanked for many stimulating discussions. D. Pillinger gave helpful advice on map production, prepared topographic bases and drafted the map surrounds.

I appreciate the technical assistance given by N.G. Ware and R. Heady in, respectively, operations of the electron microprobe and scanning electron microscope. J. Kamprad and J. Vickers prepared thin sections. R.I. Hill provided preliminary U-Pb zircon dates for the Frampton Volcanics and J.H. Leven digitised line interpretations of the Tumut seismic reflection profile shown in Appendix 2.

The people of the Tumut-Gundagai district, and personnel of the NSW National Parks and Wildlife Service (Tumut Branch) and the Snowy Mountains Authority (Cabramurra Branch) willingly assisted with field access.

#### REFERENCES

ASHLEY P.H., BROWN P.F., FRANKLIN B.J., RAY A.S. & SCHEIBNER E. 1979. Field and geochemical characteristics of the Coolac Ophiolite and its possible origin in a marginal sea. *Journal of the Geological Society of Australia* 26, 45-60.

ASHLEY P.H., CHENALL B.E., CREMER P.L. & IRVINE A.J. 1971. The geology of the Coolac Serpentinite and adjacent rocks east of Tumut, New South Wales. *Journal and Proceedings of the Royal Society of New South Wales* 104, 11-29.

ATKINS B.N. 1974. The geology of the Minjary district. *Australian National University* B.Sc. (Hons) thesis (unpublished).

BARKAS J.P. 1976. Early Devonian igneous activity and some stratigraphic correlations in the Tumut region, NSW. Proceedings of the Linnean Society of New South Wales 101, 13-25.

BASDEN H. 1982. Preliminary report on the geology of the Tumut 1: 100 000 Sheet area, southern New South Wales. New South Wales Geological Survey -- Quarterly Notes 46, 18p.

BASDEN H. 1986. Tectonostratigraphic and geochemical development of the Tumut area. *New South Wales Institute of Technology* M.App.Sc. thesis (unpublished).

BASDEN H. 1990a. Tumut 1:100 000 Geological Sheet 8527. New South Wales Geological Survey, Sydney.

- BASDEN H. 1990b. Geology of the Tumut 1:100 000 Geological Sheet 8527. New South Wales Geological Survey, Sydney.
- BASDEN H., ADRIAN J., CLIFT D.S.L. & WINCHESTER R.E. 1978. Geology of the Cootamundra 1: 100 000 Sheet 8528. New South Wales Geological Survey, Sydney.
- BASDEN H., FRANKLIN B.J., MARSHALL B. & WALTHO A.E. 1987. Terranes of the Tumut district, southeastern New South Wales, Australia. *In*: Leitch, E.C. & Scheibner, E. eds, *Terrane Accretion and Orogenic Belts*. American Geophysical Union, Geodynamics Series 19, 57-66.
- BROWN P.F. 1979. A sheeted dyke complex within the Coolac Ophiolite, southeastern New South Wales. *Journal of the Geological Society of Australia* 26, 411-417.
- CAS, R.A.F., 1983. Palaeogeographic and tectonic development of the Lachlan Fold Belt, southeastern Australia. Special publication of the Geological Society of Australia 10, 104pp.
- CHAPPELL B.W., WHITE A.J.R. & HINE R. 1988. Granite provinces and basement terranes in the Lachlan Fold Belt, southeastern Australia. *Australian Journal of Earth Sciences* 35, 505-521.
- CROOK K.A.W. 1960. Classification of arenites. *American Journal of Science* 258, 419-428.
- CROOK K.A.W. 1974. Kratonisation of the West-Pacific type geosynclines. *Journal of Geology* **82**, 24-36.
- CROOK K.A.W. 1980a. Fore-arc evolution in the Tasman Geosyncline: the origin of the southeast Australian continental crust. *Journal of the Geological Society of Australia* 27, 215-232.
- CROOK K.A.W. 1980b. Fore-arc evolution and continental growth: a general model. *Journal of Structural Geology* 2, 289-303.
- DEGELING P.R. 1975. Wagga Anticlinorial Zone. In Markham, N.L.and Basden H., eds, The Mineral Deposits of New South Wales. New South Wales Geological Survey, Sydney, 132-147.
- DEGELING P.R. 1977. Wagga Wagga 1:250 000 Metallogenic Map SI 55-15. New South Wales Geological Survey, Sydney.
- DEGELING P.R., GILLIGAN L.B., SCHEIBNER E. & SUPPEL D.W. 1986. Metallogeny and tectonic development of the Tasman Fold Belt System in New South Wales. *Ore Geology Reviews* 1, 259-313.

- DICKINSON W.R. & SEELEY D.R. 1979. Structure and stratigraphy of fore-arc regions. American Association of Petroleum Geologists Bulletin 63, 2-31.
- EVERNDEN J.E. & RICHARDS J.R. 1962. Potassium-argon ages in eastern Australia. *Journal of the Geological Society of Australia* 9, 1-49.
- FOLK R.L. 1959. Practical petrographic classification of limestones. Bulletin of the American Association of Petroleum Geologists 43, 1-38.
- FRANKLIN B.J. 1976. The geology of the North Mooney Complex. *University of New South Wales*, Ph.D. thesis (unpublished).
- GILLIGAN L.B. & SCHEIBNER E. 1978. Lachlan Fold Belt in New South Wales. *In* Scheibner E. ed., Phanerozoic Structure of Australia and Variations in Tectonic Style. *Tectonophysics* 48, 217-265.
- GOLDING H.G. 1970. The Coolac-Goobarragandra ultramafic belt, N.S.W. Journal and Proceedings of the Royal Society of New South Wales 102, 173-187.
- GOLDSMITH R.M.C. 1973. The geology of the Lacmalac area, N.S.W. Australian National University B.Sc. (Hons) thesis (unpublished).
- KARIG D.E. & SHARMAN III G.F. 1975. Subduction and accretion in trenches. *Geological Society of America Bulletin* 86, 377-389.
- KENNARD J.M. 1974. Geology of the Brungle district. *Australian National University* B.Sc. (Hons) thesis, (unpublished).
- LABUTIS V. 1969. Geology of the Yarrangobilly area. *Australian National University* B.Sc. (Hons) thesis, (unpublished).
- LEVEN J.H. & RICKARD M.J. 1987. Tumut Trough seismic survey New South Wales. *Bureau of Mineral Resources, Australia* Record 1987/62.
- LEVEN J.H., STUART-SMITH P.G., RICKARD M.J. & CROOK K.A.W. 1988a. A deep seismic survey across the Tumut Trough, New South Wales. *Ninth Australian Geological Convention:* Geological Society of Australia, Abstracts 21, 247-248.
- LEVEN J.H., STUART-SMITH P.G., RICKARD M.J. & CROOK K.A.W. 1988b. A deep seismic survey across the Tumut Trough, southeastern Australia. International workshop and symposium on Seismic Probing of Continents and their Margins, Abstracts. *Bureau of Mineral Resources, Australia*, Record 1988/21, p89.
- LIGHTNER J.D. 1977. The stratigraphy, structure and depositional history of the Tumut region, NSW. Australian National University M.Sc. thesis, (unpublished).

- MOYE D.G., SHARP K.R. & STAPLEDON D.H. 1969a. Ordovician System: 3. Snowy Mountains Belt. *In* Packham, G.H. ed, *The Geology of New South Wales*: Geological Society of Australia, 91-97.
- MOYE D.G., SHARP K.R. & STAPLEDON D.H. 1969b. Silurian System: Snowy Mountains Region. *In* Packham, G.H. ed, *The Geology of New South Wales*: Geological Society of Australia, 114-119.
- MOYE D.G., SHARP K.R. & STAPLEDON D.H. 1969c. Devonian System I Lower and Middle Devonian Series: Snowy Mountains Area. *In Packham*, G.H. ed, *The Geology of New South Wales*: Geological Society of Australia, 143-146.
- OWEN M. & WYBORN D. 1979a. Geology and geochemistry of the Tantangara and Brindabella area. Bureau of Mineral Resources, Australia Bulletin 204, 52p.
- OWEN M. & WYBORN D. 1979b. BRINDABELLA (NSW and ACT) 1:100 000 Geological Map First Edition. Bureau of Mineral Resources, Australia.
- OWEN M. & WYBORN D. 1979c. TANTANGARA (NSW and ACT) 1:100 000 Geological Map First Edition. Bureau of Mineral Resources, Australia.
- OWEN M., WYBORN D. & WYBORN L. 1982. Kosciusko National Park and Environs (NSW and ACT) 1:250 000 Geological Map Preliminary Edition. *Bureau of Mineral Resources, Australia*.
- PACKHAM G.H. 1987. The eastern Lachlan Fold Belt of southeastern Australia: A possible late Ordovician to early Devonian sinistral strike-slip regime. In Leitch E.C. & Scheibner E. eds, Terrane Accretion and Orogenic Belts: American Geophysical Union, Geodynamics Series 19, 67-82.
- POWELL C.McA. 1983a. Tectonic relationships between the late Ordovician and Late Silurian palaeogeographies of southeastern Australia. *Journal of the Geological Society of Australia* 30, 353-373.
- RICHARDS J.R., BARKAS J.P. & VALLANCE T.G. 1977. A Lower Devonian point on the geological timescale. *Geochemical Journal* 11, 147-153.
- SCHEIBNER E. 1973. A plate tectonic model of the Palaeozoic tectonic history of New South Wales. *Journal of the Geological Society of Australia* 20, 405-426.
- SCHEIBNER E. 1985. Suspect terranes in the Tasman Fold Belt System, eastern Australia. In Tectonostratigraphic Terranes in the circum-Pacific Region. Circum-Pacific Council for Energy and Mineral Resources-Earth Science Series 1, 493-514.

- SCHMID R. 1981. Descriptive nomenclature and classification of pyroclastic rocks and fragments: recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. *Geology* 9, 41-43.
- SHERWIN L. 1968. Upper Devonian sandstone from Mt. Galore/Graptolites from Moorong Quarry. New South Wales Geological Survey -- Palaentological Report 1968/4 (GS 1975/199).
- STRECKEISEN A.L. 1973. Plutonic rocks, classification and nomenclature recommended by the IUGS Subcommission on the Systematics of Igneous Rocks. *Geotimes*, October 1973, 26-30.
- STRUSZ D.L. 1989. Australian Phanerozoic timescales: Silurian. Bureau of Mineral Resources, Australia, Record 1989/33.
- STUART-SMITH P.G. 1988. Surface geology and structure of the Tumut seismic traverse, Lachlan Fold Belt, New South Wales. *Bureau of Mineral Resources, Australia Record* 1988/27.
- STUART-SMITH P.G. 1990a. Structure and tectonics of the Tumut region, Lachlan Fold Belt, southeastern Australia. *Australian National University* Ph.D. thesis (unpublished).
- STUART-SMITH P.G. 1990b. Evidence for extension tectonics in the Tumut Trough, Lachlan Fold Belt, NSW. Australian Journal of Earth Sciences 37, 147-167.
- STUART-SMITH P.G. 1990c. The emplacement and fault history of the Coolac Serpentinite, Lachlan Fold Belt, southeastern Australia. *Journal of Structural Geology*, **12**, 621-638.
- STUART-SMITH, P.G. in press. The Gilmore Fault Zone-- the deformation history of a possible terrane boundary within the Lachlan Fold Belt. *BMR Journal of Australian Geology and Geophysics*.
- STUART-SMITH P.G., HILL R.I., RICKARD M.J. & ETHERIDGE M.A. in prep. The stratigraphy and deformation history of the Tumut region: implications for the development of the Lachlan Fold Belt.
- VEEVERS J.J., ed. 1984. Phanerozoic earth history of Australia. *Clarendon Press*, Oxford Geological Science Series 2, pp 418.
- WEBB A.W. 1980. K/Ar analyses (Tumut area). The Australian Mineral Development Laboratories Report AC 5446/80. *New South Wales Geological Survey* Report GS 1980/444 (unpublished).
- WILLCOCK, K. 1982. The geology of the "Benwerrin" property, southeast of Tumut, N.S.W. *New South Wales Institute of Technology*, B.App.Sc. thesis (unpublished).

WISE D.U., DUNN D.E., ENGELDER J.T., GEISER P.A., HATCHER R.D., KISH S.A., ODOM A.L. & SCHAMEL S. 1984. Fault-related rocks: suggestions for terminology. *Geology* 12, 391-394.

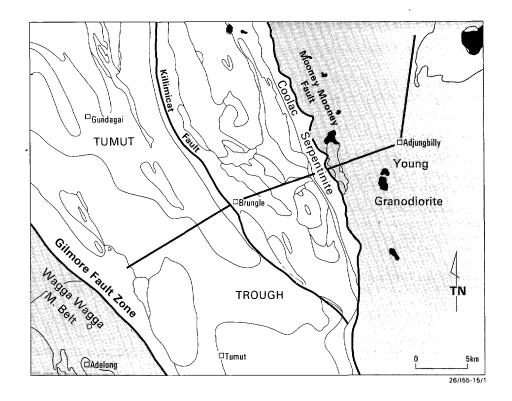
WYBORN L.A.I. 1977. Aspects of the geology of the Snowy Mountains region. Australian National University Ph.D. thesis (unpublished).

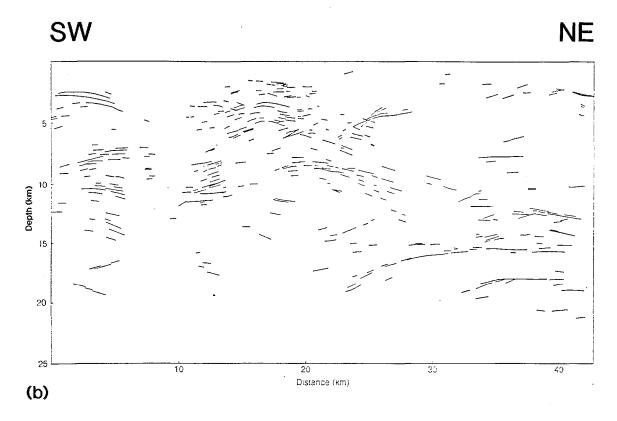
WYBORN D. 1988. Ordovician magmatism, gold mineralisation, and an integrated tectonic model for the Ordovician and Silurian history of the Lachlan Fold Belt in NSW. *BMR Research Newsletter* 8, 13-14.

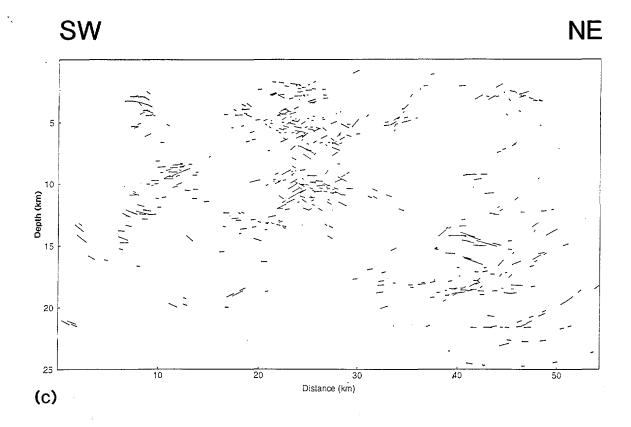
WYBORN D., TURNER B.S. & CHAPPELL B.W. 1987. The Boggy Plain Supersuite: A distinctive belt of I-type igneous rocks of potential economic significance in the Lachlan Fold Belt. *Australian Journal of Earth Sciences* 34, 21-43.

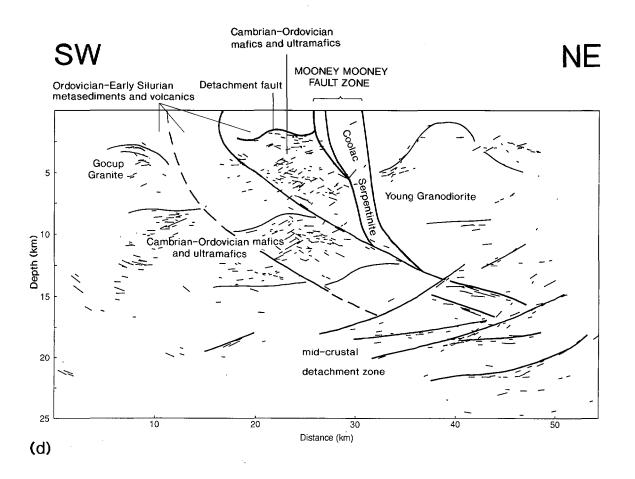
APPENDIX 1

DETAILS OF SAMPLES COLLECTED FOR ISOTOPIC AND PALAENTOLOGICAL DATING


| Sample No |             | Grid<br>eference | Formation                | Rock<br>type | Dating<br>method |
|-----------|-------------|------------------|--------------------------|--------------|------------------|
| 86843041  | TUMUT       | 139144           | Brungle Creek Metabasalt | tuff         | 1                |
| 86843118  | Ħ           | 124174           | Blacks Flat Diorite      | diorite      | 1                |
| 87843006  | 11          | 118082           | ?Wyangle Formation       | vitric tuff  | 1                |
| 88843136  | H           |                  | Frampton Volcanics       | rhyolite     | 1                |
| 88843535  | **          |                  | Gooandra Volcanics       | diorite pel  | oble 1           |
| 88843748  | 11          | 050157           | Bumbolee Creek Formation | chert        | 2                |
| 89843200  | COOTAMUNDRA | 085361           | Coolac Serpentinite      | gabbro       | 1                |
| 89843201  | H           | 082359           | " "                      | "            | 1                |
| 89843202  | TUMUT       | 062921           | Gocup Granite            | granite      | 1                |
| 89843203  | 11          | 028966           | " "                      | "            | 1                |
| 89843204  | **          | 163749           | Blowering Formation      | dacite       | 1                |
| 89843206  | **          |                  | Gatelee Ignimbrite       | ignimbrite   | 1                |


1 = U-Pb zircon; 2 = palaentological.


### **APPENDIX 2**


### TUMUT SEISMIC REFLECTION PROFILE

(a) Location of traverse (from Leven *et al* 1988a), (b) unmigrated line diagram, (c) migrated line diagram, (d) migrated line diagram showing interpreted structures.









# APPENDIX 3 BULLAWYARRA SCHIST: MICROPROBE ANALYSES

#### Sample details:

| No     | Sample No   | Grid Ref. | Sheet<br>area | Mineral        |
|--------|-------------|-----------|---------------|----------------|
| 1      | 86843193 C2 | 115204    | TUMUT         | S1b hornblende |
| 2      | 86843193 A2 | 11        | **            | S1b actinolite |
| 3      | 86843253 B2 | 117217    | **            | S2b actinolite |
|        | 86843193 B1 | 115204    | **            | S1b hornblende |
| 4<br>5 | 86843193 D1 | н         | Ħ             | S1b actinolite |
| 6      | 86843253 B3 | 117217    | #1            | S2b actinolite |
| 7      | 86843253 D1 | ,,        | 11            | S2b actinolite |
| 8      | 86843189 D1 | 114195    | 41            | S1b hornblende |
| ğ      | 86843192 D3 | 120202    | n             | S1b actinolite |
| 10     | 86843253 A4 | 117217    | 11            | feldspar       |
| 11     | 86843367 A5 | 198078    | 11            | feldspar       |
| 12     | 86843193 A3 | 115204    | 11            | feldspar       |
| 13     | 86843192 B1 | 120202    | 11            | feldspar       |

#### (a) Amphiboles

| Sample *                      | 1      | 2      | 3                                     | 4      | 5      | 6      | 7      | 8      | 9      |
|-------------------------------|--------|--------|---------------------------------------|--------|--------|--------|--------|--------|--------|
| SiO <sub>2</sub>              | 45.95  | 51.48  | 52.73                                 | 45.29  | 52.91  | 52.74  | 51.37  | 46.46  | 53.75  |
| $TiO_2$                       | 0.31   | 0.05   | 0.20                                  | 0.32   | 0.02   | 0.09   | 0.39   | 0.34   | 0.00   |
| $Al_2\tilde{O}_3$             | 11.20  | 3.28   | 2.27                                  | 11.87  | 2.24   | 2.68   | 3.77   | 9.92   | 2.10   |
| $Cr_2O_3$                     | 0.00   | 0.27   | 0.00                                  | 0.00   | 0.31   | 0.00   | 0.00   | 0.16   | 0.00   |
| FeO                           | 15.28  | 13.45  | 15.83                                 | 15.34  | 13.48  | 14.88  | 15.81  | 13.16  | 10.74  |
| MnO                           | 0.29   | 0.23   | 0.32                                  | 0.28   | 0.29   | 0.36   | 0.38   | 0.22   | 0.18   |
| MgO                           | 10.17  | 13.69  | 13.12                                 | 9.62   | 14.33  | 13.45  | 12.53  | 12.32  | 16.13  |
| CaO                           | 11.17  | 12.30  | 12.22                                 | 11.40  | 12.11  | 12.02  | 11.74  | 11.61  | 12.57  |
| $Na_2O$                       | 1.31   | 0.30   | 0.16                                  | 1.33   | 0.19   | 0.25   | 0.39   | 1.20   | 0.23   |
| $K_2O$                        | 0.30   | 0.11   | 0.08                                  | 0.29   | 0.08   | 0.06   | 0.14   | 0.19   | 0.04   |
| Total                         | 95.98  | 95.17  | 96.92                                 | 95.73  | 95.96  | 96.54  | 96.53  | 95.58  | 95.74  |
| Cations per 23 oxyg           | ens    |        | · · · · · · · · · · · · · · · · · · · |        |        |        |        |        |        |
| Si                            | 6.873  | 7.661  | 7.768                                 | 6.802  | 7.788  | 7.760  | 7.610  | 6.919  | 7.820  |
| $Al^{i\nu}$                   | 1.127  | 0.339  | 0.232                                 | 1.198  | 0.212  | 0.240  | 0.390  | 1.081  | 0.180  |
| $\Sigma$ tetrahedra           | 8.000  | 8.000  | 8.000                                 | 8.000  | 8.000  | 8.000  | 8.000  | 8.000  | 8.000  |
| $AI^{vi}$                     | 0.847  | 0.236  | 0.161                                 | 0.904  | 0.176  | 0.225  | 0.269  | 0.660  | 0.179  |
| Ti                            | 0.035  | 0.006  | 0.022                                 | 0.036  | 0.003  | 0.010  | 0.043  | 0.038  | 0.000  |
| Cr                            | 0.000  | 0.032  | 0.000                                 | 0.000  | 0.036  | 0.000  | 0.000  | 0.019  | 0.000  |
| Mg                            | 2.267  | 3.038  | 2.882                                 | 2.154  | 3.144  | 2.950  | 2.767  | 2.734  | 3.498  |
| Fe                            | 1.851  | 1.673  | 1.935                                 | 1.906  | 1.641  | 1.815  | 1.921  | 1.549  | 1.307  |
| Mn                            |        | 0.015  |                                       |        |        |        |        |        | 0.016  |
| $\sum M1$ , $M2$ , $M3$ sites | 5.000  | 5.000  | 5.000                                 | 5.000  | 5.000  | 5.000  | 5.000  | 5.000  | 5.000  |
| Fe                            | 0.060  |        | 0.015                                 | 0.021  | 0.018  | 0.016  | 0.038  | 0.091  |        |
| Mn                            | 0.037  | 0.014  | 0.040                                 | 0.035  | 0.036  | 0.044  | 0.048  | 0.028  | 0.005  |
| Ca                            | 1.789  | 1.961  | 1.929                                 | 1.834  | 1.909  | 1.895  | 1.863  | 1.853  | 1.959  |
| Na                            | 0.114  | 0.025  | 0.016                                 | 0.110  | 0.037  | 0.045  | 0.051  | 0.028  | 0.036  |
| $\sum M4$ site                | 2.000  | 2.000  | 2.000                                 | 2.000  | 2.000  | 2.000  | 2.000  | 2.000  | 2.000  |
| Na                            | 0.265  | 0.062  | 0.029                                 | 0.277  | 0.018  | 0.026  | 0.061  | 0.319  | 0.029  |
| $\sum_{i=1}^{K} A$ site       | 0.058  | 0.022  | 0.015                                 | 0.056  | 0.014  | 0.011  | 0.027  | 0.035  | 0.007  |
| ∠A SHE                        | 0.323  | 0.084  | 0.044                                 | 0.333  | 0.032  | 0.037  | 0.088  | 0.354  | 0.036  |
| Total                         | 15.323 | 15.084 | 15.044                                | 15.333 | 15.032 | 15.037 | 15.088 | 15.354 | 15.036 |

<sup>\* =</sup> wt %

### (b) Feldspars

| Sample *           | 10     | 11     | 12     | 13     |
|--------------------|--------|--------|--------|--------|
| $\overline{SiO_2}$ | 68.22  | 68.02  | 67.04  | 66.08  |
| $TiO_2$            | < 0.04 | < 0.04 | < 0.02 | < 0.04 |
| $Al_2\bar{O}_3$    | 19.69  | 20.41  | 21.18  | 20.11  |
| $Cr_2O_3$          | < 0.08 | < 0.08 | < 0.03 | <0.08  |
| FeO                | < 0.09 | < 0.08 | 0.05   | < 0.11 |
| MnO                | < 0.07 | < 0.07 | < 0.03 | < 0.06 |
| NiO                | < 0.06 | < 0.06 | < 0.02 | < 0.06 |
| MgO                | < 0.04 | < 0.04 | < 0.02 | < 0.04 |
| CaO                | 0.20   | < 0.20 | 1.12   | 0.40   |
| $Na_2O$            | 10.75  | 11.51  | 10.92  | 11.01  |
| $K_2O$             | 0.11   | 0.09   | 0.07   | 0.06   |
| Total              | 98.97  | 100.23 | 100.38 | 97.65  |

<sup>\* =</sup> wt %

### Cations per 32 oxygens

| Si    | 11.988 | 11.858 | 11.697 | 11.823 |
|-------|--------|--------|--------|--------|
| Al    | 4.081  | 4.194  | 4.355  | 4.241  |
| Fe2+  |        |        | 0.008  |        |
| Ca    | 0.038  | 0.038  | 0.210  | 0.076  |
| Na    | 3.665  | 3.891  | 3.694  | 3.821  |
| K     | 0.025  | 0.021  | 0.015  | 0.013  |
| Total | 19.807 | 20.001 | 19.980 | 19.974 |
| XCa   | 0.01   | 0.01   | 0.05   | 0.02   |
| XNa   | 0.98   | 0.99   | 0.94   | 0.98   |
| XK    | 0.01   | 0.01   | 0.00   | 0.00   |
|       |        |        |        |        |

#### APPENDIX 4

#### CLINOPYROXENE MICROPROBE ANALYSES

#### Sample details:

| No     | BMR Nº      | Sheet area | Grid ref. | Formation   | ı             | Sample ty   | pe        |
|--------|-------------|------------|-----------|-------------|---------------|-------------|-----------|
| 1      | 87843414    | TUMUT      | 995027    |             | Volcanics     | rim of ph   | enocryst  |
| 2      | **          | "          | 11        | "           | "             | core "      | 11        |
| 3<br>4 | **          | **         | 11        | tt          | "             | core "      | 11        |
| 4      | 11          | 11         | 11        | ***         | "             | core "      | 11        |
| 5      | <b>!!</b>   | 11         | 11        | 11          | 11            | core "      | 11        |
| 6      | 87843005    | 11         | 132103    | Brungle C   | k. Metabasalt | core        |           |
| 7      | **          | 29         | 11        | 11 11       | **            | rim "       | 11        |
| 8      | **          | **         | 11        | 11 11       |               | core        |           |
| 9      | "           | 11         | 11        | 11 **       |               | rim "       | 11        |
| 10     | 87843011A   | "          | 171135    | Honeysuc    | kle Beds      | core        |           |
| 11     | **          | **         | ***       | 11          | 11            | rim "       | 11        |
| 12     | "           | 11         | ***       | 11          | 11            | rim         |           |
| 13     | 11          | **         | ***       | 11          | 11            | core "      | 11        |
| 14     | 11          | "          | 11        | **          | 11            | core        |           |
| 15     | 11          | **         | 11        | 11          | 11            | rim "       | 11        |
| 16     | ††          | **         | H         | 11          | 11            | rim         |           |
| 17     | 11          | 11         | Ħ         | 11          | 11            | core "      | 11        |
| 18     | 86843510    | **         | 191099    | Wyangle 1   | Formation     | rim of pl   | nenocryst |
| 19     | tt          | n          | 11        | ,, <u> </u> | 11            | core in m   |           |
| 20     | tt          | rr.        | 11        | 11          | 11            | core        |           |
| 21     | tt          | tt         | 11        | 11          | 11            | rim         | 11        |
| 22     | tt          | PP .       | 11        | 11          | 11            | core        |           |
| 23     | tt          | tt         | 11        | 11          | 11            | rim         | **        |
| 24     | tt          | tt         | 11        | 11          | 11            | core        |           |
| 25     | tt          | H          | 11        | 11          | ***           | rim         | 11        |
| 26     | 86843103    | 11         | 153139    | 11          | 11            | core        |           |
| 27     | 11          | **         | 11        | 11          | **            | rim         | 11        |
| 28     | 11          | **         | 11        | 11          | 11            | core        |           |
| 29     | 11          | **         | 11        | 11          | 11            | rim         | **        |
| 30     | **          | tt         | 11        | ***         | 11            | core        |           |
| 31     | 11          | **         | "         | 11          | 11            | rim         | 11        |
| 32     | 11          | **         | **        | н           | 11            | detrital gr | ain       |
| 33     | 11          | 11         | **        | tt          | tt            | detrital gr | ain       |
| 34     | 88843363 A1 | 11         | 134936    | ?Honevsu    | ckle Beds     | core of pl  | henocryst |
| 35     | " A2        | , 11       | 11        | 11          | tt            | rim "       | 11        |
| 36     | " C1        |            | 11        | tt          | tt            | core "      | 11        |
| 37     | " C2        |            | 11        | **          | tt            | rim "       | 11        |
| 38     | " F1        |            | 11        | 11          | ŧŧ            | core "      | tt        |
| 39     | " F2        |            | **        | 11          | **            | rim "       | 11        |
| 40     | " F3        |            | **        | 11          | tt            | core "      | 11        |
| 41     | " F4        |            | H         | 11          | 11            | rim "       | 11        |

#### Method

All analyses were obtained by wavelength-dispersive X - ray analysis on a Camebax electron microprobe at the Research School of Earth sciences, ANU, using an accelerating voltage of 15kv and a beam current of 30nA and a beam diameter of 5um. Data reduction was performed using a Zaf correction procedure. Structural formulae were calculated on the basis of 6 oxygens.

Microprobe analyses of clinopyroxene phenocrysts in Ordovician and Early Silurian mafic volcanics

| Wt%                            | Sample 1 | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|--------------------------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| SiO <sub>2</sub>               | 53.02    | 53.42  | 50.81  | 53.66  | 53.03  | 50.52  | 50.61  | 51.68  | 50.14  |
| $TiO_2$                        | 0.49     | 0.47   | 0.92   | 0.27   | 0.33   | 0.63   | 0.61   | 0.47   | 0.61   |
| Al <sub>2</sub> Õ <sub>3</sub> | 1.98     | 2.24   | 4.11   | 2.09   | 2.63   | 3.26   | 3.33   | 2.70   | 3.43   |
| Cr <sub>2</sub> O <sub>3</sub> |          | < 0.04 | < 0.04 | 0.53   | 0.19   | < 0.04 | 0.04   | 0.10   | < 0.04 |
| FeO*                           | 7.60     | 7.56   | 8.39   | 4.49   | 5.62   | 8.77   | 8.63   | 7.95   | 9.88   |
| NiO                            | 0.03     | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 | < 0.03 |
| MnO                            | 0.33     | 0.30   | 0.26   | 0.14   | 0.15   | 0.23   | 0.26   | 0.22   | 0.23   |
| MgO                            | 17.03    | 16.88  | 15.36  | 17.86  | 16.49  | 13.81  | 13.77  | 15.42  | 13.25  |
| CaO                            | 20.15    | 20.94  | 20.75  | 22.11  | 22.58  | 20.33  | 21.43  | 20.40  | 21.15  |
| Na <sub>2</sub> O              |          | 0.22   | 0.35   | 0.17   | 0.19   | 0.27   | 0.26   | 0.29   | 0.28   |
| K <sub>2</sub> O               | <0.01    | < 0.01 | < 0.01 | < 0.01 | < 0.01 | <0.01  | < 0.01 | < 0.01 | < 0.01 |
| Total                          | 100.92   | 102.03 | 100.97 | 101.31 | 101.20 | 97.82  | 98.95  | 99.24  | 98.97  |
| Atom                           |          |        |        |        | , ·    |        |        |        |        |
| Si                             | 1.9375   | 1.9322 | 1.8702 | 1.9351 | 1.9259 | 1.9195 | 1.9068 | 1.9267 | 1.8991 |
| Ti                             | 0.0135   | 0.0127 | 0.0256 | 0.0073 | 0.0089 | 0.0179 | 0.0172 | 0.0132 | 0.0174 |
| Al                             | 0.0853   | 0.0954 | 0.1785 | 0.0887 | 0.1125 | 0.1459 | 0.1480 | 0.1188 | 0.1533 |
| Cr                             | 0.2321   | 0.2206 | 0.0150 | 0.0056 | 0.1707 | 0.0013 | 0.0030 | 0.2470 | 0.2120 |
| Fe<br>Ni                       | 0.2321   | 0.2286 | 0.2584 | 0.1354 | 0.1707 | 0.2787 | 0.2718 | 0.2478 | 0.3129 |
| Mn                             | 0.0102   | 0.0092 | 0.0082 | 0.0043 | 0.0045 | 0.0075 | 0.0083 | 0.0069 | 0.0073 |
| Mg                             | 0.9277   | 0.9098 | 0.8430 | 0.9598 | 0.8926 | 0.7821 | 0.7733 | 0.8571 | 0.7483 |
| Ca                             | 0.7887   | 0.8116 | 0.8185 | 0.8542 | 0.8787 | 0.8278 | 0.8650 | 0.8151 | 0.8583 |
| Na                             | 0.0206   | 0.0156 | 0.0251 | 0.0117 | 0.0135 | 0.0202 | 0.0193 | 0.0213 | 0.0203 |
| K                              |          |        |        |        |        |        |        |        |        |
| Total                          | 4.0166   | 4.0151 | 4.0275 | 4.0116 | 4.0129 | 3.9997 | 4.0110 | 4.0098 | 4.0170 |

<sup>\*</sup> Total Fe analysed as FeO

| Wt%                            | Sample 10 | 11     | 12               | 13               | 14     | 15     | 16               | 17     |
|--------------------------------|-----------|--------|------------------|------------------|--------|--------|------------------|--------|
| SiO <sub>2</sub>               | 53.08     | 53.35  | 53.25            | 53.99            | 53.03  | 52.92  | 53.30            | 52.43  |
| TiO <sub>2</sub>               | 0.27      | 0.23   | 0.25             | 0.25             | 0.16   | 0.19   | 0.20             | 0.25   |
| Al <sub>2</sub> Ō <sub>3</sub> | 3.58      | 2.97   | 3.06             | 3.06             | 3.00   | 2.75   | 2.53             | 3.70   |
| Cr <sub>2</sub> O <sub>3</sub> |           | 1.12   | 1.00             | 0.64             | 1.02   | 0.88   | 0.31             | 1.31   |
| FeO*                           | 2.78      | 3.46   | 3.71             | 2.86             | 3.14   | 3.55   | 3.96             | 3.50   |
| NiO                            | < 0.03    | < 0.03 | 0.03             | 0.04             | < 0.03 | < 0.03 | 0.03             | < 0.03 |
| MnO                            | 0.07      | 0.13   | 0.14             | 0.10             | 0.11   | 0.13   | 0.12             | 0.12   |
| MgO                            | 17.67     | 17.88  | 18.25            | 18.41            | 17.88  | 17.75  | 17.68            | 17.46  |
| CaO                            | 22.26     | 21.65  | 21.25            | 21.77            | 22.18  | 21.57  | 22.15            | 20.79  |
| Na <sub>2</sub> O              | 0.26      | 0.19   | 0.19             | 0.30             | 0.16   | 0.20   | 0.14             | 0.23   |
| K <sub>2</sub> O               | <0.01     | < 0.01 | < 0.01           | < 0.01           | < 0.01 | < 0.01 | <0.01            | < 0.01 |
| Total                          | 101.40    | 100.98 | 101.12           | 101.44           | 100.68 | 99.94  | 100.42           | 99.79  |
| Atoms                          | ·         |        |                  |                  |        |        |                  |        |
| Si                             | 1.9024    | 1.9206 | 1.9147           | 1.9270           | 1.9155 | 1.9259 | 1.9336           | 1.9079 |
| Ti                             | 0.0073    | 0.0062 | 0.0066           | 0.0068           | 0.0042 | 0.0052 | 0.0055           | 0.0067 |
| Al                             | 0.1513    | 0.1261 | 0.1296           | 0.1289           | 0.1279 | 0.1180 | 0.1080           | 0.1588 |
| Cr                             | 0.0401    | 0.0320 | 0.0284           | 0.0181           | 0.0291 | 0.0253 | 0.0088           | 0.0376 |
| Fe                             | 0.0834    | 0.1042 | 0.1115           | 0.0855           | 0.0947 | 0.1081 | 0.1202           | 0.1065 |
| Ni<br>Mn                       | 0.0021    | 0.0039 | 0.0010<br>0.0042 | 0.0013<br>0.0031 | 0.0035 | 0.0042 | 0.0010<br>0.0036 | 0.0036 |
| Mg                             | 0.9441    | 0.9595 | 0.0042           | 0.0031           | 0.0033 | 0.0042 | 0.0036           | 0.0030 |
| Ca                             | 0.8547    | 0.8350 | 0.8187           | 0.8323           | 0.8583 | 0.8409 | 0.8608           | 0.8108 |
| Na                             | 0.0182    | 0.0136 | 0.0131           | 0.0209           | 0.0303 | 0.0139 | 0.0102           | 0.0161 |
| K                              |           |        |                  |                  |        |        |                  | -10-01 |
| Total                          | 4.0036    | 4.0010 | 4.0062           | 4.0031           | 4.0073 | 4.0041 | 4.0077           | 3.9952 |

<sup>\*</sup> Total Fe analysed as FeO

Microprobe analyses of clinopyroxene detrital grains and phenocrysts in mafic clasts in Early Silurian sediments.

| W1%                                                                                                         | Sample 18                                                        | 19                                                                | 20                                                                | 21                                                               | 22                                                               | 23                                                              | 24                                                               | 25                                                               |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| $\overline{\text{SiO}_2}$                                                                                   | 52.32                                                            | 52.67                                                             | 53.85                                                             | 53.37                                                            | 52.86                                                            | 53.10                                                           | 52.68                                                            | 53.60                                                            |
| TiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub>                                                          | 0.46<br>1.86                                                     | 0.33<br>1.65                                                      | 0.40<br>1.40                                                      | 0.48<br>1.64                                                     | 0.39<br>2.80                                                     | 0.32<br>2.61                                                    | 0.41<br>3.05                                                     | 0.21<br>2.11                                                     |
| Cr <sub>2</sub> O <sub>3</sub><br>FeO*<br>NiO<br>MnO<br>MgO<br>CaO<br>Na <sub>2</sub> O<br>K <sub>2</sub> O | 0.05<br>8.57<br><0.03<br>0.38<br>15.59<br>20.04<br>0.25<br><0.01 | <0.04<br>8.23<br><0.03<br>0.45<br>14.93<br>19.85<br>0.35<br><0.01 | <0.04<br>8.06<br><0.03<br>0.49<br>15.71<br>21.39<br>0.28<br><0.01 | <0.04<br>7.96<br><0.03<br>0.38<br>16.23<br>19.22<br>0.22<br>0.01 | 0.23<br>8.26<br><0.03<br>0.26<br>17.06<br>18.93<br>0.21<br><0.01 | 0.25<br>7.38<br><0.03<br>0.27<br>17.10<br>18.56<br>0.22<br>0.01 | 0.19<br>7.27<br><0.03<br>0.21<br>16.61<br>18.93<br>0.21<br><0.01 | 0.37<br>7.22<br><0.03<br>0.23<br>17.99<br>17.77<br>0.20<br><0.01 |
| Atoms                                                                                                       |                                                                  |                                                                   |                                                                   |                                                                  | 100.70                                                           |                                                                 |                                                                  |                                                                  |
| Si<br>Ti<br>Al<br>Cr<br>Fe                                                                                  | 1.9483<br>0.0129<br>0.0817<br>0.0016<br>0.2670                   | 1.9766<br>0.0094<br>0.0730<br>0.2584                              | 1.9636<br>0.0109<br>0.0604<br>0.2457                              | 1.9724<br>0.0133<br>0.0715<br>0.2460                             | 1.9274<br>0.0107<br>0.1203<br>0.0065<br>0.2520                   | 1.9477<br>0.0087<br>0.1129<br>0.0073<br>0.2263                  | 1.9381<br>0.0114<br>0.1321<br>0.0055<br>0.2235                   | 1.9614<br>0.0057<br>0.0909<br>0.0107<br>0.2209                   |
| Ni<br>Mn<br>Mg<br>Ca<br>Na<br>K                                                                             | 0.0121<br>0.8651<br>0.7995<br>0.0178                             | 0.0143<br>0.8349<br>0.7982<br>0.0254                              | 0.0151<br>0.8540<br>0.8358<br>0.0198                              | 0.0120<br>0.8941<br>0.7610<br>0.0158<br>0.0005                   | 0.0079<br>0.9269<br>0.7395<br>0.0147                             | 0.0083<br>0.9347<br>0.7295<br>0.0156<br>0.0005                  | 0.0064<br>0.9107<br>0.7463<br>0.0150                             | 0.0071<br>0.9814<br>0.6968<br>0.0142                             |
| Total                                                                                                       | 4.0060                                                           | 3.9902                                                            | 4.0052                                                            | 3.9867                                                           | 4.0059                                                           | 3.9915                                                          | 3.9892                                                           | 3.9892                                                           |

<sup>\*</sup> Total Fe analysed as FeO

| Wt%                                                                                                         | Sample 26                              | 27                                                               | 28                                                               | 29                                                             | 30                                                              | 31                                                               | 32                                                                | 33                                                                |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| SiO <sub>2</sub>                                                                                            | 51.05                                  | 52.36                                                            | 52.08                                                            | 52.13                                                          | 52.47                                                           | 52.78                                                            | 52.42                                                             | 51.91                                                             |
| $TiO_2$                                                                                                     | 0.71                                   | 0.42                                                             | 0.66                                                             | 0.45                                                           | 0.56                                                            | 0.42                                                             | 0.51                                                              | 0.34                                                              |
| Al <sub>2</sub> O <sub>3</sub>                                                                              | 3.62                                   | 2.76                                                             | 2.41                                                             | 3.05                                                           | 2.42                                                            | 2.40                                                             | 1.81                                                              | 2.44                                                              |
| Cr <sub>2</sub> O <sub>3</sub><br>FeO*<br>NiO<br>MnO<br>MgO<br>CaO<br>Na <sub>2</sub> O<br>K <sub>2</sub> O | 8.20<br>0.04<br>0.24<br>15.33<br>21.26 | 0.44<br>7.07<br><0.03<br>0.21<br>16.36<br>20.81<br>0.23<br><0.01 | 0.05<br>8.44<br><0.03<br>0.29<br>15.64<br>20.80<br>0.26<br><0.01 | 0.43<br>7.31<br>0.03<br>0.23<br>16.19<br>20.95<br>0.23<br>0.01 | 0.24<br>8.88<br><0.03<br>0.33<br>16.13<br>20.23<br>0.27<br>0.01 | 0.45<br>6.98<br><0.03<br>0.24<br>16.56<br>20.51<br>0.20<br><0.01 | <0.04<br>6.89<br><0.03<br>0.23<br>15.41<br>22.63<br>0.31<br><0.01 | <0.04<br>8.27<br><0.03<br>0.52<br>14.04<br>22.40<br>0.39<br><0.01 |
| Total                                                                                                       | 100.86                                 | 100.66                                                           | 100.63                                                           | 101.03                                                         | 101.53                                                          | 100.54                                                           | 100.21                                                            | 100.31                                                            |
| Atoms                                                                                                       | <u> </u>                               | ·                                                                |                                                                  |                                                                |                                                                 |                                                                  | ······································                            |                                                                   |
| Si                                                                                                          | 1.8824                                 | 1.9185                                                           | 1.9215                                                           | 1.9072                                                         | 1.9193                                                          | 1.9326                                                           | 1.9381                                                            | 1.9307                                                            |
| Ti                                                                                                          | 0.0197                                 | 0.0116                                                           | 0.0183                                                           | 0.0125                                                         | 0.0153                                                          | 0.0116                                                           | 0.0142                                                            | 0.0096                                                            |
| Al                                                                                                          | 0.1572                                 | 0.1191                                                           | 0.1049                                                           | 0.1316                                                         | 0.1042                                                          | 0.1035                                                           | 0.0789                                                            | 0.1071                                                            |
| Cr                                                                                                          | 0.0046                                 | 0.0128                                                           | 0.0014                                                           | 0.0123                                                         | 0.0070                                                          | 0.0130                                                           |                                                                   |                                                                   |
| Fe                                                                                                          | 0.2530                                 | 0.2165                                                           | 0.2605                                                           | 0.2237                                                         | 0.2717                                                          | 0.2138                                                           | 0.2129                                                            | 0.2572                                                            |
| Ni                                                                                                          | 0.0010<br>0.0074                       | 0.0064                                                           | 0.0092                                                           | 0.0009<br>0.0072                                               | 0.0102                                                          | 0.0074                                                           | 0.0072                                                            | 0.0164                                                            |
| Mn                                                                                                          | 0.8423                                 | 0.8936                                                           | 0.8600                                                           | 0.8830                                                         | 0.0102                                                          | 0.9039                                                           | 0.8490                                                            | 0.0164                                                            |
| Mg                                                                                                          | 0.8423                                 | 0.8930                                                           | 0.8220                                                           | 0.8212                                                         | 0.7928                                                          | 0.8047                                                           | 0.8965                                                            | 0.7763                                                            |
| Ca<br>Na                                                                                                    | 0.0185                                 | 0.0163                                                           | 0.0189                                                           | 0.0164                                                         | 0.7928                                                          | 0.0140                                                           | 0.0224                                                            | 0.0285                                                            |
| K                                                                                                           | 0.0163                                 | 0.0103                                                           | 0.0109                                                           | 0.0006                                                         | 0.0006                                                          | 0.0140                                                           | 0.0224                                                            | 0.0203                                                            |
| Total                                                                                                       | 4.0262                                 | 4.0120                                                           | 4.0166                                                           | 4.0168                                                         | 4.0196                                                          | 4.0046                                                           | 4.0194                                                            | 4.0204                                                            |

<sup>\*</sup> Total Fe analysed as FeO

Microprobe analyses of clinopyroxene phenocrysts in Ordovician and Early Silurian mafic volcanics

| Wt%                            | Sample 34        | 35               | 36               | 37                                     | 38               | 39               | 40     | 41     |
|--------------------------------|------------------|------------------|------------------|----------------------------------------|------------------|------------------|--------|--------|
| SiO <sub>2</sub>               | 53.96            | 53.35            | 53.50            | 53.16                                  | 54.57            | 54.07            | 54.24  | 54.22  |
| TiO <sub>2</sub>               | 0.25             | 0.36             | 0.26             | 0.22                                   | 0.25             | 0.30             | 0.25   | 0.29   |
| Al <sub>2</sub> O <sub>3</sub> | 3 1.18           | 1.61             | 1.26             | 1.29                                   | 0.91             | 1.00             | 0.83   | 1.01   |
| Cr <sub>2</sub> O              | 3 0.65           | 0.65             | 0.72             | 0.32                                   | 0.55             | 0.21             | 0.54   | 0.19   |
| FeO*                           | 4.26             | 5.05             | 4.44             | 5.90                                   | 4.10             | 5.00             | 4.32   | 5.32   |
| NiO                            | < 0.04           | < 0.04           | < 0.04           | < 0.04                                 | 0.04             | < 0.04           | < 0.04 | < 0.04 |
| MnO                            | 0.08             | 0.12             | 0.12             | 0.16                                   | 0.12             | 0.15             | 0.10   | 0.15   |
| MgO                            | 17.44            | 16.66            | 16.89            | 16.70                                  | 17.48            | 16.97            | 17.70  | 16.58  |
| CaO                            | 21.96            | 22.80            | 22.72            | 21.87                                  | 22.63            | 22.64            | 22.43  | 22.91  |
| Na <sub>2</sub> O              |                  | 0.20             | 0.23             | 0.13                                   | 0.16             | 0.14             | 0.13   | 0.15   |
| K <sub>2</sub> O               | < 0.01           | < 0.01           | < 0.01           | < 0.01                                 | < 0.01           | 0.01             | < 0.01 | <0.01  |
| Total                          | 99.98            | 100.80           | 100.14           | 99.76                                  | 100.82           | 100.48           | 100.56 | 100.83 |
| Atom                           | <del></del>      |                  |                  | ~····································· |                  |                  |        |        |
| Si                             | 1.9681           | 1.9441           | 1.9569           | 1.9587                                 | 1.9747           | 1.9710           | 1.9698 | 1.9732 |
| Ti                             | 0.0070           | 0.0100           | 0.0073           | 0.0062                                 | 0.0069           | 0.0081           | 0.0068 | 0.0079 |
| Al                             | 0.0509           | 0.0692           | 0.0545           | 0.0562                                 | 0.0387           | 0.0431           | 0.0354 | 0.0433 |
| Cr<br>Fe                       | 0.0186<br>0.1301 | 0.0187<br>0.1540 | 0.0208<br>0.1358 | 0.0094<br>0.1817                       | 0.0158<br>0.1240 | 0.0059<br>0.1523 | 0.0156 | 0.0056 |
| Ni                             | 0.1301           | 0.1340           | 0.1550           | 0.1017                                 | 0.1240           | 0.1323           | 0.1313 | 0.1620 |
| Mn                             | 0.0023           | 0.0036           | 0.0037           | 0.0050                                 | 0.0038           | 0.0046           | 0.0030 | 0.0045 |
| Mg                             | 0.9480           | 0.9051           | 0.9209           | 0.9174                                 | 0.9429           | 0.9219           | 0.9583 | 0.8991 |
| Ca                             | 0.8582           | 0.8901           | 0.8902           | 0.8633                                 | 0.8776           | 0.8841           | 0.8729 | 0.8934 |
| Na                             | 0.0138           | 0.0143           | 0.0161           | 0.0091                                 | 0.0112           | 0.0101           | 0.0094 | 0.0106 |
| K                              |                  |                  |                  |                                        |                  | 0.0006           |        |        |
| Total                          | 3.9971           | 4.0091           | 4.0062           | 4.0069                                 | 3.9968           | 4.0017           | 4.0026 | 3.9997 |
|                                |                  |                  |                  |                                        |                  |                  |        |        |

<sup>\*</sup> Total Fe analysed as FeO

APPENDIX 5

MODAL COMPOSITION OF ARENITES (from Lightner, 1977)

#### **BUMBOLEE CREEK FORMATION**

| Sample        | 1     | 2     | 3     | 4    | 5     | 6    | 7     | 8     | 9    | 10   | 11    | 12    | 13    |
|---------------|-------|-------|-------|------|-------|------|-------|-------|------|------|-------|-------|-------|
| Qm            | 48.4  | 72.3  | 53.2  | 29.9 | 54.4  | 52.6 | 52.9  | 75.7  | 58.0 | 33.6 | 24.1  | 32.1  | 21.1  |
| Qр            | 4.6   | 2.8   | 2.2   | 17.7 | 4.3   | 3.7  | 2.8   | 0     | 1.8  | 1.6  | 12.9  | 11.5  | 2.6   |
| Qm<br>Qp<br>F | 11.4  | 4.0   | 11.5  | 6.5  | 10.7  | 12.2 | 13.4  | 0     | 1.4  | 6.4  | 4.0   | 4.6   | 20.7  |
| Lv            | 2.4   | 0.4   | 1.0   | 5.8  | 2.6   | 1.6  | 1.8   | 0     | 0    | 0    | 12.2  | 6.6   | 12.7  |
| Ls            | 9.2   | 3.6   | 8.5   | 27.4 | 9.7   | 8.4  | 10.6  | 0     | 17.2 | 37.9 | 36.5  | 32.3  | 22.3  |
| matrix        | 24.2  | 17.1  | 24.0  | 12.4 | 18.3  | 21.4 | 18.9  | 24.9  | 21.1 | 19.4 | 11.4  | 13.1  | 20.7  |
| Total         | 100.2 | 100.2 | 100.4 | 99.7 | 100.0 | 99.9 | 100.4 | 100.6 | 99.5 | 98.9 | 101.1 | 100.2 | 100.1 |

#### **BLOWERING FORMATION**

| Sample        | 14           | 15           | 16           | 17           | 18   | 19           | 20           | 21          | 22          | 23          | 24          | 25          | 26       | 27           |
|---------------|--------------|--------------|--------------|--------------|------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|----------|--------------|
| Qm<br>On      | 22.2<br>14.0 | 18.1<br>24.2 | 14.0<br>8.7  | 20.6<br>10.3 |      | 17.7<br>14.3 | 12.5<br>13.1 | 67.1<br>1.2 |             | 45.7<br>4.6 | 49.8<br>3.1 | 67.6<br>3.3 | 11.8     | 12.3         |
| Qp<br>F<br>Lv | 23.2<br>15.7 |              |              |              | 14.4 | 12.4         | 28.3         |             | 13.6<br>9.0 |             | 19.1<br>7.4 | 17.7        | 15.9     | 11.2<br>65.4 |
| Ls<br>matrix  | 7.9<br>16.8  |              | 14.8<br>18.8 | 2.4          | 17.1 | 11.4         | 4.0          | 2.7         | 7.8<br>10.8 | 4.4<br>11.9 | 2.9<br>17.6 | 0.8<br>8.8  | 0<br>9.8 | 0<br>11.1    |
| Total         | 99.8         | 102.5        | 100.5        | 100.2        | 99.9 | 99.6         | 98.6         | 100.1       | 99.9        | 97.3        | 99.9        | 100.2       | 99.5     | 100.0        |

Major components expressed as a percentage. Qm, monocrystalline quartz; Qp, polycrystalline quartz (chert); F, total feldspar; Lv, volcanic clasts; Ls, sedimentary and meta-sediment clasts. Matrix includes other minor components (opaques, mafic minerals, biotite, muscovite, chlorite and epidote). Samples analysed by Lightner (1977) containing over 25% matrix were excluded.

#### Sample details:

### **BUMBOLEE CREEK FORMATION**

## **BLOWERING FORMATION**

| <i>№</i> . | ANU Slide | N <sup>o</sup> . Collector | Grid ref. | Nº. 1 | ANU Slide i | V <sup>o</sup> . Collector | Grid ref. |
|------------|-----------|----------------------------|-----------|-------|-------------|----------------------------|-----------|
| 1.         | 10571     | Lightner, 1977             | 124987    | 14.   | 10548       | Lightner, 1977             | 186943    |
| 2.         | 10572     | 11                         | 142003    | 15.   | 10550       |                            | 186943    |
| 3.         | 10573     | **                         | 130988    | 16.   | 10551       | 11                         | 163944    |
| 4.         | 10574     | •                          | 182984    | 17.   | 10553       | "                          | 183904    |
| 5.         | 10575     | "                          | 182984    | 18.   | 10554       | *1                         | 208965    |
| 6.         | 10576     | "                          | 182984    | 19.   | 10555       | n                          | 202967    |
| 7.         | 10577     | 11                         | 146984    | 20.   | 10557       | "                          | 205966    |
| 8.         | 8918      | Atkins, 1974               | 058046    | 21.   | 10567       | "                          | 203004    |
| 9.         | 8717      | Kennard, 1974              | 153110    | 22.   | 10567       | **                         | 203004    |
| 10.        | 8718      | n '                        | 164000    | 23.   | 10566       | II .                       | 208984    |
| 11.        | 10587     | Lightner, 1977             | 140006    | 24.   | 10565       | н                          | 206986    |
| 12.        | 10588     | "                          | 164003    | 25.   | 10564       | 10                         | 223964    |
| 13.        | 8923      | Atkins, 1974               | 031046    | 26.   | 8727        | Kennard, 1974              | 161165    |
|            |           | •                          |           | 27.   | 8728        | n ´                        | 165139    |

APPENDIX 6
WHOLE ROCK GEOCHEMICAL ANALYSES

| Sample No<br>Unit                                                                              | 88843363<br>Honeysuckle<br>Beds                                                                         | 88843136<br>Frampton<br>Volcanics                                                                                                                                                                                                              | 89843202<br>Gocup<br>Granite                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SiO2<br>TiO2<br>Al2O3<br>Fe2O3<br>FeO<br>MnO<br>MgO<br>CaO<br>Na2O<br>K2O<br>P2O5<br>S         | 50.23<br>1.38<br>11.41<br>4.59<br>5.76<br>0.15<br>7.41<br>11.24<br>2.05<br>1.68<br>0.42<br>0.00<br>3.43 | 72.93<br>0.48<br>13.37<br>1.58<br>0.45<br>0.07<br>0.41<br>0.61<br>4.45<br>4.45<br>0.06<br>0.00<br>0.63                                                                                                                                         | 74.63<br>0.14<br>13.10<br>0.09<br>1.45<br>0.02<br>0.22<br>0.40<br>2.88<br>5.02<br>0.18<br>0.00                                                                                                                                                 |
| Total                                                                                          | 99.75                                                                                                   | 99.49                                                                                                                                                                                                                                          | 99.48                                                                                                                                                                                                                                          |
| Ba Li Rb Sr Pb Th U Zr Nb Y La Ce Pr Nd Sc V Cr Mn Ni Cu Zn Sn W Mo Ga As As Bi Ge Be Se Cs Hf | 428 14 36 452 6 5 2.0 112 12 23 26 51 6 26 35 307 280 1387 67 43 88 0 161 0 16 7.0 4 0 2.5 3 1 1 2 2    | 1103<br>8<br>148<br>211<br>18<br>21<br>5.5<br>282<br>15<br>43<br>34<br>70<br>9<br>36<br>8<br>13<br>2<br>522<br>1<br>0<br>56<br>2<br>250<br>1<br>15<br>9.5<br>2<br>0<br>10<br>10<br>4<br>0<br>0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 158<br>41<br>269<br>26<br>26<br>26<br>11<br>9.0<br>92<br>26<br>18<br>13<br>32<br>4<br>15<br>3<br>6<br>3<br>185<br>3<br>8<br>82<br>10<br>663<br>1<br>22<br>3.0<br>2<br>2<br>2.5<br>4<br>0<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 |

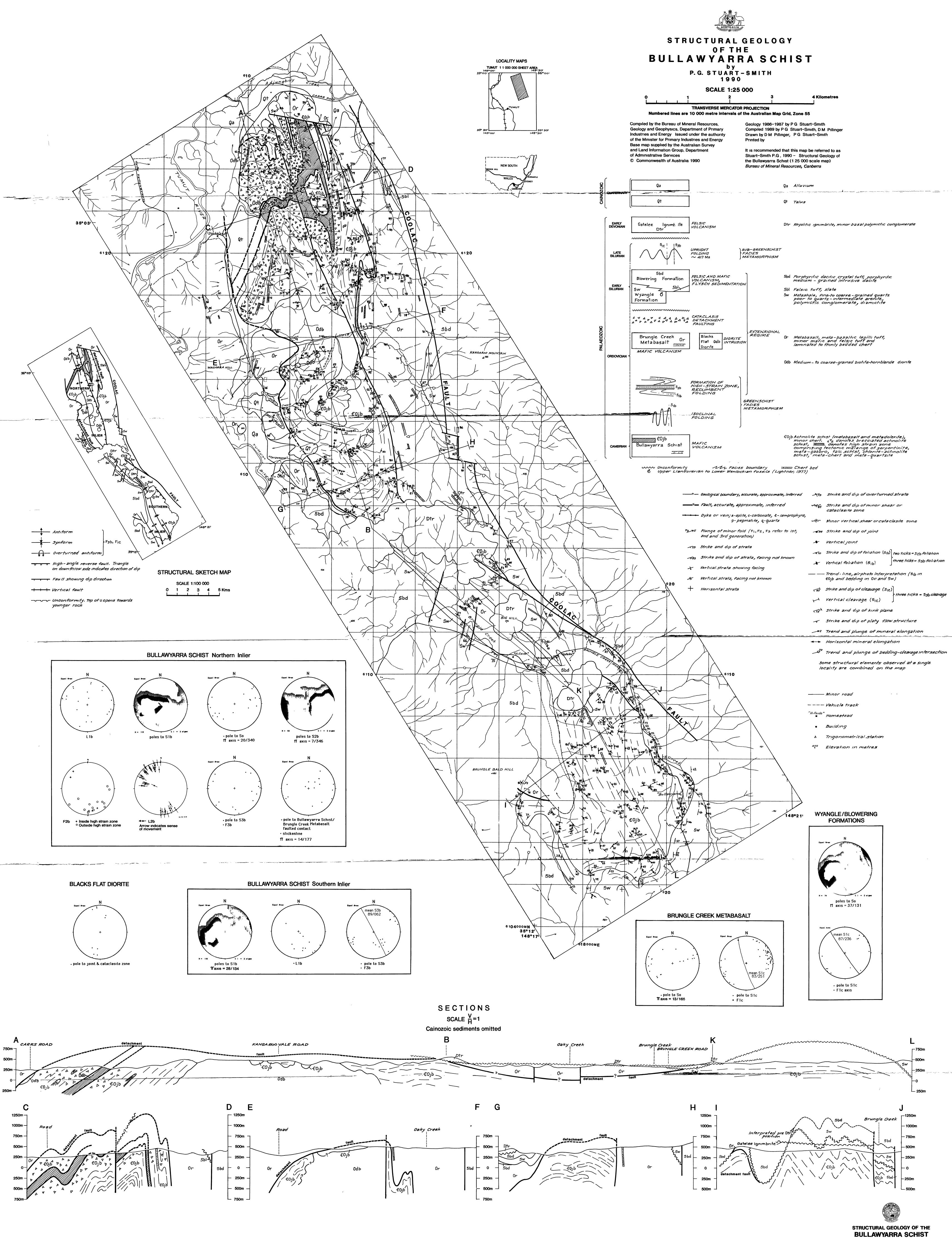
# APPENDIX 6: LIST OF PETROGRAPHIC SAMPLES

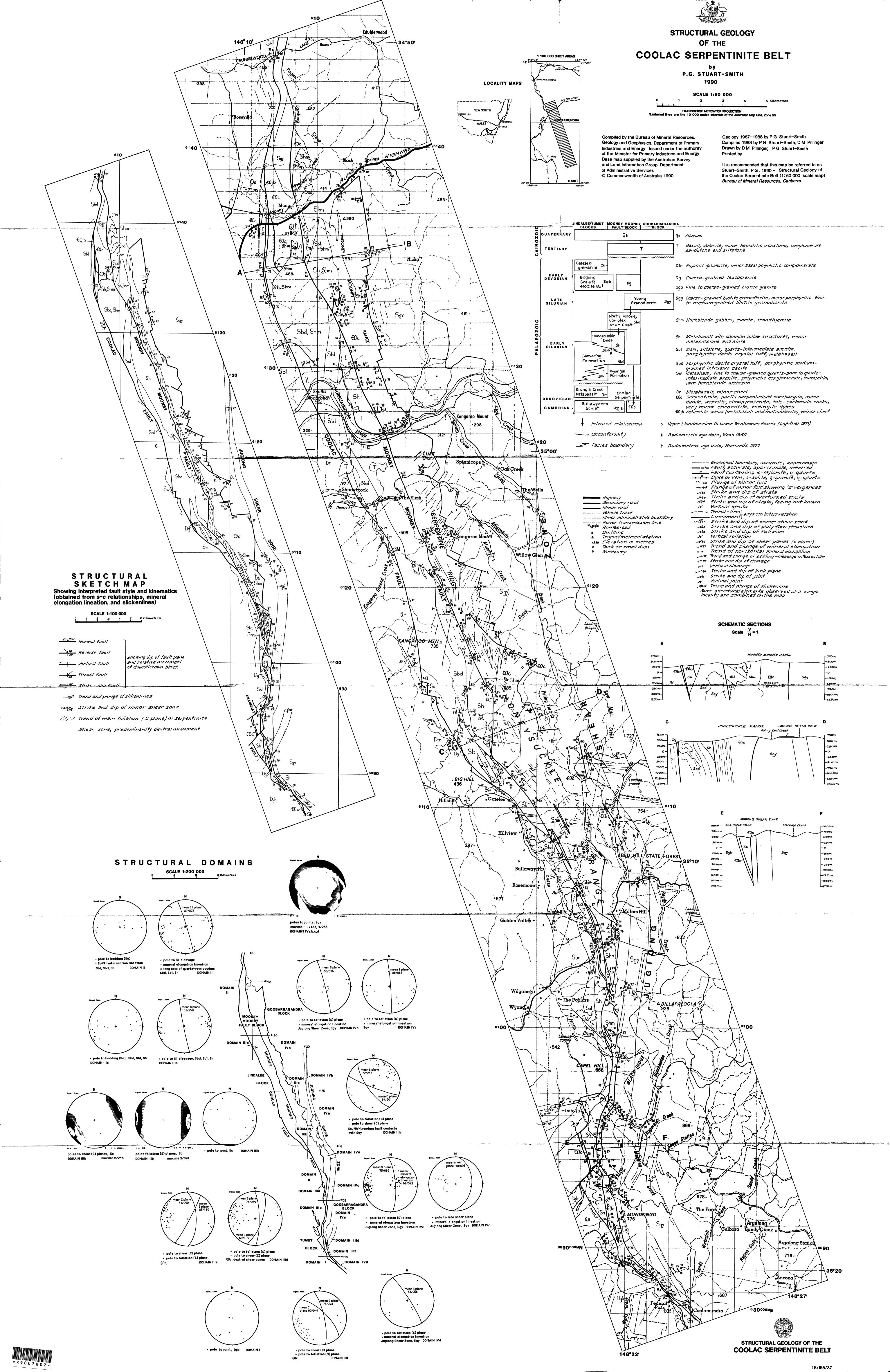
| AMPNO     | STRATUNIT                | LITHOLOGY                                   | *MAPNO | GRIDRE |
|-----------|--------------------------|---------------------------------------------|--------|--------|
| 86843003  | Brungle Creek Metabasalt | altered basaltic breccia                    |        | 117144 |
| 86843004  | Wyangle Formation        | silty mudstone                              |        | 117143 |
| 86843005  | Bullawyarra Schist       | actinolite schist breccia                   |        | 119143 |
| 86843008  | Bullawyarra Schist       | actinolite schist                           |        | 125140 |
| 86843013  | Blowering Formation      | dacite                                      |        | 116142 |
| 86843014  | Brungle Creek Metabasalt | altered mafic volcanic breccia              |        | 116148 |
| 86843015  | Brungle Creek Metabasalt | felsic lithic tuff breccia                  |        | 114150 |
| 86843016  | Brungle Creek Metabasalt | meta-amygdaloidal basalt                    | 8527   | 113146 |
| 86843017  | Brungle Creek Metabasalt | altered vitric tuff                         |        | 112146 |
| 86843020A | Brungle Creek Metabasalt | chert breccia                               | 8527   | 105161 |
| 86843020B | Brungle Creek Metabasalt | banded chert                                | 8527   | 105161 |
| 36843023  | Bullawyarra Schist       | actinolite schist                           | 8527   | 112158 |
| 36843025  | Bullawyarra Schist       | actinolite schist breccia                   | 8527   | 109163 |
| 36843029  | Bullawyarra Schist       | actinolite schist                           | 8527   | 108171 |
| 36843032  | Bullawyarra Schist       | actinolite schist                           | 8527   | 115171 |
| 86843033  | Bullawyarra Schist       | meta-basite                                 | 8527   | 116172 |
| 86843036  | Bullawyarra Schist       | meta-dolerite                               | 8527   | 113178 |
| 86843038  | Bullawyarra Schist       | quartz-epidote-actinolite-diopside hornfels | 8527   | 122158 |
| 86843041  | Brungle Creek Metabasalt | devitrified vitric tuff                     | 8527   | 139144 |
| 86843048  | Brungle Creek Metabasalt | carbonate-chlorite breccia                  | 8527   | 135150 |
| 86843052  | Bullawyarra Schist       | actinolite schist                           | 8527   | 130163 |
| 86843053  | Blacks Flat Diorite      | medium-grained meta-quartz diorite          | 8527   | 130162 |
| 86843057  | Brungle Creek Metabasalt | metabasite                                  | 8527   | 127173 |
| 86843062A | Brungle Creek Metabasalt | chert breccia                               | 8527   | 105177 |
| 86843062B | Brungle Creek metabasalt | metabasalt                                  | 8527   | 105177 |
| 86843063  | Blacks Flat Diorite      | medium-grained meta-quartz diorite          | 8527   | 106182 |
| 86843064  | Blacks Flat Diorite      | cataclasite                                 | 8527   | 111179 |
| 86843068  | Brungle Creek Metabasalt | carbonate-quartz breccia                    | 8527   | 127183 |
| 86843069  | Brungle Creek Metabasalt | carbonate-chlorite schist                   | 8527   | 128183 |
| 86843073  | Brungle Creek Metabasalt | metabasalt                                  | 8527   | 129177 |
| 86843076  | Bullawyarra Schist       | actinolite schist                           | 8527   | 127174 |
| 86843077  | Brungle Creek Metabasalt | meta-mafic tuff                             | 8527   | 130177 |
| 86843082A | Wyangle Formation        | volcanilithic pebble conglomerate           | 8527   | 141169 |
| 86843082B | Wyangle Formation        | volcanilithic pebble conglomerate           | 8527   | 141169 |
| 86843084  | Wyangle Formation        | very fine-grained quartz-poor arenite       | 8527   | 143174 |
| 86843086  | Blowering Formation      | dacitic ignimbrite                          | 8527   | 146175 |
| 86843089  | Wyangle Formation        | shale                                       | 8527   | 149157 |
| 86843092  | Blowering Formation      | devitrified vitric tuff                     | 8527   | 150157 |
| 86843097  | Wyangle Formation        | mudstone                                    | 8527   | 153148 |
| 86843098  | Gatelee Ignimbrite       | conglomerate                                | 8527   | 150142 |
| 86843100  | Blowering Formation      | felsic crystal lithic tuff                  | 8527   | 151139 |
| 86843103  | Wyangle Formation        | volcanilithic pebble conglomerate           | 8527   | 153139 |
| 86843111  | Bullawyarra Schist       | actinolite schist                           | 8527   | 124153 |
| 86843113  | Bullawyarra Schist       | actinolite schist                           | 8527   | 123153 |
| 86843117  | Blacks Flat Diorite      | medium-grained meta-quartz diorite          | 8527   | 126172 |
| 86843123  | Blacks Flat Diorite      | cataclasite                                 | 8527   | 117165 |
| 86843142  | Bullawyarra Schist       | actinolite schist breccia                   | 8527   | 102187 |
| 86843144  | Bullawyarra Schist       | cataclasite                                 | 8527   | 105189 |
| 86843147  | Bullawyarra Schist       | actinolite schist breccia                   | 8527   | 103192 |

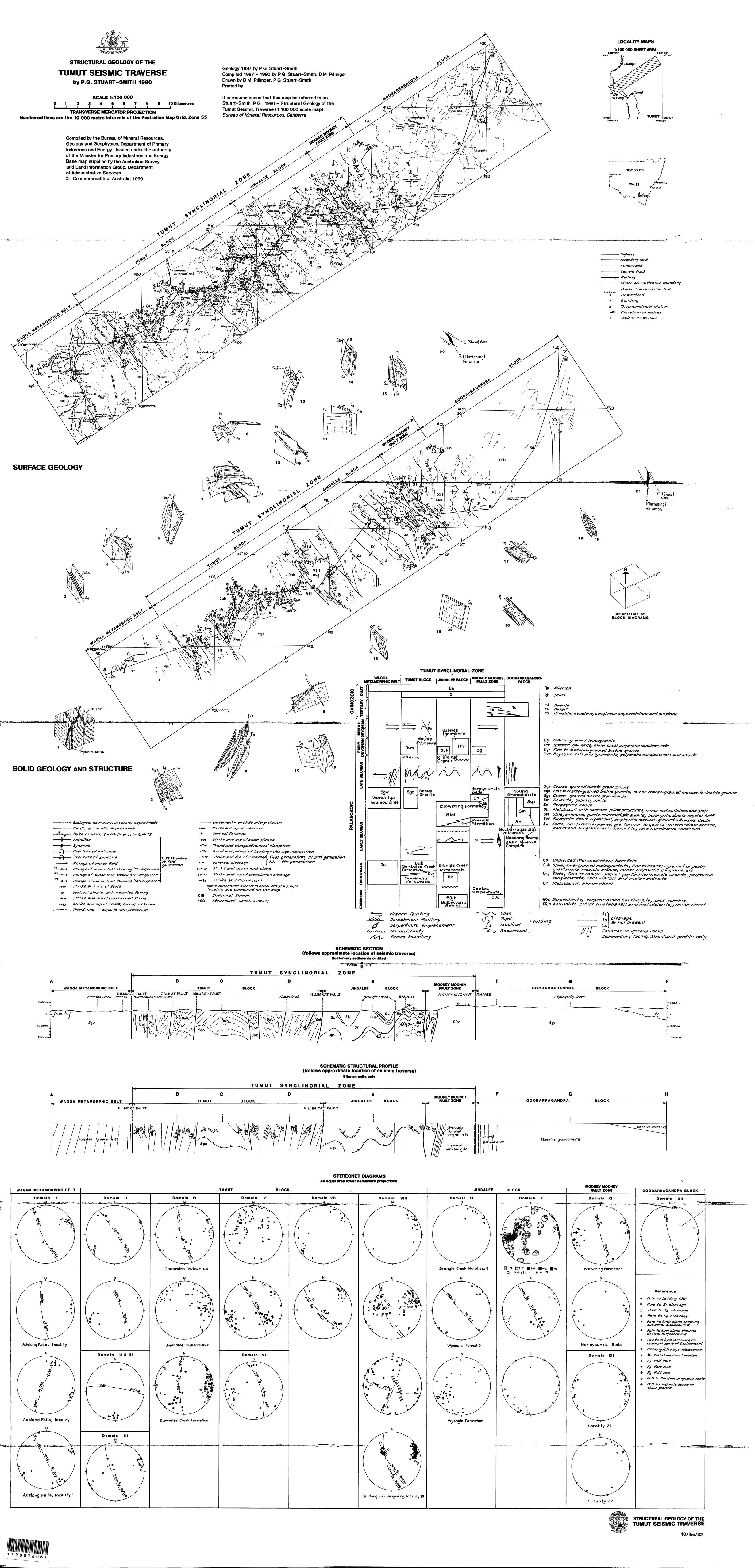
<sup>\*</sup> MAPNO: 8526 = Yarrangobilly; 8527 = Tumut; 8528 = Cootamundra

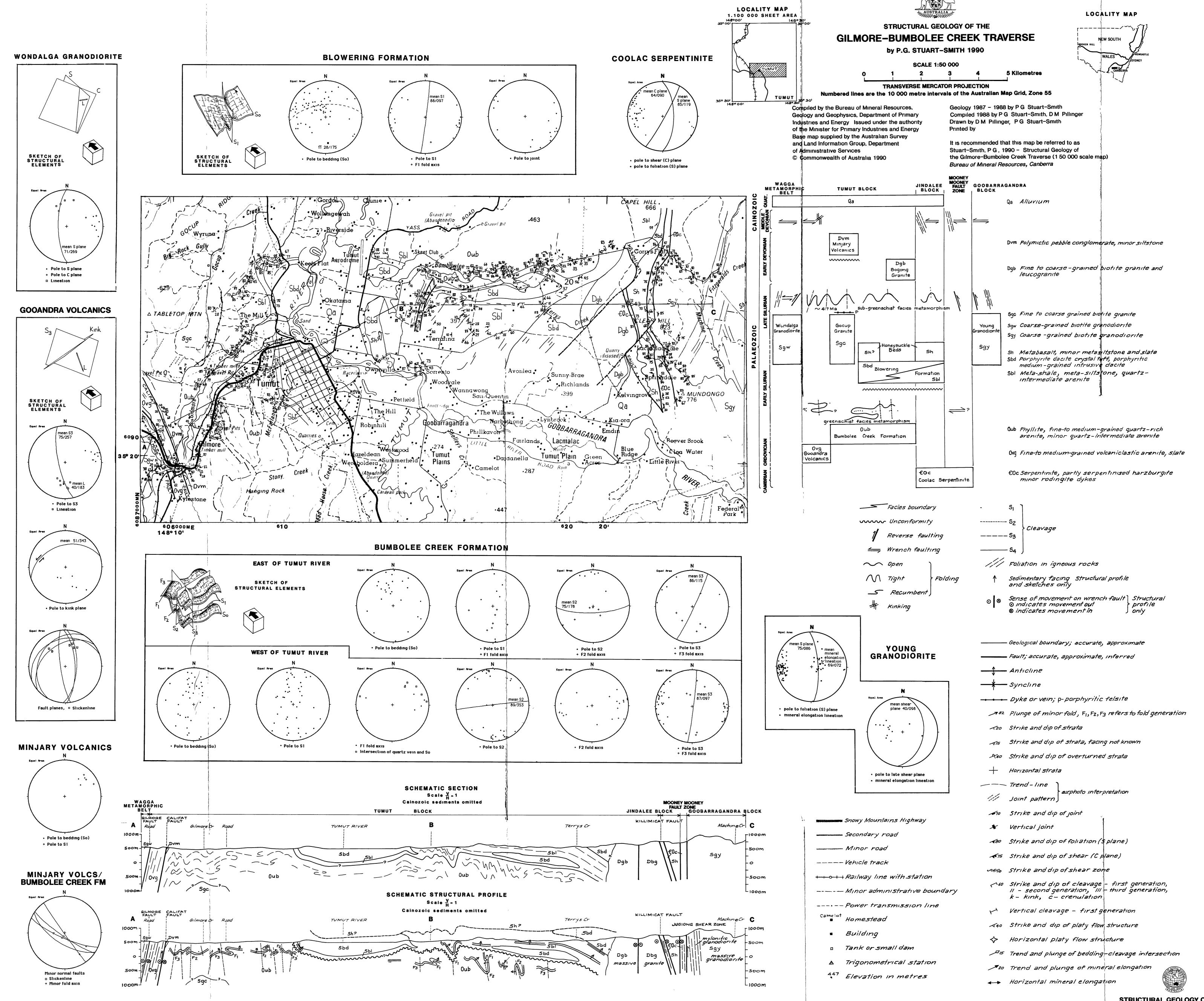
| SAMPNO    | STRATUNIT                | LITHOLOGY                                        | MAPN     | O GRIDREF |
|-----------|--------------------------|--------------------------------------------------|----------|-----------|
| 86843151  | Bullawyarra Schist       | actinolite schist breccia                        | <br>8527 | 107192    |
| 86843156  | Bullawyarra Schist       | aplite                                           | 8527     | 122187    |
| 86843159  | Bullawyarra Schist       | actinolite schist breccia                        | 8527     | 126193    |
| 86843160  | Brungle Creek Metabasalt | carbonate rock                                   | 8527     | 126191    |
| 86843165  | Bullawyarra Schist       | actinolite schist                                | 8527     | 130195    |
| 86843172  | Brungle Creek Metabasalt | meta-mafic tuffite                               | 8527     | 137195    |
| 86843174  | Blowering Formation      | brecciated dacitic ignimbrite                    | 8527     | 141194    |
| 86843175  | Blowering Formation      | rhyolite                                         | 8527     | 142194    |
| 86843179  | Brungle Creek Metabasalt | meta-vitric lithic lapilli tuff                  | 8527     | 144182    |
| 86843191  | Bullawyarra Schist       | actinolite schist                                | 8527     | 121201    |
| 86843189  | Bullawyarra Schist       | massive actinolitic metabasite                   | 8527     | 114195    |
| 86843192  | Gundagai Serpentinite    | metagabbro                                       | 8527     | 120202    |
| 86843193  | Bullawyarra Schist       | actinolite schist                                | 8527     | 115204    |
| 86843195  | Gundagai Serpentinite    | massive serpentinite                             | 8527     | 119207    |
| 86843196  | Gundagai Serpentinite    | quartz-chlorite-carbonate rock                   | 8527     | 117207    |
| 86843206  | Bullawyarra Schist       | banded chert                                     | 8527     | 112200    |
| 86843213  | Blowering Formation      | rhyolite                                         | 8527     | 142190    |
| 86843222  | Bullawyarra Schist       | aplite                                           | 8527     | 125196    |
| 86843235  | Blowering Formation      | metabasite                                       | 8527     | 137209    |
| 86843237  | Blowering Formation      | felsite                                          | 8527     | 133215    |
| 86843241  | Blacks Flat Diorite      | dioritic cataclasite                             | 8527     | 103211    |
| 86843243  | Gundagai Serpentinite    | metadolerite                                     | 8527     | 105212    |
| 86843244  | Bullawyarra Schist       | actinolite-biotite-quartz schist                 | 8527     | 106212    |
| 86843247  | Gundagai Serpentinite    | metagabbro                                       | 8527     | 109213    |
| 86843248  | Gundagai serpentinite    | metagabbro                                       | 8527     | 110213    |
| 86843250  | Gundagai Serpentinite    | serpentinite                                     | 8527     | 112214    |
| 86843251  | Gundagai Serpentinite    | metagabbro                                       | 8527     | 113215    |
| 86843253  | Bullawyarra Schist       | actinolite schist                                | 8527     | 117217    |
| 86843256A | Bullawyarra Schist       | metachert                                        | 8527     | 118213    |
| 86843256B | Bullawyarra Schist       | metaquartzite                                    | 8527     | 118213    |
| 86843256C | Bullawyarra Schist       | metachert                                        | 8527     | 118213    |
| 86843282  | Blacks Flat Diorite      | cataclasite                                      | 8527     | 110222    |
| 86843283  | Bullawyarra Schist       | actinolitic metabasite breccia                   |          | 110219    |
| 86843288  | Bullawyarra Schist       | metachert                                        | 8527     | 113222    |
| 86843314  | Brungle Creek Metabasalt | meta-felsic vitric tuff                          | 8527     | 114236    |
| 86843320A | Bullawyarra Schist       | altered actinolite schist breccia                | 8527     | 105224    |
| 86843320B | Brungle Creek Metabasalt | metabasalt                                       | 8527     | 105224    |
| 86843324  | Wyangle Formation        | meta- coarse-grained quartz-intermediate arenite | 8527     | 108227    |
| 86843325  | Bullawyarra Schist       | actinolite schist breccia                        | 8527     | 106226    |
| 86843327  | Wyangle Formation        | fine-grained quartz-intermediate arenite         | 8527     | 109227    |
| 86843328  | Gundagai Serpentinite    | antigorite serpentinite                          | 8527     | 110226    |
| 86843337  | Bullawyarra Schist       | muscovite-quartz schist                          | 8527     | 111232    |
| 86843347  | Brungle Creek Metabasalt | metabasalt                                       | 8527     | 119219    |
| 86843358  | Blacks Flat Diorite      | cataclasite                                      | 8527     | 098225    |
| 86843367  | Bullawyarra Schist       | actinolite schist                                | 8527     | 198078    |
| 86843371  | Wyangle Formation        | volcanilithic pebble conglomerate                | 8527     | 202061    |
| 86843388  | Wyangle Formation        | quartz-poor arenite                              | 8527     | 187053    |
| 86843389  | Wyangle Formation        | volcanilithic pebble conglomerate                | 8527     | 188052    |
| 86843390  | Blowering Formation      | lithic lapilli tuff                              | 8527     | 189049    |
| 86843396  | Bullawyarra Schist       | metadolerite                                     | 8527     | 182054    |
| 86843400  | Wyangle Formation        | hornblende lamprophyre                           | 8527     | 182047    |
| 86843401  | Wyangle Formation        | chlorite-carbonate-actinolite-epidote hornfels   | 8527     | 179053    |
| 86843402  | Wyangle Formation        | plagioclase-carbonate-epidote-diopside hornfels  | 8527     | 177051    |
| 86843403A | Wyangle Formation        | meta- medium-grained quartz-intermediate arenite | 8527     | 177049    |
| 86843403B | Wyangle Formation        | very coarse-grained quartz-intermediate arenite  | 8527     | 177049    |
| 86843405  | Wyangle Formation        | qtz-epidote-diopside-carbonate-plag hornfels     | 8527     | 174057    |
| 86843407  | Wyangle Formation        | meta- quartz-poor arenite                        | 8527     | 174063    |
| 86843408  | Blowering Formation      | dacite                                           | 8527     | 173063    |

| SAMPNO    | STRATUNIT                | LITHOLOGY                                        | MAPNO | GRIDREF |
|-----------|--------------------------|--------------------------------------------------|-------|---------|
| 86843418  | Bullawyarra Schist       | actinolite schist breccia                        | 8527  | 165071  |
| 86843419  | Brungle Creek Metabasalt | meta- mafic lithic lapilli tuff                  | 8527  | 167073  |
| 86843421A | Wyangle Formation        | meta- coarse-grained quartz-intermediate arenite | 8527  | 165072  |
| 86843421B | Blowering Formation      | cataclasite                                      | 8527  | 165072  |
| 86843477  | Wyangle Formation        | very coarse-grained quartz-poor arenite          | 8527  | 182104  |
| 86843487A | Wyangle Formation        | volcanilithic pebble conglomerate                | 8527  | 191094  |
| 86843487B | Wyangle Formation        | hornblende lamprophyre                           | 8527  | 191094  |
| 86843488  | Wyangle Formation        | devitrified vitric tuff                          | 8527  | 210067  |
| 86843510  | Wyangle Formation        | volcanilithic pebble conglomerate                | 8527  | 191099  |
| 86843512  | Wyangle Formation        | fine-grained quartz-poor arenite                 |       | 193101  |
| 86843514  | Wyangle Formation        | medium-grained quartz-poor arenite               |       | 189103  |
| 86843524  | Wyangle Formation        | gritty quartz-poor arenite                       |       | 174110  |
| 86843526  | Wyangle Formation        | volcanilithic boulder conglomerate               |       | 168104  |
| 86843533  | Blowering Formation      | felsic cataclasite                               |       | 162133  |
|           | Blowering Formation      | dacite                                           |       | 156121  |
| 86843545B | =                        | limestone breccia                                |       | 156121  |
| 86843548  | Brungle Creek Metabasalt | altered mafic volcanic breccia                   |       | 156117  |
| 86843558  | Bullawyarra Schist       | actinolite schist breccia                        |       | 204068  |
| 87843001  | Brungle Creek Metabasalt | metabasalt                                       |       |         |
| 87843001  | Brungle Creek Metabasalt | metadolerite                                     |       | 158106  |
| 87843005  | Brungle Creek Metabasalt |                                                  |       | 132103  |
| 87843008  | Gooandra Volcanics       | meta-devitrified vitric tuff                     |       | 118082  |
| 87843010  | Gooandra Volcanics       | silty phyllite                                   |       | 106066  |
| 87843010  |                          | silty phyllite                                   |       | 104066  |
| 87843011B | ,                        | metabasalt                                       |       | 171135  |
|           | ,                        | sedimentary breccia                              |       | 171135  |
| 87843012  | Blowering Formation      | very coarse-grained quartz-intermediate arenite  | 8527  | 168137  |
| 87843014A |                          | slate                                            | 8527  | 165140  |
| 87843014B | Blowering Formation      | meta- quartz-intermediate arenite                | 8527  | 165140  |
| 87843025  | Honeysuckle Beds         | silty slate                                      |       | 175142  |
| 87843026  | Honeysuckle Beds         | meta- mafic crystal tuff                         | 8527  | 170144  |
| 87843030  | Honeysuckle Beds         | meta- devitrified tuff                           | 8527  | 178137  |
| 87843031  | Honeysuckle Beds         | metabasalt                                       | 8527  | 179136  |
| 87843032  | North Mooney Complex     | metadolerite                                     | 8527  | 180136  |
| 87843034  | Blowering Formation      | very coarse-grained quartz-intermediate arenite  | 8527  | 186111  |
| 87843036  | Coolac Serpentinite      | antigorite serpentinite                          | 8527  | 183112  |
| 87843038  | Blowering Formation      | quartz-intermediate arenite                      | 8527  | 180122  |
| 87843042A | Honeysuckle Beds         | metabasalt                                       | 8527  | 180130  |
| 87843042B | North Mooney Complex     | metadolerite                                     | 8527  | 180130  |
| 87843043  | Coolac Serpentinite      | antigorite serpentinite                          | 8527  | 174128  |
| 87843046  | Coolac Serpentinite      | serpentinite breccia                             | 8527  | 173125  |
| 87843047  | Blowering Formation      | dacite                                           | 8527  | 177125  |
| 87843050  | North Mooney Complex     | metadolerite                                     | 8527  | 185114  |
| 87843052  | Blowering Formation      | cataclasite                                      | 8527  | 188114  |
| 87843056  | Coolac Serpentinite      | serpentinised harzburgite                        | 8527  | 194116  |
| 87843070  | Wyangle Formation        | hornblende-augite lamprophyre                    | 8527  | 172115  |
| 87843071  | Blowering Formation      | siliceous cataclasite                            | 8527  | 173116  |
| 87843076  | Brungle Creek Metabasalt | basaltic volcanilithic breccia                   | 8527  | 146101  |
| 87843078  | Wyangle Formation        | biotite-cordierite-quartz hornfels               | 8527  | 126072  |
| 87843081  | Gooandra Volcanics       | silty phyllite                                   | 8527  | 103065  |
| 87843088  | Gooandra Volcanics       | volcanilithic quartz-intermediate arenite        | 8527  | 099057  |
| 87843091  | Gooandra Volcanics       | metaquartzite                                    | 8527  | 091046  |
| 87843105  |                          | porphyritic felsite                              | 8527  | 074052  |
| 87843115  | Bumbolee Creek Formation | silty phyllite                                   | 8527  | 068047  |
| 87843121  | Bumbolee Creek Formation | siltstone                                        | 8527  | 059046  |
| 87843122  | Bumbolee Creek Formation | silty phyllite                                   |       | 058046  |
|           |                          | · · · · · · · · · · · · · · · · · · ·            |       |         |

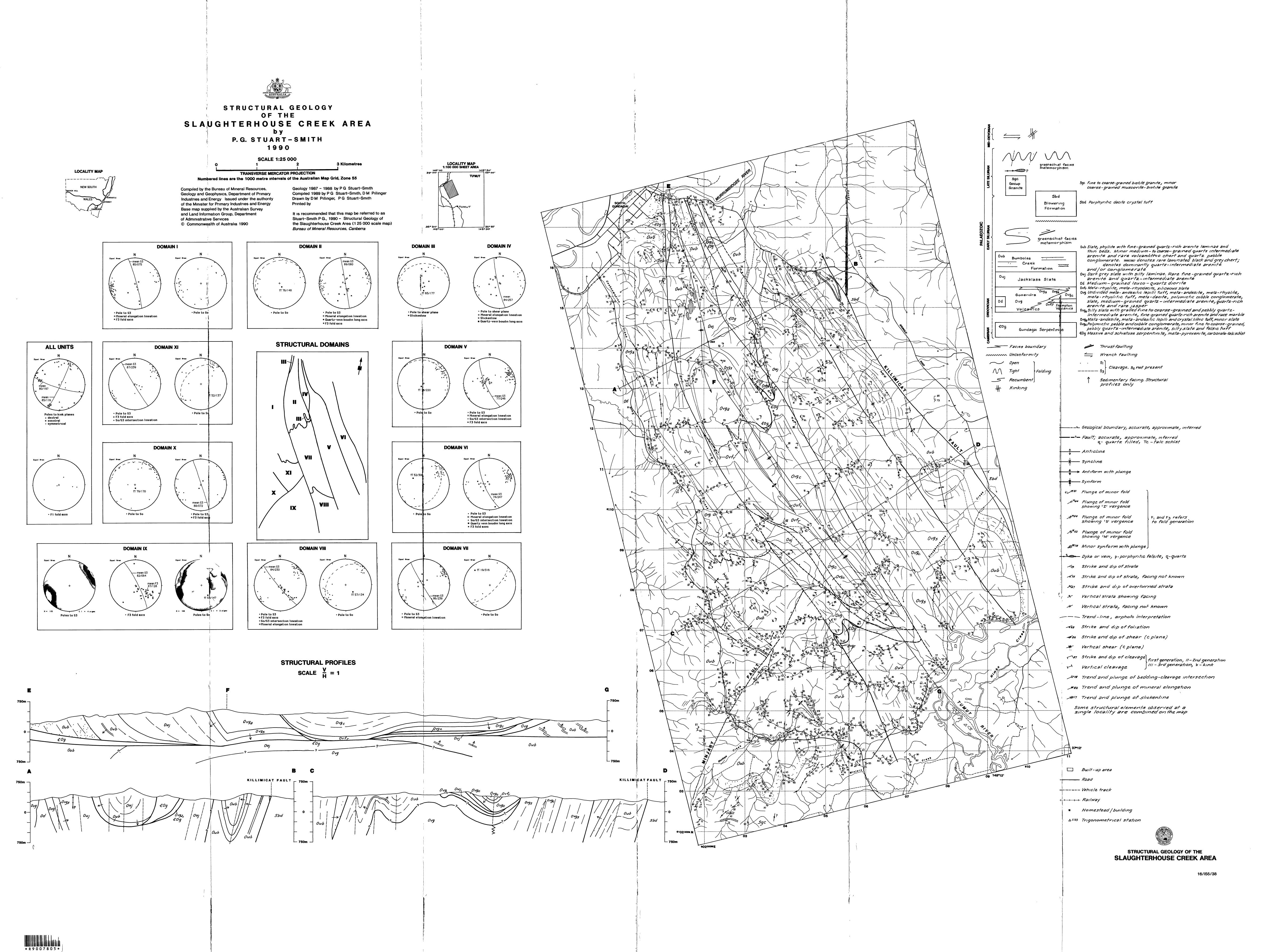

| SAMPNO               | STRATUNIT                   | LITHOLOGY                                        | MAPNO | GRIDRI |
|----------------------|-----------------------------|--------------------------------------------------|-------|--------|
| 87843123             | Bumbolee Creek Formation    | medium-grained quartz-rich arenite               | 8527  | 056046 |
| 87843125             | Bumbolee Creek Formation    | coarse-grained quartz-intermediate arenite       | 8527  | 055044 |
| 87843127             | Bumbolee Creek Formation    | metasiltstone                                    | 8527  | 053044 |
| 87843129             |                             | porphyritic felsite                              | 8527  | 051045 |
| 87843133             | Bumbolee Creek Formation    | silty phyllite                                   |       | 046044 |
| 37843137             | Bumbolee Creek formation    | brecciated silty phyllite                        | 8527  | 043045 |
| 37843152             | Bumbolee Creek Formation    | volcanilithic pebble conglomerate                |       | 034044 |
| 7843156              | Bumbolee Creek Formation    | silty phyllite                                   |       | 039043 |
| 7843176A             | Gooandra Volcanics          | sandy phyllite                                   |       | 076073 |
| 7843176B             | Gooandra Volcanics          | marble                                           |       | 076073 |
| 7843179              | Gooandra Volcanics          | meta- volcanilithic pebble conglomerate          |       | 086069 |
|                      | Gooandra Volcanics          | phyllite                                         |       | 988013 |
| 7843207              | Gooandra Volcanics          | phyllite                                         |       | 988012 |
| 7843209              | Gooandra Volcanics          | metarhyolite                                     |       | 986005 |
| 7843212              | Gooandra Volcanics          | meta- volcanilithic quartz-intermediate arenite  |       | 993005 |
| 7843213              | Gooandra Volcanics          | metasiltstone                                    |       | 983005 |
| 7843217              | Nacka Nacka Metabasic I. C. | metadolerite                                     |       | 950010 |
| 7843218A             | nacka nacka petabasic I. C. | chlorite schist                                  |       | 954999 |
| 7843218B             |                             |                                                  |       |        |
| 7843219              | Wondalga Granodiorite       | biotite-muscovite-quartz-albite hornfels         |       | 954999 |
| 37843220             | Gooandra Volcanics          | mylonitic granodiorite                           |       | 964999 |
| 37843222<br>37843222 | Gooandra Volcanics          | biotite-muscovite-quartz schist                  |       | 979003 |
|                      |                             | biotite-muscovite-quartz schist                  |       | 976005 |
| 7843226              | Goognate Volcanics          | metasiltstone                                    |       | 983996 |
| 7843227              | Gooandra Volcanics          | muscovite-quartz schist                          |       | 983995 |
| 7843230              | Wondalga Granodiorite       | mylonitic granodiorite                           |       | 983980 |
| 7843236              | Wondalga Granodiorite       | foliated granite                                 |       | 924989 |
| 7843239              |                             | quartz-biotite-plagioclase hornfels              |       | 920986 |
| 7843242A             | Wondalga Granodiorite       | mylonitic granodiorite                           |       | 915983 |
| 37843242B            | Wondalga Granodiorite       | coarse-grained granodiorite                      |       | 915983 |
| 37843245             |                             | plagioclase-hornblende-biotite-quartz hornfels   |       | 909975 |
| 37843249             | Young Granodiorite          | granitic mylonite                                |       | 222114 |
| 7843253              | Young Granodiorite          | weakly foliated coarse biotite granodiorite      |       | 223124 |
| 37843254             | Young Granodiorite          | mylonitic granodiorite                           |       | 221123 |
| 37843257             | Young Granodiorite          | coarse-grained biotite granodiorite              |       | 236123 |
| 37843270             | Bumbolee Creek Formation    | metashale                                        |       | 048041 |
| 37843274             | Bumbolee Creek Formation    | sandy slate                                      |       | 047037 |
| 37843279             | Bumbolee Creek Formation    | volcanilithic pebble conglomerate                |       | 044040 |
| 7843389A             | Bogong Granite              | coarse leucogranite                              |       | 220967 |
| 37843389B            | Blowering Formation         | dacitic cataclasite                              |       | 222967 |
| 7843390A             | Bogong Granite              | granitic cataclasite                             |       | 219952 |
| 37843390B            | Coolac Serpentinite         | antigorite serpentinite                          |       | 219952 |
| 7843394              | Gooandra Volcanics          | c. g. volcanilithic quartz-intermediate arenite  |       | 078081 |
| 7843404              | Goobarragandra Volcanics    | dacite                                           |       | 307250 |
| 7843405              | Goobarragandra Volcanics    | dacite                                           |       | 298226 |
| 7843406A             | Micalong Swamp Mafic I. C.  | metagabbro                                       |       | 297200 |
| 7843406B             | Micalong Swamp Mafic I. C.  | aplite                                           |       | 297200 |
| 7843406C             | Micalong Swamp Mafic I. C.  | dolerite                                         |       | 297200 |
| 7843406D             | Goobarragandra Volcanics    | dacite                                           |       | 297200 |
| 37843409             | Gooandra Volcanics          | metarhyolite                                     |       | 992025 |
| 37843411             | Gooandra Volcanics          | phyllite                                         |       | 994023 |
| 37843412             | Gooandra Volcanics          | marble                                           |       | 995023 |
| 37843414             | Gooandra Volcanics          | metabasite                                       |       | 995027 |
| 7843415              | Gooandra Volcanics          | phyllite                                         | 8527  | 997027 |
| 37843416             | Gooandra Volcanics          | meta- mafic lapilli tuff                         | 8527  | 999027 |
| 37843423A            | Young Granodiorite          | coarse-grained equigranular biotite granodiorite | 8527  | 195018 |

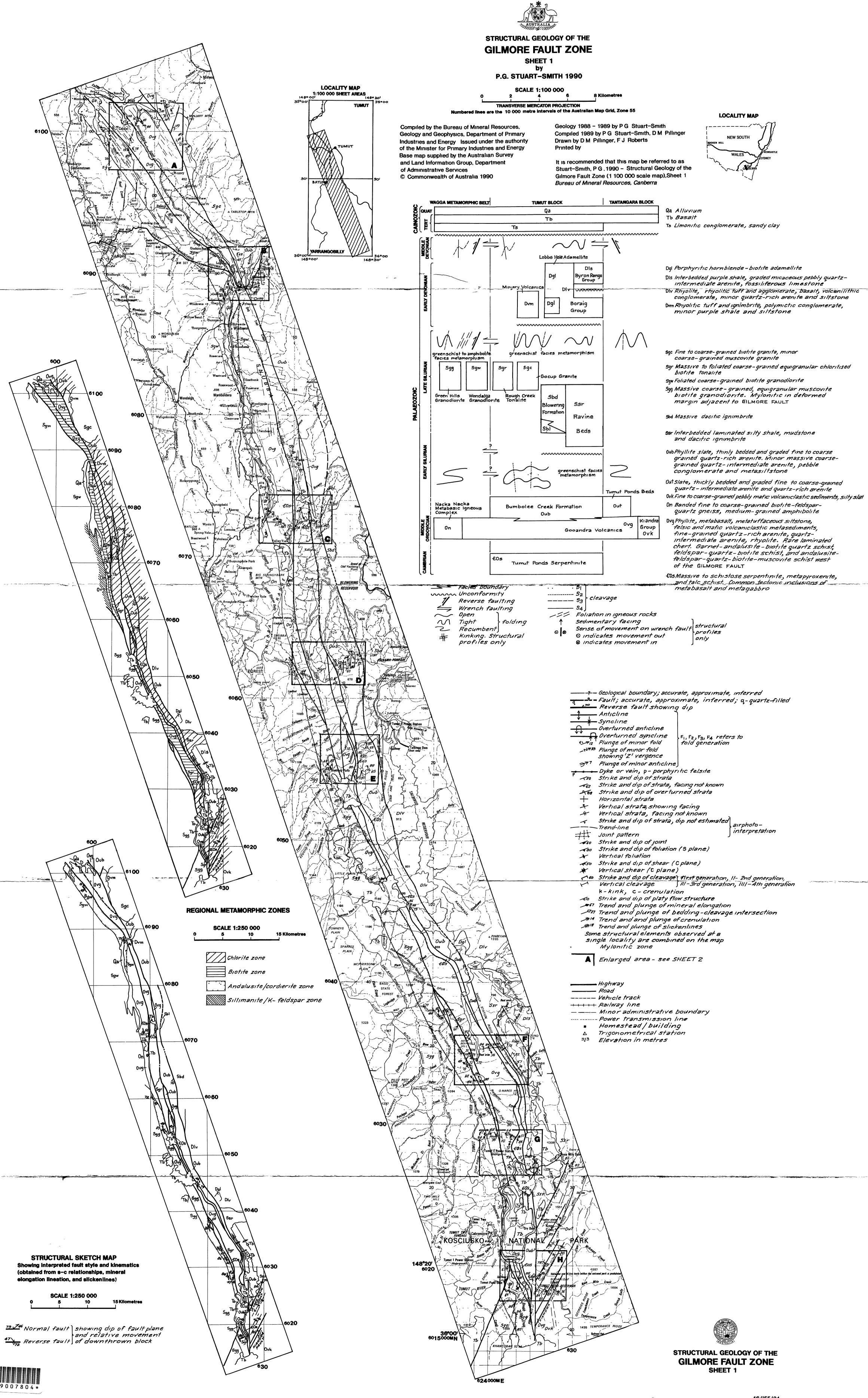

| SAMPNO    | STRATUNIT             | LITHOLOGY                                           | MAPNO | GRIDRE |
|-----------|-----------------------|-----------------------------------------------------|-------|--------|
| 87843423B | Young Granodiorite    | granitic cataclasite                                | 8527  | 195018 |
| 87843430  | Young Granodiorite    | granitic mylonite                                   | 8527  | 197165 |
| 87843431  | Young Granodiorite    | granitic mylonite                                   | 8527  | 198166 |
| 87843432  | North Mooney Complex  | metagabbro                                          | 8527  | 185159 |
| 87843441  | Honeysuckle Beds      | mafic hornfels                                      | 8527  | 148209 |
| 87843444  | Honeysuckle Beds      | meta- mafic pitchstone                              | 8527  | 153206 |
| 87843445  | Honeysuckle Beds      | meta- fine-grained quartz-intermediate arenite      | 8527  | 154206 |
| B7843446A | Wondalga Granodiorite | ultramylonite                                       |       |        |
| 37843446B | Wondalga Granodiorite | mylonitic granite                                   |       |        |
| 37843449  | Honeysuckle Beds      | meta- basaltic lapilli tuff                         |       | 227039 |
| 37843452  | North Mooney Complex  | medium-grained hornblende diorite                   |       |        |
| 37843456  | Young Granodiorite    | granitic mylonite                                   |       | 233039 |
| 37843458  | Young Granodiorite    | granitic mylonite                                   |       | 235044 |
| 37843469A | Young Granodiorite    | granitic mylonite                                   |       | 227080 |
| 37843470  | Young Granodiorite    | quartz-chlorite rock                                |       |        |
| 37843471  | North Mooney Complex  | meta- medium-grained quartz dolerite                | 8527  | 225078 |
| 37843479  | Young Granodiorite    | fine-grained leucogranite                           | 8527  | 224090 |
| 37843480A | Young Granodiorite    | granitic cataclasite                                |       |        |
| 37843480B | Young Granodiorite    | granitic cataclasite                                |       | 232098 |
| 37843483  | Young Granodiorite    | coarse-grained equigranular biotite granodiorite    |       | 253961 |
| 37843487  | Young Granodiorite    | granitic cataclasite                                | 8527  | 195147 |
| 37843488  | Young Granodiorite    | weakly foliated coarse-grained biotite granodiorite |       | 202135 |
| 37843491  | Young Granodiorite    | weakly foliated coarse-grained biotite granodiorite |       | 245955 |
| 7843499   | Young Granodiorite    | mylonitic granodiorite                              | 8527  | 237962 |
| 7843502   | Young Granodiorite    | mylonitic granodiorite                              |       | 235964 |
| 37843504  | Young Granodiorite    | mylonitic granodiorite                              |       | 234965 |
| 37843505  | North Mooney Complex  | metadolerite                                        | 8527  | 232966 |
| 37843509  | Blowering Formation   | cordierite hornfels                                 | 8527  | 228970 |
| 37843510  | North Mooney Complex  | meta-hornblendite                                   |       | 228932 |
| 37843521  | Bogong Granite        | muscovite-biotite-quartz hornfels                   |       | 230904 |
| 7843524A  | 1                     | fine-grained leucogranite                           |       | 239893 |
| 37843526  | Young Granodiorite    | mylonitic coarse-grained granodiorite               |       | 256883 |
| 37843527A | Bogong Granite        | cataclasite                                         | 8527  | 257881 |
| 37843527B | Bogong Granite        | cataclasite                                         | 8527  |        |
| 37843530  | Young Granodiorite    | fine-grained quartz diorite                         |       | 265876 |
| 37843532  | North Mooney Complex  | metadolerite                                        |       |        |
| 37843534  | Young Granodiorite    | mylonitic granodiorite                              |       | 214093 |
| 37843540  | Coolac serpentinite   | serpentinite                                        |       | 211078 |
| 37843544A | Blowering Formation   | dacite                                              |       | 218061 |
| 37843544B | Blowering Formation   | meta- quartz-intermediate arenite                   |       | 218061 |
| 37843566  | Honeysuckle Beds      | Volcanilithic breccia                               |       | 167171 |
| 7843582   | Young Granodiorite    | mylonitic granodiorite                              |       | 237912 |
| 37843583  | Young Granodiorite    | weakly foliated coarse-grained granodiorite         |       | 238916 |
| 37843590  | North Mooney Complex  | metadolerite                                        |       | 226942 |
| 7843593   | Young Granodiorite    | mylonitic granodiorite                              |       | _      |
| 7843599A  | Young Granodiorite    | ultramylonite                                       |       | 238936 |
| 7843599B  | Young Granodiorite    | mylonitic coarse-grained granodiorite               |       | 238936 |
| 7843602   | Bogong Granite        | cataclasite                                         |       | 221947 |
| 7843608   | Young Granodiorite    | mylonitic granodiorite                              |       | 239016 |
| 7843610   | Young Granodiorite    | deformed coarse-grained granodiorite                |       | 242018 |
| 7843614   | Young Granodiorite    | granitic cataclasite                                |       | 235010 |
| 37843617  | Honeysuckle Beds      | tuffaceous slate                                    |       | 231025 |
| 7843623   | Young Granodiorite    | mylonitic coarse-grained granodiorite               |       | 237998 |
| 7843626   | Young Granodiorite    | granitic cataclasite                                |       | 238986 |
|           | ÷                     | <b>■</b>                                            |       |        |

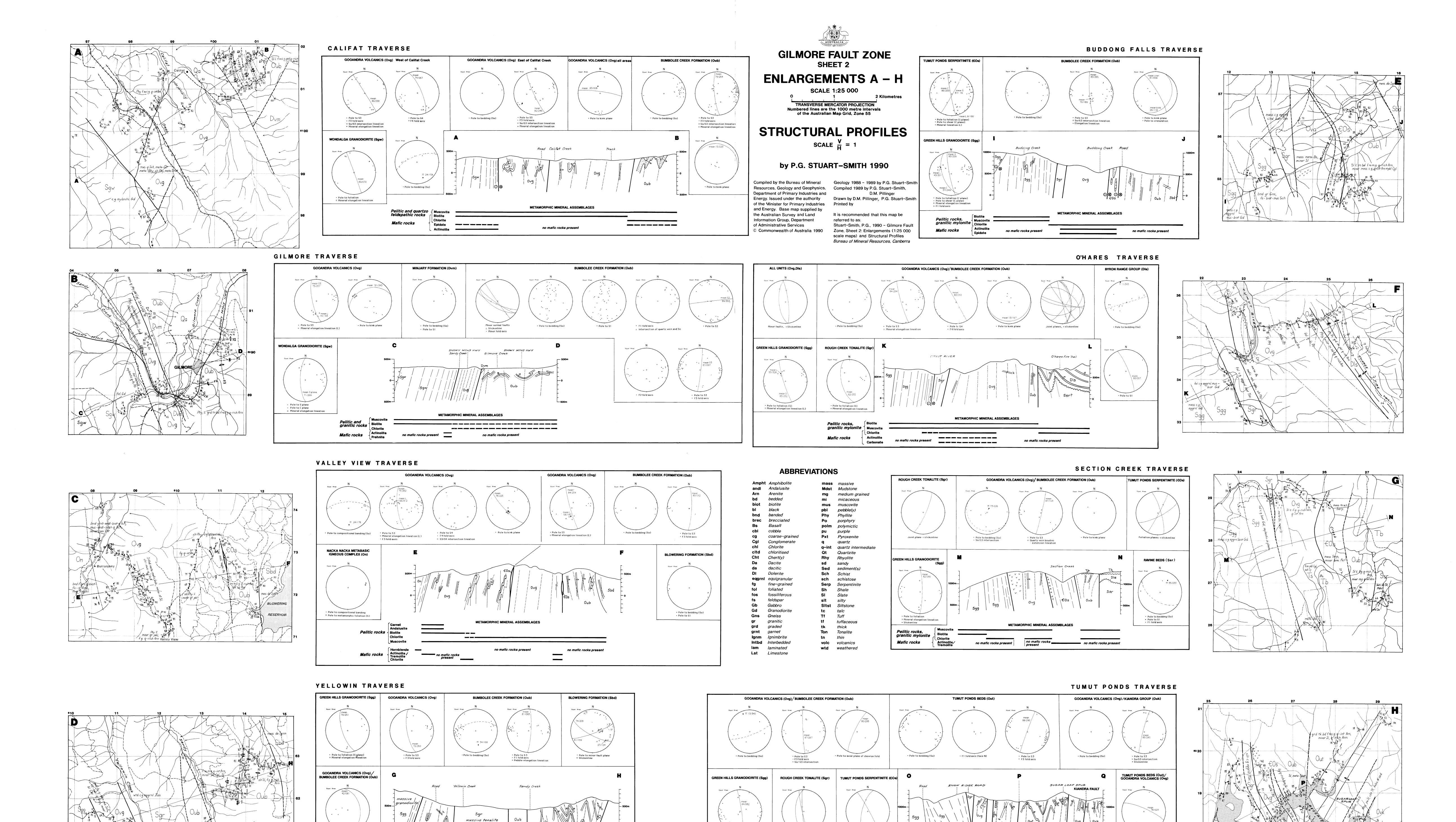

| AMPNO S                | TRATUNIT                                    | LITHOLOGY                                                                        | MAPNO | GRIDRE |
|------------------------|---------------------------------------------|----------------------------------------------------------------------------------|-------|--------|
| 87843632               | Blowering Formation                         | metasiltstone                                                                    | 8527  | 231975 |
| 87843633               | Bogong Granite                              | fine-grained equigranular leucogranite                                           | 8527  | 239894 |
| 87843635               | Honeysuckle Beds                            | metabasalt                                                                       | 8527  | 246890 |
| 87843640               | Young Granodiorite                          | mylonitic coarse-grained granodiorite                                            | 8527  | 252890 |
| 87843646A              | Bogong Granite                              | altered medium-grained leucogranite                                              | 8527  |        |
| 87843647A              | Coolac Serpentinite                         | anthophyllite hornfels                                                           | 8527  |        |
| 87843647B              | Coolac Serpentinite                         | diop-cord-phlog-spinel-anthophyllite hornfels                                    | 8527  |        |
| 87843648               | Honeysuckle Beds                            | medium-grained andesine-hornblende hornfels                                      | 8527  |        |
| 87843652               | Young Granodiorite                          | mylonitic granodiorite                                                           |       | 267874 |
| 87843654               | Young Granodiorite                          | granodioritic cataclasite                                                        |       | 167211 |
| 87843660               | Young Granodiorite                          | granodioritic cataclasite                                                        |       | 173200 |
| 87843674               | Young Granodiorite                          | granitic cataclasite                                                             |       | 159228 |
| 88843104               | Gooandra Volcanics                          | meta- mafic agglomerate                                                          | 8527  |        |
| 88843106A              | Gooandra Volcanics                          | meta mafic volcanic                                                              | 8527  |        |
| 88843106B              | Gooandra Volcanics                          | metadacite                                                                       | 8527  |        |
| 88843112               | Frampton Volcanics                          | metarhyolite                                                                     | 8527  |        |
| 88843113               | Gooandra Volcanics                          | medium-grained quartz-intermediate arenite                                       | 8527  |        |
| 88843115               | Frampton Volcanics                          | metarhyolite                                                                     | 8527  |        |
| 88843116               | Frampton Volcanics                          | meta- felsic tuff                                                                | 8527  |        |
| 88843131               | Gooandra Volcanics                          | polymictic cobble conglomerate                                                   | 8527  |        |
| 88843138               | Gooandra Volcanics                          | meta- porphyritic felsite                                                        | 8527  |        |
| 88843157               | Gooandra Volcanics                          | quartz-quartzite pebble conglomerate                                             | 8527  |        |
| 88843159               | Gundagai Serpentinite                       | metapyroxenite                                                                   | 8527  |        |
| 88843163               | Gooandra Volcanics                          | meta- rhyolitic crystal tuff                                                     | 8527  | 062073 |
| 88843165               | Gooandra Volcanics                          | metachert                                                                        | 8527  | 058072 |
| 88843168               | Gundagai Serpentinite                       | talc schist                                                                      | 8527  | 058077 |
| 88843178A              | Young Granodiorite                          | fine-grained porphyritic granodiorite                                            | 8528  |        |
| 88843178B              | Coolac Serpentinite                         | talc-tremolite hornfels                                                          |       | 079395 |
| 88843180               | Bullawyarra Schist                          | quartz-epidote-albite-actinolite schist                                          | 8528  | 079395 |
| 88843310               | Blowering Formation                         | meta- medium-grained quartz-poor arenite                                         | 8528  | 075383 |
| 3884 <b>3318</b>       | Blowering Formation                         | meta- medium-granned quartz-poor arenite                                         | 8527  | 149959 |
| 38843340               | Blowering Formation                         | •                                                                                | 8527  | 166940 |
| 38843341               | Blowering Formation                         | dacite                                                                           | 8527  | 135928 |
| 3884 <b>33</b> 63      | Honeysuckle Beds                            | meta- gritty quartz-intermediate arenite                                         | 8527  | 162948 |
| 38843372A              | Bumbolee Creek Formation                    | metabasalt                                                                       | 8527  |        |
| 38843372B              | Bumbolee Creek Formation                    | silty phyllite                                                                   | 8527  | 076905 |
| 38843381               | Minjary Volcanics                           | fine-grained quartz-rich arenite                                                 | 8527  | 076905 |
| 38843383               | Gooandra Volcanics                          | pebble conglomerate                                                              | 8527  | 065889 |
| 38843388               | Avenall Basic Intrusive C.                  | meta- volcanilithic quartz-intermediate arenite                                  | 8527  | 062892 |
| 38843389               | Wondalga Granodiorite                       | metagabbro                                                                       | 8527  | 057890 |
| 38843428               | <del>-</del>                                | mylonitic porphyritic granodiorite                                               | 8527  | 056890 |
| 38843434               | Blowering Formation                         | chloritic dacite breccia                                                         | 8527  | 180005 |
|                        | Bumbolee Creek Formation                    | graded fine-grained quartz-intermediate arenite                                  | 8527  | 149022 |
| 38843443A<br>38843443B | Killimicat Granite                          | leucogranitic cataclasite                                                        | 8527  | 153020 |
| 38843444               | Killimicat Granite Killimicat Granite       | coarse-grained leucogranite                                                      | 8527  | 153020 |
| 38843457A              |                                             | leucogranitic cataclasite                                                        |       |        |
|                        | Blowering Formation<br>Bogong Granite       | coarse-grained quartz-intermediate arenite                                       |       | 216977 |
| 38843464               | Blowering Formation                         | coarse-grained equigranular leucogranite metasiltstone                           | 8527  |        |
| 38843465               | Blowering Formation                         | metadacite                                                                       | 8528  | 081443 |
| 38843481               | Bumbolee Creek Formation                    |                                                                                  |       | 079441 |
|                        | Bumbolee Creek Formation                    | biotite-muscovite-quartz hornfels                                                | 8527  | 068918 |
|                        | Bumbolee Creek Formation                    | quartz-biotite-muscovite hornfels                                                | 8527  | 073944 |
|                        |                                             | quartz-biotite-muscovite hornfels                                                | 8527  | 073944 |
| 8843487                | Bumbolee Creek Formation Gooandra Volcanics | cordierite-biotite-muscovite hornfels<br>garnet-andalusite-biotite-quartz schist | 8527  | 076945 |
| 38843493               |                                             |                                                                                  | 8527  | 084731 |


| AMPNO S               | STRATUNIT                   | LITHOLOGY                                          | MAPNO        | GRIDE  |
|-----------------------|-----------------------------|----------------------------------------------------|--------------|--------|
| 38843499B             | Gooandra Volcanics          | chlorite-muscovite-quartz schist                   | 8527         | 091724 |
| 88843499C             | Gooandra Volcanics          | meta- tuffaceous pelite                            | 8527         | 091724 |
| 8843507               | Gooandra Volcanics          | phyllite                                           | 8527         | 096714 |
| 8843518               | Gooandra Volcanics          | meta- volcanilithic quartz-intermediate arenite    | 8527         | 109731 |
| 88843521              | Gooandra Volcanics          | metabasalt                                         | 8527         | 111729 |
| 8843535               | Gooandra Volcanics          | coarse-grained equigranular hornblende diorite     | 8527         | 044101 |
| 8843559               | Frampton Volcanics          | metarhyodacite                                     | 8527         | 040105 |
| 8843566               | Gundagai Serpentinite       | talc-carbonate rock                                | 8527         | 036110 |
| 8843576               |                             | porphyritic felsite                                | 8527         | 015111 |
| 8843579               | Gooandra Volcanics          | meta- mafic crystal lithic tuff                    | 8527         | 020111 |
| 8843581               | Gooandra Volcanics          | meta-andesite                                      | 8527         | 028112 |
| 8843591               |                             | medium-grained leuco-quartz diorite                |              |        |
| 8843609A              | Gooandra Volcanics          | meta- mafic lapilli tuff                           |              | 004122 |
| 8843609B              | Gooandra Volcanics          | meta-andesite                                      |              | 004122 |
| 88843633A             | Gundagai Serpentinite       | serpentinite                                       |              | 011154 |
| 8843633B              | Gooandra Volcanics          | meta- mafic lapilli tuff                           |              | 011154 |
| 8843640               | _                           | porphyritic felsite                                |              | 018144 |
| 8843652               | Gooandra Volcanics          | meta- andesitic lapilli lithic tuff                |              | 013161 |
| 8843658               | Gooandra Volcanics          | meta- mafic lapilli lithic tuff                    |              |        |
| 8843666               | Gundagai Serpentinite       | carbonate-talc schist                              |              | 023145 |
| 8843681               | Gooandra Volcanics          | meta- mafic crystal lithic tuff                    |              | 033135 |
| 8843704               | Gooandra Volcanics          | chert                                              |              | 035126 |
| 88843725              | Blowering Formation         | carbonated dacite                                  |              | 050152 |
| 8843755               | Gundagai Serpentinite       | meta-clinopyroxenite                               |              |        |
| 8843792               | Jackalass Slate             | slate                                              |              | 044140 |
| 88843793              | Jackalass Slate             | laminated silty slate                              |              | 043141 |
| 8843814               | Suckardo State              | metapyroxenite                                     |              | 085720 |
| 8843815               | Gooandra Volcanics          | muscovite-andalusite-biotite-quartz- schist        |              | 084719 |
| 8843817               | 2004.14.12.10(04.11.00      | metapyroxenite                                     |              | 083718 |
| 8843819               | Nacka Nacka Metabasic I. C. | amphibolite                                        |              | 081719 |
| 8843821               | nord nord netabasic 1. 5.   | metapyroxenite                                     |              | 080731 |
| 8843825               | Bumbolee Creek Formation    | thinly bedded quartz-rich silty shale              |              | 146627 |
| 8843850               | Gooandra Volcanics          | andalusite-feldspar-muscovite-biotite-quartz schis |              | 112613 |
| 8843855A              | Green Hills Granodiorite    | foliated biotite granite                           |              | 105617 |
| 8843855B              | Green Hills Granodiorite    | muscovite-biotite granite                          | 8526         | 105617 |
| 8843859               | Rough Creek Tonalite        | fine-grained altered felsite                       |              | 125631 |
| 8843860               | Byron Range Group           | fine-grained micaceous arenite                     |              | 251356 |
| 8843863               | Bumbolee Creek Formation    | sandy slate                                        |              | 246354 |
| 8843864               | Gooandra Volcanics          | metadacite                                         |              | 245356 |
| 8843867               | Goognandra Volcanics        | metabasalt                                         |              | 239353 |
| 8843871               | Gooandra Volcanics          | metabasalt                                         |              | 232345 |
| 8843872               | Gooandra Volcanics          | meta- mafic lapilli tuff                           |              | 230345 |
| 8843873               | Rough Creek Tonalite        | ultramylonite                                      |              | 229345 |
| 88843874              | Green Hills Granodiorite    | mylonitic granodiorite                             |              | 226341 |
| 88843887              | Gooandra Volcanics          | •                                                  |              |        |
| 8843891               | Green Hills Granodiorite    | chlorite-quartz-muscovite schist                   | 8526<br>8526 | 209379 |
| 8843894               | Rough Creek Tonalite        | feldspar-biotite-muscovite-quartz gneiss           |              | 129550 |
| 8843896A              | Gooandra Volcanics          | coarse-grained equigranular tonalite metabasalt    |              | 135550 |
|                       |                             |                                                    |              | 136552 |
| 8843896B              | Gooandra Volcanics          | meta- hornblende basalt                            |              | 136552 |
| 8843898               | Green Hills Granodiorite    | medium-grained muscovite-biotite granite           |              | 119553 |
| 18843931              | Green Hills Granodiorite    | c.g. equigranular muscovite-biotite granodiorite   |              | 181381 |
| 18843946A             | Green Hills Granodiorite    | mylonitic granodiorite                             |              |        |
| 18843946B<br>18843947 | Goognandra Volcanics        | metabasalt                                         |              | 247290 |
|                       | Gooandra Volcanics          | meta intermediate volcanic                         | お526         | 249290 |

| SAMPNO    | STRATUNIT                | LITHOLOGY                                    | MAPNO | GRIDREF |
|-----------|--------------------------|----------------------------------------------|-------|---------|
| 88843964B | Tumut Ponds Serpentinite | serpentinite                                 | 8526  | 266272  |
| 88843964C | Tumut Ponds Serpentinite | metapyroxenite                               | 8526  | 266272  |
| 88843964D | Tumut Ponds Serpentinite | serpentinite                                 | 8526  | 266272  |
| 88843973  | Green Hills Granodiorite | deformed granodiorite                        | 8526  | 257181  |
| 88843976  | Green Hills Granodiorite | mylonitic granodiorite                       | 8526  | 253190  |
| 88843999A | Rough Creek Tonalite     | altered coarse-grained equigranular tonalite | 8526  | 265184  |
| 88843999B | Rough Creek Tonalite     | mylonite                                     | 8526  | 265184  |
| 89843002  | Tumut Ponds Beds         | fine-grained quartz-intermediate arenite     | 8526  | 280202  |
| 89843020  | Tumut Ponds Beds         | medium-grained quartz-rich arenite           |       | 279182  |
| 89843024  | Gooandra Volcanics       | dacite                                       | 8526  | 285184  |
| 89843027  | Kiandra Group            | altered mafic volcanic/volcaniclastic        | 8526  | 287182  |
| 89843028  | Kiandra Group            | volcanilithic pebble conglomerate            |       | 288182  |
| 89843200  | Coolac Serpentinite      | gabbro                                       |       | 085361  |
| 89843201  | Coolac Serpentinite      | gabbro                                       |       | 082359  |
| 89843202  | Gocup Granite            | granite                                      |       | 062921  |
| 89843203  | Gocup Granite            | granite                                      |       | 028966  |
| 89843204  | Blowering Formation      | dacitie                                      | 8527  | 163749  |
| 89843206  | Gatelee Ignimbrite       | ignimbrite                                   |       | 098127  |






\* R 9 0 0 7 8 0 3 \*







Foliation planes, - slickenline

Foliation planes • Slickenline

Pole to foliation
 Mineral elongation lineation
 Slickenline

• Pole to kink plane