
1990/92 OPY4

Bureau of Mineral Resources, Geology & Geophysics

Record 1990/92

MINOR METALS AND RARE EARTH ELEMENTS IN AUSTRALIAN BASE METAL ORES
- A Reconnaissance Assay Survey

by L J David Commodity Geologist (Base Metals)

BMR PUBLICATIONS COMPACTUS (LENDING SECTION)

1990/92 COPY4

ontained in this report has been obtained by the Bureau of Mineral Resources. Geology and Geophysics as part of the policy lovernment to assist in the exploration and development of mineral resources. It may not be published in any form or used in retus or statement without the permission in writing of the Director. Record 1990/92

MINOR METALS AND RARE EARTH ELEMENTS IN AUSTRALIAN BASE METAL ORES
- A Reconnaissance Assay Survey

by L J David Commodity Geologist (Base Metals)

© Commonwealth of Australia, 1990
This work is copyright. Apart from any fair dealing for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Inquiries should be directed to the Principal Information Officer, Bureau of Mineral Resources. of Mineral Resources, Geology and Geophysics, GPO Box 378, Canberra, ACT 2601.

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	1
Sample Preparation	1
Acid Digest and Assay Procedures	2
PREVIOUS WORK	2
GEOLOGICAL OCCURRENCE	2
ECONOMIC GEOLOGY	3
Minor Metals	3
Rare Earth Elements and Yttrium	4
AUSTRALIAN PRODUCTION/RESOURCES	5
Minor Metals	5
Rare Earth Elements and Yttrium	5
ASSAY RESULTS	6
Cadmium and Antimony	6
Scandium, Indium and Gallium	6
Selenium and Germanium	7
Rare Earth Elements	7
Hafnium, Tellurium and Thallium	7
CONCLUSIONS	8
ACKNOWLEDGEMENTS	8
REFERENCES	9
APPENDIX 1: Assay Results	
APPENDIX 2: Graphs of Assay Results	

ABSTRACT

A reconnaissance assay survey of ore samples was undertaken to approximately gauge the content of the rare earth elements (REEs) and the so called minor metals in selected base metal sulphide deposits of Australia. With the exception of the anomalous Mt Lyell samples, the low REE contents recorded are consistent with contents reported in the small amount of work that has been done on other world sulphide deposits. Known associations of the surveyed minor metals with the various base metals are broadly confirmed. Production of REEs from Australian base metal sulphide deposits is unlikely in the foreseeable future.

INTRODUCTION

Significant interest in the use of the Rare Earth Elements (REEs) in high powered magnets and experimental "warm" superconductor materials, and of the minor metals in the electronics industry, was generated in the late 1980s. These metals should continue to play a role in the future, as research into new uses of these elements and new materials is undertaken.

A reconnaissance assay program commenced in early 1989, to approximately gauge the content of these minor metals in ores from major Australian base metal mines and in two deposits at an advanced stage of development.

In April/May 1989, three random samples (1kg weight) of crushed, ground ore (mill feed) and of any mill feed stockpiles were requested and received from the operating mines. Composite core samples were received from the two deposits being developed. Sample numbers and their sources are listed in Table 1. There were 53 samples, each of approximately 500 g weight dispatched to Australian Assay Laboratories, Perth, Western Australia on 2 June, 1989 for assay.

It is emphasised that because of the small number of samples taken they should not be considered to be representative of the relevant mill feed, orebodies or deposits. As a result only a broad interpretation of the assay results has been attempted, which should be regarded as approximate only.

Sample Preparation

Mill feed samples were riffle split into two 500 g (approx) samples. Single composite samples (also 500 g approx) were made from equal riffle splits of the samples from each of the stockpiles and selected core samples groups. The core samples were grouped according to designated "ore grade" category (high, medium or low) for the Lady Loretta deposit, and the source orebody for the Thalanga deposit.

Remnant sample split and laboratory residues, after analysis, were retained.

Table 1: Sample Numbers and Mines/Deposits Sampled.

SAMPLE # MINE/DEPOSIT 8981001 Cadjebut (Zn/Pb) mine,	SAMPLE TYPE Mill feed	SAMPLE # MINE/DEPOSIT SAMPLE TYPE 8981026 Woodlawn (Zn/Pb/Cu) Complex one	
Western Australia 002 "	TÊ	mine, New South Wales mill feed 027 " " "	
003 "	n	028 " "	
004 CSA (Cu/Zn/Pb) mine, New South Wales	Mill feed	029 Mount Isa (Zn/Pb/Cu) Weekly composite mine, Queensland Cu mill feed	
005 "	11	030 " "	
006 "	n	031 " "	
007 Elura (Zn/Pb) mine, New South Wales	Monthly composite mill feed	032 " Weekly composite Pb/Zn mill feed	
008 "	17	033 " "	
009 "	π	034 " "	
010 Mt Lyell (Cu/Ag/Au) mine, Tasmania	Mill feed	035 North (Zn/Pb/Ag) mine, CHECK SAMPLE mill New South Wales feed annual compos	aite
011 "	ų	036 Hellyer (Zn/Pb/Cu) mine, Low grade Zn ore Tasmania SAG mill discharge	
012 "	19	037 " High As ore arsenic stockpile	
013 Lady Loretta (Zn/Pb) Deposit, Queensland	Medium grade ore drill core	038 " Medium Zn ore stockpile	
014 "	High grade ore	039 " High grade Zn ore stockpile	
015 "	Low grade, baritic one drill come	040 " "	
016 Selwyn (Starra) Cu/Au mine, Queensland	Sulphide ore mill feed	041 " "	
017	n	042 Mount Isa (Zn/Pb/Qu) mine, Pb/Zn tail	
018 North (Zn/Pb/Ag) mine, New South Wales	CHECK SAMPLE annual composite	043 " Cu tail	
019 Selwyn (Starra) Cu/Au mine, Queensland	Sulphide ore mill feed	044 Lady Loretta (Zn/Pb) Medium grade ore Deposit, Queensland drill core	
020 Warrego (Cu/Bi/Au) mine, Northern Territory	Monthly composite mill feed	045 " High grade ore drill core	
021 "	17	046 Rosebery (Zn/Pb/Cu) mine, Monthly composite Tas. (incl Que River ore) mill feed	
022 "	70	047 " "	
023 ZC (Zn/Pb/Ag) mine, New South Wales	Annual Composite mill feed	048 " "	
024 Woodcutters (Zn/Pb) mine, Northern Territory	Mill feed	049 Thalanga (Zn/Pb/Cu) Central onebody Deposit, Queensland drill core	
025 "	11	050 " Eastern orebody drill core	
		051 " Western orebody drill core	
		052 Selwyn (Starra) Cu/Au Leached ore mine, Queensland stockpile	
Lotus File:SAMPINUM		053 " Oxide ore s'pile	

Acid Digest and Assay Procedures

The elements assayed in each of the samples were:

copper	(Cu)	lanthanum	(La)
lead	(Pb)	cerium	(Ce)
zinc	(Zn)	praseodymium	(Pr)
cadmium	(Cd)	neodymium	(Nd)
antimony	(Sb)	samarium	(Sm)
scandium	(Sc)	europium	(Eu)
gallium	(Ga)	gadolinium	(Gd)
indium	(In)	terbium	(Tb)
thallium	(T1)	dysprosium	(Dy)
selenium	(Se)	holmium	(Ho)
tellurium	(Te)	erbium	(Er)
germanium	(Ge)	thulium	(Tm)
hafnium	(Hf)	ytterbium	(Yb)
yttrium	(Y)	lutetium	(Lu)

Sample break-down was by mixed acid digest for germanium, tellurium, antimony and selenium and a mixed acid/hydrofluoric acid leach was used for all other elements. For the REEs, an ion exchange process was then used to remove interference elements before assay by the Inductively Coupled Plasma (ICP) Spectrometry (Optical) method.

Scandium, hafnium (10ppm detection limit) and gallium were also assayed by ICP-Optical Spectrometry but indium assays were determined by Analabs, Perth, Western Australia using ICP-Mass Spectrometry. Copper, lead, zinc, germanium, tellurium, antimony and selenium were assayed by Atomic Absorption Spectroscopy (AAS). Hafnium (5ppm detection limit) was assayed using the pressed disc/X-Ray Fluorescence technique.

PREVIOUS WORK

A literature survey has indicated that very little work has been done on REE behaviour in and around sulphide deposits. Only scattered brief references are made to the other minor metals of this reconnaisance survey in publications which focus on other subjects. These mainly consist of analyses of specific minerals rather than the minor metal content of major metal ores.

GEOLOGICAL OCCURRENCE

Deposits in which the minor metals, other than the REEs, constitute the principal economic commodities are rare, despite the relative abundance of these metals in the earth's crust. Study of the geological setting of these minor metals has mainly been confined to economic deposits of the major metals such as aluminium, base metals, tungsten and tin in which they occur as minor constituents. Available data have been summarised in the "Economic Geology" section of this report.

Carbonatites contain by far the largest REE contents, which may exceed 15,000ppm. REEs in the earlier phases of a carbonatite complex are relatively widely distributed in the minerals calcite, apatite and pyrochlore. In the later phases they become concentrated in the rare earth minerals (Henderson 1984).

Kimberlites (which may exceed 4500ppm) have the next highest REE content of the basic and ultrabasic rock suite, while most of the other members of the suite contain less than 1000ppm total REEs. Komatiites have especially low contents of less than 100ppm. Intermediate and acid rocks have generally low to moderate total REE contents of up to 400-500ppm, with some up to 1000ppm.

Most sulphide and oxide ore minerals are not good hosts for REEs.

Bence suggested (Whitford et al, 1988) that europium is enriched in many polymetallic volcanogenic massive sulphide (VMS) deposits and in active mid-ocean ridge "black smokers". Whitford et al (1988) recorded much higher contents for each of the REEs in a massive pyrite sample (0.008-0.7ppm) compared to a massive ore sample (1.03-24.6ppm) both taken from the PQ lens at Que River, Tasmania. The REE contents in the massive pyrite sample are comparable to that in ore samples assayed, in this survey, from Hellyer and Rosebery, Tasmania.

ECONOMIC GEOLOGY

Minor Metals

Most of the material for this section has been drawn from US Bureau of Mines (1985) and US Geological Survey (1973).

Antimony is produced as a by-product of base metal and silver mining and may be extracted from tetrahedrite, a copper/silver/antimony sulphide. Stibnite is the main ore mineral of antimony, and often occurs in siliceous veins with small amounts of pyrite, other metal sulphides and minor gold. These veins are usually associated with granite, diorite or monzonite and are emplaced at shallow depths. Stibnite also occurs in more mineralogically complex deposits with pyrite, arsenopyrite, cinnabar or scheelite and base metal sulphides.

Cadmium is mainly sourced from zinc ores with minor contribution from copper and lead ores. Cadmium content of zinc ores is partially dependent on the ore formation temperature with higher temperature contact metamorphic and replacement deposits containing less cadmium than lower temperature hydrothermal or sedimentary-type deposits. Hawleyite and greenockite are the principal independent cadmium sulphide minerals but are not known to form economic cadmium deposits.

Gallium is recovered during alumina production and the processing of some zinc ores. Up to 1% gallium has been recorded in sphalerite, up to 500ppm in galena and up to 100ppm in chalcopyrite. Sphalerite from the "lead belt" in the tri-State area of Kansas, Missouri and Oklahoma in the USA averages about 50ppm gallium and contains up to 200ppm. Bauxites have a similar average gallium content and may reach 100ppm.

Germanium is a minor constituent of some base metal ores and its main source is as a by-product of zinc production. It commonly reaches 0.01 - 0.05% in sphalerite and 0.01 - 0.1% in enargite (a copper/arsenic sulphide). Minerals include germanite (which may also contain appreciable gallium), argyrodite, renierite and others which normally form in sulphide mineralisation at low to intermediate temperatures. Germanium can be concentrated in clays as a result of weathering.

Brief production from the Apex deposit, Utah, USA of gallium/germanium ore hosted by leached iron oxides in dolomite/limestone occurred from 1985 to 1987. Recoverable reserves were estimated at 167,000 t grading 0.039% gallium, 0.079% germanium, 1.91% copper and minor zinc/silver (M J, 1985).

Indium is a trace constituent of mainly zinc, but also of lead, deposits. Concentration in zinc ores can vary widely but sphalerite commonly contains 10-20ppm indium and can reach levels of 1% indium. Chalcopyrite and tetrahedrite can contain up to 1500ppm indium.

Scandium, in the mineral thortvietite, has been mined in small amounts from pegmatites in Norway and Madagascar. However, the major potential source is from tungsten deposits in which scandium is a minor constituent of wolframite and other tungsten minerals. Scandium has also been extracted as a by-product of uranium processing, although scandium contents are relatively low, and it can reach relatively high levels in phosphate minerals

Selenium shows a preference for copper sulphides and pyrite, although it does occur in lead sulphides (1085ppm in galena from Mississippi Valley type mineralisation in West Canada, Mercer 1976). It is of relatively higher abundance in stratabound copper/lead/zinc deposits of volcanic origin.

Rare Earth Elements and Yttrium (Henderson 1984)

Until 1965 monazite (55-65% rare earth oxides or REOs) was the most important commercial rare earth elements bearing mineral. Beach sand placer deposits in Brazil provided the first major world source of monazite in 1895 and other placer deposits were developed in India. Since 1967 Australian mineral sands deposits have been the most important source of monazite, as a by-product of ilmenite, rutile and zircon production. Minor xenotime (yttrium phosphate) is also produced. Alluvial tin mining in Malaysia produces monazite and minor xenotime by-product concentrates.

Primary bastnasite, a fluocarbonate mineral (60-75% REOs) in carbonatite igneous rocks, has been the dominant source of Rare Earth Elements (REEs) in the world since 1965 with the Mountain Pass carbonatite deposit in California, USA, being the major producer (average REO content 5-15%). China is emerging as an important producer of REOs from primary bastnasite, monazite and other rare earth minerals associated with magnetite, specularite and hematite in the Bayan Obo iron ore deposit (up to 6.19% REO). The tabular iron orebodies occur in steeply dipping dolomites and are thought to have been derived from solutions of carbonatite affinity. Several REE bearing carbonatite bodies have been identified in Africa and bastnasite (with minor monazite) bearing veins were mined in Burundi, Central Africa until 1980. Secondary enrichment of REEs may result from deep weathering of carbonatite bodies such as in residual soils overlying carbonatites in Kenya (grading about 5% REO) and Brazil.

Although economic concentrations of REEs are normally associated with carbonatites, the major world production in the 1950s and early 1960s was from a monazite bearing shear at Steenkampskraal, South Africa. By-product recovery of monazite is being considered at the Buffalo fluorspar mine near Naboomspruit, South Africa.

The Korsnas mine in Finland produced a rare earth concentrate (ore minerals: monazite, apatite) between 1961 and 1972, as a by-product of the mining of galena from a vein in migmatitic mica gneiss.

Pegmatites provide a minor source of rare earth minerals.

AUSTRALIAN PRODUCTION/RESOURCES

Minor Metals

Antimony is extracted, as an antimony-lead product, from Broken Hill lead ores by Broken Hill Associated Smelters at Port Pirie, South Australia. Antimony oxide is produced from stibnite ores of the Hillgrove Mine in the New England area of New South Wales (AMIAR 1987).

Cadmium is a by-product of the smelting of zinc concentrates from the Rosebery, Elura, Que River, Broken Hill and Mount Isa mines at the Risdon zinc refinery in Tasmania; lead-zinc smelting of Broken Hill and other concentrates at Cockle Creek, NSW, and smelting of the Broken Hill lead concentrates at Port Pirie, SA (AMIAR 1987).

Gallium content of the Brockman REE deposit, in the East Kimberleys of Western Australia, is reported to be significant. A plant built by Rhone-Poulenc Chemie, of France, commenced extraction of gallium as a by-product of alumina production at Pinjarra, Western Australia in mid 1989 but the company was considering curtailment of operations in early 1990, mainly as a result of low gallium prices. The gallium source is the caustic liquor containing aluminium and minor gallium piped from the nearby Alcoa alumina refinery.

Indium occurs at Broken Hill, NSW, and in a number of base metal deposits around Herberton, north Queensland. The Baal Gammon copper/silver/tin deposit is the most significant of a number of indium bearing deposits west of Herberton.

Scandium oxide (about 130kg) was extracted between 1954 and 1961 at Port Pirie, South Australia, from uranium ore mined at Radium Hill, South Australia. Uranium processing residues at Port Pirie are estimated to contain several tonnes of scandium. Tailings dams at Mary Kathleen, Queensland, also contain scandium (Bureau of Mineral Resources 1988).

Selenium is recovered from tankhouse slimes at the Port Kembla copper refinery and at the Cockle Creek lead/zinc refinery, Newcastle, both in New South Wales (AMIAR 1987).

Rare Earth Elements and Yttrium

Monazite and minor xenotime concentrates produced as a by-product of ilmenite, rutile and zircon extraction from mineral sands deposits on the east and west coasts are the only form of REE and yttrium production under way in Australia (AMIAR 1987).

Pronounced enrichment of REEs occurs in the weathered zone of carbonatites at Mt Weld, Western Australia. A previously published measured resource figure of 1.35Mt at 23.5% total rare earths (20% cut off) is now considered conservative (Carr Boyd Minerals Ltd, 1990).

Parts of the large Olympic Dam copper/uranium/gold deposit (450 Mt measured and indicated resource) in South Australia contain 2000-2700ppm cerium, 200ppm-1800ppm lanthanum and 35-135ppm yttrium (Towner et al 1987). The REE minerals bastnasite and florencite have been identified (Roberts and Hudson 1983).

The Brockman rare earths deposit near Halls Creek in Western Australia contains proved and probable reserves of 9 Mt at about 0.075% REO and 0.124% yttrium oxide (Towner et al 1987).

The depleted Mary Kathleen uranium deposit, Queensland, contained significant levels of REEs, attributed to the uranium minerals allanite and stillwellite, but these were not recovered. Uranium production ceased in 1982.

There are numerous occurrences of REEs associated with uranium in the Mt Isa region in Queensland and the Olary district in South Australia and with pegmatites in several locations in Australia. Minor production was recorded from a pegmatite deposit at Cooglegong, WA (Towner et al 1987).

ASSAY RESULTS

Assay results are presented in APPENDIX 1 and graphs of these results, plotted against sample number, are in APPENDIX 2. The mines and deposits sampled are shown on the copper, lead, zinc assays graph (APPENDIX 2, Figure 1). Elements are grouped arbitrarily, rather than with regard to any particular element association.

Cadmium and Antimony (APPENDIX 2, Figure 3)

Highly anomalous cadmium (1490ppm, 1570ppm) and exceptionally high antimony (5100ppm, 6700ppm) assays for the two Woodcutters samples are associated with only moderately elevated zinc and lead contents.

North Mine, Hellyer and Elura samples gave the next highest antimony assays. Low antimony assays, relative to samples from the other lead-zinc and polymetallic mines and deposits, were recorded in the Cadjebut and Woodlawn samples

As could be expected, cadmium and antimony are broadly sympathetic with zinc and lead contents (respectively) and, in general, cadmium exceeds antimony content. However, Elura, Woodcutters and some of the Hellyer samples exhibit the reverse relationship despite higher zinc than lead content.

Scandium, Indium and Gallium (APPENDIX 2, Figure 4)

Scandium assays are anomalous in two of the Mt Lyell samples and the high arsenic ore sample from Hellyer but no significant correlation with base metals is evident. Assays of the copper and the lead/zinc tail samples from Mt Isa indicate that sulphide concentration has no effect on scandium content of the copper tail but enriches scandium in the lead/zinc tail. This element is also enriched in the samples from the weathered zone of the Selwyn deposit.

Indium assays are highest in the high grade samples from Lady Loretta, one from the Eastern orebody at Thalanga and the Woodlawn samples. Samples from Lady Loretta (medium grade), Woodcutters, and the volcanogenic Hellyer, Rosebery and Thalanga deposits returned high assay results. The low grade baritic Lady Loretta ore and high arsenic ore at Hellyer yielded particularly low assays. An overall positive correlation exists between zinc and indium contents, although the Cadjebut, Elura and the Broken Hill samples are notable exceptions. A marked decrease of indium, relative to the mill feed ore samples, occurs in the Mt Isa lead/zinc tail while the copper tail shows only a marginal decrease after sulphide concentration.

Gallium appears to be most abundant in the ore samples with significant copper (APPENDIX 2, Figs 2 and 4), especially those of the Selwyn and Warrego copper/gold mines. Exceptions are the relatively low gallium contents of the Mt Isa copper ore samples and the relatively high gallium contents of copper poor Elura samples. Cadjebut and Broken Hill samples gave relatively low gallium assays. Despite low gallium in the Mt Isa copper ore the affinity for copper is supported by the depletion of gallium in the copper tail and the enriched gallium content in the Mt Isa lead/zinc tail.

Selenium and Germanium (APPENDIX 3, Figure 5)

Many of the assays for these two elements were below the analytical detection limit.

Where selenium values are recorded, they are significantly elevated in samples taken from the VMS deposits of Tasmania and Woodlawn, particularly from the Hellyer mine. Samples from CSA Mine at Cobar and a medium grade core sample from Lady Loretta lead/zinc deposit also have significant selenium content. The Mt Isa copper tail sample exhibits enrichment of selenium.

Germanium assays were above the detection limit only in samples from Mt Lyell, Lady Loretta, and the ZC Mine. The high grade core samples from Lady Loretta gave much higher assays than the other Lady Loretta samples, and there appears to be some correlation with zinc content.

Rare Earth Elements (REEs) (APPENDIX 2, Figures 6-10)

The most obvious feature is the highly anomalous lanthanum (80-175ppm) and cerium (119-256ppm) assays of the Mt Lyell mine samples. A high content of the other light REEs (through to gadolinium) is also evident. A REE bearing phosphatic layer has been mapped at the top of the main mineralised horizon of the Prince Lyell deposit, and contains apatite concretions with monazite-chalcopyrite intergrowths (Hendry 1981).

Marked enrichment in REEs, compared to primary ore samples, is observed in the two samples taken from the weathered portion of the Selwyn deposit.

The content of lanthanum, cerium, neodymium and terbium is higher in the CSA, Warrego, Woodcutters, high arsenic Hellyer, Rosebery, Thalanga and the Broken Hill ore samples. The Broken Hill samples also have a high yttrium content.

The europium content of the VMS deposits of Rosebery and Thalanga is much higher than in the genetically similar deposits of Woodlawn and Hellyer. Broken Hill samples also have elevated europium contents.

Hafnium, Tellurium and Thallium

As shown in APPENDIX 1 all the assay results for hafnium, tellurium and thallium were below the analytical detection limit.

CONCLUSIONS

The association of gallium with copper ores is of interest as the traditional sources of gallium (as a by-product) are bauxite and zinc ores. Sphalerite is probably responsible for the elevated gallium content in the Elura lead/zinc samples and also, at least partially, in samples from the VMS deposits of Woodlawn, Hellyer, Rosebery and Thalanga.

Elevated indium content is observed in the samples from the Hellyer, Rosebery and Thalanga VMS deposits. The same or greater amounts of indium occur in the samples from the Woodcutters and the Lady Loretta deposits.

Selenium is also enriched in many of the VMS deposit samples and in one from Lady Loretta, together with two of the CSA samples. As selenium substitutes for sulphur in sulphides (US Bureau of Mines, 1985), the high content in the VMS deposits may reflect the generally high pyrite content, as found by Bence (1983).

With the exception of cadmium and antimony, only small amounts of the minor metals are recovered worldwide (range of about 50 kg for scandium to 95 t for tellurium, Bureau of Mineral Resources, 1988) compared to relatively large resources contained in base metal and other mineral deposits.

The high REE content of the Mt Lyell ore samples sets them apart from those of the other Tasmanian VMS deposits.

REE enrichment in the samples from the weathered portion of the Selwyn deposit is consistent with lower mobility of REEs in arid environments, compared to intense humid chemical weathering environments, as observed by Balashov (Henderson 1984).

Except in the case of Mt Lyell, the REE assay data in this survey are consistent with low REE contents of the few other world base metal deposits for which such data have been reported. The REE grade of monazite concentrates from mineral sands and the economic bastnasite bearing carbonatite intrusive deposits far exceeds the highest REE assays recorded in this survey. Thus economic extraction of these elements from sulphide ores in Australia appears unlikely in the foreseeable future.

The reconnaissance nature of the data collected in this survey has permitted some analysis of the more obvious relationships between base metal sulphides and the minor metals. Wider and more comprehensive sampling and more detailed analysis of resulting data is required if these relationships are to be confirmed and others observed.

ACKNOWLEDGEMENTS

The cooperation of the following mining companies in providing the samples and relevant data required for this survey is gratefully acknowledged:

Aberfoyle Resources Ltd
BHP Minerals Ltd
Cobar Mines Pty Ltd
Cyprus Gold Australia Inc
Denehurst Ltd
Mt Isa Mines Ltd

Mt Lyell Mining and Railway Company Ltd Pancontinental Mining Ltd Pasminco Mining Ltd Peko Mines Woodcutters Joint Venture

Critical review of the manuscript was done by I R McLeod, A Dreissen, M Huleatt and L Jaques of the Bureau of Mineral Resources, Canberra.

REFERENCES

- AMIAR (1987) Australian Mineral Industry Annual Review. <u>Bureau of Mineral Resources</u>, <u>Geology and Geophysics</u>.
- Bence, A E (1983) Volcanogenic massive sulfides: rock/water interactions in basaltic systems and their effects on the distribution of the rare earth elements and selected first transition elements. Proc Int Assoc Geochem Cosmochem. Symposium on Water-Rock Interaction. Misasa, 4: 48-49 (abstract)
- Bureau of Mineral Resources (1988) Australian resources and availability of selected elements used in superconductors and related new materials. A submission to the Subcommittee on Superconductivity of the House of Representatives Standing Committee on Industry. Science and Technology, Parliament House, Canberra.
- Carr Boyd Minerals Ltd (1990) Quarterly Report on Activities 1st January to 31 March 1990. Carr Boyd Minerals Ltd.
- Fleischer, M (1955) Minor elements in some sulfide minerals. <u>Econ Geol Fiftieth Anniv Vol</u>, 970-1024
- Henderson, P (ed), (1984) Rare earth element geochemistry. Elsevier, Amsterdam.
- Hendry, D A F (1981) Chlorites, phengites and siderites from the Prince Lyell ore deposit, Tasmania. <u>Econ Geol</u>, 76, 285-303.
- Knutson, J, Donnelly, T H and Tonkin, D G (1983) Geochemical constraints on the genesis of copper mineralisation in the Mount Gunson area, South Australia. <u>Econ Geol.</u> 78, 250-274.
- Mercer, W. (1976) Minor elements in metal deposits in sedimentary rocks a review of the recent literature. <u>In Wolf, K H (ed)</u>
 <u>Handbook of Stratabound and Stratiform Ore Deposits,</u> 2, 1-27.
- M J (1985) Mining Journal, July 5, 1985. The Mining Journal Ltd., 4-5.
- Roberts, D E and Hudson, G R T (1983) The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia. <u>Econ Geol</u>, 78, 799-822.
- Towner, R, McLeod, I R and Ward, J (1987) Australia a major world source of rare earths. <u>Proceedings of the Rare Earth Horizons Conference 1987</u>, <u>Lindfield</u>, <u>Sydney</u>, <u>Australia</u>, <u>Department of Industry</u>, <u>Technology and Commerce</u>, <u>September 1987</u>.
- US Bureau of Mines (1985) Mineral facts and problems. <u>United States</u>
 <u>Bureau of Mines Bulletin</u> 675.
- US Geological Survey (1973) United States mineral resources. <u>US Geological Survey Professional Paper 820.</u>
- Whitford, D J, Korsch, M J, Porritt, P M, Craven, S J (1988) Rare earth element mobility around the volcanogenic polymetallic sulphide deposit at Que River, Tasmania, Australia. Chemical Geology, 68, 105-119.

Additional Reading:

Dimmick, T D (1949) - Minor Metals. <u>Bureau of Mineral Resources</u>, <u>Geology</u>
<u>and Geophysics</u>, <u>Mineral Resources of Australia Summary Report</u> 35.

APPENDIX 1: Assay Results

Table 1: Sample Numbers and Mines/Deposits Sampled.

SAMPLE # 8981001	MINE/DEPOSIT Cadjebut (Zn/Pb) mine,	SAMPLE TYPE Mill feed	SAMPLE # 8981026		NE/DEPOSIT n (Zn/Pb/Cu)	SAMPLE TYPE Complex ore
002	Western Australia	n	 027		New South Wales	mill feed
003	17	H.	j J 028		Ħ	н
004	CSA (Cu/Zn/Pb) mine,	Mill feed	029		sa (Zn/Pb/Cu)	Weekly composite
005	New South Wales	11	030	mine,	Queensland "	Cu mill feed
006	n	11	031		11	u
007	Elura (Zn/Pb) mine, New South Wales	Monthly composite mill feed	 032		tt	Weekly composite Pb/Zn mill feed
800	" New Sodd! Mates	" "	033		11	" "
009	17	17	 034 		н	11
010	Mt Lyell (Cu/Ag/Au) mine, Tasmania	Mill feed	035	-	Zn/Pb/Ag) mine, outh Wales	CHECK SAMPLE mill feed annual composite
011	19	11	036	Hellyer Tasmar	(Zn/Pb/Cu) mine, nia	Low grade Zn ore SAG mill discharge
012	11	11	j 037		11	High As ore arsenic stockpile
013	Lady Loretta (Zn/Pb) Deposit, Queensland	Medium grade ore drill core	038		11	Medium Zn ore stockpile
014	17	High grade ore drill core	039		n	High grade Zn ore stockpile
015	"	Low grade, baritic ore drill core	040 		"	11
	Selwyn (Starra) Cu/Au mine, Queensland	Sulphide ore mill feed	041		"	•
017	**	II.	İ	Mount 1	sa (Zn/Pb/Cu) mine,	
	North (Zn/Pb/Ag) mine, New South Wales	CHECK SAMPLE annual composite	043		H	Cu tail
	Selwyn (Starra) Cu/Au mine, Queensland	Sulphide ore mill feed	j	Deposi	oretta (Zn/Pb) .t, Queensland "	Medium grade ore drill core
020	Warrego (Cu/Bi/Au) mine, Northern Territory	Monthly composite mill feed	045		ry (Zn/Pb/Cu) mine,	High grade ore drill core Monthly composite
021	11	10	048	Tas.	(incl Que River ore)	
	ZC (Zn/Pb/Ag) mine,	Annual Composite	048		11	n
	New South Wales Woodcutters (Zn/Pb)	mill feed Mill feed	İ		ga (Zn/Pb/Cu)	Central onebody
025	mine, Northern Territory	II	050	Deposi	it, Queensland	drill core Eastern orebody
			051		11	drill core Western orebody drill core
			052	_	(Starra) Cu/Au Queensland	Leached ore stockpile
Lotus Fi	le:SAMPLNUM		053	•	" Queen Draw	Oxide ore s'pile

PERTH: 3 Halley Road, BALCATTA 6021 PO Box 207, GREENWOOD 6024 Ph (09) 345 1799 Fax 3451707

BUREAU OF MINERAL RESOURCES

Client reference: 8906263

Cost code

Copies to : L J DAVID

Samples

Туре

Preparation code

Received : 02/06/89

Analysis	Code	Quality Parameter	Detection	Units
Y	Dang /TEV	Date = 10 W	0.4	
	D300/IEX	Prec.10 %	0.1	ppm
La	D300/IEX	Prec.10 %	0.1	ppm
Ce	D300/IEX	Prec.10 %	0.5	ppm
Pr	D300/IEX	Prec.10 %	0.5	ppm
Nd	D300/IEX	Prec.10 %	1	ppm
Sm	D300/IEX	Prec.10 %	0.5	ppm
Eu	D300/IEX	Prec.10 %	0.1	ppm
Gd	D300/IEX	Prec.10 %	0.2	ppm
Tb	D300/IEX	Prec.10 %	0.5	ppm
Dу	D300/IEX	Prec.10 %	0.1	ppm
Но	D300/IEX	Prec.10 %	0.1	ppm
Tm	D300/IEX	Prec.10 %	0.1	
Yb	D300/IEX	Prec.10 %	0.1	ppm
Lu	D300/IEX	Prec.10 %	0.05	ppm
Cu	D3000G/AAS	Prec.10 %	10	ppm
	DOUDGIAND	Trec.io %		ppm
РЪ	D3000G/AAS	Prec.10 %	25	ppm
Zn	D3000G/AAS	Prec.10 %	10	ppm
Sc.	D3000G/ICP-1	S Prec.10 %	1	ppm
Cd	D3000G/AA5	Prec.10 %	1	ppm
Hf	D3000G/ICP-E	5 Prec.10 %	10	ppm
Ge	D210/AAS	Prec.10 %	0.5	ppm
Te	D210/AAS	Prec.10 %	0.5	ppm
Sb	D210/AAS	Prec.10 %	0.5	PPm
Tl	D300-CR	Prec.10 %	2	PPm

Continued

In Se Ga Er Hf	SPEC D210 / AA / D300 / ICP - ES D300 / IEX XRF / D410	Prec.10 % Prec.10 % Prec.10 % Prec.10 % Prec.10 %	0.05 0.5 10 0.3 5	ppm ppm ppm ppm	
,					·
•			,		<u></u>

REPORT : BA 021509

Page 1 of 15

esta de la companya della companya della companya della companya de la companya della companya d						tay.	
Sample	ΥΥ	La_	Ce_	Pr	Nd_	Sm	
8981001	9.40	9.80	19.7	3.70	5	2.00	
8981002	4.50	8.10	11.1	<0.5	3	1.30	
8981003	8.70	14.1	22.8	0.5	5	2.00	
8981004	11.9	17.4	35.1	2.40	11	2.20	
8981005	13.0	16.8	36.0	1.60	13	3.10	——————————————————————————————————————
8981006	13.6	36.6	58.3	4.30	16	3.30	
8981007	2.60	16.0	14.0	<0.5	1	0.5	
8981008	3.00	6.10	6.30	<0.5	<1	0.5	
8981009	2.10	6.60	12.8	2.00	7	1.20	
8981010	11.4	175	256_	25.6	76	7.70	
8981011	12.5	173	253	25.0	77	8.60	
8981012	9.60	81.1	119	13.7	37	4:60	
8981013	6.90	13.7	20.1	3.20	7	1.40	
8981014	3.70	9.90	6.70	1.70	<1	0.7	
8981015	5.20	1.30	2.50	<0.5	<1	<0.5	
8981016	8.70	17.7	41.4	4.60	10	1.50	
8981017	6.50	14.4	23.7	4.40	9	1.60	
8981018	17.6	24.3	37.6	6.50	14	2.30	
8981019	6.20	12.6	21.3	3.20	5	1.50	
8981020	8.80	30.9	50.9	9.30	25	3.80	
8981021	8.00	27.4	44.6	7.00	19	3.30	
8981022	7.60	24.2	39.8	7.00	17	2.60	
8981023	18.2	15.4	30.1	7.00	15	3.60	
8981024	6.30	15.3	25.7	7.80	8	1.70	
8981025	9.30	28.4	45.0	6.60	17	4.10	***
Data in pp	m unless otherwise s	stated.					

REPORT : BA 021509

Page 2 of 15

		*			3 3 44 3 4 4 10		
Sample		La_	Ce	Pr	Nd	Sm	
8981026	10.6	13.6	25.7	3.50	13	2.00	
8981027	8.30	14.6	25.3	1.30	9	1.50	
8981028	12.9	16.7	27.0	4.00	12	2.60	
8981029	4.20	10.3	14.5	1.00	8	1.50	
 8981030	3.40	10.5	14.9	0.6	5	1.00	
8981031	6.20	11.3	18.0	1.10	6	1.30	
8981032	5.40	11.6	18.1	1.30	7	1.00	
8981033	7.10	13.7	20.6	1.60	8	1.80	
8981034	9.60	13.0	24.0	0.5	11	1.50	
 8981035	17.2	21.9	38.8	6,00	13	2.50	
8981036	4.40	9.00	13.5	3.70	7	1.50	
8981037	12.9	25.1	42.5	5.20	17	3√10	
8981038	1.80	3.50	4.80	<0.5	1	<0.5	
8981039	1.20	2.60	1.10	<0.5	<1	<0.5	
8981040	3.30	7.80	12.9	0.5	4	0.5	
8981041	1.10	3.20	5.70	1.40	1	<0.5	
8981042	6.70	13.1	22.3	4.40	11	2.00	
8981043	4.60	11.0	17.7	3.50	10	2.00	
8981044	5.50	16.9	24.9	3.80	11	2.30	
8981045	3.90	2.80	5.70	0.5	3	1.00	
8981046	9.60	25.0	44.6	7.20	19	3.80	
8981047	8.90	24.9	44.6	7.80	19	3.30	
8981048	11.1	31.4	55.7	7.00	25	4.60	
8981049	11.1	13.8	25.2	7.80	13	2.50	
 8981050	13.2	24.8	45.8	12.5	21	4.10	

REPORT : BA 021509

Page 3 of 15

Sample	Y	<u>La</u>	Ce	Pr	Nd	Sm	
8981051	9.50	10.5	23.8	5.30	15	3.10	
8981052	15.9	31.7	56.3	13.7	32	5.40	
8981053	31.6	17.8	33.1	10.2	26	5.10	
SO-2							
 CCU1							
CPB1							
CZN1	-			 ,			LABORATORY
MP1a		·					STANDARDS
AAL1		·	***				
 Sb-hyd			***	~~			
SY-2	116	79.5	161	22.6	83	17.0	
SY-3	6 50	1250	2100	140	720	89.4	
T							

REPORT : BA 021509

Page 4 of 15

					i garan da kata Nga	₹.**	# V
Sample	Eu	Gd	Тр	Dy	Но	Tm	
8981001	0.1	1.60	0.5	1.20	0.1	<0.1	
8981002	<0.1	0.5	<0.5	0.7	<0.1	<0.1	
8981003	0.1	1.40	<0.5	1.00	0.1	<0.1	
8981004	0.1	2.00	<0.5	2.10	0.2	0.1	
8981005	0.1	2,40	0.5	2.20	0.4	0.2	
8981006	0.3	2.60	1.00	2.10	0.4	0.1	
8981007	0.3	0.2	<0.5	0.2	<0.1	<0.1	
8981008	0.3	0.3	<0.5	0.4	<0.1	<0.1	
8981009	0.6	0.8	0.5	0.5	0.2	0.1	
8981010	2.30	4.30	<0.5	2.20	0.4	<0.1	
8981011	2.90	4.90	<0.5	2.50	0.6	0.2	
8981012	1.40	2.40	0.5	1.70	0.3	∢ 0.1	
8981013	0.5	1.20	<0.5	1.20	0.2	<0.1	
8981014	0.2	0.5	0.5	0.6	0.1	<0.1	
8981015	<0.1	0.5	<0.5	0.7	0.1	<0.1	
8981016	0.2	1.40	<0.5	1.30	0.1	<0.1	
8981017	0.1	0.7	<0.5	1.10	0.1	<0.1	
8981018	1.40	3.10	1.00	2.90	0.5	0.2	
8981019	0.2	1.30	<0.5	1.20	0.1	<0.1	
8981020	0.8	3.30	0.5	2.00	0.3	0.2	
8981021	0.6	2.70	0.5	1.80	0.3	0.1	
8981022	0.4	2.20	0.5	1.70	0.3	0.1	
8981023	1.40	2.90	1.00	3.00	0.5	0.2	
8981024	0.2	1.10	1.50	0.9	0.3	0.2	
8981025	0.2	2.10	1.00	1.30	0.1	0.2	
Data in	ppm unless otherwise	stated.					

REPORT : BA 021509

Page 5 of 15

Sample	<u> Bu</u>	Gd	Tb.	Dy	Но	Tm	:
8981026	0.2	1.90	0.5	2.00	0.3	0.2	
8981027	0.3	1.40	<0.5	1.50	<0.1	0.2	
89 81028	0.4	2.20	<0.5	2.30	0.4	0.2	
89 81029	0.3	1.50	0.5	0.9	0.1	0.1	
89 81030	0.2	0.9	<0.5	0.6	<0.1	<0.1	
89 81031	0.3	1.50	<0.5	0.9	0.1	<0.1	
89 81032	0.4	1.10	<0.5	1.00	0.1	0.1	
8981033	0.4	1.30	0.5	1.20	0.2	0.1	
8981034	0.4	1.60	0.5	1.40	0.3	0.2	
8981035	1.20	2.80	1.00	2.80	0.5	0.3	
89 81036	0.2	0.7	0.5	1.00	0.4	0.2	
89 81037	0.6	2.60	0.5	2.40	0.4	0.2	
89 81038	<0.1	<0.2	<0.5	0.3	<0.1	0.1	
89 81039	<0.1	<0.2	<0.5	<0.1	<0.1	<0.1	
8981040	0.2	0.6	<0.5	0.7	<0.1	0.2	
8981041	<0.1	<0.2	<0.5	0.2	<0.1	<0.1	
8981042	0.4	1.40	1.00	1.30	0.2	0.2	
8981043	0.3	1.70	0.5	1.00	0.3	0.2	
8981044	0.4	1.20	1.00	1.10	0.2	0.1	
8981045	0.2	0.9	<0.5	0.7	0.1	0.1	
8981046	1.00	2.70	0.5	2.10	0.5	0.3	
8981047	0.9	2.10	<0.5	1.70	0.4	0.2	
8981048	1.10	3.20	1.00	2.40	0.8	0.3	
8981049	1.00	2.20	1.50	1.70	0.8	0.4	
8981050	1.30	2.90	2.50	2.30	0.9	0.5	
Data in p	ppm unless otherwise s	stated.	·			····	

REPORT : BA 021509

Page 6 of 15

	Sample	Eu	Gd	Тъ	Dv	. Но	Tm	
	8981051	0.7	2.30	2.00	1.80	0.6	0.4	
	8981052	0.9	4.20	2.50	3.50	1.10	0.5	
	8981053	1.00	4.70	2.50	5.90	1.60	0.7	
	SO-2							
	CCU1			***				
	CPB1							
	CZN1				-			LABORATORY
	MP1a					-10-40-		STANDARDS
	AAL1	aco non		delite series				
	Sb-hyd	, and , and						
	SY-2	2.60	17.3	2.00	20.5	4.80	2.10	
£	SY-3	13.0	63.5	9.50	73.1	18.1	7:20	
	•							

REPORT : BA 021509

Page 7 of 15

						y.	
Sample	Yb	Lu	Cu	Pb	Zn	Sc	
8981001	0.9	0.10	31	2.19%	13.3%	7	
8981002	0.4	0.05	32	2.20%	13.5%	6	
8981003	0.9	0.10	33	2.22%	12.6%	4	
8981004	1.50	0.20	2.81%	450	1720	. 5	
8981005	1.60	0.20	3.00%	310	1520	4	
8981006	1.10	0.20	1.73%	620	1750	5	
8981007	0.2	0.05	1440	5.26%	7.52%	1	
8981008	0.2	<0.05	1480	5.37%	7.40%	<1	
8981009	0.2	0.05	1590	5.56%	7.91%	<1	
8981010	1.00	0.20	9730	150	610	12	
8981011	1.20	0.20	1.81%	220	650	10	
8981012	1.10	0.20	1.43%	30	540	¥* 5	
8981013	0.6	0.10	504	9.65%	19.5%	1	
8981014	0.2	0.05	560	31.4%	34.3%	<1	
8981015	0.7	0.10	90	1.17%	16.1%	<1	
8981016	0.8	0.20	2.00%	250	670	3	
8981017	0.4	0.05	3.29%	190	430	4	
8981018	1.20	0.20	1400	13.4%	10.3%	4	
8981019	0.6	0.05	1.90%	150	300	2	
8981020	0.7	0.10	2.03%	240	450	2	
8981021	0.7	0.10	1.78%	120	250	2	
8981022	0.6	0.10	2.11%	150	290	2	
8981023	1.50	0.20	1760	5.85%	8.61%	3	
8981024	0.4	0.10	750	10.8%	15.5%	1	
8981025	0.5	0.10	750	10.2%	15.6%	1	

REPORT : BA 021509

Page 8 of 15

				ing sa sa sa sa sa sa sa sa sa sa sa sa sa	N _a		
Sample	ΥЪ	Iai	<u>Cu</u>	Pb	Zn	Sc	
8981026	0.8	0.10	1.70%	3.38%	7.20%	4	
8981027	0.7	0.10	1.60%	3.33%	7.47%	4	
8981028	1.10	0.20	1.55%	3.13%	7.09%	4	
8981029	0.3	0.05	3.93%	1110	1430	2	
8981030	0,3	0.05	3.48%	710	1090	2	
8981031	0.6	0.10	3.21%	430	1050	2	
8981032	0.5	0.05	820	7.27%	8.34%	1	
8981033	0.7	0.10	840	7.58%	9.12%	1	
8981034	1.20	0.20	830	8.48%	9.35%	1	
8981035	1.60	0.30	1360	13.4%	10.2%	4	
8981036	0.5	0.10	6690	9.59%	14.4%	2	
8981037	1.40	0.20	2520	5.47%	7.02%	3 # 11	
8981038	0.2	<0.05	1.15%	8.38%	13.9%	<1	
8981039	0.1	<0.05	6720	9.87%	16.7%	<1	
8981040	0.3	0.05	5210	9.10%	14.6%	· 2	
8981041	0.1 .	<0.05	4230	9.78%	17.2%	<1	
8981042	0.6	0.10	550	1.76%	2.78%	2	
8981043	0.4	0.05	1660	460	930	2	
8981044	0.5	0.10	1040	13.6%	18.2%	2	
8981045	0.4	0.05	280	12.2%	39.0%	<1	
8981046	1.00	0.10	5400	4.60%	10.0%	5	
8981047	1.00	0.20	6040	4.31%	10.3%	6	
8981048	1.30	0.20	6090	5.27%	11.8%	5	
8981049	0.7	0.20	4.31%	7.07%	19.5%	1	
8981050	0.9	0.20	1.22%	5.18%	14.3%	1	
Data in pp	m unless otherwise s	tated.					

REPORT : BA 021509

Page 9 of 15

	and the second s						
 Sample	Yb	Laz	Cı .	<u>Pb</u>	Zn	Sc	
8981051	0.8	0.20	4.04%	5.47%	12.0%	2	
8981052	1.70	0.30	700	46	230	7	
8981053	2.50	0.40	5490	<25	110	7	
SO-2	****		<10	<25	115	10	
 CCU1			25.8%	1100	3.25%		
CPB1			2450	66.0%	4.29%		
CZN1			1400	7.61%	43.8%		
MP1a			1.39%	4.36%	18.6%		LABORATORY STANDARDS
AAL1			150	470	2000	'	
 Sb-hyd							
SY-2	17.6	3.00					
SY-3	61.1	7.60				;.e	

REPORT : BA 021509

Page 10 of 15

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)							
Sample	Cd	Hf	Ge	Te	Sb	T1	
8981001	230	<10	<0.5	<0.5	<0.5	<2	
8981002	232	<10	<0.5	<0.5	<0.5	<2	
8981003	228	<10	<0.5	<0.5	<0.5	<2	
8981004	5	<10	<0.5	<0.5	2.90	<2	
8981005	4	<10	<0.5	<0.5	2.80	<2	
8981006	5	<10	<0.5	<0.5	2.40	<2	
8981007	205	<10	<0.5	<0.5	360	<2	
8981008	200	<10	<0.5	<0.5	360	<2	
8981009	216	<10	<0.5	<0.5	420	<2	
8981010	2	<10	<0.5	<0.5	1.70	<2	
8981011	3	<10	2.00	<0.5	0.5	<2	
8981012	2	<10	3.00	<0.5	1.00	¹⁻ <2	
8981013	. 452	<10	2.00	<0.5	80.0	<2	
8981014	· 1280	<10	11.0	<0.5	330	<2	:
8981015	318	<10	5.00	<0.5	35.7	<2	
8981016	1	<10	<0.5	<0.5	9.10	<2	
8981017	<1	<10	<0.5	<0.5	3.50	<2	
8981018	460	<10	<0.5	<0.5	420	<2	
8981019	<1	<10	<0.5	<0.5	8.80	<2	
8981020	4	<10	<0.5	<0.5	6.80	<2	
8981021	2	<10	<0.5	<0.5	7.00	<2	
8981022	<1	<10	<0.5	<0.5	8.20	<2	
8981023	310	<10	2.00	<0.5	110	<2	
8981024	1490	<10	<0.5	<0.5	5100	<2	
8981025	1570	<10	<0.5	<0.5	6700	<2	

Data in ppm unless otherwise stated.

REPORT : BA 021509

Page 11 of 15

	W	* * * * * * * * * * * * * * * * * * * *	e balling a species		7		
Sample	Cq_	H£	Ge	Te	Sb	Tl	
8981026	417	<10	<0.5	<0.5	14.8	<2	
8981027	450	<10	<0.5	<0.5	9.40	<2	
8981028	421	<10	<0.5	<0.5	14.5	<2	
8981029	2	<10	<0.5	<0.5	13.2	<2	
8981030	1	<10	<0.5	<0.5	10.7	<2	
8981031	1	<10	<0.5	<0.5	11.5	<2	
8981032	308	<10	<0.5	<0.5	140	<2	
8981033	334	<10	<0.5	<0.5	180	<2	
8981034	340	<10	<0.5	<0.5	160	<2	
8981035	479	<10	<0.5	<0.5	430	<2	
8981036	508	<10	<0.5	<0.5	540	<2	
8981037	210	<10	<0.5	<0.5	440	;. ⊀2	
8981038	488	<10	<0.5	<0.5	310	<2	
8981039	600	<10	<0.5	<0.5	560	<2	
8981040	518	<10	<0.5	<0.5	680	<2	
8981041	607	<10	<0.5	<0.5	840	<2	
8981042	100	<10	<0.5	<0.5	80.0	<2	
8981043	1	<10	<0.5	<0.5	13.0	<2	
8981044	412	<10	<0.5	<0.5	100	<2	
8981045	1250	<10	8.00	<0.5	190	<2	
8981046	355	<10	<0.5	<0.5	220	<2	
8981047	374	<10	<0.5	<0.5	190	<2	
8981048	417	<10	<0.5	<0.5	270	<2	
8981049	675	<10	<0.5	<0.5	120	<2	
8981050	590	<10	<0.5	<0.5	120	<2	
Date in the second							

REPORT : BA 021509

Page 12 of 15

Sam	ple	Cd	H£_	Ge	Te	Sb	T1	
898	1051	398	<10	<0.5	<0.5	110	<2	
898	1052	2	<10	<0.5	<0.5	1.00	<2	
898	1053	2	<10	<0.5	<0.5	0.5	<2	
S0-	2	<1	15		 ,	<0.5		
CCU	1	115						
CPB	1	150						
CZN	1	1380						LABORATORY
MP1	a.	650						STANDARDS
AAL	1	8		***				
Sb-	hyd					24.0		
SY-	2				,	-174 -775		
SY-	3).e	

REPORT : BA 021509

Page 13 of 15

	Mary grant of					
Sample	In	Se	Ga	Er	Hf	
8981001	0.12	<0.5	10	0.8		
8981002	0.09	<0.5	10	<0.3		
8981003	0.09	<0.5	10	0.9		
8981004	4.28	<0.5	30	1.00	<5	
8981005	4.04	2.00	30	1.60	<5	
8981006	2.78	4.00	30	1.60	<5	
8 9 81007	0.06	<0.5	40	<0.3		
8981008	0.07	<0.5	30	<0.3		
8981009	0.08	<0.5	40	0.6		
8981010	0.66	4.00	30	0.9	<5	
8981011	0.79	<0.5	30	1.10	<5	
8981012	0.36	<0.5	20	0.7	<5	3-8
8981013	11.2	<0.5	20	0.3		
8 9 81014	31.4	<0.5	20	<0.3		
8981015	1.25	<0.5	<10	<0.3		
8 9 81016	0.25	<0.5	50	<0.3	< 5	
8981017	0.28	<0.5	40	<0.3	<5	
8981018	0.32	<0.5	10	1.40		
8981019	0.13	<0.5	40	<0.3	< 5	
8981020	2.19	<0.5	40	0.7	<5	
8981021	1.58	<0.5	40	0.4	<5	
8981022	1.71	<0.5	50	0.5	<5	
8981023	0.92	<0.5	10	1.70		
8981024	13.2	<0.5	20	0.5		
8981025	10.2	<0.5	20	0.5		
Data in ppm unle	ess otherwise sta	ated.				

REPORT : BA 021509

Page 14 of 15

	in the second se					
Sample	In	Se	Ga	<u> Br</u>	Hf	
8981026	19.9	4.00	30	0.8		
8981027	18.9	4.00	30	0.3		
8981028	18.5	5.00	30	1.10		
8981029	1.73	<0.5	10	0.4	< 5	
8981030	14.3	<0.5	10	<0.3	<5	·
8981031	1.58	<0.5	10	<0.3	<5	
8981032	4.68	<0.5	20	<0.3		
8981033	4.72	<0.5	20	0.3		
8981034	5.16	<0.5	20	0.9		
8981035	0.30	<0.5	10	1.40		
8981036	10.0	8.00	30	0.3		
8981037	1.79	4.00	30	1.10		2.5°
8981038	12.0	8.00	30	<0.3		
8981039	14.5	4.00	30	<0.3		
8981040	6.64	5.00	30	<0.3		
8981041	8.65	7.00	30	<0.3		
8981042	1.85	<0.5	30	8.0		
8981043	0.33	2.00	10	0.7	<5	
8981044	13.4	3.00	20	0.7		
8981045	21.5	<0.5	20	0.3		
8981046	10.3	2.00	30	1.10		
8981047	11.7	3.00	30	0.6		
8981048	10.8	3.00	30	1.10		
8981049	15.8	<0.5	50	1.00		
8981050	30.1	2.00	30	2.00		
Data in ppm u	unless otherwise sta	ited.				

REPORT : BA 021509

Page 15 of 15

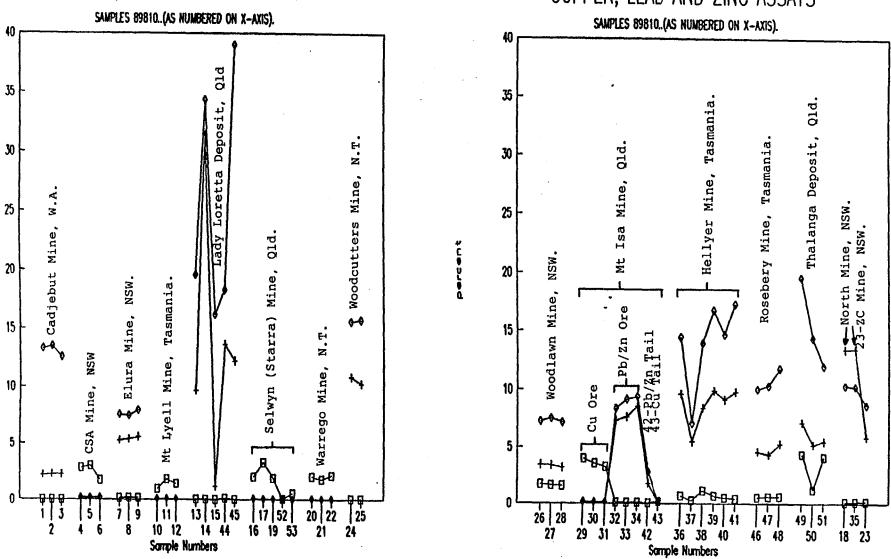
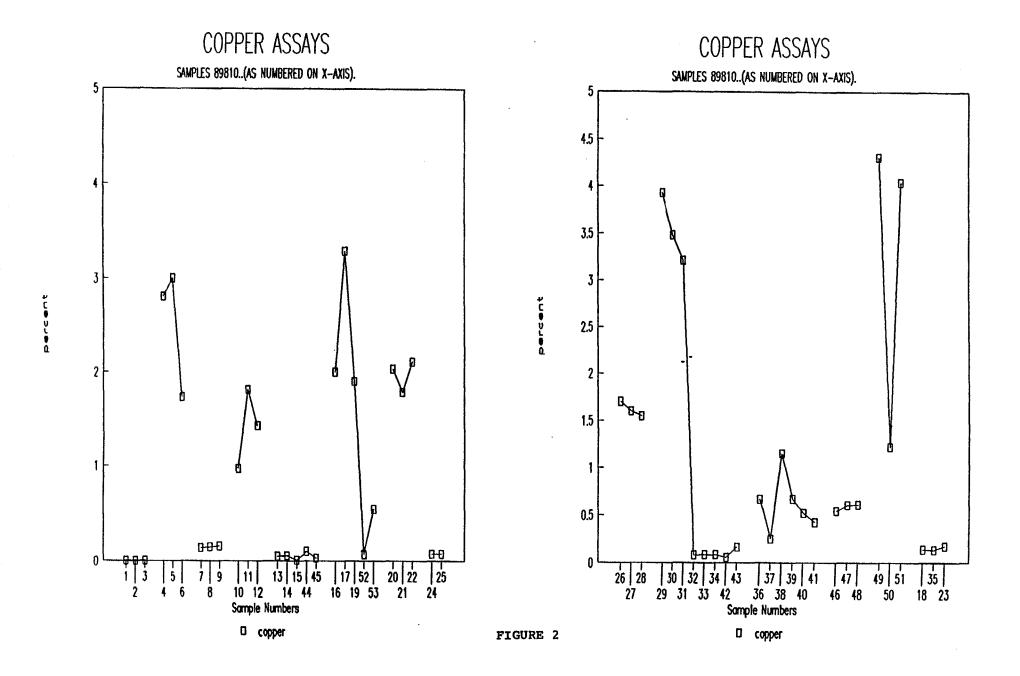
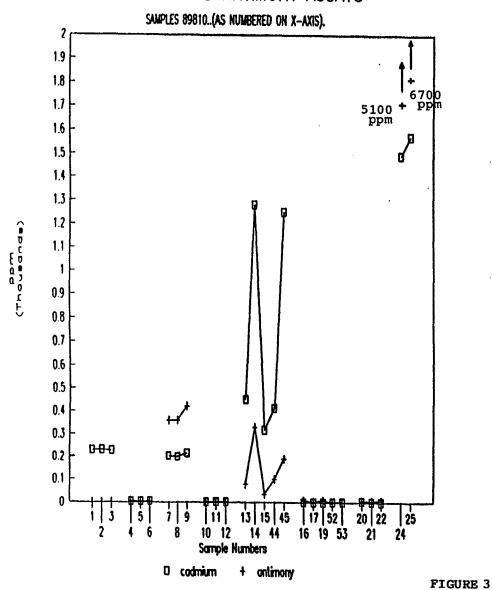
		mys.						
4 Acti	Sample		In_	Se	Ga	Rr	Hf	·
	8981051		8.32	<0.5	40	1.40		
	8981052		0.14	<0.5	40	2.30	<5	
	8981053		0.23	<0.5	50	3.70	<5	
	SO-2			<0.5	25			
	CCU1							
	CPB1		, 					
	CZN1							LABORATORY
	MP1a							STANDARDS
	AAL1							
	Sb-hyd							
	SY-2					15.5		
	SY-3					46.8		<u>م</u> ين

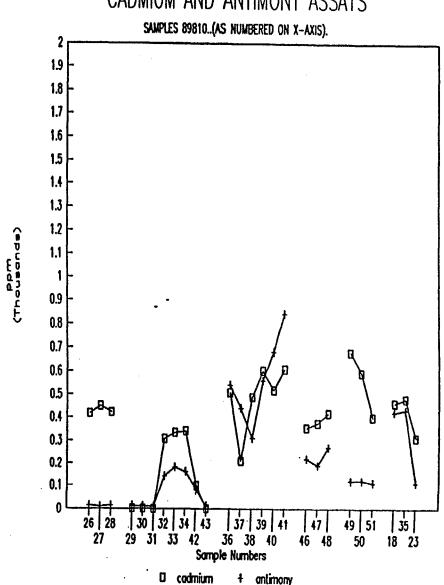
APPENDIX 2: Graphs of Assay Results

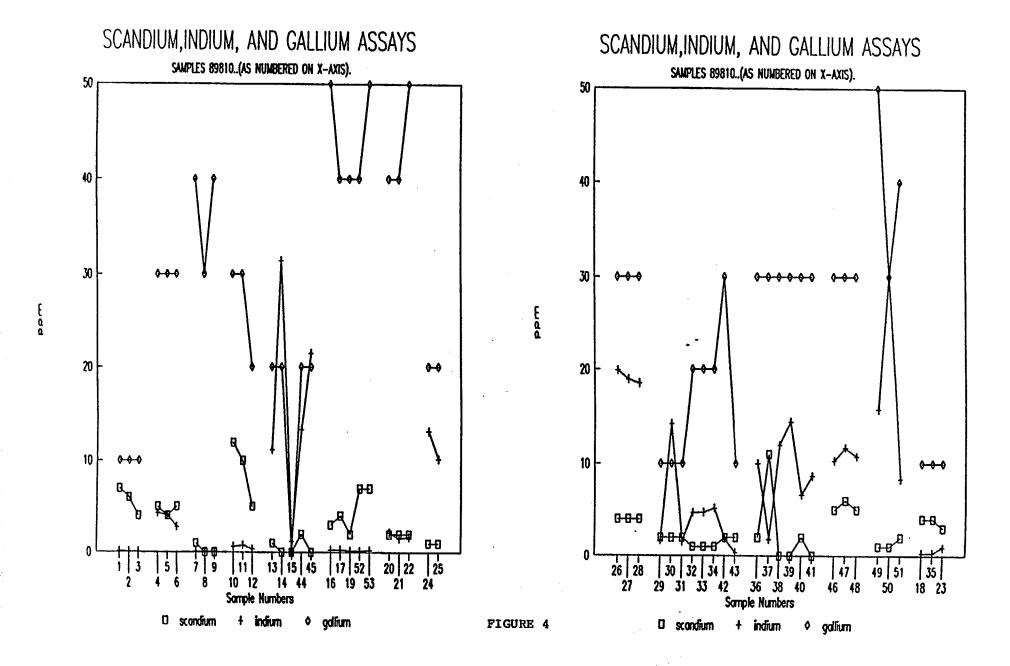
Table 1: Sample Numbers and Mines/Deposits Sampled.

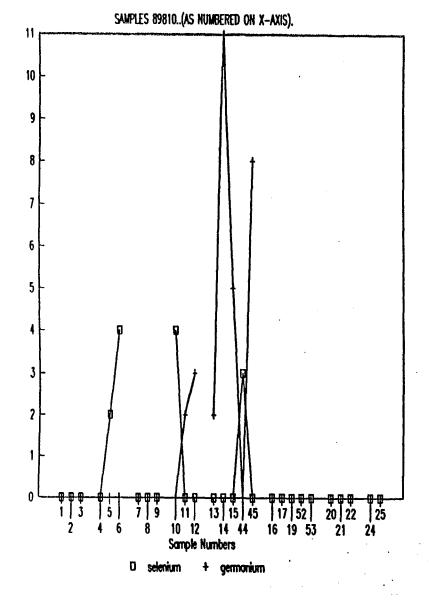
SAMPLE #	MINE/DEPOSIT	SAMPLE TYPE	SAMPLE #	MINE/DEPOSIT	SAMPLE TYPE
	Cadjebut (Zn/Pb) mine,	Mill feed		Woodlawn (Zn/Pb/Cu)	Complex ore
	Western Australia		İ	mine, New South Wales	mill feed
002	н	11	027	11	H
003	u ·	TP	028	n	11
004	CSA (Cu/Zn/Pb) mine, New South Wales	Mill feed	029	Mount Isa (Zn/Pb/Cu) mine, Queensland	Weekly composite Cu mill feed
005	" wates	11	030	" Queetistain	"
006	н	17	031	11	11
007	Elura (Zn/Pb) mine, New South Wales	Monthly composite mill feed	032	11	Weekly composite Pb/Zn mill feed
800	" wates	"	033	11	"
009	17	11	034	11	n
010	Mt Lyell (Cu/Ag/Au) mine, Tasmania	Mill feed	035	North (Zn/Pb/Ag) mine, New South Wales	CHECK SAMPLE mill feed annual composite
011	"	**	036	Hellyer (Zn/Pb/Cu) mine, Tasmania	Low grade In ore SAG mill discharge
012	**	17	037	r r	High As ore arsenic stockpile
013	Lady Loretta (Zn/Pb) Deposit, Queensland	Medium grade ore drill core	038	**	Medium Zn ore stockpile
014	• •	High grade ore	039	17	High grade Zn ore stockpile
015	"	Low grade, baritic ore drill core	 040 	"	11
016	Selwyn (Starra) Cu/Au mine, Queensland	Sulphide ore mill feed	041	II	11
017	11	11	042	Mount Isa (Zn/Pb/Cu) mine,	Pb/Zn tail
018	North (Zn/Pb/Ag) mine, New South Wales	CHECK SAMPLE annual composite	043	17	Cu tail
019	Selwyn (Starra) Cu/Au mine, Queensland	Sulphide ore mill feed	044 	Lady Loretta (Zn/Pb) Deposit, Queensland	Medium grade ore drill core
020	Warrego (Cu/Bi/Au) mine, Northern Territory	Monthly composite mill feed	045	_	High grade ore drill core
021	-	**	046	Rosebery (Zn/Pb/Cu) mine, Tas. (incl Que River ore)	
022	11	n	047	•	w
023	ZC (Zn/Pb/Ag) mine, New South Wales	Annual Composite mill feed	048	, n	**
024	Woodcutters (Zn/Pb)	Mill feed	049	Thalanga (Zn/Pb/Cu)	Central orebody
-00-	mine, Northern Territory	11		Deposit, Queensland	drill core
025	11	11	050		Eastern orebody drill core
			051		Western orebody drill core
			052 	Selwyn (Starra) Cu/Au mine, Queensland	Leached ore stockpile
Lotus Fi	le:SAMPLNUM		053		Oxide ore s'pile

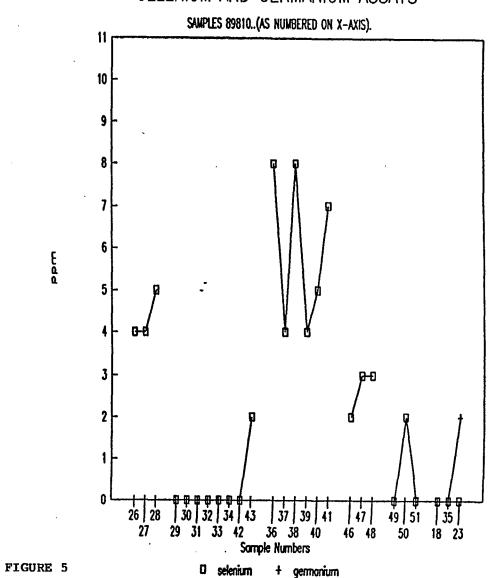
D copper + lead

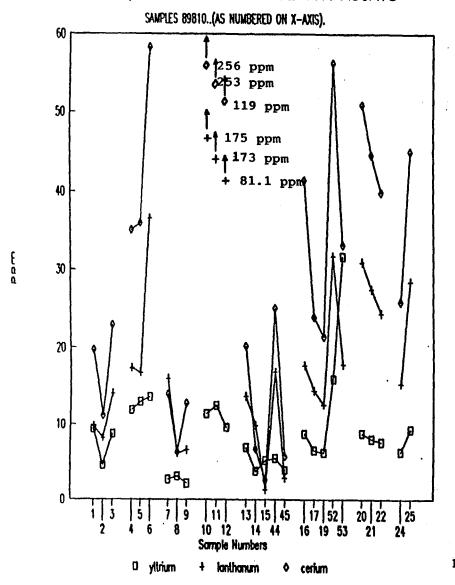




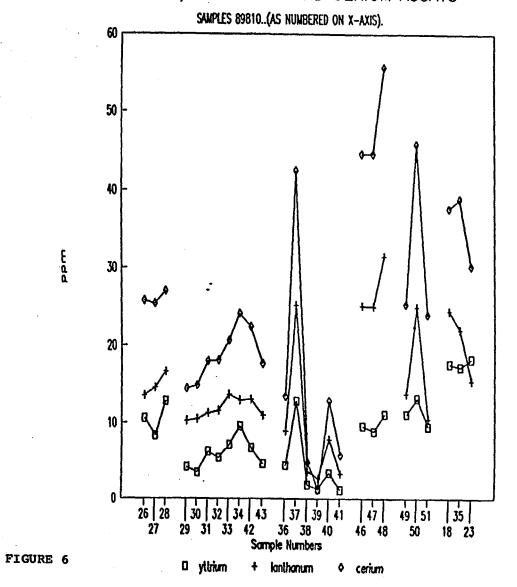

FIGURE 1: Cu, Pb, Zn Assays and Mines/Deposits Sampled


CADMIUM AND ANTIMONY ASSAYS


CADMIUM AND ANTIMONY ASSAYS


† antimony


SELENIUM AND GERMANIUM ASSAYS

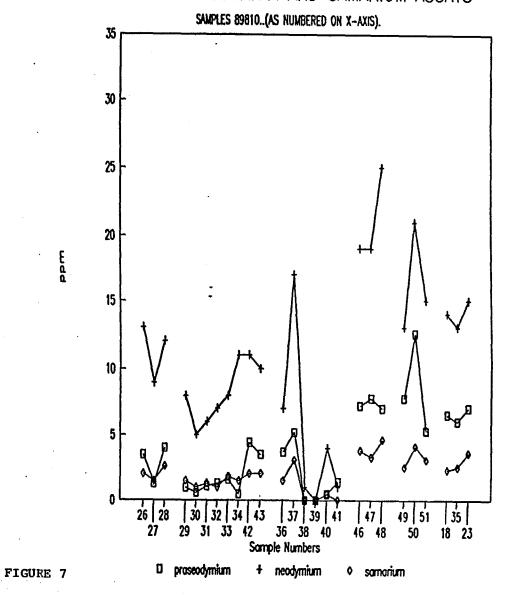

SELENIUM AND GERMANIUM ASSAYS

YTTRIUM, LANTHANUM AND CERIUM ASSAYS

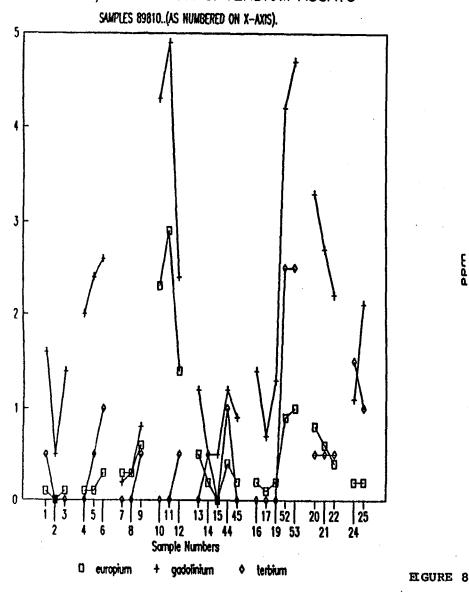
YTTRIUM, LANTHANUM AND CERIUM ASSAYS

PRASEO & NEODYMIUM AND SAMARIUM ASSAYS SAMPLES 89810..(AS NUMBERED ON X-AXIS). 76 ppm 77 ppm 30 + 37 ppm 25 20 15 10

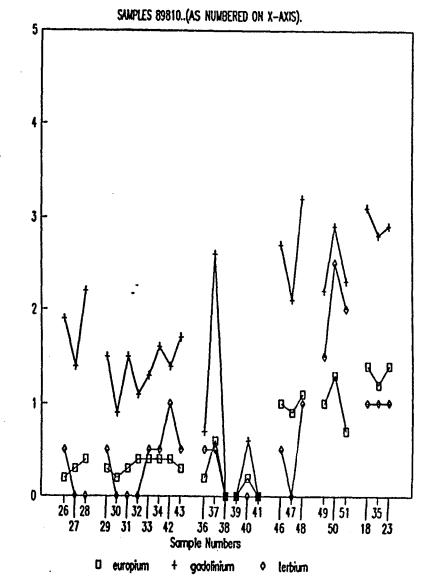
Sample Numbers


+ neodymium

proseodymium

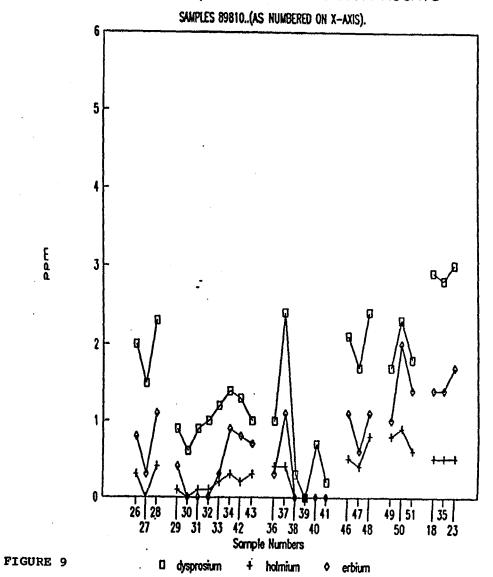

16 19 53

somerium

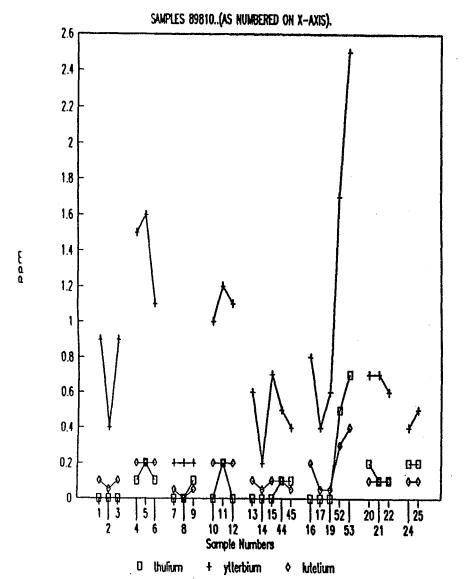

PRASEO & NEODYMIUM AND SAMARIUM ASSAYS

EUROPIUM, GADOLINIUM & TERBIUM ASSAYS

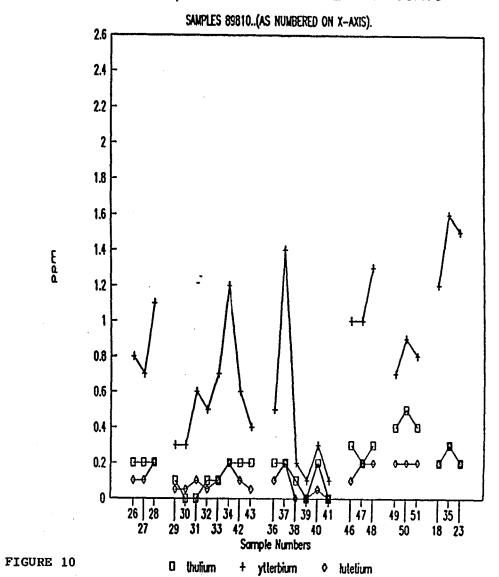
EUROPIUM, GADOLINIUM & TERBIUM ASSAYS



DYSPROSIUM, HOLMIUM & ERBIUM ASSAYS SAMPLES 89810..(AS NUMBERED ON X-AXIS).


10 12

Sample Numbers


DYSPROSIUM, HOLMIUM & ERBIUM ASSAYS

THULIUM, YTTERBIUM & LUTETIUM ASSAYS

THULIUM, YTTERBIUM & LUTETIUM ASSAYS

