1991/4 COPY#

Bureau of Mineral Resources, Geology & Geophysics

E C O R D

RECORD 1991/004

RESEARCH CRUISE PROPOSAL

BONAPARTE BASIN: STRUCTURAL REACTIVATION AND HYDROCARBON MIGRATION

PROJECT 121.22

BMR PUBLICATIONS COMPACTUS
(LENDING SECTION)

PRINCIPAL INVESTIGATORS:-G.W. O'BRIEN & G. BICKORD

ASSOCIATE INVESTIGATOR:-D.T. HEGGIE

SCHEDULE:- FEBRUARY-MARCH 1991

1991/4 COPY4

contained in this report has been obtained by the Bureau of Mineral Resources. Geology and Geophysics as part of the policy n Government to assist in the exploration and development of mineral resources. It may not be published in any form or used in spectus or statement without the permission in writing of the Director.

BUREAU OF MINERAL RESOURCES RECORD 1991/004

RESEARCH CRUISE PROPOSAL

BONAPARTE BASIN: STRUCTURAL REACTIVATION AND HYDROCARBON MIGRATION

PROJECT 121.22

PRINCIPAL INVESTIGATORS:-G.W. O'BRIEN & G. BICKORD

ASSOCIATE INVESTIGATOR:-D.T. HEGGIE

SCHEDULE:- FEBRUARY-MARCH 1991

© Commonwealth of Australia, 1990

This work is copyright. Apart from any fair dealing for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Inquiries should be directed to the Principal Information Officer, Bureau of Mineral Resources, Geology and Geophysics, GPO Box 378, Canberra, ACT 2601.

TABLE OF CONTENTS

	PAGE
1. PROGRAM SUMMARY	1
Sahul Syncline	1
Malita Graben	2
Petrel Sub-Basin	2
2. PROJECT OBJECTIVES	3
AND RATIONALE	
Technical Objectives	3
Scientific Objectives/Rationale	3
APPENDICES	
1. GENERAL DETAILS:- RESEARCH VESSEL R.V. 'RIG SEISMIC'	6
2. SCIENTIFIC EQUIPMENT	6
Geophysical Scientific Equipment	6
Seismic System Configuration For	7
High Resolution Program:	
Geological Scientific Equipment	9
Geochemical Scientific Equipment	9
3. WELLS DRILLED IN THE TIMOR SEA	10

PROGRAM SUMMARY

Objective:-To understand the structural reactivation processes and the mechanisms of hydrocarbon generation, migration and entrapment within the Sahul Syncline, Malita Graben and Petrel Sub-Basin, Timor Sea, northwestern Australia.

In order to further stimulate and assist the exploration effort in the Sahul Syncline, the Malita Graben and the Petrel Sub-Basin, the Division of Marine Geosciences and Petroleum Geology (Bureau of Mineral Resources) is, as part of its Continental Margins Program, carrying out a research program within the Timor Sea in February-March 1991 using R.V. *Rig Seismic*. This program will assist in the assessment of the area's prospectivity by integrating high resolution seismic reflection and remote sensing (direct hydrocarbon detection (DHD)) geochemical data. This will result in an improved understanding of:-

- 1.)The timing of structural development relative to hydrocarbon generation and migration.
- 2.)The relationship between structural reactivation and hydrocarbon migration and trapping mechanisms.
- 3.)The usefulness of underway geochemical profiling as a remote sensing tool in this area.

The survey itself can be loosely sub-divided into three areas, namely the Sahul Syncline, the Malita Graben and the Petrel Sub-Basin. The total program will consist of approximately 3600 km of simultaneously collected high resolution seismic and DHD data. The general survey area is shown in Figure 1.

Sahul Syncline: The work program within the Sahul Syncline has two principal focuses. The first focus is to extend the BMR high resolution seismic coverage from the Avocet/Gargarney area to the boundary of Area "A" of the Zone of Co-operation (ZOC). The data will be used to study in detail the processes of structural reactivation associated with collision and foreland basin development along the

northern margin of the Australian craton. The second focus is to traverse as many of the structural leads and prospects in the area as possible while carrying out a regional DHD program. This will allow the usefulness of DHD data as a remote sensing tool in this area to be evaluated.

Ancillary objectives include:

i.)Obtaining a better understanding of the integrity of the Bathurst Island Formation seal between Avocet and the eastern margin of the Sahul Syncline. This is important because of the large residual oil columns found in several wells on the Eider Horst.

ii.)Establishing the nature (and migration pathway) of the hydrocarbon charge emanating from the Sahul Syncline at the present day. This objective may be particularly important because of the possibility of flushing oil reservoirs along the margins of the Sahul Syncline (and Malita Graben) with gas generated from source rocks which are now overmature.

Malita Graben:Objectives within the Malita Graben are basically similar to those for the Sahul Syncline. The DHD program may help to confirm the source potential of the Malita Graben, which has been inferred but not demonstrated.

Petrel Sub-Basin: The program within the Petrel Sub-Basin consists largely of a number of long, regional tie-lines which have been oriented to include a number of hydrocarbon discoveries as well as undrilled prospects. These lines include profiles between the Palaeozoic Turtle and Barnett oil discoveries in the southern Bonaparte Gulf, through the Palaeozoic gas discoveries at Petrel and Tern to the Mesozoic Malita Graben. The Petrel#1 well blew out while being drilled in 1969, and is believed to be still leaking into the water column. A DHD program over Petrel#1 will allow the geochemical composition of the light hydrocarbon gases detected within the water column to be compared to the known composition of the gases within the reservoir. In addition, the vertical and horizontal geometry of this anthropogenic seep will be determined. This presents an almost unique opportunity for "ground-truthing" the DHD method.

2. PROJECT OBJECTIVES AND RATIONALE

TECHNICAL OBJECTIVES

i.)High Resolution Seismic Reflection Data To acquire approximately 3600 line km of high resolution seismic reflection data with a 2.5 second record length (Figure 1).

ii.)Remote Sensing Geochemical Data To acquire approximately 3600 line km of direct hydrocarbon detection (C_1 - C_8 ⁺) data (DHD) in the water column within the Sahul Syncline, the Petrel Sub-Basin and surrounding areas (Figure 1).

iii.)Seabed Sampling For In-Situ Geochemical Data Sediment cores will be taken in conjunction with the DHD program in selected areas, and the molecular and isotopic compositions of the light hydrocarbon gases composition of the pore waters within the sediments will be determined.

SCIENTIFIC OBJECTIVES/RATIONALE

The survey has two principal scientific objectives. By acquiring high resolution seismic reflection data, direct hydrocarbon detection data (DHD) and side-scan sonar data simultaneously, it is hoped that most of these objectives can be achieved concurrently. The objectives are:-

a.)To investigate the processes of structural reactivation associated with collision and foreland basin development along the northern margin of the Australian craton using high resolution seismic reflection profiling. In particular, to better understand how these processes have controlled the entrapment of hydrocarbons and, in some cases, how reactivation has resulted in the breaching of hydrocarbon reservoirs (as occurred at Avocet 1A for example [Whibley & Jacobson, 1990]). Very high resolution seismic data should allow the relationship between the shallower post-rift faults and the deeper syn- and pre-rift faults to be better delineated. Side-scan sonar data, which will be acquired in conjunction with the high resolution seismic data, should allow the seafloor expression of pockmarks and the orientation of reactivated faults to be mapped.

b.)The Direct Hydrocarbon Detection method (DHD) has not been extensively used in Australia, and the majority of surveys that have been conducted are not publicly available. Geochemical surveys conducted in the Timor Sea (by InterOcean, 1989) and Sahul Syncline (by ETI, 1989), fall into this unavailable category.

The Timor Sea appears to be a good location to test this method's usefulness as a remote sensing tool, as many of the faults extend all the way from the reservoir/source horizon to the seafloor. Its applicability in the Palaeozoic Petrel Sub-Basin, where the shallow section is much less faulted, is more difficult to predict. During the survey, DHD data will be collected over structures which cover the range of hydrocarbon-bearing and non-productive structural styles within the region. Detailed surveys will be carried out over several hydrocarbon discoveries, including Turtle, Barnett, Tern and Petrel. Data will also be collected over a number of as yet undrilled prospects.

The DHD data will be collected simultaneously with the high resolution seismic and side-scan sonar data, allowing geochemical anomalies to be related to both seafloor and sub-seafloor geology. The integration of both sediment and water column (DHD) hydrocarbon data will allow a comparison of the relative usefulness of these techniques as remote sensing tools in this area.

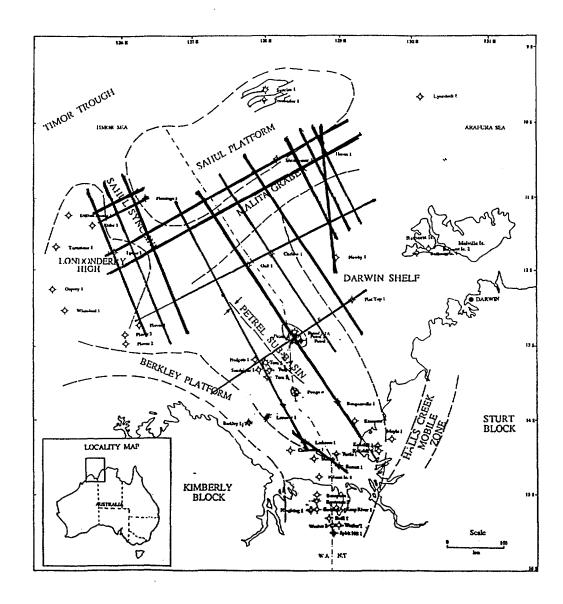


Figure 1. Proposed survey lines shown in relation to the major structural elements of the Timor Sea region. Map reproduced from Bradshaw (1990: BMR Record 1990/72).

APPENDIX 1

GENERAL DETAILS:-RESEARCH VESSEL RIG SEISMIC

R/V Rig Seismic is a seismic research vessel with dynamic positioning capability, chartered and equipped by BMR to carry out the Continental Margins Program. The ship was built in Norway in 1982 and arrived in Australia to be fitted out for geoscientific research in October 1984. It is registered in Newcastle, New South Wales, and is operated for BMR by the Federal Department Of Transport and Communications.

Gross Registered Tonnage: 1545 tonnes

Length, overall: 72.5 m
Breadth: 13.8 m
Draft: 6.0 m

Engines: Main: Norma KVMB-12 2640 HP/825 rpm

Aux: 3x Caterpillar 564 HP/482 KVA 1x Mercedes 78 HP/56 KVA Shaft generator: AVK 1000KVA;

Shaft generator:

AVK 1000KVA;

440 V/60 Hz

2 forward, 1 aft.

Helicopter Deck: 20 m diameter
Accommodation: 39 single cabins

and hospital

APPENDIX 2

SCIENTIFIC EQUIPMENT

GEOPHYSICAL SCIENTIFIC EQUIPMENT

NON-SEISMIC SYSTEMS

General

Side Thrusters:

Raytheon echo sounders: 3.5 Khz (2 KW) and 12 Khz (2 KW) Geometrics G801/803 magnetometer/gradiometer Bodenseewerk Geosystem KSS-31 marine gravity meter E.G. & G. model 990 side scan sonar

Nichiyu Giken Kogyo model NTS-11Au heatflow probe

Navigation

Differential GPS System

Magnavox T-set Global Positioning System

Magnavox MX 1107RS and MX 1142 transit satellite receivers

Magnavox MX 610D and Raytheon DSN 450 dual axis sonar dopplers

Arma Brown and Robertson gyro-compasses; plus Ben paddle log

Decca HIFIX-6 radio-navigation system, modified for long range operations

SEISMIC SYSTEM CONFIGURATION FOR HIGH RESOLUTION PROGRAM: SAHUL SYNCLINE AND BONAPARTE BASIN

The anticipated recording parameters to be used on the high resolution seismic survey in the Sahul Syncline and Bonaparte Basin are as follows.

Source

5 X S80 water guns 80 cu in per gun (air) 2000 psi air pressure gun spacing 2.5 metres gun depth 3 to 5 metres.

Streamer

Fjord Instruments transformerless. 10 Teledyne T-l hydrophones per 6.25m group. 900 m cable, 144 seismic channels, group interval 6.25 m. depth 5m nominal.

Field Data

8 hz - 256 hz passband 1 ms blocked multiplexed up to 3 sec record length nominal 4.85 second shot rate shot interval 12.5m for 36 fold CDP coverage Shot-to-group 1 offset : 100 m if achievable

Seismic data supplied in SEG-Y format, special floating point format, 4 bit binary exponent, 12 bit mantissa. Conversion routinessupplied.

Alternative Seismic System

An alternative to the above listed seismic system which could be employed during the survey would consist of a 100 channel seismic cable configured with a 12.5 m group interval, producing 50 fold data. The sampling rate would be 2 msec with the data demultiplexed.

High Resolution Source Rationale

BMR has been developing a seismic energy source specifically for use in high resolution surveys. The energy source is built around five S-80 waterguns of 80 cu.in. capacity manufactured by Seismic Systems Incorporated of Houston USA. The primary objective is to have an energy source that has a variable output energy level but an invariant power spectrum and signal waveform. By using multiple waterguns separated by more than their interaction distance, we can use from one to five guns without changing the output signal shape. It also has the advantage of a "clean" signal without bubble pulse that might obscure near-surface detail in the field. These advantages are considered to outweigh the disadvantage of a non-minimum phase energy source. Preliminary tests of the watergun array have been encouraging. Reliability and repeatability of individual gun signatures has been good.

RIG SEISMIC SYSTEM (GENERAL)

Seismic cable:

Fjord Instruments, transformerless coupling
Maximum of 288 seismic channels, 12 auxiliary channels
10 Teledyne T-1 hydrophones per 6.25 metre group
Nominal sensitivity 20 Volts/Bar for standard group
Oil blocks to reduce low frequency noise
6.25, 12.5, (18.75), and 25.0 metre groups available
288 seismic channels, 12 auxiliary channels
Maximum towable length 6000 metres
3600 metres available at present (Sept 1990)

Energy Source:

5 x 80 cu.in. SSI S-80 watergun array Gun depths 3 to 5 metres, spacing 2.5 metres 16 x 150 cu.in. HGS sleeve gun array (2 arrays) 16 x 160 cu.in. HGS Mod III airgun array (2 arrays) Gun depths 5 to 15 metres, spacing 0.5 metres Gun groups separated by 2.5 metres Various gun groupings available Configured as 6, 5, 3, and 2-gun groups Usually fired as 4, 3, 2, and 1-gun groups Compressor capacity 1200 scfm nominal at 2000 psi

RecordingParameters:

Low noise charge-coupled preamplifiers Preamplifier gain from 1 to 128 in 6 dB steps Maximum of 320 channels including seismic and auxiliaries LC filters 4, 8, 16, and 32 Hertz at 18 dB/octave HC filters 90, 180, 360 and 720 Hertz at 140 dB/octave Sampling rates of 0.5, 1, 2, and 4 millisecs Record lengths from 2 secs to 20 secs SEG-Y recording format with extension IFP operating at 200 khz with special floating point format Data recorded as 4-bit binary exponent and 12-bit mantissa

Other:

Reftek receiver and sonobuoys Yaesu sonobuoy receiver and Spartan SSQ-57A sonobuoys Raytheon echo sounders: 3.5 Khz (2 KW) and 12 Khz (2 KW) Geometrics G801/803 magnetometer/gradiometer

GEOLOGICAL SCIENTIFIC EQUIPMENT

Australian Winch and Haulage deep-sea winch with 10,000 m of 18 mm wire rope and a hydrographic winch with 4000 m of 6 mm wire rope

Gravity, piston, box and vibracores Grab sampler Pipe and rock dredges Niskin bottle water samplers Underwater camera

GEOCHEMICAL SCIENTIFIC EQUIPMENT

Sediment And Porewater Geochemistry

Flow injection analyser UV-VIS spectophotometer Gas chromatographs

Water Column Geochemistry

The Direct Hydrocarbon Detection (DHD) method continuously analyzes C₁-C₈ hydrocarbons within seawater. Thermogenic hydrocarbons migrating up faults from source rocks and/or hydrocarbon reservoirs debouch into the seawater at the seafloor, producing higher concentrations of light hydrocarbons within the water column. These seep gases have molecular compositions that are distinctively different from that of the biogenically-produced hydrocarbons which are mainly produced by *in situ* processes in seawater. If the hydrocarbons are present in sufficient amounts, the

molecular composition of the thermogenic hydrocarbons may be used to infer whether the primary source of the seep was oil, condensate or dry gas.

The method used on the RV 'Rig Seismic' is as follows. Seawater is continuously delivered into the geochemical laboratory onboard the ship via a submersible fish (which is towed approximately 10 m above the seafloor). The seawater is degassed in a vacuum chamber and the resulting headspace gas is injected into three gas chromatographs which sequentially sample the flowing gas stream and measure a variety of light hydrocarbons. Total hydrocarbons (THC) are measured every thirty seconds, light hydrocarbons (C1-C4) are measured every two minutes and C5 to C8 are measured every 8 minutes. These data, as well as fish altitude (above the seafloor), the depth of the fish, hydrographic (temperature and salinity) and navigation data are recorded on computer. All these data are recorded and displayed continuously so that any hydrocarbon anomalies in the water column can be quickly recognised and additional measurements can be made when appropriate. Detection sensitivity is approximately 10 parts per billion in the stripped headspace sample. At a ship speed of 4 knots, the measurement of THC is made every 70 m, C₁-C₄ every 250 m and C5 to C8 every 1400 m.

APPENDIX 3 WELLS DRILLED IN THE TIMOR SEA

WELL NAME	LATITUDE	LONGITUDE
Allaru 1	12.093406	124.798173
Allaru 1 ST 1	12.093406	124.798173
Allaru 1 ST 2	12.093406	124.798173
Anderdon 1	12.646416	124.796593
Anson 1	12.502971	124.8035
Arunta 1	11.975496	124.951508
Ashmore Reef 1	12.180472	123.086277
Asterias 1	13.152305	124.119998
Augustus 1	11.683611	124.970276
Avocet 1	11.373053	125.755
Avocet 1A	11.372813	125.755001
Avocet 2	11.364093	125.757075

Barcoo 1 (Woodside)	15.343611	120.636721
Barita 1	11.443318	125.728054
Barnett 1	14.530556	129.0611
Barnett 2	14.532361	129.052138
Barnett 3	14.534238	129.050336
Barossa 1	12.020833	124.261111
Bassett 1	13.31111	123.42667
Bassett 1A	13.311583	123.425222
Bedout 1	18.244444	119.389611
Berkley 1	14.004721	127.831111
Berri 1	11.486111	124.563888
Bilyara 1	12.684654	124.505886
Bilyara 1 ST 1	12.684654	124.505886
Birch 1	12.460841	124.495348
Bougainville 1	13.773583	
Brecknock 1		129.04181
	14.436964	121.6725
Brewster 1	13.91361	123.2595
Brewster 1A	13.913706	123.259511
Brown Gannet 1	12.108056	123.856111
Buccaneer 1	13.616666	124.016666
Buffon 1	13.393869	122.183228
Cambridge 1	14.290431	128.432639
Cartier 1	12.244166	123.940276
Cassini 1	12.146501	124.968138
Cassini 1 ST 1	12.146498	124.968136
Cassini 2	12.148551	124.949416
Casuarina 1	12.052446	125.098658
Caswell 1	14.241306	122.4675
Caswell 2	14.242528	122.469522
Challis 1	12.123753	125.00446
Challis 2	12.121666	125.018333
Challis 2A	12.121286	125.018568
Challis 3	12.115125	125.022888
Challis 4	12.129268	124.995086
Challis 5	12.122263	124.996666
Challis 6	12.109661	125.034593
Challis 7	12.105366	125.040561
Challis 8	12.102161	125.047823
Challis 9	12.1091	125.035398
Challis 10	12.126736	125.017348
Challis 11	12.099143	125.054613
Champagny 1	12.487223	124.312601
Champagny 1 ST 1	12.487223	124.312601
Cockell 1	11.667278	125.039228
Cockell 1 ST 1	11.667278	125.039228
Coonawarra 1	12.080554	124.353333
Crane 1	12.125766	125.628168
Curlew 1	11.770556	128.263888
Cygnet 1	11.896124	125.939031
Darwinia 1	11.441854	127.934766
Darwinia 1A	11.442118	127.934921
Delamere 1	12.000475	125.304193
Delta 1	12.649066	123.970348

Dillan Obsasla 4	44 000000	405 440007
Dillon Shoals 1	11.239263	125.446997
Discorbis 1	12.882476	123.812796
Douglas 1	11.795833	124.946388
Drake 1	11.285013	125.835554
Dromana 1	12.274998	124.9125
East Mermaid 1	17.166944	119.822555
East Swan 1	12.301968	124.582249
East Swan 2	12.292674	124.583496
Echuca Shoals 1	13.750342	123.723617
Eclipse 1	12.271388	124.618609
Eclipse 2	12.238423	
•		124.643611
Eider 1	11.389167	125.746389
Evans Shoal 1	10.081523	129.531999
Fagin 1	11.571388	125.137776
Flamingo 1	11.026111	126.481944
Flat Top 1	12.376472	129.265528
Frigate 1	13.18	127.923611
Fulica 1	11.088891	125.875276
Garganey 1	11.356596	125.916388
Garganey 1 ST 1	11.356596	125.916423
Grebe 1	12.451111	124.249444
Gryphaea 1	12.810646	123.739321
Gull 1	11.941389	127.910277
Heron 1		
	10.440833	128.95139
Heywood 1	13.462683	124.066725
lbis 1	12.062021	125.346491
Jabiru 1	11.932181	125.005222
Jabiru 1A	11.933561	125.004081
Jabiru 2	11.934864	124.988837
Jabiru 3	11.925583	125.00885
Jabiru 4	11.921625	125.019882
Jabiru 5	11.940204	124.989593
Jabiru 5A	11.939861	124.990171
Jabiru 6	11.930321	125.012855
Jabiru 7	11.920548	125.017303
Jabiru 7 ST 1	11.917991	125.017401
Jabiru 8	11.936518	125.01038
Jabiru 8A	11.936526	125.010388
Jabiru 9	11.951113	124.980398
Jabiru 10	11.922358	125.026016
Jabiru 11		
	11.942079	124.993308
Jacaranda 1	11.470835	128.16388
Jarrah 1	11.289238	125.70328
Jarrah 1A	11.289333	125.703166
Kalyptea 1	13.032998	123.872388
Kambara 1	16.743011	122.437578
Katers 1	12.675416	124.744416
Keeling 1	12.620538	124.165036
Keraudren 1	18.907592	119.15423
Kimberley 1	12.60288	124.383086
Kinmore 1	14.033614	129.262448
Kite 1	12.067793	126.436761
Lacepede 1	17.088333	121.444721
•		

Lacepede 1A	17.088439	121.444822
Lacrosse 1	14.2975	128.58278
Lagrange 1	18.274361	119.318916
Langhorne 1	11.979638	124.365721
Lesueur 1	13.95264	128.125833
Leveque 1	15.753312	122.004906
Lombardina 1	15.288942	121.537303
Londonderry 1	13.614769	124.51183
Longleat 1	12.563693	124.742111
Lorikeet 1	11.173676	125.617996
Lucas 1	12.260361	124.133804
Lynher 1	15.9401	121.083065
Maple 1	12.019916	124.538716
Matilda 1	14.454828	128.749747
Minilya 1	18.32465	118.732426
Minjin 1	16.802153	122.379092
Montara 1	12.689346	124.531661
Mount Ashmore 1	12.560276	123.20667
Mount Ashmore 1A	12.560276	123.20639
Mount Ashmore 1B	12.560081	123.20781
Nancar 1	10.988741	125.757818
Newby 1	11.835278	129.101944
Nome 1	11.655268	125.221291
North Hibernia 1	11.671953	123.324741
North Scott Reef 1	13.948054	121.974721
North Turtle 1	18.909806	118.087776
Octavius 1	11.847221	124.910555
Oliver 1	11.644801	125.008801
Osprey 1	12.219167	125.22084
Paqualin 1	11.980638	124.5069
Parry 1	12.270646	124.337516
Pascal 1	12.203	
Pearl 1 (Home Energy)		124.221898
•	17.851387	122.02777
Peewit 1	12.656144	126.020894
Pengana 1	11.891433	125.029043
Penguin 1	13.607778	128.468333
Perindi 1	16.828358	122.26314
Petrel 1	12.826389	128.47418
Petrel 1A	12.831112	128.47223
Petrel 2	12.853889	128.51389
Petrel 3	12.935833	128.569498
Petrel 4	12.888441	128.494751
Phoenix 1	18.635292	118.7854
Phoenix 2	18.602193	118.842526
Plover 1	12.7125	126.368611
Plover 2	12.958056	126.174444
Plover 3	12.818156	126.115833
Pokolbin 1	11.519443	124.552776
Pollard 1	11.664721	124.56889
Prion 1	12.404444	124.151944
Prudhoe 1	13.748819	123.864203
Puffin 1	12.308333	124.333611
Puffin 2	12.363056	124.275277

Puffin 3	12.288783	124.35825
Puffin 4	12.292226	124.360668
Rainbow 1	11.937958	124.331913
Rainier 1	12.062463	125.023008
Rob Roy 1	13.971	124.199194
Rowan 1	12.498298	124.393698
Rutherglen 1	11.606943	124.470833
Sahul Shoals 1	11.427221	124.54723
Sandpiper 1	13.314722	127.976388
Scott Reef 1	14.076108	121.824655
Scott Reef 2	14.101111	121.8575
Scott Reef 2A	14.101575	121.857803
Shearwater 1	10.513611	128.310278
Skua 1	12.505278	124.432777
Skua 2	12.509516	124.404346
Skua 3	12.506121	124.414663
Skua 4	12.493136	124.425766
Skua 5	12.473919	124.443666
Skua 6	12.487743	124.438568
Snowmass 1	11.994708	125.179466
Stork 1	11.491416	125.792638
Sunrise 1	9.590097	128.153789
Swan 1	12.188056	124.492777
Swan 2	12.194727	124.495677
Swift 1	12.537356	124.451507
Tahbilk 1	12.732758	124.503976
Talbot 1	12.453138	124.881616
Talbot 2	12.457133	124.870329
Taltarni 1	12.612863	124.579529
Tamar 1	11.870924	126.211144
Tancred 1	11.734743	125.323429
Tern 1	13.220833	128.064722
Tern 2	13.2789	128.132789
Tern 3	13.336026	128.104471
Troubadour 1	9.734394	128.123753
Turnstone 1	11.736944	125.295833
Turtle 1	14.476608	128.94484
Turtle 2	14.505891	128.945791
Voltaire 1	11.193351	125.331983
Vulcan 1	12.241993	124.549474
Vulcan 1A	12.242261	124.549964
Vulcan 1B	12.242642	124.550339
Wamac 1	17.240517	121.491563
Whimbrel 1	12.482778	125.378055
Willeroo 1	12.027721	124.897891
Woodbine 1	12.645206	124.147072
Yampi 1	14.558888	123.276077
Yarra 1	12.047804	124.360026
Yering 1	12.612888	124.517098