

AGSO Record 1993/8

Rig Seismic Survey 112, Modern Processes and Environmental Monitoring Strategies offshore Sydney: a Joint Program between The Australian Geological Survey Organisation and The Water Board (Sydney).

Project 121.37

with contributions from

D. Heggie, G. Bickford (co-chief scientists), J. Bishop

Australian Geological Survey Organisation, Marine Geosciences and Petroleum

Geology Program

J. Hansen, P. Schneider, S. Davey P. Fagan
The Water Board, Environment Management Unit

R. JohnstoneUniversity of Stockholm, Sweden

DEPARTMENT OF PRIMARY INDUSTRIES AND ENERGY

Minister for Resources: Hon. Michael Lee, MP

Secretary: Greg Taylor

AUSTRALIAN GEOLOGICAL SURVEY ORGANISATION

Executive Director: Harvey Jacka

© Commonwealth of Australia

ISSN: 1039-0073

ISBN: 0 642 19751 2

This work is copyright. Apart from any fair dealings for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Executive Director, Australian Geological Survey Organisation. Inquiries should be directed to the Principal Information Officer, Australian Geological Survey Organisation, GPO Box 378, Canberra City, ACT, 2601.

Executive Summary

This document presents the shipboard results from AGSO Survey 112 Leg A, aboard RV Rig Seismic to the eastern Australian continental margin, between Broken Bay to the north and Garie North Head to the south. The survey was conducted during September/October 1992 and included personnel from the AGSO Program in Marine Geoscience and Petroleum Geology, the Environment Management Unit of the Water Board (WB), and the University of Stockholm.

As part of the Australian Government's commitment to ecologically sustainable development, the overall objectives of the program were: (i) to collect baseline data which will be used to assess environmental impact associated with the discharge of anthropogenic materials into the coastal zone, including the accumulation of organic carbon, nitrogen and phosphorus, and heavy metal and toxic organic contaminants in sediments and, (ii) to understand the geochemical, microbial, sedimentological and geological processes controlling the concentrations and distributions of contaminants in the coastal zone, so that environmental monitoring strategies can be developed.

Three distinct research projects were conducted: (1) The sedimentology of part of the continental shelf was investigated, and the concentrations and distributions of contaminants in shelf sediments were also examined with special reference to heavy metals and organic toxicants. (2) The processes controlling the inventories of organic carbon, nitrogen and phosphorus in sediments were investigated, specifically oxygen distributions in sediments and benthic fluxes of nitrogen and phosphorus. (3) Continuous geochemical tracer (CGT) studies of ocean outfall discharges and estuary/ocean exchanges were conducted with special reference to light hydrocarbons (both in seawater and sediments), and to dissolved oxygen distributions in seawater around the ocean outfalls.

To achieve the objectives of the program, sixty nine vibro cores, seventy two box cores, thirty eight grabs and two gravity cores were deployed and recovered, providing seafloor samples from thirty eight stations, including several near the ocean outfalls operated by the WB, to about 40 km offshore. The samples were processed onboard for geochemistry and sedimentology. In addition, approximately 500 line-km of continuous geochemical tracer (CGT) data were collected including Direct Hydrocarbon Detection (DHD), dissolved oxygen, pH, temperature and salinity in the

water column of the coastal zone, particularly in the vicinity of the ocean outfalls and the entrances to estuaries.

The shipboard analyses of forty eight vibro cores logged in detail for sedimentology, combined with results of the bathymetric and boomer surveys, indicate the presence of reefal systems interspersed with pockets of fine-grained sediments. The fine-grained sediments are those believed to be important in the storage and transport of contaminants (heavy metals and organochlorines) in the coastal zone. The sediment samples collected from the vibro cores, and interfacial samples collected in the box cores were returned to the Water Board for subsequent analyses of the heavy metal and organochlorine contents.

Geochemical analyses of sediments has characterised the nutrient (nitrogen and phosphorus) status of sediments. Oxygen concentrations in sediments are depleted within the top 0.5 cm (typical of many coastal sediments). These data and the pore water measurements indicate that aerobic metabolism drives the recycling of organic matter in the fine-grained sediments offshore Sydney. The determination of nutrient fluxes between the sediments and the overlying bottom-waters indicate a net flux of both nitrogen (as ammonia) and phosphate from the sediments to the bottom-waters at most sites. These results will be used in developing environmental monitoring strategies to assess the impacts of point and non-point sources of organic matter and nutrient inputs to the coastal zone.

Analysis of the vertical profiles of light hydrocarbons (DHD) in the water column near the ocean outfalls and the entrances to estuaries indicate that light hydrocarbon mixtures from the ocean outfalls are characterised by abundant methane with minor amounts of C2+ hydrocarbons. In contrast, light hydrocarbon mixtures from the estuaries are more abundant in C2+ hydrocarbons. This distinction provides a potential tool to distinguish different 'sources' of hydrocarbons to the coastal zone. Direct Hydrocarbon Detection (DHD) data from the coastal survey indicate elevated levels of total hydrocarbons (THC) near the ocean outfalls and, on most lines these were coincident with zones of depleted oxygen concentrations. Total hydrocarbons and the molecular abundances of methane and the C2+ hydrocarbons were found to sensitive be tracers of anthropogenic inputs the

Table of Contents

Executive Summary	ii
List of Tables.	\mathbf{v}
List of Figures	vii
List of Appendices	X
List of Enclosures	хi
1. Introduction	. 1
2. Seafloor sampling results	.5
Van Veen grabs	5
Vibro cores	.5
Box cores	6
Gravity cores	6
Hydrocast	6
Navigation	7
3. Sedimentology and Contaminant Sampling.	31
Objectives	
Sampling Methods	
Van Veen Grab	
Vibro corer	
Box corer	
Sedimentological Observations	
Inner-shelf Sands	
Mid-shelf Muddy Sands	
Outer-shelf Calcareous Sands	
Boomer Survey	
Bathymetric and sub-bottom profiling (12 and 3.5 KhZ) Surveys	
Contaminant Core Collection and Subsampling	
Proposed Post-Survey Analyses	
Geological Analysis	
Organic Carbon Analysis	
Organochlorine Analysis	
Trace Metal Analysis	
4. Geochemical characterisation of continental shelf sediments	
Objectives	
Sampling Sites	
Sediment Oxygen Profiles	
Pore water nutrients	
Solid phase nutrients	
Grain-size	
Benthic flux measurements	
Distribution of pathogenic bacteria	
Macrofauna Analysis	60
5. Continuous geochemical tracers (CGT); light hydrocarbons, dissolved	=-
oxygen, pH, temperature and salinity in seawater.	
Objectives	
Vertical distributions of hydrocarbons	
Longitudinal profiles of light hydrocarbons in the coastal zone	
Carbon isotope sample collection	
SDL (temperature, salinity, dissolved oxygen and pH data)	78

6. Exractable (volatile) hydrocarbons in sediments	108
Objectives	108
7. Summary	
8. Acknowledgements	
9. References	
Appendix 1. Core logs provided by the Water Board	125

List of Tables.

	Page
Table 2.1. Seafloor sampling sitesWB/AGSO program	8
Table 2.2. Grab sampling sites WB/AGSO program.	15
Table 2.3. Vibro core sampling sites WB/AGSO program.	17
Table 2. 4. Box core sampling sites WB/AGSO program.	20
Table 2.5. Gravity core sites WB/AGSO program.	23
Table 2.6. Hydrocast sampling site WB/AGSO program.	24
Table 3.1. Inventory of samples for shore-based contaminant studies.	42
Table 3.2. Inventory of cores logged by WB scientists.	45
Table 3.3. Navigation data for the boomer survey conducted offshore Sydney.	47
Table 3.4. Way-points for the bathymetric survey conducted offshore Sydney.	48
Table 4.1 Summary of sampling locations and cores collected for sediment geochemistry analysis.	61
Table 4.2 Summary of sampling locations and cores collected for analysis of numbers of <i>Clostridium perfingrens</i> spores.	62
Table 4.3 Summary of sub-cores collected at each site, analyses and storage.	63
Table 5.1. Locations of vertical profiles.	80
Table 5.2 Navigation data for the CGT survey	Q 1

Table 5.3. List of samples collected for determination of the carbon	
isotopic composition of methane, including locations, approximate	
methane content and tow-fish depth.	84
Table 6.1. Locations of samples and concentrations of light	
hydrocarbons measured in sediments.	110
Table 6.2. Inventory of samples collected for halogenated hydrocarbon	
analyses.	113
-	

List of Figures

	Page
Figure 1.1 Reprint of BMR Research Newsletter article describing the pilot survey conducted in September/October 1991.	3
Figure 2.1. Map of all seafloor sampling sites AGSO/WB project.	25
Figure 2.2 Map of grab sample locations AGSO/WB project.	26
Figure 2.3 Map of vibro core sample locations AGSO/WB project.	27
Figure 2.4 Map of all box core locations AGSO/WB project.	28
Figure 2.5 Map of gravity core locations AGSO/WB project.	29
Figure 2.6 Map of the the hydrocast location AGSO/WB project.	30
Figure 3.1 Map of sample sites occcupied for contaminant and grain-size analyses.	49
Figure 3.2 Schematic diagram of the protocol for processing and sampling of vibro cores.	50
Figure 3.3 Schematic diagram of the protocol used for processing and sampling of box cores.	51
Figure 3.4. Track map of the boomer survey.	52
Figure 3.5. Track map of the bathymetric survey.	53
Figure 3.6 Map of the bathymetry of the mid-shelf offshore Sydney between Palm beach and Turimetta Head.	54
Figure 3.7 Map of the mid-shelf deposition and adjacent isopachs between Palm Beach and Turimetta Head.	55

Figure 4.1. Map of sampling locations for sediment (nutrient)	
geochemistry - box core sampling locations.	64
Figure 4.2. General protocol for sediment sampling and analysis.	65
Figure 4.3. Location of sampling sites for sediment microbiology sampling.	66
Figure 4.4. Oxygen profiles in fine-grained coastal sediments.	67
Figure 4.5. Porewater nutrient concentrations in fine-grained coastal sediments.	70
Figure 4.6. Flux rates of ammonia and phosphate from fine-grained coastal sediments.	71
Figure 4.7. Oxygen and carbon utilisation in fine-grained coastal sediments.	72
Figure 5.1 Schematic diagram of the CGT (Continuous Geochemical Tracer) capability aboard <i>Rig Seismic</i> .	86
Figure 5.2 Map of the locations of vertical profiles conducted during Survey 112.	88
Figure 5.3 Percent hydrocarbon wetness and methane for the vertical profiles located near the ocean outfalls.	89
Figure 5.4 Percent hydrocarbon wetness and methane for the vertical profiles located near the entrances to estuaries.	90
Figure 5.5 Percent hydrocarbon wetness and methane for all vertical profiles.	91
Figure 5.6 Map of the cruise track for the CGT survey conducted at 5 m water depth	92

Figure 5.7 Map of the cruise track for the CGT survey conducted at 25 m water depth.	93
Figure 5.8 Map of the cruise track for the CGT survey conducted at 45 m water depth.	94
Figure 5.9 Map of the cruise track for the CGT survey conducted at about 15 m altitude above the seafloor.	95
Figure 5.10. Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112005.	96
Figure 5.11 Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112009.	99
Figure 5.12 Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112013.	102
Figure 5.13 Longitudinal profiles of dissolved oxygen and THC along survey line 112005.	105
Figure 5.14 Longitudinal profiles of dissolved oxygen and THC along survey line 112009.	106
Figure 5.15. Longitudinal profiles of dissolved oxygen and THC along survey line 112013.	107
Figure 6.1. Map of the locations of LHC (light hydrocarbon) sampling sites.	115

List of Appendices

Appendix 1. Core logs of sedimentology provided by the Water Board.

List of Enclosures

Enclosure 1 Map of the sampling sites occupied during the WB/AGSO component of Survey 112.

Enclosure 2 Map of the locations of Van Veen grab sampling stations.

Enclosure 3 Map of the locations of vibro core sampling stations.

Enclosure 4. Map of the locations of box core sampling stations.

Enclosure 5. Map of the locations of gravity core sampling locations.

Enclosure 6. Map of the location of the single hydrocast.

Enclosure 7. Map of the locations of vertical profiles conducted in the coastal zone.

Enclosure 8. Map of the locations of sediments sampled for light hydrocarbon analyses.

Enclosure 9. Posted value plot of THC (total light hydrocarbons) in sediments.

1. Introduction

Increasing population densities in coastal areas, the diversity of human activities, and multiple sources of pollution all contribute to the potential for adverse environmental impacts on the marine environment in proximity to metropolitan areas. Fundamental to achieving an effective coastal zone strategy to manage the impacts of urban activities is an understanding of the effects of pollutants on marine organisms and processes.

In the coastal waters near Sydney, pollutants derive from a number of sources such as sewage effluents, industrial input, agricultural runoff, stormwater discharges and non-point source urban runoff. Pollutants of concern include contaminants such as pesticides and trace metals, organic matter and nutrients, and pathogenic organisms. Many of these constituents can be introduced to the coastal zone from natural or human-derived sources.

Determining the environmental impacts of urban pollution on the marine environment requires an understanding of baseline conditions with regard to naturally-occurring marine processes in the coastal zone, particularly those that control the flow of energy and materials through the system and the recycling of many elements, such as oxygen and carbon and the essential nutrients (nitrogen and phosphorus) required to sustain the activities of the various marine communities. It also requires identification of the sources and loads of the pollutants reaching the coastal zone. As a potentially significant contributor of a number of pollutants to the coastal zone, the long term impacts of discharge of Sydney's sewage effluent through three deep water ocean outfalls are being assessed by the Water Board through ongoing monitoring and investigation.

During 1991, the Australian Geological Survey Organisations (AGSO) and the Water Board (Sydney) conducted a pilot survey to test if light hydrocarbons in seawater may be sensitive indicators of the plumes from the ocean outfalls, operated by the Water Board, which discharge into the sea offshore Sydney. The results of that survey are briefly summarised and presented in Figure 1.1. The outcomes of that survey lead to this Survey 112, and an Agreement between AGSO and the Water Board to conduct expanded scientific, baseline and process studies on the continental shelf offshore Sydney. The Environment Management Unit of the Water Board and the Marine Geoscience Program of AGSO combined facilities and skills to carry out a twelve day

survey aboard the research vessel Rig Seismic. Three major issues were to be addressed during the survey:-

- (i) Sedimentology of continental shelf sediments and the accumulation of contaminants (metals and organic toxicants) in the sediments;
- (ii) Geochemical characterisation of continental shelf sediments with special reference to the microbiology, oxygen demand and the cycling of nutrients, nitrogen and phosphorus and,
- (iii) Continuous geochemical tracer studies of ocean outfalls and estuary/ocean exchanges with special reference to light hydrocarbons.

This Record: (i) documents the samples collected, analysed and inventoried for later analyses, during the joint program and, (ii) presents a preliminary interpretation and a brief summary of the results of the analyses conducted in the shipboard laboratories during the survey. The survey was focussed on the continental shelf offshore Sydney between Broken Bay and offshore Garie North Head, south of Port Hacking.

BMR detects hydrocarbon pollution off Sydney

Geochemical equipment on BMR's RV Rig Seismic, designed to detect seepage of petroleum hydrocarbons sub-seafloor accumulations into the bottom-waters of the Australian continental shelf, recently demonstrated its potential for environmental monitoring in a novel pilot survey with the Sydney Water Board (SWB). The survey was undertaken to test the continuous geochemical profiling equipment aboard Rig Seismic for use in environmental geochemistry and oceanography. High concentrations of light (C₁-C₆) hydrocarbons were measured in seawater off Sydney, indicating anthropogenic (man-made) additions to the coastal zone. The hydrocarbons appear to emanate from Botany Bay, the inner part of Port Jackson, and the SWB ocean outfall sites located at Malabar, Bondi and North Head. The ratios of various light hydrocarbons in the plumes provide one approach to delineate

a

11

u

щ

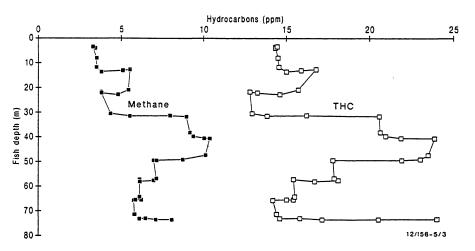
11

n

II 🖷

potential sources of hydrocarbons.

The equipment (previously described in BMR Research Newsletter, 10, 12-13, 1989) consists of a tow-fish from which seawater is continuously pumped into the geochemical laboratory aboard Rig Seismic. Light (C1-C8) hydrocarbons are continuously extracted from the seawater and analysed by gas chromatography. Total volatile hydrocarbons (THC) are measured every 30 seconds, C1-C₆ every two minutes, and C₅-C₈ every eight minutes. At a ship speed of 5 knots, C₁-C₆ concentration-data are collected each 300 m of seafloor traversed, and continuously displayed in the ship laboratory and stored on a PC for subsequent processing and analysis. Hydrographic data (temperature and salinity), the altitude of the tow-fish above the seafloor, and the depth of the tow-fish in the water column are also continuously displayed and recorded.


The survey collected data over approximately 60 km from the vicinities of the en-

a vertical profile, in about 80 m water depth, south of the Malabar ocean outfall site and off the entrance to Botany Bay.

The vertical profile (Fig. 30), carried out at the beginning of the survey, shows methane and total volatile hydrocarbon (THC) maxima between 30 and 50 m water depth; hence the tow-fish was set at about 40 m for most of the remainder of the survey. The methane and THC concentrations measured in the midwater plume were all significantly (two-tothree-fold) higher than typical background values, suggesting anthropogenic sources for the hydrocarbons. High concentrations of hydrocarbons in the bottom-waters (>70 m water depth) suggest input from the sediments. The depth of the plume in the water column is probably controlled by a dynamic balance between the buoyancy of the plume and the density stratification (vertical profiles of temperature and salinity). Because the temperature and salinity (hence stratification) of the ocean waters vary seasonally, the depth and dispersion of the plume would be expected to vary also throughout the year.

The distribution of light hydrocarbons (at 45 m water depth) in seawater along the coastal transect is summarised in Figure 31. Total volatile hydrocarbons (THC) and methane (Fig. 31A) are at background levels in the most southern part of the survey area, rapidly increasing towards the entrance to Botany Bay. The highest concentrations of THC and methane were found near the SWB ocean outfall sites at Malabar, Bondi and North Heads. Methane was about ten times background near the outfall sites.

From the limited data, these plumes could be detected about 5 km alongshore from the outfalls. Select C₂₊ hydrocarbons (ethane, propane and butane) are summarised in Figure 31B, and show distribution different from those of THC and methane. The highest concentrations (more than ten times background)

conducted in September/October 1991.

Fig. 30. Vertical profiles of total volatile hydrocarbons (THC) and methane in seawater from off the entrance to Botany Bay and south of the SWB ocean outfall site at Malabar.

trance to Botany Bay, and the SWB ocean outfall sites at Malabar, Bondi and North Head, including a transit line into Port Jackson as far as Fort Denison. Also included was

Figure 1.1 Reprint of BMR Research Newsletter article describing the pilot survey

3

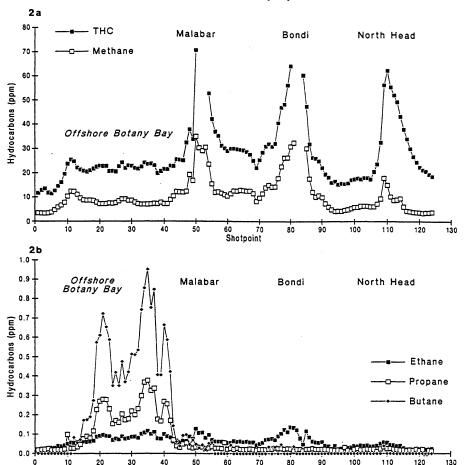
12/156-5/2

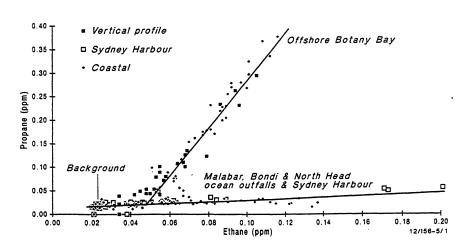
6

of propane and butane were found in the southern sector of the survey, near the entrance to Botany Bay and south of the outfall site off Malabar, while minor amounts of ethane (about twice background) were associated with the entrance of Botany Bay and the outfall sites off Malabar, Bondi and North Head. During the transit along Sydney Harbour, the highest concentrations of C₂₊ hydrocarbons were found toward the 'inner' harbour, as Fort Denison was approached.

Hydrocarbons added to seawater are rapidly dispersed by mixing, so that their lateral distribution may not be a unique indicator of their source. To further investigate source, a variety of cross-plots of the hydrocarbon compositions in the plumes may be used. A cross-plot of ethane vs. propane for all data collected during the survey (Fig 32) shows the data falling into three sectors: a coastal transect, the vertical profile (off Botany Bay), and the Sydney Harbour transit. Typical backgrounds plot to the left origin, while trends to higher concentrations plot away from the background, reflecting the different potential sources of hydrocarbons contributing to the anomalies.

In the plot, two types of hydrocarbon source with different ethane/propane ratios can be identified. (1) A trend of increasing ethane concentration with minor propane increase includes data from the coastal transect (Botany Bay to North Head) – including the ocean outfall sites – and data from Sydney Harbour. (2) A distinctive trend of increasing ethane with very significant propane increase includes the coastal data off the entrance to Botany Bay and the vertical profile. Thus, different generic sources of hydrocarbons can be characterised by their distinctive molecular compositions in coastal seawater samples.


The equipment on *Rig Seismic* can detect parts per billion concentrations of light hydrocarbons in seawater. The data from this pilot survey demonstrate that the equipment is very sensitive in both detecting and tracing the dispersion of light hydrocarbon plumes. Furthermore, the composition of the plumes may be used to identify generic sources of the hydrocarbons.


This continuous profiling capability aboard Rig Seismic is a unique tool with potentially wide application. For example, analytical instruments can be fitted to the tow-fish for continuous profiling of other parameters, such as dissolved oxygen fluorescence and turbidity in seawater, while, simultaneously, volatile compounds can be determined by instruments linked to the gas flow extracted from the seawater. This gas can be collected for subsequent shore-based isotopic analyses. Other dissolved (but non-volatile) compounds, such as seawater nutrients (nitrogen, phosphate and silicon), dissolved organic carbon, and heavy metals, can be analysed at sea, in the flowing seawater stream, or samples may

be collected for later shore-based analysis.

Furthermore, continuous geochemical tracer (CGT) data can be obtained on *Rig Seismic* simultaneously with remotely sensed high-resolution seismic reflection, side-scan

Fig. 31. A - Concentrations of total volatile hydrocarbons (THC) and methane in the coastal transect survey from Botany Bay to North Head. B - Concentrations of ethane, propane and butane in the coastal transect survey from Botany Bay to North Head.

Shotpoint

sonar and bathymetric data. These integrated data-collection systems have a wide range of applications in marine geoscience, including exploration for offshore resources and environmental monitoring.

Fig 32. Cross-plot of ethane vs. propane for all data collected during the survey.

For further information contact Dr David Heggie. Mr Gary Bickford or Mr Jeremy Bishop at BMR (Marine Geosciences and Petroleum Geology Program).

The BMR Research Newsletter is published twice a year, in April and October. For further information please contact BMR Marketing & Information Section, tel. (06) 249 9623, fax 257 6466. Correspondence relating to the BMR Research Newsletter should be addressed to The Editor, BMR Research Newsletter, Bureau of Mineral Resources, GPO Box 378, Canberra ACT 2601, tel. (06) 249 9111, fax (06) 247 2728.

© Commonwealth of Australia. ISSN 0813-751 X.

B92/21419 Cat. No. 92 2018 3. Printed by Pirie Printers Pty Limited, PO Box 438, Fyshwick ACT 2609.

2. Seafloor sampling results

Multiple seafloor samples were collected for the sedimentology and geochemical programs using a variety of sampling devices. The success, or otherwise, of these sampling devices in various locations on the Australian continental margin not only provides important clues to the effectiveness of these sampling tools in different environments, but also provides insights into technological gaps that need be filled to provide the sampling requirements for various geological and geochemical programs.

Sediment samples were collected from four transects running east-west from Broken Bay, near Port Jackson, near Botany Bay and south of Port Hacking. The positions of the sampling sites, the seafloor sampler deployed, the sediment recovery and brief notes on samples collected are shown in chronological order in Table 2.1. The locations of each of the sampling sites are shown in Figure 2.1 (sample sites not numbered), and in detail in Enclosure 2.1.

Van Veen grabs

At most sites a Van Veen grab was deployed to determine the sediment type present, to collect samples for hydrocarbon and bacteriological analyses, and to collect an archive sample. The location, water depth, presence or absence of recovery and additional comments for each of the grab samples are shown in Table 2.2. The seafloor positions of the grab sample sites are shown in Figure 2.2 and Enclosure 2.2.

Of the thirty-eight Van Veen grab deployments, thirty one were successful (Table 2.6). The grab sampler was unsuccessful at Site 26 after two attempts, and also at Sites 24, 25, 22, 21 and 20. These sites were composed of either a hard surface, or else compacted coarse grain sands that were not able to be penetrated (Table 2.2).

Vibro cores

Following a successful grab sample, a vibro core was attempted at the site. The vibro core sample was obtained within 100 metres of the grab sample site. Vibro coring was carried out using the AGSO vibro coring system, which consists of a large diameter head containing two, 415-volt electric motors. The head was attached directly to a 3 m long, 76 mm internal diameter aluminium tube, with a stainless steel core catcher attached to the leading edge. The aluminium tube is used once then replaced with a

new clean tube for the next sampling attempt. The head and core tube are contained in a 4 metre steel frame. The vibro corer was deployed from the helicopter deck using the ships crane. Vibrating time was usually in the vicinity of one minute. The location of sample sites, core recovery and additional comments are detailed in Table 2.3. The position of the vibro coring sample sites are shown in Figure 2.3 and Enclosure 2.3.

The vibro corer was deployed on sixty-nine occasions with fifty of these being successful. The unsuccessful vibro cores resulted from either a hard seafloor, devoid of sediment (Sites 25,14), or mechanical failure of the equipment.

Box cores

After a successful grab, the sediment type was visually evaluated to determine whether a box core sample would be attempted. Box-coring is generally only successful in fine-grained sediments, thus the sandy sediments were generally rejected for box coring. The location, recovery and sub-sample details of the box cores are shown in Table 2.4. The position of the box core sites are shown in Figure 2.4 and Enclosure 2.4. Forty-five of seventy-seven box cores deployed successfully recovered more than ten cm of sediments (Table 2.4).

Gravity cores

Gravity cores are not usually successful when deployed on continental shelf sediments, because of the generally sandy composition of shelf sediments. Only two gravity cores were deployed during this part of the survey, and these were in a shallow depression offshore of Broken Bay, seaward of a small bathymetric high. Both deployments successfully recovered over one metre of sediment. Details of the gravity cores are presented in Table 2.5. The location of the gravity core sites are shown in Figure 2.5 and Enclosure 2.5.

Hydrocast

A hydrocast was undertaken using 20 litre Niskin bottles to collect seawater for incubation experiments. Details of the hydrocast are shown in Table 2.6, Figure 2.6 and Enclosure 2.6.

Navigation

Navigation was provided by *Rig Seismic's* on-board navigation system consisting of a Racal-based differential Global Positioning System (dGPS). During the survey the differential corrections were usually obtained using the Sydney shore station. dGPS navigation was provided for 99.2% of this portion of the survey. The noise levels were in the vicinity of 2-3 metres during sampling and 5.8 metres while the vessel was underway. All navigation details contained in this document are derived using the WGS84 system, unless otherwise specified.

			Ta	ble 2.1.Se	afloor sam	pling	sites SWB/A	GSO program
Sito	Sample	l'day	CMT	Lat.	Long.	WD	Recovery	Commont
SHE	sumple	Judy	Givii	Lui.	Long.	(m)	(cm)	Continent
						(iii)	(CIII)	
28	GS001	260	16:33	34 11.00	151 05.19	41.7	10	mud and sampled for LHC,HHC
28	BC001	260	18:37	34 11.01	151 05.18	40.3	<5	No sample
28	BC002	260	19:02	34 11.01	151 05.21	39.2	< 8	1 subcore for geochem - SWB was it archived?
28	BC003	260	19:36	34 11.00	151 05.19	40.3	0	Shell in jaws no sample
28	BC004	260	19:53	34 11.00	151 05.16	39.1	0	no sample
28	VC001	260	20:47	34 11.00	151 05.15	40.1	65	logged SWB,mud,fine muddy quartz sand
28	VC002	260	22:07	34 10.99	151 05.16	40.6	250 est	bent barrel and core broken - coretop lost - not logged whole sample AGSO
28	VC003	260	22:44	34 11.00	151 05.19	39.2	56	logged SWB, well sorted medium quartz sand
28	VC004	260	23:20	34 10.96	151 05.24	41.1	21	Whole core AGSO
28	VC005	260	23:58	34 11.04	151 05.15	40.2	175	logged SWB,mud drape,fine/medium muddy quartz sand
27	GS002	261	1:13	34 11.00	151 09.88	95	3/4 grab	mud - sampled for LHC, 1 SWB microbiology
27	BC005	261	1:50	34 11.03	151 09.87	101	< 1	Ismall bag
27	BC006	261	3:27	34 10.98	151 09.88	99.3	est 15	2 subcores SWB geochem, 3 archive bags
27	BC007	261	4:15	34 10.96	151 09.90		est 20	3 SWB subcores, 3 archive bags, 1 SWB subcore for interfacial contaminants
_27	BC008	261	5:14	34 10.99				May have triggered in water
27	BC009	261	5:32	34 11.00	151 09.86		est 20	sample washed, 2 archive bags AGSO
27	BC010	261	6:09	34 10.96	151 09.89	99	est 20	4 subcores - 3 SWB geochem, 1 interfacial contaminants and sedimentology
								3 archive bags
27	BC011	261	6:57	34 11.00	151 09.89			No sample wire broke on B/C
27	BC012	261	7:19	34 11.01	151 09.89	99.1	est 20	4 subcores - 3 SWB geochem, 1 sedimentology, 3 archive bags
26	GS003	261	8:32	34 11.06	151 13.29	123	00	No recovery
26	GS004	261	8:39	34 11.05	151 13.25	123	0	No recovery
26	BC013	261	9:07	34 11.05	151 13.28	123	0	suspect hard bottom
26	BC014	261	9:32	34 11.04	151 13.27	123	0	No recovery
26	BC015	261	10:56	34 11.07	151 13.28	123	est 25	3 sub cores - 1SWB, 2 AGSO, 2 archive bags
26	BC016	261	11:30	34 11.05	151 13.30	124		No recovery
25	GS005	261	12:42	34 11.05	151 16.66	136		No recovery
25	GS006	261	12:49	34 11.08	151 16.67	136	< 10	2 SWB geochem, 1 archive bag 1lhc,1chem

Table 2.1. Seafloor sampling sitesWB/AGSO program

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
25	BC017	261	13:10	34 11.05	151 16.67	135	0	No recovery
25	VC006	261	13:48	34 11.02	151 16.68	136	0	No recovery
25	VC007	261	14:27	34 11.02	151 16.66	136	196	Logged SWB medium/coarse shell hash
25	VC008	261	14:52	34 11.04	151 16.65	135	40	Logged SWB mud drape,medium calcareous sand
25	VC009	261	15:08	34 11.05	151 16.67	135	0	No recovery
24	GS007	261	16:23	34 11.02	151 20.07	143	0	No recovery
24	GS008	261	16:33			_143	<10 gm_	small amount of sand
24	GS009	261	16:44		151 20.10	143	< 10	LHC,HHC, 1 archive bag, 1 SWB microbiology
24	VC010	261	17:20	34 11.05		142	20	Logged SWB,mud drape,med/coarse calcareous sand
24	VC011	261	17:50	34 11.03		141	168	Logged SWB, fine/med calcareous sand
23	GS010	261	18:55	34 11.04		150	15	sample for LHC, HHC, 2 archive bags, 1 SWB microbiology
23	BC018	261	19:37	34 11.06	151 23.46			1Bag archive
23	VC012	261	20:08	34 11.06	151 23.46	150	122	logged SWB,mud drape,medium/coarse calcareous sand
23	VC013	261	20:46		151 23.48		<10 gms	sandy sediment 1bag no core
23	VC014	261	21:29			150	32	logged SWB,mud drape,medium/coarse calcareous sand
23	VC015	261	22:17		151 23.48	150	140	logged SWB,mud drape,medium calcareous sand
22	GS011	261	23:40			237	00	No recovery
22	BC019	262	0:06		151 26.87	237	0	No recovery
22	VC016	262	0:32				58	logged SWB,fine calcareous sand
22	VC017	262	1:24	34 11.04	151 26.87	238	180	logged SWB, fine silty calcareous sand
21	GS012	262	3:46	33 59.87	151 33.85		0	No recovery
21	BC020	262	4:09	33 59.85		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<5	One small archive bag
21	BC021	262	4:38		151 33.85		<5	One small archive bag, , SWB microbiology
21	VC018	262	5:13	33 59.83			26	logged SWB,mud drape,fine/medium calcareous sand
21	VC019	262	5:44	33 59.86			280	logged SWB,fine quartz/carbonate sand
20	GS013	262	6:51	33 59.85		160	0	No recovery
20	BC022	262	7:12	33 59.87	151 31.98	159	< 5	1 archive bag, 1 SWB microbiology
20	VC020	262	7:44	33 59.84	151 31.98	160	0	No recovery
20	VC021	262	8:05	33 59.85	151 31 98	160	261	logged SWB,mud drape,fine/medium calcareous sand
20	VC022	262	8:24	33 59.86	151 31.99	160	140	logged SWB,fine quartz/carbonate sand
19	BC023	262	9:40	33 58.48	151 29.27	158	0	No recovery
19	BC024	262	10:07	33 58.49	151 29.28	148	0	No recovery

Table 2.1 Seafloor sampling sites WB/AGSO program

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
19	VC023	262	10:38	33 58.49	151 29.28	148	42	logged SWB,mud drape,medium calcareous sand
19	VC024	262	11:09	33 58.50	151 29.29	148	145	logged SWB,mud drape,fine calcareous sand
18	BC025	262	12:49	34 00.96	151 24.37	133	0	Seaweed, sponge bottom growth
18	BC026	262	13:17	34 00.94	151 24.38	133	<10	1 SWB microbiology 1bag mud ,fern,rock fragments,shells
17	BC027	262	14:41	33 59.85	151 20.96	103	>10	1 chem,1lhc,1bag mud
17	BC028	262	15:21	33 59.88	151 20.97	103	15	1 SWB microbioology,1sub-core,
17	VC025	262	15:57	33 59.87	151 21.03	103	268	logged SWB,mud drape,medium quartz sand
17	VC026	262	16:27	33 59.87	151 20.99	103	176	AGSO have all the core, bent barrel
17	VC 027	262	16:48	33 59.86	151 20.99	102	118	logged SWB,mud drape,fine/medium quartz sand
16	GS014	262	17:59	33 59.82	151 17.08	81.2	10	SWB microbiology,
16	BC029	262	18:43			81.8	15	2 SWB subcores geochem, 2bags 2gas samples
16	BC030	262	19:35	33 59.83	151 17.08	80.8	15	3 SWB subcores geochem, 2bags, 2gas samples, 1sub-core
16	BC031	262	20:17	33 59.81	151 17.07	80.4	15	1 SWB subcore 1 chem, 1 lhc, 2 bags mud, 1 sub-core
16	BC032	262	21:03	33 59.82	151 17.06	81	15	2 SWB subcores2bags,2gas samples,1sub-core
16	BC033	262	21:47	33 59.82		81.7	13	2 SWB subcores,2gas samples,1bag
16	VC028	262	22:34	33 59.80	151 17.08	81.2	281	whole core AGSO
16	VC029	262	22:54		151 17.08		0	No recovery
16	VC030	262	23:05		151 17.06		142	logged SWB,fine/medium quartz sand
16	VC031	262	23:32		151 17.07	81	0	No recovery gates failed to close
16	VC032	262	23:51	33 59.80	151 17.10	81.3	155	logged SWB,fine/medium quartz
29	GS015	263	1:36	33 52.19	151 18.56		13	SWB microbiology, LHC,HHC, 2 archive bags
30	GS016	263	2:05	33 52.26		65.4	12	silty sand, 3 archive bags,LHC,HHC
31	GS017	263	3:18	33 52.21	151 22.92	85	13	2bags mud for sampling
15	GS018	263	4:09	33 48.66		67.5	9	silty sand,SWB microbiology, 2 bags,LHC,HHC
15	VC033_	263	4:28	33 48.65	151 21.07		00	No recovery core catcher washed out
15	VC034	263	4:41	33 48.66	151 21.08		63	logged SWB fine calcareous sand
15	VC035	263	4:58	33 48.66	151 21.07		14	logged SWB fine calcareous sand
15	VC036	263	5:26	33 48.66	151 21.10		0	No recovery, frame bent
14	GS019	263	6:28	33 48.65	151 25.09	110	9	2 archive bags, 1 SWB microbiology
14	BC034	263	6:46	33 48.65	151 25.08	110	35	1 SWB subcore, AGSO archive core, 1 archive bag
14	BC035	263	7:14	33 48.67	151 25.09	110	0	2 seaweed fronds, jaws open, box washed, reef sample
14	BC036	263	7:38	33 48.64	151 25.13	111	28	4 SWB geochem subcores, archive bag sample

Table 2.1 Seafloor sampling sites WB/AGSO program

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
	·					(m)	(cm)	
14	BC037	263	8:39	33 48.65	151 25.08	109	0	No recovery
14	BC038	263	9:00	33 48.66	151 25.08	109	25	3 SWB subcores, 1 archive bag sample
14	BC039	263	9:57	33 48.67	151 25.09	110	0	No recovery
14	VC037	263	10:26	33 48.66	151 25.08	110	58	logged SWB,mud drape,fine muddy calcareous sand
14	VC038	263	10:46	33 48.64	151 25.08	110	162	logged SWB,mud drape,fine muddy quartz sand
								Rough weather recovery, Argos transmitter decapitated
13	GS020	263	12:31	33 48.66		127	3/4 grab	SWB microbiological 1sub-tube, 2 archive bags LHC,HHC,
13	VC039	263	12:47	33 48.65		125	108	logged SWB,fine carbonate/ quartz sand
13	VC040	263	13:06	33 48.66	151 28.47	124	136	incomplete - vibrator stopped during penetration
								logged SWB fine/coarse calcareous sand
12	GS021	263	14:00	33 48.68	151 31 85	129	10	LHC, 2 archive bags
12	VC041	263	14:18	33 48.66		128	0	vibration stopped on seafloor no recovery
12	BC040	263	14:38	33 48.65		128	00	bridle and box tangled on recovery
12	BC041	263	15:02	33 48.66		128	8	SWB subcores,LHC,HHC,archive subcore,1 bag
12	BC042	263	15:30	33 48.66		130	10	1 archive bag, 1 SWB subcore, LHC,HHC
11	GS022	263	16:26	33 48.65		140	25	SWB microbiological, SWB sedimentology, 1 archive bag
11	BC043	263	16:44	33 48.65		140	5	1SWB microbiological, 1SWB sedimentological LHC,HHC, 1 bag archive
11	BC044	263	17:11		151 35.25	141	8	1SWB microbiological, 1SWB sedimentological LHC,HHC, 1 bag archive
10	GS023	263	18:12		151 38.59	148	<8	fine sand and silty mud, LHC,HHC,1 archive bag
10	BC045	263	18:22	33 48.66		149	0	No recovery
10	BC046	263	19:00	33 48.66		147	0	No recovery
10	BC047	263	19:22	33 48.65		148	25	SWB subcores contaminants and sedimentology, LHC, HHC, 1 archive bag
9	GS024	263	20:24		151 41.99	182	11	1SWB microbiology, LHC,HC,2 archive bags
9	BC048		20:53		151 42.00	182	0	No recovery
9	BC049		21:120		151 41.99	180	14	2 archive bags coarse sand and shell grit, 1 microbioloical SWB,LHC,HHC
9	BC050	263	21:51	33 48.65	151 41.99	180	10	1 SWB microbiological
8	GS025	264	0:22	33 37.42	151 47.09	146	15	2 SWB samples microbiology, 2 archive bags,LHC.HHC
7	GS026	264	1:16	33 37.41	151 43.81	140	12	sandy sediment, 1 SWBsample, 2 archive bags, LHC,HHC
6	GS027	264	2:01	33 37.45	151 40.49	135	22	1 SWB microbiology ,2 archive bags1 s/sample R.J.
5	GS028	264	2:55	33 37.45	151 37.20	129	13	silty sand, 1 SWB microbiology, 2 archive bags LHC,HHC
5	BC051	264	3:14	33 37.45	151 37.19	128	~5	sediment washed, 1 archive bag sample
5	BC052	264	3:37	33 37.46	151 37.20	128	15	2 sub cores SWB geochem, 1 small sub core AGSO, archive bag sample

Table 2.1 Seafloor sampling sites WB/AGSO program

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
]						(m)	(cm)	
4	GS029	264	4:48	33 37.45	151 33.88	118	30	1 SWB microbiological, 2 archive bags LHC,HHC.
4	BC053	264	5:00	33 37.45	151 33.89	118	full pen	3 SWB geochem sub-cores, 1 bag AGSO
4	BC054	264	5:44	33 37.44	151 33.87	118	full pen	3 SWB geochem, 1 archive bag AGSO
4	BC055	264	6:36	33 37.45	151 33.88	119	~5	1 bag SWB, 1 bag archive
4	BC 056	264	6:59	33 37.44	151 33.87	117	22	4 SWB sub cores, 1 archive bag
3	GS030	264	8:26	33 37.45	151 30.58	88.4	full grab	2 archive bags
3	BC057	264	8:57	33 37.45	151 30.59	87.9	30	4 sub cores AGSO, 1 SWB microbiology, 2 archive bags AGSO
3	BC058	264	9:43	33 37.46	151 30.59	87.8	23	3 sub cores SWB, 1 bag AGSO
32_	GS031	264	12:06	33 37.50	151 33.88	119	full grab	2 samples SWB, 2 bags AGSO
32	GC001	264	12:33	33 37.51	151 33.92	118	~120	1 core AGSO
32	GC002	264	13:19	33 37.50	151 33.97	120	~120	1 core AGSO
10	VC042	264	15:39	33 48.65	151 38.60	148	69	logged SWB,mud drape,medium calcareous sand
10	VC043	264	15:56	33 48.66	151 38.60	149	37	logged SWB,mud drape fine calcareous sand
10	VC044	264	16:10	33 48.66	151 38.60	148	131	AGSO core for geochemistry 0-31 missing
9	VC045	264	17:05	33 48.67	151 41.98	182	202	logged SWB,mud drape,medium /coarse calcareous sand
9	VC046	264	17:25	33 48.66	151 41.98	182	174	logged SWB,mud drape,fine/medium calcareous sand
8_	VC047	264	19:22	33 37.45	151 47.16	146	100	logged SWB,fine/medium calcareous sand
8	VC048	264	19:41	33 37.45	151 47.19	146	110	logged SWB,mud drape,fine/medium calcareous sand
7	VC049		20:38	33 37.45	151 43.80	140	34.5	logged SWB, fine calcareous sand/core catcher & tube deformed due to hard base
7	VC050		20:58	33 37.45	151 43.80	f ~~~ ~	45	logged SWB mud drape, fine calc. sand, core catcher & tube deformed due to hard base
6	VC051	L	21:51	33 37.43	151 40.48	134	26	logged SWB,mud drape,medium calcareous sand
6	VC052		22:11	33 37.42	151 40.48	134	127	logged SWB, mud drape, fine muddy calcareous sand
6	VC053		22:31	33 37.43	151 40.49	134	15	AGSO geochem 15 cms recovery
5	VC054		23:26	33 37.46	151 37.17	128	100	logged SWB,fine muddy quartz sand
55	VC055_		23:45	33 37.47	151 37.18	128	148	logged SWB,fine muddy sand
4	VC056	265	0:36	33 37.48	151 33.86	118	129	logged SWB,fine silty mud
4	VC057	265	0:53	33 37.46	151 33.89	118	212	logged SWB, muddy fine/medium quartz sand
32	BC059	265	2:10	33 37.53	151 33.83	118	18	2 archive bags/ AGSO core/2 SWB sedimentology
32	BC060	265	2:38	33 37.51	151 33.81	118	16	2 archive bags/2 SWB sedimentary samples
32	VC058	265	3:05	33 37.52	151 33.80	i i	245	AGSO all the core for geochemistry samples
.33	GS032	265	4:03	33 37.53	151 31.72			LHC,HHC, 2 archive bags
33	BC061	265	4:22	33 37.51	151 31.69	87.8	18	2 archive bags, LHC, HHC, 1 AGSO archive core, 2 sedimentary SWB

Table 2.1 Seafloor sampling sites WB/AGSO program

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
33	BC062	265	4:50	33 37.51	151 31.71	97.8	15	2 archive bags LHC,HHC
3	VC059	265	5:37	33 37.46	151 30.57	89.3	126	logged SWB, fine muddy quartz sand
3	VC060	265	5:54	33 37.46	151 30.59	89.5	78	logged SWB, fine fluidised mud, fine calcareous sand
2	GS033	265	6:54	33 37.45	151 26.29	58.8	10	2 archive bags AGSO/1 microbiology SWB.LHC,HHC.
2	VC061	265	7:08	33 37.47	151 26.28		220	logged SWB,mud drape, medium quartz sand
2	VC062	265	7:20	33 37.47	151 26.28		08	logged SWB,mud drape, fine/medium quartz sand
1	GS034	265	8:15	33 37.47	151 22.60	L 4	12	1 archive bag AGSO, 1 microbiology SWB
1	VC063	265	8:24	33 37.47	151 22.60	46.7	198	logged SWB,mud drape, medium quartz sand bent core barrel
1	VC064	265	8:50	33 37.45	151 22.62	46	202	logged SWB,mud drape, medium quartz sand bent core barrel
31	GS035	265	11:18	33 52.22	151 22.90		10	1 archive bag AGSO. LHC,HHC
31	BC063	265	11:38	33 52.21	151 22.89		40	4 sub cores SWB, 1 archive bag AGSO
31	BC064	265	12:25	33 52.18	151 22.90		40	4 sub cores SWB / 1 archive bag AGSO
31	BC065	265	13:18	33 52.19	151 22.93	· · · · · · · · · · · · · · · · · · ·	45	2 sub cores SWB/1 sub core 1 archive bag AGSO
34	GS036	265	14:51	33 52.21	151 23.00	94	112	2 archive bags AGSO
34	BC066	265	15:13	33 52.21	151 23.00		38	1 archive bag, LHC, HHC, 1 archive sub core AGSO
34	BC067	265	15:46	33 52.22	151 23.00	94	40	1 archive bag, LHC, HHC, 1 archive sub core AGSO
34	VC065	265	16:18	33 52.21	151 23.0	94.1	190	core subsampled for geochem AGSO ,LHC,HHC.
35	GS037	265	17:05	33 52.22	151 21.5	75.3	1/2 grab_	muddy sand,LHC,HHC,1bag
35	BC068	265	17:22	33 52.21	151 21.5	75	35	geochem LHC,HHC and bag of sediment AGSO
35	BC069	265	17:43	33 52.21	151 21.5	74	36	geochem LHC,HHC and bag of sediment AGSO
35	VC066	265	18:02	33 52.19	151 21.49	73.8	92	barrel bent on recovery, wire angle acute
36	GS038	265	19:30	33 58.90	151 17.43	80.1	13	near Malabar outfall, 1 archive bag, LHC,HHC
36	BC070	265	19:47	33 58.89	151 17.44	79.7	40	2 archive bags, LHC, HHC(4tins)
_36	BC071	265	20:32	34 00.20	151 17.08	84	40	2 archive bags, 2LHC,2HHC,1 subcore
38	BC072		21:08		151 17.069		44	1 subcore, 2 archive bags, 2LHC,2HHC
39	BC073		21:47	33 59.20	151 17.97	83.3	42	2 archive bags, 2LHC,2HHC
37	VC067		22:18	33 59.23	151 17.96	- 4	26	core for hydrocarbon geochemistry (1 sample only)
14	VC068	267	0:19	33 48.67	151 25.09	110	0	No recovery
14	VC069	267	0:37	33 48.63	151 25.08	110	150	all core at AGSO
36	BC074	267	4:17	33 58.91	151 17.98	1	40	4 sub cores SWB, 2 archive bags AGSO
36	BC075	267	5:08	33 58.91	151 17.98		40	4 sub cores SWB, 1 archive bag AGSO
36	BC076	267	5:51	33 58.92	151 17.97	83.1	38	2 sub cores SWB, 1 sub core and 2 archive bags AGSO

Table 2.1 Seafloor sampling sites WB/AGSO program

,	
4	4

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
16	BC077	267	7:06	33 59.84	151 17.00	81.6	44	2 sub cores SWB, 2 archive bags AGSO
9	HC001	267	10:58	33 51.80	151 18.17	61	yes	water sample at 20 m and 30 m

			1	able 2.2 G	rab samp	ling si	tes SWB/AG	SO program
Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
28	GS001	260	16:33	34 11.00	151 05.19	41.7	10	mud and sampled for LHC,HHC
27	GS002	261	1:13	34 11.00	151 09.88	95	3/4 grab	mud - sampled for LHC, 1 SWB microbiology
26	GS003	261	8:32	34 11.06	151 13.29	123	0	No recovery
26	GS004	261	8:39	34 11.05	151 13.25	123	0	No recovery
25	G\$005	261	12:42		151 16.66		0	No recovery
25	GS006	261	12:49	34 11.08	151 16.67	136	< 10	2 SWB geochem, 1 archive bag 1lhc,1chem
24	G\$007	261	16:23		151 20.07	143	0	No recovery
24_	G\$008	261	16:33		151 20.06		<10 gm	small amount of sand
24	GS009	261	16:44		151 20.10	143	<10	LHC,HHC, 1 archive bag, 1 SWB microbiology
23	GS010	261	18:55		151 23.49	150	15	sample for LHC, HHC, 2 archive bags, 1 SWB microbiology
22	GS011	261	23:40		151 26.88	237	0	No recovery
21	GS012	262	3:46	33 59.87	151 33.85	L	0	No recovery
20	GS013	262	6:51	33 59.85	151 32.00		0	No recovery
16	GS014	262	17:59		151 17.08		10	SWB microbiology,
29	G\$015	263	1:36		151 18.56		13	SWB microbiology, LHC,HHC, 2 archive bags
30	G\$016	263	2:05			65.4	12	silty sand, 3 archive bags,LHC,HHC
31	GS017	263	3:18		151 22.9 2		13	2bags mud for sampling
15	GS018	263	4:09		151 21.08		9	silty sand,SWB microbiology, 2 bags,LHC,HHC
14	GS019	263	6:28		151 25.09			2 archive bags, 1 SWB microbiology
13	GS020	263	12:31	33 48.66		127	3/4 grab	SWB microbiological 1sub-tube, 2 archive bags LHC,HHC,
12	GS021	263	14:00		151 31 85		10	LHC, 2 archive bags
11	GS022	263	16:26		151 35.25		25	SWB microbiological, SWB sedimentology, 1 archive bag
10	GS023	263	18:12	33 48.64		148	<8	fine sand and silty mud, LHC,HHC,1 archive bag
9	GS024	263	20:24		151 41.99		11	1SWB microbiology, LHC,HC,2 archive bags
8	GS025	264	0:22		151 47.09	146	15	2 SWB samples microbiology , 2 archive bags,LHC.HHC
7	G\$026	264	1:16		151 43.81	140	12	sandy sediment, 1 SWBsample, 2 archive bags, LHC,HHC
6	GS027	264	2:01		151 40.49	135	22	1 SWB microbiology ,2 archive bags1 s/sample R.J.
5	G\$028	264	2:55		151 37.20		13	silty sand, 1 SWB microbiology, 2 archive bags LHC,HHC
4	GS029	264	4:48		151 33.88		30	1 SWB microbiological, 2 archive bags LHC,HHC.
3	GS030	264	8:26		151 30.58		full grab	2 archive bags
32	GS031	264	12:06	33 37.50	151 33.88	119	full grab	2 samples SWB, 2 bags AGSO

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
33	G\$032	265	4:03	33 37.53	151 31.72	87.9	3/4 grab	LHC,HHC, 2 archive bags
2	G\$033	265	6:54	33 37.45	151 26.29	58.8	10	2 archive bags AGSO/1 microbiology SWB.LHC,HHC.
1	GS034	265	8:15	33 37.47	151 22.60	46.3	12	1 archive bag AGSO, 1 microbiology SWB
31	GS035	265	11:18	33 52.22	151 22.90	92.6	10	1 archive bag AGSO. LHC,HHC
34	GS036	265	14:51	33 52.21	151 23.00	94	112	2 archive bags AGSO
35	G\$037	265	17:05	33 52.22	151 21.5	75.3	1/2 grab	muddy sand,LHC,HHC,1bag
36	GS038	265	19:30	33 58.90	151 17.43	80.1	13	near Malabar outfall, 1 archive bag, LHC,HHC

			Tat	ole 2.3 Vibi	rocore san	npling	sites SWB//	AGSO program
Site	Sample	J'day		Lat.	Long.	WD		Comment
						(m)	(cm)	
28	VC001	260	20:47	34 11.00	151 05.15	40.1	65	logged SWB,mud,fine muddy quartz sand
28	VC002	260	22:07	34 10.99	151 05.16	40.6	250 est	bent barrel and core broken - coretop lost - not logged whole sample AGSO
28	VC003	260	22:44	34 11.00	151 05.19	39.2	56	logged SWB,well sorted medium quartz sand
28	VC004	260	23:20	34 10.96	151 05.24	41.1	21	Whole core AGSO
28	VC005	260	23:58	34 11.04	151 05.15	40.2	175	logged SWB,mud drape,fine/medium muddy quartz sand
25	VC006	261	13:48	34 11.02	151 16.68		0	No recovery
25	VC007	261	14:27	34 11.02	151 16.66	136	196	Logged SWB medium/coarse shell hash
25	VC008	261	14:52	34 11.04	151 16.65	135	40	Logged SWB mud drape, medium calcareous sand
25	VC009	261	15:08	34 11.05	151 16.67	135	0	No recovery
24	VC010	261	17:20	34 11.05	151 20.09	142	20	Logged SWB,mud drape,med/coarse calcareous sand
24	VC011	261	17:50	34 11.03	151 20.09	141	168	Logged SWB,fine/med calcareous sand
23	VC012	261	20:08		151 23.46		122	logged SWB,mud drape,medium/coarse calcareous sand
23	VC013		20:46		151 23.48	151	<10 gms	sandy sediment 1bag no core
23	VC014		21:29		151 23.47	150	32	logged SWB,mud drape,medium/coarse calcareous sand
23	VC015	261	22:17	34 11.04	151 23.48	150	140	logged SWB,mud drape,medium calcareous sand
22	VC016	262	0:32	34 11.04	151 26.88		58	logged SWB,fine calcareous sand
22	VC017	262	1:24	34 11.04		238	180	logged SWB, fine silty calcareous sand
21	VC018	262	5:13	33 59.83	151 33.85		26	logged SWB,mud drape,fine/medium calcareous sand
21	VC019	262	5:44	33 59.86			280	logged SWB,fine quartz/carbonate sand
20	VC020	262	7:44	33 59.84	151 31.98	160	0	No recovery
20	VC021	262	8:05	33 59.85	151 31 98	160	261	logged SWB,mud drape,fine/medium calcareous sand
20	VC022	262	8:24		151 31.99	160	140	logged SWB,fine quartz/carbonate sand
19	VC023	262	10:38		151 29.28	148	42	logged SWB,mud drape,medium calcareous sand
19	VC024	262	11:09		151 29.29		145	logged SWB,mud drape,fine calcareous sand
17	VC025	262	15:57	33 59.87	151 21.03	103	268	logged SWB,mud drape,medium quartz sand
17	VC026	262	16:27	33 59.87	151 20.99		176	AGSO have all the core, bent barrel
17	VC027	262	16:48	33 59.86	151 20.99	102	118	logged SWB,mud drape,fine/medium quartz sand
16	VC028	262	22:34	33 59.80	151 17.08	81.2	281	whole core AGSO
16	VC029	262	22:54	33 59.83	151 17.08	81.2	0	No recovery
16	VC030		23:05		151 17.06	80.8	142	logged SWB,fine/medium quartz sand
16	VC031	262	23:32	33 59.82	151 17.07	81	0	No recovery gates failed to close

Table 2.3 Vibrocore sampling sites SWB/AGSO program

	1 1 2 2 2 2			22.72.77				
16	VC032	262	23:51	33 59.80	151 17.10		155	logged SWB,fine/medium quartz
15	VC033	263	4:28	33 48.65	151 21.07		00	No recovery core catcher washed out
15	VC034	263	4:41		151 21.08		63	logged SWB fine calcareous sand
15	VC035	263	4:58		151 21.07		14	logged SWB fine calcareous sand
15	VC036	263	5:26		151 21.10		0	No recovery, frame bent
14	VC037	263	10:26	33 48.66			58	logged SWB,mud drape,fine muddy calcareous sand
14	VC038	263	10:46	33 48.64	151 25.08	110	162	logged SWB,mud drape,fine muddy quartz sand
L								Rough weather recovery, Argos transmitter decapitated
13	VC039	263	12:47	33 48.65	151 28.46	125	108	logged SWB,fine carbonate/ quartz sand
13	VC040	263	13:06	33 48.66	151 28.47	124	136	incomplete - vibrator stopped during penetration
					,			logged SWB fine/coarse calcareous sand
12	VC041	263	14:18	33 48.66	151 31.85	128	0	vibration stopped on seafloor no recovery
10	VC042	264	15:39	33 48.65	151 38.60	148	69	logged SWB,mud drape,medium calcareous sand
10	VC043	264	15:56	33 48.66	151 38.60	149	37	logged SWB, mud drape fine calcareous sand
10	VC044	264	16:10	33 48.66	151 38.60	148	131	AGSO core for geochemistry 0-31 missing
9	VC045	264	17:05	33 48.67	151 41.98	182	202	logged SWB,mud drape,medium /coarse calcareous sand
9	VC046	264	17:25	33 48.66	151 41.98	182	174	logged SWB,mud drape,fine/medium calcareous sand
8	VC047	264	19:22	33 37.45	151 47.16	146	100	logged SWB,fine/medium calcareous sand
8	VC048	264	19:41	33 37.45	151 47.19	146	110	logged SWB,mud drape,fine/medium calcareous sand
7	VC049	264	20:38	33 3 7.45	151 43.80	140	34.5	logged SWB, fine calcareous sand/core catcher & tube deformed due to hard base
7	VC050	264	20:58	33 37.45	151 43.80	140	45	logged SWB mud drape, fine calc. sand, core catcher & tube deformed due to hard base
6	VC051	264	21:51	33 37.43	151 40.48	134	26	logged SWB,mud drape,medium calcareous sand
6	VC052	264	22:11	33 37.42	151 40.48	134	127	logged SWB,mud drape,fine muddy calcareous sand
6	VC053	264	22:31	33 37.43	151 40.49	134	15	AGSO geochem 15 cms recovery
5	VC054	264	23:26	33 37.46	151 37.17	128	100	logged SWB, fine muddy quartz sand
5	VC055	264	23:45	33 37.47	151 37.18	128	148	logged SWB,fine muddy sand
4	VC056	265	0:36	33 37.48	151 33.86	118	129	logged SWB,fine silty mud
4	VC057	265	0:53	33 37.46	151 33.89	118	212	logged SWB, muddy fine/medium quartz sand
32	VC058	265	3:05	33 37.52	151 33.80	118	245	AGSO all the core for geochemistry samples
3	VC059	265	5:37	33 37.46	151 30.57	89.3	126	logged SWB, fine muddy quartz sand
3	VC060	265	5:54	33 37.46	151 30.59	89.5	78	logged SWB, fine fluidised mud, fine calcareous sand
2	VC061	265	7:08	33 37.47	151 26.28	47.4	220	logged SWB,mud drape, medium quartz sand
2	VC062	265	7:20	33 37.47			80	logged SWB,mud drape, fine/medium quartz sand
1	VC063	265	8:24	33 37.47	151 22.60	46.7	198	logged SWB,mud drape, medium quartz sand bent core barrel
····	·····			•				

Table 2.3 Vibrocore sampling sites SWB/AGSO program

1	VC064	265	8:50	33 37.45	151 22.62	46	202	logged SWB,mud drape, medium quartz sand bent core barrel
34	VC065	265	16:18	33 52.21	151 23.0	94.1	190	core subsampled for geochem AGSO ,LHC,HHC.
35	VC066	265	18:02	33 52.19	151 21.49	73.8	92	barrel bent on recovery, wire angle acute
37	VC067	265	22:18	33 59.23	151 17.96	84.2	26	core for hydrocarbon geochemistry (1 sample only)
14	VC068	267	0:19	33 48.67	151 25.09	110	0	No recovery
14	VC069	267	0:37	33 48.63	151 25.08	110	150	all core at AGSO

			Ta	ble 2.4 Bo	xcore sam	pling	sites SWB/A	GSO program
Site	Sample	J'day		Lat.	Long.	WD	Recovery	
						(m)	(cm)	
28	BC001	260	18:37	34 11.01	151 05.18	40.3	<5	No sample
28	BC002	260	19:02	34 11.01	151 05.21	39.2	< 8	1 subcore for geochem - SWB was it archived?
28	BC003	260	19:36	34 11.00	151 05.19	40.3	0	Shell in jaws no sample
28	BC004	260	19:53	34 11.00	151 05.16	39.1	0	no sample
27	BC005	261	1:50	34 11.03	151 09.87	101	< 1	1small bag
27_	BC006	261	3:27	34 10.98		99.3	est 15	2 subcores SWB geochem, 3 archive bags
27	BC007	261	4:15	34 10.96	151 09.90	100	est 20	3 SWB subcores, 3 archive bags, 1 SWB subcore for interfacial contaminants
27	BC008	261	5:14	34 10.99	151 09.87	98.2	No sample	May have triggered in water
27	BC009	261	5:32	34 11.00	151 09.86	99.1	est 20	sample washed, 2 archive bags AGSO
27	BC010	261	6:09	34 10.96	151 09.89	99	est 20	4 subcores - 3 SWB geochem, 1 interfacial contaminants and sedimentology
								3 archive bags
27	BC011	261	6:57	34 11.00	151 09.89	99.8	0	No sample wire broke on B/C
27_	BC012	261	7:19	34 11.01	151 09.89	99.1	est 20	4 subcores - 3 SWB geochem, 1 sedimentology, 3 archive bags
26	BC013	261	9:07	34 11.05	151 13.28	123	0	suspect hard bottom
26	BC014	261	9:32	34 11.04	151 13.27	123	0	No recovery
26	BC015	261		34 11.07	151 13.28	123	est 25	3 sub cores - 1SWB, 2 AGSO, 2 archive bags
26	BC016			34 11.05	151 13.30	124	0	No recovery
25	BC017	261	13:10	34 11.05	151 16.67	135	0	No recovery
23	BC018	261	19:37	34 11.06	151 23.46	150	<50gm sand	1Bag archive
22	BC019	262	0:06	34 11.03	151 26.87	237	0	No recovery
21	BC020	262	4:09	33 59.85	151 33.85	205	<5	One small archive bag
21	BC021	262	4:38	33 59.85	151 33.85	205	<5	One small archive bag, , SWB microbiology
20	BC022	262	7:12	33 59.87	151 31.98	159	< 5	1 archive bag, 1 SWB microbiology
19	BC023	262	9:40	33 58.48	151 29.27	158	0	No recovery
19	BC024	262	10:07	33 58.49	151 29.28	148	0	No recovery
18	BC025	262	12:49	34 00.96	151 24.37	133	0	Seaweed, sponge bottom growth
18	BC026	262	13:17	34 00.94	151 24.38	133	<10	1 SWB microbiology 1bag mud ,fern,rock fragments,shells
17	BC027	262	14:41	33 59.85	151 20.96	103	>10	1 chem,1lhc,1bag mud
17	BC028	262	15:21	33 59.88	151 20.97	103	15	1 SWB microbioology,1sub-core,
16	BC029	262	18:43	33 59.79	151 17.13	81.8	15	2 SWB subcores geochem, 2bags 2gas samples
16	BC030	262	19:35	33 59.83	151 17.08	80.8	15	3 SWB subcores geochem,2bags,2gas samples, 1sub-core

Table 2.4 Boxcore sampling sites SWB/AGSO program

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
16	BC031	262	20:17	33 59.81	151 17.07	80.4	15	1 SWB subcore1chem,1lhc,2bags mud,1sub-core
16	BC032	262	21:03	33 59.82	151 17.06	81	15	2 SWB subcores2bags,2gas samples,1sub-core
16	BC033	262	21:47	33 59.82	151 17.07	81.7	13	2 SWB subcores,2gas samples,1bag
14	BC034	263	6:46	33 48.65	151 25.08	110	35	1 SWB subcore, AGSO archive core, 1 archive bag
14	BC035	263	7:14	33 48.67	151 25.09	110	0	2 seaweed fronds, jaws open, box washed, reef sample
14	BC036	263	7:38	33 48.64	151 25.13	111	28	4 SWB geochem subcores, archive bag sample
14	BC037	263	8:39	33 48.65	151 25.08	109	0	No recovery
14	BC038	263	9:00	33 48.66	151 25.08	109	25	3 SWB subcores, 1 archive bag sample
14	BC039	263	9:57	33 48.67	151 25.09	110	0	No recovery
12	BC040	263	14:38	33 48.65	151 31.83	128	0	bridle and box tangled on recovery
12	BC041	263	15:02	33 48.66	151 31.86	128	8	SWB subcores,LHC,HHC,archive subcore,1 bag
12	BC042	263	15:30	33 48.66	151 31.81	130	10	1 archive bag, 1 SWB subcore, LHC,HHC
11	BC043	263	16:44	33 48.65	151 35.26	140	5	1SWB microbiological, 1SWB sedimentological LHC,HHC, 1 bag archive
11	BC044	263	17:11	33 48.65		141	88	1SWB microbiological, 1SWB sedimentological LHC,HHC, 1 bag archive
10	BC045	263	18:22	33 48.66	151 38.60	149	00	No recovery
10	BC046	263	19:00	33 48.66	151 38.61	147	0	No recovery
10	BC047	263	19:22	33 48.65		148	25	SWB subcores contaminants and sedimentology, LHC, HHC, 1 archive bag
9	BC048	263	20:53			182	0	No recovery
9	BC049			33 48.65	151 41.99	180	14	2 archive bags coarse sand and shell grit, 1 microbioloical SWB, LHC, HHC
9	BC050	263	21:51	33 48.65	151 41.99	180	10	1 SWB microbiological
5	BC051	264	3:14	33 37.45		128	~5	sediment washed, 1 archive bag sample
5	BC052	264	3:37	33 37.46		128	15	2 sub cores SWB geochem, 1 small sub core AGSO, archive bag sample
4	BC053	264	5:00	33 37.45		118	full pen	3 SWB geochem sub-cores, 1 bag AGSO
4	BC054	264	5:44	33 37.44		118	full pen	3 SWB geochem, 1 archive bag AGSO
4	BC055	264	6:36	33 37.45	151 33.88	119	~5	1 bag SWB, 1 bag archive
4	BC056	264	6:59	33 37.44	151 33.87	117	_22	4 SWB sub cores, 1 archive bag
3	BC057	264	8:57	33 37.45	151 30.59	87.9	_30	4 sub cores AGSO, 1 SWB microbiology, 2 archive bags AGSO
3	BC058	264	9:43	33 37.46	151 30.59	87.8	23	3 sub cores SWB, 1 bag AGSO
32	BC059	265	2:10	33 37.53	151 33.83	118	18	2 archive bags/ AGSO core/2 SWB sedimentology
32	BC060	265	2:38	33 37.51		118	16	2 archive bags/2 SWB sedimentary samples
33	BC061	265	4:22	33 37.51			18	2 archive bags, LHC, HHC, 1 AGSO archive core, 2 sedimentary SWB
33	BC062	265	4:50	33 37.51	151 31.71	97.8	15	2 archive bags LHC,HHC

Table 2.4 Boxcore sampling sites SWB/AGSO program

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
31	BC063	265	11:38	33 52.21	151 22.89	90.8	40	4 sub cores SWB, 1 archive bag AGSO
31	BC064	265	12:25	33 52.18	151 22.90	90.9	40	4 sub cores SWB / 1 archive bag AGSO
31	BC065	265	13:18	33 52.19	151 22.93	92.2	45	2 sub cores SWB/1 sub core 1 archive bag AGSO
34	BC066	265	15:13	33 52.21	151 23.00	93.6	38	1 archive bag, LHC, HHC, 1 archive sub core AGSO
34	BC067	265	15:46	33 52.22	151 23.00	94	40	1 archive bag, LHC, HHC, 1 archive sub core AGSO
35	BC068	265	17:22	33 52.21	151 21.5	75	35	geochem LHC,HHC and bag of sediment AGSO
35	BC069	265	17:43	33 52.21	151 21.5	74	36	geochem LHC,HHC and bag of sediment AGSO
36	BC070	265	19:47	33 58.89	151 17.44	79.7	40	2 archive bags, LHC, HHC(4tins)
36	BC071	265	20:32	34 00.20	151 17.08	84	40	2 archive bags, 2LHC,2HHC,1 subcore
38	BC072	265	21:08	33 59.91	151 17.069	82.4	44	1 subcore, 2 archive bags, 2LHC,2HHC
39	BC073	265	21:47	33 59.20	151 17.97	83.3	42	2 archive bags, 2LHC,2HHC
36	BC074	267	4:17	33 58.91	151 17.98	84.1	40	4 sub cores SWB, 2 archive bags AGSO
36	BC075	267	5:08	33 58.91	151 17.98	83.9	40	4 sub cores SWB, 1 archive bag AGSO
36	BC076	267	5:51	33 58.92	151 17.97	83.1	38	2 sub cores SWB, 1 sub core and 2 archive bags AGSO
16	BC077	267	7:06	33 59.84	151 17.00	81.6	44	2 sub cores SWB, 2 archive bags AGSO

Site	Sample	J'day	GMT	Lat.	Long.	WD	Recovery	Comment
						(m)	(cm)	
32	GC001	264	12:33	33 37.51	151 33.92	118	~120	1 core AGSO
32	GC002	264	13:19	33 37.50	151 33.97	120	~120	1 core AGSO

	Table 2.6 Hydrocast sampling sites SWB/AGSO program										
Site	Sample	J'day	GMT	Lat.	Lat. Long.		Recovery	Comment			
						(m)	(cm)				
9	HC001	267	10:58	33 51.80	151 18.17	61	yes	water sample at 20 m and 30 m			

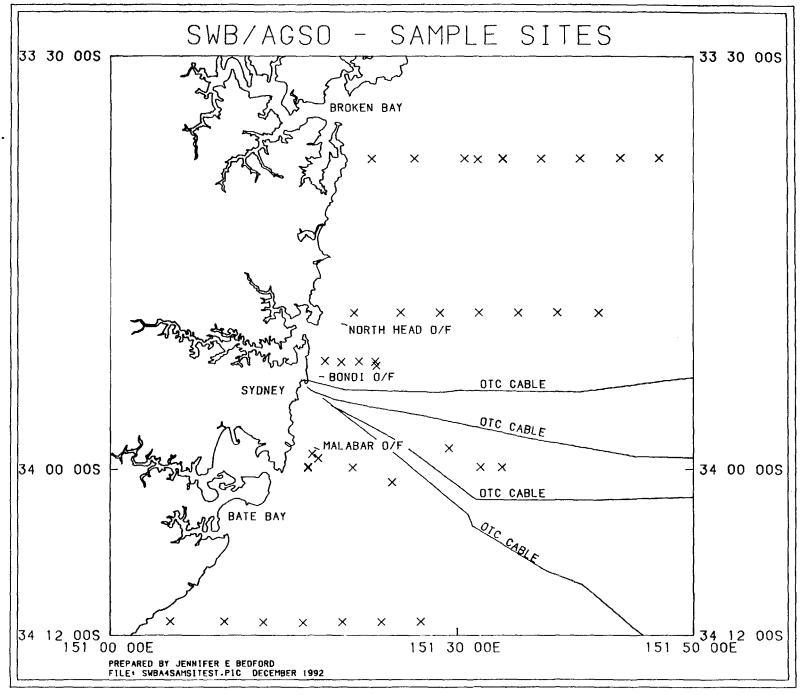


Figure 2.1 Map of all seafloor sampling sites AGSO/WB project.

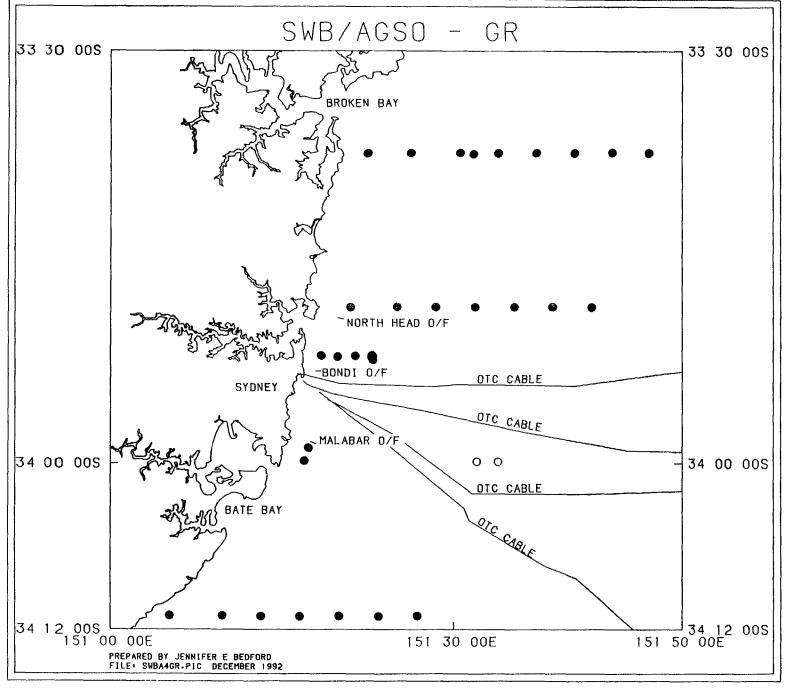


Figure 2.2 Map of all grab sample locations AGSO/WB project.

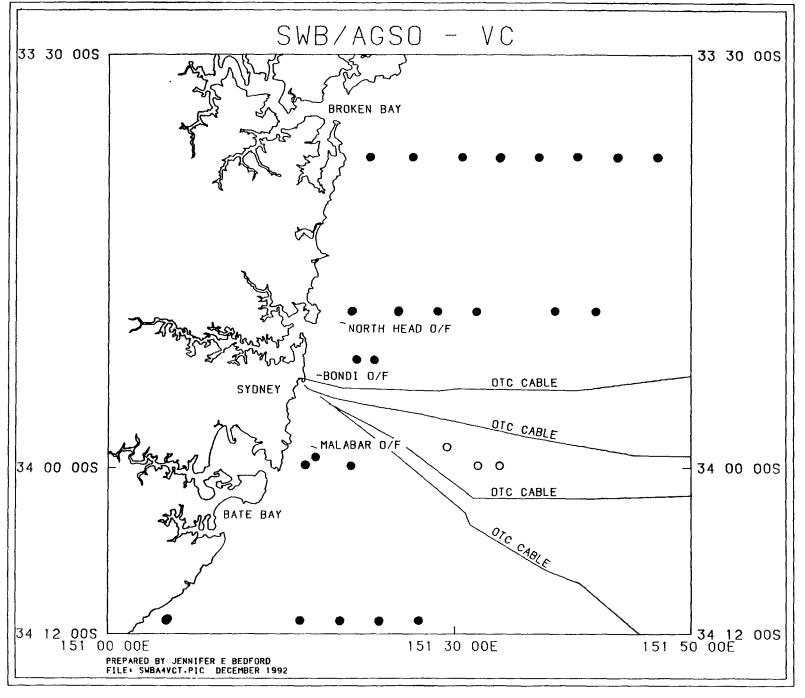


Figure 2.3. Man of all vibrocore locations AGSO/WB project.

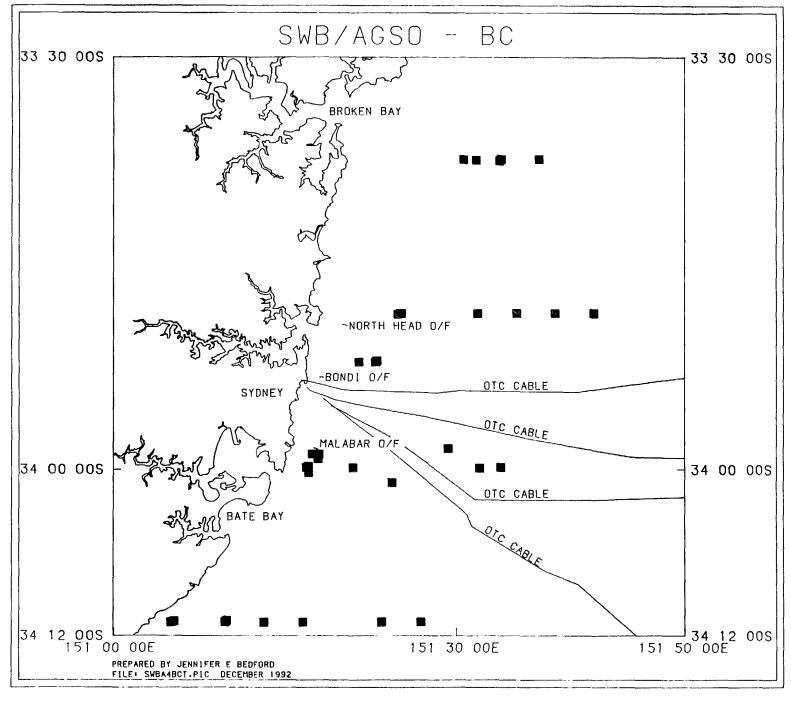


Figure 2.4. Map of all box core locations AGSO/WB project.

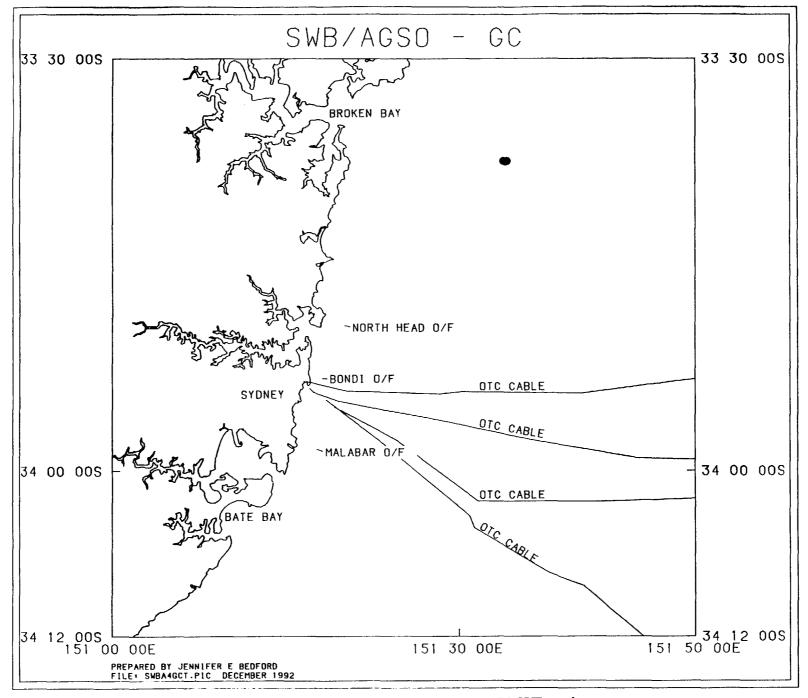


Figure 2.5 Map of gravity core locations AGSO/WB project

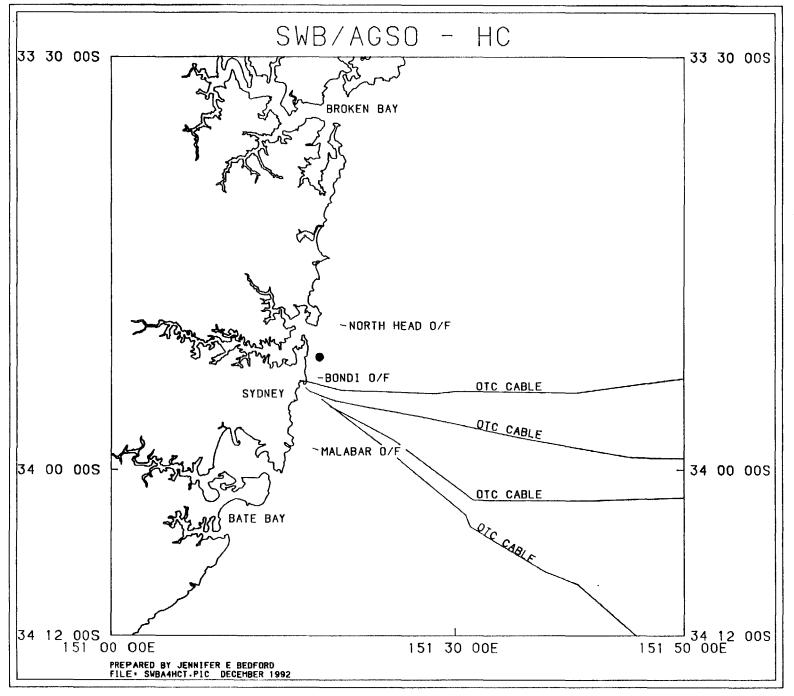


Figure 2.6 Map of the hydrocast location AGSO/WB project.

3. Sedimentology and Contaminant Sampling.

The Water Board (WB) has been undertaking investigations along the local N.S.W. inner and middle shelves in order to determine both the spatial distribution and source of terrestrially derived contaminants to the marine environment. This work concerning sedimentary loadings of contaminants in the coastal zone stems from the recognition that sediments are both a long term sink (Hites and Lopez-Avila, 1980; Ginn 1989) and source (Burgess and Scott, 1992; Baudo and Muntau, 1990) for many organic and inorganic contaminants. The effect of many of these contaminants on both humans and other organisms is well documented (Merian, 1991; Howard, 1991) so assessment of their concentrations and distributions in the environment are both pertinent and essential.

With the commissioning of the Sydney deepwater sewage outfalls between 1990 and 1991 it was desirable to place the results of intense WB nearshore outfall-focussed studies within a greater regional context and to look at possible effects on the outer-shelf and further seawards. The WB undertook, together with AGSO, to sample the sediments along specified transects which would extend across the entire continental shelf. For the joint AGSO/WB sediment contaminant program 62 sediment samples (Table 3.1) from 30 sites along four transects (Figure 3.1) were collected for contaminant and grain-size analysis.

Objectives

The primary objective of this study was to document the concentrations and spatial distribution of selected organic and inorganic trace pollutants on the continental shelf adjacent Sydney. The distribution of these contaminants will relate to possible source, dispersion pathways, and fate of these pollutants. Grain-size and organic carbon analyses will enable any relationships between pollutants and physical parameters to be identified.

Sampling Methods

Three types of sediment samplers were deployed during the cruise. These were a vibro corer, box corer and Van Veen grab.

Van Veen Grab

The Van Veen Grab was used for preliminary determination of substrate character at sampling sites prior to box coring or vibro coring. Sediments were retained in the sampler in approximately 75% of deployments, however the suitability of some samples for subsequent analysis of contaminants was limited. For example, if the jaws of the grab did not close completely, water flushed through the sample with an apparent loss of the finer grain-size fractions. Recoveries were lowest during rough sea conditions with the grab triggering early either because of swell conditions or strong tides and currents which caused the grab to hit the bottom at an extreme angle.

Vibro corer

The vibro corer was used as the primary sampling device in collection of sediments for contaminant analysis and analysis of surficial structure. Its use was based on previous analysis of sampling devices (Schneider and Wyllie, 1991) in generally coarse grained shelf sediments. Recovery rates with the vibro corer were approximately 85%. Recoveries varied from full penetration of 3m to minimal recoveries of 15 cm on very coarse material (Table 3.2), with an average core length of 1.2 metres.

Mud caps were a predominant feature of many cores (Appendix 1). These occurred as a result of transient re-suspension of fine-grained sediments within the core barrel during sampling. Significant mud caps (> 4-5 mm) occurred in cores which were:

- (i) collected during rough weather when onboard retrieval of the vibro core resulted in disturbance of the in-core sediments,
- (ii) collected at sites where penetration of the corer was restricted by hard substrate (ie reef or impenetrable facies), and
- (iii) collected at sites where sediment mud content was greater than 30%.

In cores with significant mud caps it is apparent that the percentage mud content of the top few centimetres will be elevated through the disturbance and selective redeposition of the finer particle component from the upper few centimetres of the core. Since only the top 5 cm was subsampled for chemical/geological analysis, should the mud drape be compositionally derived from deeper than 5cm it is likely

that contaminant concentrations higher, or lower than those in-situ on the shelf may result. Care must therefore be exercised when interpreting chemical results from those cores with significant mud caps.

Protocols for handling and subsampling vibro cores are schematically represented in Figure 3.2.

Box corer

The box corer was used for all nutrient geochemistry sampling and for geocontaminant sampling when the vibro corer was in-operable or where the substrate was fine, porous and predominantly muddy. Across a variety of sediment types, the box corer was not as efficient in sample recovery as the vibro corer. Use of the box corer was restricted to areas where sediments were predominantly muddy.

Use of the box corer was advantageous when large sample sizes were required. Multiple subcores were collected from a single box core and such cores were relatively undisturbed. The box corer was deployed successfully during rough weather. Subcores from box cores sampled for contaminants and sedimentology are summarised in Table 3.2

Protocols for handling and subcoring box cores are schematically represented in Figure 3.3.

Sedimentological Observations

Duplicate sediment samples were collected at 30 sites, (Figure 3.1; Table 3.1). Gross sediment characteristics and structure of the cores were described onboard. The gross sediment characteristics are detailed in Appendix 1.

Three broad lithofacies, generally corresponding to similar zones described by previous authors (Bembrick, 1973; Boyd, 1974; Davies, 1979; Marshall, 1979), were identified in the study area. These are inner-shelf sands, mid-shelf muddy sands, and outer-shelf calcareous sands. On at least three of the four transects, each of these three lithofacies could be identified from onboard descriptions of surficial sediment character (Appendix 1). On the transect adjacent Botany Bay the mud component of sediments from sites within the mid-shelf did not exceed 10% (on average) of the

overall sediment particle composition, hence the muddy sands were not delineated on this transect.

Inner-shelf Sands

Near-shore surficial sediments were characterised by well sorted fine to medium, generally quartzose sands with little or no mud component (Appendix 1). The biogenic carbonate component was pronounced at Sites 14 and 15, which was adjacent to a large reef system. Minor iron staining and a variable lithic (rock fragments plus feldspar) component of up to 10% were common. The carbonate fraction was generally angular and comprised mainly of mollusc remains. Some southern sites had abundant foraminiferal populations. The quartz component was well sorted, subround to subangular, generally non iron-stained, and fine to medium grained.

Vibro cores showed little structure except at Sites 15 and 2 where coarse material impeded core barrel penetration. In both cases large rounded river pebbles and coarse shell material were caught in the core catcher. As both these sites are off major estuaries it is possible that paleo-channels were intersected. The structureless profiles, and mature sediment character of the other cores are consistent with previous descriptions (Roy, 1985) of these deposits as reworked Holocene sands.

Mid-shelf Muddy Sands

At five sites from three transects and water depths of between 90 and 128m olive mid-shelf muddy sands were collected, as described in vibro core logs (Appendix 1). This lithofacies is characterised by at least 30% olive, terrigenous mud and by fine, quite angular non iron-stained quartz. Variable carbonate components of up to 40% consisting of shell fragments and worm tubes occurred. Foraminifera were only a minor component and at some sites were altogether absent. The lithic component, while generally high, was variable ranging from 5% to 75%. The mud content appeared organic rich, and it was quite noticeable that in sub-cores removed from box cores a fine 'flocculant' overlying the sediment was present.

At Site 6, the two duplicate vibro cores collected within 100m of each other showed differing, yet distinct features of both the mid-shelf and outer-shelf facies. This may indicate that the break between the muddy sands and the outer-shelf calcareous sands is either a well delineated boundary, or may represent small scale spatial variation.

Variations in the down-core compositions of the mid-shelf vibro cores indicate interesting processes during their Quaternary development. Cores from Sites 6, 13, and to a lesser extent 5 contain re-cemented shelly bands at 50 to 80 cm depth. The coarse biogenic carbonate is predominantly pectin shell, with bivalve and gastropods also occurring. The carbonate cementation post-dates the shell deposition and may have occurred during a Pleistocene lowstand as supersaturated ground water percolated through these shelly lenses resulting in re-cementation. At the base of some cores from Sites 3 and 4, large, well rounded river cobbles comprising sandstones, quartzites and basalts to a diameter of 50 mm occur. These are coated with milky white carbonate coatings indicating re-precipitation and are most likely to be Hawkesbury river palaeo-channels.

The muddy unit overlying these structures is a consistent, relatively homogenous unit with abundant scaphopods, worm tubes, foraminifera, and spicules. The terrigenous nature, and the fine flocculant material indicate that this facies is an actively accumulating unit, and thus a possible sink for anthropogenic contaminants.

Outer-shelf Calcareous Sands

The largest area sampled during the survey was the outer-shelf plain from a depth of 140m to the edge of the shelf. Here, sediments are characterised by coarse to medium, iron-stained biogenic carbonate. The quartz component is minor (less than 20%), generally fine to medium and either fine, non iron-stained and angular, or coarser, iron-stained and rounded. Mud content for most outer-shelf sites is generally low and consists of a white carbonate rich mud, with a notable absence (<5%) of modern terrigenous, olive muds. The lithic component is minor, up to 10%, but generally only a trace. Abundant and diverse populations of foraminifera are common, as are authigenic glauconite infilling of foraminifera tests.

Many of the longest cores were from this region and the structure of these cores show features typical of a relict, sediment-starved region. Commonly occurring characteristics of the cores collected on the outer-shelf include fining up sequences and coarse shelly, pectin rich layers. Most of the cores from the outer-shelf contain single, and in one instance (112/VC/043) two complete fining upward sequences in the top 10 to 60 cm. What processes controll these features and when did these processes occur? It is accepted that the sediments are relict in character, as demonstrated by the iron-staining, the lack of significant terrigenous material and

radiocarbon dating of pre-Holocene shelly material (Roy, 1983). If the fining upward features are controlled by modern processes, the outer-shelf sediments are "palimpsest" (Swift et.al., 1971) in nature, that is they display petrographic characteristics of the relict facies overprinted by characteristics of a later depositional environment. Alternatively, the upward fining upward sequences may be relict structures from the last marine transgression which have not been significantly altered in the recent development of the shelf.

A common feature of many of the cores collected on the outer-shelf is the presence of large shell fragments, bivalves and, in particular, pectin shells (Pectinidae). These are generally shallow water molluscs that would have lived in this region at times of lower sea level. In some cores (112/VC/052) they are dispersed within the sediment over a down-core interval, while in others (112/VC/024) they are a single unit of packed shells, up to one metre thick, with no significant amount of interspersed sediment. It is possible that the latter sequence may represent a lag bank or storm bank deposited as a result of erosional processes during the last marine transgression.

Boomer Survey

The way points for the boomer survey around the ocean outfalls between Botany Bay and Port Hacking are summarised in Table 3.3, and the track map of the survey is shown in Figure 3.4. A total of 80 line-km of data were obtained.

Approximately ten hours of seismic data were generated from two shore-parallel lines. These lines extend from Sydney Harbour to Botany Bay over the inner and mid shelves between water depths of 40-110 metres.

Inner-shelf lines are characterised by a rough exposed basement topography containing interspersed pockets of sediment. Parts of the survey which fall into this category include the reef complex which extends up to 4.5 kilometres east of North Head. A similar topography from mid-shelf depths of 60-80 metres further south are related to the reef complex off Malabar and Bondi. The remaining tracklines show a generally continuous but thin (< 10 metres) sediment cover over a basement topography similar to the reefal areas adjacent North Head and Malabar.

Bathymetric and sub-bottom profiling (12 and 3.5 KhZ) Surveys

The way points for the combined bathymetric and 3.5 Khz sub-bottom profiling survey are summarised in Table 3.4. Also shown are the line-km of data collected for each survey line. A total of 28 line-km of data were collected. The track map for the bathymetric survey is shown in Figure 3.5

A reef system between 90 metres and 120 metres water depth and 18 kilometres ESE of the mouth of the Hawkesbury River was surveyed using both 12 and 3.5 kHz sounders. Bathymetry (Fig. 3.6) was contoured from the 12 kHz Trace. Contours are for the most part shore parallel to 90 metres water depth. From 110 to 120 metres depth a distinct break is often clearly identifiable where the reef adjoins the coastal plain. This break most likely represents Pleistocene sea level stands although it has been argued in the past that modern processes may be responsible. The 3.5 kHz record was sufficiently good to allow some interpretation of the shallow sediment distribution adjacent the surveyed reef area (Fig. 3.7). This record identifies a wide spectrum of features including lobes, irregular hummocks and scour channels. Sediments adjacent to the reef are generally shallow, rarely exceeding 5 metres depth. Coring in the vicinity of the reef often resulted in short cores, bent barrels and damaged nose cones. Along both the eastern and western perimeters of the reef, shallow ponded sediments could be identified. Both vibro cores and box cores in these sediments retrieved extremely muddy/flocculent surface sediments with a high water content (>50% w/v). Eastward of the ponded sediments on the seaward edge of the reef, sediment depth rapidly increased to in excess of 10 metres depth after which the 3.5 kHz record was no longer able to distinguish basement. Sediment thickness on the western edge of the reef, shoreward of the ponded sediment, was markedly different. While sediment depth rarely exceeded 10-15 metres, it was extremely variable. Depth of sediment in this mid-shelf area ranged from 0-15 metres with often no apparent trend other than a partial shoreward increase along some lines.

Contaminant Core Collection and Subsampling

On retrieval all Water Board vibro cores were labelled and, where required, sectioned into lengths no greater than 1 metre in length (Fig. 3.2). All sections were then capped with tightly fitting teflon caps. Throughout the retrieval, sectioning and capping process cores were kept upright so as to minimise disturbance of the sediments. Cores were cut on board using two opposed circular saws and split using a prepared length of stainless steel wire. The top 5 cm of all vibro cores was

subsampled for contaminant analysis. Sediment adjacent the aluminium tube was not subsampled to avoid metal shavings from cutting and entrainment effects from coring. Prior to subsampling cores were photographed and logged (Appendix 1). Once subsampled, cores were wrapped in aluminium foil (to restrict movement of sediment during transport), sealed in polyethylene tubing and refrigerated at 4° Celsius. Subsamples were packed into teflon bags, sealed and frozen (-18° Celsius) for later analysis.

Proposed Post-Survey Analyses

Geological Analysis

Geological analysis will involve determination of gravel:sand:mud ratios by wet sieving using 2 mm and 63µm mesh sizes. Dried samples will then be weighed and the relevant percentages calculated. Grain-size analysis of the sand fraction will be carried out using a settling tube. Data will be provided in the form of hard copy showing the cumulative frequency curve plus statistical parameters derived using Folk's graphical method. The grain-size analysis of the mud fraction (i.e. size < 63µm) will be carried out using a modified Malvern laser particle sizer. Data will be provided in hard copy form giving the cumulative frequency curve and relevant grain-size statistics.

The carbonate component of the sand and mud fractions will be determined using a standard "acid bomb" technique. The precision of this method is proportional to the carbonate content and mass of sample available for analysis. Precision of \pm 5% is normal, but increased precision occurs with greater sample mass and carbonate content.

Organic Carbon Analysis

Analysis of organic carbon will be carried out on a total carbon analyser to the method of Sandstrom & others (1986).

Organochlorine Analysis

Organochlorine analysis will be for DDT, DDD, DDE, BHC, HCB, heptachlor, heptachlor epoxide, chlordane, dieldrin, aldrein and PCB's. Samples will be sonicated three times with dichloromethane and acetone, concentrated to 5 ml and solvent

exchanged to n-hexane. Cleanup will be carried out on a fluorisil column, eluting the first fraction (I) with n-hexane and the second (II) with 2% acetone in n-hexane. Both fractions will be concentrated to 2 ml. Gas chromatography will be on 30 metre capillary columns using an electron capture detector. Estimates of detection limits will be based on a minimum peak height/area of three times background. Results will be reported on a dry weight basis back-calculated off a separately dried subsample. Detection limits for all compounds except PCB's will be 5ppb. For PCB's detection limits will be 10ppb.

Trace Metal Analysis

Heavy metal analysis will be carried out for Cadmium, Nickel, Chromium, Manganese, Copper, Lead. Zinc, Iron, Mercury, Arsenic and Selenium. Acid oxidative digestion (HNO₃/HCL) of wet sediment will be followed by Flame Atomic Absorption Spectrometry (AAS) for all metals except Mercury, Arsenic and Selenium which will be derived via cold vapour, AAS and hydride generation AAS respectively. Results will be reported on a dry weight basis back-calculated off a separately dried subsample. Detection limits are 0.5 ppm for Copper, Nickel, Arsenic and Manganese; 1.0 ppm for Lead, Zinc and Chromium; 0.05 ppm for Mercury, Selenium and Cadmium. Iron will be quoted in percentage values.

Discussion: Synthesis of shipboard results, sedimentology and implications for contaminants.

The lack of recently derived terrigenous material on the outer shelf has a number of implications with respect to anthropogenic contaminant buildup in this region, and the potential source of these contaminants.

Terrigenous muds are generally restricted to water depths less than 140 metres. Between depths of 140 and 240 metres sediment character is coarse and reflects features indicating that it is a relict deposit, significantly older than the last 200 years and since anthropogenic inputs have occurred. The lack of a significant fine fraction in sediments of this region as well as the absence of any indication that there is seaward, shore-normal transport at depths greater than 140 metres means it is likely that there would be little or no water-derived contaminant buildup in these sediments. Waterborne transport is specified here because where sediment concentrations of some elements/compounds are very low (as indicated by recent W.B. work on inner/mid shelf), atmospheric contributions from nearby urban and industrial complexes may prove significant (Denton and Burdon-Jones, 1986). The inner and

mid shelves, however do have significant quantities of terrestrially derived material. Contaminant transport and buildup in these areas is therefore likely, and has been observed in previous W.B. studies of the inner and mid shelf areas between Port Jackson and Botany Bay. In those studies it was also observed that reef distribution in depths of 60-100 metres was associated with adjacent mud deposits and poorly sorted sediments. Further afield of these reefs (both seawards and shorewards) sorting increased and mud content decreased.

Gordon and Hoffman (1986) analysed current meter and sediment trap data from three sites off Sydney showing that sediment transport within the mid shelf was possible to depths of at least 80 metres. Radiocarbon dating of whole shell material retrieved by the W.B. from similar depths and 60cm below the sediment surface indicate modern origins for such material (< 200 years) suggesting that recent sediment transport may be responsible for this burial. Water flow related to such transport would be expected to be turbulent over and adjacent any reefs of significant relief. It might be expected that sorting of sediments would be poorer adjacent these reefs and would improve with distance from the reef as turbulance decreases. In previous Water Board studies along the inner/mid shelves at depths of 60-100 metres and in the current AGSO/WB survey of deeper reefs (100-120m water depths), such reef related sorting was apparent. Peirson & others (1992) concluded that turbulent flows along the inner midshelf off Sydney occurred over periods of the order of several hours and that subsurface shore normal velocity components under stratified conditions had significant intensities and bore little or no relationship to surface direction and velocity. Gordon and Hoffman (pers. comm.) found in some instances, that flow velocity and direction of bedforms were related to storm fronts - events often of several hours duration or less.

The oceanographic and hydraulic characteristics of the modern processes on the inner, mid and outer shelves are poorly understood. It has been suggested that the East Australian Current may be strong along the outer shelf, actively winnowing this region and that near-bottom flows on the outer shelf might be dominated by interactions between contrasting oceanic and shelfal water masses (Huyer & others, 1988), whereas the local wind and wave climate may be more important on the inner shelf. While there is little data to indicate whether offshore currents alone are enough to initiate sediment disturbance, the vertical component of both long period waves and turbulent flow from boundary effects may overcome some of the perceived problems of shear inertia at low velocities. Outer shelf sediments are generally a medium grained platy carbonate with little cohesive mud/organic content while the bulk of the

inner and mid shelf sediments are composed of medium grained quartz and carbonate particles. Drag and inertia forces restraining movement are less in these sediments than in those with higher mud and organic content (McLaren, 1981). As a result vertical energy components of long period waves could lift these particles into the water column after which they are easily transported by ambient water flow.

Both the observed upward fining sequences in many shelf sediments and the decrease in particle size and sorting with increasing proximity to reefs may be considered as modern reworking. It is also likely that not only long period waves and ambient currents are implicated in this reworking but that storm fronts and storms influence transport patterns at least to the outer shelf. If reworking is significant as suggested, resident times for both contaminants and nutrients would be expected to be low (less than 2-3 years). A range of organic contaminants have been recently identified in the inner/mid shelf sediments by the Water Board. The presence of compounds with a half life or several weeks and the total absence of their known breakdown products (with extended half lives of 3 years) in sediments between depths of 80-100 metres would strongly support short residence times and significant sediment transport within the mid shelf. Both the compounds and their breakdown products are strongly absorbed to sediments, hence it is unlikely the absence of breakdown products are related to volatilisation or dissolution into overlying waters.

Samples for shore based contaminant analysis

SITE	CORE	DATE	TIME	LAT	LONG	WD	LENGTH	COMMENTS
28	3 VC 003	17/9	0844:30	34 11.00	151.0519	39.2	55.5 cm	logged,well sorted medium quartz sand
	3 VC 005	17/9	0958:00	34 11.04	151.0515		175 cm	logged, mud drape, fine/medium muddy quartz san
		 	0000.00		101.00.0	10.2	170 0111	logged, mad drope, micrinediam maddy quartz san
27	BC 007	17/9	1415:10	34 10.96	151 09.90	100		used for geo-contaminant analysis
27	BC 010	17/9	1609:40	34 10.31	151 09.87			used for geo-contaminant analysis
26	BC 015	17/9	2044:10	34 11.07	151 13.28	123		only sample at this site due to poor recoveries
	VC 007	18/9	0027:10	34 11.02	151 16.66	1	196 cm	logged, medium/coarse shell hash
25	VC 008	18/9	0052:00	34 11.04	151 16.65	135	40 cm	logged, mud drape, medium calcareous sand
	VC 010	18/9	0000.00	24 44 05	151 20.09	440	15 cm	
	VC 010	18/9	0320:00 0350:00	34 11.05 34 11.03	151 20.09		15 cm 168 cms	logged, mud drape, med/coarse calcareous sand
	VCUII	10/9	0350.00	34 11.03	131 20.09	141	100 CHIS	logged, fine/medium calcareous sand
23	3 VC 012	18/9	0608:00	34 11.06	151 23.46	150	122 cms	logged, mud drape, medium/coarse calcareous san
	3 VC 014	18/9	0729:00	34 11.00	151 23.47		32 cms	logged, mud drape, medium/coarse calcareous san
	3 VC 015	18/9	0817:00	34 11.04	151 23.48		140 cms	logged, mud drape, medium calcareous sand
22	VC 016	18/9	1041:00	34 11.04	151 26.88	238	58 cms	logged, fine calcareous sand
22	VC 017	18/9	1124:00	34 11.04	151 26.87	238	180 cms	logged, fine silty calcareous sand
	1 BC020	18/9	1409:00	22.50.05	454 00 05	205		fine to a disconnection of
	I VC 018	18/9	1513:50	33 59.85 33 59.83	151 33.85 151 33.80	.1	26 cms	fine/medium calcareous sand
	VC 018	18/9	1544:00	33 59.86	151 33.85		280 cm	logged, mud drape, fine/medium calcareous sand logged, fine quartz/carbonate sand
	1 40 013	10/3	1344.00	33 39.00	131 33.03	203	200 (111	logged, line quantz/carbonate sand
20	VC 021	18/9	1805:00	33 59.85	151 31 98	160	261 cm	logged, mud drape, fine/medium calcareous sand
	VC 022	18/9	1824:00	33 59.86	151 31.99		140 cm	logged, fine quartz/carbonate sand
	VC 023	18/9	2038:00	33 58.49	151 29.28		42 cm	logged, mud drape, medium calcareous sand
19	VC 024	18/9	2109:00	33 58.50	151 29.29	148	145 cm	logged, mud drape, fine calcareous sand
	Site 18 a	bandoned	due to reef					

Table 3.1 Inventory of samples for shore-based contaminant analyses.

17	VC 025	19/9	0157:00	33 59.87	151 21.03	103	268 cm	logged, mud drape, medium quartz sand
17	VC 027	19/9	0246:00	33 59.86	151 20.99	102	118 cm	logged, mud drape, fine/medium quartz sand
	VC 030	19/9	0905:00	33 59.81	151 17.06		142 cm	logged, fine/medium quartz sand
16	VC 032	19/9	0951:00	33 59.80	151 17.10	81.3	155 cm	logged, fine/medium quartz
45	VO 004	40/0	4444.00	00.40.00	454 04 00	00.4	00	
L	VC 034 VC 035	19/9 19/9	1441:00 1458:00	33 48.66 33 48.66	151 21.08 151 21.07		63 cm 14 cm	logged, fine calcareous sand
15	VC 035	19/9	1450.00	33 40.00	151 21.07	05.5	14 CIII	logged, fine calcareous sand
14	VC 037	19/9	2026:00	33 48.66	151 25.08	110	58 cm	logged, mud drape, fine muddy calcareous sand
	VC 038	19/9	2046:00	33 48.64	151 25.08		162 cm	logged, mud drape, fine muddy quartz sand
13	VC 039	19/9	2247:00	33 48.65	151 28.46	125	107.5 cm	logged, fine carbonate/quartz sand
13	VC 040	19/9	2306:00	33 48.66	151 28.47	124	136 cm	logged, fine/coarse calcareous sand
	BC 041	20/9	0057:00	33 48.66	151 31.86	128		2 sub-cores homogenised
12	BC 042	20/9	0130:00	33 48.66	151 31.81	130		2 sub-cores homogenised
11	BC 043	20/9	0244:00	33 48.65	151 35.26	140		2 sub-cores homogenised
	BC 043	20/9	0311:00	33 48.65	151 35.25	141		2 sub-cores homogenised
<u>'</u>	00 044	20/3	0311.00	33 40.03	101 00.20	1-71		2 3db-cores norrogenised
10	BC 047	20/9	0516:00	33 48.65	151 38.61	148		2 sub-cores homogenised, dry well packed sand
	BC 049	20/9	0620:00	33 48.65	151 41.99	180		2 sub-cores homogenised
9	BC 050	20/9	0751:00	33 48.65	151 41.99	180		2 sub-cores homogenised
				1				
4	VC 042	21/9	0134:00	33 48.65	151 38.60		69 cm	logged, mud drape, medium calcareous sand
10	VC 043	21/9	0156:00	33 48.66	151 38.60	149	36.5 cm	logged, mud drape, fine calcareous sand
	VC 045	21/9	0205:00	33 48.67	151 41.98	192	202 cm	logged, mud drape, medium/coarse calcareous sand
	VC 045	21/9	0205.00	33 48.66	151 41.98		174 cm	logged, mud drape, fine/medium calcareous sand
	VO 040	1110	UZZU.UU	70.00	10171.30	102	177 0111	logged, mad drape, informedium calcaleous salid
8	VC 047	21/9	0522:00	33 37.45	151 47.16	146	100 cm	logged, fine/medium calcareous sand
	VC 048	21/9	0541:00	33 37.45	151 47.19		109.5 cm	logged, mud drape, fine/medium calcareous sand
7	VC 049	21/9	0638:00	33 37.45	151 43.80	140	35 cm	logged, fine calcareous sand

7	VC 050	21/9	0658:00	33 37.45	151 43.80	140 4	5 cm	logged, mud drape, fine calcareous sand
6	VC 051	21/9	0751:00	33 37.43	151 40.48	134 2	26 cm	logged, mud drape, medium calcareous sand
6	VC 052	21/9	0811:00	33 37.42	151 40.48	134 1	28 cm	logged, mud drape, fine muddy calcareous sand
5	VC 054	21/9	0926:40	33 37.46	151 37.17	128 1	00 cm	logged, fine muddy quartz sand
	VC 055	21/9	0945:10	33 37.47	151 37.18		48 cm	logged, mud drape, fine muddy sand
4	VC 056	21/9	1032:00	33 37.48	151 33.86	118 1	29 cm	logged, fine silty mud
	VC 057	21/9	1053:00	33 37.46	151 33.89		211.5 cm	logged, muddy fine/medium quartz sand
32	BC 059	21/9	1210:50	33 37.53	151 33.83	118		2 sub-cores homogenised
32	BC 060	21/9	1238:00	33 37.51	151 33.81	118		2 sub-cores homogenised
33	BC 061	21/9	1422:00	33 37.51	151 31.69	87.8		2 sub-cores homogenised
33	BC 062	21/9	1450:00	33 37.51	151 31.71	97.8		2 sub-cores homogenised
3	VC 059	21/9	1520:00	33 37.46	151 30.57	89.3 1	18.5 cm	logged, fine muddy quartz sand
3	VC 060	21/9	1554:00	33 37.46	151 30.57	89.5 7	78 cm	logged, fine fluidised mud, fine calcareous muddy sai
2	VC 061	21/9	1708:00	33 37.47	151 26.28	47.4 2	220 cm	logged, mud drape, medium quartz sand
2	VC 062	21/9	1720:00	33 37.47	151 26.28	57.8	30 cm	logged, mud drape, fine/medium quartz sand
1	VC 063	21/9	1824:00	33 37.47	151 22.60	46.7 1	198 cm	logged, mud drape, medium quartz sand
1	VC 064	21/9	1850:00	33 37.45	151 22.62	46 2	202 cm	logged, mud drape, medium quartz sand

Vibrocores split and logged by SWB scientific crew

			T				<u> </u>	
1.4	VC 037	19/9	2026:00	33 48.66	151 25.08	110	58 cm	logged, mud drape, fine muddy calcareous sand
	VC 037	19/9	1	33 48.64	151 25.08		162 cm	logged, mud drape, fine muddy quartz sand
	VC 030	13/3	2040.00	33 40.04	131 23.00	110	102 011	loggou, mud drape, mie muddy quartz sand
13	VC 039	19/9	2247:00	33 48.65	151 28.46	125	107,5 cm	logged, fine carbonate/quartz sand
	VC 040	19/9		33 48.66	151 28.47		136 cm	logged, fine/coarse calcareous sand
	0.0	1000	2000.00	10.00	101 = 0.11			3931, 11110, 0041-0041
10	VC 042	21/9	0134:00	33 48.65	151 38.60	148	69 cm	logged, mud drape, medium calcareous sand
	VC 043	21/9	0156:00	33 48.66	151 38.60	149	36.5 cm	logged, mud drape, fine calcareous sand
9	VC 045	21/9	0205:0	33 48.67	151 41.98		202 cm	logged, mud drape, medium/coarse calcareous sand
9	VC 046	21/9	0225:00	33 48.66	151 41.98	182	174 cm	logged, mud drape, fine/medium calcareous sand
	\							
		21/9		33 37.45	151 47.16		100 cm	logged, fine/medium calcareous sand
8	VC 048	21/9	0541:00	33 37.45	151 47.19	146	109.5 cm	logged, mud drape, fine/medium calcareous sand
			2222 22	22 22 42	151 15 22			
		21/9		33 37.45	151 43.80		35 cm	logged, fine calcareous sand
	VC 050	21/9	0658:00	33 37.45	151 43.80	140	45 cm	logged, mud drape, fine calcareous sand
6	VC 051	21/9	0751:00	33 37.43	151 40.48	134	26 cm	logged, mud drape, medium calcareous sand
		21/9		33 37.42	151 40.48		128 cm	logged, mud drape, fine muddy calcareous sand
5	VC 054	21/9	0926:40	33 37.46	151 37.17	128	100 cm	logged, fine muddy quartz sand
5	VC 055	21/9	0945:10	33 37.47	151 37.18	128	148 cm	logged, mud drape, fine muddy sand
		21/9	I	33 37.48	151 33.86		129 cm	logged, fine silty mud
4	VC 057	21/9	1053:00	33 37.46	151 33.89	118	211.5 cm	logged, muddy fine/medium quartz sand
		ļ	<u> </u>	<u> </u>				
		21/9	1	33 37.46	151 30.57		118.5 cm	logged, fine muddy quartz sand
3	VC 060	21/9	1554:00	33 37.46	151 30.57	89.5	78 cm	logged, fine fluidised mud, fine calcareous muddy sand
	VC 004	24/0	4700.00	22 27 47	454 20 20	47 4	220 om	learned mud dropp medium quartz pand
		21/9 21/9		33 37.47 33 37.47	151 26.28 151 26.28		220 cm 80 cm	logged, mud drape, medium quartz sand logged, mud drape, fine/medium quartz sand
	VC 002	21/9	1720.00	33 31.41	131 20.20	31.8	OU CIII	logged, mud drape, illie/medium quartz sand
	VC 063	21/9	1824:00	33 37.47	151 22.60	46.7	198 cm	logged, mud drape, medium quartz sand
		21/9		33 37.45	151 22.62		202 cm	logged, mud drape, medium quartz sand
	¥ 0 004	JE 179	1000.00	00 01.40	101 22.02	70	202 0111	poggod, mad drapo, modium quarte oand

Table 3.2. Inventory of cores logged by WB scientists.

SITE	CORE	DATE	TIME	LAT	LONG	WD	LENGTH	COMMENTS
					151. 0515		65 cm	logged, mud drape , fine muddy quartz sand
1		a 1		34 11.00	151.0519			logged,well sorted medium quartz sand
28	VC 005	17/9	0958:00	34 11.04	151.0515	40.2	175 cm	logged, mud drape, fine/medium muddy quartz sand
	VC 007				151 16.66		196 cm	logged, medium/coarse shell hash
25	VC 008	18/9	0052:00	34 11.04	151 16.65	135	40 cm	logged, mud drape, medium calcareous sand
	VC 010			34 11.05	151 20.09		15 cm	logged, mud drape, med/coarse calcareous sand
24	VC 011	18/9	0350:00	34 11.03	151 20.09	141	168 cms	logged, fine/medium calcareous sand
			,					
	VC 012	1		34 11.06	151 23.46		122 cms	logged, mud drape, medium/coarse calcareous sand
	VC 014			34 11.00	151 23.47		32 cms	logged, mud drape, medium/coarse calcareous sand
23	VC 015	18/9	0817:00	34 11.04	151 23.48	150	140 cms	logged, mud drape, medium calcareous sand
L	· · · · · · · · · · · · · · · · · · ·							
1	VC 016			34 11.04	151 26.88		58 cms	logged, fine calcareous sand
22	VC 017	18/9	1124:00	34 11.04	151 26.87	238	180 cms	logged, fine silty calcareous sand
ļ								
	VC 018			33 59.83	151 33.80		26 cms	logged, mud drape, fine/medium calcareous sand
21	VC 019	18/9	1544:00	33 59.86	151 33.85	205	280 cm	logged, fine quartz/carbonate sand
		ļ						
	VC 021	18/9		33 59.85	151 31 98		261 cm	logged, mud drape, fine/medium calcareous sand
20	VC 022	18/9	1824:00	33 59.86	151 31.99	160	140 cm	logged, fine quartz/carbonate sand
L.	1/0 000	1000	2000 65	00.50.46	454.00.00	440	10	
	VC 023			33 58.49	151 29.28		42 cm	logged, mud drape, medium calcareous sand
19	VC 024	18/9	2109:00	33 58.50	151 29.29	148	145 cm	logged, mud drape, fine calcareous sand
	1/0 005	400	0457.00	00.50.07	454 04 60	400	000	
	VC 025			33 59.87	151 21.03		268 cm	logged, mud drape, medium quartz sand
1/	VC 027	19/9	0246:00	33 59.86	151 20.99	102	118 cm	logged, mud drape, fine/medium quartz sand
10	1/0 000	40/0	0005-00	00 50 04	454 47 00	90.0	440 000	Issued Gooding and and
	VC 030			33 59.81	151 17.06		142 cm	logged, fine/medium quartz sand
16	VC 032	19/9	0951:00	33 59.80	151 17.10	87.3	155 cm	logged, fine/medium quartz
	VO 004	40/0	4444.00	22.40.00	454 04 00	00.4	CO	Land flag colours as cond
1	VC 034	19/9		33 48.66	151 21.08			logged, fine calcareous sand
15	VC 035	19/9	1458:00	33 48.66	151 21.07	65.5	14 cm	logged, fine calcareous sand

Table 3.3 Navigation data for the boomer survey conducted offshore Sydney

				GOV A KENTER
WAY	TIME	POSITION W.G.S.		COMMENTS
POINT #	SSS.DDD.HHMMSS		LAST W.P.	
WP #20	112.269.032000	S33 58.433 E151 17.333		BOOMER LINE #1
WP #21	112.269.042400	S33 53.216 E151 17.637	9.41km.	
WP #22	112.269.054100	S33 47.321 E151 20.812	13.86 km.	E.O.L. LINE #1 + 1 n.m.
WP #23	112.269.060200	S33 48.425 E151 20.869		S.O.L. LINE #2
WP #24	112.269.070400	S33 53.201 E151 18.312	9.49 km.	
WP #25	112.269.080300	S33 58.383 E151 17.869	9.85 km.	
WP #26	112.269.092700	S34 04.509 E151 14.266	12.42 km.	E.O.L. LINE #2
WP #40	112.269.093800	S34 04.698 E151 14.713		S.O.L. LINE #3
WP #41	112.269.101200	S34 02.038 E151 16.351	5.62 km.	
WP #42	112.269.105500	\$34 58.602 E151 18.490	7.05 km.	
WP #43	112.269.115400	S33 53.325 E151 18.924	9.79 km.	
WP #44	112.269.130500	S33 47.728 E151 21.881	13.04 km.	E.O.L. LINE #3 + 1 n.m.
WP #30	112.269.132500	S33 48.696 E151 21.894		S.O.L. LINE #4
WP #29	112.269.143000	S33 53.362 E151 19.581	9.29 km.	
	112.269.151400	S33 56.333 E151 19.330	2.98 km.	E.O.L. LINE #4 BOOMER
				LOST
		BOOMER TOTAL	79.53 km.	

Table 3.4. Way-points for the bathymetric survey conducted offshore Sydney.

TIME	POSITION W.G.S.	DISTANCE	COMMENTS	
SSS.DDD.HHMMSS		LAST W.P.		
112.266.031900	S33 39.405 E151 28.224		S.O.L. LINE	#1
			BATHYMETRY	
112.266.041200	S33 39.405 E151 33.644	8.36 km.	E.O.L.	
112.266.050700	S33 38.905 E151 34.065		S.O.L. LINE #2	
112.266.055000	S33 38.905 E151 29.639	6.82 km.	E.O.L.	
112.266.055800	S33 38.405 E151 29.456		S.O.L. LINE #3	
112.266.064100	S33 38.405 E151 33.605	6.40 km.	E.O.L.	
112.266.065100	S33 37.905 E151 33.636		S.O.L. LINE #4	
112.266.073100	S33 37.905 E151 29.667	6.12 km.	E.O.L. BATHYMETRY	
	BATHYMETRY TOTAL	27.70 km.		

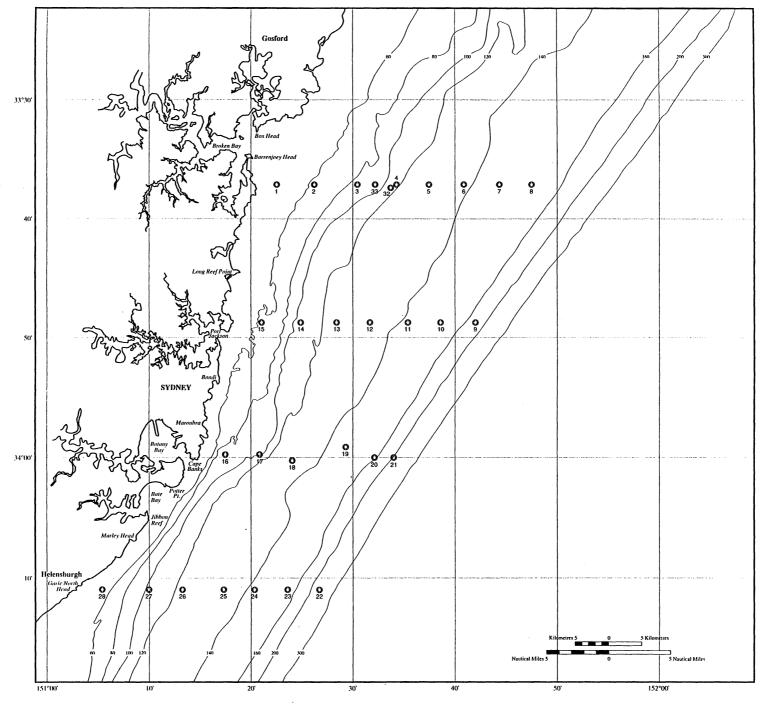


Figure 3.1 Map of samples sites occupied for contaminant and grain size analyses.

Vibrocore Handling & Subsampling Protocols

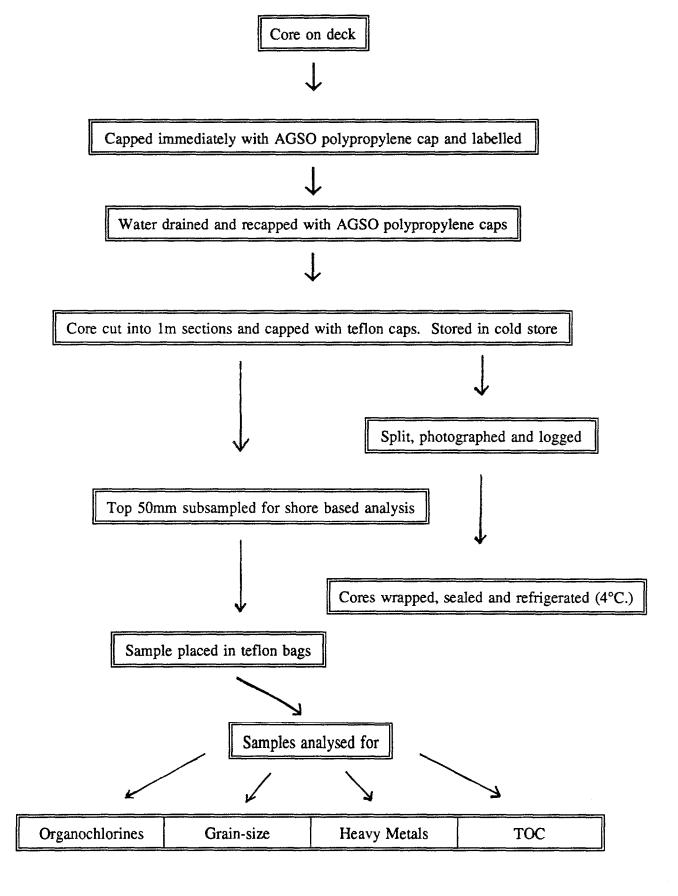


Figure 3.2 Schematic diagram of the protocol used for processing and sampling of vibro cores.

Box Core Handling & Subsampling Protocols

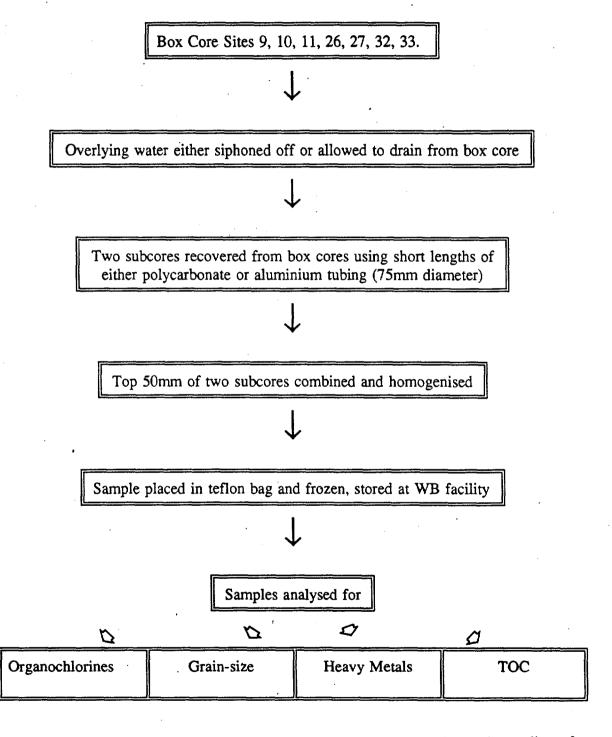


Figure 3.3 Schematic diagram of the protocol used for processing and sampling of box cores.

S112 BOOMER

SCALE 1:200000

SWB

EDITION OF 1992/10/03

E

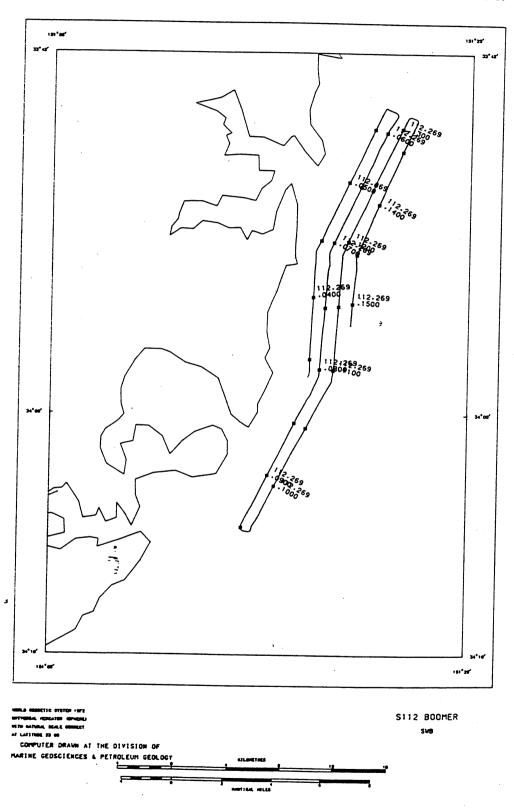


Figure 3.4. Track map of the boomer survey.

S112 BATHYMETRY

1

•

a

10

1

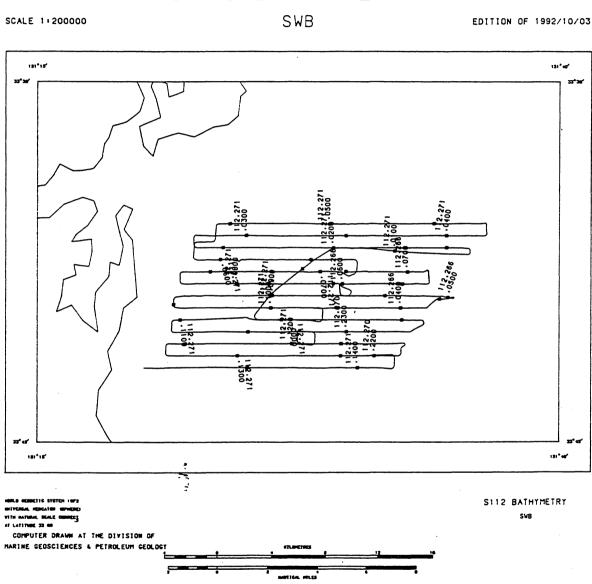


Figure 3.5 Track map of the bathymetric survey

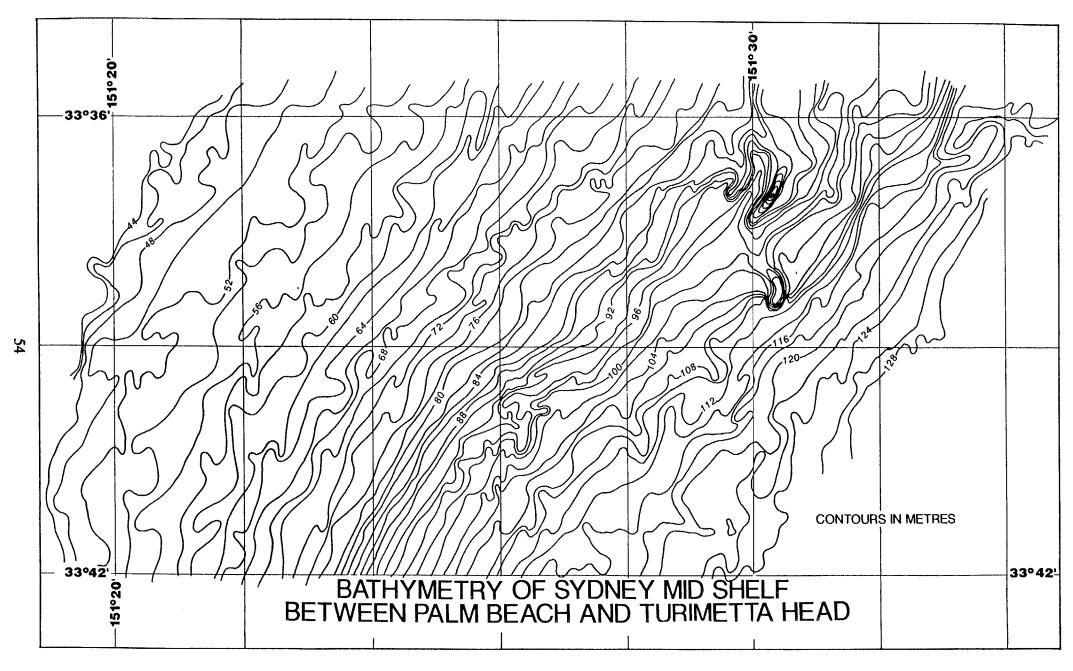


Figure 3.6

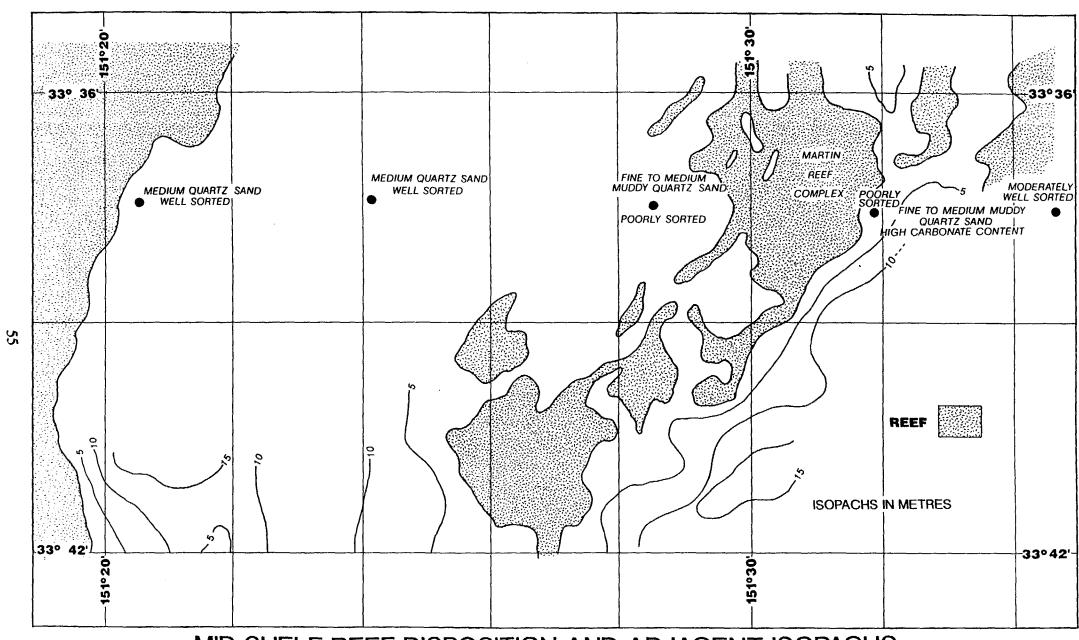


Figure 3.7 MID SHELF REEF DISPOSITION AND ADJACENT ISOPACHS BETWEEN PALM BEACH AND TURIMETTA HEAD

4. Geochemical characterisation of continental shelf sediments

The anthropogenic input of nutrients and organic material has been implicated in a number of large scale ecological effects in different marine and estuarine ecosystems. These include increased organic matter production (Nixon & others, 1984; Oviatt & others, 1987), changes in species composition among pelagic communities (e.g. Rudstam, 1988) and in some systems, the development of areas of bottom water with very low or zero dissolved oxygen concentrations (Leppdkoski, 1980; Officer & others, 1984; Launiainen & others, 1987). While it is clear that standing stock concentrations for the major nutrients (such as carbon, nitrogen and phosphate) are subject to atmospheric, topographical and hydrodynamic influences, anthropogenic inputs can greatly modify the existing nutrient dynamics of an ecosystem.

In many estuarine ecosystems, sediment oxygen and nutrient dynamics have been found to exert an important influence on conditions in overlying waters and in the sediments themselves. Benthic denitrification, for example, is one of the main controlling factors for water column primary production in Narragansett Bay (Seitzinger & others, 1980). Clearly, sediments can be important temporary sources for compounds, terminal sinks for others and an interface in the ecosystem where a diversity of biogeochemical transformations can occur (see Bolin and Cook, 1983).

There is little data currently available by which to predict the impact of anthropogenic inputs of nutrients and organic material to a coastal region such as that near Sydney. Much of the previous work in this field has been focused on enclosed waters or low-energy coastal zones. However, these may not adequately predict the effects of increased organic or inorganic nutrient input to the Sydney region given its open ocean, high-energy environment.

Objectives

To assess the impact of increased anthropogenic discharges of organic carbon and nutrients to the coastal zone it was necessary to collect baseline data on those parameters or processes that are likely to respond most rapidly to changing inorganic nutrient or carbon status. The objectives of this program were therefore:

1. To estimate rates of benthic metabolism from measured oxygen flux rates and micro-scale oxygen profiles in fine-grained coastal sediments.

- 2. To determine organic carbon and nutrient (nitrogen and phosphorus) concentrations in the sediments.
- 3. To measure flux rates of nutrients, NH₄+, PO₄-, NO₃- and NO₂-, across the sediment/water interface.

The sediment program includes assessment of ambient rates of benthic metabolism, organic carbon turnover (oxidation) rates, nutrient (nitrogen and phosphorus) fluxes, as well as physico-chemical features such as porewater and solid phase nutrient concentrations, grain-size distribution and porosity.

Sampling Sites

Sediment geochemistry. Sampling sites were located offshore of the Sydney metropolitan region between Broken Bay in the north to Port Hacking in the south in water depths between 80 and 120m (Figure 4.1). Samples were collected using a Soutar box core from which sub-cores were obtained using 8 cm diameter polycarbonate corer tubes. Details of sampling locations are summarised in Table 4.1. The protocol for the sampling and analyses of sediments in the nutrient geochemistry program is described below and summarised in Figure 4.2.

Sediment microbiology. Samples for microbiological analysis of pathogenic organisms were collected at 21 sites offshore of the Sydney metropolitan region (Figure 4.3). Samples were obtained using a grab sampler from which cores (5 cm depth, 8 cm diameter) were subsampled. Details of sampling locations are summarised in Table 4.2.

Sediment Oxygen Profiles

Duplicate cores (8 cm diameter x 20 cm depth) were collected for determination of dissolved oxygen concentrations in the sediments at each of six sites (Sites 3, 4, 14, 16, 36 and 27) using Clarke style microelectrodes (Diamond General Model 737GC and Microsensor MkII). Oxygen was measured at 1 mm intervals commencing 5 mm above the sediment surface and continued to 3 mm below the point of zero dissolved oxygen. Duplicate profiles were measured for each core. The electrode was calibrated against seawater of known oxygen concentrations at each site.

Oxygen profiles at each of the sites are shown in Figure 4.4. Oxygen concentrations reached zero within 2 to 6 mm of the sediment surface. Diffusive oxygen fluxes will be calculated once sediment porosity's have been determined.

Pore water nutrients

Sediments from four replicate cores at each of six sampling sites (Sites 4, 14, 16, 27, 31, 36) were extruded and sectioned in a glove bag under a nitrogen atmosphere. Each core was sub-sectioned at 1 cm intervals to 5 cm depth and at 9-10 cm depth. The length of subcores varied and cores were subsectioned to a depth of 10 cm if sufficient sample was recovered (see Table 4.3). Sediments were transferred to a centrifuge tube, sealed and porewaters extracted by centrifugation (15,000 rpm for 10 min) in a Sorvall RC5B refrigerated centrifuge. Ammonia and phosphate were determined at sea via colorimetric methods (Parsons & others, 1984). Porewater samples for nitrate and nitrite analysis were frozen for subsequent analysis. Following porewater extraction, remaining sediments were frozen for subsequent analysis of solid phase nutrients (see below).

The distributions of ammonia and phosphate in sediments at each of the sampling sites are shown in Figure 4.5. Ammonia concentrations in surface sediments ranged from 67 μ gN/l at site 27 to 178 μ gN/l at site 16. Concentrations in all cores increased with depth in the sediment reaching concentrations of up to 461 μ gN/l.

Phosphate concentrations at the sediment surface ranged from 70 μ gP/l at site 27 to 236 μ gP/l at site 14. At some sites (Sites 14, 16, 27, 31) sediment profiles showed a phosphate maximum at 1 to 2 or 2 to 3 cm depth.

Data have not been fully analysed at this stage and nutrient profiles at each site will be analysed further. Nitrate and nitrite analyses will be completed. Diffusive nutrient flux rates will be calculated once sediment porosity data are available.

Solid phase nutrients

Replicate sediment cores were sectioned at 1 cm intervals to 5 cm depth and at 9-10 cm as described above. Following porewater extraction, sediments were stored in acid-washed vials and freeze dried. These samples will be homogenised and subsamples taken for analysis of total organic carbon, total nitrogen, and total phosphorous. Total organic carbon will be analysed by the method of Sandstrom &

others, (1986). Total nitrogen will be measured using an Heraus Elemental Analyser. Total organic phosphorus will be measured by persulfate oxidation followed by standard phosphate analysis.

Grain-size

Sediment samples for grain-size analysis were collected as part of the contaminants programme at Sites 3, 4, 14, 16 and 27 and will be analysed as described in Section 3 of this report. Duplicate subcores were collected from box cores at Sites 31 and 36 for grain-size analysis, as these sites were not sampled as part of the contaminants programme.

Benthic flux measurements

Four replicate cores were collected for determination of nutrient and oxygen fluxes at the sediment/water interface at Sites 4, 14, 16, 27, 31 and 36. After collection, the cores were equilibrated in the laboratory for up to 12 hours at *in situ* temperature with constant exchange of the overlying seawater. Overlying seawater was pumped from a reservoir of bottom water collected at the site of sediment collection. After equilibration, flow-through of bottom water was stopped and nutrient flux rates were determined by measuring nutrient accumulation in the overlying water. Following nutrient flux measurements, oxygen flux rates were determined for the same cores.

Nutrient fluxes. After flow-through of bottom water was stopped, water samples (50 mls) were withdrawn at 4 hour intervals over a period of twelve hours. The water was aerated during the period in which flux rates were measured by bubbling air into the overlying water. A total of three flux rate determinations were made for each core with a 6 to 12 hour equilibration period between each experiment. Fluxes were measured for NH₄⁺, PO₄⁻, NO₃⁻ and NO₂⁻. Water samples were filtered through acid-washed, pre-rinsed GF/F glass fiber filters. Samples were analysed on ship-board for ammonia and phosphate as described above for porewaters. Samples collected for analysis of nitrite and nitrate were frozen for subsequent analysis.

Oxygen fluxes. To measure oxygen fluxes from the sediments, cores were sealed and oxygen concentrations were measured using a WTW polarographic electrode inserted through a port in the core caps. Oxygen concentrations were measured at two to four hour intervals over one 12 hour period.

Flux rates of ammonia and phosphate were calculated as the mean (± standard error) of up to 12 flux measurements at each site (i.e. 4 cores/site and 3 rate measurements/core; Fig. 4-6). There was generally a net release of nutrients at the sediment-water interface with the exception of a net uptake of ammonia at Site 31 (-0.14 (±1.08) mgN m⁻²d⁻¹) and of phosphate at Site 27 (-1.90 (±2.19) mgP m⁻²d⁻¹.) Ammonia release rates ranged from 0.71 (±1.05) at Site 4, to 16.14 (±10.40) mgN m⁻²d⁻¹at Site 16 (Fig. 4-5). Phosphate release rates ranged from 1.55 (±1.54) at Site 31 to 6.84 (±2.19) mgP m⁻²d⁻¹at Site 16 (Fig. 4-5). Flux rates at sites located offshore from the North Head outfall/Port Jackson (Site 14) and Botany Bay/Malabar outfall (Sites 16, 36) appeared to be greater than those offshore from the Bondi outfall, Broken Bay and the Royal National Park. However, these trends have not yet been analysed for statistical significance. Such differences could be related to a number of factors such as grain-size or total organic carbon content of the sediments (which may in turn be related to proximity to point sources of anthropogenic compounds) or to factors such as numbers or types of macrofauna in the sediments.

Oxygen consumption rates in sediments ranged from 400 to 2180 $\rm mg0_2~m^{-2}~d^{-1}$ (Fig. 4-7). Assuming a Redfield ratio (106:138), these rates are equivalent to carbon utilisation rates of 307 to 1674 $\rm mgC~m^{-2}~d^{-1}$.

Distribution of pathogenic bacteria

Samples collected for microbiological analysis were subsampled from the grab sampler and stored in sterile containers at 4°C for subsequent analyses of numbers of *Clostridium perfringens* spores. These samples are being analysed by Dr. N. Ashbold at AWTT Science and Environment at the Water Board.

Macrofauna Analysis

Subcores from Sites 4, 14, 16, 31 and 36 were sieved through 2 mm and 63 µm screens on board ship and stored in 90% ethanol for subsequent identification of macrofauna in the laboratory. A limited number of cores (Table 4.3) were analysed following observations of varying numbers of worm tubes, burrows and biota between sampling sites. Quantitative analysis of macrofaunal numbers was not possible as cores had been held in the lab for up to ten days before extraction and the number of cores available for analysis were not great enough for meaningful enumeration. Initial observations showed that Sites 36 and 16 had largest numbers of worm tubes at the surface compared to other sites.

Table 4-1. Summary of sampling locations and cores collected for sediment geochemistry analysis.

Site	Sample	Julian Day	GMT	Latitude	Longitude	Depth (m)	Sub-cores (1)
27	BC 006	261	3:27	34 10.98	151.09.88	99	7
27	BC007	261	4:15	34 10.96	151 09.90	100	
27	BC 010	261	6:09	34 11.00	151 09.89	99	
27	BC 012	261	7:19	34 11.01	151 09.89	99	
16	BC029	262	18:43	33 59.79	151 17.13	82	14
16	BC030	262	19:35	33 59.83	151 17.08	81	
16	BC031	262	20:17	33 59.81	151 17.07	80	
16	BC032	262	21:03	33 59.82	151 17.06	81	
16	BC 033	262	21:47	33 59.82	151 17.07	82	
14	BC034	263	6:46	33 48.65	151 25.08	110	8
14	BC036	263	7:38	33 48.64	151 25.13	111	
14	BC038	263	9:00	33 48.66	151 25.08	109	
4	BC053	264	5:00	33 37.45	151 33.88	118	9
4	BC054	264	5:44	33 37.44	151 33.87	118	
4	BC 056	264	6:59	33 37.44	151 33.87	117	
3	BC058	264	9:43	33 37.46	151 30.59	88	3
31	BC063	265	11:38	33 52.21	151 22.89	91	11
31	BC064	265	12:25	33 52.18	151 22.90	91	
31	BC065	265	13:18	33 52.19	151 22.93	92	
36	BC074	267	4:17	33 58.91	151 17.98	84	12
36	BC075	267	5:08	33 58.91	151 17.98	84	
36	BC076	267	5:51	33 58.92	151 17.97	83	

⁽¹⁾ Total number of subcores collected from each site. No record was kept of individual subcores collected from each box core.

Table 4.2 Summary of sampling locations and cores collected for analysis of numbers of *Clostridium perfingrens* spores.

Site	Sample	Julian Day	GMT	Latitude	Longitude	Depth (m)
1	GS034	265	8:15	33 37.47	151 22.60	46.3
2	GS 033	265	6:54	33 37.45	151 26.29	58.8
3	BC057	264	8:57	33 37.45	151 30.59	87.9
4	GS029	264	4:48	33 37.45	151 33.88	118
5	GS028	264	2:55	33 37.45	151 37.20	129
6	GS027	264	2:01	33 37.45	151 40.49	135
8	GS 025	264	0:22	33 37.42	151 47.09	146
9	BC050	263	21:51	33 48.65	151 41.99	180
10	BC047	263	19:22	33 48.65	151 38.61	148
12	BC041	263	15:02	33 48.66	151 31.86	128
13	GS020	263	12:31	33 48.66	151 28.47	127
14	GS019	263	6:28	33 48.65	151 25.09	110
15	GS018	263	4:09	33 48.66	151 21.07	67.5
16	GS014	262	17:59	33 59.82	151 17.08	81.2
17	BC 028	262	15:21	33 59.88	151 20.97	103
18	BC026	262	13:17	34 00.94	151 24.38	133
20	BC0 22	262	7:12	33 59.87	151 31.98	159
21	BC 021	262	4:38	33 59.85	151 33.85	205
23	GS010	261	18:55	34 11.04	151 23.49	150
24	G S 009	261	16:44	34 11.04	151 20.10	143
27	GS002	261	1:13	34 11.00	151. 0988	95

1)

	Site	Total Subcores	Porewater Analysis	Solid Phase(1)	Oxygen Profiles	Benthic Fluxes	Sectioned and frozen (2)	Archived (3)	Macrofauna (4)	Grain Size (5)	
	27	7	4	4	2	4	2	1		-	
	16	14	4	8	2	4	5		1		Solid phase: One subcore sectioned at 1 cm intervals to 5 cm depth One subcore sectioned at 1 cm intervals to 6 cm depth One subcore sectioned at 1 cm intervals to 5 cm depth and at 7-8 cm depth Sectioned and frozen: 2 subcores have several depth intervals missing - check this
	14	8	3	3	2	4	3	1	1		
	4	9	4	4	2	4	2	1	2		
3	3	3		3	2						
	31	11	4	4		4	2	1	2	2	
	36	12	4	2	2	4	5	1	2	2	Grain size: One subcore 0-5cm depth only

Samples for analysis of solid phase chemistry consist of the sediment remaining after centrifuging of sediments for porewater extraction. Sediments were sectioned at 1 cm intervals to 5 cm depth and at 9-10 cm depth unless otherwise noted.

Sediment cores were sectioned as above and frozen. These samples will be subsampled for analysis of sediment porosity and wet weight to dry weight ratios. These cores had been held in the laboratory for up to ten days.

³⁾ Archived subcores are held at AGSO. These cores had been held in the laboratory for up to 10 days from collection.

Cores were sieved on board ship for qualitative analysis of macrofauna.

⁵⁾ Sediment samples were collected at sites 31 and 36 for grain size analysis of the 0-5 cm and 6-10 cm depth intervals. At other sites, grain size samples were collected as part of the contaminants programme.

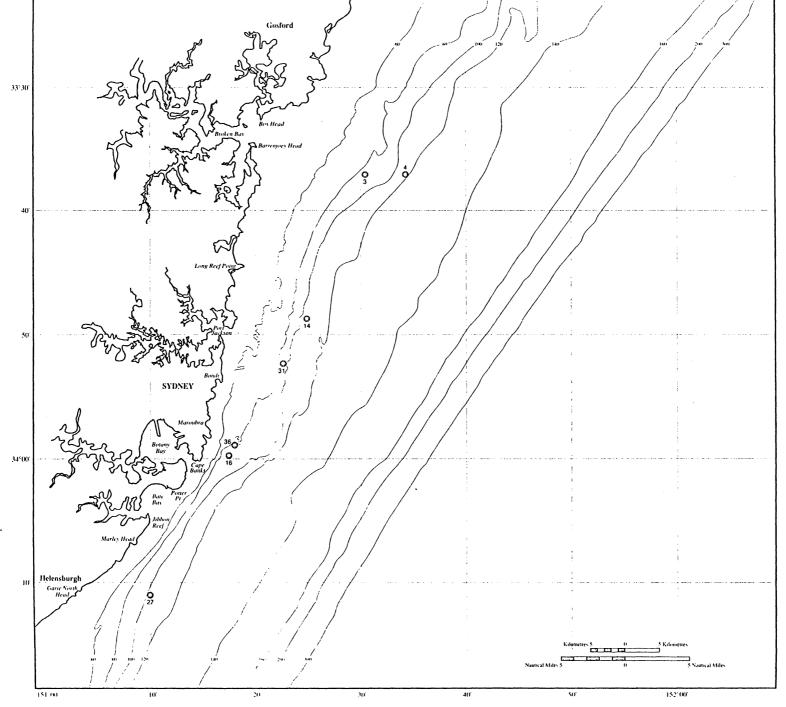
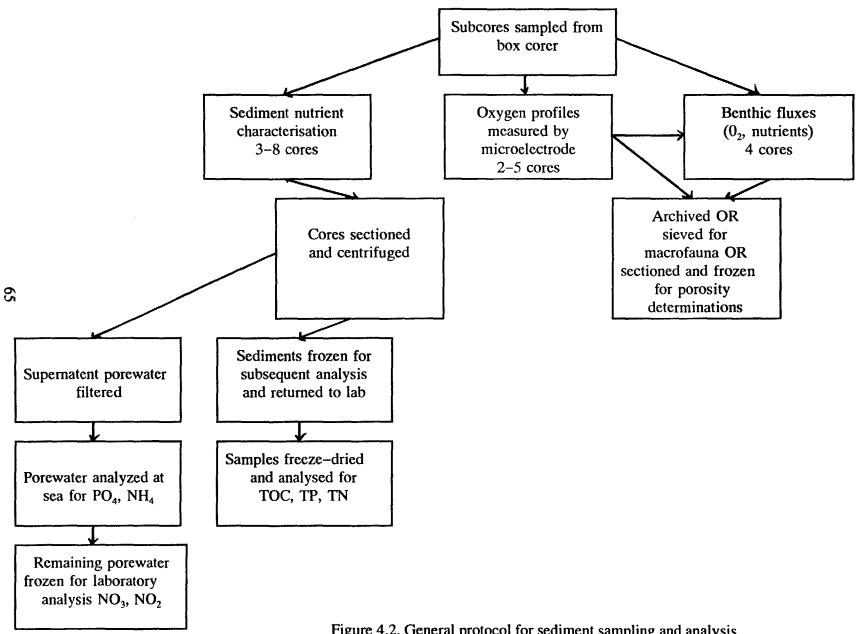
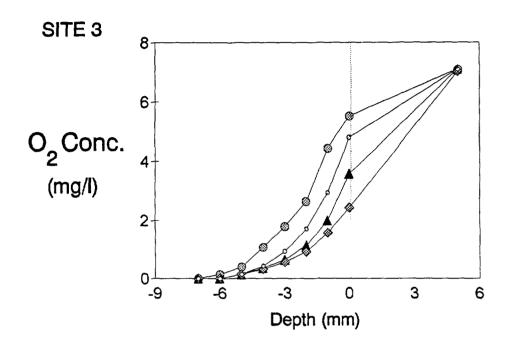


Figure 4.1. Map of box core sampling locations for sediment (nutrient) geochemistry.




Figure 4.2. General protocol for sediment sampling and analysis.

Australian Geological Survey Organisation

99

Figure 4.3 Locations of sampling sites for sediment microbiology sampling.

The property of th

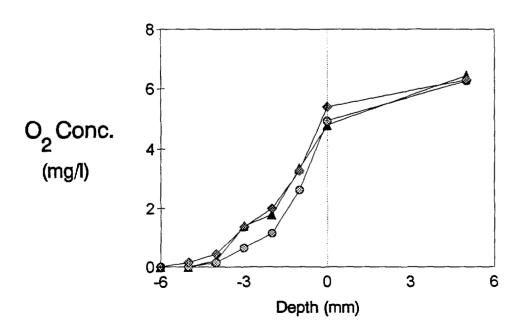
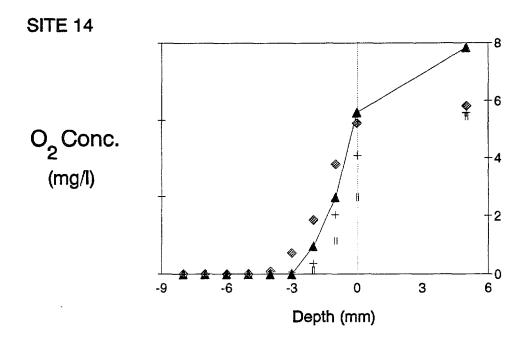



Figure 4.4 Oxygen profiles in fine grained coastal sediments.

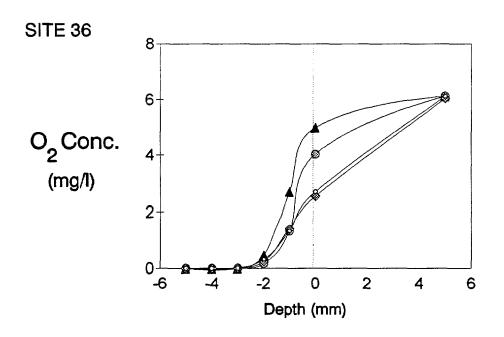
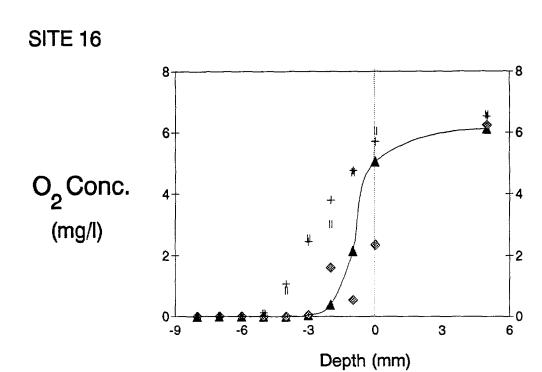



Figure 4.4 (cont.) Oxygen profiles in fine grained coastal sediments.

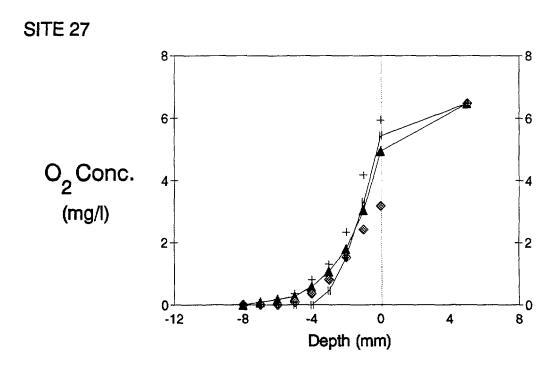
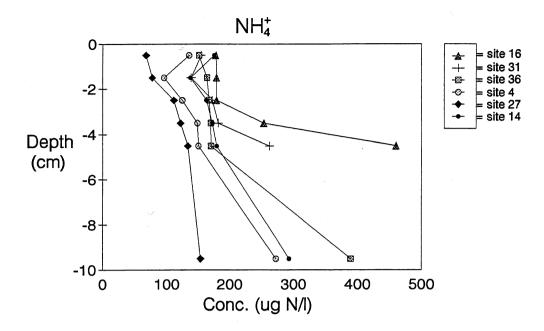



Figure 4.4 (cont.). Oxygen profiles in fine grained coastal sediments.

Nutrient concentrations in sediment porewaters

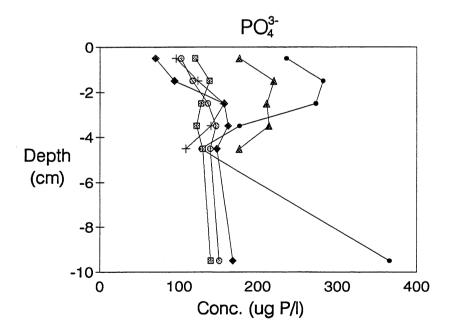


Figure 4.5. Porewater nutrient concentrations in fine grained coastal sediments.

€

E

6

Site

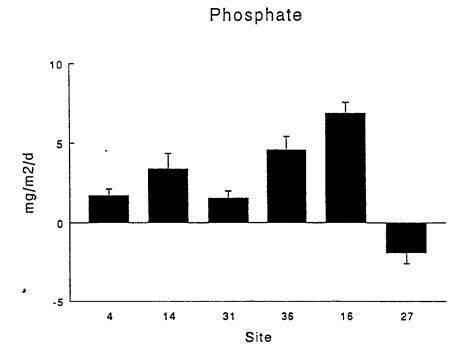
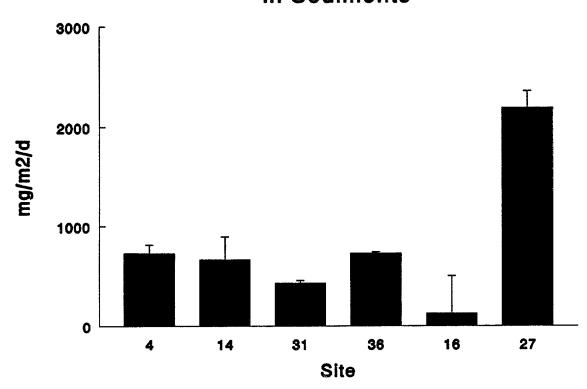



Figure 4.6. Flux rates of ammonia and phosphate from fine grained coastal sediments.

Oxygen Consumption Rates in Sediments

Organic Carbon Utilisation in Sediments

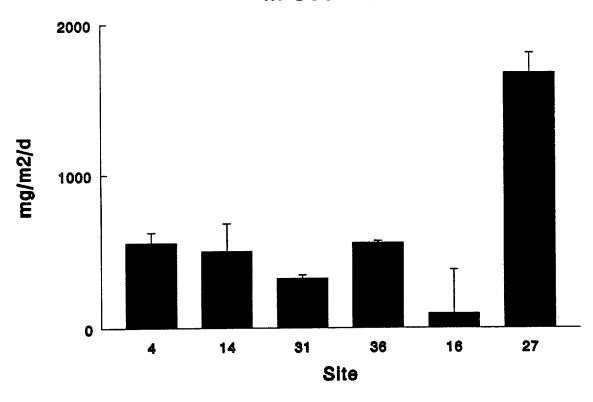


Figure 4.7. Oxygen and carbon utilisation in fine grained coastal sediments.

5. Continuous geochemical tracers (CGT); light hydrocarbons, dissolved oxygen, pH, temperature and salinity in seawater.

The pilot project conducted in 1991 (see Fig. 1.1), suggested that light hydrocarbon anomalies in seawater may be potential tracers of anthropogenic inputs to the coastal zone. These data potentially provided a new tool which could be used to (i) document the dispersion of anthropogenic plumes of materials injected into the coastal zone (ii) develop an understanding of oceanographic and geochemical processes controlling the dispersion of these materials, and hence (iii) assist in the development of environmental monitoring strategies.

The continuous geochemical tracer (CGT) component of this new program (Survey 112) was expanded beyond the scope of the pilot survey (Fig. 1.1) and attempted to identify and characterise the hydrocarbon signals from a number of possible pollutant 'sources' along the coastline offshore Sydney. The CGT component included the Direct Hydrocarbon Detection (DHD), and a submersible data logger (SDL - Yeo-Kal instruments), installed into the CGT tow-fish to provide additional measurements (seawater temperature, salinity, dissolved oxygen and pH), that may also be useful tracers of anthropogenic inputs. Schematics of the CGT capability aboard *Rig Seismic* are shown in Figure 5.1.

The distributions of light hydrocarbons in seawater and sediments (see below) provide sets of both 'baseline' and geochemical/oceanographic processes data that complement the other components of the program - contaminants in sediments, and the nutrient (nitrogen and phosphorus) status of sediments.

Objectives

The objectives of this part of the program were therefore:

- 1. To determine the concentrations and distributions of light hydrocarbons entering the coastal zone from the ocean outfalls located at Malabar, North Head and Bondi.
- 2. To determine the concentrations and distributions of light hydrocarbons entering the coastal zone from major estuaries including, Port Jackson, Botany Bay, Broken Bay and Port Hacking.

- 3. To characterise the molecular and isotopic compositions of light hydrocarbons entering the coastal zone hence, test if these data are potential tracers of hydrocarbon 'source'
- 4. To determine the distributions of dissolved oxygen, pH, temperature and salinity in the coastal zone, and test if these parameters may be useful tracers of potential anthropogenic inputs (particularly around the ocean outfalls).

To achieve these objectives approximately 500 line-km of continuous geochemical profiling (CGT) was conducted between Port Hacking and Broken Bay. In addition, eighteen vertical profiles of both light hydrocarbon distributions and SDL (fourteen vertical profiles only), data were collected in the water column from near the ocean outfalls and also in the vicinity of the estuaries.

The complete interpretation of the data collected with the CGT capability is beyond the scope of this Record. The data on light hydrocarbons (DHD) will be presented in an accompanying Record (Heggie & others., 1993a), and the SDL data (hydrographic data and dissolved oxygen and pH) are also reported separately and integrated with parts of the DHD data (Heggie & others., 1993b).

Vertical distributions of hydrocarbons

The locations of the vertical profiles conducted are summarised in Table 5.1, Figure 5.2 (without labels) and in detail in Enclosure 7. An overview of these data is summarised below. Typical background levels of hydrocarbons in seawater are: THC (total hydrocarbons) = 14 ppm; methane = 3 ppm, ethane and propane = 0.02 ppm, ethylene = 0.1 ppm, propylene = 0.07 ppm and butanes < 0.1 ppm).

One of the objectives of this survey was to test if the different ocean outfalls could be distinguished from each other on the basis of both molecular and isotopic compositions. Furthermore, if hydrocarbon plumes were detected emanating from the estuaries, it is important to be able to distinguish these plumes from ocean outfall plumes when mixed in the coastal zone. In the following three figures, the relative abundances of methane and the C_2 + hydrocarbons are compared and contrasted for vertical profiles from the ocean outfalls and those from the entrances to the estuaries.

Figure 5.3, plots methane versus percent hydrocarbon wetness for all data collected from near the ocean outfalls. Percent hydrocarbon wetness is a term used by the petroleum exploration community (and retained here in lieu of a more appropriate way to express these data), to express the relative abundances of the C_2 + hydrocarbons as a percentage of the total hydrocarbon abundance, and used here - [percent hydrocarbon wetness = $sum(C_2+C_3+C_4)/sum(C_1+C_2+C_3+C_4)$ x 100]. Typical background methane values are about 3 ppm, while typical background seawater wetness values are < 3%.

In the plot of Figure 5.3, data from different ocean outfalls that plot on the same 'trend-line', have similar molecular abundances of methane and the C_2 + hydrocarbons, although the absolute concentrations of hydrocarbons between the outfalls may be very different. Among the vertical profiles, methane concentrations were as high as 22 ppm, but percent hydrocarbon wetness values were < 0.5 %. The trend-line of decreasing wetness (decreasing abundance of C_2 + hydrocarbons) characterise the ocean outfall data - with most data plotting on this line. Only three data points form one profile (VP112020) near North Head fall off this trend. These three points are all in surface waters and suggest an influence by surface runoff, and not the North Head outfall.

The cross-plot of methane versus percent hydrocarbon wetness for the vertical profiles conducted near the entrances to the estuaries is shown in Figure. 5.4. In this plot there is a cluster of data points around the 'background' values of methane < 5 ppm and wetness values < 3%, but there exists strongly developed trend-lines of increasing wetness with increasing methane content. For example, data from profile VP112017, from south of the entrance to Botany Bay (open squares) has percent hydrocarbon wetness values of >10% at methane concentration of about 12 ppm. The other data from near the entrance to Botany Bay (VP112016 - although this VP is closer to the Malabar outfall) show a trend of slightly decreasing wetness with increasing methane - reflecting the influence of the Malabar outfall rather than hydrocarbons from Botany Bay. Data from offshore Botany Bay (VP112010, open diamonds) represent background hydrocarbon concentrations.

Data from Port Jackson show two profiles with near background wetness and methane levels (VP 112003, VP112005), although the data from VP112005 (closed triangles) indicates a trend toward slightly decreasing wetness values at methane concentrations about twice typical background. This trend and the proximity of VP112005 to the North Head outfall indicates an influence from the outfall. The other profile

(VP112004, open triangles), collected from between North and South Head - and best located to reflect any hydrocarbons from Port Jackson, falls on the same trend-line (albeit at lower hydrocarbon values) as the data from south of the entrance to Botany Bay (VP112017).

The data from offshore Bate Bay (VP112018) show the largest increases in percent hydrocarbon wetness with small increases in methane. This is a surprising result given it's relative offshore location. This station is influenced by high levels of C_{2+} hydrocarbons, and is 'downstream' of the entrance to Botany Bay and directly offshore Bate Bay and Port Hacking.

The contrasts between these two types of compositional signals are shown in Figure 5.5. All of the ocean outfall data (including the VP 112016) from west of Malabar (near the entrance to Botany bay) plot on the trend-line of decreasing wetness with increasing methane. In contrast, those vertical profiles occupied near the entrances to major estuaries, with elevated hydrocarbon concentrations plot on a trend line of increasing wetness (increasing C_2 + abundance) with increasing methane content. These contrasts characterise the molecular compositional differences between ocean outfalls and hydrocarbon mixtures from near the estuaries.

Longitudinal profiles of light hydrocarbons in the coastal zone

The way-points for the CGT survey lines are summarised in Table 5.2. Figures of the ship tracks during the CGT surveys are shown in Figures 5.6 through 5.9. The survey around the WB ocean outfalls was carried out at four different tow-fish depths. For the surveys into Broken Bay and Bate Bay the tow-fish depth was at 5 to 10 m water depth unless noted otherwise. A brief summary of the longitudinal profiling is presented below.

Longitudinal profiles of THC (total hydrocarbons) methane, ethane, ethylene and methane, propane and propylene for survey lines 112005 (5 m water depth); 112009 (25 m water depth); 112013 (45 m water depth) are shown in Figures 5.10, 5.11 and 5.12. Each of these lines pass over the ocean outfalls. On each of these profiles, the light hydrocarbon abundance is elevated, over typical background concentrations, in the vicinity of the ocean outfalls and also in the southern sector of the survey area in the vicinity of offshore Botany Bay. Elevated levels of THC and methane are evident particularly around the ocean outfalls, but there are no strong increases in C_2 +

hydrocarbons near the ocean outfalls. Increases in the C_2 + hydrocarbons are strongest in the southern sector of the survey area.

These types of data have been used to construct a series of posted-value plots of both the methane and percent hydrocarbon wetness values along the survey lines. These plots are not reproduced here - they are presented and discussed in an accompanying Record (Heggie & others., 1993a) - but a brief summary of some preliminary observations from these plots is provided here.

At 5 m water depth there is little evidence of the North Head outfall influencing the surface waters (< 5m). The surface waters of the northern and most eastern parts of the survey area generally did not show any influences of the ocean outfalls at the time of this survey. However, methane values around Bondi and Malabar are frequently greater than two-fold background concentrations. These elevated values extend seaward and south of Cape Banks. Hence, the Malabar ocean outfall penetrates to shallower depths than the other outfalls - at least during this survey. This result may be a consequence of differences in the stratification in the water column at the three ocean outfall sites, and also be related to the larger volumes of freshwater (buoyant) discharge at Malabar as contrasted to Bondi and North Head, or combinations of both factors.

The percent hydrocarbon wetness plot from the 5 m survey shows relatively abundant levels of C_{2+} hydrocarbons near to and south of the entrance to Port Jackson and, east and south of the entrance to Botany Bay.

Methane distributions at 25 m water depth indicate that the discharges from Bondi and North Head outfalls are more prominent than they were at 5 m depth. The Malabar outfall remains the most prominent at 25 m, with many observations of methane greater than two-fold background over much of the survey lines south of the outfall. Isolated occurrences of methane greater than three-fold background were found near Bondi and south of Malabar (directly off the entrance to Botany Bay).

The C_{2+} hydrocarbons are low and less than background values over much of the survey area (<1.7 % of the hydrocarbon mixture), at 25 m water depth, except in a small area, directly offshore Botany Bay, and also south and east of Botany Bay and Cape Solander.

The ocean outfalls are evident throughout most of the study area at 45 m water depth. The highest concentrations of methane, at this depth, observed during the survey, >100 ppm, were found near the Bondi outfall.

The relative abundance of the C_{2+} hydrocarbons at 45 m depth (compared to the total hydrocarbon mix), is highest in a broad band south of the Malabar outfall encompassing the entrance to Botany Bay and extending to the most southern, western and offshore parts of the survey area.

Data for the mini-survey into Bate Bay indicated significantly elevated hydrocarbon percent wetness values (increased abundances of the C_{2+} hydrocarbons) of > 8.5%, or about four-fold background, were found throughout Bate Bay, even extending to offshore of Port Hacking.

Carbon isotope sample collection

The carbon isotopic compositions of methane, combined with the molecular abundances of hydrocarbon gas mixtures, have been used to determine the origin of hydrocarbons (e.g., Fuex 1977; Bernard & others., 1977). Because hydrocarbons added to the coastal zone offshore Sydney could be derived potentially from different sources (ocean outfalls and industrial discharges), samples were collected to determine the isotopic composition of the methane component. To investigate differences in isotopic compositions of methane from the different geographic areas of the survey, several 1-litre samples of mixed light hydrocarbons were collected when significant water-column anomalies were found. These samples were collected by diverting some of the gas stream from the gas extractor, and displacing water from an inverted 1-litre glass bottle. These samples were logged and stored for subsequent analyses. The logged samples, including the latitude and longitude of the beginning and end of sampling, the number of shot-points and the approximate median methane value are summarised in Table 5.3.

SDL (temperature, salinity, dissolved oxygen and pH data)

Temperature, salinity, dissolved oxygen and pH varied throughout the survey area. A complete presentation of these data is beyond the scope of this Record - these data and an interpretation are presented in an accompanying AGSO Record (Heggie & others., 1993c). Plots of THC (total hydrocarbons) and dissolved oxygen along the

survey lines which traverse the ocean outfall diffuser outlets are illustrated in Figures 5.13 through 5.15.

At 5 m water depth there is no evidence of the North Head ocean outfall, but THC values increase near the Bondi outfall and continue to increase to the south. Highest THC values were found south of Malabar at levels about three-fold background concentrations. Local areas of elevated THC are coincident with depleted oxygen concentrations (Fig 5.13).

At 25 m water depth, elevated levels of THC were found near the North Head and Bondi ocean outfalls. Oxygen concentrations are depleted in these areas. However, while individual data do not always coincide (elevated THC and low oxygen), generally, the local changes in these parameters are coincident. [Some of the individual variations may be explained by difficulties in matching two independently, but simultaneously collected data sets. SDL data (oxygen) are collected in-situ at 15 second intervals, while THC data are measured in the ship laboratory at two minute intervals. The two data sets have time as the common denominator. SDL data plotted are those corresponding to two minute sampling intervals. THC concentrations increase systematically immediately south of the Malabar outfall, and oxygen concentrations systematically decrease south of the Malabar outfall (Fig 5.14).

At 45 m water depth, THC levels are elevated near the North Head and Bondi outfalls, and dissolved oxygen levels are lower than typical background concentrations. The increase in THC near the Malabar outfall is very local and evident over a distance of about 500 m south of the outfall. THC concentrations are about twice typical background concentrations south of Malabar (Fig 5.15).

Table 5.1 Locations of Vertical Profiles

				<u> </u>	
VP	WP_	Lat.	Long.	WD	Location
		(deg S)	(deg E)	(m)	
				-	
VP112001	WP 2	33.569	151.323	49	Entrance to Broken Bay
VP112002	WP 5	33.808	151.348	65	1 nm north of North Head outfall
VP112003	WP 6	33.848	151.345	72	1.5 nm south of North Head outfall
VP112004	WP 8	33.831	151.296	30	Entrance to Port Jackson
VP112005	WP 7	33.838	151.321	50	2 nm east of South Head
VP112006	WP 9	33.897	151.303	67	0.5 nm south of Bondi outfall
VP112007	WP 10	33.898	151.327	71	1.5 nm east of Bondi outfall
VP112008	WP 11	33.990	151.289	85	1 nm south of Malabar outfall
VP112009	WP 12	33.998	151.307	93	1.5 nm south of Malabar outfall
VP112010	WP 13	34.038	151.281	103	3 nm southeast of Botany Bay entrance
VP112013	WP 35	33.832	151.334	62	0.5 nm southwest of North Head outfall
VP112014	WP 36	33.824	151.340	60	Over the North Head diffuser pipes
VP112015	WP 37	33.987	151.279	56	1 nm southwest of Malabar outfall
VP112016	WP 38	33.999	151.265	54	1.5 nm southwest of Malabar outfall
VP112017	WP 39	34.022	151.239	49	0.5 nm east of Botany Bay entrance
VP112018	WP 26	34.075	151.238	100	3 nm southeast of Bate Bay
VP112019	WP 34	33.827	151.338	60	Over the North Head diffuser pipes
VP112020	WP 35	33.832	151.335	63	0.5 nm southeast of North Head outfall

Table 5.2. Navigation data for the CGT survey

WP	TIME	POSITION W.G.S.	DISTANCE	COMMENTS
#	SSS.DDD.HHMMSS		LAST W.P.	
	112.266.102700	S33 34.147 E151 19.418	1	S.O.L. BROKEN BAY
				C.G.T.
	112.266.104300	S33 34.205 E151 20.825	2.17km.	
	112.266.113800	S33 38.834 E151 21.260	8.60km.	E.O.L. BROKEN BAY
				C.G.T.
	BROKEN	BAY C.G.T. TOTAL	10.77km.	
	112.268.010000	S34 01.334 E151 14.326		S.O.L. BATE BAY C.G.T.
	112.268.011200	S34 02.276 E151 13.806		
	112.268.014400	S34 03.363 E151 10.629	5.28km.	
	112.268.015700	S34 03.951 E151 11.151	1.35km.	
	112.268.023000	S34 04.514 E151 14.145	4.71km.	E.O.L. BATE BAY C.G.T.
	BATE	BAY C.G.T. TOTAL	13.26km.	
WP #19	112.268.080000	S34 04.327 E151 13.661		C.G.T. @ 5m. below surface
WP #20	112.268.091900	S33 58.342 E151 17.388	12.47km.	
WP #21	112.268.102200	S33 53.268 E151 17.644	9.41km.	
WP #22	112.268.113800	S33 47.339 E151 20.808	12.01km.	E.O.L PT. 1
WP #23	112.268.115800	S33 48.484 E151 20.869		S.O.L. PT. 2 C.G.T. @ 5m.
WP #24	112.268.125700	S33 53.154 E151 18.327	9.49km.	
WP #25	112.268.135500	S33 58.460 E151 17.862	9.85km.	
WP #26	112.268.151400	S34 04.472 E151 14.273	12.42km.	E.O.L. PT. 2
WP #40	112.268.170700	S34 04.677 E151 14.795		S.O.L. PT.3 C.G.T. @ 5m.
WP #41	112.268.174400	S34 01.968 E151 16.392	5.62km.	
WP #42	112.268.183100	S33 58.586 E151 18.501	7.05km.	
WP #43	112.268.193400	S33 53.309 E151 18.915	9.79km.	
WP #44	112.268.204500	S33 47.749 E151 21.764	11.19km.	E.O.L. PT. 3
WP #30	112.268.210500	S33 48.725 E151 21.883		S.O.L. PT. 4 C.G.T. @ 5m.
WP #29	112.268.220200	S33 53.368 E151 19.592	9.29km.	
WP #28	112.268.230000	S33 58.557 E151 19.149	9.64km.	
WP #27	112.269.003300	S34 05.907 E151 14.659	12.74km.	E.O.L. PT. 4
		C.G.T. @ 5m. TOTAL	130.97km.	

Table 5.2 continued.

12.269.020000	\$34 04.388 E151 13.643		C.G.T. @ 25m. below the
			surface
12.269.032000	S33 58.433 E151 17.333	12.47km.	
12.269.042400	S33 53.216 E151 17.637	9.41km.	
12.269.054100	S33 47.321 E151 20.812	12.01km.	E.O.L. PT. 1
12.269.060200	S33 48.425 E151 20.869		S.O.L. PT. 2 C.G.T. @ 25m.
12.269.070400	S33 53.201 E151 18.312	9.49km.	
12.269.080300	S33 58.383 E151 17.869	9.85km.	
12.269.092700	S34 04.509 E151 14.266	12.42km.	E.O.L. PT. 2
12.269.093800	S34 04.698 E151 14.713		S.O.L. PT. 3 C.G.T. @ 25m.
12.269.101200	S34 02.038 E151 16.351	5.62km.	
12.269.105500	S33 58.602 E151 18.490	7.05km.	
12.269.115400	S33 53.325 E151 18.924	9.79km.	
12.269.130500	S33 47.728 E151 21.881	11.19km.	E.O.L. PT. 3
12.269.132500	S33 48.696 E151 21.894		S.O.L. PT. 4 C.G.T. @ 25m.
12.269.143000	\$33 53.362 E151 19.581	9.29km.	
12.269.154800	S33 58.486 E151 19.171	9.64km.	
12.269.175000	S34 04.903 E151 15.271	12.74km.	E.O.L. PT. 4 C.G.T. @ 25m.
	C.G.T. @ 25m. TOTAL	130.97km.	
12.269.185700	S34 04.305 E151 13.669		C.G.T. @45 m. below the
			surface
12.269.201300	S33 58.303 E151 17.368	12.47km.	
12.269.211300	S33 53.181 E151 17.661	9.41km.	
12.269.222600	S33 47.270 E151 20.856	12.01km.	E.O.L. PT.1
12.269.225200	S33 48.441 E151 20.878		S.O.L. PT. 2 C.G.T. @ 45m.
12.269.235700	S33 53.180 E151 18.333	9.49km.	
12.270.010900	S33 58.412 E151 17.844	9.85km.	
12.270.023700	S34 04.442 E151 14.286	12.42km.	E.O.L. PT.2 C.G.T. @45m.
12.270.030900	\$34 04.722 E151 14.718		S.O.L. PT. 3 C.G.T. @ 45m.
12.270.034500	S34 02.034 E151 16.339	5.62km.	
12.270.043200	S33 58.591 E151 18.474	7.05km	
12.270.053400	S33 53.300 E151 18.884	9.79km.	
12.270.065000	S33 47.704 E151 21.881	11.19km.	E.O.L. PT. 3
12.270.071300	\$33 48.717 E151 21.890		S.O.L. PT. 4 C.G.T. @ 45m.
	S33 53.394 E151 19.603	9,29km.	·
	12.269.032000 12.269.042400 12.269.054100 12.269.060200 12.269.080300 12.269.092700 12.269.093800 12.269.101200 12.269.115400 12.269.130500 12.269.132500 12.269.143000 12.269.154800 12.269.154800 12.269.175000 12.269.175000 12.269.201300 12.269.211300 12.269.211300 12.269.225200 12.269.225200 12.269.235700 12.270.010900 12.270.030900 12.270.034500 12.270.043200 12.270.053400 12.270.053400 12.270.053400 12.270.065000 12.270.071300	12.269.032000 S33 58.433 E151 17.333 12.269.042400 S33 53.216 E151 17.637 12.269.054100 S33 47.321 E151 20.812 12.269.060200 S33 48.425 E151 20.869 12.269.070400 S33 53.201 E151 18.312 12.269.080300 S33 58.383 E151 17.869 12.269.093800 S34 04.509 E151 14.266 12.269.093800 S34 04.698 E151 14.713 12.269.101200 S34 02.038 E151 16.351 12.269.105500 S33 58.602 E151 18.924 12.269.130500 S33 48.696 E151 21.881 12.269.132500 S33 48.696 E151 21.881 12.269.132500 S33 53.362 E151 19.581 12.269.143000 S33 53.362 E151 19.581 12.269.15400 S33 53.362 E151 19.581 12.269.15400 S33 53.362 E151 19.581 12.269.154800 S33 58.486 E151 19.171 C.G.T. @ 25m. TOTAL 12.269.185700 S34 04.305 E151 13.669 12.269.221300 S33 58.303 E151 17.368 12.269.211300 S33 53.181 E151 17.661 12.269.225200 S33 47.270 E151 20.856 12.269.225200 S33 48.441 E151 20.878 12.269.235700 S33 58.412 E151 17.844 12.270.010900 S33 58.412 E151 14.286 12.270.030900 S34 04.722 E151 14.718 12.270.034500 S34 02.034 E151 16.339 12.270.043200 S33 53.300 E151 18.884 12.270.053400 S33 53.300 E151 18.884 12.270.053400 S33 47.704 E151 21.881 12.270.055000 S33 48.717 E151 21.880	12.270.010900 S33 58.412 E151 17.844 9.85km. 12.270.023700 S34 04.442 E151 14.286 12.42km. 12.270.030900 S34 04.722 E151 14.718 12.270.034500 S34 02.034 E151 16.339 5.62km. 12.270.043200 S33 58.591 E151 18.474 7.05km 12.270.053400 S33 53.300 E151 18.884 9.79km. 12.270.065000 S33 47.704 E151 21.881 11.19km. 12.270.071300 S33 48.717 E151 21.890

Table 5.2 continued.

WP #28	112.270.093500	S33 58.462 E151 19.166	9.64km.	
WP #27	112.270.105900	\$34 04.914 E151 15.231	12.74km.	E.O.L. PT.4 C.G.T. @ 45m.
		C.G.T. @ 45m. TOTAL	130.97km.	
WP #27	112.270.122900	S34 04.905 E151 15.256		C.G.T. @ 15m. above sea
				floor
WP #28	112.270.150100	S33 58.542 E151 19.151	12.74km.	
WP #29	112.270.160100	\$33 53.375 E151 19.581	9.64km.	
WP #30	112.270.170200	S33 48.725 E151 21.879	9.29km.	E.O.L. PT. 1 C.G.T. @ 15m.
WP #44	112.270.172100	\$33 47.763 E151 21.817		S.O.L. PT. 2 + 1 n.m.
WP #43	112.270.183600	S33 53.318 E151 18.911	11.19km.	
	112.270.184200	S33 53.789 E151 18.876	0.87km.	FISH LOST C.G.T. @ 15m.
		C.G.T. @15m. TOTAL	43.73m.	
		C.G.T. TOTAL	460.67km.	

Table 5.3. List of samples collected for determination of the carbon isotopic composition of methane, including locations, approximate methane content and tow-fish depth.

Line	Sample	Shotpoint	Methane	Fish	Start	Start	Stop	Stop	Comments
			(ppm)	Depth (m)	Lat. (S)	Lon. (E)	Lat (S)	Lon. (E)	
								ļ	
Transit	SS112 NZ1			10	33.782	151.714			offshore
	SS112 NZ2			10					offshore
	SS112 NZ3			10				ļ	offshore
	SS112 NZ4			10					offshore
	SS112 NZ5			10					offshore
	SS112 NZ6			10					offshore
	SS112 NZ7			10					offshore
	SS112 NZ8			10					offshore
	SS112 NZ9			10					offshore
	SS112 NZ10			10					offshore
Hsurvey	SS112 01	173 - 177	1.0 - 3.0	13	33.578	151.364	33.571	151.346	Bath.
									survey
VP112001	SS112 02	9 - 14.	3.6	7		151.323			
VP112001	SS112 03	14 - 22	3.6	7 - 14		151.323			
VP112001	SS112 04	23 - 27	3.6	13		151.323			
VP112002	SS112 05	23 - 28	4.1	1		151.348			
VP112013	SS112 06	20 - 37		4 - 35.	33.832	151.335			
VP112003	SS112 07	4 - 14.	3.5 - 3.9	1	33.850	151.347	33.848	151.346	WP3 North
									Head
VP112003	SS112 08	14 - 24	3.6	15 -	33.848	151.346	33.848	151.346	WP3 North
		<u> </u>		35					Head
VP112003	SS112 09	24 - 34	3.5	35 -	33.848	151.346	33.848	151.346	WP3 North
				68					Head
VP112003	SS112 10	34 - 43	3.3 - 3.3	68 -	33.848	151.346	33.849	151.346	WP3 North
				70			ļ		Head
VP112004	SS112 11	21 - 32	6.1	9 - 24.		151.296			
VP112014	SS112 12	30 - 32	12.1	55		151.340			
VP112014	SS112 13	32 - 34	12.1	55		151.340			
VP112006	SS112 14	21 - 27	15 - 21.7	30 - 35	33.897	151.303	33.897	151.303	
VP112006	SS112 15	37 - 43	3.7 - 18.8	53 - 59	33.897	151.303	33.897	151.303	
VP112006	SS112 16	51 - 53	3.6 - 19	25	33.897	151.303	33.897	151.303	
VP112006	SS112 17	53 - 56	19 - 21	25		151.303			
VP112006	SS112 18	56 - 54	20 - 23 8	26		151.302			
VP112008	SS112 19	48 - 52	3.1 - 4.5	68		151.289			
VP112015	SS112 20	34 - 46		23 -			33.987	151.280	· · · · · · · · · · · · · · · · · · ·
<u></u>				51					
VP112017	SS112 21	6 - 21.	3.2 - 8.7	1 - 9.	34.018	151.244	34.022	151.238	WP39 High
	1	l					<u> </u>		C2 to C4

VP112017	SS112 22	23 - 33	5.3 - 11.1	9 - 22.	34.022	151.239	34.022	151.239	WP 39 High C2 to C4
VP112017	SS112 23	33 - 43	7.6 - 11.2	22 - 32	34.022	151.239	34.022	151.239	
112 003	\$\$112 24	1 - 12.	3.3 - 6	2 - 11.	34.022	151.239	34.049	151.210	Bate Bay Line
112 003	SS112 25	12 - 22.	5.2 - 9.5	12 - 5.	34.049	151.210	34.056	151.177	Bate Bay Line
112 005	SS112 26	81 - 86	7.6 - 8.8	4	34.017	151.272	34.029	151.265	
112 006	SS112 26	51 - 54	7.6 - 8.2	3	34.033	151.273	34.023	151.279	
112 008	SS112 27	10 17	4.1 - 9.8	25	34.100	151.210	34.081	151.222	
112 008	SS112 28	40 - 47	6.3 - 13.6	25	34.023	151.258	34.003	151.270	
112 008	SS112 29	82 - 86	4.7 - 45.5	25	33.909	151.293	33.898	151.294	
112 008	SS112 30	111 - 116	4.6 - 13	25	33.830	151.325	33.818	151.331	
112 009	SS112 31	18 - 25	3.5 - 11.6	26	33.825	151.339	33.843	151.329	
112 009	SS112 32	41 - 47	4.6 - 27.5	26	33.887	151.305	33.905	151.303	
112 009	SS112 33	82 - 87	8.3 - 17.5	26	34.004	151.280	34.017	151.272	
112 009	SS112 34	88 - 94	11.8 - 30	26	34.019	151.271	34.034	151.262	
112 009	SS112 35	95 - 104	10.1 - 21	26	34.039	151.259	34.060	151.247	
112 009	SS112 36	106 - 109	10.2 - 12	26	34.064	151.245	34.080	151.237	
112 010	SS112 37	4 - 9.	8.1 - 14	25	34.078	151.245	34.068	151.252	
112 010	SS112 38	10 - 14.	8.1 - 10	25	34.065	151.254	34.053	151.261	
112 013	SS112 39	15 - 25.	4.0 - 25	38 - 40	33.805	151.349	33.830	151.336	
112 013	SS112 40	42 - 50	24 - 107	18	33.872	151,313	33.893	151.305	High C1
112 014	SS112 41	60 - 64	3.5 - 5.3	42 - 44	33.957	151.311	33.945	151.311	
112 014	SS112 42	94 - 98	4.0 - 22	50	33.862	151.329	33.852	151.334	
112 019	SS112 43	20 - 25	2.6	32 - 40	33.827	151.349	33.827	151.336	
112 019	SS112 44	25 - 34	2.5	40 - 47	33.827	151.332	33.832	151.323	

AGSO CGT System

(Continuous Geochemical Tracers)

DHD

Direct Hydrocarbon Detection

C1 to C6 hydrocarbons every 2 minutes

C7 to C8 hydrocarbons every 8 minutes

SDL

Yeo-Kal Submersible Data Logger

Temperature, conductivity dissolved oxygen and pH at 15 second intervals

PC acquisition

Post survey data processing and displays

Figure 5.1 Schematic diagram of the CGT (Continuous Geochemical Tracer) capability aboard *Rig Seismic*

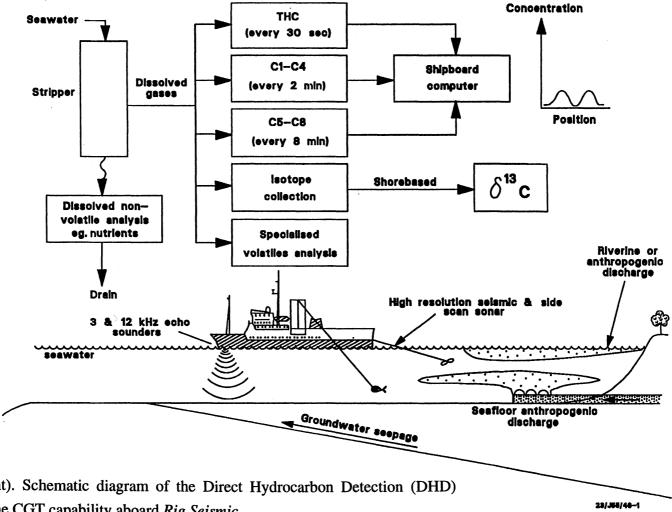


Figure 5.1 (cont). Schematic diagram of the Direct Hydrocarbon Detection (DHD) component of the CGT capability aboard Rig Seismic.

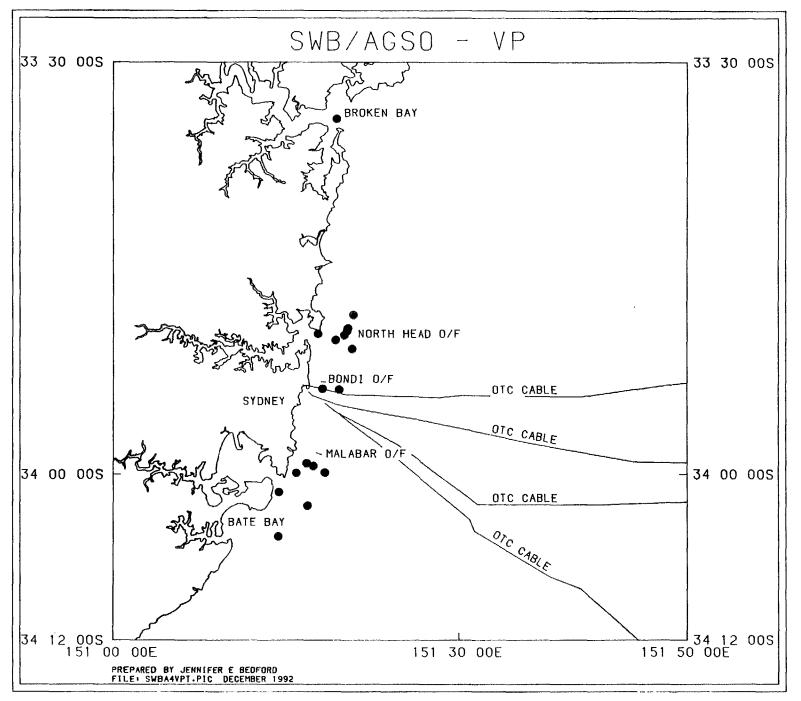


Figure 5.2 Map of the locations of vertical profiles conducted during Survey 112

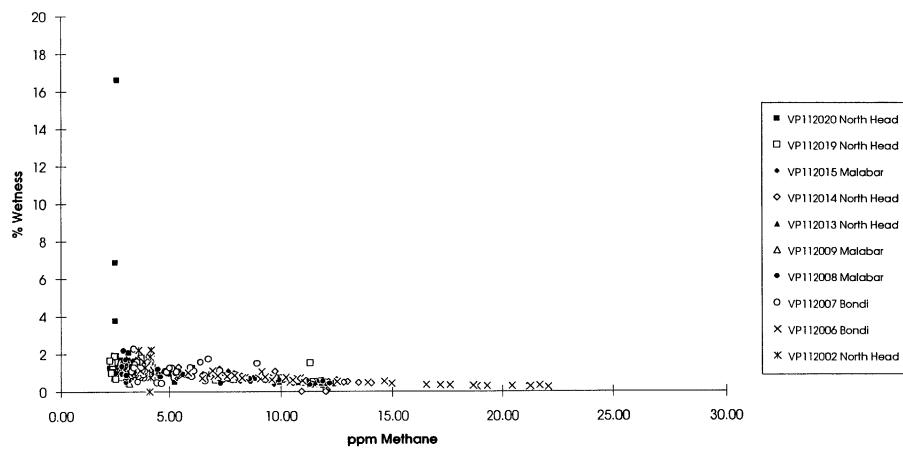


Figure 5.3 Percent hydrocarbon wetness and methane for the vertical profiles located near the ocean outfalls.

18

Figure 5.4 Percent hydrocarbon wetness and methane for the vertical profiles located near the entrances to estuaries.

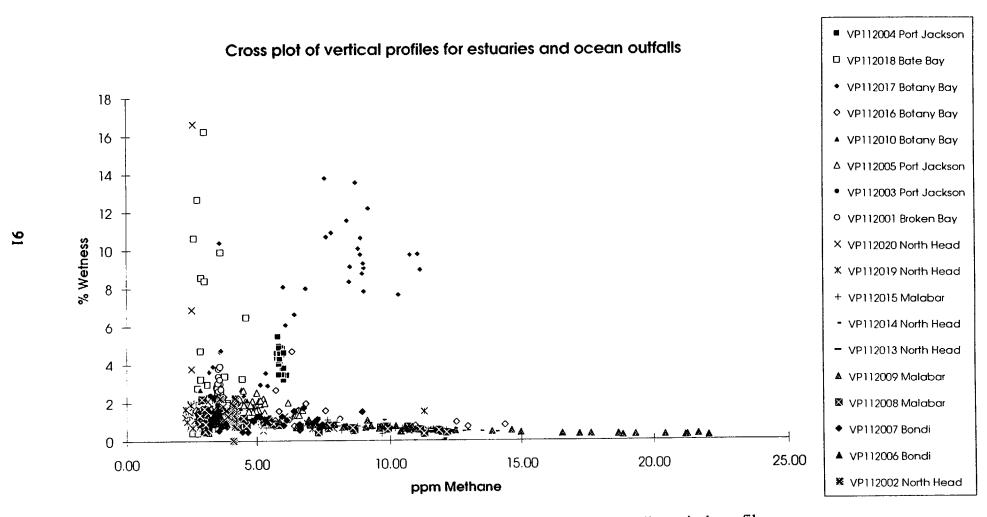


Figure 5.5 Percent hydrocarbon wetness and methane for all vertical profiles.

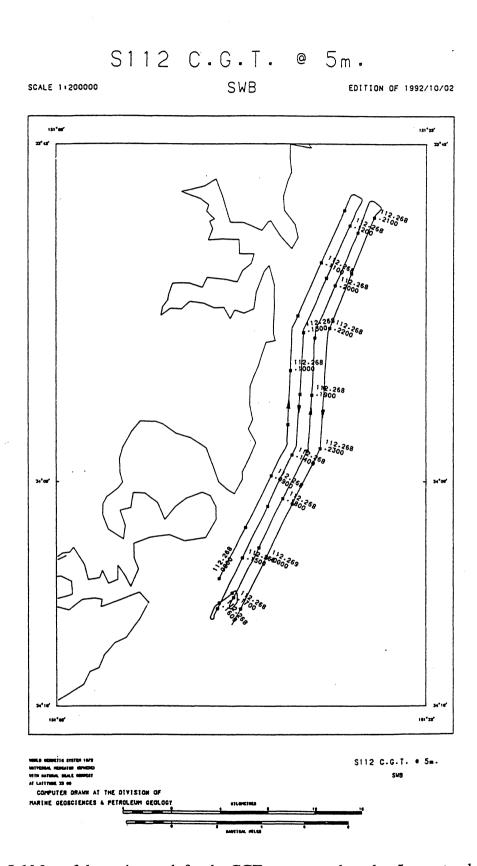
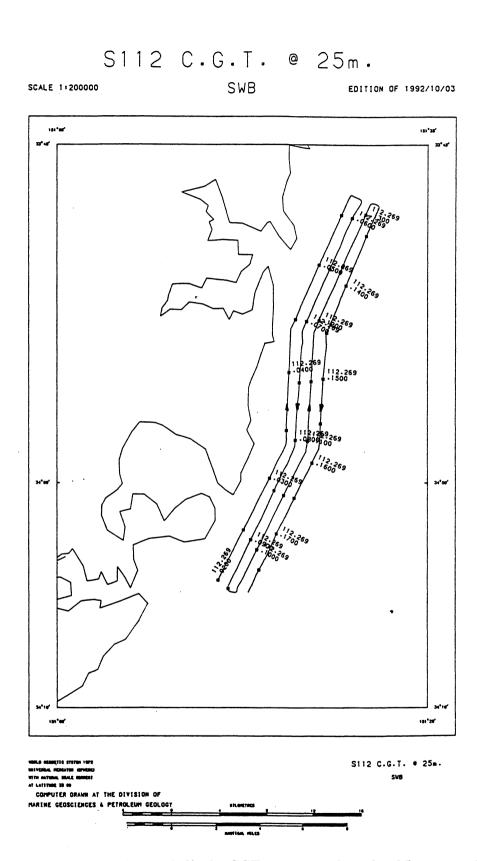



Figure 5.6 Map of the cruise track for the CGT survey conducted at 5 m water depth.

E C

œ.

•

Œ)

œ

Ŵ

Œ,

Figure 5.7 Map of the cruise track for the CGT survey conducted at 25 m water depth.

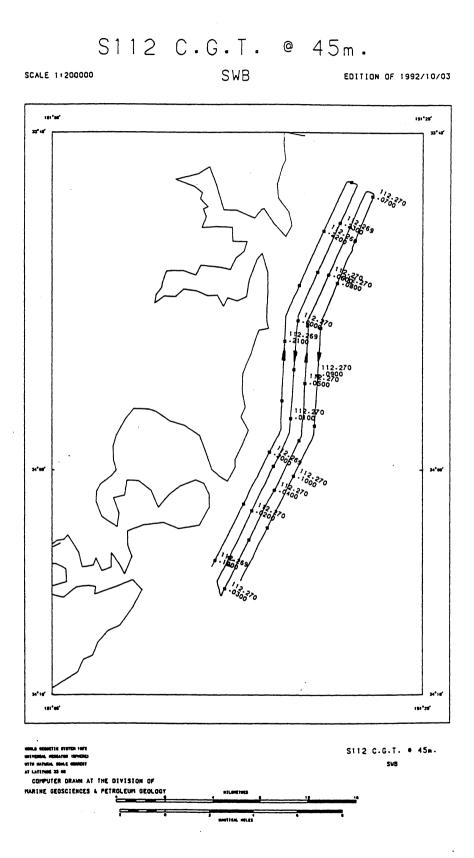


Figure 5.8 Map of the cruise track for the CGT survey conducted at 45 m water depth.

S112 C.G.T. @ 15m. ABOVE SEAFLOOR

SCALE 1:200000 SWB EDITION OF 1992/10/03

<u>a</u>

1

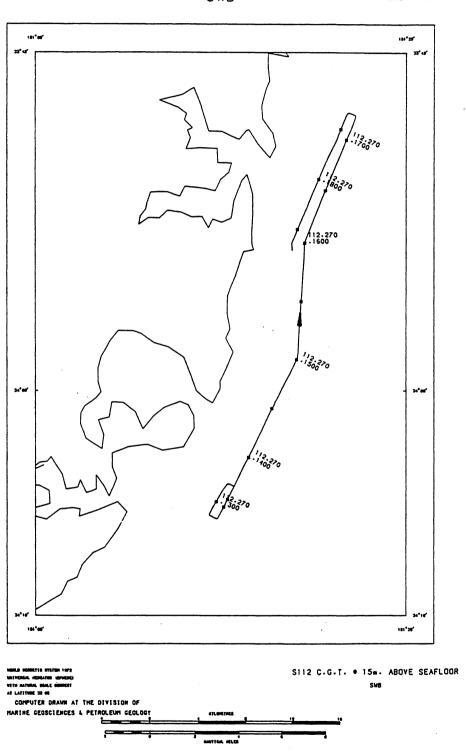


Figure 5.9 Map of the cruise track for the CGT survey conducted at about 15 m altitude above the seafloor.

Line 112005 THC, Methane

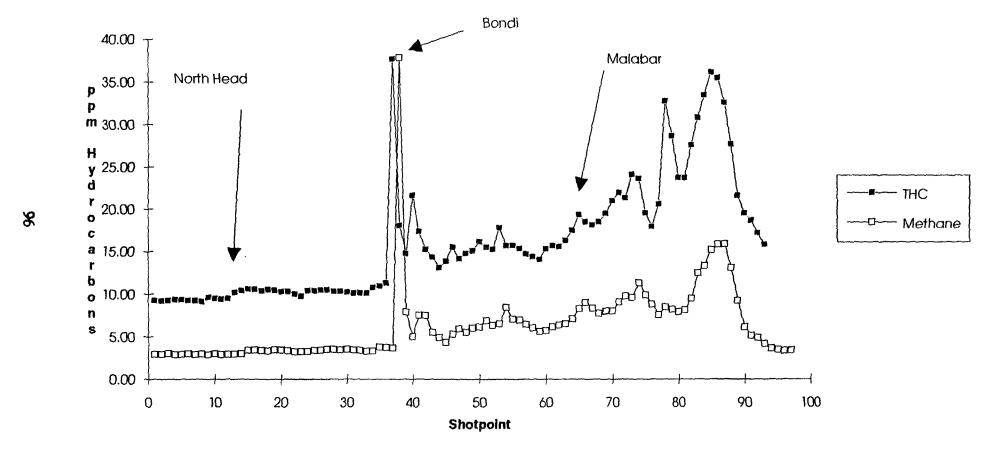


Figure 5.10. Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112005.

Line 112005 Methane, Ethane, Ethylene

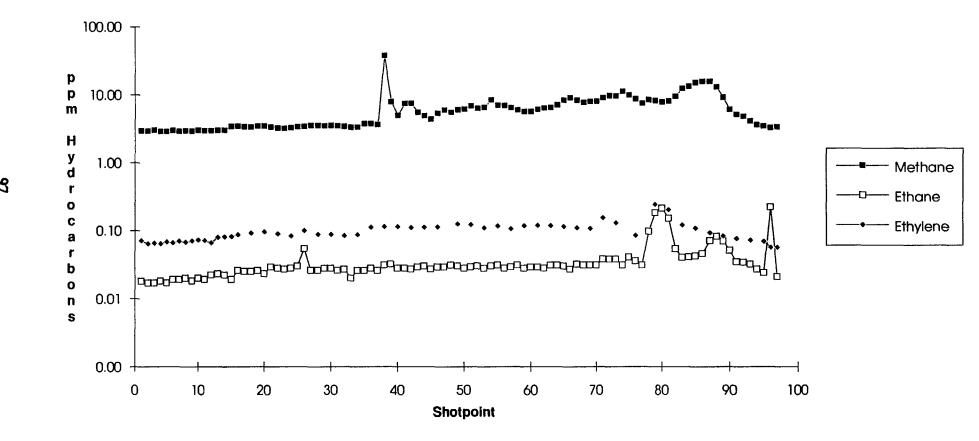


Figure 5.10 (cont.) Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112005.

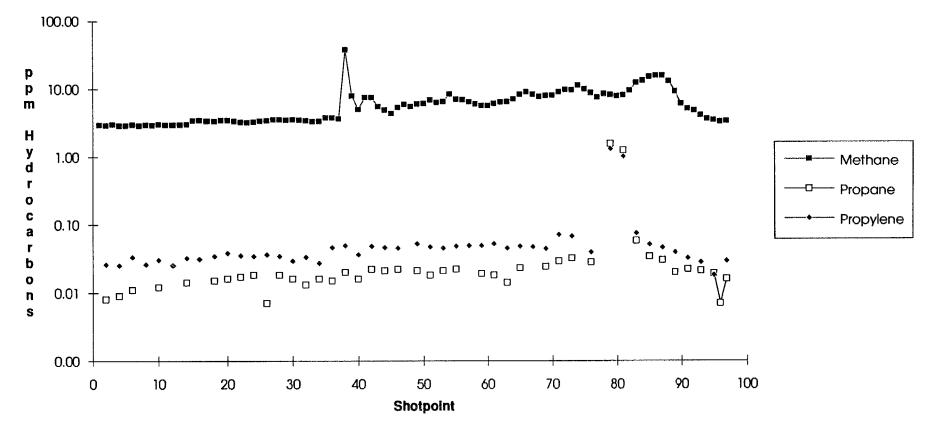


Figure 5.10 (cont.) Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112005.

Malabar outfall

Figure 5.11 Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112009

©Copyright AGSO

Line 112009 Methane, Ethane, Ethylene

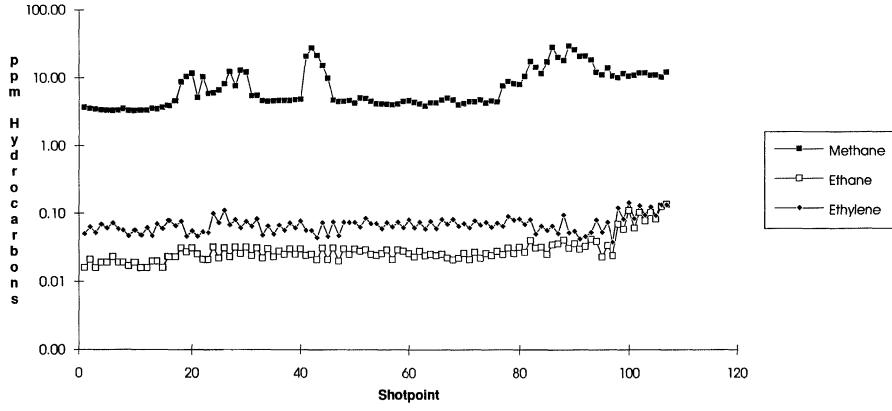


Figure 5.11 (cont.) Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112009

Line 112009 Methane, Propane, Propylene

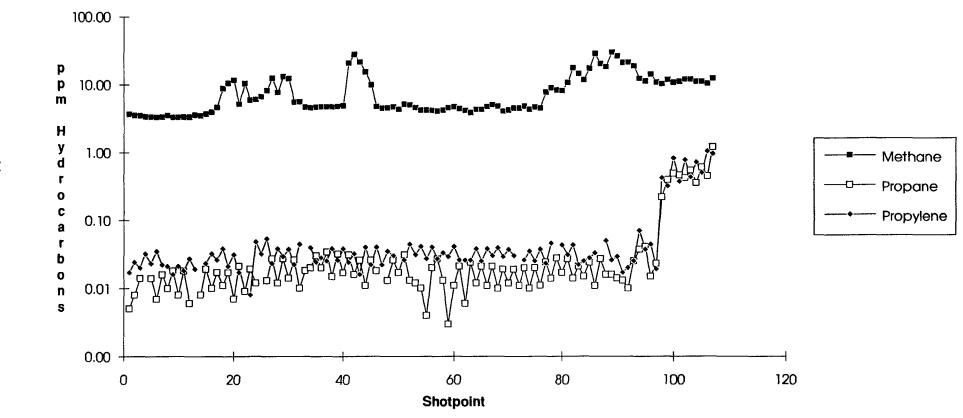


Figure 5.11 (cont.) Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112009

Line 112013 THC, Methane

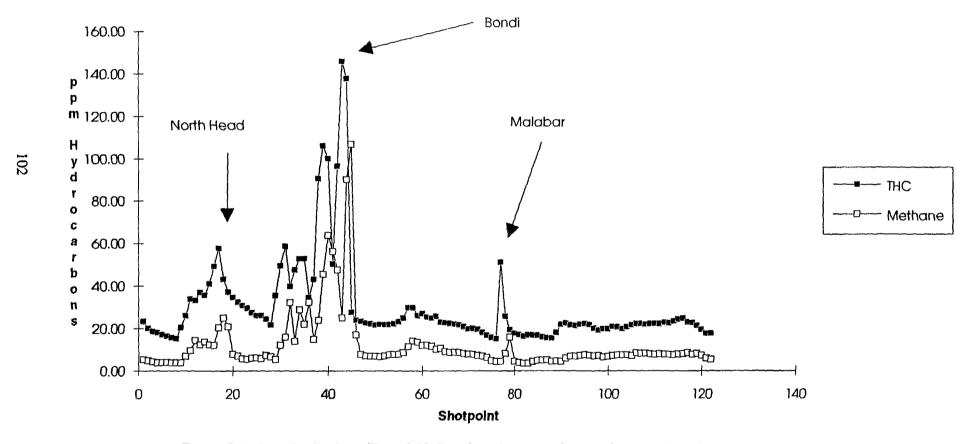


Figure 5.12 Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112013

Line 112013 Methane, Ethane, Ethylene

Figure 5.12 (cont.) Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112013

Line 112013 Methane, Propane, Propylene

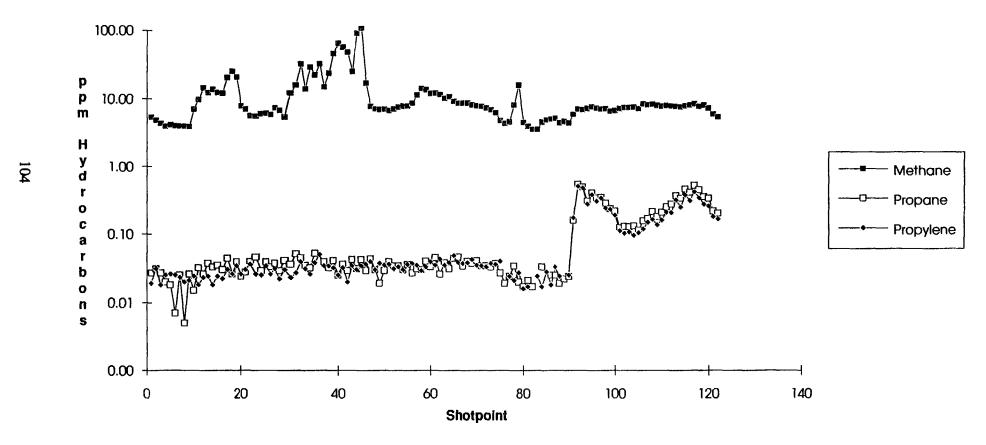


Figure 5.12 (cont.) Longitudinal profiles of THC and methane, methane, ethane and ethylene and methane, propane and propylene along the ship track for survey line 112013

Line 112005 Total hydrocarbons and Dissolved oxygen Bondi Malabar

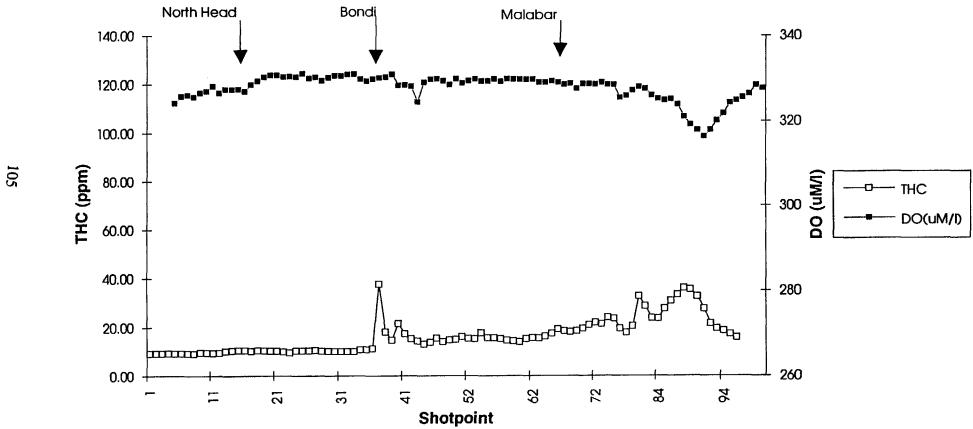


Figure 5.13 Longitudinal profiles of dissolved oxygen and THC along survey line 112005

Line 112009 Total hydrocarbons and Dissolved oxygen



Figure 5.14 Longitudinal profiles of dissolved oxygen and THC along survey line 112009.

Line 112013 Total hydrocarbons and Dissolved oxygen

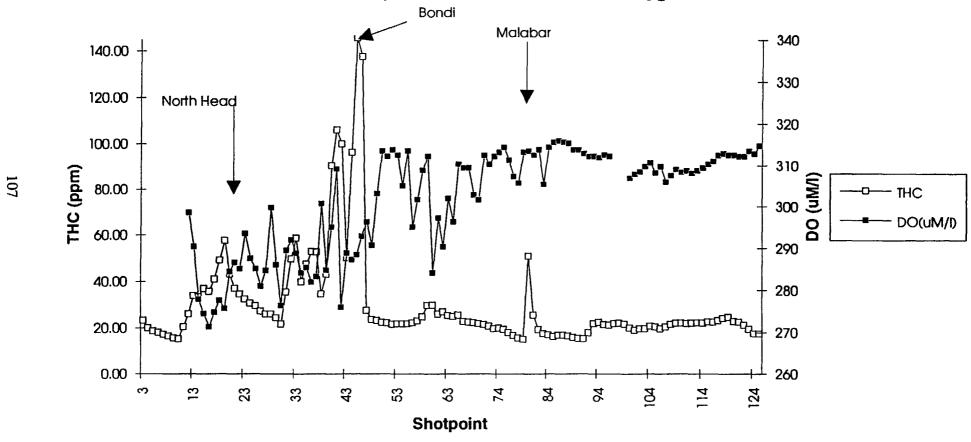


Figure 5.15 Longitudinal profiles of dissolved oxygen and THC along survey line 112013.

6. Exractable (volatile) hydrocarbons in sediments

The pilot survey of light hydrocarbon abundances in seawater conducted during 1991 (Fig. 1.1) indicated elevated concentrations of methane in the water column, in the vicinity of the ocean outfalls, that are about an order of magnitude above background levels. The 'source' of this methane is probably from sewage discharge, as methane is generated by anaerobic metabolism during the oxidation of particulate sewage organic matter. This suggests that if particulate organic matter from the sewage discharge is incorporated into the sediments, anomalous concentrations of methane in the sediments would be sensitive indicators of the dispersion and deposition of particulate (sewage) organic matter. Methane and other light hydrocarbons were measured in sediments to test this idea.

Objectives

- 1. To test if light hydrocarbons (particularly methane abundances) in sediments are indicators of anthropogenic particulate organic carbon input to the seafloor.
- 2. To test if the sediments are a potential 'source' of light (dissolved) hydrocarbons to the bottom-waters of the coastal zone specifically to examine if the enrichments in bottom-waters, measured on the pilot project (September 1991), are sourced from the sediments.
- 3. To measure the concentrations of volatile halogenated hydrocarbons in sediments.

Several sediment samples were collected for analysis of the light (C_1-C_4) hydrocarbons and also halogenated hydrocarbons. The locations of these samples are shown in Figure 6.1 and Enclosure 8. Samples for gas analysis were collected from box cores, grabs and vibro cores. Eighty one samples were analysed, for light hydrocarbons, by the following 'headspace' method.

- 1. Two hundred millilitres of wet sediment were placed in a 500 ml tin.
- 2. The tin was filled to the rim with clean seawater and 200 mls of the seawater removed with a 50 ml syringe, to create a 200 ml headspace above the wet sediment.
- 3. The lid was secured and the headspace flushed with nitrogen for 1 minute.

- 4. The tin was heated in a oven at 70 deg. C for 45 minutes and shaken vigorously for 45 minutes on a horizontal shaker.
- 5. Five millilitres of the headspace gas were removed with a syringe, injected onto a gas chromatograph (fitted with an activated alumina column), and analysed for C_1 to C_4 hydrocarbons.

The sample locations and light hydrocarbon concentrations (expressed in units of microlitres of hydrocarbon gas/ litre of wet sediment) are summarised in Table 6-1. The concentrations of sum C₁+C₂+C₃+C₄ hydrocarbons are shown in Enclosure 9. Light hydrocarbon concentrations varied between 1.0 and 11.2 ppm over the survey area. There are no distinct trends in the data although the lowest total hydrocarbon abundances were measured in samples collected from the 'offshore' stations, and generally higher concentrations were measured closer to the shore-line. The high methane abundances found in the plumes from the ocean outfalls - whose source is probably the particulate (sewage) organic matter - suggest that biomarker analyses of methanogen abundances in sediments, and also carbon isotope compositions of organic matter in sediments, may be useful tracers of particulate organic (sewage) matter from the ocean outfalls which has been deposited in the sediments.

During the survey, some sediment samples were collected and analysed for the concentrations of various volatile halogenated hydrocarbons. The preliminary analyses conducted at sea in the geochemical laboratory indicated some halogenated hydrocarbons were present in the sediments, but a large interference was evident - apparently resulting from the high oxygen abundances in the samples - which affects the response of the ECD (electron capture detector). The concentrations of halogenated hydrocarbons could not be quantified. Several samples were stored frozen and returned to Canberra. These samples are listed in Table 6.2.

Table 6.1 Locations of samples and concentrations of hydrocarbon gases measured in sediments

BMR	Core	Latitude	Longitude	Water	Depth in	Mean	C1	C2	C2:1	СЗ	C3:1	iC4	nC4	C1-C4	Wet	C1/	C2/	C3/	iC4/
Line				Depth (m)	Core (cm)	Depth							T		Gas %	C2+C3	C2:1	C3:1	nC4
						(cm)													
		ļ		ļ.,.			ļ	_	-		_		ļ	-	ļ	_	ļ	ļ	<u> </u>
	112 GS 01	34.184	151.086	41	 	5	1.347	0.013	0.041	0.012	0.016	0.000	0.000	1.371	2.433	55.3	0.309	0.714	0.000
	112 GS 02	34.183	151.165	100		5	0.150	0.016	0.051	0.014	0.014	0.000	0.000	0.180	3.033	4.9	0.312	1.024	0.000
	112 BC 09	34.184	151.165	101		5	1.082	0.111	0.834	0.133	0.287	0.021	0.040	1.388	29.425	4.4	0.133	0.464	0.538
	112 GS 06	34.183	151.278	136		5	3.020	0.052	0.262	0.067	0.117	0.000	0.000	3.139	11.867	25.5	0.197	0.574	0.000
	112 GS 09	34.184	151.335	143		5	1.346	0.037	0.149	0.039	0.062	0.000	0.000	1.422	7.600	17.7	0.250	0.624	0.000
	112 GS 10	34.184	151.392	150		5	1.374	0.033	0.087	0.012	0.061	0.000	0.000	1.419	4.567	30.1	0.382	0.203	0.000
	112 BC 27	33.998	151.349	103		5	3.765	0.115	0.624	0.083	0.165	0.029	0.036	4.028	23.594	19.0	0.184	0.503	0.806
	112 GS 14	33.997	151.285	81		5	1.353	0.024	0.119	0.058	0.032	0.000	0.045	1.480	11.241	16.5	0.202	1.813	0.000
	112 BC 17	33.997	151.286	82		5	1.662	0.029	0.129	0.055	0.034	0.000	0.028	1.774	9.978	19.8	0.225	1.618	0.000
	112 BC 30	33.997	151.285	81		5	1.900	0.038	0.126	0.046	0.037	0.000	0.000	1.984	8.400	22.6	0.302	1.243	0.000
	112 BC 31	33.997	151.285	80		5	7.572	0.248	2.707	0.257	0.798	0.056	0.110	8.243	57.434	15.0	0.092	0.322	0.509
	112 BC 32	33.997	151.284	81		5	4.823	0.073	0.364	0.086	0.085	0.035	0.065	5.082	20.679	30.3	0.201	1.012	0.538
	112 BC 33	33.997	151.285	82		5	1.395	0.067	0.188	0.085	0.035	0.062	0.047	1.656	24.238	9.2	0.356	2.429	1.319
		ļ		<u> </u>		ļ			<u> </u>	<u> </u>		ļ		ļ					
	112 VC 29	33.997	151.285	81	0-8	4	4.495	0.156	1.352	0.137	0.498	0.071	0.063	4.922	37.680	15.3	0.115	0.275	1.127
		33.997	151,285	81	20 - 28	24	3.012	0.162	1.204	0.158	0.414	0.049	0.057	3.438	38.558	9.4	0.135	0.382	0.860
		33.997	151.285	81	40 - 48	44	3.676	0.229	1.160	0.181	0.387	0.038	0.074	4.198	46.563	9.0	0.197	0.468	0.514
		33.997	151.285		60 - 68	64	5.933	0.152	0.532	0.110	0.193	0.000	0.038	6.233	26.810	22.6	0.286	0.570	0.000
		33.997	151.285		80 - 88	84	4.251	0.128	0.613	0.105	0.244	0.000	0.035	4.519	24.075	18.2	0.209	0.430	0.000
		33.997	151.285	81	100 - 108	104	4.230	0.141	0.622	0.108	0.241	0.029	0.046	4.554	28.810	17.0	0.227	0.448	0.630
		33.997	151.285	81	120 - 128	124	3.000	0.144	0.620	0.120	0.260	0.028	0.044	3.336	30.519	11.4	0.232	0.462	0.636
		33.997	151.285	81	140 - 148	144	2.049	0.094	0.329	0.151	0.232	0.000	0.119	2.413	29.432	8.4	0.286	0.651	0.000
		33.997	151.285	81	160 - 168	164	2.345	0.130	0.461	0.106	0.174	0.024	0.038	2.643	27.438	9.9	0.282	0.609	0.632
		33.997	151.285	81	180 - 188	184	3.379	0.169	0.561	0.119	0.203	0.026	0.044	3.737	32.577	11.7	0.301	0.586	0.591
		33.997	151.285	81	200 - 208	204	3.000	0.177	0.764	0.132	0.278	0.031	0.054	3.394	35.591	9.7	0.232	0.475	0.574
<u> </u>		33.997	151.285	81	220 - 228	224	3.035	0.177	0.759	0.117	0.250	0.030	0.049	3.408	33.838	10.3	0.233	0.468	0.612
		33.997	151.285	81	240 - 248	244	3.496	0.312	0.954	0.199	0.367	0.045	0.086	4.138	57.678	6.8	0.327	0.542	0.523
		33.997	151.285	81	260 - 268	264	1.787	0.161	0.284	0.093	0.087	0.031	0.054	2.126	31.040	7.0	0.567	1.069	0.574
			1																
	112GS 15	33.870	151,309	59		5	6.233	0.069	0.451	0.058	0.149	0.041	0.000	6.401	16.800	49.1	0.153	0.389	0.000
	112GS 16	33.871	151.333	65		5	3.634	0.117	0.605	0.095	0.144	0.026	0.037	3.909	24.747	17.1	0.193	0.660	0.703
	112GS 17	33,870	151.382	85		5	2.303	0.116	0.618	0.106	0.238	0.033	0.052	2.610	27.492	10.4	0.188	0.445	0.635
	112GS 18	33.811	151.351	67		5	2.022	0.086	0.559	0.070	0.188	0.029	0.043	2.250	20.411	13.0	0.154	0.372	0.674
	112GS 19	33.811	151.418	110		5	1.222	0.024	0.109	0.000	0.041	0.000	0.000	1.246	2.400	50.9	0.220	0.000	0.000
	112GS 20	33.811	151.474	127		5	0.961	0.074	0.331	0.086	0.156	0.000	0.000	1.121	16.000	6.0	0.224	0.551	0.000
	112GS 21	33.811	151.531	129		5	1.251	0.100	0.290	0.078	0.111	0.040	0.043	1.512	24.644	7.0	0.345	0.703	0.930
	112BC 41	33.811	151.531	128		5	1.097	0.086	0.237	0.061	0.069	0.028	0.000	1.272	17.500	7.5	0.363	0.884	0.000
	112BC 42	33.811	151.530	130		5	1.200	0.081	0.316	0.072	0.128	0.033	0.000	1.386	18.600	7.8	0.256	0.563	0.000
	112BC 44	33.811	151.588	141		5	0.812	0.074	0.353	0.065	0.120	0.019	0.033	1.003	19.090	5.8	0.210	0.542	0.576

Table 6.1 continued

	112GS 23	33.811	151.643	148	·	5	1.223	0.051	0.180	0.045	0.057	0.000	0.000	1.319	9.600	12.7	0.283	0.789	0.000
	112BC 47	33.811	151.644	148	 	5	0.994	0.062	0.215	0.048	0.092	0.000	0.000	1.104	11.000	9.0	0.288	0.522	0.000
	112GS 24	33.811	151.700	182	<u> </u>	5	1.634	0.002	0.219	0.057	0.092	0.000	0.053	1.819	16.114	15.4	0.224	0.877	0.491
-	112BC 49	33.811	151.700	180		5	1.258	0.065	0.449	0.060	0.163	0.020	0.035	1.450	18,114	10.1	0.145	0.368	0.914
	112GS 26	33.624	151.730	140	ļ	5	2.994	0.003	0.339	0.069	0.103	0.032	0.035	3.238	21.290	18.4	0.143	0.734	0.800
	112GS 27	33.624	151.675	135		5	2.377	0.114	0.677	0.009	0.273	0.031	0.054	2.672	26.121	11.3	0.168	0.352	0.574
	112GS 25	33.000	151.000	146		5	1.606	0.112	1.077	0.100	0.362	0.037	0.052	1.907	27.627	7.6	0.104	0.276	0.712
	112GS 28	33.625	151.620	129		5	1.681	0.107	0.880	0.081	0.268	0.029	0.045	1.943	24.016	8.9	0.122	0.302	0.644
	112BC 52	33.623	151.602	128		5	1.316	0.079	0.452	0.061	0.380	0.000	0.029	1.485	15.953	9.4	0.175	0.161	0.000
	112GS 29	33.624	151,565	119		5	1.276	0.076	0.498	0.056	0.146	0.016	0.031	1,455	16.931	9.7	0.153	0.384	0.516
	112BC 53	33,624	151.565	118	f	5	3.712	0.185	1.070	0.206	0.612	0.029	0.064	4.196	43,525	9.5	0.173	0.337	0.453
1	112BC 54	33.624	151.565	118		5	4.071	0.182	2.206	0.224	0.767	0.050	0.073	4.600	47.187	10.0	0.083	0.292	0.685
	112BC 55	33.624	151,564	118	l	5	3.161	0.098	0.859	0.128	0.280	0.022	0.044	3.453	26,074	14.0	0.114	0.457	0.500
	112BC 56	33.625	151.565	121		5	6.162	0.285	1.751	0.285	0.714	0.050	0.095	6.877	63.381	10.8	0.163	0.399	0.526
	112GS 30	33.624	151.510	88		5	3.235	0.168	1.764	0.184	0.476	0.042	0.070	3.699	41.292	9.2	0.095	0.387	0.600
	112BC 57	33.624	151.510	88		5	3.912	0.241	1.768	0.227	0.49	0.047	0.081	4.508	53.297	8.4	0.136	0.463	0.580
	112BC 58	33.625	151.510	88		5	3.891	0.241	1.349	0.256	0.562	0.045	0.089	4.522	56.168	7.8	0.179	0.456	0.506
	112GS 31	33.625	151.565	119		5	2.486	0.183	1.302	0.225	0.582	0.032	0.066	2.992	46.206	6.1	0.141	0.387	0.485
	112VC 44	33.811	151.643	119	0 - 8	4	4.914	0.157	0.343	0.082	0.299	0.022	0.038	5.213	26.829	20.6	0.458	0.274	0.579
		33.811	151.643	119	20 - 28	24	1.266	0.061	0.093	0.025	0.128	0.000	0.000	1.352	8.600	14.7	0.656	0.195	0.000
		33.811	151.643	119	40 - 48	44	1.906	0.129	0.146	0.069	0.080	0.029	0.040	2.173	24.541	9.6	0.884	0.863	0.725
		33.811	151.643	119	60 - 68	64	1.929	0.132	0.150	0.098	0.076	0.039	0.045	2.243	28.906	8.4	0.880	1.289	0.867
		33.811	151.643	119	80 - 88	84	1.479	0.075	0.081	0.048	0.050	0.019	0.026	1.647	15.779	12.0	0.926	0.960	0.731
		33.811	151.643	119	100 - 108	104	4.233	0.067	0.166	0.039	0.161	0.012	0.000	4.351	11.800	39.9	0.404	0.242	0.000
		33.811	151.643	119	120 - 128	124	3.224	0.111	0.624	0.082	0.410	0.024	0.040	3.481	22.849	16.7	0.178	0.200	0.600
11				<u> </u>				L		<u> </u>			<u>L</u>	<u> </u>					
	112BC 59	33.625	151.564	119		5	2.589	0.147	1.042	0.150	0.315	0.000	0.027	2.913	30.627	8.7	0.141	0.476	0.000
	112BC 60	33.625	151.564	119		5	2.232	0.233	1.134	0.155	0.371	0.000	0.044	2.664	40.452	5.8	0.205	0.418	0.000
	112GS 32	33.625	151.528	97		5	2.706	0.141	0.851	0.151	0.310	0.028	0.051	3.077	33,657	9.3	0.166	0.487	0.549
	112BC 61	33.625	151.529	97		5	2.507	0.133	1.141	0.140	0.333	0.028	0.050	2.858	31.849	9.2	0.117	0.420	0.560
	112BC 62	33.625	151.529	97	ļ	5	2.545	0.174	1.240	0.180	0.404	0.033	0.066	2.998	40.901	7.2	0.140	0.446	0.500
	112GS 33	33.625	151.438	59		5	1.302	0.050	0.239	0.037	0.074	0.024	0.000	1.413	11.100	15.0	0.209	0.500	0.000
	112GS 35	33.870	151.382	91	ļ	5	10.905	0.116	1.115	0.130	0.344	0.022	0.046	11.219	27.210	44.3	0.104	0.378	0.478
		 				<u> </u>			ļ	<u> </u>	ļ	ļ	<u> </u>	<u> </u>			1	ļ	
	112VC 58	33.625	151.563	91	0 - 10	5	3.348	0.182	1.584	0.195	0.475	0.030	0.071	3.826	42.556	8.9	0.115	0.411	0.423
 		33.625	151.563	91	20 - 28	24	9.876	0.527	2.154	0.374	0.725	0.052	0.148	10.977	96.648	11.0	0.245	0.516	0.351
		33.625	151.563	91	40 - 48	44	8.635	0.552	2.159	0.424	0.783	0.059	0.152	9.822	105.048	8.8	0.256	0.542	0.388
ļ		33.625	151.563	91	60 - 68	64	4.936	0.279	1.135	0.241	0.388	0.029	0.086	5.571	56.444	9.5	0.246	0.621	0.337
 	·	33.625	151.563	91	80 - 88	84	7.794	0.302	0.976	0.245	0.362	0.088	0.128	8.557	64.996	14.2	0.309	0.677	0.688
ļ		33.625	151.563	91	100 - 108	104	8.629	0.275	0.805	0.217	0.315	0.025	0.000	9.146	51.700	17.5	0.342	0.689	0.000
		33.625	151.563	91	140 - 148	144	11.750	0.331	1.325	0.275	0.548	0.054	0.142	12.552	67.131	19.4	0.250	0.502	0.380
L		33.625	151.563	91	160 - 168	164	11.905	0,306	1.642	0.250	0.615	0.041	0.104	12.606	60.525	21.4	0.186	0.407	0.394

Table 6.1 continued

																	l	
112BC 66	33.870	151.383	94		5	1.006	0.052	0.346	0.062	0.148	0.072	0.000	1.192	18.600	8.8	0.150	0.419	0.000
112BC 67	33.870	151.383	93		5	1.211	0.063	0.428	0.067	0.130	0.086	0.096	1.523	27.903	9.3	0.147	0.515	0.896
112BC 68	33.870	151.358	75		5	1.462	0.078	0.350	0.052	0.108	0.031	0.000	1.623	16.100	11.2	0.223	0.481	0.000
112BC 69	33.870	151.358	74		5	2.771	0.116	0.567	0.078	0.159	0.082	0.044	3.091	29.023	14.3	0.205	0.491	1.864
112VC 65	33.870	151.383	94	0 - 8	4	3.069	0.110	0.185	0.227	0.212	0.000	0.000	3.406	33.700	9.1	0.595	1.071	0.000
	33.870	151.383	94	20 - 28	24	3.593	0.106	0.203	0.091	0.060	0.000	0.000	3.790	19.700	18.2	0.522	1.517	0.000
	33.870	151.383	94	40 - 48	44	3.914	0.074	0.116	0.054	0.041	0.000	0.034	4.076	13.634	30.6	0.638	1.317	0.000
	33.870	151.383	94	60 - 68	64	4.546	0.159	0.325	0.128	0.113	0.000	0.440	5.273	37.044	15.8	0.489	1.133	0.000
	33.870	151.383	94	80 - 88	84	3.029	0.091	0.249	0.056	0.093	0.000	0.000	3.176	14.700	20.6	0.365	0.602	0.000
	33.870	151.383	94	100 - 108	104	2.486	0.074	0.149	0.051	0.053	0.000	0.000	2.611	12.500	19.9	0.497	0.962	0.000
	33.870	151.383	94	120 - 128	124	1.626	0.067	0.164	0.042	0.052	0.000	0.000	1.735	10.900	14.9	0.409	0.808	0.00
	33.870	151.383	94	140 - 148	144	2.757	0.164	0.722	0.134	0.296	0.022	0.054	3.131	33.725	9.3	0.227	0.453	0.40
	33.870	151.383	94	160 - 168	164	2.515	0.140	0.596	0.103	0.239	0.022	0.049	2.829	28.232	10.3	0.235	0.431	0.44
	33.870	151.383	94	180 - 188	184	1.000	0.056	0.144	0.038	0.061	0.000	0.000	1.094	9.400	10.6	0.389	0.623	0.00

Table 6.2. Inventory of samples collected for halogenated hydrocarbon analysis

1

•

1

1

ı**ğ**

1

ı.

٠

9

Core	Latitude	Longitude	Water	Mean
	(south)	(east)	Depth (m)	Depth
				(cm)
112 BC 09	34.184	151.165	101	5
112 BC 27	33.998	151.349	103	5
112 BC 29	33.997	151.286	82	5
112 BC 30	33.997	151.285	81	5
112 BC 31	33.997	151.285	80	5
112 BC 32	33.997	151.284	81	5
112 BC 33	33.997	151.285	82	5
112 BC 41	33.811	151.531	128	5
112 BC 42	33.811	151.530	130	5
112 BC 44	33.811	151.588	141	5
112 BC 47	33.811	151.644	148	5
112 BC 49	33.811	151.700	180	5
112 BC 54	33.624	151.565	118	5
112 BC 55	33.624	151.564	118	5
112 BC 57	33.624	151.510	88	5
112 BC 58	33.625	151.510	88	5
112 BC 59	33.625	151.564	119	5
112 BC 60	33.625	151.564	119	5
112 BC 61	33.625	151.529	97	5
112 BC 62	33.625	151.529	97	5
112 BC 66	33.870	151.383	94	5
112 BC 67	33.870	151.383	93	5
112 BC 68	33.870	151.358	75	5
112 BC 69	33.870	151.358	74	5
112 BC 70	33.982	151.291	79	5
112 BC 71	33.003	151.285	84	5
112 BC 72	33.998	151.285	82	5
112 BC 73	33.987	151.300	83	5
112 GR 01	34.184	151.086	41	5
112 GR 02	34.183	151.165	100	5
112 GR 06	34.183	151.278	136	5
112 GR 09	34.184	151.335	143	5
112 GR 10	34.184	151.392	150	5
112 GR 14	33.997	151.285	81	5
112 GR 15	33.870	151.309	59	5
112 GR 16	33.871	151.333	65	5
112 GR 17	33.870	151.382	85	5
112 GR 18	33.811	151.351	67	5
112 GR 19	33.811	151.418	110	5
112 GR 20	33.811	151.474	127	5
112 GR 21	33.811	151.531	129	5
112 GR 23	33.811	151.643	148	5
112 GR 24	33.811	151.700	182	5

Table 6.2 continued

112 GR 25	33.000	151.000	146	5	
112 GR 26	33.624	151.730	140	5	
112 GR 27	33.624	151.675	135	5	
112 GR 28	33.625	151.620	129	5	
112 GR 32	33.625	151.528	97	5	
112 GR 33	33.625	151.438	59	5	
112 GR 35	33.870	151.382	91	5	
112 GR 38	33.982	151,291	80	5	

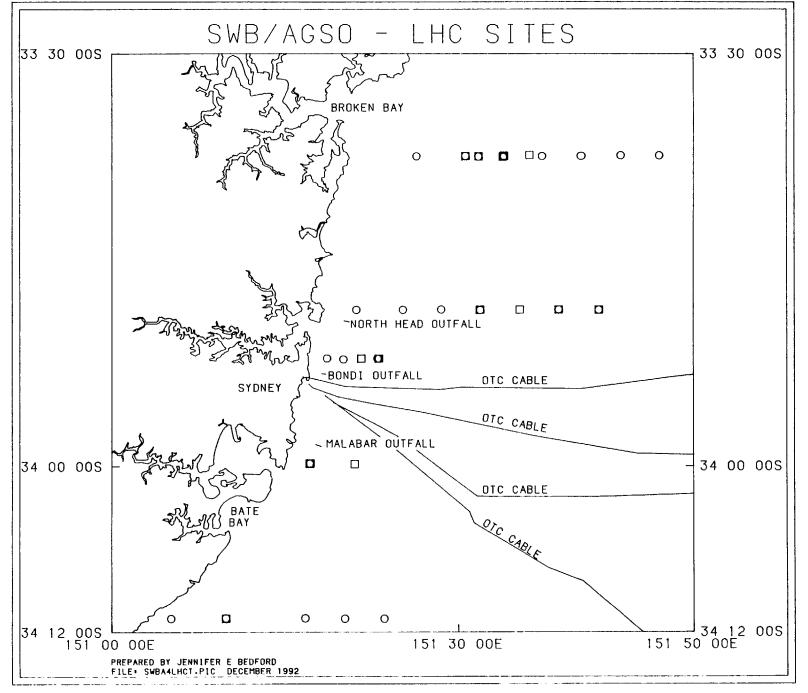


Figure 6.1. Map of the locations of LHC (light hydrocarbon) sampling sites.

7. Summary

AGSO and the Water Board conducted a combined survey on the *RV Rig Seismic*, offshore Sydney, during September/October 1992. A variety of seafloor sampling devices, including Van Veen grabs, vibro cores, box cores and gravity cores were deployed, along four transects perpendicular to the coastline, to collect sediments for 'baseline' studies of toxicants in sediments and a variety of sedimentological and geochemical process studies. In addition, four hundred and sixty one line-km of CGT (light hydrocarbon concentrations and temperature, salinity, oxygen concentrations and pH in seawater) data were collected, together with eighteen vertical profiles of light hydrocarbons, and fourteen vertical profiles of temperature, salinity, dissolved oxygen and pH data, in the water column from the vicinities of the ocean outfalls and near the entrances to major estuaries.

Sedimentology and contaminant sampling

The primary objective of the sedimentological and contaminant sampling component was to document the concentrations and distributions of selected organic (organochlorine) and inorganic (heavy metals) trace contaminants on the continental shelf adjacent to Sydney. Sixty two sediment cores from thirty sites, along four east-west transects on the continental shelf offshore of Sydney, were collected for sedimentological and shore-based contaminant analysis. This investigation to the edge of the continental shelf combined with previous Water Board sediment sampling programs nearer the coastline will address regional and cross-shelf contaminant dispersal from Sydney.

Sediment samples were collected primarily by vibro coring using 3m core barrels and, by box coring when adverse weather conditions or muddy sediments precluded the use of the vibro corer. The onboard cruise component consisted of core collection, splitting, logging and describing sediment character, plus removal of subsamples for further shore-based analysis.

Onboard core descriptions provided a preliminary understanding of surficial sediment character and distribution, as well as down-core structure. Initial interpretations identify sediment distributions similar to previous surveys, with indications of relationships between the distribution of reef systems and muddy sediments.

The boomer survey plus the 3.5 and 12 kHz bathymetric surveys provided valuable data on reef systems and associated sediments showing, the presence of generally thin pockets of sediment cover interspersed by exposed basement. These reefs may exert a significant control on the distribution of muds and contaminants in the coastal zone.

Further, shore-based analysis of the sediment grain-size, total organic carbon and contaminants contents will enable the objectives of the study to be met, and a better understanding of the physical, sedimentological and chemical processes occurring on the continental shelf adjacent Sydney to be developed.

Nutrient status of sediments

Fine-grained sediments from coastal sites near Sydney were collected for assessment of ambient rates of benthic metabolism, organic carbon turnover (oxidation) rates, nutrient (nitrogen and phosphorus) fluxes, as well as physico-chemical features such as porewater and solid phase nutrient concentrations, grain-size distribution and porosity.

Generally, four subcores from box cores were processed for solid phase and porewater nutrient analyses, oxygen profiles were determined from two subcores and nutrient (NH₄+, PO₄-, NO₃-, NO₂-) and oxygen flux rates were determined from measurements from four subcores. Samples from porewater extractions and flux rate determinations were analysed for ammonia and phosphate at sea. Samples for nitrite and nitrate determinations were frozen for subsequent analysis.

Oxygen concentrations in the fine-grained sediments decreased to undetectable levels within the top 0.5 cm of the sediment surface. Carbon utilisation rates ranged from 0.3 to 1.7 gm C m⁻² d⁻¹. At most sites, there was a net release of nutrients (NH₄⁺, PO₄⁻) from the sediments to the overlying water column.

The determination of baseline conditions and processes related to organic carbon and nutrient dynamics in sediments of the Sydney region will provide information regarding establishment of ongoing monitoring programs for the coastal zone. This work is part of a larger program to determine key processes influencing the remineralisation and storage of organic matter in the coastal zone and as such involves assessment of both water column and sediment processes. This information is fundamental to assessing the impact of anthropogenic inputs in the Sydney region

and to allow appropriate decisions regarding options for managing point and non-point sources of organic matter and nutrients.

Continuous geochemical tracers and light hydrocarbon geochemistry.

Approximately 460 line-km of CGT data were collected from the coastal zone, between Broken Bay and Port Hacking. Eighteen vertical profiles of DHD data were collected near the ocean outfalls and the entrances to the major estuaries. Sediment samples were analysed for total light hydrocarbon concentrations and molecular compositions.

Analysis of the vertical profiles of light hydrocarbons in the water column indicated molecular compositional differences between those hydrocarbons near the ocean outfalls and those near the entrances to estuaries. Light hydrocarbons from the ocean outfalls are dominated by methane with minor amounts of C_{2+} hydrocarbons. Light hydrocarbons near the entrances to estuaries, in contrast appear to be dominated by increased abundances of the C_{2+} hydrocarbons.

Analysis of the 460 line-km of DHD data from the coastal zone indicated light hydrocarbon anomalies at several depths near the ocean outfalls at Bondi, North Head and south of Malabar. Analysis of these data also indicated anomalous levels of C2+hydrocarbons near the entrances to both Port Hacking and Botany Bay, indicating some influence of the estuaries on the near-shore light hydrocarbon concentrations and compositions in the surface waters. Total hydrocarbons (THC) and its molecular compositional differences are therefore sensitive tracers of anthropogenic additions to the coastal zone.

When THC and dissolved oxygen concentrations (from the SDL unit in the DHD towfish) are plotted together, the data indicate that zones of elevated THC concentrations are coincident with zones of depressed dissolved oxygen concentrations, particularly near the locations of the ocean outfalls. These data are (at least in part) indicative of a demand on the seawater dissolved oxygen inventory by microbial activity associated with organic matter (in sewage) discharged at sea.

Light hydrocarbon gas concentrations in sediments appear to be lower at the offshore stations and somewhat higher at inshore stations, although this observation has not been tested statistically.

The data collected on this survey provide essential 'baseline' data that will be utilised for environmental monitoring purposes. The data collected also provide valuable insights into oceanographic (ocean outfall plume dispersion) processes; sedimentological and sediment geochemical processes - particularly those associated with the degradation of organic matter and those associated with recycling and (potential) storage of contaminants in the coastal zone. All data collected on this survey contribute to the development of environmental monitoring strategies by helping define those parameters that are indicative of environmental change.

8. Acknowledgements.

The principal investigators from the AGSO and the Water Board acknowledge the major contribution to the success of the survey provided by the AGSO and AMSA crews, and scientific and technical support staff aboard *Rig Seismic*.

AGSO complement.

David Heggie, Jeremy Bishop, Gary Bickford, Andrew Hislop, Stephen Dutton, David Sewter, John Roberts, Chris Lawson, Claude Saroch, Colin Tindall, Leo Kalinisan, Simon Milnes, Richard Schuler, Heather Miller, Peter Davis, Vojciech Wierzbicki, Jon Stratton, Tony Hunter, Janusz Lazar (16 - 22 September 1992)

WB complement.

Judi Hansen, Peter Schneider, Simon Davey, Peter Fagan, Ron Johnstone, Janine Dolton, Ellen O'Brien, Anne Stockenberg

AMSA complement.

Bob Hardinge, Cedric Hellier, Roger Thomas, Ian McCarthy, Bob Dickman, Phil Hutchinson, Tony Dale, Mike Pitcher, Graham Pretsel, Bill Fowler, Geoff Conley, Pat Hutchins, Mark Cummer, Trevor Walters (16 - 24 September 1992), Bill Orgill (24 - 29 September 1992)

We wish to acknowledge the contribution to post processing of the hydrocarbon data by Greg Sparksman, Colin Tindall and David Evans, and the significant contribution by Jenny Bedford for the production of many Petroseis maps for this and the accompanying AGSO Records from this survey. We thank Chris Klimpton from the Water Board for the preparation of several standards of halogenated hydrocarbons, and with advice on halogenated hydrocarbon analyses with the ECD. Drewe Hampton (AGSO) provided methods development for halogenated hydrocarbon analyses with the ECD. We thank Jim Colwell for a thorough and constructive review of the document.

9. References

Baudo, R. and Muntau, H. (1990). Lesser known in-place pollutants and diffuse source problems. In: Baudo, R., Giesy, J. and Muntau, H. (Eds.), *Sediments: Chemistry and Toxicity of In-place Pollutants*. Lewis Publishers, Michigan. pp 1-14.

Bembrick, C.S. (1973). Preliminary interpretation of continental shelf sediments, Narooma 1;100,000 sheet. *New South Wales Geological Survey - Quarterly Notes*, 13:6-18.

Bernard, B. B., Brooks, J.M. and Sackett, W.M. (1976) Natural gas seepage in the Gulf of Mexico. *Earth and Planetary Science Letters*, 31, 48-54.

Bolin, B. and Cook, R.B. (1983) The Major Biogeochemical Cycles and their Interactions. John Wiley and Sons, Brisbane, Australia.

Boyd, R., (1974). A Marine Geological Investigation of the New South Wales Coast Between Port Stephens and Norah Head. University of Sydney - B.Sc. Hons Thesis (unpubl.).

Burgess, R.M. and Scott, K.J. (1992). The significance of in-place contaminated marine sediments on the water column: Processes and effects. In: Burton Jnr, G.A. (Ed.), Sediment Toxicity Assessment. Lewis Publishers, Michigan. pp 129-165.

Carman, R. and Wulff, F. (1989) Adsorption capacity of phosphorous in Baltic Sea sediments. *Estuarine Coastal Shelf Science* 29:447-456.

Davies, P.J. (1979). Marine Geology of the Continental Shelf Off Southeast Australia. Australia, Bureau of Mineral Resources - Bulletin 195. 51pp. Denton, G.R.W. and Burdon-Jones, C. (1986). Trace metals in surface water from the Great Barrier Reef. Marine Pollution Bulletin, 17(3):96-98.

Fuex, A.N. (1977) The use of stable carbon isotopes in hydrocarbon exploration. *Journal of Geochemical Exploration*, 7, 155-188.

Ginn, T.C. (1989). Assessment of contaminated sediments in Commencement Bay, Puget Bay, Washington. In: Contaminated Marine Sediments: Assessments and

Remediation, National Research Council (Washington, D.C.: National Academy Press, 1989), pp 425.439.

Gordon, A.D. and Hoffman, J.G. (1986). Sediment features and processes of the Sydney continental shelf. In: E. Frankel, J.B. Keene and A.E. Waltho (Eds.), *Recent Sediments in Eastern Australia, Marine Through Terrestrial*. Geological Society of Australia, Sydney, NSW Division. pp 29-52.

Gordon, A.D. and Hoffman, J.G. (pers. comm.). Unpublished Results from Water Board Diffuser Studies.

Heggie, D.T., Bickford, G.P. and Bishop, J.H. (1993a) Direct Hydrocarbon Detection and tracing of anthropogenic hydrocarbon plumes offshore Sydney: Results from *Rig Seismic* Survey 112. *Australian Geological Survey Record* 1993/9.

Heggie, D.T., Bickford, G.P. and Bishop, J.H. (1993b) Continuous Geochemical Tracers (CGT) and anthropogenic discharges in the sea off Sydney: Results from *Rig Seismic* Survey 112. *Australian Geological Survey Record* 1993/10.

Hites, R.A. and Lopez-Avila, B. (1980). Sedimentary accumulation of industrial organic compounds discharged into a river. In: Baker, R.A. (Ed.), *Contaminants and Sediments. Vol. 1.* Ann Arbor, Michigan. pp 53-66.

Howard, P.H. (1991). Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Lewis Publishers, Michigan. 684pp.

Huyer, A., Smith, R.L., Stabeno, P.H., Church, J.A. and White, N.J. (1988). Currents off south-eastern Australia: Results from the Australian coastal experiment. *Australian Journl. Marine Freshwater Research*, 39:245.248.

Launiainen, J., Matthdus, W., Fonselius, S., and Francke, E. (1987) First periodic assessment of the state of the marine environment in the Baltic Sea area, 1980-1985. *Baltic Sea Environment Proceedings* 17B. pp 335.

Leppdkoski, E. (1980) Mans impact on the Baltic Ecosystem. Ambio 9:174-181.

Marshall, J.P. (1979). The development of the continental shelf of northern New South Wales. BMR Journal of Australian Geology and Geophysics, 4:281-288.

McLaren, P. (1981). An interpretation of trends in grain-size measures. *Journal of Sedimentary Petrology*, 51:611-624.

Merian, E. (1991). Metals and their Compounds in the Environment. VCH, New York. 1438pp.

Officer, C.B., Biggs, R.B., Taft, J.L., Cronin, E., Tyler, M.A., Boynton, W.R. 1984. Chesapeake Bay anoxia: origin, development, and significance. *Science* 223:22-27.

Parsons, T.R., Maita, Y. Lalli, C.M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press.

Peirson, W.L., Brown, D.A. and Tong, G.D. (1991). Cross-shelf variability of coastal currents at Sydney. In: Lee and Cheung (Eds.), *Environmental Hydraulics*. A.A. Balkema, Rotterdam, Holland. pp 249-254.

Roy, P.S. (1983). Quaternary geology. In: Herbert, C. (Ed.). *Geology of the Sydney 100,000 sheet 9130*. New South Wales Geological Survey, Sydney. pp 41-91.

Roy PS. (1985). Marine sand bodies on the south Sydney shelf, southeast Australia. *Coastal Studies Unit Technical Report No. 85/1*. Department of Geography, University of Sydney, Sydney, NSW 2006. 180pp.

Rudstam, L.G.(1988) Patterns of zooplanktivory in a coastal area of the northern Baltic proper. Ph.D. thesis. Dept. of Zoology, Stockholm University, Stockholm, Sweden.

Sandstrom, M.W., Tirendi, F. and Nott, A. (1986). Direct determination of organic carbon in modern reef sediments and calcareous organisms after dissolution of carbonate. *Marine Geology*, 70:321-329.

Schneider, P.M. and Wyllie, S.J. (1991). An efficient vibro coring System for collecting coastal sediments: A comparison with other techniques. *10th Australasian Conference on Coastal and Ocean Engineering, Auckland, 2-6 Dec.* Water Quality Centre Publ. No 21. Hamilton, New Zealand.

Seitzinger, S., Nixon, S., Pilson, E.Q., and Burke, S. (1980) Denitrification and N₂0 production in nearshore marine sediments. *Geochimica Cosmochimica Acta*, 44:1853-1860.

Swift, D.J., Stanley, D.J. and Curray, J.R. (1971). Relict sediments on continental shelves: a reconstruction. *Journal of Geology*, 79:322-346.

Appendix 1. Core logs provided by the Water Board.

LOG SHEET	CORE NO- 001	SPLIT-	18 SEPT	Ր 1992		T-NO.		B-NO.		
SITE- WB28 TIM	E- 0647.30 LGTH-	65.0cm]	Lat- 34	11.00	Long-	151 05.15	DATE-	17/9/92	DEPTH	I- 40.1m
						<u> </u>				
LENGTH (MM)	100 200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE										
VISUAL LOG					Ø					
COLOR	10YR 5Y 4/1 4/1	5Y 5/2	2							
SORTING/ ROUNDNESS	poorly sorted	m€	ed. well	sorte	d					
CARBONATE%	+ +	+		+	+	-+				
FOSSILS	forams, spicule echinoid spines	gastropo	ods							
SEDIMENTARY STRUCTURES										
REMARKS	1mm mud drape muddy to 30cm water 30 - 65cm medio carbonate mottling down of non rusted hexa	ım to coar core gener	se quar ally da	tz san rker (d with	minor iron	ted, fi staini	ine grain	n quartz or bioge	sand nic

.

LOG SHEET	CORE NO- 003	SPLIT	- 18 SEP	Т 1992		T-NO.		B-NO.		
SITE- WB28 TIM	E- 0844.30 LGTH-	55.5cm	Lat- 34	11.00	Long-	151 05.19	DATE-	17/9/92	DEPT	H- 39.2
LENGTH (MM)	100 200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE				<u> </u>						
VISUAL LOG		000	D 0.							
COLOR	5Y 2.5YR 5/3 6/4	7.5YR 4/0	5Y 5/3	**************************************						
SORTING/ ROUNDNESS	well sorted subround	mod. sor	ted	1,,,			**************************************			
CARBONATE%	++ +++	+++	+++	++		**************************************				
FOSSILS	forams									
SEDIMENTARY STRUCTURES				•	The section of the section of					
REMARKS	25 - 38cm more This	arbonate muddy, darker b 5% mud.	, 5% lith coarse ca and also	nics, 5 arbonat	5% clea e layer	ar, non-iro	n stai: orted,	ned quart	z	

SITE- 28 TI	ME- 0958 LGTH-	175cm	Lat- 34	11.04	Long-	151 5.15	DATE	17/9/92	DEP	TH-4
LENGTH (MM)	100 200	300	400	500	600	700	800	900	1000	11
SUB-SAMPLE		- · · · · · · · · · · · · · · · · · · ·		•						
VISUAL LOG							. (0.0.	00		•
COLOR	5Y 5Y 5/2 5/3			5Y 7/4				5Y 6/3		5 Y 6 / 4
SORTING/ ROUNDNESS	well sorted well rounded		4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				l sorte			
CARBONATE%	+++	++		++	<u> </u>	++		+-	+	
FOSSILS	foraminifera		100							
SEDIMENTARY STRUCTURES	< fining								, P.T	
REMARKS	0-0.2cm mud dray 0.2-60cm fine to carbonate, 5% mm 42-58cm large po 60-100cm fine to ironstained. 5% 80-100cm a thin sorted. 100-120cm fine to subrounded parti-	o medium nd. No in ntch of o medium carbona patch of co medium	n quartz s ron stair lighter c n quartz s nte. of shell c	ning, la coloured sand. 99 grit (co sand co	arge fo d sedim 5% subr olour 5	raminifera ent (5Y 7, ounded qua Y 6/3) ad ng of well	al dive: (4). As artz of jacent (rsity. for 0.2- which ab the core d, subang	-60cm. cout 2 wall. gular	0% i Poo to

LENGTH (MM) SUB-SAMPLE VISUAL LOG		TH- 175cm	Lat- 34	11.04	Long- 1800	151 5.15	DATE- 2000	17/9/92		CH-40.2m
SUB-SAMPLE VISUAL LOG		100 1500	1600	1700	1800	1900	2000	2100	2222	
SUB-SAMPLE VISUAL LOG			1600	1700	1800	1900	2000	2100		0000
VISUAL LOG		•							2200	2300
		• • • • •								
	· · · · · · · · · · · · · · · · · · ·	1000		· · ·						
•	5Y 6/4	5Y 6/3		5Y 6/4						
	well sorted well rounded	poor	well s							
CARBONATE% +	++	+++	***************************************	++						
FOSSILS										
SEDIMENTARY STRUCTURES	and the state of t		***************************************				- +			
S	120-175cm fir subrounded pa carbonate, 5% 140-158cm a c	rticles. 2 ; lithics,	0% of the 5% mud.	ese are	iron s	stained.	Composit	ion 80%	quartz	10%

LOG SHEET	CORE NO- 007 S	PLIT- 19 SEPT 1992	T-NO.	в-ио.	
SITE- WB25 TIM	E- 0027.1 LGTH- 1960	cm Lat- 34 11.02	Long- 151 16.66	DATE- 18/9/92	DEPTH- 136m
LENGTH (MM)	100 200 :	300 400 500	600 700	800 900	1000 1100
SUB-SAMPLE					
VISUAL LOG		0 0 0			0 0
COLOR	5Y 5Y 4/3 5/3		5Y 5/3	5Y 5/3	
SORTING/ ROUNDNESS	poorly sorted angular/subround			poorly sort angular/subrou	
CARBONATE%	+++	+++		+++	+++
FOSSILS	forams	forams		forams bivalve	
SEDIMENTARY STRUCTURES	< fining up				
REMARKS	0 - 10cm medium/coar 80% iron st no detrital 10 - 100cm 80% medium 100 - 120cm medium/c surface disturbed by	ained carbonate, 1 quartz m/coarse shell gri coarse carbonate sa	0% lithics, 10% m t, 20% mud		quartz.

SITE- WB25 TI	ME- 0027.1 L	GTH- 196cm	Lat- 34	11.02	Long-	151 16.66	DATE-	18/9/92	DEPT	H -
LENGTH (MM)	1300	1400 1500	1600	1700	1800	1900	2000	2100	2200	2:
SUB-SAMPLE										
VISUAL LOG	0	0		0.0.			· · · · · · · · · · · · · · · · · · ·		***************************************	
COLOR	5Y 4/3	5Y 4/3				5Y 4/3				
SORTING/ ROUNDNESS	poor sorting	ng				poor sort: angular	ing			
CARBONATE%	++ +-	+	++	· +-	 	+++				
FOSSILS	forams sponge spice	ules				forams				
SEDIMENTARY STRUCTURES	<very< td=""><td>gradual fini</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></very<>	gradual fini								
REMARKS	120 - 183cm	40% coarse 10% mud, p	ate, 10% , well ro carbonat lus large	mud, 20% ounded,in e e pectin	quar on st	tz (iron s ained,qua	rtz gra:	ins	lithics	

LOG SHEET	CORE NO- 008	SPLIT- 26 Sep	t 1992		T-NO.		B-NO.		
SITE- WB25 TIM	E- 0052.0 LGTH-40	cm Lat- 34	11.04	Long-	151 16.65	DATE-	18/9/92	DEPTI	H- 135m
LENGTH (MM)	100 200	300 400	500	600	700	800	900	1000	1100
SUB-SAMPLE									
VISUAL LOG									
COLOR	5Y 4/2	10YR 3/3							
SORTING/ ROUNDNESS	Well sorted Angular/subangula	r							
CARBONATE%	+++ +++	+++							
FOSSILS									
SEDIMENTARY STRUCTURES	< Fining up								
REMARKS	4mm Mud drape 0.5 - 5cm medium 5 - 30cm coarse o subroun 30 - 40cm Carbona	arbonate sand, d/subangular,	80% car iron sta	rbonate ained	20% quart				

LOG SHEET	CORE NO-	010	SPLIT	- 19 SEI	PT 1992		T-NO.		B-NO.		
SITE- WB24	TIME- 0320	LGTH-	15cm	Lat- 3	3 11.05	Long-	151 20.09	DATE-	18/9/92	DEPTH-	- 142
LENGTH (MM)	100	200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE											
VISUAL LOG											***
COLOR	10YR 3/3		·								
SORTING/ ROUNDNESS	mod. sorti		lar		•						
CARBONATE%	+++ +++										
FOSSILS	forams gastropod	ls									
SEDIMENTARY STRUCTURES	<¦ fining up										
REMARKS	1mm mud dr 0 - 10cm r 10 - 15cm	edium coars	e carbon	ate sand	1, 65% c	arbona	% quartz, 7 te, 30% qua iron staini	rtz, 5	bonate, ! % lithics	5% lithic	es

LOG SHEET	CORE NO-	011	SPLIT- 19 SE	РТ 1992		T-NO.		B-NO.		
SITE- WB24 TIM	E- 0350	LGTII-168	cm Lat- 3	4 11.03	Long-	151 20.09	DATE-	18/9/92	DEPT	'H- 141m
LENGTH (MM)	100	200	300 400	500	600	700	800	900	1000	1100
SUB-SAMPLE										
VISUAL LOG				00000						
COLOR	5Y 4/1		5Y 4/1				10; 4;	YR /4		
SORTING/ ROUNDNESS	mod. sort		well sorted ngular/suban		poorly ubangul	sorted ar/subroun	d			
CARBONATE%	++	+-	++		++	+		+++		+++
FOSSILS	forams		ms, pectins, noid spines	bivalve	5	pectins, fora		v e	wor	m tubes
SEDIMENTARY STRUCTURES	< fining									
REMARKS	m 20 - 25cm 25 - 45cm 45 - 68cm 73cm worm	coarse ca fine/coar trace li fine to tubes, pe fine to minor in	coarse carbon	1, 75% i e sand, nate san	roned s 35% car	tained car bonate, 10 arbonate,	bonate, % quart	, 25% qua tz, 5% mi artz, 5%	artz id, lithic	S

1/10

LOG SHEET	CORE NO-	011	SPLIT	- 19 SEP	T 1992		T-NO.		B-NO.		
SITE- WB24 TIM	E- 0350	LGTH-	168CM	Lat- 34	11.03	Long-	151 20.09	DATE-	18/9/92	DEPTH-	141m
LENGTH (MM)	1300	1400	1500	1600	1700.	1800	1900	2000	2100	2200 2	300
SUB-SAMPLE											
VISUAL LOG		\$ 8 °	0.0		- 1						
COLOR	5Y 5/1		5Y 6/1	5Y 5/1					-		
SORTING/ ROUNDNESS	poorly son		lar								
CARBONATE%	+++			+++							
FOSSILS	pectins, 1	oivalve	S	pectin bivalve	5						
SEDIMENTARY STRUCTURES	1 1 1 1 1 1 1 1 1 1										
REMARKS	125 - 168	60% 20% 10%	e to co carbon quartz lithic mud	ate	oonate	sand					

LOG SHEET	CORE NO-012	SPLIT-	26 Sep	t 1992		T-NO.		B-NO.		
SITE-WB 23 TIM	E- 0608 LGTH-	122cm	Lat- 33	11.06	Long-	151 23.46	DATE-	18/9/92	DEPTH	- 150m
LENGTH (MM)	100 200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE										
VISUAL LOG		7 9	1							
COLOR	10YR(MD) 10YR 6/3 5/4			,		10YR 4/4				
SORTING/ ROUNDNESS	Mod. Sorted Angular/subangul	ar	•	Poo Subangu	rly So lar/sub			angula	Mod. :	Sorted ular
CARBONATE%	+++		+++			+++		+++		+++
FOSSILS	Forams					Fo	rams			
SEDIMENTARY STRUCTURES	< Fining up									
REMARKS	3.0 - 6.0cm Fine suba 6.0 - 8.0cm Medi Trac 6.0 - 10.0cm Med sand 10.0 - 45.0cm Me Fe 45 - 122cm Medi	tely sor quartz, to coars ngular/soum to coars it	ted med: 80% carb se, poor ubround arse car s, (5Y 4 oarse, n coarse, , Subang arse car	ponate(rly sor 10% quarbonate 4/3) moderate poorly gular to	10YR 6/ ted, feartz, 9 sand, ely sor sorted subro	4) stained c 0% Carbona mod. sorte ted, suban carbonate und	arbonat te (10% d, 10% gular t sand.	ce sand, (R 4/4) quartz, co subrou	90% cark	conate conate

1/12

LOG SHEET	CORE NO-	014	SPLIT	- 18 SEI	РТ 1992		T-NO.		B-NO.		
SITE- WB23 TIME	- 0729	LGTH-	32cm	Lat- 34	11.00	Long-	151 23.47	DATE-	18/9/92	DEPTH	- 150m
LENGTH (MM)	100	200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE											
VISUAL LOG											
COLOR	5Y 4/3		10YR 4/3								
SORTING/ ROUNDNESS	mod. sort	ing									
CARBONATE%	+++		+++								
FOSSILS	forams gastropod	ls	foram echin	s, gastı oid spir	copods ies						
SEDIMENTARY STRUCTURES	<finin< td=""><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></finin<>										
REMARKS		medium/eangular	and ir carbon	on stair	red		arbonate, 1 iron stain	_			z

LOG SHEET	CORE NO-	015	SPLIT	- 24 Sept	t 1992		T-NO.		B-NO.		
SITE- WB23 TIM	IE- 0817	LGTII-	140cm	Lat- 34	11.04	Long-	151 23.48	DATE-	18/9/92	DEPTH-	150
LENGTH (MM)	100	200	300	400	500	600	700	800	900	1000 1	100
SUB-SAMPLE											
VISUAL LOG										1 1 · 4	
COLOR	10YR 6/3	10Y 4/3				10 57)YR ′4			10Y 5/4	
SORTING/ ROUNDNESS	poorly son	ted				ly sort ular	ced		mod. subro	well sor	ted
CARBONATE%	+++				+	++			+-	++	
FOSSILS	forams					pectins spines			forams, s	sponge sp ans	icul
SEDIMENTARY STRUCTURES	< fining up										
REMARKS	3mm mud dr 0.3 - 24cm 24 - 50cm	mediu	85% carl 10% quan 5% auth ompacted 60% carl 30% quan 5% lith 5% white to media	conate (7 ctz igenic gl d coarse conate (ctz ics e clay um, iron	auconi shell iron s	n stain te fill gravel tained)	ed) ed foram t in carbona onate sand		d matrix		

1/14

LOG SHEET	CORE NO- 015	SPLIT	- 24 Sep	t 1992		T-NO.		B-NO.		
SITE- WB23 TIM	E- 0817 LGTH-	140cm	Lat- 34	11.04	Long-	151 23.48	DATE-	18/9/92	DEPTH	- 150m
LENGTH (MM)	1300 1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
SUB-SAMPLE										
VISUAL LOG										
COLOR										
SORTING/ ROUNDNESS	mod. sorted well rounded									
CARBONATE %	+++									
FOSSILS	forams sponge spicules									
SEDIMENTARY STRUCTURES										
REMARKS	85% 10%	uilar to carbon quartz	0 - 20c ate	m but f	iner	stained foram test	:s			

LOG SHEET	CORE NO- 016	SI	LIT- 20	/9/92		T-T	10.	B-1	10.	
SITE- 22 TIM	E- 1041 LGT	H- 58cm	Lat- 34	11.04	Long-	151 26.88	B DATE-	18/9/92	DEPTH	- 238m
LENGTH (MM)	100 2	00 300	400	500	600	700	800	900 1	1000	1100
SUB-SAMPLE			<u> </u>							
VISUAL LOG	Q	©	1	\$\$ \$						
COLOR	5Y 4/2	5Y 4/1			- N					
SORTING/ ROUNDNESS	poorly sorte sub-angular	đ								
CARBONATE%	+++	+++		+++						
FOSSILS	I .	raminifera stropods								
SEDIMENTARY STRUCTURES	sedimen	tary struc	tures abs	sent						
REMARKS	0-15cm extremed carbonate concerns considered as followed as followed appears particles.	nsists of , quartz or 0-15cm	foraminif 25%, lith except th	era and	d shell •	mash.	edly re	duced and	sedime	ent

LOG SHEET	CORE NO- 0	17 SPLIT	- 26/9/9	2		T-NO.		B-NO.		
SITE- 22 TIM	E- 1124 LG	TH- 180cm	Lat- 34	11.04	Long-	151 26.87	DATE~	18/9/92	DEPTI	I- 238m
LENGTH (MM)	100	200 300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE										
VISUAL LOG			, 0			0				
COLOR	5Y 3/2				5Y 4/2					5Y 4/2
SORTING/ ROUNDNESS	poor subangula	r	sı	poor ubangul	ar				oor angular	
CARBONATE%	+++		+++			++	+			+++
FOSSILS		gas	tropods			pectins bivalves				
SEDIMENTARY STRUCTURES								Anso		
REMARKS	0-27cm fine gradually in high organic 27-120cm fine 30cm scatter sediment sur 70-120cm sed	to darker co component. e carbonate ed small sho	olour of Carbona sand. 70 ell maten	sedime ate 70% % carb rial i.	nt betwoeld, quartonate, e. pect	ween 27-134 tz 29% and 1-5% lithi tins and bi	cm. Wow a trace cs and	uld appea e of lith 25% quan	ar to ha hics (~1 rtz.	ive a .%).

SITE- 22 TIM	E- 1124	LGTH-	180cm	Lat- 34	1 11.04	Long-	151 26.87	DATE-	18/9/92	DEPT	H- 2
			T								
LENGTH (MM)	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	230
SUB-SAMPLE								······································			
VISUAL LOG	0	1									
COLOR	5Y 4/2		5Y 3/2			5Y 3/2					
SORTING/ ROUNDNESS	poor subangul	ar		poor subang	gular						
CARBONATE%	+++				++	+					
FOSSILS	foramini	fera			oramini and dol						
SEDIMENTARY STRUCTURES	1 1 1										
REMARKS	Sediment surface.	appear m fine	s organ carbona	ic rich te sand.	and coh	esive. arbonat	te, 25% qua Free wate te, 1% lith ly less pon	er pool: nics, re	ing on so emainder	ediment quartz	•

LOG SHEET	CORE NO- 018	8 SPLIT	- 24 SEP	T 1992		T-NO.		B-NO.		
SITE- WB21 TIM	E- 1513.50 LG	TH- 26cm	Lat- 33	59.83	Long-	151 33.80	DATE-	18/9/92	DEPTH-	205
LENGTH (MM)	100	200 300	400	500	600	700	800	900	1000 1	100
SUB-SAMPLE										
VISUAL LOG										
COLOR	5Y 2.5Y 4/2 6/2									
SORTING/ ROUNDNESS	mod. sorted subround/sub									
CARBONATE%	+++	+++								
FOSSILS	echinoid spir forams, bryoz		es							
SEDIMENTARY STRUCTURES	< fining upwar									
REMARKS	2mm mud drape 0 - 15cm fine some 15 - 26cm coa	e/medium ca e iron stai:	ning, sub	oround/	subangı	ılar				

SITE-WB21 TIM	1E- 1544 LGT	H- 280cm Lat- 33	59.86 Long- 151	33.85 DATE-	18/9/92 DEF	TH- 20
LENGTH (MM)	100 2	00 300 400	500 600	700 800	900 1000	1100
SUB-SAMPLE						
VISUAL LOG				O O		8
COLOR	5Y 3/2			5Y 3/2		5Y 4/
SORTING/ ROUNDNESS	mod. poorly so subangular	orted		mod. sorte subangular	ed	
CARBONATE%	+++	+++		+++	++	+
FOSSILS	forams gast	tropods fo	rams, sponge spic hinoid spines	ules	Bryozoa, sponge sp	
SEDIMENTARY STRUCTURES						
REMARKS	20% mud, 40cm fine carl	carbonate sand, 3 5% lithics conate sand, 25% q down core	-	-		te

LOG SHEET	CORE NO- 019	SPLIT- 24 SEPT 1992	T-NO.	B-NO.
SITE- WB21 TIM	E-1544 LGTH- 28	30cm Lat- 33 59.86	Long- 151 33.85	DATE- 18/9/92 DEPTH- 205m
LENGTH (MM)	1300 1400	1500 1600 1700	1800 1900 2	2000 2100 2200 2300
SUB-SAMPLE				
VISUAL LOG				30
COLOR	5Y 4/2			5Y 4/2
SORTING/ ROUNDNESS	mod. well sorted sub angular			mod. poor sorting subangular/angular
CARBONATE%	+++	+++		+++
FOSSILS	Bryozoa		sponge spicul forams, Bryozo	es worm tubes a bivalve
SEDIMENTARY STRUCTURES				
REMARKS	fine quartz/carb 40% carbona 35% quartz 15% mud 10% lithics non iron st consistant down	te : :ained, sub angular		

LOG SHEET	CORE NO- 019	SPLIT	- 24 SEPT	1992		T-NO.		B-NO.		
SITE- WB21 TIM	E- 1544 LGTH-	280cm	Lat- 33	59.86	Long-	151 33.85	DATE-	18/9/92	DEPTH-	205m
LENGTH (MM)	2400 2500	2600	2700	2800	2900	3000	3100	3200	3300 3	400
SUB-SAMPLE				·····						
VISUAL LOG	P D	, q	9							
COLOR	5Y 4/2		5Y 4/2							
SORTING/ ROUNDNESS	subround subangular/angul	ar								· · · · · · · · · · · · · · · · · · ·
CARBONATE%	+++	+++		+++						
FOSSILS	Bryozoa, forams gastropods			spicu , worm	les tubes					
SEDIMENTARY STRUCTURES										
REMARKS	fine carbonate 5 - 10% lithics 260 - 265 cm sh	, 10% m	ud. varie	ate, 2 ty of	0% fin∈ forams	e subround	non-iro	on staine	ed quartz	

LOG SHEET	CORE NO-	021	SPLIT	- 24/9/9	2		T-NO.		B-NO.		
SITE- 20 TIME	E- 1805	LGTH-	261cm	Lat- 33	59.85	Long-	151 31.98	DATE-	18/9/92	DEPTI	i- 160m
LENGTH (MM)	100	200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE											
VISUAL LOG		0	. 0 0				O		00		
COLOR	2.5Y 5/2	5Y 4/2			2.5Y 4/2					10YR 4/1	10YR 5/3
SORTING/ ROUNDNESS	moderate subround	poor angu	lar/sub	angular	,		poor angular	/suban	gular		
CARBONATE%	+++	+++			+++			+++			+++
FOSSILS	foraminife sponge sp						minifera, p les, encrus				oa
SEDIMENTARY STRUCTURES	< fining										
REMARKS	Numerous a lithics an 11-105cm r 2cm in siz 70% carbon 105-120cm	fine to and div nd 2-3% medium ze scat nate, 2 a ligh less ir	medium erse fo organi to coar tered t 0% quar ter col	carbonaraminifer mud. se carbonaraminite carbonaram tz, 5% l. oured paramed than	te sand ral rep nate sa t. Some ithics tch of either	resentand. Landironstand 5% medium the over	rately sort ation. 75% rge fragmen taining of organic mu to coarse verlying or pale mud.	carbonats of scarbonad.	ate, 20% shell mat ates. ate sand	quartz, cerial u . This l	2-3% up to

	(T. 4005 - T. CONT. 441				
SITE- 20 TIM	ME- 1805 LGTH- 261cm	Lat- 33 59.85	Long- 151 31.98	DATE- 18/9/93	2 DEPTH-
LENGTH (MM)	1300 1400 1500	1600 1700	1800 1900	2000 2100	2200 23
SUB-SAMPLE					
VISUAL LOG					•
COLOR	2.5Y 6/4			5) 3,	/ /1
SORTING/ ROUNDNESS	poor subround/subangular	moderate angular/suban	moderate gular/subrounded	poor subangular/a	angular
CARBONATE%	+++	+++	+	++	
FOSSILS	bivalves, foraminifera, gasteropods, echinoid s			barnacles, bryozoans, e	
SEDIMENTARY STRUCTURES					
REMARKS	120-170cm medium to coas 80% carbonate, 15% quar 170-200cm medium carbona Similar to 120-170cm with what appear to be minera 200-240cm coarse carbona 15% quartz. Carbonate sl	tz, 5% lithics. ate sand. Minor th 80% carbonat alised foramini ate sand. Heavy	Mud trace through iron staining of e but less than 1 feral tests. iron staining of	hout. some carbonat 0% quartz. A l carbonates. 8	es. Large numbe 15% carbona

LOG SHEET	CORE NO-	021B	SPLIT	- 24/9/9	2		T-NO.		B-NO.		
SITE- 20 TIM	E- 1805	LGTH-	261cm	Lat- 33	59.85	Long-	151 31.98	DATE-	18/9/92	DEPI	TH- 160m
	0500										
LENGTH (MM)	2500	2600	2700	2800	2900	3000	3100	3200	3300	3400	3500
SUB-SAMPLE		d									
VISUAL LOG											
COLOR	5Y 3/1										
SORTING/ ROUNDNESS	moderate/pangular/su										
CARBONATE%		+++									
FOSSILS	foraminife bivalves	era									
SEDIMENTARY STRUCTURES											
REMARKS	240-261cm 80% carbon Abundant s	ate, 1	5% fora	minifera	infill	ed by a	authigenic	glauco	nite, 5%	lithic	s

LOG SHEET	CORE NO- 022	S	PLIT-	19/9/92		T-NO.		B-N	0.	
SITE- 20 TIM	E- 1824 LGTH-	140cm	Lat-	33 59.86	Long-	151 31.99	DATE-	18/9/92	DEPTI	I- 160m
LENGTH (MM)	100 200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE										
VISUAL LOG		c	0	. 0						
COLOR	2.5Y 5YR 5YR 5YR 7/4 5/4 5/3 5/4		5YR 5/4				5YR 5/4		5Y 7/3	
SORTING/ ROUNDNESS	poorly sub-round sorted to angula				poorly sorted		poorl sorte		modera poor s	ite to corting
CARBONATE %	+++ +++		++		++			++		
FOSSILS	foraminifera			forami		pectin, alves, gast	ropods		foramini sponge s	
SEDIMENTARY STRUCTURES	< Fining					upwards				>
REMARKS	0-5cm very fine of 5-12cm coarse iron angular grains. 0-30cm quartz 458 30-73cm largely if Carbonate componer Coarse shelly has Quartz 75%, carbo 75-85cm redder fa 85-120cm fine to Quartz iron stair	on stair c, carbo cron sta ent made ch at 20 nate 10 ncies re medium ned, car ays or	nate 3 ined, up of -30cm %, cla sultir graine bonate fines.	artz and 80%, clay medium of foramin consisti ay 10%, l ng from h ed, moder	with 20 larger 20%, luartz gardera ang of prithics eavier ately to ly non-	white cl shell frag lithics 5%. grains with and shell f bectin frag 5%. iron stain to poorly s	ay. ments t small ragment ments a ing of orted g	percentand bival	Subrounge carb	onate.

SITE- 20 TIM	ME- 1824 LGTH-	140cm	Lat- 33	59.86	Long-	151 31.95	DATE-	18/9/92	DEP'	TH-
LENGTH (MM)	1300 1400	1500	1600	1700	1800	1900	2000	2100	2200	23
SUB-SAMPLE							_			
VISUAL LOG	000									
COLOR	5Y 7.5YR 5Y 7/3 6/2 4/3									
SORTING/ ROUNDNESS	poorly sorted subrounded									
CARBONATE%	+++ +++		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
FOSSILS	sponge spic. pectin, bryoz.									
SEDIMENTARY STRUCTURES	fining down									
REMARKS	110-140cm very Mostly iron sta Carbonate angul 5% white clay. Pectin fragment Colour variatio A comparatively 5% lithics.	ined. ar, quar s at bas n on cor	tz subro e. e walls	unded. are a l	ikely	coring art	ifact.			

LOG SHEET	CORE NO-	023	SPLIT	– 24 Sep	t 1992		T-NO.		B-NO.		
SITE- WB19 TIM	E- 2038	LGTH-	12cm	Lat- 33	58.49	Long-	151 29.28	DATE-	18/9/92	DEPT	H- 148m
LENGTH (MM)	100	200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE											
VISUAL LOG				0.00							
COLOR		10YR 3/4		10YR 5/2							
SORTING/ ROUNDNESS	mod. well subround	sorted		od. well ubround	sorted						1
CARBONATE%	+++	+++		+++							
FOSSILS		urchine forams									
SEDIMENTARY STRUCTURES	f :	ining up									
REMARKS	2mm olive medium gi			te sand,		ar quar	ned carbon tz, angula				
	similar o bea	composit autiful	ion dow	wn core, up seque	but coa ence!	arsens	to a coars	e sand/	'gravel		
					·				·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

LOG SHEET	CORE NO-	- 024	SPLIT	- 19/9/9	2		T-NO.		B-NO.		
SITE- 19 TI	ME- 2109	LGTH-	145cm	Lat- 33	58.50	Long-	151 29.29	DATE-	18/9/92	DEPTH	I- 148m
LENGTH (MM)	100	200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE											
VISUAL LOG		0.0									
COLOR	5Y 5/3		YR /4								
SORTING/ ROUNDNESS	moderate/ subround/		poorl sorte					oorly son	rted		
CARBONATE%	++ ++	- +	+	+++			+-1	+			
FOSSILS	foraminif sponge sp		Worm t forami								rugose coral
SEDIMENTARY STRUCTURES	fining up	,					† † † † † † † † †			 	
REMARKS	3mm mud fine sar 5% mud, organic 5% lithi 60% cark 30% well rounded, ironstai quartz.	rich, cs, conate, non-	medium 5% lit ~1% mu 50% qu 35% ca large fragme	d,	l round ized sh ved fro	ed.	oriented with sma ironstai quartz (Pectin rangular, Gastropo Echinoid spines a Bivalves	shell famour ned, med < 2%). emains p pink ar ds, both remains nd plate , bryozo e algae,	Il hash, if ragments it of well lium to control or well lium to control or white. In fragments, clearly es. Eans, encourses and do see the sand do see the san	up to round parse gree, vers and rusting	50mm ed rained y whole. ifiable

LOG SHEET	CORE NO- 024	SPLIT-	19/9/92		T-NO.		B-NO.		
SITE- 19 TIME	E- 2109 LGTH-	145cm I	Lat- 33 58.50	Long-	151 29.29	DATE-	18/9/92	DEPTH	I- 148m
LENGTH (MM)	1300 1400	1500	1600 1700	1800	1900	2000	2100	2200	2300
SUB-SAMPLE									
VISUAL LOG									
COLOR									
SORTING/ ROUNDNESS	poorly sorted angular								
CARBONATE%	+++								
FOSSILS	rugose coral								
SEDIMENTARY STRUCTURES	1 1 1 1								
REMARKS	lumps of cemented carbonate at base of core								

LOG SHEET	CORE NO- 025	SPLIT-	- 25 SEP	Т 1992		T-NO.		B-NO.		
SITE- WB 17 TIME	E- 0157 LGTH	- 268cm	Lat- 33	59.87	Long-	151 21.03	DATE-	19/9/92	DEPI	TH- 103m
LENGTH (MM)	100 20	0 300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE										
VISUAL LOG		0								0
COLOR	5Y 3/2		5Y 4/2				5Y 3/			10YR 3/2
SORTING/ ROUNDNESS	mod. sorted subround/suba	ngular			rly sor angular		:	mod. :	sorted /subang	ular
CARBONATE%	++	-1	-+-			++		++		++
FOSSILS				pect bival				, Bryozo id spines		lves
SEDIMENTARY STRUCTURES										
	35cm - 100cm me 80% qu 100 - 120cm fin	chics, min edium/coar uartz, 5% ne quartz iron stai	or iron se quar carbona sand, 8 ning of	staini tz, min te, 10% O% quar	ng. imal ir lithic tz sand	on stainin	g			

LOG SHEET	CORE NO-	025 SP	LIT- 25 S	EPT 1992		T-NO.		B-NO.		
SITE- WB 17 TIM	E- 0157	LGTH- 268c	m Lat-	33 59.87	Long-	151 21.03	DATE-	19/9/92	DEPTH	- 103m
LENGTH (MM)	1300	1400 15	00 1600	1700	1800	1900	2000	2100	2200	2300
SUB-SAMPLE										
VISUAL LOG		3					(S)			
COLOR	10YR 3/2	10Y 2/2				10YR 3/2		1	0YR 3/2	
SORTING/ ROUNDNESS	mod. well s		poorly so subround/			poorly som		mod. w subang	ell sor Jular	ted
CARBONATE%	++	++				++		+	-+	
FOSSILS	forams	bivalves				bivalves				
SEDIMENTARY STRUCTURES										
REMARKS	150 - 1700	light in the second fine secon	ron stain dium quar rtz, 15% (dium quar ud , and n	ing of ca tz sand, carbonate tz sand, nottled	rbonate large s , 5% li 75% qua	shell fragmithics artz, 15% o	ments -	gastropo		

LOG SHEET	CORE NO- 025	SPLIT- 25 SEPT 1992	T-NO.	B-NO.
SITE- WB17 TIM	E- 0157 LGTH- 26	3CM Lat- 33 59.87	Long- 151 21.03	DATE- 19/9/92 DEPTH- 103M
LENGTH (MM)	2500 2600	2700 2800 2900	3000 3100 3	200 3300 3400 3500
SUB-SAMPLE				
VISUAL LOG	200			
COLOR	10YR 2.5YR 3/2 3/2			
SORTING/ ROUNDNESS	mod. poor sorting subangular/angular			
CARBONATE%	++ ++			
FOSSILS	echinoid spine gastropod			
SEDIMENTARY STRUCTURES				
REMARKS	250cm large gastro	pod		some minor iron staining 10% carbonate, trace mud

LOG SHEET	CORE NO- 027	SPLIT- 21	Sept 1992		T-NO.		B-NO.		
SITE- WB17 TI	ME- 0246 LGTH-	118cm Lat	- 33 59.86	Long-	151 20.99	DATE-	19/9/92	DEPTH	- 102m
LENGTH (MM)	100 200	300 40	500	600	700	800	900	1000	1100
SUB-SAMPLE								*	
VISUAL LOG		2,2,2,2			D		. 0		
COLOR	5Y 5Y 4/2 4/3	5Y 6/4		5Y 4/3		5) 5 <i>)</i>	7 5Y 73 6/4		5Y 4/1
SORTING/ ROUNDNESS	mod. well sorted subangular/subro				poorly mod. angul			d. well s	sorted oround
CARBONATE%	++	++		++			+++		++
FOSSILS	worm tubes forams	forams sponge	spicules		bivalve		opods,fo		
SEDIMENTARY STRUCTURES									
REMARKS	90 - 108cm med/c 108 - 118cm fine	medium quar arbonate, 5 oarse quart quartz san lithics	% organic z sand, 40 d, 60% non	mud % carbo iron s	nate, 60% n tained quan	non iro	n staine	ed quartz	

LOG SHEET	CORE NO- 030	25011	- 24 Sep			T-NO.		B-NO.		
SITE- WB16 TIM	ME- 0905 LGTH-	142cm	Lat- 33	59.81	Long-	151 17.06	DATE-	19/9/92	DEP'	TH- 80.
LENGTH (MM)	100 200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE										
VISUAL LOG	o	0		O.						•
COLOR	5Y 3/1					5Y 4/2				
SORTING/ ROUNDNESS	poorly sorted subround						mo	d. poorl subround	y sort	ed
CARBONATE%	+		++				++			++
FOSSILS	worm tubes forams			C	Sastropo	od			f	orams
SEDIMENTARY STRUCTURES										
REMARKS	no mud drape fine/medium qua	ırtz sand	1 60% non 20% car 10% lit 10% mud	bonate hics	tained	quartz				
	consistant co	mpositio	onally do	wncore,	but sl	lightly fir	nes to	100cm.		
				•						

LOG SHEET	CORE NO- 030	SPLIT- 2	4 Sept 1992		T-NO.		B-NO.		
SITE- WB16 TIME	E- 0905 LGTH-	142 La	t- 33 59.81	Long-	151 17.06	DATE-	19/9/92	DEPT	H- 80.
LENGTH (MM)	1300 1400	1500 1	600 1700	1800	1900	2000	2100	2200	2300
SUB-SAMPLE									
VISUAL LOG									
COLOR	5Y 3/2								
SORTING/ ROUNDNESS	poorly sorted subround/subangu	ılar							
CARBONATE%	+++								
FOSSILS	forams								
SEDIMENTARY STRUCTURES									
REMARKS	fine to coarse non-iron sta	quartz samined.	nd, 70% quar	tz, 30%	carbonate				

LOG SHEET	CORE NO-	032 SPLIT	24/9/	92 		T-NO.		B-NO.		
SITE- 16 TIM	ME- 0951	LGTH- 155cm	Lat- 33	59.80	Long- :	151 17.10	DATE-	19/9/92	DEPI	CH- 81
LENGTH (MM)	100	200 300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE										···
VISUAL LOG			- Tab							
COLOR	5Y 2/2	5¥ 4/						5Y 4/2		
SORTING/ ROUNDNESS	moderate angular/s	ubangular				derate/wel gular/suba			su	poor ıbangu
CARBONATE%	+	++		-+	-+		++			++
FOSSILS	foraminif echinoid					aminifera, inoid spir				
SEDIMENTARY STRUCTURES										
REMARKS	35% lith 15-120cm	ine to medium ics, 15% mud, fine to mediu 0-15cm. 80% qu	5% carbo m quartz	nate. sand.	No iron	staining.	Light			

LOG SHEET	CORE NO- 032A	SPLIT	24/9/	92		T-NO.		B-NO.		
SITE- 16 TIM	E- 0951 LGTH-	155cm	Lat- 33	59.8	Long-	151 17.10	DATE-	19/9/92	DEP	rH- 81.3m
LENGTH (MM)	1300 1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
SUB-SAMPLE										
VISUAL LOG	O	. 0								
COLOR	5Y 4/2									
SORTING/ ROUNDNESS	poor subangular									
CARBONATE%	+++	+++								
FOSSILS		alves mtubes								
SEDIMENTARY STRUCTURES										
REMARKS	120-155cm fine medium quartz s 50% quartz, 30% carbonate, 10% and 10% lithics No iron stainin	and mud •								

LOG SHEET	CORE NO-	034	SPLIT-	25 SEP	r 1992		T-NO	•		B-NO.		
SITE- WB15 TIME	E- 1441	LGTH- 63	cm L	at- 33	48.66	Long-	151 2	1.08	DATE-	19/9/92	DEP	ГН- 66.1n
LENGTH (MM)	100	200	300	400	500	600	70	0	800	900	1000	1100
SUB-SAMPLE		· · · · · · · · · · · · · · · · · · ·				······································			***************************************			
VISUAL LOG				/ o . tn>		800						
COLOR		5Y 1/2										
SORTING/ ROUNDNESS	mod. sorti subangular		. well			well so ed/angu						
CARBONATE%	+++	+++		++-	H	+++						
FOSSILS	forams, ed sponge spi		pines	bry	yozoans gastro	, bival pods	lves					
SEDIMENTARY STRUCTURES	•	ng up	o agus 1999 1939 1936 fichir desar fazio i		*							
REMARKS	4mm mud dr fine carbo some 20 - 40cm 50cm mud b 40 - 63cm	onate sar iron sta biogenio all	ining debris shell	(bryoz debris	zoan, b	ivalve,	, gastı	ropod) 2mm 1			2

ME- 1458										
.115 1450 /	LGTH- 1	4cm	Lat- 33	48.66	Long-	151 21.07	DATE-	19/9/92	DEPTH-	65
100	200	200	400	F00	600	700	000	000	1000	
100		300	400			700	800	900	1000 1	100
3. 8. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.										
5Y 4/1										
+++ ++										
			rm tube	s.						
fine calcar	ous sai	nd, 90% mud.	carbon	ate, 5%	clear,	non-iron	stained	l quartz		
	5Y 4/1 mod. well subround/a +++ ++ forams, spe gastropods, 2mm mud dra fine calcan	5Y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge sp gastropods, bival 2mm mud drape fine calcarous sa	5Y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge spicules gastropods, bivalves, wo	5Y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge spicules gastropods, bivalves, worm tube 2mm mud drape fine calcarous sand, 90% carbon	5Y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge spicules gastropods, bivalves, worm tubes. 2mm mud drape fine calcarous sand, 90% carbonate, 5%	5Y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge spicules gastropods, bivalves, worm tubes. 2mm mud drape fine calcarous sand, 90% carbonate, 5% clear,	5y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge spicules gastropods, bivalves, worm tubes. 2mm mud drape fine calcarous sand, 90% carbonate, 5% clear, non-iron	5Y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge spicules gastropods, bivalves, worm tubes. 2mm mud drape fine calcarous sand, 90% carbonate, 5% clear, non-iron stained	5Y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge spicules gastropods, bivalves, worm tubes. 2mm mud drape fine calcarous sand, 90% carbonate, 5% clear, non-iron stained quartz	5Y 4/1 mod. well sorted subround/angular +++ +++ forams, sponge spicules gastropods, bivalves, worm tubes. 2mm mud drape fine calcarous sand, 90% carbonate, 5% clear, non-iron stained quartz

LOG SHEET	CORE NO- 037 SPLIT- 20/9/92	T-NO.	B-NO.
SITE- 14 TIM	E- 2026 LGTH- 58cm Lat- 33 48.66 Long- 151 25.0	B DATE- 19/9/92	DEPTH-
LENGTH (MM)	100 200 300 400 500 600 700	800 900	1000 110
SUB-SAMPLE			
VISUAL LOG			
COLOR	5Y 5Y 5/3 generally olive grey 5/2		
SORTING/ ROUNDNESS	moderate to poor sorting throughout, angular grains.		
CARBONATE%	+++ +++		
FOSSILS	sponge spicules, echinoid spines, foraminifera.		
SEDIMENTARY STRUCTURES	<pre>fining upwards</pre>		
REMARKS	 0-1.5cm mud drape. 1.5-45cm very fine grained muddy sand. Noticeable absence of foraminifera, mud appears organicarbonate angular. Carbonate 70%, mud 20%, quartz 5%, lithics 5%. 45-58cm medium to fine sand, carbonate component coarse Carbonate 85%, quartz 5%, mud 5%, lithics 5%. N.B. The core was capped at 1305, 20/9/92 after being When split at 1340 the same day a 300mm void at a Core length was taken from the bottom of the voice Original capped length was 87cm. On splitting sudisturbed. 	ser than in upper allowed to settle the core top was of and measured 580	e for one observed.

LOG SHEET	CORE NO-		T- 26/9/9			T-NO.		B-NO.		
SITE- 14 TIM	IE- 1052	LGTH- 162cm	Lat- 3:	3 48.64	Long- 1	51 25.08	DATE-	19/9/92	DEPT	-HT
LENGTH (MM)	100	200 300	400	500	600	700	800	900	1000	110
SUB-SAMPLE										
VISUAL LOG										
COLOR	5Y 4/2	5Y 4/2						10YR 6/3		5Y 4/
SORTING/ ROUNDNESS	moderate angular/su	ıbangular							moderat subangu	
CARBONATE%	+	++		++			++			++
FOSSILS					pectin scapho				caphopo lbes, b	
SEDIMENTARY STRUCTURES					***************************************			· · · · · · · · · · · · · · · · · · ·		
REMARKS	Large pect 90-95cm pa 5% milky w	d drape. The quartz sation shell and artially cembrate mud. The sandy mudine sandy	d scaphop ented fir nis 5cm b	ods at le to me and of	60cm. dium quar sediment	rtz sand. has a di	70% qu stinct.	artz, 25 yellow a	5% carb appeara	onat nce.

LOG SHEET	CORE NO- 038A	SPLIT	- 26/9/9	2		T-NO.		B-NO.		
SITE- 14 TIM	E- 1052 LGTH-	162cm	Lat- 33	48.64	Long-	151 25.08	DATE-	19/9/92	DEPI	.H- 110m
LENGTH (MM)	1300 1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
SUB-SAMPLE										
VISUAL LOG										
COLOR	5Y 4/2		. 1							
SORTING/ ROUNDNESS	moderate subangular									
CARBONATE%	++		++	nguy quantum manda pyaga higu air ygabhiga aga aga aga aga aga aga aga aga aga						
FOSSILS		worm tu foramin								
SEDIMENTARY STRUCTURES										
REMARKS	120-162cm fine s 30% mud, 30% can quartz and 10% 1	bonate,	d. 30%							

LOG SHEET	CORE NO-	039	SPLIT	- 19 SEP	т 1992		T-NO.		B-NO.		
SITE- WB13 TIM	E- 2247	LGTH-	107.5cm	Lat- 33	48.65	Long-	151 28.46	DATE-	19/9/92	DEPT	'H- 125m
LENGTH (MM)	100	200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE											
VISUAL LOG								0.00°		ويرينين	
COLOR	5Y 4/2				5Y 3/2		5Y 4/1				
SORTING/ ROUNDNESS	poorly s		lar		oorly s bangula		rounded				
CARBONATE%	+		-	-++			+++			+	
FOSSILS	forams		pect fora	ins, bi	valves				alves, ga es, fora		ds
SEDIMENTARY STRUCTURES					,						
REMARKS	35 - 45cı 45 - 64cı 64 - 95cı	fine o 30% su 5% gla n shell n mediu 50% m trace n poorl angul abund 5cm me	live quabangular uconite y band, m/fine s edium, w fines a y sorted ar carbo ant fora dium/coa	filled from string filled from string glaud glaud carbona mate, 10 ms	stained foram t ing of fine, ided, l conite ite ric of fine	carborests. I bivalve non-ir ightly filled h sandy well r	abangular, nate, 15% f 15% fine or e and pecti con stained iron stain foram test y/gravel, 9 counded qua and. 60% costs. 10-15%	ine org	ganic rich mud ments ngular quo nate vel to find, trace	ch mud wartz ine san e mud (30% f	d sized orams)

LOG SHEET	CORE NO- 0	40 SPLIT-	25/9/92		T-NO.	B-NO.		
SITE- 13 TIME	E- 2306 LO	GTH- 136cm I	at- 33 48.66	Long- 1	151 28.47	DATE- 19/9/9	2 DEPTH-	124
LENGTH (MM)	100	200 300	400 500	600	700	800 900	1000 11	00
SUB-SAMPLE								
VISUAL LOG		•••••••••••••••••••••••••••••••••••••		•		0000		•
COLOR	5Y 4/2		5Y 4/:	2	5Y 4/1	5Y 5Y 4/1 4/1	<u> </u>	5¥
SORTING/ ROUNDNESS	poor angular/suba	angular				poor inded/subangula	moderate, ar subang	
CARBONATE%	++	++		++	+++	+++	+++	**************************************
FOSSILS	worm biv	<i>r</i> alve	bival	-	astropods ectin		inoid spines aminifera	5
SEDIMENTARY STRUCTURES				 	1 1 1 1		1 1 1 1	
	lithics. Ed facies. May 65-95cm fine 50% quartz, between 65-7 95-100cm fir 100-109cm fir 109-120cm fir	to coarse car gg shaped mud be faecal pel to coarse qu 40% carbonate 5cm and 85-95 ne to medium qu ine to medium ine to coarse orly sorted, s	balls of about lets? artz sand. So the sand of the sand. So the sand of the sa	ome iron Some One One One One One One One One One On	in size s staining large she z, 30% ca tz, 20% c tz, 30% c	of carbonate of ll fragments of carbonate and loarbonate and larbonate, 10%	omponent. scattered of lithics.	•

LOG SHEET	CORE NO- 040	A SPLIT	25/9/9	92		T-NO.		B-NO.	· · · · · · · · · · · · · · · · · · ·	
SITE- 13 TIM	E- 2306 LGT	TH- 136cm	Lat- 33	48.66	Long-	151 28.47	DATE-	19/9/92	DEPTH	- 12
LENGTH (MM)	1300 14	00 1500	1600	1700	1800	1900	2000	2100	2200	2300
SUB-SAMPLE	1300 14		1000		1800			2100		2300
VISUAL LOG										
COLOR	5Y 4/1									
SORTING/ ROUNDNESS	poor subangular									
CARBONATE%	+++						· · · · · · · · · · · · · · · · · · ·			
FOSSILS	forams.									
SEDIMENTARY STRUCTURES										
REMARKS	120-138cm fin 50% carbonate 10% lithics.									

SITE- WB10 TIM	E- 0134 LG7	H- 69cm	Lat- 33	48.65	Long-	151 38.60	DATE-	21/9/92	DEP	rh-
LENGTH (MM)	100 2	00 300	400	500	600	700	800	900	1000	1
SUB-SAMPLE										
VISUAL LOG				0 0.	E					
COLOR	10YR 6/3	10YR 5/3	5Y 6/3		5Y 5/1-	2				
SORTING/ ROUNDNESS	very well sor subangular		ly sorted lar/suband							
CARBONATE%	+++ +++		+++		•	+++			***************************************	
FOSSILS			tropods, i	forams		valves, co				
SEDIMENTARY STRUCTURES	<finin< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></finin<>				1					
REMARKS	40mm mud drap 4 - 35cm well 30% 35cm white cl 35 - 55cm fin 55 - 63cm fin 63 - 69cm cem	sorted, niron coate ay/sand ba a/coarse s a/coarse e	ed quartz, and sand, 90% carbonate	carbonations	ithics, ate, 5% 95% iron	trace much lithics, stained	d 5% mud, carbona	, no quai ate, 5% i	ctz	

SITE- 10 TIM	E- 0156 LG	TH- 36.50	cm Lat- 3	3 48.66	Long-	151 38.60	DATE-	21/9/92	DEPTH-	
										Ι
LENGTH (MM)	100	200 30	00 400	500	600	700	800	900	1000 1	10
SUB-SAMPLE										
VISUAL LOG	. 0	o o o								
COLOR		0YR 4/4	10YR 4/3		-					
SORTING/ ROUNDNESS	well poor	well	well							
CARBONATE%	+++ +++	+++ +	++							
FOSSILS	forami sponge sp									
SEDIMENTARY STRUCTURES	< fining	< fini	1							
REMARKS	2mm thick mum 0.2-13cm find 30% quartz, subangular to 13-22cm media 90% carbonato Poorly sorted 22-32cm find 70% carbonato Well sorted, 32-36.5cm media 90% carbonato Well sorted,	e carbona 10% lithi o subroun um to coa e, 9% qua d, angula carbonat e, 20% qu angular dium to ce, 9% qua	te sand. cs. Well sided. rse carbon rtz, 1% lir to subane sand. artz, 10% to subanguoarse carbon rtz, 1% lire.	60% carbesorted, nate sandithics. ngular. lithics ular. conate saithics.	onate,					

LOG SHEET	CORE NO- 045 SPLIT-	24 SEPT 1992	T-NO.	B-NO.	
SITE- WB9 TIM	E- 0205 LGTH- 202cm La	at- 33 48.67 Lor	ng- 151 41.98	DATE- 21/9/92	DEPTH- 182m
LENGTH (MM)	100 200 300	400 500 60	700	800 900 1	1100
SUB-SAMPLE					
VISUAL LOG		0 0 0	829		W
COLOR	5Y 5Y 5/2 4/2	10YR 4/3	5Y 6/3	5Y 4/1	5Y 4/1
SORTING/ ROUNDNESS		orly sorted gular/subangular	mod. sorted subangular/		
CARBONATE%	++ ++	4	+	+	+
FOSSILS	sponge spicules, forams, no worm tubes, bivalves, con				gastropods ıles, bivalves
SEDIMENTARY STRUCTURES		 	! ! ! ! ! ! !		
REMARKS	2mm mud drape 0.5 - 40cm medium/coarse 10% quartz, 80% 40 - 55cm coarse sand/grav 55 - 73cm fine/medium carl 90% carbonate, 73 - 120cm fine/medium car 5% quartz.	% carbonate, 8% l vel 95% carbonate bonate sand, mind 10% quartz	ithics, 2% mud, 4% quartz, or iron staini	1% lithics ng	

LOG SHEET	CORE NO- 045 SPL	T-24 SEPT 1992	T-NO.	B-NO.	
SITE- WB9 TIM	E- 0205 LGTH- 202cm	Lat- 33 48.67	Long- 151 41.98	DATE- 21/9/92	DEPTH- 182m
LENGTH (MM)	1300 1400 1500) 1600 1700	1800 1900	2000 2100	2200 2300
SUB-SAMPLE					
VISUAL LOG					
COLOR	5Y 4/1			5Y 4/1	
SORTING/ ROUNDNESS	moderately sorted subround			y sorted ar/angular	
CARBONATE%	+++	+++		+++	
FOSSILS	echnoids, sponge spicu worm tubes, large gast			noid spines, fo tropods, coral	prams
SEDIMENTARY STRUCTURES					
REMARKS	fine/medium quartz san slight iron stainin grades to; fine/medium foram ric	g of some quartz carbonate sand,	grains		

.

LOG SHEET	CORE NO- 046 SPL	T- 26/9/92	T-NO.	B-NO.	
SITE- 9 TIM	E- 0225 LGTH- 174cm	Lat- 33 48.66	Long- 151 41.98	DATE- 21/9/92	DEPTH- 18:
LENGTH (MM)	100 200 300) 400 500	600 700	800 900	1000 1100
SUB-SAMPLE					
VISUAL LOG					B
COLOR	5Y 5/1	10YR 4/4		5Y 4/2	
SORTING/ ROUNDNESS	moderate/poor subrounded	moderate/ subangula	poor r/angular		derate/poor ded/subangula
CARBONATE%	+++	+++	++	-+	+
FOSSILS	foraminifera, sponge spicules, echinoid sp		s, foraminifera echinoid spines	foraminife spicules,	ra, sponge echinoid spi
SEDIMENTARY STRUCTURES	<			1 1 1	
REMARKS	0-1cm olive coloured m 1-30cm fine to medium 5% lithics, 5% mud. Qu 30-80cm medium carbona quartz, 5% lithics, 5% 80-120cm muddy, silty, lithics. Carbonate wea	carbonate sand. F wartz weakly irons where carbonat white clay. fine quartz sand	tained. e weakly iron st	ained. 80% car	bonate, 10%

LOG SHEET	CORE NO- 046A SPLIT- 26/9/92	T-NO.	B-NO.	
SITE- 9 TIM	ME- 0225 LGTH- 174cm Lat- 33 48.66	Long- 151 41.98	DATE- 21/9/92	DEPTH-
LENGTH (MM)	1300 1400 1500 1600 1700	1800 1900	2000 2100	2200 230
SUB-SAMPLE				
VISUAL LOG				
COLOR	5Y 5Y 5/1 5/1			
SORTING/ ROUNDNESS	moderate/poor moderate/well subround/subangular subrounded			
CARBONATE%	+++ +++ +++			
FOSSILS	gastropods, foraminifera, bivalves, echinoid spines, sponge spicules.			
SEDIMENTARY STRUCTURES				
REMARKS	120-140cm fine to medium carbonate san a trace of mud. Little or no iron stand-140-174cm fine carbonate sand. 60% catrace. Sediment generally finer than fragments missing.	aining. Scattere arbonate, 35% qua	d shell fragmen rtz, 5% lithics	ts. and a mud

LOG SHEET	CORE NO-	047 SP	LIT- 24 SEP	т 1992		T-NO.		B-NO.		
SITE- WB8 I	TIME- 0522	LGTH- 100c	n Lat- 33	37.45	Long-	151 47.16	DATE-	21/9/92	DEP'	TH- 146m
LENGTH (MM)	100	200 3	00 400	500	600	700	800	900	1000	1100
SUB-SAMPLE										
VISUAL LOG			· ③	0.1.0					,	
COLOR	10YR 6/2	5YR 6/2	10YR 7/3			10 4	YR /4			
SORTING/ ROUNDNESS	Mod. sorte	ed r/subround	poorly sor		đ		oorly s	sorted /subround		
CARBONATE%	+++ +++	+++	+++	++	+		+++			
FOSSILS	forams	pect. foran		cams, co		pec for	tins, d	coral		
SEDIMENTARY STRUCTURES										
REMARKS	3 - 4cm me 10 - 15cm 30 - 45cm	ine/medium of 10YR 6/2) edium/coarse fine/medium fine/medium (10YR 7/3) m medium/coarbonate	carbonate carbonate ironed sta	sand, 8 sand, 9 ained ca	0% car 0% car rbonat /grave	cbonate, 20 cbonate, 10 ce sand. 90	% quart % quart % carbo	tz (10YR diz (5Y 4/2)	4/3) 1) quart	

LOG SHEET	CORE NO- 048	SPLIT- 24 SEP	Т 1992	T-NO.]	B-NO.		
SITE- WB8 TIM	E- 0541 LGTH- 10	9.5cm Lat- 33	37.45 Long-	- 151 47.19	DATE-	21/9/92	DEPTH	- 146m
LENGTH (MM)	100 200	300 400	500 600	700	800	900	1000	1100
SUB-SAMPLE								
VISUAL LOG							ø. • o	•
COLOR	5Y 5Y 5Y 6,	7 5Y 72 6/2		10YR 5/8	5Y 6/2			
SORTING/ ROUNDNESS	mod. sorted subround/subangular	mod. poor subround/	ly sorted subangular	poorly s subround		ular		
CARBONATE%	++ ++		+++	+	++		+++	
FOSSILS	forams bryozoa		mol	luscs				
SEDIMENTARY STRUCTURES		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 4 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1			
REMARKS	Three pale bands, 5 80% carbon quartz - i 45 - 110cm coarse s 85% carbon 15% quartz	non/weakly : 5 - 6cm, 30 - nate, up to 19 ron coated, a	iron stained, 31cm, 40 - 4 5% quartz, 5% and carbonate carbonate ric fraction) ction)	mineralised 1cm (5Y 6/2 lithics, an slightly in	d forams) nd 5% wh	s nite cla		

LOG SHEET	CORE NO- 049	SPLIT- 24 SEP	Т 1992		T-NO.		B-NO.		
SITE- WB7 TIM	E- 0638 LGTH- 3	5cm Lat- 33	37.45	Long-	151 43.80	DATE-	21/9/92	DEPTH-	- 140m
									<u> </u>
LENGTH (MM)	100 200	300 400	500	600	700	800	900	1000	1100
SUB-SAMPLE				_					
VISUAL LOG		\$.0%.0 000000							
COLOR	5Y 5Y 10YR 4/1 4/3 3/3								
SORTING/ ROUNDNESS	Mod. poor sorting subangular-well ro		ted						
CARBONATE%	+++ +++ +++								
FOSSILS		picules, pecti , bivalves	ns						
SEDIMENTARY STRUCTURES	< fining up								
REMARKS	8 - 20cm same com 20 - 35cm coarse	e iron stained aposition as a	, no fi bove bu shell h	nes. Mo t coars ash, ma	ottled laye ser and be ainly pecti	r at 80 tter so	cm (5YR 4 orted.	1/3).	matrix

SITE- 7 TIM	E- 0658	LGTH- 45cm	Lat- 33	37.45	Long-	151 43.80	DATE-	21/9/92	DEPTH-	- 14
										J
LENGTH (MM)	100	200 3	00 400	500	600	700	800	900	1000	L100
SUB-SAMPLE										
VISUAL LOG										
COLOR	5Y 4/2		0YR 4/4							
SORTING/ ROUNDNESS	moderate/wangular	ell poo subro								
CARBONATE%	+ ++	+++	+++							
FOSSILS	foraminife									
SEDIMENTARY STRUCTURES	<fini< td=""><td>ng upwards</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></fini<>	ng upwards								
REMARKS	0-0.2cm muc 0.2-15cm f 50% carbona 15-30cm coa 80% carbona 30-45cm coa worm tubes	ine carbonate, 30% quarse carbonate, 20% quarse carbonate, 20% quarse carbon	uartz, 10% nate sand. uartz. nate gravel	mud and Carbona	5% lith ce and o	hics. quartz iro	n stair	ned.		alve

LOG SHEET	CORE NO- 051	SPLIT- 25/9/92	·	_	T-NO.		B-NO.		
SITE- 6 TIM	E- 0751 LGTH- 26	cm Lat- 33	37.43	Long-	151 40.48	DATE-	21/9/92	DEPT	H- 134m
LENGTH (MM)	100 200	300 400	500	600	700	800	900	1000	1100
SUB-SAMPLE									
VISUAL LOG	0.000								
COLOR	10YR 10YR 5/3 3/3								
SORTING/ ROUNDNESS	well moderate poor angular subrounded								
CARBONATE%	+++ +++								
FOSSILS	foraminifera sponge spicules								
SEDIMENTARY STRUCTURES	< fining upwards								
REMARKS	0.3cm mud drape a 0.3-20cm medium c 80% carbonate (sh 15% quartz, 5% li iron staining of 20-26cm medium to 60% carbonate (sh 30% quartz, 10% l iron staining of	arbonate sand. ell fragments) thics. Some carbonates. coarse sand. ell fragments) ithics. Some							

LOG SHEET	CORE NO- 052 S	PLIT- 25/9/92	T-NO.	B-NO.	
SITE- 6 TIM	E- 0811 LGTH- 128	cm Lat- 33 37.42	Long- 151 40.48	DATE- 21/9/92 DEPTH- 13	34 m
LENGTH (MM)	100 200	300 400 500	600 700	800 900 1000 1100	0
SUB-SAMPLE					
VISUAL LOG				E	•
COLOR	5Y 4/2	7.5YR 10Y 5/4 6/		10YR 5/3	5Y 4/1
SORTING/ ROUNDNESS	moderate/well subround/subangular	poor angular	poor angular	moderate/well subrounded/subangu	ılar
CARBONATE%	+++	+++ ++	+++	+++	+++
FOSSILS	foraminifera sponge spicules	pectins, gastropo	bivalves ds	foraminifera sponge spicules	
SEDIMENTARY STRUCTURES		1 1 1 1 1 1 1 1			
REMARKS	10% lithics (sandst Approximately 50% o 35-43cm coarse shel 43-62cm cemented ca 62-75cm coarse shel the 43-62cm facies 75-117cm fine to me and foraminifera, 3 remainder clear. Quil7-128cm fine to me percentage of lithic	ed muddy fine carbonone fragments). Carlone fragments). Carlon is quartz fraction is locareous shell fragment as well as where that material dium carbonate sand of quartz, 5% lithicartz grains subrouncedium carbonate sand (20%) present and (20%) present and (20%)	conate fraction constained and we and matrix. ments (pectins and bit is not cemented 60% carbonate constant of and 5% mud. 30 ded, carbonate percent a smaller percent	d bivalves mainly). valve shells. Similar to together. emposed of shell fragments of quartz iron stained,	· ·

LOG SHEET	CORE NO- 054 SPLIT- 24 SEPT 199	2 T-NO.	B-NO.	
SITE- WB5 T	IME- 0926.40 LGTH- 100cm Lat- 33 37.4	6 Long- 151 37.17	DATE- 21/9/92	DEPTH- 128m
LENGTH (MM)	100 200 300 400 500	600 700	800 900	1000 1100
SUB-SAMPLE				
VISUAL LOG				
COLOR	5Y 5/3	2.5Y 7/6	5Y 5Y 4/3	3
SORTING/ ROUNDNESS	mod. sorted subangular/angular		od. sorted bangular/angula	ar
CARBONATE%	++ ++	+++ +++	+++	
FOSSILS	worm tubes, bivalves fora	ms, spicules, crab zoa, pectin, mollus	fragments. fo	orams, molluscs urb worm tube
SEDIMENTARY STRUCTURES				
REMARKS	0 - 55cm fine olive quartz muddy sar 55 - 77cm coarser and poorer sorted	25% lithics 20% mud 5% carbonate, n	o forams	
	quartz grains (to 1mm) ar sand similar in composition	d large sandstone c		
	77 - 100cm coarse carbonate sand, 50	% carbonate % quartz		
	1	- 15% lithics % mud		
	minor iron staining	o maa		
	95cm worm cast, and mottled area sur	rounding.		

SITE- 5 TI	ME- 0945 LGTH- :	148cm Lat- 33 37.47	Long- 151 37.18	DATE- 21/9/9:	2 DEPTH- 128
LENGTH (MM)	100 200	300 400 500	600 700	800 900	1000 1100
SUB-SAMPLE					
VISUAL LOG			•		, v
COLOR		5Y 4/2		2.5Y 5/2	2.5Y 5/4
SORTING/ ROUNDNESS	moderate/poor rounded angular			poor angular	moderate/wel
CARBONATE%	+	+	++	+++	+++ -
FOSSILS	foraminifera, gast bryozoa, worm tub	ropods es, sponge spicules		pectin,br gastropod	
SEDIMENTARY STRUCTURES			< fini	1 1	
REMARKS	1.5-82cm muddy firich mud. Presence fragments and for remainder is angular 82-88cm coarse shiplauconite filled 30% is clear and 88-120cm fine to Carbonate componer.	ne sand. 30% quartz, a of mica-like fragment aminifera. 30% of the lar and free of iron selly gravel band. Very foraminifera tests. (angular, 70% is more amedium quartz sand. 70% of shell from the made up of shell from the made of quartz. No	20% carbonate, 20 nts. Carbonate con quartz is iron so staining. You coarse grains or counded and iron so quartz, 25% list cagments.	nsists of angu tained and wel f sandstone co nd consists of stained.	llar shell I rounded, the onglomerate and medium sand,

LOG SHEET	CORE NO- 055A	SPLIT-	26/9/92		T-NO.		B-NO.		
SITE- 5 TIM	E- 0945 LGTH-	148cm	Lat- 33 3	37.47 Lor	g- 151 37	7.18 DATE-	21/9/92	DEPTH-	- 128m
LENGTH (MM)	1300 1400	1500	1600 1	700 180	0 1900	2000	2100	2200 2	2300
SUB-SAMPLE									
VISUAL LOG									
COLOR	2.5Y 5/4			· · · ,					
SORTING/ ROUNDNESS	moderate/well subround/angular								
CARBONATE%	++ ++								
FOSSILS	foraminifera sponge spicules								
SEDIMENTARY STRUCTURES									
REMARKS	120-148cm fine t Carbonate compon occur. Some mino	ent made	up of sh	ell fragm	ents. Gla				tests

SITE- WB 4 TI	ME- 1032.50 LG	TH-129 Lat-	- 33 37.48	Long- 151	33.86	DATE-	21/9/92	DEPTH	1- 1
LENGTH (MM)	100	200 300 40	500	600	700	8.00	900	1000	110
SUB-SAMPLE									
VISUAL LOG		•							
COLOR	5Y 4/2				5Y 4/2				
SORTING/ ROUNDNESS		sorted gular/subround			Mod.songu		bround		
CARBONATE%	+	+		+		+		· · · · · · · · · · · · · · · · · · ·	
FOSSILS					Fora	ns			
SEDIMENTARY STRUCTURES	<	Fi	ning up						
REMARKS	10-100cm fine 70% c 20% c	mud, visible li e to medium quar quartz carbonate .ithics Mud-balls 0.5m	tz sand	arbonate	materia	L-20%,	remainde	r mud.	

LOG SHEET	CORE NO- 056	SPLIT- 26 S	ept 1992		T-NO.		B-NO.		
SITE-WB 4 TIM	E- 1032.50 LGTH-12	29CM Lat-	33 37.48	Long-	151 33.86	DATE-	21/9/92	DEPT	CH- 118
LENGTH (MM)	1300 1400	1500 1600	1700	1800	1900	2000	2100	2200	2300
SUB-SAMPLE									
VISUAL LOG								er raus en geren a la commence en	
COLOR	5Y 4/2								
SORTING/ ROUNDNESS	Mod sorted subangular/subrou			magani daga kepatan kentan kentangah magan samu bilan merjad					
CARBONATE%	++							ark-gal-alge-ga-ga-ga-ga-ga-ga-ga-ga-ga-ga-ga-ga-ga-	. 100
FOSSILS	Forams								
SEDIMENTARY STRUCTURES	!			4	and a death of a state of the s	univ.			[
REMARKS	Fine to medium of 70% quartz 20% carbonate 10% lithics Mud ball	e Ls to 0.5cm							

LOG SHEET	CORE NO- 057 SPLIT- 25/9/92	T-NO.	B-NO.
SITE- 4 TIM	E- 1053 LGTH- 211.5cm Lat- 33 3	7.46 Long- 151 33.89	DATE- 21/9/92 DEPTH- 118m
LENGTH (MM)	100 200 300 400	500 600 700	800 900 1000 1100
SUB-SAMPLE			
VISUAL LOG	, , , , , , , , , , , , , , , , , , ,		
COLOR	5Y 4/2		5Y 5Y 4/1 4/1
SORTING/ ROUNDNESS	moderate angular/subrounded	poor angular/subro	well/moderate unded subangular/angular
CARBONATE%	+ +	+	+ +
FOSSILS	foraminifera worm tubes scaphopods bivalves	foraminifera worm tubes	foraminifera sponge bivalves spicules
SEDIMENTARY STRUCTURES			
REMARKS	0-65cm muddy fine to medium quarts stained, quartz not stained. 50% of Quartz well rounded while carbonar 65-85cm fine to medium quartz sand similar to 0-65cm. 85-115cm medium quartz sand. 50% of carbonate slightly iron stained, a stained and well rounded in shape 115-120cm silty fine carbonate sand Carbonate component poorly sorted silt. No iron staining.	quartz, 40% carbonate, ce angular to subangula d. 50% quartz, 40% carl quartz, 40% carbonate, angular to subangular :	5% mud and 5% lithics. ar. bonate, 10% mud. Otherwise 10% mud. in shape. Quartz not iron and angular in shape.

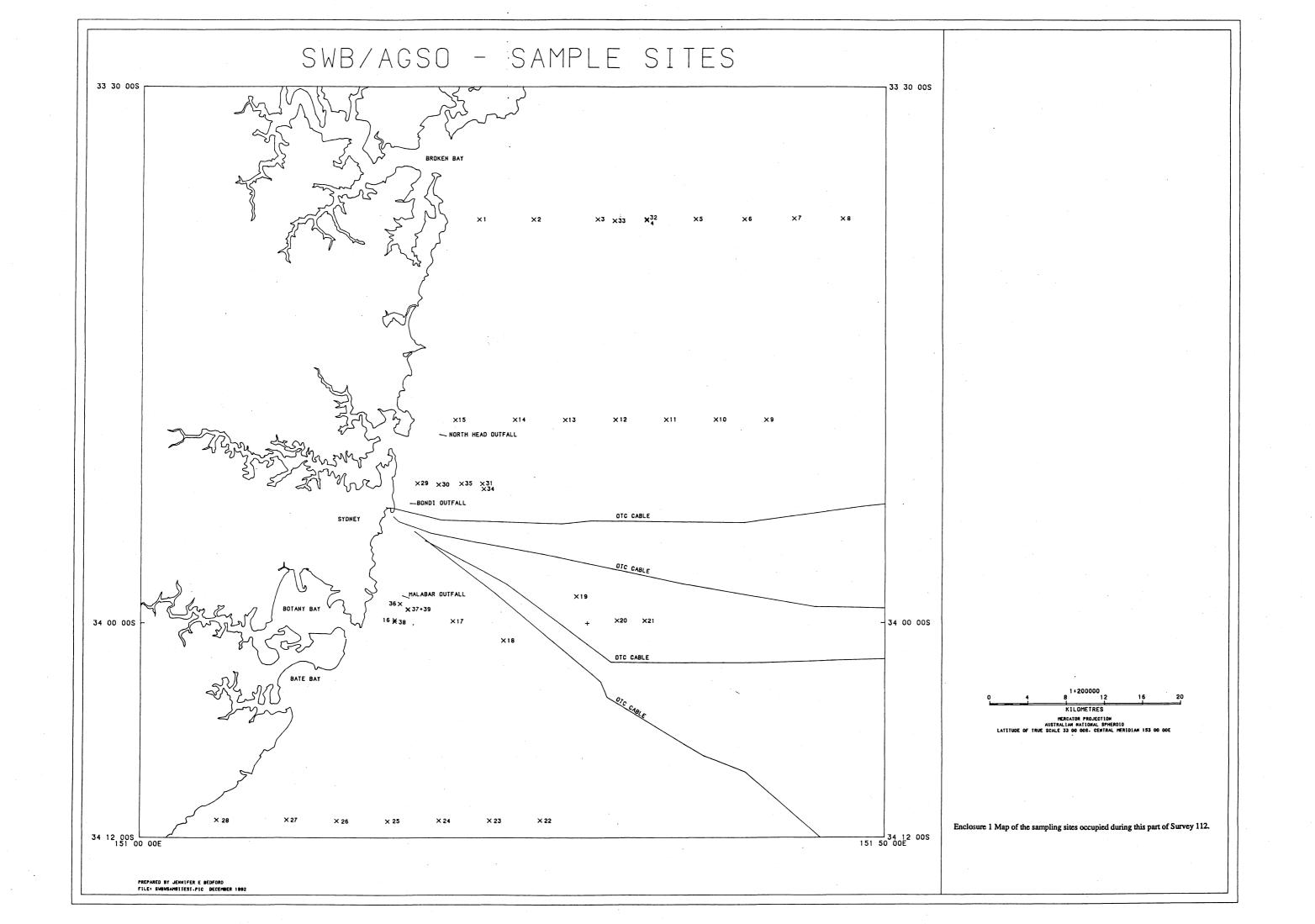
SITE- 4 TI	ME- 1053 LGTH- 211.5cm Lat- 33 3	7.46 Long- 151 33.89	DATE- 21/9/92 DEPTH- 11
LENGTH (MM)	1300 1400 1500 1600 1	700 1800 1900	2000 2100 2200 2300
SUB-SAMPLE			
VISUAL LOG			
COLOR	5Y 4/1	5Y 4/1	5Y 4/1
SORTING/ ROUNDNESS	well/moderate angular/subangular		ooor angular
CARBONATE%	+ + ++	++ ++	+
FOSSILS	foraminifera pectin sponge spicules bivalve	crab sponge shell spicules	
SEDIMENTARY STRUCTURES			
REMARKS	120-140cm silty fine carbonate sa Carbonate component poorly sorted silt. No iron staining. 140-205cm well rounded gravel up 1cm. Gravel made up of carbonate, coating. 205-211cm fine to medium quartz slithics and 20% mud. Presence of	and subangular. 40% of to 4cm in diameter wit quartz and sandstone, and. 50% quartz, 15% p	carbonate, 30% quartz, 30% The average diameter of about all with a white clay boorly sorted carbonate, 159

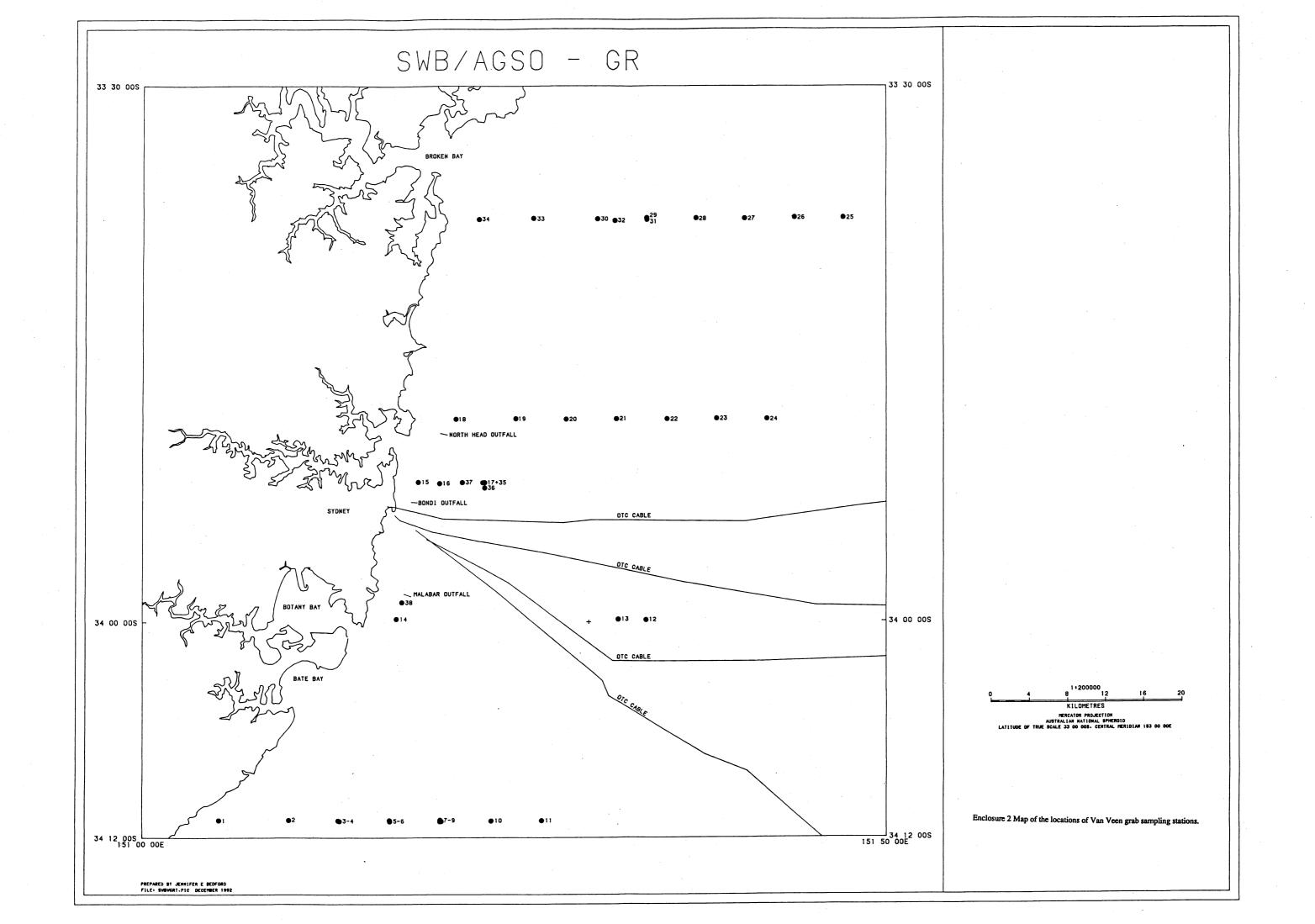
LOG SHEET	CORE NO- 059	SPLIT-	- 25 SEPT 1992	T-NO.	B-NO.	
SITE- WB3 TIM	E- 1520 LGTH	I- 118.5cm	Lat- 33 37.46	Long- 151 30.57	DATE- 21/9/92	DEPTH- 89
LENGTH (MM)	100 20	0 300	400 500	600 700	800 900	1000 1100
SUB-SAMPLE						
VISUAL LOG		• 1	0/-	5.0.0000	00.000	
COLOR	5Y 4/2		5Y 1/2		5Y 7/3	
SORTING/ ROUNDNESS	mod. poorly s subangular/ro		subangular		poorly sort well round,	ted /subangular
CARBONATE%	+	+	·	++	++	
FOSSILS	bivalve		gastropod echinoid		gastropo remains	od
SEDIMENTARY STRUCTURES						
REMARKS	30% ol 50 - 118.5cm l non-ir	ive mud, 5 arge river on stained	<pre>% subangular of pebbles in a , sand/gravel</pre>	tz sand. 65% ver carbonate, trace coarse sandy mat sized quartz. Pe calts up to 50mm	lithics, no fora rix, angular/sub bbles consisted	ams Dangular,

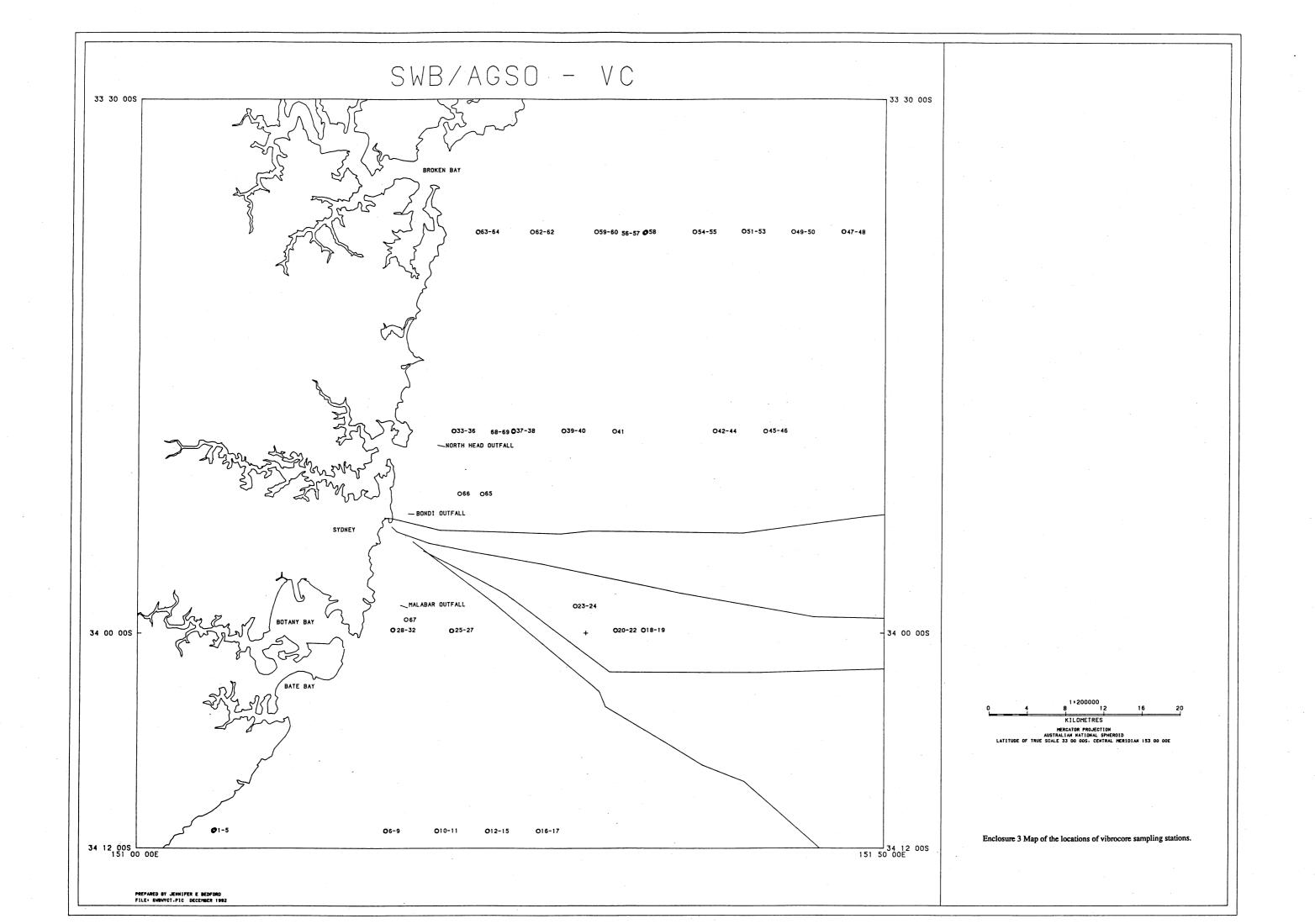
LOG SHEET	CORE NO- 060	SPLIT	- 25 SEP	r 1992		T-NO.		B-NO.		
SITE- WB3 TIM	ME- 1552 LGTH-	78cm	Lat- 33	37.46	Long-	151 30.57	DATE-	21/9/92	DEP	rH- 89.5m
LENGTH (MM)	100 200	300	400	500	600	700	800	900	1000	1100
SUB-SAMPLE				-						
VISUAL LOG										
COLOR	5Y 4/2				5Y 3/2					
SORTING/ ROUNDNESS	mod. poorly sort subangular/subro				rly son	rted c/angular				
CARBONATE%	++	+++	+++			++				
FOSSILS	forams, sponge worm tubes, gas			gas	tropod al					
SEDIMENTARY STRUCTURES	< fini	ng upwa								
REMARKS	0 - 5cm olive 'f 5 - 45cm olive c 45 - 78cm same c genera no fos Note: This core	alcarous omposit lly lare sils	s, muddy ion as ab ger non-i	ove, b ron st	7(10 10 ut coan ained c)% non-iron)% lithics)% mud sser and the quartz and)	staine erefore biogeni	ed carbon e more po ic shell	nate corly s fragme	ents.

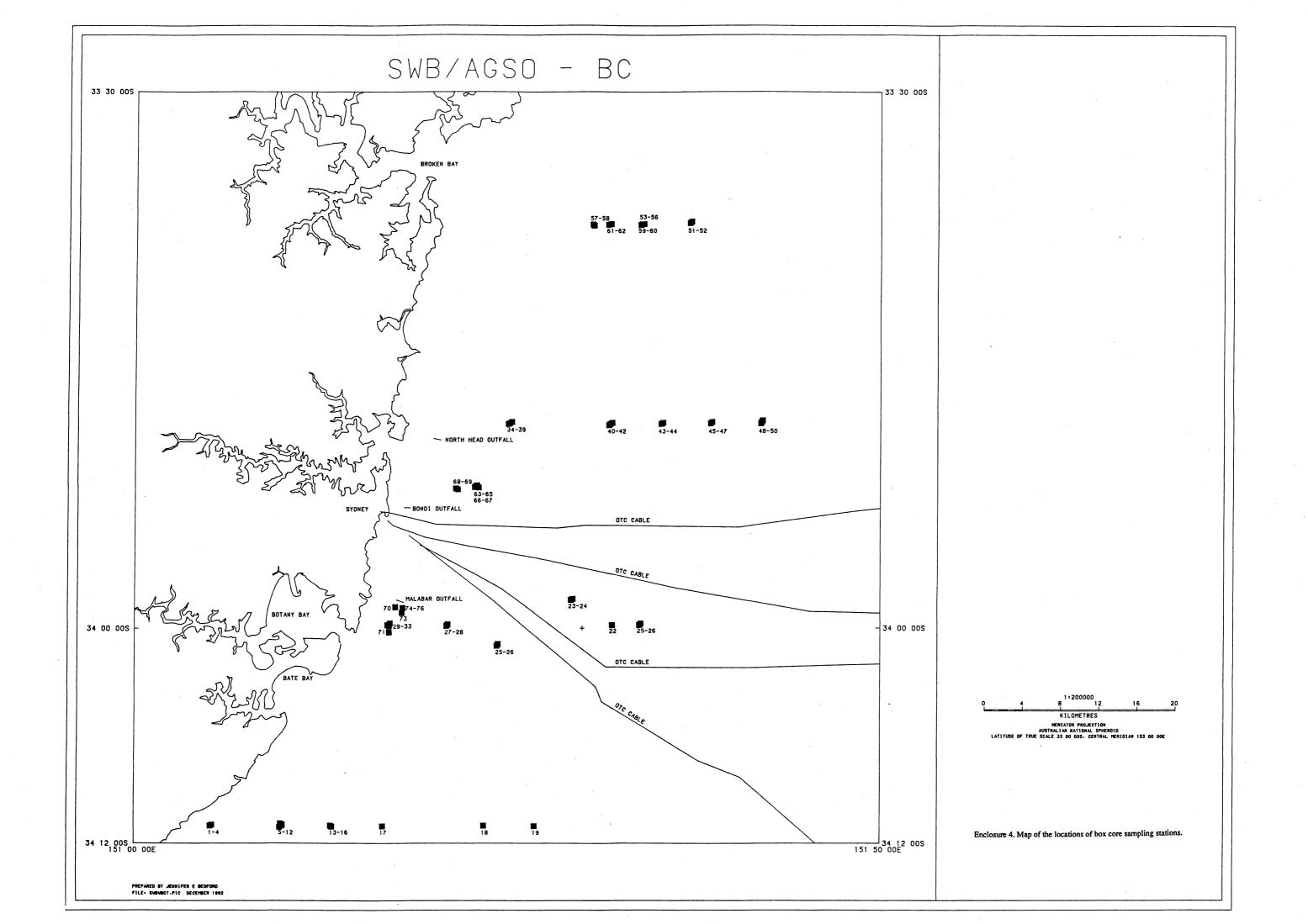
LOG SHEET	CORE NO-	061	SPLIT	- 25 SEP	т 1992		T-NC).		B-NO.		
SITE- WB2 TIME	- 1704	LGTH- 2	20cm	Lat- 33	37.47	Long-	151 2	6.28	DATE-	21/9/92	DEPTH	- 47.4
LENGTH (MM)	100	200	300	400	500	600	70	0	800	900	1000	1100
SUB-SAMPLE					······································						***************************************	···- <u>·</u>
VISUAL LOG				• •			•		_			•
	5Y 5/2(M.D.)							10Y 6/				
SORTING/ ROUNDNESS					well s							
CARBONATE%	+				+				4	+		+
FOSSILS												
SEDIMENTARY STRUCTURES				**************************************								
REMARKS	3mm mud omedium, viron starconsistar	well sor ining of	carbon	artz sand	d, 95% ly.	quartz,	5% c	arbon	ate, tr	race lith	nics	

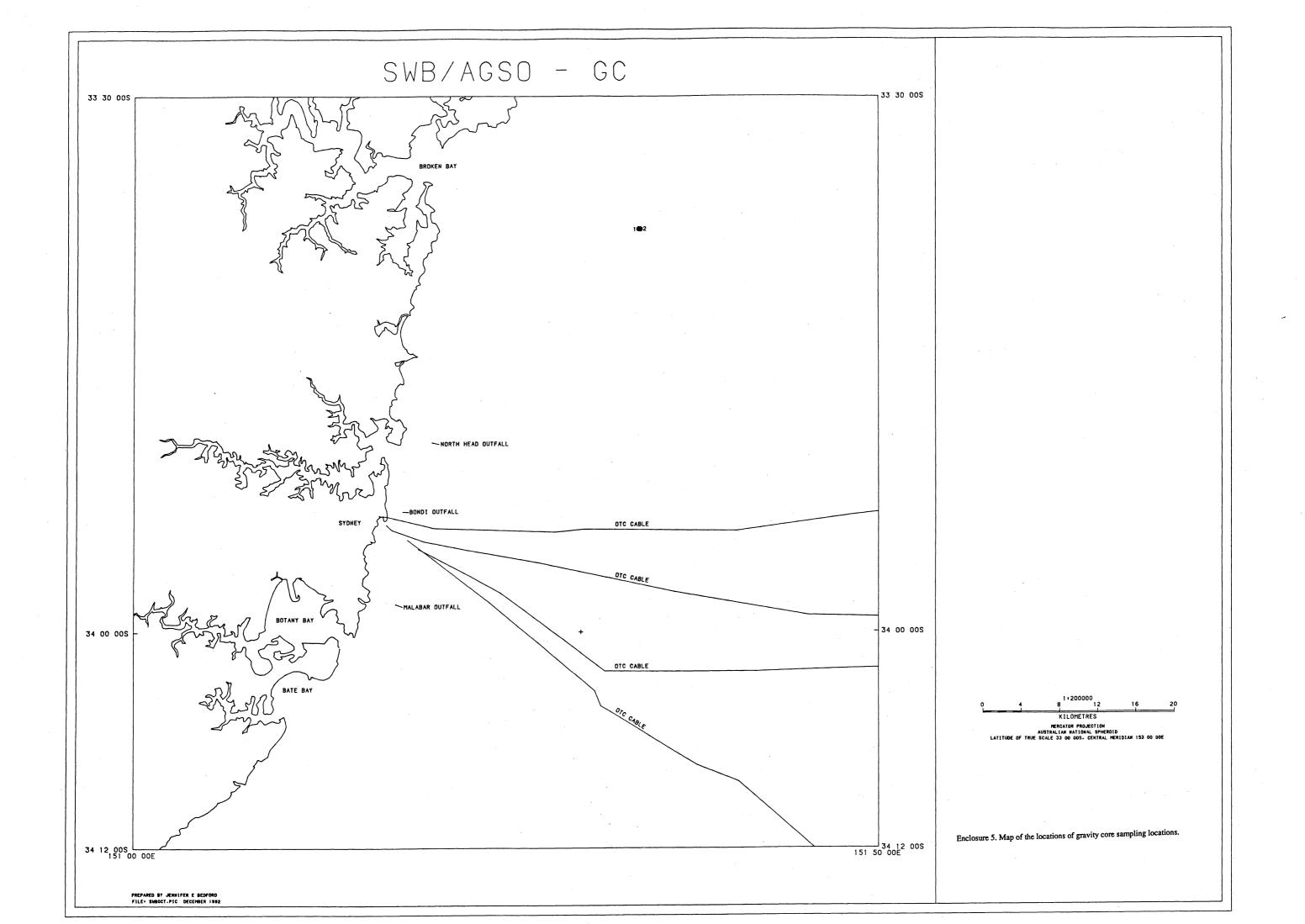
SITE- WB2 TIM	ME- 1704 LGTH- 220c	m Lat- 33 37.47	Long- 151 26.28	DATE- 21/9/92	DEPTH- 4
LENGTH (MM)	1300 1400 15	00 1600 1700	1800 1900	2000 2100	2200 230
SUB-SAMPLE					
VISUAL LOG	o	· · · · · · · · · · · · · · · · · · ·		00 00 00 00	·
COLOR	10YR 6/4		10YR 6/4	10YR 10YR 4/3 6/8	
SORTING/ ROUNDNESS	well sorted subangular		poor sorting round-angula		l sorted angular
CARBONATE%	+	+	+		+
FOSSILS	scaphopod	pectins	pecti: gastro	ns, bivalves opods	
SEDIMENTARY STRUCTURES					
REMARKS	medium quartz sand (185 - 195cm large sl 195 - 205cm large ro 205 - 220cm similar mottled	hell hash. ounded river stone: to 120 - 185cm bu	s of igneous orig	gin.	taining


SITE- WB2 TIM	E- 1718.10 LGTH-	80cm Lat- 3	3 37 47 I.or	g- 151 26.28	DATE-	21/9/92	DEPTH	t- 57
OIII WOL III	1 1 1 1	- Dat 3.	, ,,,,, Eo.	131 20:20	DATE	1	T DEF III	1 3,
LENGTH (MM)	100 200	300 400	500 60	0 700	800	900	1000	1100
SUB-SAMPLE								•
VISUAL LOG	(C)		0 0					
COLOR	5Y 10YR 4/1 5/6	10YR 5/6		5Y 7/2				
SORTING/ ROUNDNESS	well sorted subround	well sorted subround/subar	ngular	extremely subangula				- · · · · · · · · · · · · · · · · · · ·
CARBONATE%	++	++						
FOSSILS	echinoid spines gastropods, sar							
SEDIMENTARY STRUCTURES	 		1 1 1 1					
REMARKS	20 - 50cm mottle	0% quartz, 30% d dark patches, artz, 20% carbo e 2cm in diamet orted medium qu	carbonate, medium wel onate er	iron stained 1 sorted quar			d quartz	


LOG SHEET	CORE NO- 063	SPLIT- 25 SE	PT 1992	T-NO.	B	B-NO.		
SITE- WB1 TIM	IE- 1826 LGTH- 1	98cm Lat- 3	3 37.47 Long-	151 22.60	DATE- 2	1/9/92	DEPT	н- 46.
LENGTH (MM)	100 200	300 400	500 600	700	800	900	1000	1100
SUB-SAMPLE				<u> </u>	to the second section of the section			
VISUAL LOG		•					(2)	
COLOR	7.5YR 10YR 5/6 4/3	2.5YR 2/0	5Y 5/1		OYR 2.5 4/3 2/		YR /1	
SORTING/ ROUNDNESS	well sorted sub angular		d. sorting gular				ll som	
CARBONATE%	+		And the second s	++	++		······································	
FOSSILS	bivalves, oyster	shell				biv	alve	
SEDIMENTARY STRUCTURES								
REMARKS	2mm grey mud drap 0 - 8cm medium qu trace mud 8 - 85cm medium/c 15 - 18cm bivalve 30cm large pebble 80 - 85cm pieces 90 - 100cm medium 100 - 120cm 100%	artz sand, non, trace lithicoarse quartz so, oyster shell 2cm diameter of large bival quartz sand,	cs sand, mod. poo lls Lve 95% quartz ,	r sorting,	subangul			


SITE- WB1 TIM	IE- 1826 LGTH-	198cm	Lat- 33	37 47	Long-	151 22.60	DATE-	21/9/92	DEPTH-	
SILE WEL TIM	1620 EGIII	138CM	Dac 5.	7 77.47		131 22.00	DATE	21/3/32	DEFIN-	Т
LENGTH (MM)	1300 1400	1500	1600	1700	1800	1900	2000	2100	2200 2	23
SUB-SAMPLE				317 14 14 11 17						
VISUAL LOG						. ,	-			
COLOR	5Y 5Y 6/1 4/2			5Y 6/1		5Y 4/1				
SORTING/ ROUNDNESS	well sorted subangular/subro	ound				sorted angular/sub	oround			
CARBONATE%										
FOSSILS										
SEDIMENTARY STRUCTURES									*****	
REMARKS	100% medium qua at core ba very consistant core barrel ber	se trac down c	e mud, toore with	race lit	thics	.40cm and k	ase			


SITE- WB1 TIM	1E- 1849.1 LGTH-	202cm Lat-	33 37.45	Long-	151 22.62	DATE-	21/9/92	DEPT	H-
LENGTH (MM)	100 200	300 400	500	600	700	800	900	1000	1
SUB-SAMPLE									
VISUAL LOG	0	OP 8°							
COLOR	10YR 10YR 3/1 5/4			10YR 6/1					
SORTING/ ROUNDNESS	Mod. well sorted subangular/subro		sorted /subangul	ar			ll sorte		
CARBONATE %	+	++	A LOUIS CONTRACTOR OF THE STATE	The state of the s					
FOSSILS	Forams Molluscs	Bivalves Gastropods		Orga	anic Mate	rial			rga
SEDIMENTARY STRUCTURES	< Fining up		•						
REMARKS	20 - 40cm Large 40 - 100cm Very	um, moderatel iron stained er angular she	quartz, l ell fragme medium 'c	0% carbo nts in 1 lean' qu	onate she medium ir	ll hash on stai	, 5% lit: ned quar	hics, 5 tz sanc	8 n


SITE- WB1 TIM	E- 1849.10 LGTH- 202 Lat-	33 37.45 Long- 151 22.62	DATE- 21/9/1992 DEPTH-
SIIE WOI III	1043.10 Boli. 202 Bac	33 37.13 Bong 131 Bove	22,3,232 22.1
LENGTH (MM)	1300 1400 1500 1600	1700 1800 1900	2000 2100 2200 23
SUB-SAMPLE			
VISUAL LOG			
COLOR	10YR 6/1	10YR 10YF 4/1 6/1	
SORTING/ ROUNDNESS	Very well sorted Subangular/subround	well sorted Subangular/su	ıbround
CARBONATE%			
FOSSILS		Organic material	
SEDIMENTARY STRUCTURES			
REMARKS	Very well sorted medium quants 150 - 190cm finer, medium quants 95% quarts, 4% mi	artz sand with increased m	

