
1994 53 CROLOCAL SURVINO. AUSTRALIAN CHOLOGICAL SURIAN ORTHONOLOGICAL SURIAN ORTHONOLOGICA SUR BMR COMP 1994/53

HIGH RESOLUTION SEISMIC SURVEY OF THE EXMOUTH, BARROW, AND DAMPIER SUB-BASINS, NORTH WEST SHELF, AUSTRALIA

CRUISE PROPOSAL

BMR PUBLICATIONS COMPACTUS (LENDING SECTION)

BY K.K. ROMINE

USTRAL GEOLOGICAL SURVEY

AUSTRALIAN GEOLOGICAL SURVEY ORGANISATION

Marine, Petroleum and Sedimentary Resources Program

AGSO RECORD 1994/53

HIGH RESOLUTION SEISMIC SURVEY OF THE EXMOUTH, BARROW, AND DAMPIER SUB-BASINS, NORTH WEST SHELF, AUSTRALIA

CRUISE PROPOSAL

by

K.K.Romine

DEPARTMENT OF PRIMARY INDUSTRIES AND ENERGY

Minister for Resources: Hon. David Beddall, MP

Secretary: Greg Taylor

AUSTRALIAN GEOLOGICAL SURVEY ORGANISATION

Executive Director: Harvey Jacka

© Commonwealth of Australia 1994

ISSN: 1039-0073 ISBN: 0 642 22172 3

This work is copyright. Apart from any fair dealings for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Executive Director, Australian Geological Survey Organisation. Inquiries should be directed to the Principal Information Officer, Australian Geological Survey Organisation, GPO Box 378, Canberra City, ACT, 2601.

CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	2
EXPLORATION HISTORY	3
STRUCTURE	3
TECTONIC FRAMEWORK	5
STRATIGRAPHY	7
HYDROCARBON ACCUMULATIONS	9
GENERAL OBJECTIVES	9
PROPOSED PROGRAM	10
ACKNOWLEDGEMENTS	13
DECEDENCES	1 /

APPENDICES

1.	Northern Carnarvon Basin - Oil and Gas Fields	17
2.	Wells to be tied	19
3.	Way points	22
4.	Seismic acquisition parameters	26
5.	Equipment to be utilised	27
	FIGURES	
1.	Location map showing the northern Carnarvon Basin and North West Shelf	28
2.	Locations of hydrocarbon accumulations in the northern Carnarvon Basin	29
3	Location of sub-basin depocentres of the northern Carnarvon Basin	30
4.	Tectonic elements of the northern Carnarvon Basin	31
5.	Stratigraphy of the southern North West Shelf	32
6.	Proposed seismic lines, wells and bathymetry	33
7.	Proposed seismic lines and tie wells	34
8.	Proposed seismic lines, well locations and tectonic elements	35
9.	Proposed seismic lines, well locations, and existing AGSO deep seismic lines.	36

EXECUTIVE SUMMARY

Exploration in the offshore northern Carnarvon Basin during the last two decades has resulted in a number of major oil and gas discoveries. Recent discoveries in the Dampier (di Toro, 1994; Delfos, 1994), Exmouth (Bauer et al., 1994; Lawry & Carter, 1994; Mitchelmore & Smith, 1994) and Barrow (Beacher et al., 1994; Sit et al., 1994) sub-basins ensure that exploration activity is likely to remain high in these areas for the near future. However, some of these discoveries have been small fields or individual wells with residual oil columns, indicating that still greater quantities of hydrocarbons have escaped from the traps. Recent work on oil-filled fluid inclusions (Lisk & Eadington, 1994) indicates that the loss of hydrocarbons from pre-Cretaceous reservoirs and traps occurred during the past 20 million years, beginning in the Miocene. These hydrocarbons may have been lost, but could potentially have been trapped in younger Cretaceous and Tertiary reservoirs. The Carnarvon Cretaceous/Tertiary Tie study proposes to address this issue by collecting and interpreting a regional high-resolution seismic survey, within the broad structural and tectonic framework provided by the Continental Margins Program Northwest Shelf Project. The main objectives are:

- construction of a regional, sequence-based chronostratigraphic framework for the Cretaceous and Tertiary within which the occurrence and distribution of potential seal and reservoir facies may be analyzed and predicted;
- assessment of the post-Valanginian fault reactivation history of the northern Carnarvon Basin and the implications for: (a) the migration of hydrocarbons from pre-Cretaceous traps and (b) the integrity of potential Cretaceous and Tertiary seals;
- determination of the probability of secondary migration and entrapment of hydrocarbons within Cretaceous and Tertiary strata.

Approximately 4240 km of high-resolution seismic data has been proposed for acquisition by AGSO's RV Rig Seismic. The data set will comprise 23 seismic lines tying 107 wells in the Exmouth, Barrow, Dampier and Beagle Sub-basins. These data will tie with and complement the deep-seismic grid previously acquired by AGSO in the Carnarvon Basin.

The seismic survey will be acquired using the latest high-resolution seismic technology. Data will be recorded using bubble-free GI air guns and with the following parameters: 3000m streamer; 12.5m group interval; 18.75m shot interval; recording frequency bandwidth of 4-180Hz; 2ms sample interval; 5.5 second record length; and 80-fold CDP multiplicity. The program layout includes 5 strike lines linking the Exmouth, Barrow, Dampier and Beagle subbasins and 18 dip lines orthogonal to the principal Mesozoic sub-basin fault systems.

INTRODUCTION

Western Australian sedimentary basins and, in particular, those of the North West Shelf offer the best prospects for hydrocarbon discoveries that will allow Australia to maintain a high level of energy self-sufficiency into the 21st century (Purcell & Purcell, 1994). Since 1988, exploration success in the northern Carnarvon Basin (Fig. 1) has increased Australia's estimated reserves by 35%, providing the most significant discoveries since those of the Gippsland Basin. At the recent West Australian Basins Symposium (Perth, August, 1994), presentations were made on several discoveries and fields in the northern Carnarvon Basin, e.g. Waneaea and Cossack (di Toro, 1994); Leatherback (Bauer et al., 1994); West Muiron (Mitchelmore & Smith, 1994); Maitland (Sit et al., 1994); Wandoo (Delfos, 1994); Rivoli (Lawry & Carter, 1994); Nebo (Osborne, 1994); and several others. Some of these fields are small, or underfilled (e.g., West Muiron; Mitchelmore & Smith, 1994), and other discoveries sampled only residual oil columns (e.g. Leatherback; Bauer et al., 1994). In each example, a Miocene-age tectonic compressional event is invoked to explain the reactivation of faults and subsequent migration and leakage of hydrocarbons. Similarly, Woodside (1988) suggested that the main period of oil migration in the Barrow-Dampier Sub-basins was in the Middle to Late Miocene due to a "tectonic pulse" that reactivated many of the older faults.

Residual oil accumulations also have been documented in the Timor Sea (Whibley & Jacobson, 1990). In the Cartier Trough of the Vulcan Sub-basin, analysis of oil-filled fluid inclusions (Lisk & Eadington, 1994) has demonstrated that the most recent phase of oil migration was initiated in the Miocene, as in the northern Carnarvon Basin.

The compressional tectonic event responsible for reactivation of faults and oil migration has been related to collision and subduction along the northern boundary of the Australian continent during the Miocene (O'Brien et al., 1993). This event is the most recent in a series of tectonic events which have governed the sedimentary and structural history of the North West Shelf basins (AGSO North West Shelf Study Group, 1994). As part of its research program on the North West Shelf, the Marine, Sedimentary and Petroleum Resources Program of AGSO has acquired regional deep seismic data across and between the major sedimentary basins, in an effort to determine the linkages between the major structural elements and to facilitate the development of a regionally integrated structural and tectonic history for the region. Interpretation of these data demonstrate that the reactivation history of structures in North West Shelf basins has had a fundamental impact on the distribution of hydrocarbons. In the northern Carnarvon Basin, the proposed high-resolution seismic data will provide the basis for a study that will build on the tectonic and structural framework provided by the deep seismic data to address the following objectives:

- construction of a regional, sequence-based chronostratigraphic framework for the Cretaceous and Tertiary within which the occurrence and distribution of potential seal and reservoir facies may be analyzed and predicted;
- assessment of the post-Valanginian fault reactivation history of the northern Carnarvon Basin and the implications for: (a) the migration of hydrocarbons from pre-Cretaceous traps and (b) the integrity of potential Cretaceous and Tertiary seals;
- determination of the probability of secondary migration and entrapment of hydrocarbons within Cretaceous and Tertiary strata.

EXPLORATION HISTORY

The initial oil exploration permits on the North West Shelf were granted to Ampol Petroleum Ltd in 1946. While these leases were primarily onshore, they did cover the offshore Carnarvon Basin out to a water depth of 100 fathoms (~183 m). In 1952, Ampol combined with Caltex to form West Australian Petroleum Pty Ltd (Wapet), and the new company drilled its first well (Cape Range 1) on a surface anticline in 1953. This well flowed oil from a small pool and provided a major impetus to exploration on the southern North West Shelf.

The first offshore seismic work was carried out by Wapet in 1961. In 1964, Wapet drilled a wildcat well on Barrow Island that discovered oil in Upper Jurassic sands. Subsequent appraisal drilling on Barrow Island showed the presence of a major oil field, principally reservoired in Cretaceous sands. In 1965, Wapet was granted acreage west of Barrow Island. At about the same time, Woodside (Lakes Entrance) Oil Co. (subsequently to become Woodside Petroleum) and associated companies were granted leases to the north and offshore from the Wapet leases. This general delineation of operations has persisted since the 1960's, with Wapet being considered the principal explorer in the Barrow Sub-basin, while Woodside is considered to be the prime explorer in the Dampier Sub-basin.

In 1968, Woodside made a non-commercial oil discovery at Legendre 1 on the landward flank of the Dampier Sub-basin. The major Woodside successes came in 1971, with major discoveries of gas/condensate at North Rankin 1, Goodwyn 1, and Angel 1 within or overlying fault blocks of the Rankin Platform (Fig. 2). Wapet continued the run of success on the Rankin Platform with the discovery of a major gas/condensate field in the Gorgon structure at the southwestern extremity of the platform in 1980.

Since the early 1970s, as the full potential of the North West Shelf has become apparent, exploration lease sizes have been steadily reduced and more players have become involved in exploration. During the 1980s, there has been a number of small- to medium-scale commercial and sub-commercial oil discoveries in both the Barrow and Dampier Sub-basins (eg Harriet, Talisman, Saladin, Roller, Wanaea, Cossack, Ramillies, Wandoo), and the former distinction between an "inner oil trend" and an "outer gas trend" has become blurred.

STRUCTURE'

The gross structure of the North West Shelf comprises a series of generally NE-SW trending rifted Mesozoic depocentres overlying Palaeozoic NW-SE trending basins that may have constituted failed arms of an incipient rift system (Veevers, 1988). Within the northern Carnarvon Basin, the four principal shelf and upper slope depocentres - the Exmouth, Barrow, Dampier, and Beagle Sub-basins (Fig. 3) - accumulated most of their sedimentary fill in the Triassic and Jurassic, before the rift system aborted with the separation of Australia from (?)Greater India along a parallel rift system along the northwest and northern margins of the Exmouth Plateau. Although the four sub-basins have frequently been treated as separate entities in the literature, this is largely due to the concentration of individual exploration

^{*}Excerpted and modified from Stagg, 1992.

companies in one or other of the sub-basins. In fact, the sub-basins are very closely related, particularly in the case of the Barrow and Dampier Sub-basins, and any analysis of the basin-forming mechanisms of the area should consider all of them together.

BOUNDARIES BETWEEN SUB-BASINS

The boundaries between the sub-basins of the southern North West Shelf are complex and not well-imaged or well-understood. In the southwest, the Exmouth Sub-basin is in *en echelon* arrangement with the Barrow Sub-basin (e.g., see figure 2 in Barber, 1988), with the boundary between the two usually being taken as the southern extension of the Rankin Trend (Alpha Arch) and the E-W trending Long Island Fault System (Fig. 4). The junction between the Barrow and Dampier Sub-basins, northeast of Barrow Island, is defined largely on the basis of a change in strike of the main depocentres, from NNE-SSW in the Barrow Sub-basin to NE-SW in the Dampier Sub-basin. This complex junction is not imaged at depth, but probably overlies a broad NW-SE trending transfer fault zone.

In the northeast, the boundary between the Dampier and Beagle Sub-basins is taken at a feature that has been referred to as the 'De Grey Nose'. This feature is probably also a complex transfer fault zone that truncates the northeastern end of the Dampier Sub-basin. To the northeast, the Beagle Sub-basin, as with the Exmouth Sub-basin, is relatively poorly known, mainly because of the lack of exploration success and the commensurate lack of modern high-quality seismic data. It appears from published tectonic elements maps and papers that the Mesozoic trend of the Beagle Sub-basin is strongly influenced by underlying orthogonal trends of the Offshore Canning Basin (the Roebuck Basin of Hocking, 1994), and in some reports it has been considered to be a Mesozoic sub-basin of the Canning Basin, as with the Rowley and Bedout Sub-basins. The Beagle Sub-basin is separated from the Bedout Sub-basin, Bedout High, and Rowley Sub-basin to the east and northeast by the N-S trending North Turtle Hinge.

INTERNAL SUB-BASIN STRUCTURES (Fig. 4)

To the southeast, the main depocentres of the rift are bound by the Flinders Fault System in the south and the *en echelon* Rosemary Fault System in the north. However, the main rift-bounding faults are more properly the Scholl Island Fault in the south and the Hauy Fault System in the north. Between these two fault systems (Flinders-Rosemary and Scholl Island-Hauy), is a complex fault zone which principally includes Triassic and Permo-Carboniferous sediments. This area of the North West Shelf is one of the few areas where the Triassic-Jurassic section is thin enough that basin-forming structures can be distinguished with conventional seismic data.

Oceanwards of the Flinders and Rosemary Fault Systems, and partially overlying them, is a complex zone where Cretaceous reactivation of pre-existing structures has caused extensive faulting and buckling of the Mesozoic section. This zone hosts the Saladin, Roller, and Yammaderry Fields in the Barrow Sub-basin and includes the oil-prone Legendre Trend in the Dampier Sub-basin.

The major Mesozoic depocentres include the sinuous and generally NNE-SSW trending Barrow Depocentre in the Barrow Sub-basin and the more linear NE-SW trending Lewis Trough in the Dampier Sub-basin. Both depocentres are deep (~3 km Tertiary-Cretaceous and

>5 km Jurassic, underlain by an unknown thickness of Triassic and Palaeozoics) and relatively unfaulted downwarps.

The seaward boundary of the Barrow-Dampier rift is formed by the structurally high Rankin Platform. The Rankin 'Trend' follows the southeastern edge of the Exmouth Plateau/Rankin Platform megacrustal block (Woodside, 1988). The Rankin Platform has the strongest gravity signature on the southern North West Shelf and is a fundamental structure of the rift system, as well as being host to the largest hydrocarbon reservoirs. For much of its length, the Rankin Platform is strongly fault-segmented, consisting of a series of NNE-trending pivotal Triassic horsts and grabens in an *en echelon* arrangement, suggesting that the trend formed in response to strike-slip movements (Woodside, 1988).

In the southwest, offshore from the Barrow Sub-basin, the Rankin Platform swings round to the south, where it becomes known as the Alpha Arch (which includes the large Gorgon gas field). While the deep structure of the Alpha Arch is probably less well-known than that of the Rankin Trend, its gravity expression is as strong as that of the Rankin Platform, and it also appears to represent a fundamental basin-forming structure.

The southeast boundary of the Exmouth Sub-basin is formed by the Rough Range Fault, while the northwest boundary is ill-defined, due to the scarcity of seismic data northwest of Northwest Cape. The deep structure of the Exmouth Sub-basin consists of a series of east-tilted fault blocks that are down-thrown to the west by as much as 3000 m in the pre-Cretaceous and show evidence of some reverse movement in the late Miocene (Parry & Smith, 1988).

As with the Exmouth Sub-basin, the Beagle Sub-basin is inadequately defined and mapped. The sub-basin is a transitional area between the northern Carnarvon Basin and the Offshore Canning Basin, and contains trends that are common to both of these basins (Crostella & Barter, 1980). In the west, the two principal elements are the ENE-trending Cossigny and Beagle Troughs and the NNE-trending fault blocks of the Beagle Platform (Blevin et al., 1994), which are analogous to the Lewis Trough and Rankin Platform, respectively. In the eastern half of the sub-basin, the dominant trend becomes N-S, as represented by the Thouin Graben and North Turtle Hinge.

TECTONIC FRAMEWORK

The evolution of the northern Carnarvon Basin was influenced by a series of tectonic events that controlled both the shape of the basin and the geometry and distribution of the basin fill. The basin's history can be subdivided into phases that are defined by these events (AGSO North West Shelf Study Group, 1994):

- 1) Late Devonian Initiation of a major phase of intra-continental, upper-crustal extension that continued into the Early Carboniferous In the northern Carnarvon, this event is expressed by growth on faults on the Candace Terrace.
- 2) Middle Carboniferous Extension and the initiation of the Westralian Superbasin (Yeates & others, 1987) Crustal extension primarily along NE-trending normal faults separated by NW-trending transfer faults. These faults have probably determined the structural grain of the North

West Shelf for the remainder of its history. The Scholl Island Fault is an example of an extensional fault of this age (e.g. see figures 5 & 7 in Bentley, 1988).

- 3) Late Permian Bedout Movement A regional structuring event that gave rise to a varied set of structural styles in various parts of the northern Carnarvon. Extensional, transtensional and transpressional features are all observed.
- 4) Late Triassic Fitzroy Movement Late Triassic to Early Jurassic faulting is widespread, particularly on the Rankin Trend and the Exmouth Plateau. This faulting has traditionally been interpreted as extensional and has been referred to frequently as 'rift onset'; however, the steep dips on these faults, the non-systematic fault block rotations on the Rankin Trend, and fault discontinuity indicate strike-slip faulting, interpreted to be in a left-lateral sense. This was the period of initiation of the major Jurassic depocentres of the northern Carnarvon, the Exmouth, Barrow, Dampier and Beagle Sub-basins. Rapid subsidence regionally led to the deposition of source rocks in many basins and sub-basin depocentres on the North West Shelf at this time, including the northern Carnarvon. Structures formed at this time serve as traps for most of the large gas fields of the North West Shelf (North Rankin, Goodwyn, West Tryal Rocks, Gorgon).
- 5) Mid Late Jurassic (Callovian Oxfordian) Argo Breakup This event is associated with the initiation of sea-floor spreading in the Argo Abyssal Plain and is expressed in the northern Carnarvon Basin by minor compression and erosion. The formation of a regional unconformity referred to as the 'Main Unconformity' (MU) occurred at this time.
- 6) Early Cretaceous (Valanginian) Cuvier-Gascoyne Breakup Sea-floor spreading in the Gascoyne and Cuvier Abyssal plains began at this time. Compression and erosion occurred in the Exmouth Sub-basin, but elsewhere the effects of this tectonic event are indistinct.
- 7) Mid-Cretaceous (Cenomanian) Middle to Late Cretaceous faulting is largely restricted to NE-trending high-angle zones that are complexly structured. This phase of faulting has formed many of the structures on the oil-rich trend from Saladin to Talisman. Fault geometries again indicate dominantly left-lateral wrench motion.
- 8) Miocene Collision along the northern margin of Australia commenced in the Mid-Oligocene, but the effects of that event began to be manifest along the southern half of the North West Shelf in the Miocene. A final episode of wrench movement and fault reactivation occurred in response to the collision of Australia with Timor. This activity is still evident today, particularly in the Timor Sea, where some faults reach seabed. Intraplate stresses within the Australia-India plate had some influence on fault reactivation in the Late Miocene. In both the Timor Sea basins and in the northern Carnarvon Basin, these tectonic events are thought to be responsible for initiating periods of fault reactivation with associated hydrocarbon leakage and migration that resulted in residual oil columns in several fields.

During each phase of the basin's history, reactivation of pre-existing structures is an important consequence of the basin-forming tectonic events. The impact on timing of formation and modification of traps and fluid migration pathways is of critical importance to the petroleum exploration industry. The proposed high-resolution survey will provide the quality and resolution necessary to investigate this problem.

STRATIGRAPHY*

A summary of general stratigraphy is provided in Figure 5. The North West Shelf is well-explored by Australian standards, and the stratigraphy is relatively well-documented, particularly in the Barrow and Dampier Sub-basins. This following section is based upon the studies of Parry & Smith (1988) and Woodside (1988).

PALAEOZOIC

Because of the great thickness of Mesozoic sediments beneath much of the northern Carnarvon Basin, Palaeozoic sediments have only been sampled infrequently. Carboniferous and Devonian rocks have been penetrated in Rough Range-1 and at shallower depth in wells on the Peedamullah Shelf, between the Flinders Fault System and the Scholl Island Fault. The Permian Byro Group has been documented in several wells on the Peedamullah Shelf and to the south, where it includes dark shale and siltstone with some sandstone. Parry & Smith (1988) believe that this sequence deserves more attention, given that there is a distinct possibility that shales in the group have generated hydrocarbons at some time and the fact that good-quality reservoir sandstones are present in the overlying Upper Permian Chinty Formation.

MESOZOIC-CAINOZOIC

Mesozoic sedimentation commenced with the deposition of the Scythian to Ladinian Locker Shale. This sequence consists of a basal transgressive coarse paralic sandstone and a thin shelfal limestone overlain by sandy shales. The bulk of this sequence consists of a thick marine section of interbedded claystone and minor siltstone with a thin regressive sandy sequence at the top.

The Locker Shale grades upwards into the Late Triassic Mungaroo Formation, a dominantly fluvial sandstone sequence, with some coals. This sequence is the principal reservoir for the major gas accumulations of the Rankin Trend. The coarse clastics in the sequence were probably deposited in a braided channel or fluvio-estuarine environment, whereas the interbedded claystones and coals represent flood-plain deposits with minor marine influences. At the top of the Mungaroo Formation there appears to be a return to a more marine environment, and there are widespread Rhaetian shelf carbonates along the northern margin of the Exmouth Plateau (von Rad, Haq, et al., 1992).

Overlying the Mungaroo Formation across most of the Dampier Sub-basin is a widespread Hettangian-Sinemurian sandstone sequence (North Rankin Beds; Woodside, 1988). These consist of marginal marine and fluvial sandstones interbedded with minor marginal marine and estuarine claystone, and was deposited in a nearshore/shoreline environment.

During most of the Jurassic, the thick Dingo Claystone was deposited across the southern North West Shelf. This formation is divided by Woodside (1988) into three sub-units - the lower, middle, and upper Dingo Claystone. Lateral equivalents include the more coarse- grained siliciclastic Biggada, Dupuy, Legendre, and Angel Formations. The base of the lower Dingo Claystone is marked by a transgression and an abrupt lithologic change from clastics to carbonates; this generated a basin-wide seismic marker. With deepening of the basin, the carbonates were succeeded by inner shelf calcareous claystones. In the Bajocian-Bathonian, a regional regression led to the deposition of westwards-prograding deltaic sediments across the

northern Barrow-Dampier Sub-basins. This regression reached its maximum extent towards the end of the Middle Jurassic, coincident with a major phase of tectonic movement. This led to the formation of the ubiquitous 'Main Unconformity' (MU), separating the middle and upper Dingo Claystones, which has historically been interpreted as the expression of final continental breakup in the Argo Abyssal Plain. Much of the southern North West Shelf was emergent at this time; marine conditions persisted only in the rapidly-subsiding areas of the Lewis Trough and the Madeleine Trend.

The remainder of the Jurassic was characterized by sedimentation in a true divergent margin setting with predominantly fine-grained mixed clastic sediments (upper Dingo Claystone) being rapidly deposited in the Lewis Trough. Within the uppermost part of the Dingo Claystone, a marine sandstone unit (Dupuy Sandstone Member) was deposited in moderate to deep water in the vicinity of Barrow Island and possibly also around the edges of the Rankin Platform.

The Dingo Claystone is disconformably overlain by the Barrow Group, a generally northwards-prograding regressive sequence of clastics of mainly Neocomian age. Three units have been named within the Barrow Group - the Malouet and Flacourt Formations, respectively comprising the bottomsets and foresets/topsets of the delta, and the Flag Sandstone (Kopsen & McGann, 1985), a massive submarine fan sandstone that is a facies equivalent of the Malouet Formation. The relationship between these three formations is shown diagrammatically in Howell (1988, figure 8) and Barber (1988, figure 7).

A major transgression beginning in the late Valanginian initiated the deposition of the units of the Winning Group (successively, the Birdrong Sandstone, Muderong Shale, Windalia Sandstone Member, Windalia Radiolarite, Gearle Siltstone and Haycock Marl). It is likely that this transgression was in response to margin breakup adjacent to the Perth Basin. The basal transgressive unit consists of the Birdrong Sandstone along much of the Peedamullah Shelf, and the mid- and outer-shelf Mardie Greensand to the south of Barrow island. Both units consist of quartzose sandstone; the Birdrong also contains minor interbedded siltstone, while the Mardie Greensand is heavily glauconitic. The basal sands were succeeded by the Muderong Shale, a widespread unit of marine claystones which provides a regional seal for most of the hydrocarbon accumulations in the Barrow and Dampier Sub- basins. A minor regressive phase is indicated by the deposition of the Windalia sandstone Member, a storm-winnowed shelf sand, at the top of the Muderong Shale.

In the Aptian, a marked environmental change and a rise in sea level led to the deposition of the widespread Windalia Radiolarite, composed of radiolarite grading basinwards to radiolarian claystone, siltstone, and chert. The Windalia Radiolarite was succeeded by the Gearle Siltstone in the Barrow area and the Haycock Marl in the Dampier Sub-basin, with these units being deposited in open ocean settings.

Extensive carbonate sedimentation commenced in the Turonian with the deposition of the Toolonga Calcilutite. During the remainder of the Cretaceous, sedimentation was fairly evenly split between open marine carbonates and claystones (Korojon Calcarenite, Withnell Formation, and Miria Marl). Most of the Tertiary sequences on the North West Shelf are the result of out- and up-building of the continental shelf during a series of transgressive/regressive sea-level pulses, with the dominant sediment type being carbonate (Cardabia Group, Giralia Calcarenite, Cape Range Group).

HYDROCARBON ACCUMULATIONS'

The hydrocarbon fields of the northern Carnarvon Basin fall into two categories (Vincent & Tilbury, 1988) - those reservoired in the pre-'Main Unconformity' (pre-MU) section (Argo Breakup, Fig. 5), and those reservoired in the post-MU section (Appendix 1).

The pre-MU fields are characterised by the fault blocks of the southeastern edge of the Rankin Platform (Rankin Trend), which host several giant gas/condensate fields - most notably North Rankin, Goodwyn, and Gorgon. These fields are sub-unconformity traps and have in common reservoirs of the fluviatile Mungaroo Formation and are sealed by the Cretaceous Muderong Shale (much of the intervening Jurassic-Cretaceous section is absent through non-deposition or erosion). Sourcing is interpreted to be from the immense thickness of lower Dingo Claystone in the Lewis Trough, and possibly also from the Triassic (Pre-Mungaroo Formation) Locker Shale. The fault blocks are frequently tilted or triangular in outline, with varying degrees of rotation and, as discussed previously, appear to be wrench reactivations of older structures.

The post-MU hydrocarbon fields are generally much more subtle than the Rankin Trend fault blocks and they tend to be oil-prone. With some exceptions (Barrow Island and, more recently, Wanaea-Cossack) the field sizes have tended to be quite small. There is a greater variety of traps than with the pre-MU fields, with trap types including drape, anticlines (some faulted), rollover into faults, and fault-controlled (Appendix 1). As with the pre-MU fields, most, if not all of these fields are the result of reactivation of older structures. Hydrocarbons are primarily reservoired in three sections - Jurassic Angel Formation, Cretaceous Barrow Group (including Flag Sandstone), and Cretaceous Winning Group (particularly Windalia Sandstone Member and Mardie Greensand). In general, the Jurassic reservoirs are gas-rich and found on the Rankin Trend and in adjacent structures, while the Cretaceous reservoirs are oil-rich and found within the basins (eg Barrow Island) or along the southeast basin flank. As with the pre-MU fields, sourcing is probably from the Dingo Claystone.

In the literature, until recently, there has typically been reference to an 'inner oil trend' and an 'outer gas trend'. Until the late 1980's this was generally true, with hydrocarbon discoveries on the outer flank of the rift (Rankin Trend) being predominantly gas/condensate, while oil was the principal discovery within the rift or on the inner flank. However, with the successes at Chinook/Griffin/Ramillies and Wanaea/Cossack, on the Alpha Arch and the Madeleine Trend, the distinction between oil and gas trends is breaking down.

GENERAL OBJECTIVES

Acquisition of a regional, high-resolution seismic survey is required to achieve the objectives of this program:

- construction of a regional, sequence-based chronostratigraphic framework for the Cretaceous and Tertiary within which the occurrence and distribution of potential seal and reservoir facies may be analyzed and predicted;
- assessment of the post-Valanginian fault reactivation history of the northern Carnarvon Basin and the implications for: (a) the migration of hydrocarbons from pre-Cretaceous traps and (b) the integrity of potential Cretaceous and Tertiary seals;

 determination of the probability of secondary migration and entrapment of hydrocarbons within Cretaceous and Tertiary strata.

The existence of residual oil columns in the Timor Sea basins and the northern Carnarvon has been recognized for some time. However, there has been little effort spent investigating where the missing portions of the original hydrocarbon accumulations have gone. Studies presented recently provide evidence for migration of older hydrocarbons through Jurassic and Cretaceous strata (Lisk & Eadington, 1994; Ellis et al., 1994). In fact, the recent discovery of hydrocarbons in the lowermost Tertiary (Sit et al., 1994) has provided a new play concept for the northern Carnarvon Basin, and has highlighted the potential for hydrocarbon accumulations in younger-than-traditional targets. This discovery provided the impetus for the proposed survey to investigate the potential of younger traps to reservoir hydrocarbons after secondary migration.

PROPOSED PROGRAM

The proposed lines for the high-resolution survey are shown in Figures 6-8. The survey is regional with an average line spacing over most of the area of less than 30 km. These lines total 4240 km and tie 107 wells (Appendix 2). The seismic grid has been designed to cover the area as evenly as possible, given the distribution of wells. Eighteen of the lines are perpendicular to structural strike; three long lines form regional strike transects. Two additional lines, 21 and 23, infill and tie some of the critical wells.

The seismic data will be acquired during a 30-day survey, weather conditions and equipment reliability permitting.

A summary of each line follows; way points for each line are included in Appendix 3:

LINE 1 (110 km)

Dip line - NNW-SSE, crosses the southern end of the Exmouth Sub-basin intersecting AGSO deep seismic (DS) lines 110/11, 101/16 and 101/5. Ties Zeewulf 1 and Resolution 1 and high-resolution seismic (HIREZ) lines 19 and 20.

LINE 2 (135 km)

Dip line - Southern Exmouth Sub-Basin. Intersects AGSO DS lines 101/16, 110/11 and 101/4. Ties Novara 1, West Muiron 2, 3, and 4 and HIREZ lines 19, 20 and 21.

LINE 3 (155 km)

Dip line - Central Exmouth Sub-basin; southern end of line crosses Long Island Fault System and Rough Range Fault. Intersects AGSO DS lines 101/16, 110/12, 101/4 and 110/11. Ties Outtrim 1 and Hawksbill 1, and HIREZ lines 19, 20, and 21.

LINE 4 (170 km)

Dip line - Northern Exmouth Sub-basin, crosses the Alpha Arch and the southern end of the Barrow Sub-basin. Intersects AGSO DS lines 110/08, 101/6, 101/4 and 110/12. Ties Zeepaard 1, Ramillies 1, Somerville 1 and Anchor 1, and HIREZ lines 19, 20, 21 and 22.

LINE 5 (175 km)

Dip line - From northern end of Exmouth Sub-basin, crosses the Alpha Arch/Rankin Fault System and the southern Barrow Sub-basin. Intersects AGSO DS lines 110/8, 101/7, 101/4 and 101/6. Ties Minden 1, Rosily 1A and Cowle 1, and HIREZ lines 19, 20 and 22.

LINE 6 (180km)

Dip line - Southern end of the Rankin Platform, across the Rankin Fault System and the Barrow Sub-basin. Intersects AGSO DS lines 110/8, 101/7 and 101/4. Ties North Gorgon 1, Spar 1, Kurrajong 1, Koolinda 1, and Saladin 1, and HIREZ lines 19, 20 and 22.

LINE 7 (180 km)

Dip line - Southern Rankin Platform, across the Rankin Fault System and central Barrow Subbasin. Intersects AGSO DS lines 110/8, 110/9, 101/3, 101/2 and 101/7. Ties West Tryal Rocks 2 and 3, Tryal Rocks 1, Maitland 1, West Pepper 1 and Chervil 3 and HIREZ lines 19, 20 and 22.

LINE 8 (115 km)

Dip line - From the Rankin Platform across the northern Barrow Sub-basin, ending just north of Barrow Island. Intersects AGSO DS lines 110/8, 110/9 and 101/2. Ties Sultan 1 and HIREZ lines 19, 20, 22 and 23.

LINE 9 (140 km)

Dip line - From the Rankin Platform, crosses the possible accommodation zone that separates the Barrow and Dampier Sub-basins. Intersects AGSO DS line 110/8. Ties Forrest 1A, Flag 1, Harriet 1 and Georgette 1, and HIREZ lines 19, 20, 22 and 23.

LINE 10 (135 km)

Dip line - From the Rankin Platform across the southern end of the Dampier Sub-basin. Intersects AGSO DS lines 110/8 and 101/2. Ties Rankin 1, Dixon 1, Mawby 1A and Stag 1, and HIREZ lines 19, 20, 22 and 23.

LINE 11 (130 km)

Dip line - From the Rankin Platform across the southern Dampier Sub-basin and southern Enderby Trend. Intersects AGSO DS lines 110/8 and 101/2. Ties Goodwyn 3 and 6, Dampier 1, Montebello 1 and Enderby 1, and HIREZ lines 19, 20, 22 and 23.

LINE 12 (140 km)

Dip line - From the Rankin Platform, across the central Dampier Sub-basin and Enderby Trend. Intersects AGSO DS lines 110/8 and 101/2. Ties Gandara 1, North Rankin 5 and 6, Miller 1 and Orion 1, and HIREZ lines 19, 20 and 22.

LINE 13 (134 km)

Dip line - From the Rankin Platform, across the central Dampier Sub-basin and Enderby Trend. Intersects AGSO DS lines 110/8 and 101/2. Ties Montague 1, Wanaea 5, Baleena 1, Lewis 1A and Kanji 1, and HIREZ lines 19, 20 and 22.

LINE 14 (125 km)

Dip line - From the Rankin Platform, crosses the northern Dampier Sub-basin and Enderby Trend. Intersects AGSO DS lines 110/8 and 110/2. Ties Angel 2, Forestier 1 and Cygnus 1, and HIREZ lines 19, 20 and 22.

LINE 15 (140 km)

Dip line - Northern Rankin Platform, crosses the northern end of the Dampier Sub-basin and Enderby Trend, and ends on the Lambert Shelf. Intersects AGSO DS lines 110/8 and 110/2. Ties Finucane 1, Talisman 1 and Hauy 1, and HIREZ lines 19, 20 and 22.

LINE 16 (105 km)

Dip line - Northern end of Rankin Platform, crosses possible accommodation zone between the Dampier and Beagle Sub-basins, and ends on the southern flank of De Grey Nose. Intersects AGSO DS lines 110/8 and 110/1. Ties Sable 1, Aurora 1 and De Grey 1, and HIREZ lines 19 and 22.

LINE 17 (155 km)

Dip line - Western Beagle Sub-basin, crosses Cossigny Trough and ends on the Lambert Shelf. Intersects AGSO DS lines 110/8, 110/1 and 110/4. Ties Jarman 1 and HIREZ lines 19 and 22.

LINE 18 (120 km)

Dip line - NW-SE across the Beagle Sub-basin, crosses the Beagle Trough and ends west of the North Turtle Hinge. Intersects AGSO DS lines110/8, 110/4 and 110/1. Ties Nebo 1 and Depuch 1, and HIREZ lines 19 and 22.

LINE 19 (570 km)

Strike line - Along the northwestern flank of the Exmouth Sub-basin, the southeastern edge of the Rankin Platform, the northwestern flank of the Dampier Sub-basin and into the Beagle Sub-basin along the northern flank of the Cossigny and Beagle Troughs. Intersects AGSO DS lines 110/11, 110/12, 101/6, 101/7, 110/9, 101/8, 101/9, 101/10, 110/3, 110/2 and 110/7. Ties Resolution 1, Zeepaard 1, Central Gorgon 1, North Gorgon 1, Bluebell 1, West Tryal Rocks 3, Sultan 1, North Tryal Rocks 1, Malus 1, Echo 1, Goodwyn 2, 7 and 8, North Rankin 1, Miller 1, Eaglehawk 1, Bounty 1, Finucane 1, Sable 1, Ronsard 1 and Nebo 1. Ties HIREZ dip lines 1 through 18.

LINE 20 (440 km)

Strike line - Follows the southeastern flank of the Exmouth Sub-basin, crosses the Alpha Arch into the northwestern Barrow Sub-basin, and continues along the northwestern flank of the Lewis Trough (Dampier Sub-basin). Intersects AGSO DS lines 101/5, 110/11, 110/12, 101/6, 101/7, 101/3, 101/2, 101/8, 101/9 and 101/10. Ties Novara 1, Vlaming Head 1, York 1, Minden 1, East Spar 2, Maitland 1, Forrest 1A, Withnell 1, Dampier 1, Madeleine 1, Wanaea 1, 2 and 3, Cossack 1, Angel 1A and 2, and HIREZ lines 1 through 15.

LINE 21 (90 km)

Strike line - Between the Exmouth and Barrow Sub-basins. Intersects AGSO DS lines 110/11, 110/12 and 101/4. Ties Leatherback 1, Outtrim 1, Griffin 1 and Hilda 1A, and HIREZ lines 2, 3 and 4.

LINE 22 (490 km)

Strike line - Parallel to the Barrow Sub-basin depositional axis, passing on the northwest side of Barrow Island, along the southeastern flank of the Dampier and Beagle depocentres (troughs). Intersects AGSO DS lines 110/12, 101/6, 101/7, 101/8, 101/9, 101/10, 110/3, 110/2, 110/4 and 110/1. Ties Rosily 1A, Flag 1, Campbell 2, Mawby 1A, Rosemary 1, Rosemary North 1,

Baleena 1, Samson 1, Legendre 1, Legendre 2, Forestier 1, Nelson Rocks 1, Talisman 2, Talisman 1, Alpha North 1, Cossigny 1 and North Turtle 1. Ties HIREZ dip lines 4 through 18.

LINE 23 (100 km)

Strike line - Northeast flank of the southern Dampier Sub-basin. Intersects AGSO DS lines 110/9 and 101/8. Ties Venture 1, Wilcox 1, Wilcox 2, Lowendal 1, Fisher 1, Rankin 1, Dockrell 1, Pueblo 1 and Tidepole 1, and HIREZ dip lines 8 through 11.

Acquisition parameters and equipment to be used on this cruise are included in Appendices 4 and 5.

ACKNOWLEDGEMENTS

I would like to express my appreciation for the advice, assistance and speedy reviews provided by members of the North West Shelf team, especially Howard Stagg, Phil Symonds, Barry Wilcox, Jenny Bedford and Mark Webster.

REFERENCES

AGSO North West Shelf Study Group, 1994 - Deep reflections on the North West Shelf: changing perceptions of basin formation. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 63-76.

Barber, P.M., 1988 - The Exmouth Plateau deep water frontier: a case history. In P.G. & R.R. Purcell (eds) The North West Shelf Australia: Proceedings of Petroleum Exploration Society Australia Symposium, Perth, 1988, 173-88.

Bauer, J.A., Hooper, E.C.D., & Crowley, J., 1994 - The Leatherback discovery, Carnarvon Basin. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 573-582.

Beacher, G.J., McLerie, M.K., & Miller, N.W., 1994 - Recent WAPET discoveries near Thevenard Island, southeast Barrow Sub-basin. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 639-642.

Bentley, J., 1988 - The Candace Terrace - a geological perspective. <u>In P.G. & R.R. Purcell</u> (eds) *The North West Shelf Australia: Proceedings of Petroleum Exploration Society Australia Symposium, Perth, 1988*, 157-72.

Blevin, J.E., Stephenson, A.E., & West, B.G., 1994 - Mesozoic structural development of the Beagle Sub-basin -- implications for the petroleum potential of the northern Carnarvon Basin. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 479-496.

Cockbain, A.E., 1989 - The North West Shelf. APEA J., 29(1), 529-545.

Crostella, A. & Barter, T., 1980 - Triassic-Jurassic depositional history of the Dampier and Beagle Sub-basins, Northwest Shelf of Australia. APEA J., 20 (1), 25-33.

Delfos, E., 1994 - Wandoo Oil Field: A formation evaluation case history. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 615-632.

Di Toro, G.A.E., 1994 - The reservoir geology of the Wanaea and Cossack oil fields. <u>In P.G.</u> & R.R. Purcell (eds), *The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994*, 557-572.

Ellis, G., Tait, A.M., & Gibson, P.J., 1994 - Mid-Cretaceous concretionary carbonate reservoirs at Barrow Island, Western Australia. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 459-478.

Hocking, R., Mory, A.J., & Williams, I.R., 1994 - An atlas of Neoproterozoic and Phanerozoic basins of Western Australia. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western

- Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 21-44.
- Howell, E.A., 1988 The Harriet oilfield. <u>In P.G. & R.R. Purcell (eds) The North West Shelf Australia: Proceedings of Petroleum Exploration Society Australia Symposium, Perth, 1988, 391-401.</u>
- Kopsen, E. & McGann, G., 1985 A review of the hydrocarbon habitat of the eastern and central Barrow-Dampier Sub-basin, Western Australia. *APEA J.*, 25(1), 154-76.
- Lawry, P.J. & Carter, P.A., 1994 The Rivoli Gas Field, Exmouth Sub-basin. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 649-652.
- Lisk, M. & Eadington, P., 1994 Oil migration in the Cartier Trough, Vulcan Sub-basin. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 301-314.
- Mitchelmore, L. & Smith, N., 1994 West Muiron discovery, WA-155-P ---- new life for an old prospect. <u>In</u> P.G. & R.R. Purcell (eds), *The Sedimentary Basins of Western Australia:* Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 583-596.
- O'Brien, G.W., Etheridge, M.A., Willcox, J.B., Morse, M., Symonds, P.A., Norman, C., & Needham, D.J., 1993 The structural architecture of the Timor Sea, north-western Australia: implications for basin development and hydrocarbon exploration. *APEA J.*, 33(1), 258-278.
- Osborne, D.G., 1994 Nebo oil discovery, Beagle Sub-basin. <u>In P.G. & R.R. Purcell (eds)</u>, The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 653-656.
- Parry, J.C. & Smith, D.N., 1988 The Barrow and Exmouth Sub-basins. In P.G. & R.R. Purcell (eds) The North West Shelf Australia: Proceedings Petroleum Exploration Society Australia Symposium, Perth, 1988, 129-45.
- Purcell, P.G. & R.R. (Eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994.
- Sit, K.H., Hillock, P.M., & Miller, N.W.D., 1994 Maitland gas discovery --- a geological/geophysical case history. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 597-614.
- Stagg, H.M.J., 1992 Deep structure of the southern North West Shelf: cruise proposal. Bureau of Mineral Resources Geology & Geophysics Record 1992/28.
- Stagg, H.M.J., & Colwell, J.B., 1994 The structural foundations of the northern Carnarvon Basin. In P.G. & R.R. Purcell (eds), The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, 349-364.

Veevers, J.J., 1988 - Morphotectonics of Australia's northwestern margin: a review. <u>In P.G. & R.R. Purcell (eds)</u> The North West Shelf Australia: Proceedings Petroleum Exploration Society Australia Symposium, Perth, 1988, 19-27.

Vincent, P. & Tilbury, L., 1988 - Gas and oil fields of the Rankin Trend and northern Barrow-Dampier Sub-basin. In P.G. & R.R. Purcell (eds) The North West Shelf Australia: Proceedings Petroleum Exploration Society Australia Symposium, Perth, 1988, 341-70.

Von Rad, U., Haq, B.U., & others, 1992 - Proceedings of the Ocean Drilling Program, Scientific Results, 122. College Station, Texas (Ocean Drilling Program), 934pp.

Whibley, M. & Jacobson, E., 1990 - Exploration in the northern Bonaparte Basin, Timor Sea - WA-199-P. APEA J., 30(1), 7-27.

Woodside Offshore Petroleum, 1988 - A review of the petroleum geology and hydrocarbon potential of the Barrow-Dampier Sub-basin and environs. In P.G. & R.R. Purcell (eds) The North West Shelf Australia: Proceedings Petroleum Exploration Society Australia Symposium, Perth, 1988, 115-28.

Yeates, A.N., Bradshaw, M.T., Dickins, J.M., Brakel, A.T., Exon, N.F., Langford, R.P., Mulholland, S.M., Totterdell, J.M., & Yeung, M., 1987 - The Westralian Superbasin: an Australian link with Tethys. In K.G. McKenzie (ed.) Shallow Tethys 2: International Symposium on Shallow Tethys 2. Wagga Wagga, Proceedings, 199-213.

APPENDIX 1

NORTHERN CARNARVON BASIN - OIL & GAS FIELDS (Summarised from Cockbain, 1989)

PRE-BREAKUP FIELDS

Basin	Year	Company	Age	Trap1
Barrow Deep	1973	Wapet	Ju	Α
Dockrell	1979	Woodside	Tr	TiFB
Eaglehawk	1972	Woodside	Tr	HB
Goodwyn	1971	Woodside	Tr, Ju	TiFB
Goodwyn South	1973	Woodside	Tr	TrFB
Gorgon	1981	Wapet	Tr	HB
Nebo*	1993	Kufpec	Ju	F-C,A
North Rankin	1971	Woodside	Tr, Ju	HB
N Rankin West	1972	Woodside	Ju	FB
Rankin	1971	Woodside	Tr	TiFB
Tidepole	1975	Woodside	Tr	TiFB
West Tryal Rocks	1973	Wapet	Tr	HB
Wilcox	1983	Woodside	Tr	FB

POST-BREAKUP FIELDS

Basin	Year	Company	Age	<u>Trap I</u>
			•	-
Angel	1972	Woodside	Ju	D
Bambra	1982	Bond	Cret	Α
Barrow Island	1964	Wapet	Ju, Cret	A
Campbell	1986	Bond	Cret	Α
Chervil	1983	WMC	Cret	FA
Cossack*	1990	Woodside	Ju	A
Cowle*		Wapet	Cret?	F-C
Dixon	1984	Woodside	Ju	D
Egret	1973	Woodside	Ju	F-C
Harriet	1983	Bond	Cret	F-C
Lambert	1974	Woodside	Ju	R
Legendre	1968	Woodside	Cret	FA
Macedon-Pyrenees	* 1992	BHP/Ampol	Cret	FA
North Herald	1983	WMC	Cret	FA
Rivoli*	1989	Minora	Cret	FA
Roller*		Wapet	Cret	A
Rosette	1987	Bond	Cret	Α
Saladin	1985	Wapet	Cret	F-C
Scarborough	1979	Esso	Cret	Dome
Skate*		Wapet	Cret	Α
Sinbad*	1990	Hadson	Cret	F-C

Basin	Year	Company	Age	Trap1
South Chervil	1983	WMC	Cret	FA
South Pepper	1983	WMC	Cret	FA
Spar	1976	Wapet	Cret	R
Stag*	1993	Hadson	Cret	A
Talisman	1984	Marathon	Cret	F-C
Tanami*	1991	Hadson	Cret	Α
Tubridgi	1981	Otter	Cret	Α
Ulidia*	1992	Hadson	Cret	Α
Wandoo*	1991	Ampolex	Cret	D
Wanaea*	1989	Woodside	Ju	Α
Yammaderry*		Wapet	Cret	F-C

Notes

1 Trap types as follows -

A Anticline

TiFB Tilted fault block

HB Horst block

TrFB Triangular fault block

FB Fault block

D Drape

FA Faulted anticline

F-C Fault-controlled

R Rollover

^{*} Discoveries post Cockbain, 1989

APPENDIX 2

WELLS TO BE TIED

WELLNAME	OPERATOR	DATE	TD	AGE AT TD
ALPHA NORTH 1	MARATHON	7/89	2200	M. JURASSIC
ANCHOR 1	WAPET	8/69	3049	
ANGEL 1A	BURMAH OIL	11/72	3411	U. JURASSIC
ANGEL 2	BURMAH OIL	5/72	4397	L. JURASSIC
AURORA 1	MARATHON	12/90	3020	
BALEENA 1	PHILLIPS	6/93	• • • • • • • • • • • • • • • • • • • •	
BLUEBELL 1	WAPET	4/83	4605	U. TRIASSIC
BOUNTY 1	MARATHON	7/83	3524	U. JURASSIC
CAMPBELL 2	BOND CORP	3/86	2796	CRETACEOUS
CENT. GORGON 1	WAPET	7/83	4598	CRETTICEOUS
CHERVIL 3	WESMINCO	5/85	1350	E. CRETACEOUS
COSSACK 1	WOODSIDE	1/90	3030	JURASSIC
COSSIGNY 1	WOODSIDE	11/72	3203	M. TRIASSIC
COWLE 1	WAPET	12/89	1180	CRETACEOUS
CYGNUS 1	ARCO AUST	8/89	2470	CRETACEOUS
DAMPIER 1	BURMAH OIL	5/69	4143	U. JURASSIC
DE GREY 1	BURMAH OIL	10/71	2088	TRIASSIC
DEPUCH 1	WOODSIDE	3/74	4300	L. JURASSIC
DIXON 1	WOODSIDE	5/84	4357	U. TRIASSIC
DOCKRELL 1	WOODSIDE	3/73	3895	U. TRIASSIC
EAGLEHAWK 1	WOODSIDE	12/72	3490	U. TRIASSIC
EAST SPAR 2	WMC	9/93	3470	o. IkiAbbic
ECHO 1	WOODSIDE	10/88	3775	TRIASSIC
ENDERBY 1	BURMAH OIL	10/70	2149	PERMIAN
FINUCANE 1	WOODSIDE	11/78	3300	M. JURASSIC
FISHER 1	WOODSIDE	8/81	3762	U. TRIASSIC
FLAG 1	WAPET	1/70	3800	JURASSIC
FORESTIER 1	WOODSIDE	9/86	2514	U. JURASSIC
FORREST 1A	PHILLIPS	10/92	3426	U. JURASSIC
GANDARA 1	HUDBAY	7/79	4361	U. TRIASSIC
GEORGETTE 1	OCCIDENTAL	9/83	2392	M. JURASSIC
GOODWYN 2	BURMAH OIL	5/72	3750	M. TRIASSIC
GOODWYN 3	WOODSIDE	2/73	3658	U. TRIASSIC
GOODWYN 6	WOODSIDE	12/81	4664	U. TRIASSIC
GOODWYN 7	WOODSIDE	9/85	3445	U. TRIASSIC
GOODWYN 8	WOODSIDE	5/86	3197	U. TRIASSIC
GRIFFIN 1	BHP	2/90	3400	
HARRIET 1	OCCIDENTAL	11/83	2711	
HAUY 1	WOODSIDE	12/72	825	
HAWKSBILL 1	HADSON	12/93		
HILDA 1A	WAPET	9/74	3466	U. TRIASSIC
JARMAN 1	WOODSIDE	2/78	2906	M. JURASSIC
KANJI 1	AMPOLEX	2/94	1288	
KOOLINDA 1	WAPET	3/78	3732	JURASSIC
KURRAJONG	AMPOLEX	12/93		
LEATHERBACK	LASMO OIL	6/91	2258	TRIASSIC
LEGENDRE 1	BURMAH OIL	6/68	3473	M. JURASSIC
LEGENDRE 2	BURMAH OIL	12/70	3618	L. JURASSIC

LEWIS 1A	WELLNAME	OPERATOR	DATE	TD	AGE AT TD
MADELEINE 1 BURMAH OIL 9/92 1502 JURASSIC MAIUS 1 WOODSIDE 11/72 3658 U. TRIASSIC MAWBY 1A WOODSIDE 11/72 3658 U. TRIASSIC MAWBY 1A WOODSIDE 5/78 3520 U. TRIASSIC MILLER 1 WOODSIDE 5/78 3520 U. TRIASSIC MILLER 1 WOODSIDE 5/78 3520 U. TRIASSIC MILLER 1 WOODSIDE 5/78 3520 U. TRIASSIC MINDEN 1 BHP 5/91 4022 L. CRETACEOUS MONTAGUE 1 WOODSIDE 3/85 4362 U. TRIASSIC MINDEN 1 BHP 12/89 2750 M. JURASSIC NONTEBELLO 1 BHP 12/89 2750 M. JURASSIC NELSON ROCKS 1 KUPPEC 4/93 3132 M. JURASSIC NELSON ROCKS 1 N. GORGON 1 WAPET 12/82 4500 U. TRIASSIC N. RANKIN 1 BURMAH OIL 6/71 3534 M. TRIASSIC N. RANKIN 5 WOODSIDE 2/77 3500 U. TRIASSIC N. RANKIN 6 WOODSIDE 4/81 3900 U. TRIASSIC N. TRIASSIC N. RANKIN 6 WOODSIDE 4/81 3900 U. TRIASSIC N. TRIASKIC N. TRYAL RCKS 1 N. TWAL RCKS 1 D. WOODSIDE 8/90 2500 M. JURASSIC OUTTRIM I ESSO EX 7/84 1725 U. JURASSIC OUTTRIM I ESSO EX 7/84 1725 U. JURASSIC OUTTRIM I ESSO EX 7/84 1725 U. JURASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLIES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC ROSEMARY 1 WOODSIDE 11/79 3883 TRIASSIC ROSEMARY 1 WOODSIDE 11/79 3883 TRIASSIC SAMSON 1 WOODSIDE 11/79 3883 TRIASSIC U. JURASSIC SAMSON 1 WOODSIDE 11/79 3990 JURASSIC SAMSON 1 WOODSIDE 11/79 3990 JURASSIC U. TRIASSIC SAMSON 1 WOODSIDE 11/79 3930 U. JURASSIC SAMSON 1 WOODSIDE 11/79 3930 U. JURASSIC U. TRIASSIC TALISMAN 1 WAPET 5/82 3066 L. CRETACEOUS SAMSON 1 WOODSIDE 11/79 3930 U. JURASSIC U. TRIASSIC SAMSON 1 WOODSIDE 11/79 3930 U. JURASSIC U. TRIASSIC TALISMAN 1 WAPET 9/76 3721 L. CRETACEOUS SAMSON 1 WOODSIDE 11/79 3930 U. JURASSIC U. JURASSI				3400	M. JURASSIC
MATITAND 1 WMC 9/92 1502 JURASSIC MALUS 1 WOODSIDE 11/72 3638 U. TRIASSIC MAWBY 1A WOODSIDE 3/91 2100 JURASSIC JURASSIC MAWBY 1A WOODSIDE 3/91 2100 JURASSIC JURASSIC MILLER 1 WOODSIDE 5/78 3520 U. TRIASSIC MILLER 1 WOODSIDE 3/85 4362 U. TRIASSIC MONTAGUE 1 BEP 12/89 2750 M. JURASSIC MONTAGUE 1 BEP 12/89 2750 M. JURASSIC NONTAGUE 1 BEP 12/89 2750 M. JURASSIC NEBO 1 KUPPEC 4/93 3132 M. JURASSIC NEBO 1 WAPET 12/82 4500 TRIASSIC N. GROGON 1 WAPET 12/82 4500 TRIASSIC N. RANKIN 1 BURMAH OIL 6/71 3534 M. TRIASSIC N. RANKIN 5 WOODSIDE 4/81 3900 U. TRIASSIC N. TRIASSIC N. TRYAL RCKS 1 WAPET 7/72 3658 N. TURTLE 1 BP 9/82 4420 U. TRIASSIC (?) NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS OUTTRIM 1 ESSO EX 10/82 2753 L. CRETACEOUS OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RANKIN 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 11/73 2848 L. JURASSIC SALDIN 1 WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 11/73 3972 U. TRIASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TALISMAN 1 WAPET 5/82 3066 L. CRETACEOUS SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC TALISMAN 1 WAPET 5/76 3721 L. CRETACEOUS SAMSON 1 WOODSIDE 10/72 3972 U. TRIASSIC TALISMAN 1 WAPET 5/76 3721 L. CRETACEOUS SAMSON 1 WOODSIDE 10/72 3972 U. TRIASSIC U. JURASSIC VANABA 1 WAPET 5/76 3721 L. CRETACEOUS SAMSON 1 WOODSIDE 10/72 3972 U. TRIASSIC U. JURASSIC WANAEA 1 WAPET 10/70 3324 U. JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WAN					
MALUS I WOODSIDE 11/72 3658 U. TRIASSIC MAWBY IA WOODSIDE 3/91 2100 JURASSIC MILLER I WOODSIDE 5/78 3520 U. TRIASSIC MINDEN I BHP 5/91 4022 L. CRETACEOUS MONTAGUE I WOODSIDE 3/85 4362 U. TRIASSIC MONTAGUE I WOODSIDE 3/85 4362 U. TRIASSIC MONTEBELLO I BHP 12/89 2750 M. JURASSIC NEBON ROCKS I KUFPEC 4/93 3132 M. JURASSIC NEBON ROCKS I VOODSIDE 4/73 2190 U. JURASSIC N. RANKIN 5 WOODSIDE 2/77 3500 U. TRIASSIC N. RANKIN 6 WOODSIDE 4/81 3900 U. TRIASSIC N. TRYAL RCKS 1 WAPET 7/72 3658 N. TRYAL RCKS 1 WAPET 7/72 3658 N. TURTLE 1 BP 9/82 4420 U. TRIASSIC (?) U. TRIASSIC (?) OUTTRIM 1 ESS			•		JURASSIC
MAWBY 1A WOODSIDE 3/PI 2100 JURASSIC MILLER 1 WOODSIDE 5/78 3520 U. TRIASSIC MINDEN 1 BHP 5/91 4022 L. CRETACEOUS MONTAGUE 1 WOODSIDE 3/85 4362 U. TRIASSIC MONTEBELLO 1 BHP 12/89 2750 M. JURASSIC NEBO 1 KUFPEC 4/93 3132 M. JURASSIC NELSON ROCKS 1 WOODSIDE 7/73 2190 U. JURASSIC N. GORGON 1 WAPET 12/82 4500 TRIASSIC N. RANKIN 5 WOODSIDE 2/77 3500 U. TRIASSIC N. RANKIN 6 WOODSIDE 4/81 3900 U. TRIASSIC N. TRYAL RCKS 1 WAPET 7/72 3658 N. TRYAL RCKS 1 WAPET 7/72 3658 N. TURTLE 1 BP 9/82 4420 U. TRIASSIC (?) NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS ORION 1 WOODSIDE 8/90 <t< td=""><td></td><td></td><td>-</td><td></td><td>JURASSIC</td></t<>			-		JURASSIC
MILLER 1 WOODSIDE 5/78 3520 U. TRIASSIC MINDEN 1 BHP 5/91 4022 L. CRETACEOUS MONTAGUE 1 WOODSIDE 3,85 4362 U. TRIASSIC MONTAGUE 1 WOODSIDE 3,85 4362 U. TRIASSIC NEBO 1 KUFPEC 4,93 3132 M. JURASSIC NEBO 1 KUFPEC 4,93 3132 M. JURASSIC N. GORGON 1 WAPET 12,82 4500 TRIASSIC N. RANKIN 5 WOODSIDE 2,77 3500 U. TRIASSIC N. RANKIN 6 WOODSIDE 4,81 3900 U. TRIASSIC N. TRYAL RCKS 1 N. WAPET 7,72 3658 U. TRIASSIC N. TAYAL RCKS 1 WOODSIDE 4,81 3900 U. TRIASSIC N. TAYAL RCKS 1 WAPET 10/82 2753 L. CRETACEOUS NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS OUTTRIM 1 ESSO EX 7,84 1725 U. JURASSIC					U. TRIASSIC
MINDEN 1 BHP 5,91 4022 L. CRETACEOUS MONTAGUE 1 WOODSIDE 3,85 4362 U. TRIASSIC MONTEBELLO 1 BHP 12,89 2750 M. JURASSIC NELSON ROCKS 1 KUFFEC 4,93 3132 M. JURASSIC NELSON ROCKS 1 WOODSIDE 7,773 2190 U. JURASSIC NELSON ROCKS 1 WAPET 12,82 4500 TRIASSIC N. GORGON 1 WAPET 12,82 4500 TRIASSIC N. RANKIN 1 BURMAH OIL 6,71 3534 M. TRIASSIC N. RANKIN 5 WOODSIDE 4,81 3900 U. TRIASSIC N. RANKIN 6 WOODSIDE 4,81 3900 U. TRIASSIC N. RANKIN 6 WOODSIDE 4,81 3900 U. TRIASSIC N. TRYAL RCKS 1 WAPET 7,72 3658 T. TRIASSIC N. TRYAL RCKS 1 WAPET 7,72 3658 T. TRIASSIC N. TRYAL RCKS 1 WAPET 7,72 3658 U. TRIASSIC ORION 1 WOODSIDE 8,90 2500 M. JURASSIC OUTTRIM 1 ESSO EX 7,84 1725 U. JURASSIC U. TRIASSIC OUTTRIM 1 ESSO EX 7,84 1725 U. JURASSIC U. TRIASSIC PUEBLO 1 WOODSIDE 4,79 3485 U. TRIASSIC RAMILLIES 1 BHP 12,90 3151 RANKIN 1 BURMAH OIL 9,71 4111 TRIASSIC RAMILLIES 1 BHP 12,90 3151 RANKIN 1 BURMAH OIL 9,71 4111 TRIASSIC ROSEMARY 1 WOODSIDE 11,79 3883 TRIASSIC ROSEMARY 1 WOODSIDE 11,79 3883 TRIASSIC ROSEMARY 1 WOODSIDE 11,79 3972 U. TRIASSIC ROSEMARY 1 WOODSIDE 11,72 2448 L. JURASSIC ROSEMARY 1 WOODSIDE 11,72 3972 U. TRIASSIC SALDIN 1 WAPET 5,82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10,72 3972 U. TRIASSIC SALDIN 1 WAPET 6,85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10,72 3972 U. TRIASSIC SALDIN 1 WAPET 6,85 1830 U. JURASSIC SAMSON 1 WAPET 3,79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8,84 2924 TALISMAN 2 MARATHON 6,85 2326 U. JURASSIC U. TRIASSIC TALISMAN 1 MARATHON 6,85 2326 U. JURASSIC U. TRIASSIC TALISMAN 1 MARATHON 6,85 2326 U. JURASSIC U. JURASSIC TALISMAN 2 MARATHON 6,85 2326 U. JURASSIC U. TRIASSIC U. JURASSIC U. TRIASSIC U. TRIASSIC U. TRIASSIC U. TRIASSIC U. TRIASSIC U. JURASSIC U. JUR					JURASSIC
MONTAGUE I WOODSIDE 3/85 4362 U. TRIASSIC MONTEBELLO I BHP 12/89 2750 M. JURASSIC NEBO I KUFFEC 4/93 3132 M. JURASSIC NEBO I KUFFEC 4/93 3132 M. JURASSIC NELSON ROCKS I WOODSIDE 7/73 2190 U. JURASSIC N. GORGON I WAPET 12/82 4500 TRIASSIC N. GORGON I WAPET 12/82 4500 TRIASSIC N. RANKIN I BURMAH OIL 6/71 3534 M. TRIASSIC N. RANKIN S WOODSIDE 2/77 3500 U. TRIASSIC N. RANKIN S WOODSIDE 4/81 3900 U. TRIASSIC N. TRYAL RCKS I WAPET 7/72 3658 TO U. TRIASSIC N. TRYAL RCKS I WAPET 7/72 3658 TO U. TRIASSIC N. TRYAL RCKS I WAPET 7/72 3658 TO U. TRIASSIC OUTTRIM I ESSO EX 10/82 2753 L. CRETACEOUS ORION I WOODSIDE 8/90 2500 M. JURASSIC OUTTRIM I ESSO EX 7/84 1725 U. JURASSIC OUTTRIM I ESSO EX 7/84 1725 U. JURASSIC PUEBLO I WOODSIDE 4/79 3485 U. TRIASSIC RAMILLIES I BHP 12/90 3151 RANKIN I BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION I ESSO I 11/79 3883 TRIASSIC RONSARD I WOODSIDE 11/73 2848 L. JURASSIC RONSARD I WOODSIDE 11/73 3909 JURASSIC RONSARD I WOODSIDE 11/73 3883 TRIASSIC ROSEMARY N. I WOODSIDE 11/72 3972 U. TRIASSIC SABLE I WOODSIDE 11/72 3972 U. TRIASSIC SABLE I WOODSIDE 10/72 3972 U. TRIASSIC TABLES I WAPET 5/82 3066 L. CRETACEOUS STAG I HADSON 6/93 933 SULTAN I WAPET 5/82 3066 L. CRETACEOUS STAG I HADSON 10/91 TIDEPOLE I BURMAH OIL 11/75 3491 U. TRIASSIC U. JURASSIC U. JURASSI			-		U. TRIASSIC
MONTEBELLO 1 BHP 12/89 2750 M. JURASSIC			=		L. CRETACEOUS
NEBO 1					U. TRIASSIC
NELSON ROCKS 1					M. JURASSIC
N. GORGON 1 WAPET 12/82 4500 TRIASSIC N. RANKIN 1 BURMAH OIL 6/71 3534 M. TRIASSIC N. RANKIN 5 WOODSIDE 2/77 3500 U. TRIASSIC N. RANKIN 6 WOODSIDE 4/81 3900 U. TRIASSIC N. RANKIN 6 WOODSIDE 4/81 3900 U. TRIASSIC N. TRYAL RCKS 1 WAPET 7/72 3658 N. TRYAL RCKS 1 WAPET 7/72 3658 N. TRYAL RCKS 1 WAPET 7/72 3658 N. TURTLE 1 BP 9/82 4420 U. TRIASSIC (?) NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS ORION 1 WOODSIDE 8/90 2500 M. JURASSIC OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC ROSSARD 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY N. 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC WANABA 3 WOODSIDE 3/90 3000 JURASSIC WANABA 1 WAPET 9/90 2991 JURASSIC WANABA 3 WOODSIDE 7/90 2991 JURASSIC WANABA 3 WOODSIDE 7/90 2991 JURASSIC WANABA 5 WOODSIDE 7/90 2991 JURASSIC			-	3132	M. JURASSIC
N. RANKIN 1				2190	U. JURASSIC
N. RANKIN 5 N. RANKIN 6 N. RANKIN 6 N. RANKIN 6 N. TAYAL RCKS 1 N. TYYAL RCKS 1 N. TYRTLE 1 BP 9/82 4420 U. TRIASSIC N. TURTLE 1 BP 9/82 4420 U. TRIASSIC (?) NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS ORION 1 WOODSIDE 8/90 2500 M. JURASSIC U. TRIASSIC U. TRIASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLES 1 RANKIN 1 RIVANAL OLI RESOLUTION 1 RESOLUTION 1 RESOLUTION 1 RESOLUTION 1 RESOLUTION 1 RESOLUTION 1 ROODSIDE 11/79 3883 TRIASSIC ROSEMARY 1 WOODSIDE 11/79 3883 TRIASSIC ROSEMARY 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 11/82 ROSEMARY N. 1 WOODSIDE 11/82 ROSEMARY N. 1 WOODSIDE 11/82 ROSEMARY N. 1 WOODSIDE 11/82 SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SABLE 1 WOODSIDE 10/74 3750 M. JURASSIC SABLE 1 WOODSIDE 10/74 SABLE 1 WOODSIDE 10/74 3750 M. JURASSIC SABLE 1 WOODSIDE 10/74 SABLE 1 WOODSIDE 10/75 SALADIN 1 WAPET 6/85 1830 U. JURASSIC SABLE 1 WOODSIDE 10/74 SABLE 1 WOODSIDE 10/75 SABLE 1 WAPET 9/76 3721 L. CRETACEOUS SABLE 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET				4500	TRIASSIC
N. RANKIN 6 WOODSIDE 4/81 3900 U. TRIASSIC N. TRYAL RCKS 1 WAPET 7/72 3658 N. TURTLE 1 BP 9/82 4420 U. TRIASSIC (?) NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS ORION 1 WOODSIDE 8/90 2500 M. JURASSIC OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC ROMILLIES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC RONSARD 1 WOODSIDE 11/73 2848 L. JURASSIC RONSARD 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY 1 WOODSIDE 11/82 2263 U. JURASSIC ROSEMARY 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/72 3972 U. TRIASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 6/85 2326 U. JURASSIC TALISMAN 1 MARATHON 6/85 2326 U. JURASSIC TALISMAN 1 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/92 3210 U. JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC					M. TRIASSIC
N. TRYAL RCKS 1 WAPET 7/72 3658 N. TURITLE 1 BP 9/82 4420 U. TRIASSIC (?) NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS ORION 1 WOODSIDE 8/90 2500 M. JURASSIC OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC ROSSARD 1 WOODSIDE 11/73 3948 L. JURASSIC ROSSARD 1 WOODSIDE 11/73 3948 L. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TRYAL ROCKS 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/90 2991 JURASSIC WANAEA 6 WOODSIDE 7/90 2991 JURASSIC			=		U. TRIASSIC
N. TURTLE 1 BP 9/82 4420 U. TRIASSIC (?) NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS ORION 1 WOODSIDE 8/90 2500 M. JURASSIC OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLIES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC ROSSARD 1 WOODSIDE 11/73 2848 L. JURASSIC ROSSEMARY 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/72 3972 U. TRIASSIC SAMSON 1 WOODSIDE 10/72 3972 U. TRIASSIC SAMSON 1 WAPET 6/85 1830 U. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TANAMI 2 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/92 3210 U. JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC					U. TRIASSIC
NOVARA 1 ESSO EX 10/82 2753 L. CRETACEOUS ORION 1 WOODSIDE 8/90 2500 M. JURASSIC OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLIES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC ROSEMARY 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 11/73 3909 JURASSIC ROSEMARY 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SAMSON 1 WAPET <td></td> <td></td> <td>=</td> <td></td> <td></td>			=		
ORION 1 WOODSIDE 8/90 2500 M. JURASSIC OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLIES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC RONSARD 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470			=	4420	U. TRIASSIC (?)
OUTTRIM 1 ESSO EX 7/84 1725 U. JURASSIC PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLIES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC ROSEMARY 1 WOODSIDE 11/73 2948 L. JURASSIC ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 <td< td=""><td></td><td></td><td>=</td><td></td><td></td></td<>			=		
PUEBLO 1 WOODSIDE 4/79 3485 U. TRIASSIC RAMILLIES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC RONSARD 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON					M. JURASSIC
RAMILLIES 1 BHP 12/90 3151 RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 111/79 3883 TRIASSIC RONSARD 1 WOODSIDE 111/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 7/90 2991 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 4 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC				1725	U. JURASSIC
RANKIN 1 BURMAH OIL 9/71 4111 TRIASSIC RESOLUTION 1 ESSO 11/79 3883 TRIASSIC RONSARD 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY 1 WOODSIDE 11/82 2263 U. JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2363 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470				3485	U. TRIASSIC
RESOLUTION 1 ESSO 11/79 3883 TRIASSIC RONSARD 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 5 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 4 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470				3151	
RONSARD 1 WOODSIDE 11/73 2848 L. JURASSIC ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470			<i>9/</i> 71	4111	TRIASSIC
ROSEMARY 1 WOODSIDE 3/73 3909 JURASSIC ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 6/85 2326 U. JURASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 <td></td> <td></td> <td>11<i>/</i>79</td> <td>3883</td> <td>TRIASSIC</td>			11 <i>/</i> 79	3883	TRIASSIC
ROSEMARY N. 1 WOODSIDE 11/82 2263 U. JURASSIC ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 11/75 3491 U. TRIASSIC TANAMI 2 HADSON 10/91 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD			-		L. JURASSIC
ROSILY 1A WAPET 5/82 3066 L. CRETACEOUS SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS					JURASSIC
SABLE 1 WOODSIDE 10/72 3972 U. TRIASSIC SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. JURASSIC TANAMI 2 HADSON 10/91 U. JURASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 U. JURASSIC VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 3/90 3000 JURASSIC			_		
SALADIN 1 WAPET 6/85 1830 U. JURASSIC SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 L. CRETACEOUS STAG 1 HADSON 6/93 933 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 U. JURASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. JURASSIC TANAMI 2 HADSON 10/91 U. JURASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 U. JURASSIC VENTURE 1 WAPET 10/90 3324 U. JURASSIC WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 3 WOODSIDE 7/90 <td></td> <td></td> <td>•</td> <td></td> <td>L. CRETACEOUS</td>			•		L. CRETACEOUS
SAMSON 1 WOODSIDE 10/84 3750 M. JURASSIC SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. TRIASSIC TRIALISMAN 2 HADSON 10/91 U. TRIASSIC TANAMI 2 HADSON 10/91 U. JURASSIC U. JURASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE					U. TRIASSIC
SOMERVILLE 1 BHP 2/87 1749 L. CRETACEOUS SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 U. JURASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. TRIASSIC TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320				1830	U. JURASSIC
SPAR 1 WAPET 9/76 3721 L. CRETACEOUS STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. TRIASSIC TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 4 BHP 10/92 1200 JURASSIC W.			•	3750	M. JURASSIC
STAG 1 HADSON 6/93 933 SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 U. JURASSIC TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. TRIASSIC TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 U. JURASSIC VENTURE 1 WAPET 10/90 3324 U. JURASSIC VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 4 BHP 5/93		BHP	•		L. CRETACEOUS
SULTAN 1 WAPET 3/79 3620 U. TRIASSIC TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. TRIASSIC TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC VENTURE 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470			-		L. CRETACEOUS
TALISMAN 1 MARATHON 8/84 2924 TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 U. TRIASSIC TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470					
TALISMAN 2 MARATHON 6/85 2326 U. JURASSIC TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 U. JURASSIC W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470					U. TRIASSIC
TANAMI 2 HADSON 10/91 TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470					
TIDEPOLE 1 BURMAH OIL 11/75 3491 U. TRIASSIC TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC W. MUIRON 2 WAPET 10/75 3320 U. JURASSIC W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470				2326	U. JURASSIC
TRYAL ROCKS 1 WAPET 8/70 3695 U. JURASSIC VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470			-		
VENTURE 1 WAPET 10/90 3324 VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470		· · · · - · · · · · · · · · · · · ·			U. TRIASSIC
VLAMING HEAD CANADA NW 9/82 2068 L. CRETACEOUS WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470					U. JURASSIC
WANAEA 1 WOODSIDE 5/89 4154 M. JURASSIC WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470	VENTURE 1	WAPET	10/90	3324	
WANAEA 2 WOODSIDE 3/90 3000 JURASSIC WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470	VLAMING HEAD	CANADA NW	9/82	2068	L. CRETACEOUS
WANAEA 3 WOODSIDE 7/90 2991 JURASSIC WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470	WANAEA 1	WOODSIDE	5/89	4154	M. JURASSIC
WANAEA 5 WOODSIDE 7/92 3210 U. JURASSIC W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470	WANAEA 2	WOODSIDE	<i>3/</i> 90	3000	JURASSIC
W. MUIRON 2 WAPET 10/75 3320 W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470	WANAEA 3	WOODSIDE	<i>7/</i> 90	2991	JURASSIC
W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470	WANAEA 5	WOODSIDE	7/92	3210	U. JURASSIC
W. MUIRON 3 BHP 10/92 1200 JURASSIC W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470	W. MUIRON 2	WAPET	10/75	3320	
W. MUIRON 4 BHP 5/93 W. PEPPER 1 WMC 5/91 1470	W. MUIRON 3	BHP	-		JURASSIC
W. PEPPER 1 WMC 5/91 1470	W. MUIRON 4	BHP	5/93		
	W. PEPPER 1	WMC	_	1470	
	W. TRYAL RKS 2	WAPET			U. TRIASSIC

WELLNAME	OPERATOR	DATE	TD	AGE AT TD
W. TRYAL RKS 3	WAPET	12/81	4035	U. TRIASSIC
WILCOX 1	WOODSIDE	2/83	4024	U. TRIASSIC
WILCOX 2	WOODSIDE	8/85	4117	U. TRIASSIC
WITHNELL 1	BURMAH OIL	6/76	4650	M. JURASSIC
YORK 1	BHP	6/93		
ZEEPAARD 1	ESSO	10/80	4215	U. TRIASSIC
ZEEWULF 1	ESSO	5 <i>[</i> 79	3500	U. TRIASSIC

APPENDIX 3

WAY POINTS CARNARVON HIGH RESOLUTION SURVEY

LINE SHOT LATITUDE LONGITUDE TIE POINTS	
1 1 21 00.7083S 113 34.8367E SOL	
2 21 06.4600S 113 37.2933E ZEEWULF 1	
3 21 17.8583S 113 41.4817E RESOLUTION 1	
4 21 49.6400S 113 59.7233E EOL	
2 1 20 49.6450S 113 44.7283E SOL	
2 21 21.3543S 114 04.5825E NOVARA 1	
3 21 32.4950S 114 12.1750E WEST MUIRON	
4 21 34.1767S 114 13.2050E WEST MUIRON	3
5 21 35.5650S 114 13.5917E WEST MUIRON	2
6 21 48.9783S 114 18.7600E EOL	
3 1 20 32.4900S 113 59.2217E SOL	
3 1 20 32.4900S 113 59.2217E SOL 2 21 31.7993S 114 27.1237E OUTTRIM 1	
3 21 41.4900S 114 31.7383E HAWKSBILL 1	*
4 21 43.6933S 114 32.7533E HAWKSBILL 1	•
4 21 45.09558 114 52.7555E EUL	
4 1 20 15.4566S 114 15.5400E SOL	
2 20 44.1500S 114 25.4400E ZEEPARD 1	
3 21 15.4250S 114 36.1717E RAMILLIES 1	
4 21 29.8350S 114 40.0867E SOMERVILLE 1	
5 21 32.8500S 114 42.6167E ANCHOR 1 *	
6 21 36.2650S 114 45.6133E EOL	
5 1 00 10 00200 114 00 1750E 0.OT	
5 1 20 10.0930S 114 28.1750E SOL	
2 20 49.4228S 114 43.3750E MINDEN 1	
3 21 12.0983S 114 52.0783E ROSILY 1A	
4 21 31.3317S 114 58.1750E COWLE 1	
5 21 33.0817S 114 58.5533E EOL	
6 1 20 00.5217S 114 44.0900E SOL	
2 20 22.9903S 114 51.7710E NORTH GORGO	N 1
2 20 22.9903S 114 51.7710E NORTH GORGO 3 20 36.7833S 114 53.1800E SPAR 1	
4 20 51.1017S 114 56.5850E KURRAJONG 1	*
5 21 23.6817S 115 03.2983E KOOLINDA 1	
6 21 26.4183S 115 03.2633E SALADIN 1	
7 21 28.4617S 115 03.1133E EOL	
7 1 19 52.6367S 114 55.7633E SOL	
2 20 09.2200S 115 03.0200E WEST TRYAL RO	OCKS 3
2 20 09.2200S 115 03.0200E WEST TRYAL RO 3 20 12.8623S 115 04.0043E WEST TRYAL RO	
	OCKS 2
3 20 12.8623S 115 04.0043E WEST TRYAL R	OCKS 2
3 20 12.8623S 115 04.0043E WEST TRYAL ROCKS 4 20 24.7167S 115 09.2500E TRYAL ROCKS	OCKS 2 1
3 20 12.8623S 115 04.0043E WEST TRYAL ROCKS 4 20 24.7167S 115 09.2500E TRYAL ROCKS 5 20 33.6633S 115 10.5350E MAITLAND 1	OCKS 2 1

				•
8	1	19 47.5650S	115 03.5600E	SOL
•	2	20 02.5617\$	115 11.4300E	
	3	21 39.7808S	115 28.0222E	EOL
	3	21 37.70003	113 20.02220	DOL
9	1	19 39.1650S	115 14.1263E	SOL
	2	20 13.6095S	115 32.3327E	FORREST 1A
	3	20 27.8333S	115 38.8167E	FLAG 1
	4	20 36.1317S	115 36.8517E	HARRIET 1
	5	20 46.7072S	115 30.6317E	GEORGETTE 1
	3	20 40.70723	113 39.33000	GEORGETTE T
10	1	19 30.5450S	115 26.7167E	SOL
	2	19 47.8550S	115 44.6017E	RANKIN 1
	3	19 50.9167S	115 47.2750E	DIXON 1
	4	20 13.1233S	116 06.2767E	
	5	20 17.2300S	116 15.4817E	
	6	20 17.7217S		EOL
	O	20 17.72173	116 16.5750E	EOL
11	1	19 25.2367S	115 33.0033E	SOL
	2	19 43.3150S	115 51.2783E	GOODWYN 6
	3	19 44.0717S	115 52.7500E	GOODWYN 3
	4	19 52.2667S	116 00.9000E	DAMPIER 1
	5	20 05.2667S	116 17,4717E	MONTEBELLO 1
	6	20 09.3450S	116 24.4833E	ENDERBY 1
	7	20 09.7817S	116 25.3200E	EOL
	•	20 07.70176	110 25.52002	LOL
12	1	19 14.6476S	115 47.3700E	SOL
	2	19 16.4350S	115 49.3300E	GANDARA 1
	3	19 32.6683S	116 08.5167E	NORTH RANKIN 6
	4	19 34.2333S	116 09.5850E	NORTH RANKIN 5
	5	19 34.6700S	116 10.0017E	MILLER 1
	6	19 52.3233S	116 31.6050E	ORION 1
	7	20 01.3467S	116 42.7250E	EOL
13	1	19 08.3217S	115 59.3467E	SOL
	2	19 31.6083S	116 22.5500E	MONTAGUE 1
	3	19 35.2117S	116 24.6900E	WANAEA 5
	4	19 45.8417S	116 34.4200E	BALEENA 1 *
	5	19 47.5250S	116 37.4333E	LEWIS 1A
	6	20 03.5650S	116 50.4933E	KANJI 1 *
	7	20 04.1117S	116 52.2400E	EOL
14	1	19 57 00720	116 15 00170	SOI
14	1	18 57.9973S	116 15.0217E	SOL
	2	19 27.8945S	116 39.4920E	ANGEL 2
	3	19 35.6835S	116 49.2543E	FORESTIER 1
	4	19 42.6562S	116 54.6228E	CYGNUS 1
	5	19 46.6103S	116 57.5593E	EOL
15	1	18 54.9195S	116 26.8528E	SOL
_	2	19 17.3200S	116 45.9750E	FINUCANE 1
	3	19 29.6442S	116 56.4737E	TALISMAN 1
	4	19 47.5733S	117 15.3360E	HAUY 1
	5	19 49.6430S	117 17.2538E	EOL

16	1	18 49.7173S	116 37.3505E	SOL
	2	19 13.9817S	116 55.0650E	SABLE 1
	3	19 20.6520S	117 00.7620E	
	4	19 29.2600S		
	5	19 34.0185S		EOL
	J	17 34.01035	117 07.7013L	LOL
17	1	18 39.5322S	117 00.5528E	SOL
17	2	19 12.1273S		JARMAN 1
	3	19 12.12733 19 43.7258S		
	3	19 45.72585	117 47.5238E	EOL
18	1	18 29.2092S	117 01 06578	SOT
10	1			SOL
	2	18 46.7617S		NEBO 1
	3 4	18 50.0292S		DEPUCH 1
	4	19 02.5523S	118 15.3848E	EOL
19	1	21 21.7557S	113 36.4417E	SOL
19	1			
	2	21 17.8583S	113 41.4817E	RESOLUTION 1
	3 4	20 44.1500S	114 25.4400E	ZEEPARD 1
		20 28.0783S	114 48.6283E	CENTRAL GORGON 1
	5	20 22.9903\$	114 51.7710E	NORTH GORGON 1
	6	20 15.4183S	114 57.1500E	BLUEBELL 1
	7.	20 09.2200S	115 03.0200E	WEST TRYAL ROCKS 3
	8	20 02.5617S	115 11.4300E	SULTAN 1
	9	19 59.2950S	115 19.1800E	NORTH TRYAL ROCKS1*
	10	19 45.1800S	115 32.1183E	MALUS 1
	11	19 42.6290S	115 43.4395E	ECHO 1
	12	19 39.8050S	115 51.9550E	GOODWYN 2
	13	19 38.6667S	115 54.6500E	GOODWYN 8
	14	19 37.6150S	115 57.6917E	GOODWYN 7
	15	19 35.8300S	116 07.5767E	NORTH RANKIN 1
	16	19 34.6700S	116 10.0017E	MILLER 1
	17	19 30.4150S	116 16.6917E	EAGLE HAWK 1
	18	19 17.2833S	116 38.4500E	BOUNTY 1
	19	19 17.3200S	116 45.9750E	FINUCANE 1
	20	19 13.9817S	116 45.9750E 116 55.0650E	SABLE 1
	21	19 08.4283S	117 09.7233E	RONSARD 1
	22	18 46.7617S	117 49.7217E	NEBO 1
	23	18 38.8510S	118 04.1070E	EOL
20	1	21 37.2022\$	113 47.7670E	SOL
20	2	21 21.3543S	114 04.5825E	NOVARA 1
	3	21 14.7215S	114 04.5823E 114 11.5232E	VLAMING HEAD 1
	4	20 57.0175S	114 11.5252E 114 35.5061E	YORK 1
	5			
		20 49.4228\$	114 43.3750E	MINDEN 1
	6	20 39.7133S	114 59.8550E	EAST SPAR 2 *
	7	20 33.6637S	115 10.5350E	MAITLAND 1
	8	20 13.6095S	115 32.3327E	FORREST 1A
	9	20 01.1097S	115 48.3213E	WITHNELL 1
	10	19 52.2667S	116 00.9000E	DAMPIER 1
	11	19 38.9077S	116 21.5862E	MADELEINE 1
	12	19 36.8233S	116 24.6740E	WANAEA 2 *
	13	19 35.5080S	116 26.1213E	WANAEA 1
	14	19 34.6968S	116 27.0015E	WANAEA 3
	15	19 33.2827\$	116 29.8355E	COSSACK 1
	16	19 30.2550S	116 35.8748E	ANGEL 1A
	17	19 27.8945S	116 39.4920E	ANGEL 2
	18	19 20.4128S	116 51.6648E	EOL EOL
	10	17 40.71403	110 71.004017	1771

1	21 48.7882S	114 17.6778E	SOL
2	21 41.0525S	114 21.9888E	LEATHERBACK 1
3	21 31.7993S	114 27.1237E	OUTTRIM 1
4	21 14.0590S	114 37.2788E	GRIFFIN 1
5	21 11.9127S	114 38.2990E	HILDA 1A
6	21 07.9618S	114 40.0493E	EOL
1	21 25.5452S	114 37.6255E	SOL
2	21 12.0983S	114 52.0783E	ROSILY 1A
	20 27.8333S	115 38.8167E	FLAG 1
4	20 24.8455S	115 43.8138E	CAMPBELL 2
5	20 13.1233S	116 06.2767E	MAWBY 1A
6	19 57.1913E	116 20.7635E	ROSEMARY 1
7	19 54.6502S	116 24.7133E	ROSEMARY NORTH 1
8	19 45.8417S	116 34.4200E	BALEENA 1 *
9	19 43.5667S	116 38.5565E	SAMSON 1
10	19 40.2367S	116 44.0033E	LEGENDRE 1
11	19 37.3762S	116 46.8953E	LEGENDRE 2
12	19 35.6835S	116 49.2543E	FORESTIER 1
13	19 33.5340S	116 51.2990E	NELSON ROCKS 1
14	19 30.2736S	116 55.6679E	TALISMAN 2
15	19 29.6442S	116 56.4737E	TALISMAN 1
16	19 28.1625S	116 58.1536E	ALPHA NORTH 1
17	19 19.8076S	117 17.5121E	COSSIGNY 1
18	18 54.5067S	118 05.3717E	NORTH TURTLE 1
19	18 54.0413S	118 06.2225E	EOL
1	20 11.8675S	115 14.8042E	SOL
			VENTURE 1
			WILCOX 1
			WILCOX 2
			LOWENDAL 1
			FISHER 1
			RANKIN 1
			DOCKRELL 1
			PUEBLO 1
			TIDEPOLE 1
11	19 46.0855S	115 57.0493E	EOL
	3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	2 21 41.0525S 3 21 31.7993S 4 21 14.0590S 5 21 11.9127S 6 21 07.9618S 1 21 25.5452S 2 21 12.0983S 3 20 27.8333S 4 20 24.8455S 5 20 13.1233S 6 19 57.1913E 7 19 54.6502S 8 19 45.8417S 9 19 43.5667S 10 19 40.2367S 11 19 37.3762S 12 19 35.6835S 13 19 33.5340S 14 19 30.2736S 15 19 29.6442S 16 19 28.1625S 17 19 19.8076S 18 18 54.5067S 19 19.8076S 18 18 54.5067S 19 19.8076S 18 18 54.5067S 19 19.8076S 18 18 54.0413S 1 20 11.8675S 2 20 08.4410S 3 20 00.4533S 4 19 59.6663S 5 19 52.8062S 6 19 49.3363S 7 19 47.8550S 8 19 47.1988S 9 19 45.9515S 10 19 46.0422S	2 21 41.0525S 114 21.9888E 3 21 31.7993S 114 27.1237E 4 21 14.0590S 114 37.2788E 5 21 11.9127S 114 38.2990E 6 21 07.9618S 114 40.0493E 1 21 25.5452S 114 37.6255E 2 21 12.0983S 114 52.0783E 3 20 27.8333S 115 38.8167E 4 20 24.8455S 115 43.8138E 5 20 13.1233S 116 06.2767E 6 19 57.1913E 116 20.7635E 7 19 54.6502S 116 24.7133E 8 19 45.8417S 116 34.4200E 9 19 43.5667S 116 38.5565E 10 19 40.2367S 116 44.0033E 11 19 37.3762S 116 44.0033E 12 19 35.6835S 116 49.2543E 13 19 33.5340S 116 51.2990E 14 19 30.2736S 116 55.6679E 15 19 29.6442S 116 56.4737E 16 19 28.1625S 116 58.1536E 17 19 19.8076S 117 17.5121E 18 18 54.5067S 118 05.3717E 19 18 54.0413S 118 06.2225E 1 20 11.8675S 115 14.8042E 2 20 08.4410S 115 19.1282E 3 20 00.4533S 115 29.0977E 4 19 59.6663S 115 30.5102E 5 19 52.8062S 115 38.0353E 6 19 49.3363S 115 42.6133E 7 19 47.8550S 115 44.6017E 8 19 47.1988S 115 46.8658E 9 19 45.9515S 115 51.8112E 10 19 46.0422S 115 53.1750E

^{*} WELLS WITH A STAR ARE NOT CONVERTED TO WGS-84

APPENDIX 4

SEISMIC ACQUISITION PARAMETERS

Seismic Cable Configuration

Streamer length 3000 m Group length 12.5 m No. of groups 240

Seismic Source

Airgun capacity 1200 cu. in.
Airgun pressure 1800 psi
No. of guns 8
Shot interval 18.75m

Fold

Standard 8000%

Recording Parameters

Record length 5.5 sec Sample interval 2.0 msec

APPENDIX 5

EQUIPMENT TO BE UTILISED

FJORD Instruments seismic receiving array: 6.25 m, 12.5 m, 18.75 m, or 25 m group lengths; up to 288 channels; up to 6000 m active streamer length.

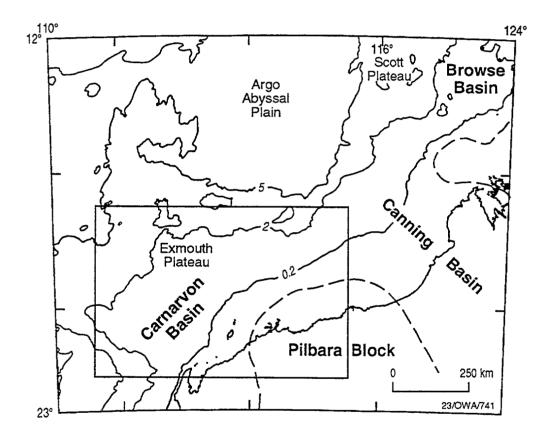
Syntron RCL-3 cable levelers; individual remote control and depth readout

Sodera GI Guns, 8 x 150 cubic inch airguns giving a total of 1200 cubic inches normal operating volume

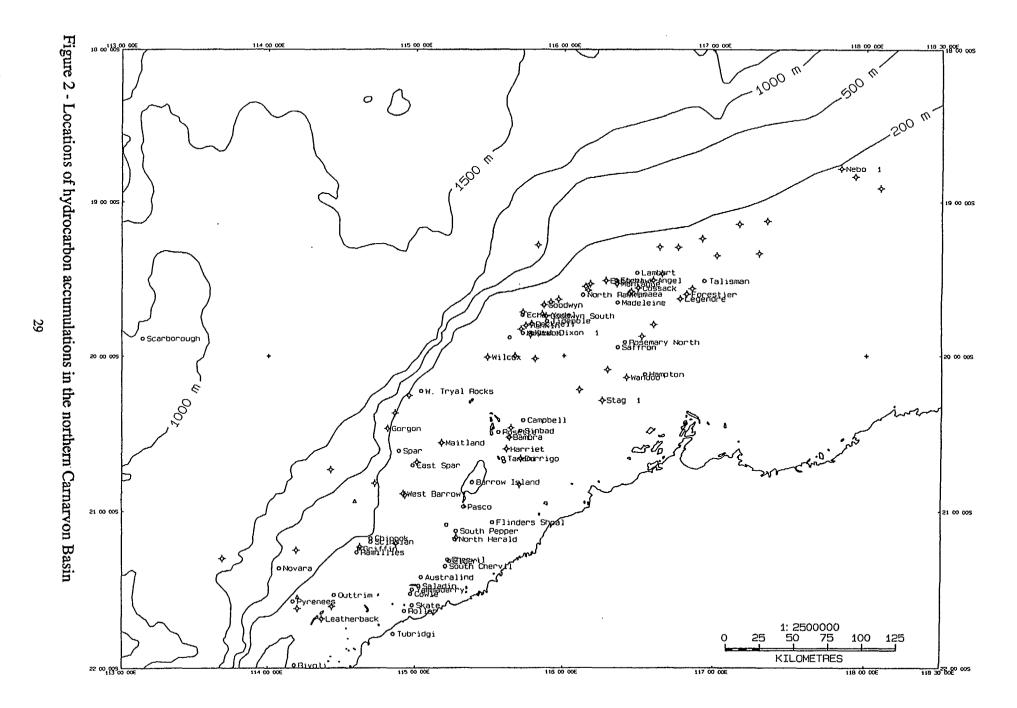
Air compressor system: 6 x A-300 Price compressors, each providing 300 scfm at 2000 psi (62 litres/min at 14 MPa)

Digital seismic acquisition system designed and built by AGSO: 16-bit floating point, SEG-Y output on cartridge tape

Raytheon echo-sounders: 3.5KHz (2 kW) 16-transducer sub-bottom profiler, and 12 KHz (2 kW) precision echo-sounder


Geometrics G801/803 magnetometer/gradiometer

Bodenseewerk Geosystem KSS-31 marine gravity meter


Racal 'Skyfix' differential GPS

Magnavox T-Set stand-alone GPS receiver

Magnavox MX 610D and Raytheon DSN 450 dual axis sonar dopplers; Ben paddle log

1. Location map showing the northern Carnarvon Basin and North West Shelf (from Stagg & Colwell, 1994).

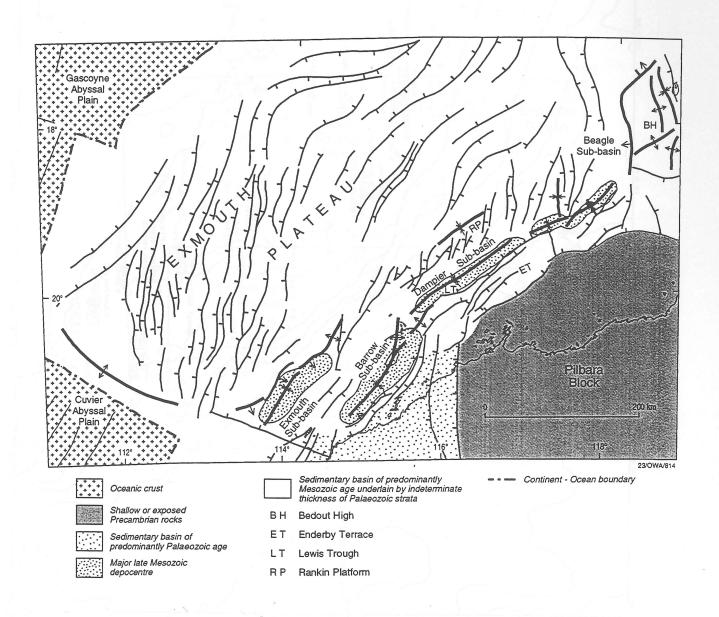
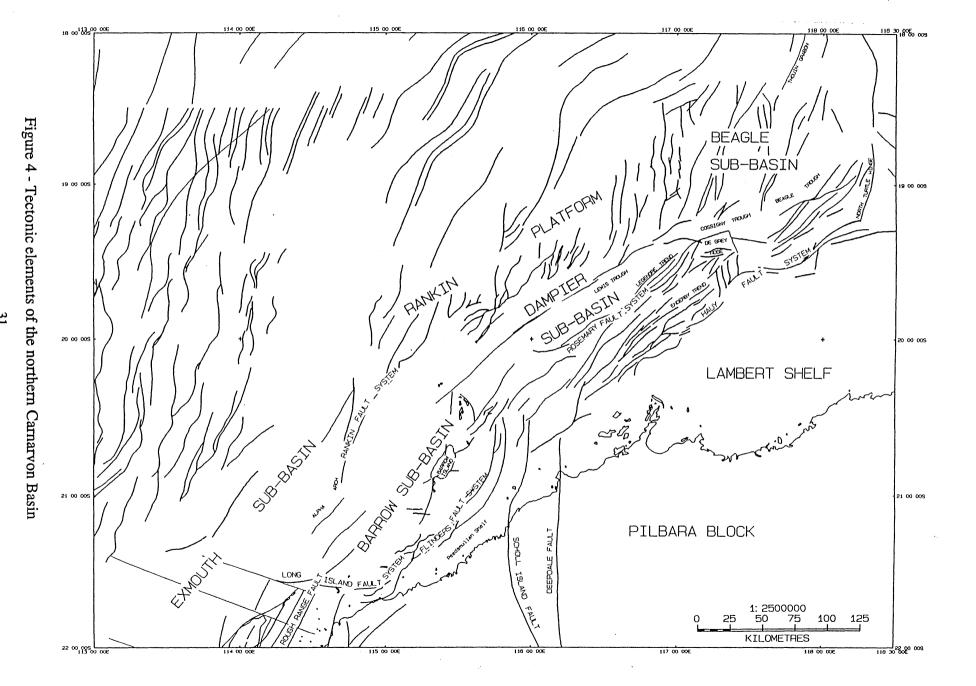
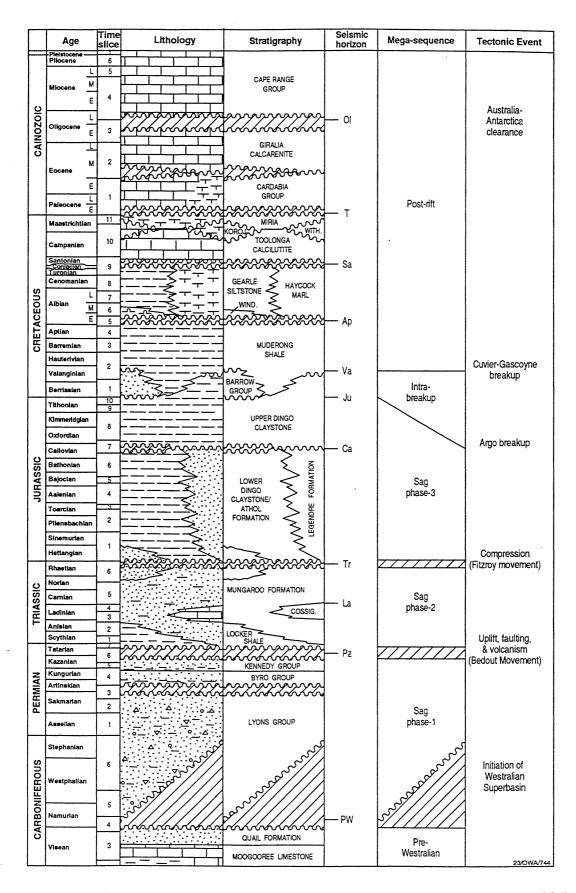
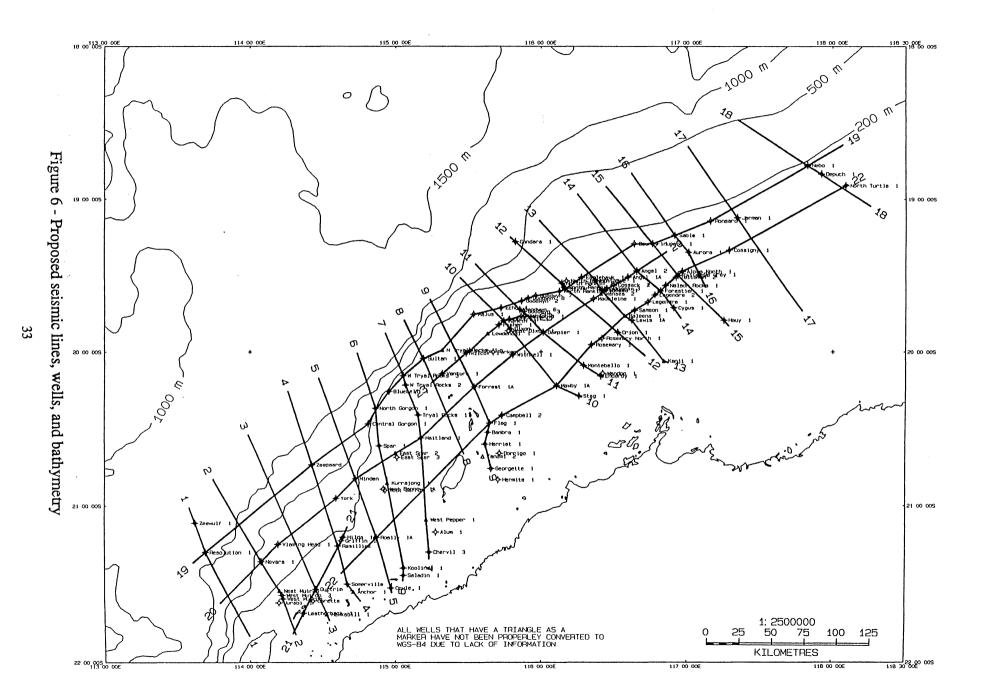
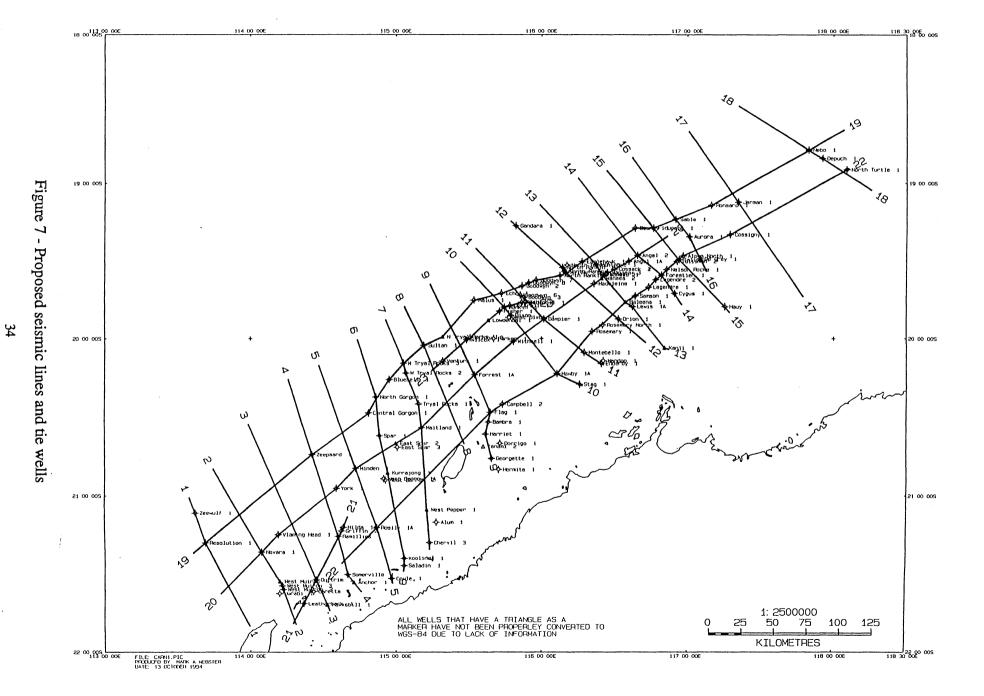
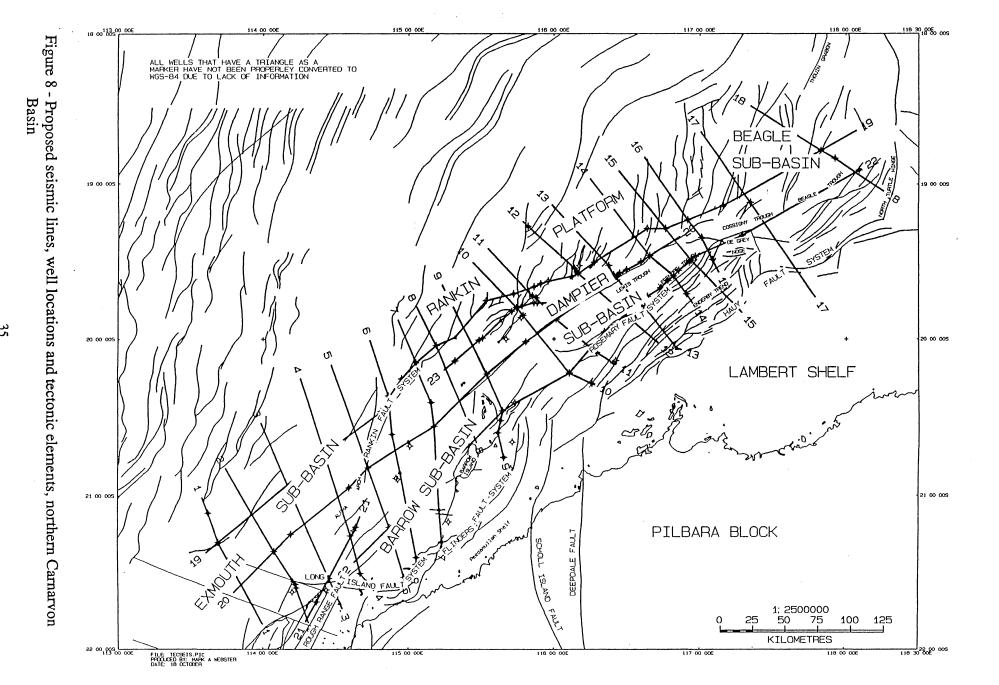
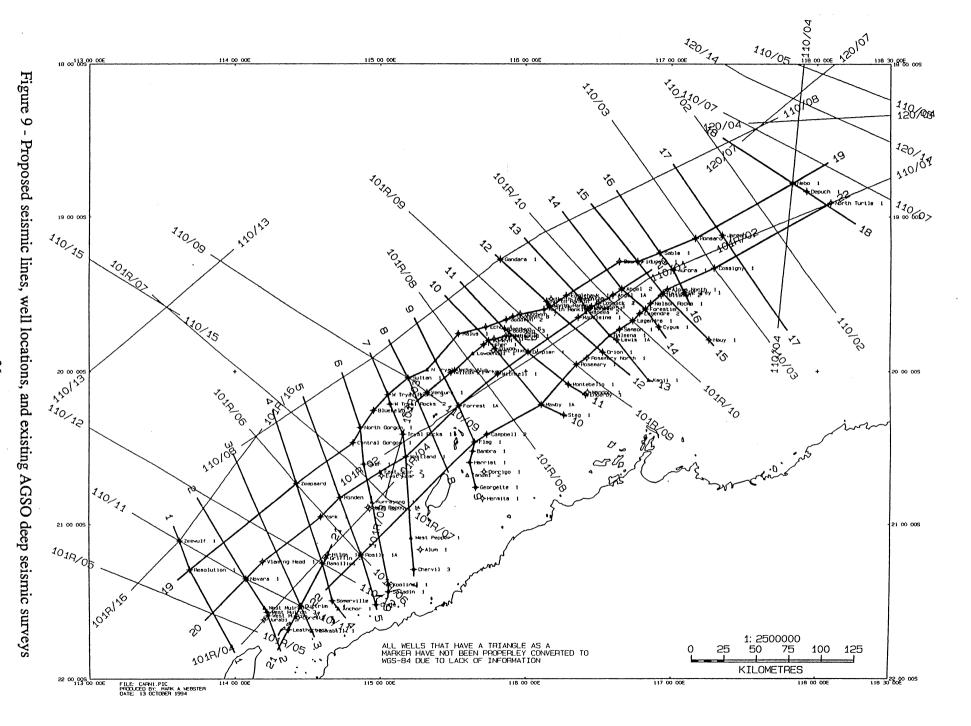



Figure 3 - Location of sub-basin depocentres of the northern Carnarvon Basin (from Stagg & Colwell, 1994).


Figure 5 - Stratigraphy of the southern North West Shelf (from Stagg & Colwell, 1994)

Australian Geological Survey Organisation 100/

36