
Australian Seismological Report, 1986

LINTERAL RESOLUTION OF THE BOY OF

Peter J. Gregson & Yvonne Moiler

BMR PUBLICATIONS COMPACTUS (LENDING SECTION)

Bureau of Mineral Resources, Geology and Geophysics

Department of Primary Industries and Energy BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

REPORT 294

AUSTRALIAN SEISMOLOGICAL REPORT, 1986

Compiled by

Peter J. Gregson & Yvonne M. Moiler

(Division of Geophysics)

AUSTRALIAN GOVERNMENT PUBLISHING SERVICE CANBERRA

© Commonwealth of Australia 1990

ISBN 0 644 11296 4

ISSN 0084-7100

This work is copyright. Apart from use as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission from the Director Publishing and Marketing, AGPS. Inquiries should be directed to the Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84, Canberra, ACT 2601.

DEPARTMENT OF PRIMARY INDUSTRIES AND ENERGY

Minister for Resources: The Hon. Allan Griffiths, MP

Secretary: Geoff Miller

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

Executive Director: R.W.R. Rutland AO

Editing: Bernadette Hince

Drafting: Natasha Kozin, Larry Hollands Keyboarding: Yvonne Moiler, Helen Tozer

Contributors

The contributors to this publication are listed below according to the information furnished or service performed:

Hypocentres and magnitudes

- J. Brown, South Australian Department of Mines & Energy, Adelaide, SA
- R. Cuthbertson, Geological Survey of Queensland, Brisbane, Qld
- D. Denham, BMR, Canberra, ACT
- M. Douch, BMR, Canberra, ACT
- G. Gibson, Phillip Institute of Technology, Bundoora, Victoria
- S. Greenhalgh, Flinders University, Adelaide, SA
- P.J. Gregson, BMR, Mundaring Geophysical Observatory, Mundaring, WA

International Seismological Centre (ISC), Newbury, UK

- T. Jones, BMR, Canberra, ACT
- C. Krayshek, Research School of Earth Sciences, Australian National University, Canberra, ACT
- A. McArdle, South Australian Department of Mines & Energy, Adelaide, SA
- K. McCue, BMR Canberra, ACT
- R. McDougal, University of Adelaide, Adelaide, SA
- M. Michael-Leiba, BMR, Canberra, ACT

National Earthquake Information Service, US Geological Survey (USGS), Boulder, Colorado, USA

- E.P. Paull, BMR, Mundaring Geophysical Observatory, Mundaring, WA
- J. Pongratz, University of Tasmania, Hobart, Tasmania
- J.M.W. Rynn, University of Queensland, Brisbane, Qld
- J. Vahala, BMR, Canberra, ACT
- J. Weekes, Research School of Earth Sciences, Australian National University, Canberra, ACT
- V. Wesson, Phillip Institute of Technology, Bundoora, Victoria

Intensities

- R. Cuthbertson, Geological Survey of Queensland, Brisbane, Qld
- P.J. Gregson, BMR, Mundaring Geophysical Observatory, Mundaring, WA
- T. Jones, BMR, Canberra, ACT
- D. Love, South Australian Department of Mines & Energy, Adelaide, SA
- K.F. McCue, BMR, Canberra, ACT

Network operations (by institution)

Australian National University, Canberra, ACT (CAN)

Bureau of Mineral Resources, Geology & Geophysics, Canberra, ACT (BMR) and Mundaring, WA (MUN)

Flinders University, Adelaide, SA (ADE)

Geological Survey of Queensland, Brisbane, Qld (GSQ)

Phillip Institute of Technology, Bundoora, Victoria (PIT)

St Ignatius College, Riverview, NSW (RIV)

South Australian Department of Mines & Energy, Adelaide, SA (ADE)

University of Queensland, Brisbane, Qld (UQ)

University of Tasmania, Hobart, Tasmania (TAU)

Western Australian Public Works Department, Perth, WA (PWD)

Strong-motion data

- B.A. Gaull, BMR, Mundaring Geophysical Observatory, Mundaring, WA
- G. Gibson, Phillip Institute of Technology, Bundoora, Victoria
- K. McCue, BMR, Canberra, ACT
- M. Michael-Leiba, BMR, Canberra, ACT
- V. Wesson, Phillip Institute of Technology, Bundoora, Victoria

Nuclear monitoring

- D. Denham, BMR, Canberra, ACT
- L. Hodgson, BMR, Canberra, ACT
- P.M. McGregor, BMR, Canberra, ACT
- K. Muirhead, BMR Canberra, ACT
- G.R. Small, BMR, Canberra, ACT

Table of Contents

ABSTRACT	vii							
INTRODUCTION								
AUSTRALIAN REGION EARTHQUAKES, 1986								
ISOSEISMAL MAPS								
ISOSEISMAL MAPS NETWORK OPERATIONS								
ACCELEROGRAPH DATA								
PRINCIPAL WORLD EARTHQUAKES, 1986								
MONITORING NUCLEAR EXPLOSIONS								
REFERENCES								
	58							
Tables								
1 Australian region earthquakes, 1986: hypocentral parameters	33 36							
3 Australian seismograph stations, 1986								
4 Focal parameters, Upper Colo NSW and Marryat Creek SA events	40							
5 Australian accelerographs, 1986	41 43							
7 Principal world earthquakes, 1986.	51							
8 Nuclear explosions, 1986								
Figures								
1 Australian region earthquakes, 1986, ML > 3.9	2							
2 Australian region earthquakes, 1873-1986, ML > 3.9								
3 Western Australian earthquakes, 1986, ML > 2.4								
4 Northern Territory earthquakes, 1986, ML > 2.4	7							
5 South Australian earthquakes, 1986, ML > 2.4								
6 Marryat Creek earthquake fault scarp								
7 Victorian earthquakes, 1986, ML > 2.4								
9 Tasmanian earthquakes, 1986, ML > 2.4								
10 Queensland earthquakes, 1986, ML > 2.4								

Figures (cont.)

11	Isoseismal map, Somerset Dam, Queensland, 8 January 1986	16
	Isoseismal map, Augusta, WA, 15 January 1986	
	Isoseismal map, Upper Colo, NSW, 20 February 1986	
	Isoseismal map, Temma, Tasmania, 16 March 1986	
	Isoseismal map, Marryat Creek, SA, 30 March 1986	
	Isoseismal map, Ravensthorpe, WA, 17 May 1986	
	Isoseismal map, Arthur River, WA, 17 May 1986	
	Isoseismal map, Meckering, WA, 1 September 1986	
	Isoseismal map, Kangaroo Island, SA, 16 December 1986	
	Australian seismograph stations, 1986	
	Accelerogram, Cadoux, WA, 6 February 1986	
	Accelerogram, Cadoux, WA, 29 September 1986	
	Principal world earthquakes, 1986	30

ABSTRACT

Seismicity in the Australian region in 1986 was about average with 148 earthquakes of magnitude 3 or more being located. The largest earthquake, of magnitude Ms 5.8, occurred near Marryat Creek, SA, on 30 March and produced a 13 km long fault scarp with a maximun throw of 0.6 m. Three earthquakes exceeded ML 5 and 31 were ML 4 or greater. Isoseismal maps were drawn up for the Somerset Dam Qld, Augusta WA, Upper Colo NSW, Temma Tasmania, Marryat Creek SA, Ravensthorpe WA, Arthur River WA, Meckering WA and Kangaroo Island SA earthquakes. Accelerograms were recorded close to the foci of small earthquakes near Cadoux in southwest WA, Dalton NSW and Thomson Dam Victoria.

The nuclear monitoring group established by the BMR during 1984 continued to monitor underground nuclear explosions. During 1986 a total of 23 presumed underground nuclear explosions were detected, 15 by the USA and 8 by France. This compares with 30 in 1985. The USSR maintained a self-imposed moratorium on testing throughout the year.

INTRODUCTION

This report contains information on all earthquakes of Richter magnitude 3 or greater that were reported in the Australian region during 1986. It is the seventh in an annual series compiled by the Bureau of Mineral Resources, Geology & Geophysics (BMR), using data provided by various seismological agencies in Australia (Denham & Gregson, 1984, Denham & Gregson, 1985, Gregson & Denham, 1986, Gregson & Denham, 1987, McCue, 1988, and McCue 1989). Their purposes are to aid the study of seismic risk and provide background information for scientists and the general public.

The report comprises five main sections: 'Australian earthquakes', which contains a summary of the 1986 seismicity and brief descriptions of the more important earthquakes, 'Accelerograph data' contains the results of the accelerograph network, 'Network operations', gives details of the seismographs that operated in Australia during 1986, 'Principal world earthquakes, 1986' lists the largest and most damaging earthquakes that took place during 1986, and 'Monitoring nuclear explosions' describes the operation of the Nuclear Monitoring Group, BMR and lists underground nuclear tests.

In the report we refer to magnitudes of earthquakes and intensities caused by earthquakes. These terms are defined below.

Magnitudes

The magnitude (M) of an earthquake is a measure of its size, and is related to the energy (E) released at its focus. The magnitude scale is logarithmic, thus a magnitude 6 earthquake produces ground amplitudes 10 times as large, and an energy release about 30 times as large, as a magnitude 5 earthquake.

A rule of thumb relation between magnitude and energy (in joules) is

$$\log E = 4.8 + 1.5M$$

A shock of magnitude 2 is the smallest normally felt by humans, and earthquakes of magnitude 5 or more can cause major damage if they are shallow and close to buildings. The following magnitude scales are in common use.

Richter magnitude (ML)

This scale was defined by Richter (1958, 340)

$$ML = \log A - \log A_0$$

where A is the maximum trace amplitude (zero to peak) in millimetres on a standard Wood-Anderson seismogram and log $A_{\rm o}$ is a standard value given as a function of distance (0-600 km). Richter's reference earthquake of ML 3.0 produces a trace amplitude of 1 mm, 100 km from the epicentre.

If standard Wood-Anderson instruments (Anderson & Wood, 1925) are not available, an equivalent Richter magnitude can be determined by correcting for the differences in magnification (see Willmore, 1979, para. 3.1.1).

Surface-wave magnitude (Ms)

The surface-wave magnitude is normally applicable only to shallow earthquakes in the distance range $20-160^{\circ}$, and in the period range $T=20\pm3$ s. When these conditions hold, Ms values are calculated from the IASPEI (1967) formula (McGregor & Ripper, 1976)

$$Ms = \log \frac{A}{T} + 1.66 \log \Delta + 3.3$$

where A is the ground amplitude in micrometres, T is the period in seconds, and Δ the epicentral distance in degrees (see Bath, 1981).

Body-wave magnitude (mb)

The body wave magnitude scale was developed for earthquakes beyond the range of ML and deep enough or small enough that no significant surface waves were produced. The scale is a poor measure of energy release or seismic moment above magnitude 6.5.

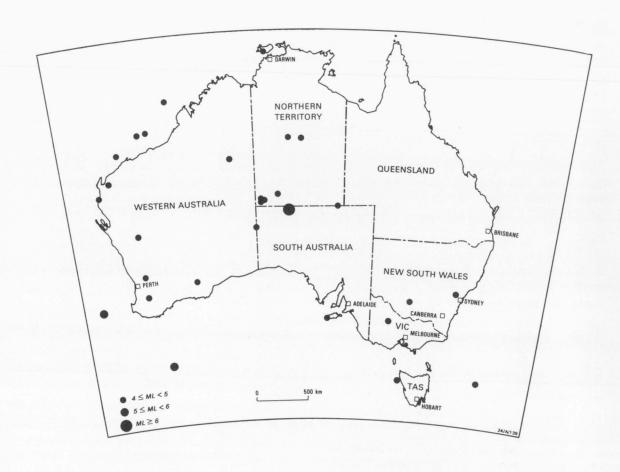


Fig. 1. Australian region earthquakes, magnitude 4 or greater, 1986

The equation derived by Gutenberg (1945) is given by

$$mb = \log \frac{A}{T} + Q (\Delta, h)$$

where A is the maximum mean-to-peak ground amplitude in microns of the P, PP, or S-wave trains, T the corresponding wave-period (seconds), and $Q(\Delta, h)$ a depth/distance factor (Richter, 1958, 688-9).

Duration magnitude (MD)

This scale is equivalent to ML and is related to the duration (t) of the seismogram coda measured in seconds from the Parrival

$$MD = a \log t + b \Delta + c$$

where Δ is the epicentral distance, and a, b, and c are constants for a particular recording station.

Seismic moment magnitude (Mw)

This magnitude scale was proposed by Kanamori (1978)

$$Mw = \frac{\log M_{\rm o}}{1.5} - 6.0$$

where M_o is the seismic moment (in Nm) and defined as

$$Mo = \mu AD$$

where μ is the rigidity, A the surface area displaced, and D the average displacement on that surface.

Magnitude from isoseismals

In some cases where reliable magnitudes cannot be determined instrumentally (from seismograms), it is possible to calculate magnitudes from macroseismic data, using McCue's (1980) formula

$$M(Rp) = 1.01 \ln(Rp) + 0.13$$

where Rp is the radius of perceptibility (in kilometres) of the MM(III) isoseismal. M(Rp) is equivalent to ML below magnitude 6 and Ms at magnitude 6 and above. Magnitudes found by this method should be treated as approximate only, and may be revised as a result of further research. Further information on magnitudes is available in McGregor & Ripper (1976), Båth (1981), and Denham (1982).

Intensity

The intensity of an earthquake is determined from its effects on people, buildings, and the Earth's surface. In this report we use the Modified Mercalli scale (MM) as presented by Eiby (1966) for New Zealand conditions and listed in the Appendix. The MM scale is essentially an assessment of how severely the earthquake was felt and what damage was caused at a particular place. Some earthquakes are large enough to be felt over a wide area, and an isoseismal map can then be prepared. These maps indicate in detail the extent of the shaking. They are prepared mainly from information compiled from questionnaire canvasses, newspaper reports, and personal interviews and inspections. Isoseismal maps for many pre-1984 earthquakes have been collated in Everingham & others (1982) and Rynn & others (1987). A third atlas is in preparation (McCue, in prep.).

(DAVID DENHAM, PETER GREGSON & KEVIN McCUE)

AUSTRALIAN REGION EARTHQUAKES, 1986

Table 1 lists the parameters of all 148 earthquakes of ML 3.0 or greater that were detected in the Australian region in 1986. The largest occurred on the 30 March at Marryat Creek, SA. It had a magnitude of ML 6.0. Three earthquakes of ML 5 or greater and 31 of ML 4 or greater were recorded during the year. This compares with the annual average of 3.7 for ML 5 or greater earthquakes since 1960 and 23 for ML 4 or greater earthquakes since 1980. For these periods all earthquakes in the stated magnitude ranges should have been recorded.

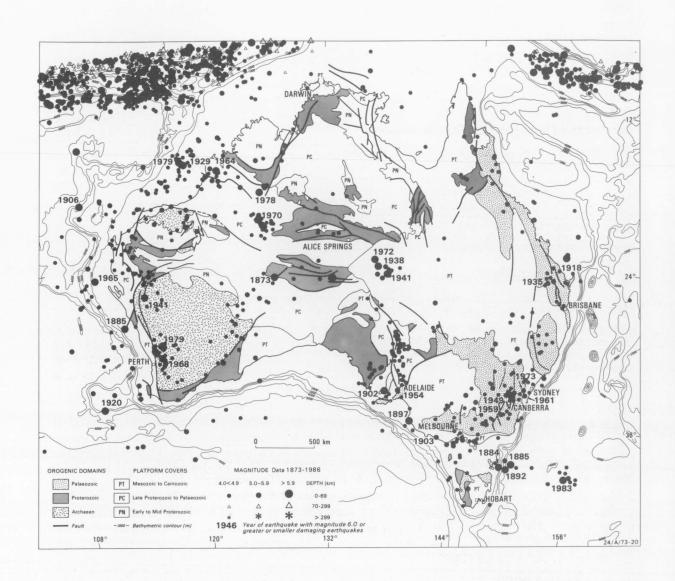


Fig. 2. Australian region earthquakes, magnitude 4 or greater, 1873-1986

Figure 1 shows earthquakes of magnitude ML 4 or greater in the Australian region during 1986. Figure 2 shows the epicentres of earthquakes for magnitude 4 or greater for the period 1873-1986. Earthquakes of magnitude ML 6 or greater in the period 1873-1986 are listed in Table 2.

For a comparison of seismic activity by State, epicentres of earthquakes exceeding ML 2.4 are plotted in Figures 3 to 5 and 7 to 10, though coverage down to this magnitude is probably complete only in Tasmania, Victoria, southeastern New South Wales and the Australian Capital Territory, southwestern Western Australia and southeastern South Australia.

Western Australia (Fig. 3)

Western Australia continued to be one of the most seismically active States. Two of the four earth-quakes of magnitude ML 5 or more occurred off the southwest coast. Eleven others of ML 4 or more were scattered throughout the State and offshore.

The Southwest Seismic Zone east of Perth remained one of the most active areas with 80 earthquakes of magnitude ML 2 or greater located. The level of activity was similar to that of 1985. The Cadoux region was the most active area as it has been since the 1979 earthquake of magnitude ML 6.2 (Gregson & others, 1979). The rest of the activity was spread throughout the zone from Denmark in the south to Wongan Hills in the north and Merredin in the east.

Thirty-four earthquakes were located offshore, most within the 200 m isobath.

Northern Territory (Fig. 4)

Fifteen epicentres were located in the Northern Territory, eight of which had magnitudes of ML 4 or greater. All but three of the earthquakes were widely scattered across the southwest of the Territory. The largest earthquake, magnitude ML 4.5, occurred on 17 August on Melville Island, 100 km northwest of Darwin. Two earthquakes of magnitude ML 4 occurred within 100 km of Tennant Creek to the west. Some of the earthquakes in the southwest may be in the same zone as the Marryat Creek earthquake in South Australia (see below).

South Australia (Fig. 5)

The largest Australian earthquake to occur during 1986 was located at Marryat Creek, just south of the Northern Territory border and 500 km south of Alice Springs. The magnitude (Ms) was 5.8. Only one poorly located earthquake has been recorded within 100 km of the epicentre in the past 30 years. The earthquake produced a 13 km long arcuate thrust fault, convex to the northwest with a maximum throw of 0.6 metres. The fault scarp was mapped by AISLIG and is shown in Figure 6. Details of a fault plane solution are given in Table 4. Further details of the earthquake are given by Barlow & others (1986) and McCue & others (1987).

Most earthquakes outside the Marryat Creek area occurred in the Adelaide Geosyncline Seismic Zone, where activity was about average. No earthquakes were located within 200 km of Adelaide. A magnitude ML 4.6 earthquake occurred on 16 December, located 30 km offshore from the western end of Kangaroo Island. It was strongly felt underground at Kelly Hill caves (Figure 19).

Victoria (Fig. 7)

Only one earthquake exceeded magnitude 3.9 in Victoria, on 24 April, in the northwest of the State. Activity was about average for Victoria in 1986 and most was in the Highlands northeast of Melbourne. No earthquake warranted distribution of intensity questionnaires.

New South Wales (Fig. 8)

All the larger earthquakes in NSW were in the southeastern part of the State except for a single small event in the extreme northwest. The largest earthquake during the year, near Upper Colo on 20 February, was felt throughout the Sydney metropolitan area. The intensity in the epicentral area did not exceed MMIV and there was no structural damage. Within a few days of the earthquake, water was

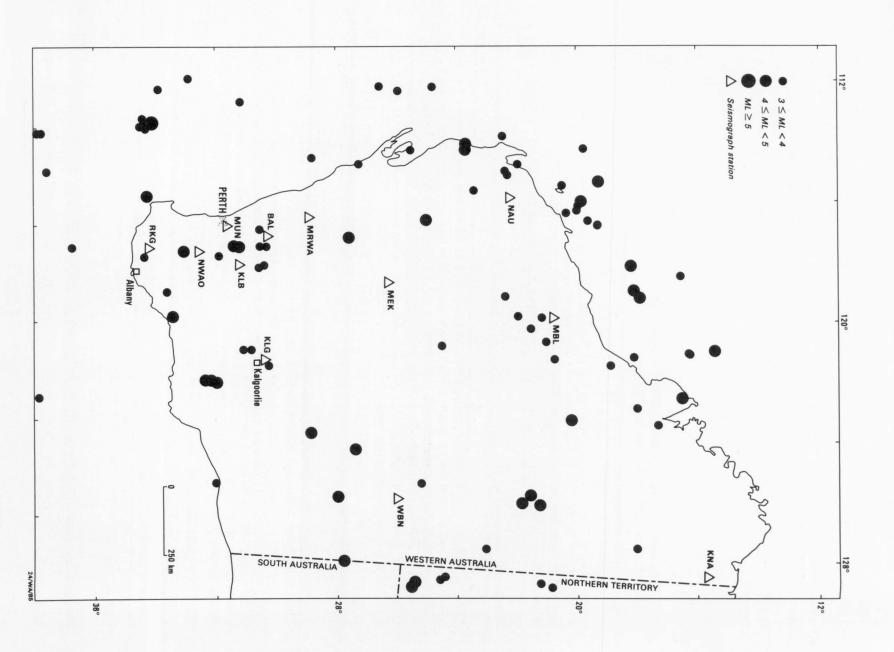


Fig. 3. Western Australian earthquakes, magnitude 2.5 or greater, 1986

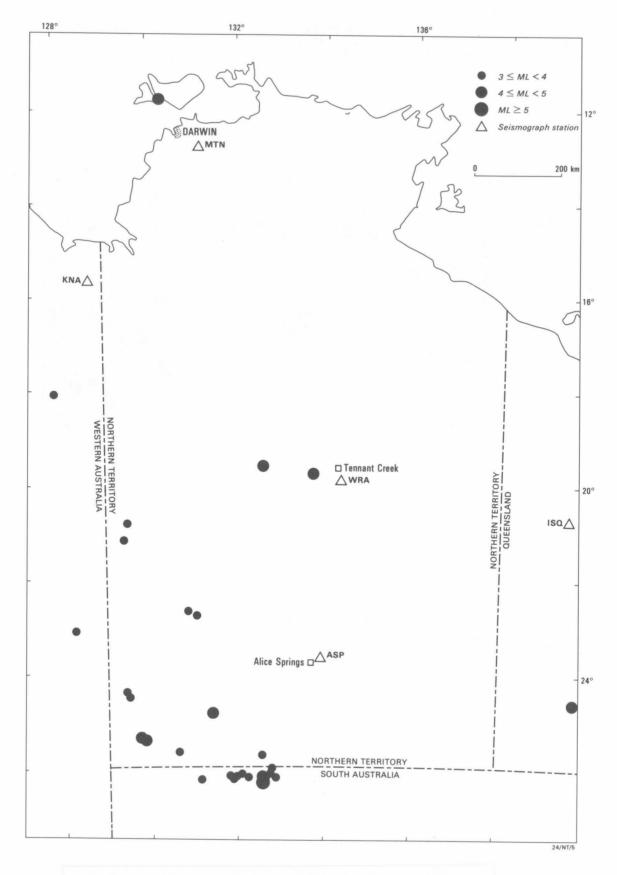


Fig. 4. Northern Territory earthquakes, magnitude 2.5 or greater, 1986 6

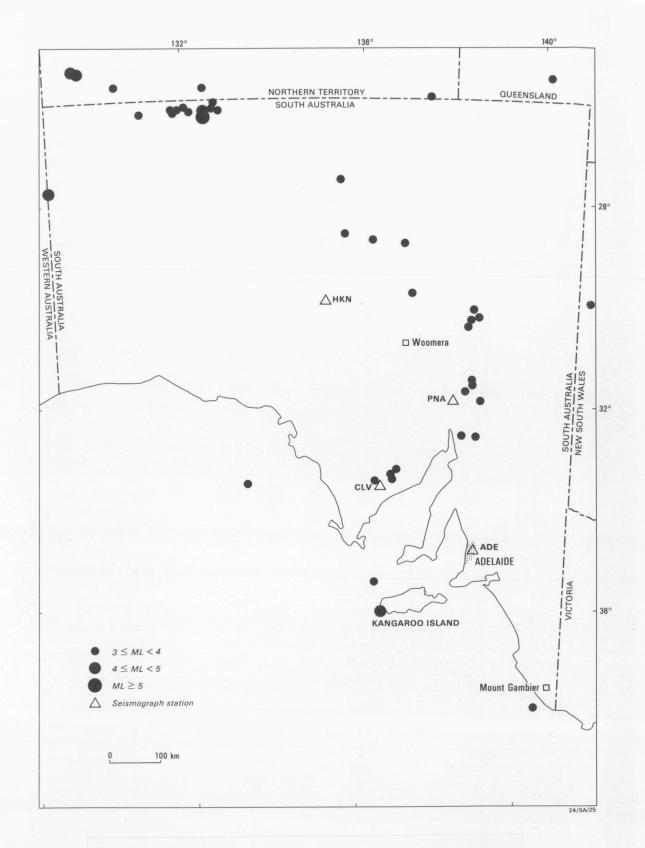


Fig. 5. South Australian earthquakes, magnitude 2.5 or greater, 1986

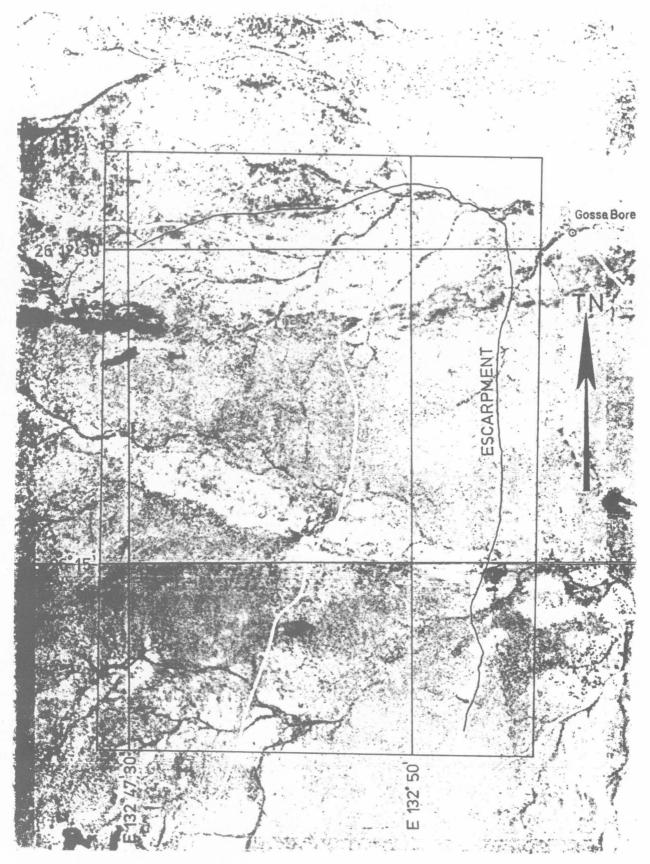


Fig. 6. Marryat Creek NT earthquake fault scarp (AUSLIG mapped the scarp and provided the figure which is reproduced with permission)

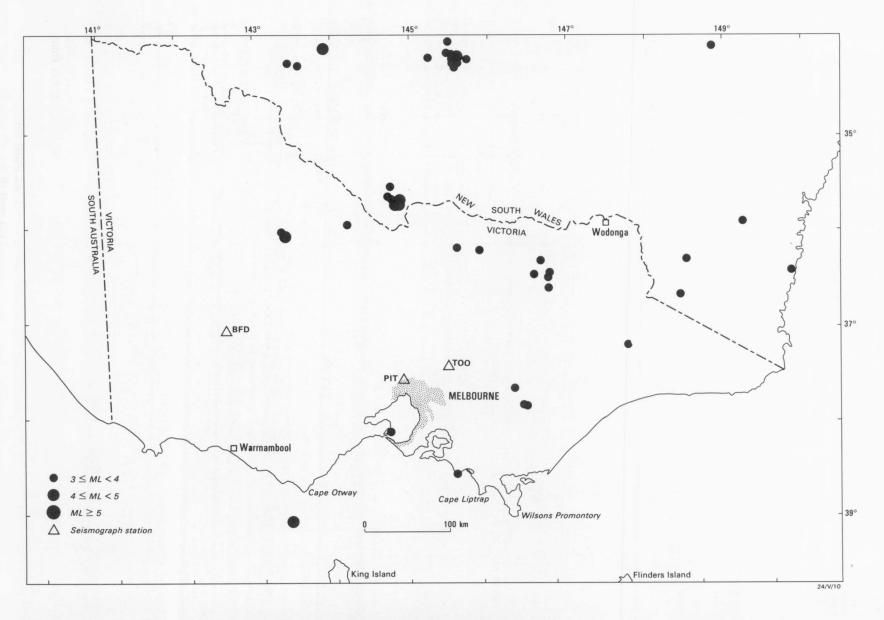


Fig. 7. Victorian earthquakes, magnitude 2.5 or greater, 1986

observed emerging from an old investigation drill hole below the embankment of Windamere Dam near Mudgee. This is attributed to shaking during the earthquake causing some foundation settlement in a highly fractured, fine grained conglomerate underlying the dam.

There were three swarms of earthquakes in NSW, in southeastern NSW north of Echuca on the Murray River in April and June/July, the other north of Hay on 22 September. All the events were magnitude 3.0 to 4.0 (Table 1) and in neither case did a mainshock or significantly larger earthquake occur.

The largest earthquake in the Dalton/Gunning region occurred on 7 January, it had a magnitude of ML 3.1 which is the modal magnitude for that area.

Tasmania (Fig. 9)

Only three earthquakes were recorded in Tasmania as well as one off the east coast of King Island. The largest, magnitude ML 4.1, was located 10 km offshore from Temma, on the west coast. This was the largest Tasmanian earthquake in the 1980s compared with the expected 10 year earthquake of magnitude 4.7. It was felt widely enough that an isoseismal map could be drawn (Fig. 14).

Queensland (Fig. 10)

Activity in Queensland was similar to that of 1985. Five earthquakes of magnitude greater than 2.5 were located. The two largest were magnitude 3.2 on 8 January and 27 June. An isoseismal map for the former is referred to below (Fig. 11).

(KEVIN McCUE, PETER GREGSON & GARY GIBSON)

ISOSEISMAL MAPS

Isoseismal maps based on the Modified Mercalli scale were prepared for nine earthquakes, four in Western Australia, two in South Australia and one each in Queensland, New South Wales and Tasmania.

Somerset Dam, Queensland (Fig. 11)

An earthquake of magnitude ML 3.2 occurred at 19:55 local time (09:55 UTC) on 8 January near Somerset Dam in southeastern Queensland. The earthquake occurred only 5 km from a seismograph in the Wivenhoe Dam network. Six more seismographs within 55 km ensured an accurate location.

Staff of the Queensland Department of Mines conducted an isoseismal survey of the affected area two days after the event. Over 70 intensity reports were used to draw the isoseismal map, which indicates a radius of perceptibility of 20 km. There were some unconfirmed reports of damage to buildings.

Two aftershocks (ML 1.0 and -0.6) occurred within two days of the main shock, the larger of which was felt by some residents of Somerset Dam. Another (ML 0.2) occurred on 28 January.

Augusta, WA (Fig. 12)

Residents in the southwestern corner of Western Australia experienced a magnitude ML 3.8 earthquake on 15 January at 06:11 (22:11 UTC). The epicentre was 24 km southwest of Augusta (Gregson, in prep.)

The isoseismal map was prepared from about 50 questionnaires. The response from the northeast of Augusta was not good, probably due to the relatively low population and the early hour of the morning. The maximum intensity experienced was MM V at Karridale, 30 km from the epicentre. Intensity MM IV was experienced within a radius of 40 km, and the earthquake was felt at Busselton, 100 km from the epicentre.

Several other earthquakes that have occurred in the area and have been felt are listed below. All except the 1978 earthquake occurred offshore in two areas, one about 300 km west of the coast and the second about 70 km west near the 200 m bathymetric line. The earthquake of 15 January 1986 was in neither area and was the closest ever recorded to the coast.

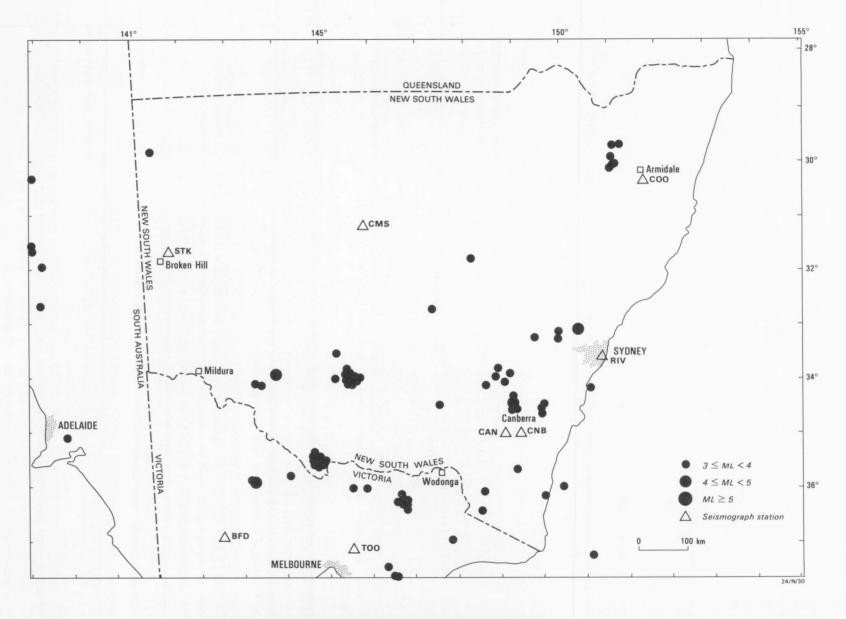


Fig. 8. New South Wales and ACT earthquakes, magnitude 2.5 or greater, 1986

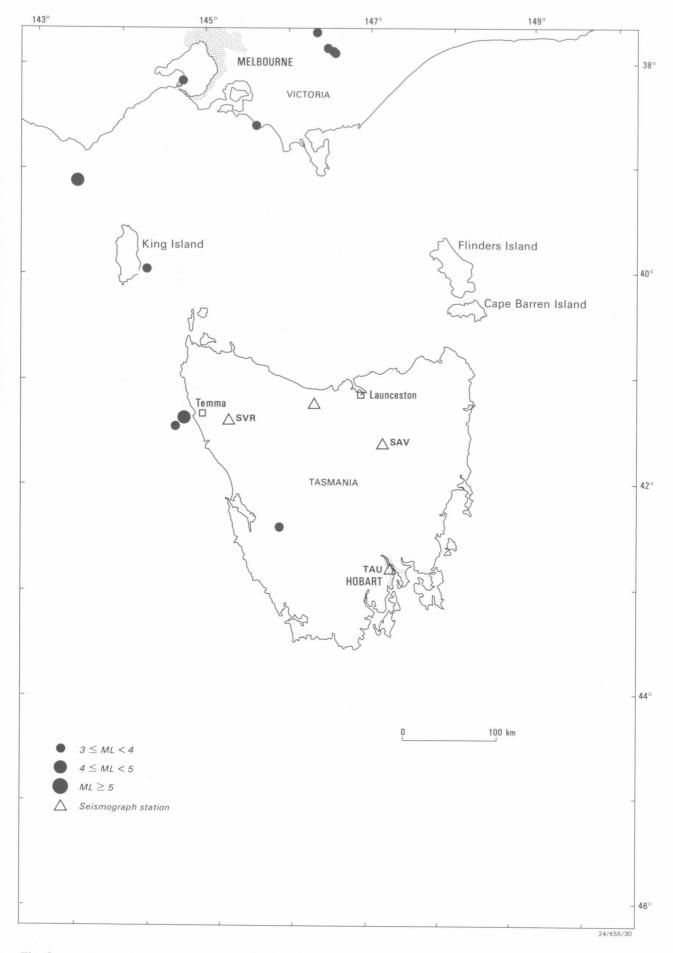


Fig. 9. Tasmanian earthquakes, magnitude 2.5 or greater, 1986

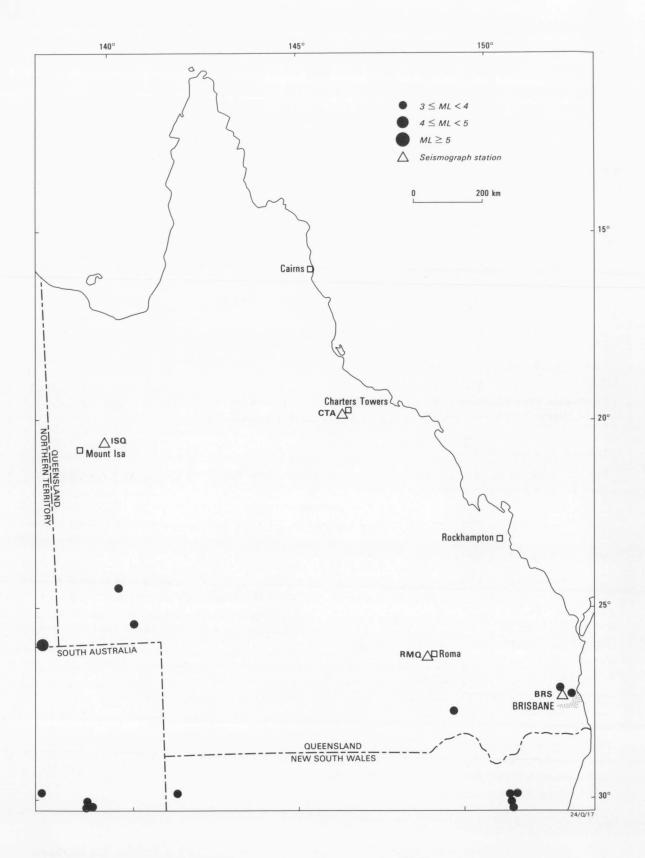


Fig. 10. Queensland earthquakes, magnitude 2.5 or greater, 1986

1920 Feb 8	0524UTC	35 S	111 E	Ms 6.2	(Everingham, 1968)
1946 Apr 19	2113UTC	33.5 S	114.5E	ML 5.7	Felt at Yallingup and Busselton
					(Everingham & Tilbury, 1972)
1959 Oct 3	1207UTC	34.5 S	114.5 E	ML 4.2	Felt Busselton, Yallingup, Margaret
					River, Bunbury, C. Naturaliste and
					C. Leeuwin (Everingham, 1968)
1961 Jun 12	1800UTC	3.2 S	114.5 E	ML 4.1	Felt (Everingham, 1968)
1978 Jun 9	1231UTC	33.93 S	115.20 E	ML 3.0	Isoseismal map prepared
					(Everingham & others, 1982)

Upper Colo, NSW (Fig. 13)

On the morning of 21 February at 8:44 local time (21:44 UTC on 20 Feb) an earthquake occurred which was felt widely throughout the Sydney region. The magnitude of the earthquake was 4.0 on the Richter scale. Its epicentre was about 30 km northwest of Richmond, or about 90 km northwest of the Sydney GPO. There were no reports of damage. The earthquake was felt over an area of approximately 25 000 km², from the central coast to Wollongong, and from the eastern suburbs of Sydney to Mudgee in the west. Typical effects were a rumbling and shaking of windows and doors which were quite severe in the epicentral region.

The area northwest of Sydney has not been particularly seismically active in recorded history apart from the August 1919 earthquake of magnitude ML 4.6 near Kurrajong and a shock of magnitude ML 4.3 near Lithgow in February 1985, both of which were felt widely in Sydney.

Temma, Tasmania (Fig. 14)

The earthquake of 16 March, magnitude ML 4.1, was the largest Tasmanian earthquake recorded during the 1980's. It caused minor non-structural damage at Temma on the northwest coast and was felt at Queenstown and Devonport, 200 km away. Staff at the Geology Department, University of Tasmania, distributed the questionnaires which were used by McCue (in prep.) to draw up the isoseismal map.

Marryat Creek, SA (Fig. 15)

On 30 March at 08:54 UTC (18:24 local time) a large earthquake (Ms 5.8) occurred near Marryat Creek by De Rose Hill in the Musgrave Ranges, South Australia. The main shock was followed in the next seven days by five aftershocks which were large enough (magnitude greater than 3) to enable instrumental locations to be made (Table 1). A further 12 unlocatable aftershocks were recorded at the closest seismographic station, at Alice Springs.

Intensity questionnaires were distributed by Flinders University to homesteads and post offices covering a large area of the centre and South Australia (Barlow & others, 1986). Of the 227 questionnaires returned, 88% reported that the earthquake was not felt. Because of the sparsity of the population, damage was minor, being confined to cracked walls in the nearest homesteads at De Rose Hill and Victory Downs. The maximum intensity was MM VI. Several localities, as far away as 150 km, reported effects consistent with intensity MM V. Minor shaking was reported at Alice Springs, 300 km to the north, and Cooper Pedy, 350 km to the south, although towns such as Oodnadatta which were closer to the epicentre experienced no felt effects. There were isolated reports of the earthquake being felt (MM II/III) from places as distant as Olary and Quorn.

Ravensthorpe, WA (Fig. 16)

At 22:57 (14:57 UTC) on 17 May, a small earthquake of magnitude ML 3.5 occurred 21 km southwest of Ravensthorpe near the south coast of Western Australia (Gregson, in prep.)

The majority of the population in the area is almost entirely confined to the two towns Ravensthorpe and Hopetoun with farms mostly along the highway east and west of Ravensthorpe. Questionnaires distributed through the local high school, supplemented by information obtained through phone calls were used to prepare the isoseismal map.

The maximum intensity reported was MM V at Hopetoun with the boundary between MM III and IV along the east-west highway about 15 to 30 km from the epicentre.

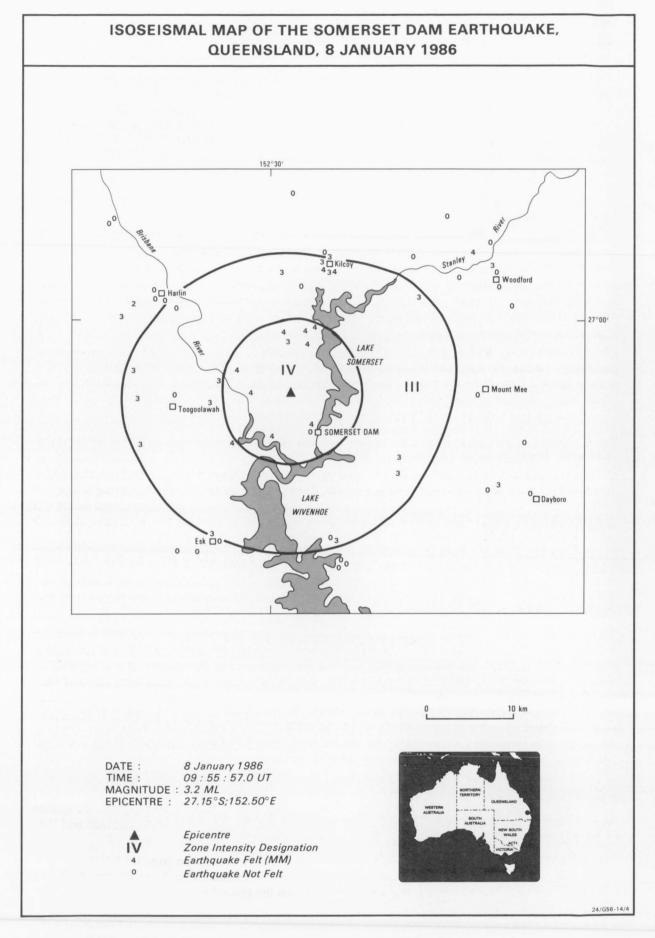


Fig. 11. Isoseismal map, Somerset Dam earthquake, Queensland, 8 January 1986

Arthur River, WA (Fig. 17)

At 12:41 UTC (20:41 local time) on 17 May, an earthquake of magnitude ML 4.2 occurred near Wagin, 200 km south-east of Perth in the South-West Seismic Zone of Western Australia (Gregson, in prep.)

Earthquake questionnaire forms were distributed over an area bounded by Narrogin, Darkan, Kojonup and Dumbleyung. An officer from the observatory then visited the area 10 days after the event, and interviewed approximately 50 families in 2 days. In almost all cases, a significant noise was reported with the tremor, and in about half of those cases people reported hearing it although they could not recall feeling the tremors. Descriptions likened it to an explosion or thunderclap in localities near the epicentre, and to rumbling like a truck or a roar from a chimney in other localities.

Small pockets of intensity MM V were experienced near the epicentre; the MM V isoseismal was about 25 km in radius. The earthquake was felt up to 70 km from the epicentre.

Meckering, WA (Fig. 18)

At 21:54 WST (13:54 UTC) on 1 September, an earthquake of magnitude ML 4.1 occurred 5 km east-southeast of Meckering in Western Australia. It was the most severe earthquake in the area since 29 October 1976, and frightened many residents who recalled the magnitude ML 6.9 of 14 October 1968 (Everingham & others, 1982).

The earthquake was felt over 70 000 km². The maximum intensity reported was MM VI near Meckering in the vicinity of the epicentre. Plaster cracked and small objects fell from shelves. Effects consistent with intensity MM 5 were reported up to 50 km from the epicentre. The MM IV isoseismal had an average radius of 110 km. There were isolated reports of the earthquake being felt at Southern Cross, 220 km east of the epicentre. Numerous reports warranting intensity V were received from the Perth Hills area east of the Darling Fault, 100 km west of the epicentre. Very few felt reports were received from the Perth area west of the fault (Gregson, in prep.)

Kangaroo Island, SA (Fig. 19)

At about 15:00 local time on 16 December, a magnitude 4.6 earthquake occurred approximately 30 km southwest of Cape du Couedic, Kangaroo Island. There were isolated reports of it being felt as far away as Adelaide. One group near the epicentre was on a guided tour of Kelly Hill Caves (southwest Kangaroo Island). No damage to stalactites was noticed, but after 14 to 15 seconds of shaking their tour was abruptly terminated and they made a hasty exit.

A portable seismograph was installed in Kelly Hill Caves in February 1988. This has detected 3 small, close events which suggest that the 1986 epicentre may have been much closer to Cape du Couedic.

(PETER GREGSON, KEVIN McCUE, RUSSELL CUTHBERTSON & DAVID LOVE)

NETWORK OPERATIONS

Table 3 gives the co-ordinates of seismograph stations and the types of seismographs in operation during the year (Fig. 20). The network includes two arrrays at Alice Springs and Tennant Creek in the Northern Territory, five Worldwide Standard Seismograph Stations at Adelaide, Charters Towers, Mundaring, Sydney, and Hobart, and two Seismological Research Observatories at Narrogin and Charters Towers. Another ninety-three short period vertical seismographs were in operation throughout Australia. At Mawson in Antarctica, the seismographs included a three-component set of short period recorders and one long period vertical instrument. Two new stations were commissioned, at Glen Eva (GVA) in Queensland and Bell's Track (BEL) in Victoria. Kalgoorlie (KLG) and Meekatharra (MEK) in Western Australia were re-sited to reduce industrial noise. Stations at Mount Graham, Bungobine and Glendon Crossing in Queensland, Mount Gambier in South Australia, and Boolarra South and Yinnar South in Victoria were closed during the year.

Regional epicentres (Table 1) were located by the main institutions listed on page iii. BMR maintains the definitive Australian earthquake datafile and provides basic earthquake data for the Australian region on request to scientists, insurance companies, engineers, and the general public.

(PETER GREGSON & KEVIN McCUE)

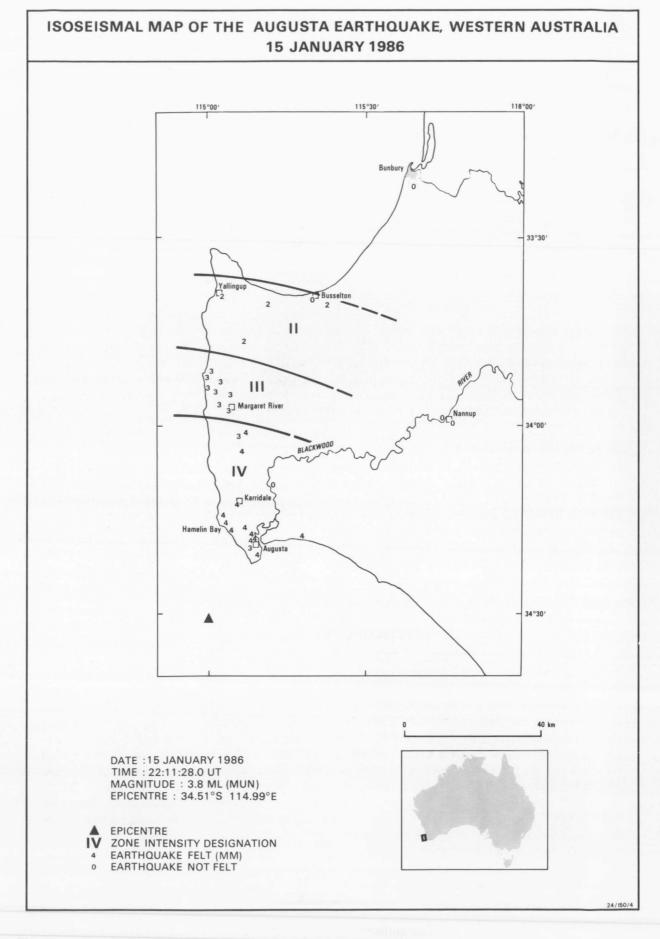


Fig. 12. Isoseismal map, Augusta earthquake, WA, 15 January 1986

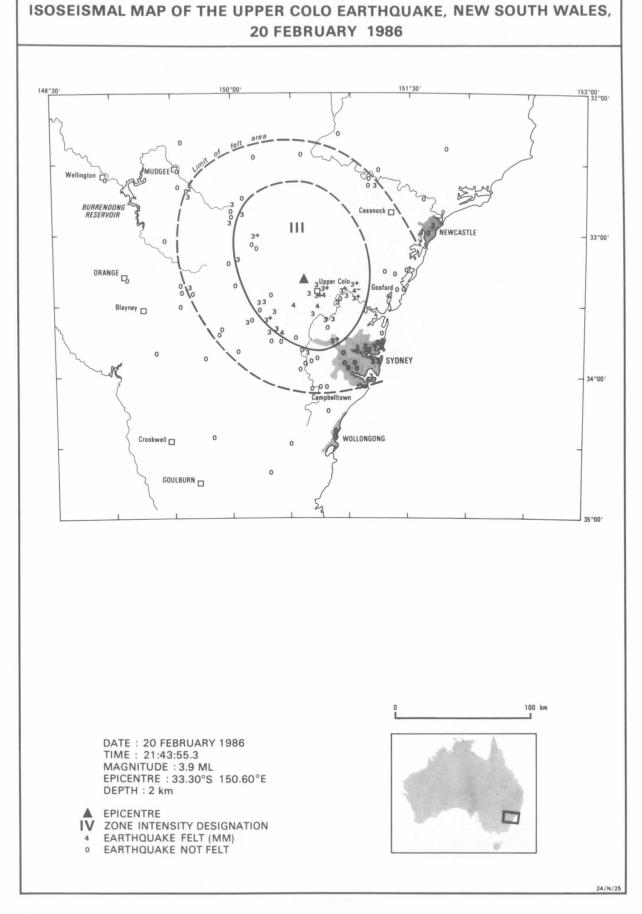


Fig. 13. Isoseismal map, Upper Colo earthquake, NSW, 20 February 1986

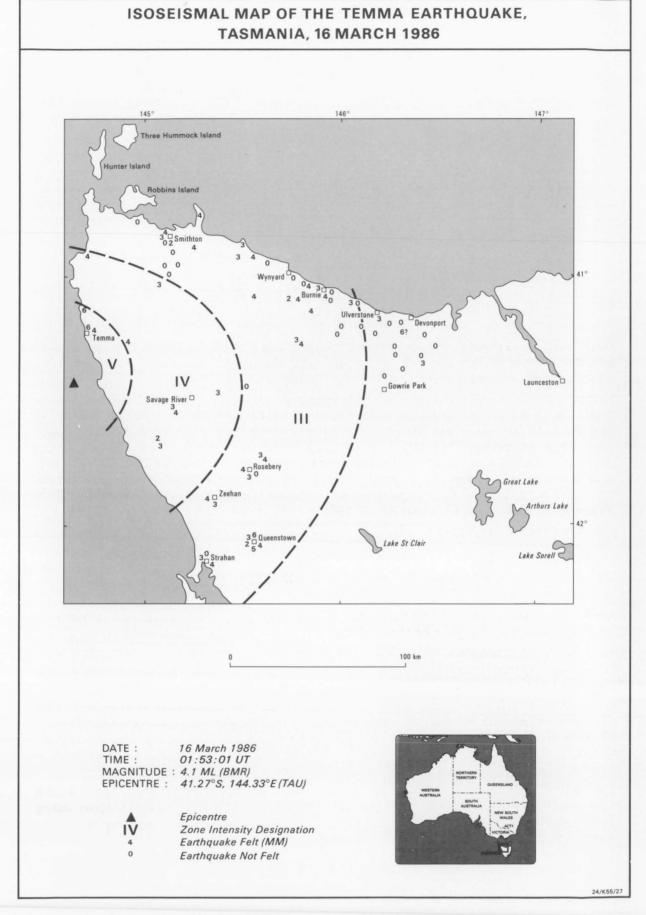


Fig. 14. Isoseismal map, Temma earthquake, Tasmania, 16 March 1986

ACCELEROGRAPH DATA

An accelerograph is used to record the strong ground motion near an earthquake source where a seismograph, being much more sensitive, would be saturated. The records or accelerograms are useful to both the seismologist and earthquake engineer. Accelerometers may be permanently installed in a building or engineered structure, such as a dam or tower, to record its response during an earthquake, or set up at temporary field sites wherever the seismicity is currently active. Table 5 lists the details of accelerographs in operation during 1986.

Fifty-five accelerograms were recorded in the Cadoux area in southwestern WA and thirty-five in the Dalton/Gunning NSW seismic zone. The Seismological Centre at Phillip Institute of Technology, Victoria recorded 24 accelerograms, 12 of them at Thomson Dam. The largest acceleration recorded was in the Dalton area on 7 January where a magnitude ML 3.1 earthquake resulted in a peak ground acceleration of 1.15 m.s ⁻² at a distance of 4 km. The maximum recorded accelerations in the Cadoux area were 0.05 m.s ⁻². Table 5 lists parameters read from the accelerograms and the causative earthquakes. Figures 21 and 22 are examples of accelerograms recorded at Cadoux.

No accelerograms were recorded in Tasmania, South Australia or Queensland during 1986.

(KEVIN McCUE, BRIAN GAULL, GARY GIBSON & VAUGHAN WESSON)

PRINCIPAL WORLD EARTHQUAKES, 1986

Table 7 lists all earthquakes of magnitude 7.0 or greater, and damaging earthquakes of lesser magnitude, that occurred throughout the world in 1986. Figure 23 shows the locations of these earthquakes and the numbers of casualties.

Worldwide deaths in 1986 were more than 1090, compared with 9838 and 73 in 1985 and 1984 respectively. The most disastrous earthquake was in El Salvador on 10 October where more than 1000 people were killed, 10 000 injured and 200 000 left homeless. Severe damage occured in the San Salvador region. The magnitude of this earthquake, Ms 5.4, was relatively low. By comparison the largest earthquake, which occured on 20 October in the Kermadec Island region, had a magnitude of Ms 8.3. Apart from objects being knocked off shelves on Raoul Island, damage was very minor. These data are based on 'Earthquake Data Reports' published by the United States Geological Survey and the SEAN Bulletin of the Smithsonian Institution (SEAN, 1984).

(PETER GREGSON & KEVIN McCUE)

MONITORING NUCLEAR EXPLOSIONS

Ken Muirhead was recruited to head the Nuclear Monitoring Group and take over the role of Australian representative at the meetings of the Group of Scientific Experts (GSE) at Geneva.

The Australian Seismological Centre (ASC) was created in 1986, with the transfer of the Earthquake Seismology (HQ section) and Nuclear Monitoring Groups from the BMR building to a separate building (Jamieson House) in Canberra.

A new SUN computer and another donated by the United States Defence Advanced Research Projects Agency (DARPA) were installed and a Telecom landline established to Alice Springs to enable direct telemetry of the Joint Geological and Geophysical Research Station (JGGRS) array data to the ASC Canberra. Array processing software was provided by the Center for Seismic Studies under contract to DARPA.

Table 8 lists the 23 nuclear explosions detected during 1986, compared with 30 in 1985, 15 by the USA and 8 by France. The USSR maintained a self-imposed moratorium on nuclear weapons testing throughout 1986.

(PETER GREGSON & KEVIN McCUE)

Fig. 15. Isoseismal map, Marryat Creek earthquake, SA, 30 March 1986

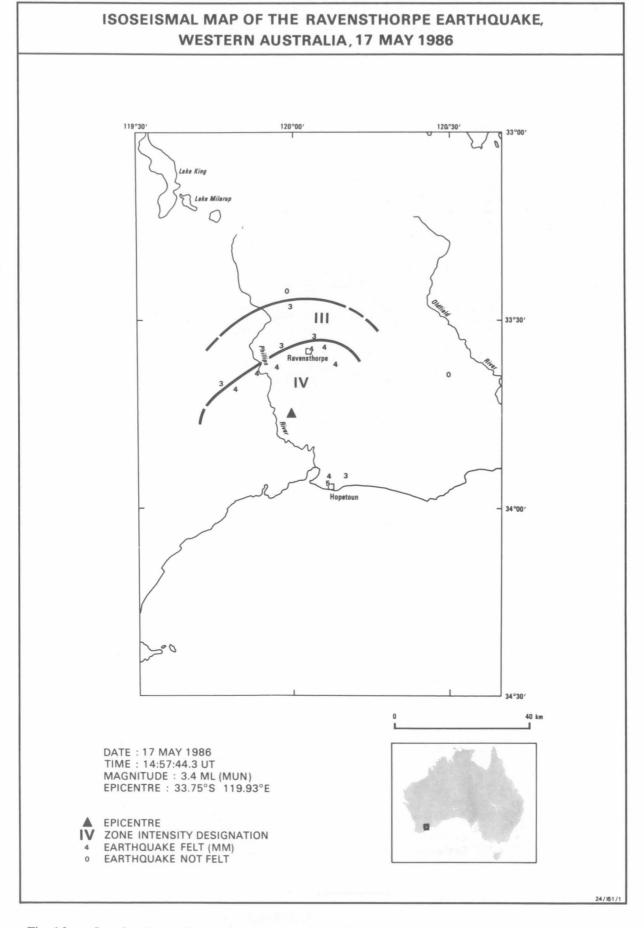


Fig. 16. Isoseismal map, Ravensthorpe earthquake, WA, 17 May 1986

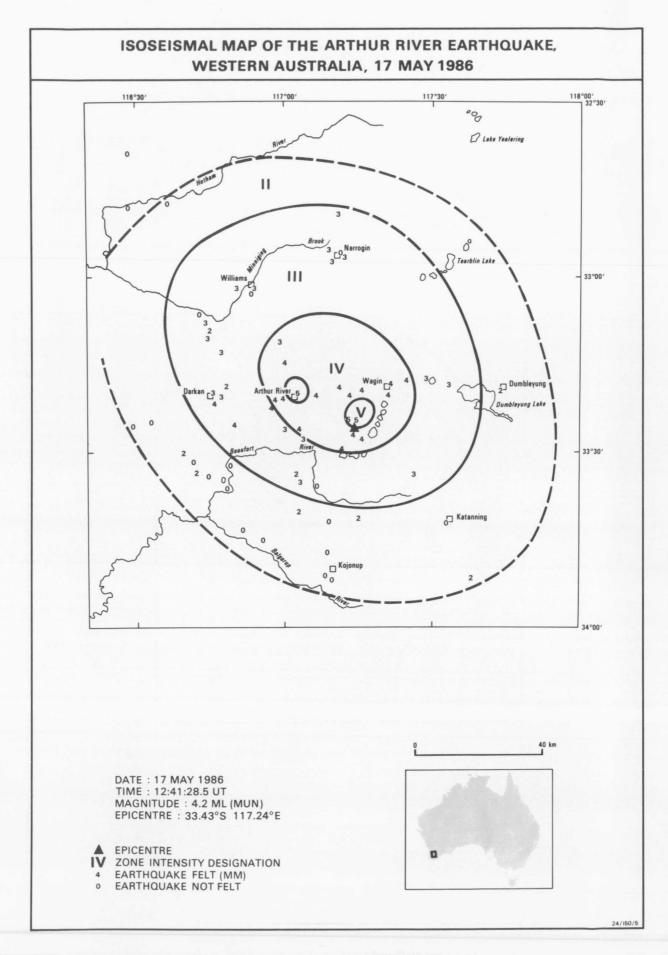


Fig. 17. Isoseismal map, Arthur River earthquake, WA, 17 May 1986

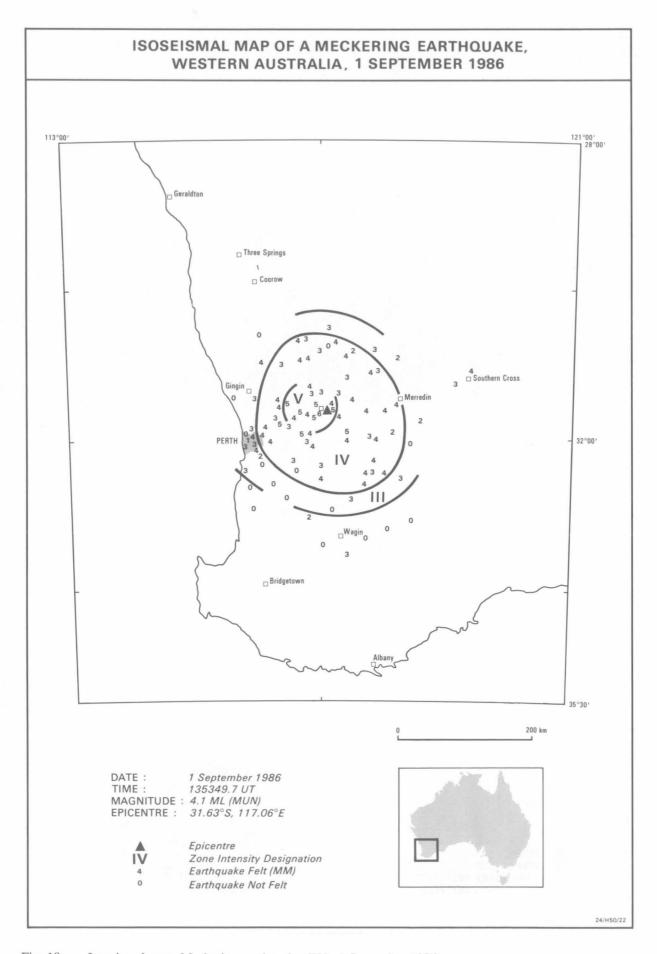


Fig. 18. Isoseismal map, Meckering earthquake, WA, 1 September 1986

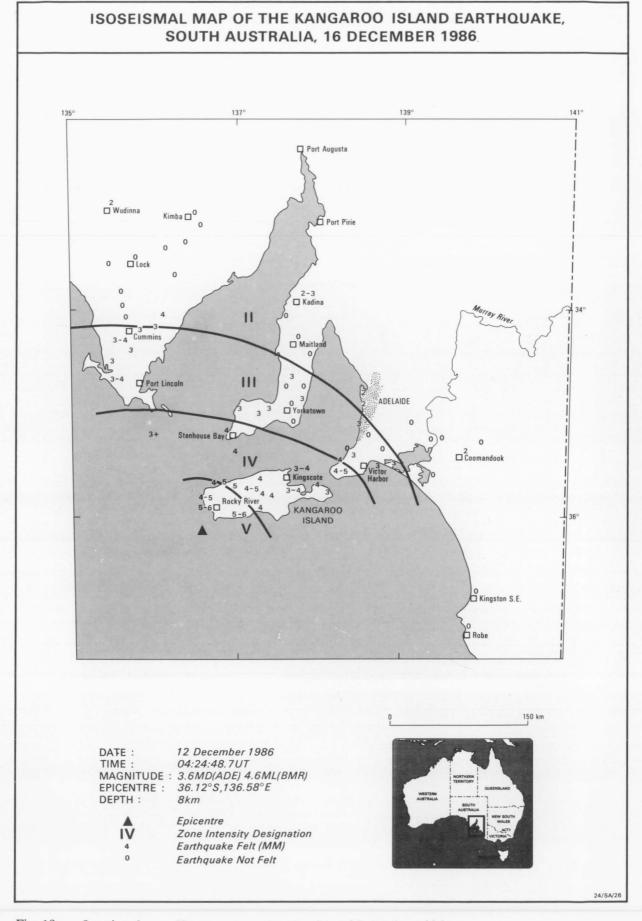


Fig. 19. Isoseismal map, Kangaroo Is earthquake, SA, 16 December 1986

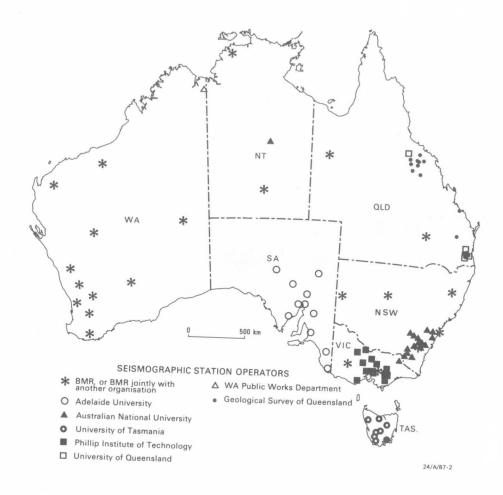


Fig. 20. Australian seismographic stations, 1986

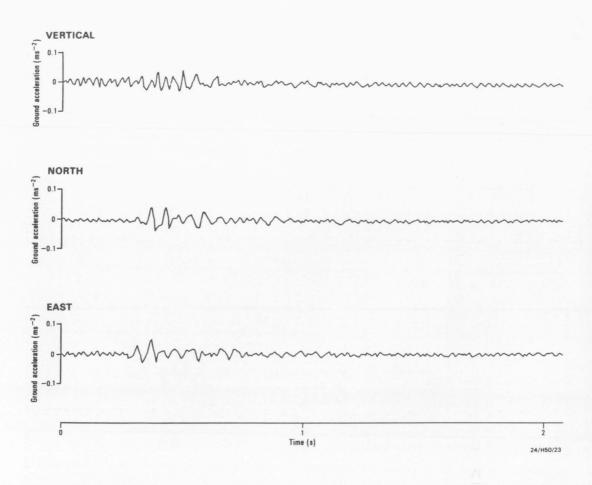


Fig. 21. Accelerogram recorded at Cadoux, WA, 6 February 1986

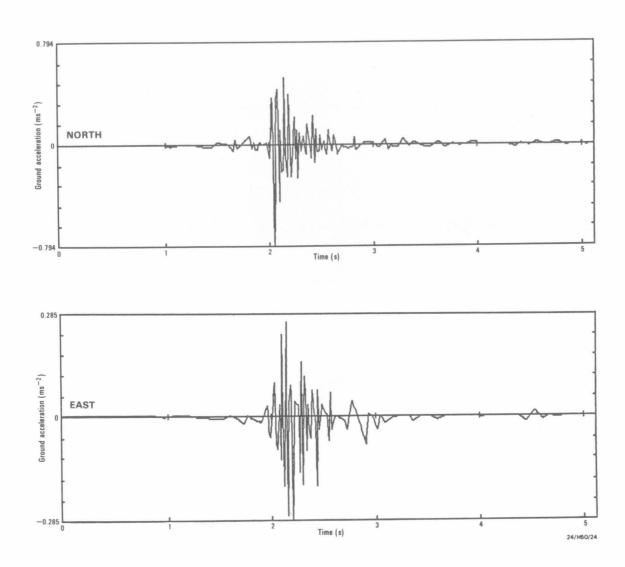


Fig. 22. Accelerogram recorded at Cadoux, WA, 29 September 1986

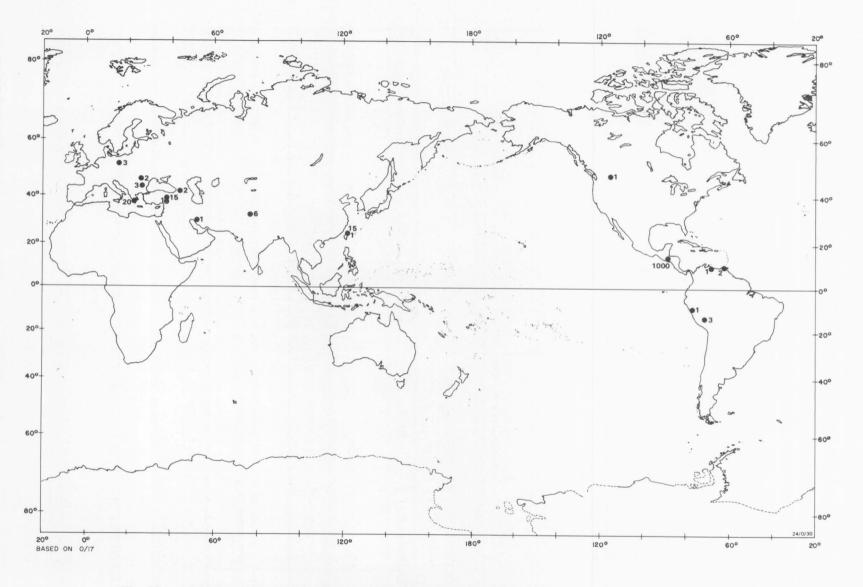


Fig. 23. Principal World earthquakes, 1986 (from USGS Monthly Listing)

REFERENCES

- ANDERSON, J.A. & WOOD, H.O., 1925 Description and theory of the torsion seismometer. Bulletin of the Seismological Society of America, 17, 1-72.
- BARLOW, B., DENHAM, D., JONES, T., McCUE, K., GIBSON, G. & GREENHALGH, S., 1986 The Musgrave Ranges earthquake of March 30, 1986. *Transactions of the Royal Society of South Australia*, 109, 187-189.
- BÅTH, M., 1981 Earthquake magnitude recent research and current trends. *Earth Science Reviews*, 17, 315-398.
- DENHAM, D., 1982 Proceedings of the workshop on Australian Earthquake magnitude scales, BMR, Canberra, 21 May 1982. Bureau of Mineral Resources, Australia, Record 1982/29.
- DENHAM, D., & GREGSON, P.J., 1984 Australian Seismological Report, 1980. Bureau of Mineral Resources, Australia, Report 252.
- DENHAM, D., & GREGSON, P.J., 1985 Australian Seismological Report, 1981. Bureau of Mineral Resources, Australia, Report 259.
- EIBY, G.A., 1966 The Modified Mercalli scale of earthquake intensity and its use in New Zealand. New Zealand Journal of Geology and Geophysics, 9, 122-129.
- EVERINGHAM, I.B., 1968 Seismicity of Western Australia. Bureau of Mineral Resources, Australia, Report 132.
- EVERINGHAM, I.B., & TILBURY, L., 1972 Information on Western Australian Earthquakes 1849-1960. Journal of the Royal Society of Western Australia, 55, 90-96.
- EVERINGHAM, I.B., McEWIN, A.J., & DENHAM, D., 1982 Atlas of Isoseismal Maps of Australian Earthquakes. Bureau of Mineral Resources, Australia, Bulletin 214.
- EVERINGHAM, I.B., DENHAM, D., & GREENHALGH, S., 1987 Surface-wave magnitudes of some early Australian earthquakes. *BMR Journal of Australian Geology & Geophysics*, 10, 253-259.
- GREGSON, P.J. (in prep.) Mundaring Geophysical Observatory Annual Report, 1986. *Bureau Mineral Resources, Australia, Record.*
- GREGSON, P.J., & DENHAM, D., 1986 Australian Seismological Report, 1982. Bureau of Mineral Resources, Australia, Report 273.
- GREGSON, P.J., & DENHAM, D., 1987 Australian Seismological Report, 1983. Bureau of Mineral Resources, Australia, Report 280.
- GREGSON, P.J., PAULL, E.P., & GAULL, B.A., 1979 Preliminary report of the Cadoux earthquake, 2 June 1979. Bureau of Mineral Resources, Australia, Report 215.
- GREGSON, P.J., PAULL, E.P., DENT, V.F., WOAD, G., & PAGE, B.J., 1985 Mundaring Geophysical Observatory, twenty-fifth year, 1983. Bureau of Mineral Resources, Australia, Record 1985/37.
- GUTENBERG, B., 1945 Amplitudes of P, PP and SS, and magnitudes of shallow earthquakes. Bulletin of the Seismological Society of America, 35, 57-69.
- KANAMORI, H., 1978 Quantification of earthquakes. Nature, 271, 411-414.
- McCUE, K.F., 1980 Magnitude of some early earthquakes in Southeastern Australia. Search, 11 (3), 78-80.

- McCUE, K.F., 1988 Australian Seismological Report, 1984. Bureau of Mineral Resources, Australia, Report 284.
- McCUE, K.F., 1989 Australian Seismological Report, 1985. Bureau of Mineral Resources, Australia, Report 285.
- McCUE, K.F., (in prep.) Atlas of isoseismal maps of Australian earthquakes, part 3. Bureau of Mineral Resources, Australia, Bulletin.
- McCUE, K.F., BARLOW, B.C., DENHAM D., JONES, T., GIBSON, G., & MICHAEL-LEIBA, M.O., 1987 Another chip off the old Australian Block. *Eos*, **68** (**26**), 609-612.
- McGREGOR, P.M., & RIPPER, I.D., 1976 Notes on earthquake magnitude scales. Bureau of Mineral Resources, Australia, Record 1976/76.
- RICHTER, C.F., 1958 Elementary Seismology. Freeman & Co., San Francisco.
- RYNN, J.M.W., DENHAM, D., GREENHALGH, S., JONES, T., GREGSON, P.J., McCUE, K.F., & SMITH, R.S., 1987 Atlas of isoseismal maps of Australian earthquakes. *Bureau of Mineral Resources, Australia, Bulletin* 222.
- SEAN, 1984 Scientific Event Alert Network Bulletin, Smithsonian Institution, Washington, DC.
- USGS, 1985 Earthquake Data Reports. United States Geological Survey, Washington, DC.
- WILLMORE, P.L., 1979 Manual of Seismological Observatory Practice. World Data Center for Solid Earth Geophysics, US Department of Commerce, Boulder, Colorado, USA., Report SE-20.

TABLE 1. AUSTRALIAN REGION EARTHQUAKES, 1986: HYPOCENTRAL PARAMETERS

DATA# SOURCE	DATE mo dy	TIME(UT) hrmn sec	LAT° S	LONG° E	DEPTH (km)	MAGNITUDE	N*
MUN	1 2	2133 44.2	34.300	112.040	0	5.3	10
MUN	1 2	2159 42.3	34.500	112.010	5	3.4	4
MUN	1 2	2313 50.5	20.790	115.150	5	3.0	3
MUN	1 3	1333 48.0	34.560	111.950	5	3.3	6
BMR	1 4	0626 18.2	31.625	138.610	6	3.4	10
BMR	1 7	1006 50.0	34.746	149.196	0	3.1	15
BMR	1 8	0955 57.0	27.147	152.500	0	3.2	12
MUN	1 9	1454 14.0	24.430	129.350	5	3.1	4
MUN	1 14	0038 7.0	23.870	113.440	5	4.2	11
MUN	1 14	0541 7.0	23.870	113.600	5	3.5	6
BMR	1 14	1410 59.0	31.553	138.603	6	3.2	10
MUN	1 15	2211 28.0	34.510	114.990	5	3.8	9
MUN	1 20	0746 18.0	32.360	122.340	5	4.2	11
MUN	1 20	1016 41.7	32.360	122.340	5	3.6	8
MUN	1 20	2331 45.5	29.050	124.220	10	3.8	9
	1 20						
MUN		1533 25.0	38.090	123.110	5	3.3	5
MUN	1 27	1717 25.0	18.290	123.000	5	3.3	4
MUN	1 28	1629 57.7	25.750	113.590	5	3.3	4
MUN	2 2	2256 41.0	20.290	115.930	5	3.0	3
MUN	2 6	1017 59.8	30.780	117.080	5	3.5	10
MUN	2 6	1144 13.0	18.250	119.120	5	3.8	5
BMR	2 11	1151 55.9	19.784	133.696	0	4.3	5
MUN	2 17	0206 38.0	32.230	117.410	5	3.2	7
MUN	2 17	1116 46.5	24.530	129.410	5	3.0	3
MUN	2 18	0257 37.0	39.860	118.910	37	5.2	10
BMR	2 20	2143 55.3	33.330	150.604	2	4.0	23
MUN	2 26	0757 40.0	42.460	118.840	5	3.5	3
MUN	3 3	0237 41.0	34.000	110.710	5	3.1	4
CAN	3 13	0129 43.8	36.550	146.820	12	3.0	11
BMR	3 13	0950 17.9	36.418	146.696	0	3.1	9
MUN	3 14	1654 10.0	29.020	113.710	5	3.0	8
BMR	3 16	0153 10.5	41.451	144.632	18	4.1	13
MUN	3 16	0644 50.0	28.100	126.610	5	3.6	6
BMR	3 30	0853 48.4	26.333	132.517	5	6.0	28
MUN	3 30	1836 51.3	37.830	113.820	10	3.7	7
MUN	3 30	2121 42.0	20.020	113.830	5	3.3	4
ADE	3 31	0612 2.5	26.180	132.070	4	3.0	
ADE	4 1	1142 55.6	26.250	131.860	3	3.0	
MUN	4 3	1834 27.8	32.510	122.220	5	3.2	4
MUN	4 3	2230 17.7	32.510	122.220	5	3.4	7
PIT	4 10	1853 4.2	35.798	144.851	5	3.8	36
CAN	4 10	1942 12.0	35.800	144.830	30	3.0	8
CAN	4 11	0346 39.1	35.830	144.850	36	3.1	8
CAN	4 14	0234 55.0	35.650	144.720	0	3.1	9
MUN	4 14	0633 23.0	21.760	126.270	5	3.5	5

Only earthquakes of magnitude 3.0 or more are listed.

[#] Codes denote contributors listed in the text, page iii

^{*} Number of stations used to determine hypocentres.

Table 1 (cont.)

DATA#	DATE	TIME(UT)	LAT° S	LONG° E	DEPTH	MAGNITUDE	N*
SOURCE	mo dy	hrmn sec	Dill 5	LOING E	(km)	MIGINIEDE	- 1
BMR	4 14	1932 41.0	24.879	131.345	10	4.2	14
CAN	4 14	2005 2.2	36.570	146.610	15	3.0	12
MUN	4 16	0601 21.0	20.450	123.480	5	3.7	5
CAN	4 16	1413 53.4	35.770	144.720	22	3.2	9
ADE	4 18	2327 20.0	26.230	132.800	35	3.1	
MUN	4 20	1141 23.5	19.590	115.010	5	3.7	5
CAN	4 23	0525 45.0	38.800	153.400	0	3.0	6
CAN	4 23	1224 56.0	41.000	154.000	0	4.0	11
CAN	4 24	0443 46.4	36.150	143.350	13	4.0	12
MUN	4 24	0823 54.0	18.090	127.880	5	3.2	4
MUN	4 29	1924 21.0	32.510	122.220	5	3.2	6
MUN	5 1	1949 27.3	32.590	122.310	5	3.1	8
BMR	5 2	2224 31.0	25.957	137.543	5	4.0	5
BMR	5 8	0818 20.0	36.625	138.384	5	3.7	7
MUN	5 8	1747 4.0	19.620	116.540	5	3.5	3
MUN	5 10	2318 43.6	33.000	110.380	5	3.6	7
MUN	5 15	1205 42.9	30.760	117.100	8	3.4	11
MUN	5 17	1241 26.7	33.360	117.200	5	4.0	11
MUN	5 17	1457 44.3	33.760	119.800	5	3.6	7
TAU	5 17	2352 9.8	41.530	139.580	0	3.4	5
CAN	5 17	2352 22.0	38.500	153.500	0	3.6	.8
BMR	5 20	1358 33.1	32.646	138.711	5	3.1	6
MUN	5 21	2042 26.6	25.310	116.220	5	3.6	11
MUN	5 22	2100 33.5	24.920	111.300	5	3.1	4
BMR	5 26	0555 13.5	27.768	128.992	5	4.4	12
MUN	5 26	1034 23.1	17.590	123.550	5	3.3	6
MUN	5 27	1710 35.6	30.830	117.120	5	3.0	9
MUN	5 31	1038 0.0	31.300	111.420	10	3.1	5
MUN	5 31	2038 12.8	18.570	118.020	10	4.1	11
MUN	6 5	1115 45.0	26.280	131.080	5	3.7	7
CAN	6 6	0931 24.8	35.840	144.800	25	3.7	11
MUN	6 16	0442 36.0	21.200	129.360	5	3.5	4
MUN	6 23	1530 27.0	27.590	124.780	5	3.8	11
ADE	6 27	0130 6.2	25.520	140.200	5	3.2	
CAN	7 2	0314 53.1	35.790	144.770	27	3.6	10
CAN	7 3	1410 4.1	35.850	144.780	24	3.3	8
MUN	7 4	1649 57.0	39.630	121.050	5	3.6	7
MUN	7 4	1652 17.5	39.630	121.050	5	3.4	6
MUN	7 4	1725 21.8	39.630	121.050	5	3.4	5
MUN	7 4	1740 32.0	39.630	121.050	5	3.2	4
GSQ	7 7	0627 42.3	29.914	151.188	0	3.1	9
MUN	7 9	1137 10.0	20.840	129.440	5	3.2	4
BMR	7 10	2210 14.5	26.173	132.680	0	4.1	10
BMR	7 11	0613 37.3	25.699	130.555	0	3.3	4
BMR	7 11	0717 54.7	26.262	132.511	5	5.6	32
BMR	7 11	1242 13.8	25.671	132.492	0	3.7	4
BMR	7 12	1353 37.9	26.066	132.727	0	3.2	4
BMR	7 14	1036 42.4	36.046	144.161	36	3.3	16
MUN	7 20	0125 28.2	21.980	126.460	5	3.6	5
MUN	7 26	0841 16.6	31.770	117.050	5	3.0	9
CAN	7 31	1737 20.0	34.180	143.880	0	3.6	9
BMR	8 17	1323 52.7	11.834	130.334	5	4.5	7

Table 1 (cont.)

D 4 50 4 11	D A CCC		T 4 000 C	I ONICO E	DEDELL	NA CONTRACTOR	
DATA#	DATE	TIME(UT)	LAT° S	LONG° E	DEPTH	MAGNITUDE	N*
SOURCE	mo dy	hrmn sec	21.410	106.510	(km)		
MUN	8 24	0454 39.0	21.410	126.540	5	4.0	11
PIT	8 24	0819 31.9	37.982	146.578	16	3.1	26
GSQ	8 31	1753 56.4	30.260	151.240	9	3.3	8
MUN	9 1	1353 49.7	31.630	117.060	5	4.1	9
MUN	9 2	0557 4.8	38.000	112.200	5	3.2	4
MUN	9 2	1524 53.7	38.000	112.200	5	3.0	3
MUN	9 4	1839 26.7	38.000	112.200	5	3.2	6
ADE	9 4	1910 54.3	33.620	133.330	22	3.0	_
MUN	9 5	0618 54.1	37.060	117.000	5	3.1	6
MUN	9 6	1041 5.0	22.730	119.050	5	3.1	6
MUN	9 13	0237 4.5	15.810	120.950	5	4.3	8
MUN	9 13	1323 53.0	18.440	121.200	5	3.1	4
MUN	9 13	1913 33.9	22.680	113.250	5	3.0	4
MUN	9 16	1616 40.2	32.590	122.310	5	3.5	8
MUN	9 21	0439 21.9	38.100	112.200	5	3.4	6
BMR	9 22	0503 10.1	34.362	145.546	12	3.1	8
PIT	9 22	0525 52.1	34.242	145.480	10	3.0	14
CAN	9 22	0526 24.0	34.290	145.550	0	3.3	6
CAN	9 22	0546 24.0	34.270	145.600	29	3.7	9
CAN	9 22	0630 28.0	34.290	145.550	0	3.1	12
BMR	9 22	1421 42.1	34.307	145.550	0	4.0	13
CAN	9 22	1658 4.0	34.290	145.550	0	3.0	5
MUN	9 23	2041 55.6	21.500	119.280	11	3.2	5
MUN	9 29	1509 53.0	16.920	118.330	5	3.0	3
MUN	9 29	2157 22.0	30.730	117.130	7	3.3	9
MUN	10 1	1319 33.0	32.250	126.240	5	3.4	8
MUN	10 2	0343 23.6	30.580	121.600	5	3.0	8
MUN	10 5	1240 40.6	32.430	122.200	5	3.0	9
MUN	10 13	1206 10.2	33.950	118.810	5	3.2	7
MUN	10 16	2136 31.0	22.610	114.590	5	4.1	9
MUN	10 25	0158 49.0	16.620	121.040	5	3.8	6
MUN	10 26	0552 27.0	26.670	111.190	5	3.0	4
MUN	10 27	1708 13.0	23.110	128.220	5	3.3	4
MUN	11 5	0757 56.0	18.470	118.850	5	4.0	10
BMR	11 7	2153 19.1	24.593	139.804	27	3.8	8
BMR	11 28	1540 50.3	25.393	129.656	5	4.2	12
BMR	11 28	1546 1.9	25.433	129.779	5	4.4	12
BMR	11 29	1922 1.8	25.393	129.673	5	4.1	13
BMR	12 2	1713 33.3	19.617	132.549	23	4.4	4
MUN	12 4	1347 16.0	20.250	115.830	5	4.0	7
MUN	12 8	2133 32.0	38.220	112.550	5	3.2	5
MUN	12 14	0932 45.0	19.180	121.510	5	3.6	6
BMR	12 16	0428 46.5	36.171	136.514	1	4.6	18
MUN	12 17	0913 8.0	32.360	122.270	5	3.3	7
MUN	12 18	0126 35.0	16.790	122.590	5	3.9	5
MUN	12 18	0658 51.0	27.830	116.820	5	4.3	11
BMR	12 20	1204 38.2	39.179	143.397	0	3.5	18
CAN	12 23	1529 29.0	39.600	152.700	0	3.5	8
MUN	12 27	0743 58.0	32.510	122.220	5	3.2	9
PIT	12 28	1148 55.2	40.251	154.709	10	3.0	4
MUN	12 30	1700 3.3	20.650	116.090	5	3.0	4

TABLE 2. LARGE AUSTRALIAN EARTHQUAKES, 1873 - 1986

DATA#	DATE	TIME(UT)	LAT° S	LONG° E	DEPTH	ML Ms
SOURCE	y mo dy	hrmn sec			(km)	
ET	1873 12 15	0400 0.0	26.25	127.50	0 G	6.0
ET	1885 1 5	1220 0.0	29	114	0 G	6.5
IBE	1885 7 2	1620 0.0	40	150	0 G	6.5
ADE	1897 5 10	0526 0.0	37.33	139.75	0 G	6.5
ADE	1902 9 19	1035 0.0	35.00	137.40	14 G	6.0
EDG	1906 11 19	0718 54	19.1	111.8	10 G	7.2
UQ	1918 6 6	1814 24.0	23.50	152.50	15 G	6.2 5.7
EDG	1920 2 8	0524 30	35.00	111.0	0 G	6.0
BMR	1929 8 16	2128 23.4	16.99	120.66	33 N	6.6
EDG	1935 4 12	0132 24	26.00	151.10	0 G	6.1 5.4
BMR	1941 4 29	0135 39.4	26.92	115.80	0 G	7.0 6.8
BMR	1941 6 27	0755 49.0	25.95	137.34	0 G	6.5
BMR	1968 10 14	0258 50.6	31.62	116.98	10 G	6.9 6.8
BMR	1970 3 24	1035 17.6	22.05	126.61	0 G	6.7 5.9
BMR	1972 8 28	0218 56.2	24.95	136.26	10	6.2
MUN	1975 10 3	1151 1.8	22.21	126.58	0	6.2
BMR	1978 5 6	1952 19.6	19.55	126.56	17	6.2
BMR	1979 4 23	0545 10.8	16.66	120.27	10	6.6 5.7
BMR	1979 4 25	2213 57.4	16.94	120.48	1	6.1
BMR	1979 6 2	0947 59.3	30.83	117.17	6	6.2 6.1
CGS	1983 11 25	1956 7.8	40.45	155.51	19	6.0 5.8
BMR	1986 3 30	0853 48.4	26.33	132.51	5	6.0 5.8
	2300 2 30	1300			-	J

^{*} G,N are restrained, or set at normal depth by the locating geophysicist
Source as listed page iv, ET Everingham & Tilbury (1972), IBE Everingham (unpublished data), EDG Everingham & others (1987).

TABLE 3. AUSTRALIAN SEISMOGRAPH STATIONS, 1986

CODE	NAME	LAT° S	LONG° E	ELEV. (m)	OP.*	TYPE**
QUEENS	LAND					
AWMQ	AWOONGA DAM	24.046	151.316	125	GSQ	1
BDMQ	BOONDOOMA DAM	26.112	151.444	320	GSQ	1
BFCQ	GLENDON CROSSING	20.614	147.161	160	GSQ	1
BFRQ	GLENROY	20.549	147.105	160	GSQ	1
BMGQ	MT GRAHAM	20.614	147.061	160	GSQ	1
BRS	MT NEBO BRISBANE	27.392	152.775	525	QLD	5
BSL	BRUSLEE	20.275	147.299	185	GSQ	1
CLV	COLINSVILLE	20.590	147.105	160	GSQ	1
CTAO	CHARTERS TOWERS	20.088	146.255	357	QLD	2
DLB	DALBEG	20.151	147.264	70	GSQ	1
DNG	DOONGARA	20.555	146.475	280	GSQ	1
ISQ	MOUNT ISA	20.715	139.553	500	BMR	1
MCP	MT COOPER	20.552	146.806	300	GSQ	1
MHP	MT HOPE	21.396	146.802	200	GSQ	1
RMQ	ROMA	26.489	148.755	360	BMR	1
UKA	UKALUNDA	20.899	147.127	200	GSQ	1
WBA	BUARABA	27.353	152.308	100	GSQ	1
WMB	MT BRISBANE	27.115	152.550	160	GSQ	1
WPL	PLAINLAND	27.606	152.417	160	GSQ	1
WPM	PINE MOUNTAIN	27.536	152.735	35	GSQ	1
WRC	REEDY CREEK	27.187	152.663	190	GSQ	1
WTG	TOOGOOLAWAH	27.146	152.333	130	GSQ	1
WTR	THALLON ROAD	27.528	152.465	100	GSQ	1
WWH	WIVENHOE HILL	27.370	152.587	190	GSQ	1
NORTHI	ERN TERRITORY					
ASPA	ALICE SPRINGS	23.667	133.901	600	BMR	3
MTN	MANTON	12.847	131.130	80	BMR	1
WRA	WARRAMUNGA ARRAY	19.944	134.353	366	CAN	3
	RN AUSTRALIA					
BAL	BALLIDU	30.607	116.707	300	MUN	1
KLB	KELLERBERRIN	31.578	117.760	300	MUN	1
KLG	KALGOORLIE	30.783	121.458	360	MUN	1
KLGA	KALGOORLIE	30.718	121.438	390	MUN	1
KNA	KUNUNURRA	15.750	128.767	150	PWD/MUN	1
MBL	MARBLE BAR	21.160	119.833	200	MUN	1
MEKA	MEKATHARRA	26.614	118.534	520	MUN	1
MEK	MEEKATHARRA	26.613	118.545	520	MUN	1
MRWA	MORAWA	29.218	115.996	300	MUN	1
MUN	MUNDARING	31.978	116.208	253	MUN	2
NAU	NANUTARRA	22.544	115.500	80	MUN	1
NWAO	NARROGIN	32.927	117.233	265	MUN	4
WBN	WARBURTON	26.140	126.578	457	MUN	1
RKG	ROCKY GULLY	34.570	117.010	300	MUN	1
	OUTH WALES AND AUSTRA					
AVO	AVON	34.376	150.615	532	CAN	1
BWA	BOOROWA	34.425	148.751	656	CAN	1
CAH	CASTLE HILL	34.647	149.242	700	CAN	1

CAN CANBERRA (ANU) 35.321 148.999 650 CAN 1 CBR CABRAMURRA 35.943 148.393 1537 CAN 1 CMS COBAR 31.487 145.828 225 BMR 1 CNB CANBERRA (BMR) 35.314 149.362 855 BMR 1 CNG COO CONEY 30.578 151.892 650 BMR 1 IVY INVERALOCHY 34.972 149.718 770 CAN 1 IVY RIVERVIEW 33.829 151.519 21 RIV 2 SBR SOUTH BLACK RANGE 35.201 150.037 712 CAN 1 IVY RIVERVIEW 33.829 151.159 21 RIV 2 SBR SOUTH BLACK RANGE 35.425 149.533 1265 CAN 1 IVY RIVERVIEW 33.829 151.159 21 RIV 2 SBR SOUTH BLACK RANGE 35.425 149.533 1265 CAN 1 IVY RIVERVIEW 33.852 141.592 213 BMR 1 IVY OLONG 34.278 148.833 1290 CAN 1 WER WEROMBI 33.950 150.880 226 CAN 1 IVYOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADELAIDE 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 IVY CLEVE 33.691 136.495 238 ADE 1 IVY ADELAIDE 34.967 138.713 655 ADE 1 IVY ADELAIDE 34.967 138.7	CODE	NAME	LAT° S	LONG° E	ELEV. (m)	OP.*	TYPE**
CBR CABRAMURRA 33,943 148,393 153,77 CAN 1							
CMS COBAR 31.487 145.828 225 BMR 1 CNB CANBERRA (BMR) 35.314 149.362 855 BMR 1 COO COONEY 30.578 151.892 650 BMR 1 IVY INVERALOCHY 34.972 149.718 770 CAN 1 INI JENOLAN 33.826 150.017 829 CAN 1 KHA KHANCOBAN 36.214 148.129 435 CAN 1 LER LERIDA 34.934 149.364 940 CAN 1 MEG MEANGORA 35.101 150.037 712 CAN 1 RIV RIVERVIEW 33.829 151.159 21 RIV 2 SBR SOUTH BLACK RANGE 31.882 141.592 213 BMR 1 TAO TALBINGO 35.596 148.290 570 CAN 1 WAM WAMBROOK 36.193 148.8		, ,					
CNB							
COO COONEY 30.578 151.892 650 BMR 1 IVY INVERALOCHY 34.972 149.718 770 CAN 1 JNL JENOLAN 33.826 150.017 829 CAN 1 JNL JENOLAN 33.826 150.017 829 CAN 1 KHA KHANCOBAN 36.214 148.129 435 CAN 1 LER LERIDA 34.934 149.364 940 CAN 1 MEG MEANGORA 35.101 150.037 712 CAN 1 RIV RIVERVIEW 33.829 151.159 21 RIV 2 SSBR SOUTH BLACK RANGE 35.425 149.533 1265 CAN 1 STK STEPHENS CREEK 31.882 141.592 213 BMR 1 TAO TALBINGO 35.596 148.290 570 CAN 1 WER WEROMBI 33.950 150.580 226 CAN 1 WER WEROMBI 33.950 150.580 226 CAN 1 YOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADELAIDE 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 CLV CLEVE 33.691 136.495 238 ADE 1 HTT HALLETT 33.430 138.921 708 ADE 1 HWK HAWKSNEST 29.958 135.203 180 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 NBK NECTAR BROOK 32.711 137.943 950 CAN 1 NBK DUBBERATANA 30.240 139.128 610 ADE 1 NBK NECTAR BROOK 32.711 137.943 950 CAN 1 NBK WER WILLALOOKA 36.417 140.321 40 ADE 1 NBK NECTAR BROOK 37.761 146.389 545 PIT 1 BBL BELL'S TRACK 37.761 146.400 330 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 PIT 1 DRT DARTMOUTH 36.590 144.491 160 PIT 1 IMMW MOLESWORTH 37.371 145.510 280 PIT 1 IMMW MOLE							
Inversal Occhy 34,972 149,718 770 CAN 1		• •					
JNL							
KHANCOBAN 36.214							
LER LERIDA							
MEG MEANGORA 35.101 150.037 712 CAN 1 RIV RIVERVIEW 33.829 151.159 21 RIV 2 SBR SOUTH BLACK RANGE 35.425 149.533 1265 CAN 1 STK STEPHENS CREEK 31.882 141.592 213 BMR 1 TAO TALBINGO 35.596 148.290 570 CAN 1 WAM WAMBROOK 36.193 148.883 1290 CAN 1 WER WEROMBI 33.950 150.580 226 CAN 1 YOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADE 22 CAN 1 YOU YOUNG 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 CLV CLEVE 33.691 136.495 238 ADE<							
RIV RIVERVIEW 33.829 151.159 21 RIV 2 SBR SOUTH BLACK RANGE 35.425 149.533 1265 CAN 1 STK STEPHENS CREEK 31.882 141.592 213 BMR 1 TAO TALBINGO 35.596 148.290 570 CAN 1 WAM WAMBROOK 36.193 148.833 1290 CAN 1 WER WEROMBI 33.950 150.580 226 CAN 1 YOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADELAIDE 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 CLV CLEVE 33.691 136.495 238 ADE 1 HTT HALLETT 33.430 138.921 708 ADE 1 HWK HAWKSNEST 29.958 135.203 180 ADE 1 MGR MT GAMBIER 37.728 140.571 190 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WKA WILLALOOKA 31.105 136.763 168 ADE 1 WKG WOOMERA 31.105 136.763 168 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 NBC BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BERLLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.238 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.238 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.238 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.238 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.238 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.291 144.901 188 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 BUC BUCRABANYULE 36.291 144.901 189 PIT 1 DRT DARTMOUTH 36.692 144.901 148.901 PIT 1 DRT DARTMOUTH 37.635 144.497 1							
SBR SOUTH BLACK RANGE 35.425 149.533 1265 CAN 1 STK STEPHENS CREEK 31.882 141.592 213 BMR 1 TAO TALBINGO 35.596 148.290 570 CAN 1 WAM WAMBROOK 36.193 148.883 1290 CAN 1 WER WEROMBI 33.950 150.580 226 CAN 1 YOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADELAIDE 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 CLV CLEVE 33.691 136.495 238 ADE 1 HTT HALLETT 33.430 138.921 708 ADE 1 HTT HALLETT 33.430 138.921 708 ADE 1 HTT HALLEALORA <							
STK STEPHENS CREEK 31.882 141.592 213 BMR 1 TAO TALBINGO 35.596 148.290 CAN 1 WAM WAMBROOK 36.193 148.883 1290 CAN 1 WER WEROMBI 33.950 150.580 226 CAN 1 YOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADELAIDE 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 CLV CLEVE 33.691 136.495 238 ADE 1 HTT HALLETT 33.430 138.921 708 ADE 1 HWK HAWKSNEST 29.958 135.203 180 ADE 1 MGR MT GAMBIER 37.728 140.571 190 ADE 1 NBK NECTAR BROOK							
TAO TALBINGO 35.596 148.290 570 CAN 1 WAM WAMBROOK 36.193 148.883 1290 CAN 1 WER WEROMBI 33.950 150.580 226 CAN 1 YOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADELAIDE 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 CLV CLEVE 33.691 136.495 238 ADE 1 HITH HALLETT 33.430 138.921 708 ADE 1 HWK HAWKSNEST 29.958 135.203 180 ADE 1 MGR MT GAMBIER 37.728 140.571 190 ADE 1 MBK NECTAR BROOK 32.701 137.983 180 ADE 1 PNA PARTACOONA 32.006 138.165 180 ADE 1 RPA ROOPENA 32.725 137.403 95 ADE 1 UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WKG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 100 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 100 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 100 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.534 144.997 100 PIT 1 DRT DARTMOUTH 36.660 144.491 188 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FOREST 38.595 144.091 340 PIT 1 PHAND MOLESWORTH 37.137 145.510 280 PIT 1 PHAND HOLESWORTH 37.137 14							
WAM WAMBROOK 36.193 148.883 1290 CAN 1 WER WEROMBI 33.950 150.580 226 CAN 1 YOU YOUNG 34.278 148.382 503 CAN 1							
WER WEROMBI 33.950 150.580 226 CAN 1 YOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADELAIDE 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 CLV CLEVE 33.691 136.495 238 ADE 1 HTT HALLETT 33.430 138.921 708 ADE 1 HWK HAWKSNEST 29.958 135.203 180 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 NBK NE							
YOU YOUNG 34.278 148.382 503 CAN 1 SOUTH AUSTRALIA ADE ADELAIDE 34.967 138.713 655 ADE 2 ADT ADELAIDE 34.967 138.713 655 ADE 1 CLV CLEVE 33.691 136.495 238 ADE 1 HTT HALLETT 33.430 138.921 708 ADE 1 HWK HAWKSNEST 29.958 135.203 180 ADE 1 MGR MT GAMBIER 37.728 140.571 190 ADE 1 MBK NECTAR BROOK 32.701 137.983 180 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 PNA PARTACOONA 32.006 138.165 180 ADE 1 WBA WIBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA <							
SOUTH AUSTRALIA ADE ADELAIDE 34,967 138,713 655 ADE 2 ADT ADELAIDE 34,967 138,713 655 ADE 1 CLV CLEVE 33,691 136,495 238 ADE 1 HTT HALLETT 33,430 138,921 708 ADE 1 HWK HAWKSNEST 29,958 135,203 180 ADE 1 NBGR MT GAMBIER 37,728 140,571 190 ADE 1 NBK NECTAR BROOK 32,701 137,983 180 ADE 1 NBK NECTAR BROOK 32,701 137,983 180 ADE 1 NBK NECTAR BROOK 32,701 137,983 180 ADE 1 NBK NECTAR BROOK 32,705 137,403 95 ADE 1 UMB UMBERATANA 30,240 139,128 610 ADE 1 WKA WILLALOOKA 36,417 140,321 40 ADE 1 WKA WILLALOOKA 31,105 136,763 168 ADE 1 VICTORIA ABE ABERFELDY 37,719 146,389 549 PIT 1 BEL BELL'S TRACK 37,761 146,389 545 PIT 1 BESY BOOLARRA STH 38,445 146,297 260 PIT 1 BUC BUCRABANYULE 36,238 143,498 210 PIT 1 BUC GREENVALE 37,619 144,901 188 PIT 1 BUT DARTMOUTH 36,590 147,493 950 CAN 1 FIRT FORREST 38,534 144,997 210 PIT 1 GVL GREENVALE 37,619 144,207 300 PIT 1 GVL GREENVALE 37,619 144,207 300 PIT 1 GVL GREENVALE 37,619 144,207 300 PIT 1 MAL MARSHALL SPUR 37,749 146,292 1076 PIT 1 MAL MARSHALL SPUR 37,749 146,359 805 PIT 1 MEM MERRIMU 37,637 144,497 160 PIT 1 PAT PLANE TRACK 37,851 146,6456 771 PIT 1 PAT PLANE TRACK 37,851 146,6456 771 PIT 1 PAT PLANE TRACK 37,851 146,349 941 PIT 1 TMD TOMSON DAM 37,810 146,349 941 PIT 1							
ADE ADELAIDE 34,967 138,713 655 ADE 2 ADT ADELAIDE 34,967 138,713 655 ADE 1 CLV CLEVE 33,691 136,495 238 ADE 1 HITT HALLETT 33,430 138,921 708 ADE 1 HWK HAWKSNEST 29,958 135,203 180 ADE 1 MGR MT GAMBIER 37,728 140,571 190 ADE 1 NBK NECTAR BROOK 32,701 137,983 180 ADE 1 PNA PARTACOONA 32,006 138,165 180 ADE 1 RPA ROOPENA 32,725 137,403 95 ADE 1 UMB UMBERATANA 30,240 139,128 610 ADE 1 WKA WILLALOOKA 36,417 140,321 40 ADE 1 WRG WOOMERA 31,105 136,763 168 ADE 1 VICTORIA ABE ABERFELDY 37,719 146,389 549 PIT 1 BEL BELL'S TRACK 37,761 146,389 545 PIT 1 BSY BOOLARRA STH 38,445 146,297 260 PIT 1 BUC BUCRABANYULE 36,238 143,498 210 PIT 1 BUT DARTMOUTH 36,590 147,493 950 CAN 1 FRT FORREST 38,534 144,997 210 PIT 1 DRT DARTMOUTH 36,590 147,493 950 CAN 1 FRT FORREST 38,534 144,997 210 PIT 1 GYL GREENVALE 37,619 144,901 188 PIT 1 HOP MOUNT HOPE 35,995 144,207 300 PIT 1 JEN JEERALANG JUNCTION 38,351 146,420 330 PIT 1 JEN JEERALANG JUNCTION 38,351 146,420 330 PIT 1 JEN JEERALANG JUNCTION 38,351 146,420 330 PIT 1 MAL MARSHALL SPUR 37,49 146,292 1076 PIT 1 MEM MERRIMU 37,637 144,497 160 PIT 1 MIC MOUNT ERICA 37,944 146,359 805 PIT 1 MEM MERRIMU 37,637 144,497 160 PIT 1 MEM MERRIMU 37,637 144,497 160 PIT 1 MIC MOUNT ERICA 37,944 146,359 805 PIT 1 MEM MERRIMU 37,637 144,497 160 PIT 1 MIC MOUNT ERICA 37,944 146,359 805 PIT 1 MILW MOLESWORTH 37,137 145,510 280 PIT 1 PAT PLANE TRACK 37,857 146,456 771 PIT 1 PEG PEGLEG 36,985 144,091 340 PIT 1 PRO PONON DAM 37,810 146,349 941 PIT 1	100	TOUNG	34.278	148.382	303	CAN	1
ADT ADELAIDE 34,967 138,713 655 ADE 1 CLV CLEVE 33,691 136,495 238 ADE 1 HTT HALLETT 33,430 138,921 708 ADE 1 HWK HAWKSNEST 29,958 135,203 180 ADE 1 MGR MT GAMBIER 37,728 140,571 190 ADE 1 NBK NECTAR BROOK 32,701 137,983 180 ADE 1 PNA PARTACOONA 32,006 138,165 180 ADE 1 RPA ROOPENA 32,725 137,403 95 ADE 1 UMB UMBERATANA 30,240 139,128 610 ADE 1 WKA WILLALOOKA 36,417 140,321 40 ADE 1 WKG WOOMERA 31,105 136,763 168 ADE 1 VICTORIA ABE ABERFELDY 37,719 146,389 549 PIT 1 BEL BELL'S TRACK 37,761 146,389 545 PIT 1 BFD BELLFIELD 37,177 142,545 235 BMR 1 BSY BOOLARRA STH 38,445 146,297 260 PIT 1 BUC BUCRABANYULE 36,238 143,498 210 PIT 1 BUC BUCRABANYULE 36,238 143,498 210 PIT 1 BUT DARTMOUTH 36,590 147,493 950 CAN 1 FRT FORREST 38,534 144,997 210 PIT 1 GYL GREENVALE 37,619 144,901 188 PIT 1 HOP MOUNT HOPE 35,995 144,207 300 PIT 1 JEN GREENVALE 37,619 144,901 188 PIT 1 HOP MOUNT HOPE 35,995 144,207 300 PIT 1 JEN JERALANG JUNCTION 38,351 146,420 330 PIT 1 JEN JERALANG JUNCTION 38,351 146,420 300 PIT 1 JEN JERALANG JUNCTION 38,351 146,420 300 PIT 1 JEN JERALANG JUNCTION 38,351 146,420 300 PIT 1 MAL MARSHALL SPUR 37,49 146,292 1076 PIT 1 MEM MERIMU 37,637 144,497 160 PIT 1 MIC MOUNT ERICA 37,941 146,559 805 PIT 1 MEM MERIMU 37,637 144,497 160 PIT 1 MIC MOUNT ERICA 37,941 146,559 805 PIT 1 MIC MOUNT ERICA 37,941 146,559 805 PIT 1 MILW MOLESWORTH 37,137 145,510 280 PIT 1 MILW MOLESWORTH 37,137 145,510 280 PIT 1 PAT PLANE TRACK 37,857 146,456 771 PIT 1 PEG PEGLEG 36,985 144,091 340 PIT 1 PRI PANTON HILL 37,635 145,271 180 PIT 1 TMD TOMSON DAM 37,810 146,349 941 PIT 1	SOUTH	AUSTRALIA					
CLV CLEVE 33.691 136.495 238 ADE 1 HTT HALLETT 33.430 138.921 708 ADE 1 HWK HAWKSNEST 29.958 135.203 180 ADE 1 NWK HAWKSNEST 29.958 135.203 180 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 PNA PARTACOONA 32.006 138.165 180 ADE 1 RPA ROOPENA 32.725 137.403 95 ADE 1 UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.595 144.207 300 PIT 1 IFRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.595 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.399 805 PIT 1 MMC MOUNT ERICA 37.944 146.399 805 PIT 1 MMC MOUNT ERICA 37.944 146.399 805 PIT 1 MMC MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PRT PLANE TRACK 37.857 146.456 771 PIT 1 PRT PLANE TRACK 37.857 146.459 941 PIT 1 PRT PLANE TRACK 37.857 146.4549 941 PIT 1	ADE	ADELAIDE	34.967				
HTT HALLETT 33.430 138.921 708 ADE 1 HWK HAWKSNEST 29.958 135.203 180 ADE 1 MGR MT GAMBIER 37.728 140.571 190 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 PNA PARTACOONA 32.006 138.165 180 ADE 1 RPA ROOPENA 32.725 137.403 95 ADE 1 UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 BTT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 CYLOVIC GREENVALE 37.619 144.901 188 PIT 1 GYL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MIC MOUNT ERICA 37.947 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PRO PONSON DAM 37.810 146.349 941 PIT 1	ADT	ADELAIDE	34.967	138.713	655	ADE	
HWK HAWKSNEST 29.958 135.203 180 ADE 1 MGR MT GAMBIER 37.728 140.571 190 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 PNA PARTACOONA 32.006 138.165 180 ADE 1 RPA ROOPENA 32.725 137.403 95 ADE 1 UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY	CLV	CLEVE	33.691	136.495			1
MGR MT GAMBIER 37.728 140.571 190 ADE 1 NBK NECTAR BROOK 32.701 137.983 180 ADE 1 PNA PARTACOONA 32.006 138.165 180 ADE 1 RPA ROOPENA 32.725 137.403 95 ADE 1 UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1	HTT	HALLETT	33.430	138.921		ADE	1
NBK NECTAR BROOK 32.701 137.983 180 ADE 1 PNA PARTACOONA 32.006 138.165 180 ADE 1 RPA ROOPENA 32.725 137.403 95 ADE 1 UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA VICTORIA WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'STRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445	HWK	HAWKSNEST	29.958	135.203	180	ADE	1
PNA PARTACOONA 32.006 138.165 180 ADE 1 RPA ROOPENA 32.725 137.403 95 ADE 1 UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 F	MGR	MT GAMBIER	37.728	140.571	190	ADE	1
RPA ROOPENA 32.725 137.403 95 ADE 1 UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 HOP	NBK	NECTAR BROOK	32.701	137.983	180	ADE	1
UMB UMBERATANA 30.240 139.128 610 ADE 1 WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP	PNA	PARTACOONA	32.006	138.165	180	ADE	1
WKA WILLALOOKA 36.417 140.321 40 ADE 1 WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 MEM	RPA	ROOPENA	32.725	137.403	95	ADE	1
WRG WOOMERA 31.105 136.763 168 ADE 1 VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL<	UMB	UMBERATANA	30.240	139.128	610	ADE	1
VICTORIA ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 <	WKA	WILLALOOKA	36.417	140.321	40	ADE	1
ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MILW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1	WRG	WOOMERA	31.105	136.763	168	ADE	1
ABE ABERFELDY 37.719 146.389 549 PIT 1 BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MILW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1	VICTOR	RIA					
BEL BELL'S TRACK 37.761 146.389 545 PIT 1 BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MLW MOLESWORTH 37.137<			37.719	146.389	549	PIT	1
BFD BELLFIELD 37.177 142.545 235 BMR 1 BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MILW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857<							
BSY BOOLARRA STH 38.445 146.297 260 PIT 1 BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857							
BUC BUCRABANYULE 36.238 143.498 210 PIT 1 DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 POH PEGLEG 36.985							
DRT DARTMOUTH 36.590 147.493 950 CAN 1 FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PPH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
FRT FORREST 38.534 144.997 210 PIT 1 GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PPG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662							
GVL GREENVALE 37.619 144.901 188 PIT 1 HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
HOP MOUNT HOPE 35.995 144.207 300 PIT 1 JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
JEN JEERALANG JUNCTION 38.351 146.420 330 PIT 1 MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
MAL MARSHALL SPUR 37.749 146.292 1076 PIT 1 MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
MEM MERRIMU 37.637 144.497 160 PIT 1 MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
MIC MOUNT ERICA 37.944 146.359 805 PIT 1 MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
MLW MOLESWORTH 37.137 145.510 280 PIT 1 PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
PAT PLANE TRACK 37.857 146.456 771 PIT 1 PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
PEG PEGLEG 36.985 144.091 340 PIT 1 PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
PNH PANTON HILL 37.635 145.271 180 PIT 1 RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
RUS RUSHWORTH 36.662 144.947 145 PIT 1 TMD TOMSON DAM 37.810 146.349 941 PIT 1							
TMD TOMSON DAM 37.810 146.349 941 PIT 1							
TOM THOMSON 37.810 146.348 941 PIT 1							
	TOM	THOMSON	37.810	146.348	941	PIT	1

TABLE 3 (cont.)

CODE	NAME	LAT° S	LONG° E	ELEV. (m)	OP.*	TYPE**
TOO	TOOLANGI	37.572	145.490	604	BMR	5
TASMA	NIA					
MOO	MOORLANDS	42.442	146.190	325	TAU	1
SAV	SAVANNAH	41.721	147.189	180	TAU	1
SFF	SHEFFIELD	41.337	146.307	213	TAU	1
SPK	SCOTTS PEAK	43.038	146.275	425	TAU	1
STG	STRATHGORDON	42.751	146.053	350	TAU	1
SVR	SAVAGE RIVER	41.489	145.211	360	TAU	1
TAU	TASMANIA UNIV.	42.910	147.321	132	TAU	2
TRR	TARRALEAH	42.304	146.450	579	TAU	1
MCQ	MACQUARIE ISLAND	54.498	158.957	14	BMR	1
ANTAR	CTICA					
MAW	MAWSON	67.607	62.872	15	BMR	5

^{*} Operator; refers to contributors listed on page iii.

- 1. Short period (vertical and/or horizontal)
- 2. World Wide Standard Seismograph Station
- 3. Seismic Array
- 4. Seismological Research Observatory
- 5. Long and short period seismographs

^{**} Type of seismograph

TABLE 4. FOCAL PARAMETERS, UPPER COLO NSW AND MARRYAT CREEK EARTHQUAKES

Upper Colo NSW earthquake: 20 February

	Azimuth	dip
P-axis	353	00
T-axis	262	30
B-axis	082	60
Double couples	Α	В
Strike	040	122
Dip	70	70

Marryat Creek SA mainshock: 30 March

	Azimuth	dip
P-axis	220	04
T-axis	314	41
B-axis	122	48
Double couples	Α	В
Strike	170	096
Dip	58	67

Marryat Creek SA aftershock: 11 July

	Azimuth	dip
P-axis	332	44
T-axis	230	11
B-axis	130	44
Double couples	Α	В
Strike	000	106
Dip	49	68

TABLE 5. AUSTRALIAN ACCELEROGRAPHS, 1986

	LAT° S	LONG° E	ELEV.(m)	FOUNDATION	TYPE	OWNER
NEW SOUTH WALES						
Oolong (OOL)	34.773	149.163	600	Firm soil/granite	SMA-1	BMR
Dalton (DAL)	34.773	149.168	580	Granite	PIT	BMR
Ferndale (FND)	34.745	149.166	580	Granite	PIT	BMR
Hume Weir	36.110	147.043	600	Dam wall	SMA-1	WRC
Hume Weir	36.110	147.043	600	Dam wall	SMA-1	WRC
Hume Weir	36.110	147.043	600	Dam wall	SMA-1	WRC
Hume Weir	36.110	147.043	329	Downstream bank	SMA-1	WRC
Hume Weir	36.110	147.043	600	Left hand abutment	SMA-1	WRC
AAEC	34.053	150.978	80	Reactor basement	SMA-1	AAEC
COUTH AUCTDALIA						
SOUTH AUSTRALIA	24.97	120 70	244	Clataglachiata	1400	EMCCA
Kangaroo Ck Dam Little Para Dam	34.87 34.75	138.78 138.72	244 102	Slates/schists Dolomite	MO2 MO2	EWSSA EWSSA
	34.73 34.83	138.72	50		MO2 MO2	PWDSA
Modbury Hospital Admin. Centre	34.83 34.925	138.70	50 50	Marl & clay Alluvium	MO2 MO2	PWDSA
Admin. Cenue	34.923	138.008	30	Alluviulli	MOZ	PWDSA
TASMANIA						
Gordon Dam	42.71	145.97	350	Quartzite	MO2	HEC
WESTERN AUSTRALI	IA					
Cadoux						
Kalajzic C. (CA-K)	30.810	117.132	300	Sandplain	MO2	BMR
Shankland (CA-S)	30.810	117.132	300	Sandplain	MO2	BMR
Avery (CA-C)	30.851	117.160	300	Tertiary sands/granite	MO2	BMR
Kalajzic M. (CA-A)	30.746	117.151	320	Laterite	A700	BMR
Robb (CA-R)	30.781	117.138	300	Alluvium/granite	MO2	BMR
Mundaring Weir	31.967	116.169	250	Concrete wall	SMA-1	PWDW/
Perth						
Telecom	31.953	115.850	10	Basement	SMA-1	TEL
Exchange	31.953	115.850	40	Middle floor	SMA-1	TEL
Building	31.953	115.850	70	Top floor	SMA-1	TEL
VICTORIA						
Jeeralong (JNA)	38.351	146.419	330	Mesozoic sediments	PIT	PIT
Plane Track (PTA)	37.357	146.357	771	Palaeozoic sediments	PIT	PIT
Phillip Institute (PIT)	37.683	145.061	116	Eocene sediments	PIT	PIT
Dartmouth Dam	36.570	147.580	520	Dam crest	SMA-1	RWCV
Dartmouth Dam	36.570	147.580	520	Hoist house	SMA-1	RWCV
Dartmouth Dam	36.570	147.580	360	Downstream bank	SMA-1	RWCV
Dartmouth Dam	36.570	147.580	420	Downstream face	SMA-1	RWCV
Dartmouth Dam	36.570	147.580	360	Access tunnel	SMA-1	RWCV
Animal Health Lab	38.15	144.39	10		SMA-1	CSIRO
Animal Health Lab	38.15	144.39	10		SMA-1	CSIRO
Animal Health Lab	38.15	144.39	10		SMA-1	CSIRO

TABLE 5 (cont.)

AAEC Australian Atomic Energy Commission

BMR Bureau of Mineral Resources, Canberra/Mundaring

EWSSA Engineering & Water Supply Department, South Australia

HEC Hydroelectric Commission, Tasmania

PIT Phillip Institute of Technology

PWDSA Public Works Department, South Australia
PWDWA Public Works Department, Western Australia

TEL Telecom (Perth)

WRC Water Resources Commission, NSW RWCV Rural Water Commission, Victoria

TABLE 6. ACCELEROGRAM DATA, 1986

MN DY	TIME	LAT° S	LONG° E	ML	LOC	H/E	COM	T(s)	ACC
			771010						
01 04	1311	30.79	117.09	2.7	CA-S	(6)/(4)	PZ	0.04	4.1
							PN PE	0.04 0.05	2.6
							SZ	0.03	2.4 8.0
							SN	0.06	6.1
							SE	0.06	14.9
01 05	2140	30.76	117.11	2.3	CA-S	(6)/(4)	PZ	0.03	2.0
							PN	0.03	0.6
							PE	0.03	2.4
							SZ	0.04	1.8
							SN	0.05	4.4
							SE	0.04	3.6
01 06	1346	30.75	117.12	2.5	CA-S	(8)/(6)	SZ	0.03	1.6
							SN	0.07	2.6
							SE	0.09	5.7
01 06	1918	30.80	117.05	2.4	CA-S	(10)/(9)	PZ	0.03	7.2
							PN	0.04	2.6
							PE	0.03	0.6
							SZ	0.03	6.5
							SN	0.04	4.4
							SE	0.05	8.9
01 07	0227	30.77	117.09	2.3	CA-S	(8)/(6)	SZ	0.03	0.4
							SN	0.04	0.6
							SE	0.04	0.6
01 07	0807	30.77	117.09	2.2	CA-S	(7)/(5)	PZ	0.03	2.0
							PN	0.04	0.6
							PE	0.04	1.2
							SZ	0.03	3.1
							SN	0.04	2.9
							SE	0.04	4.8
01 07	1006	34.76	149.18	3.1	DAL	4/-	SH	0.08	1147.
01 07	1113	34.75	149.18	1.9	DAL	4/-	SH	0.08	127.
01 07	1155	34.75	149.18	2.1	DAL	4/-	SH	0.08	99.
01 07	1304	34.75	149.18	1.5	DAL	4/-	SH	0.08	62.
01 07	1417	34.76	149.17	1.6	DAL	4/-	SH	0.08	41.
01 07	1907	34.76	149.18	1.9	DAL	4/-	SH	0.08	43.
01 07	1931	34.76	149.19	1.8	DAL	4/-	SH	0.08	74.
01 07	1954	34.74	149.23	1.9	DAL	4/-	SH	0.08	66.

TABLE 6 (cont.)

MN DY	TIME	LAT° S	LONG° E	ML	LOC	H/E	COM	T(s)	ACC
01 07	2006	34.75	149.18	1.7	DAL	4/-	SH	0.08	45.
01 07	2237	34.78	149.18	1.9	DAL	4/-	SH	0.08	83.
01 09	0536	30.75	117.12	2.0	CA-S	(8)/(6)	PZ	0.04	2.0
							PN PE	0.04 0.04	0.6 1.5
							SZ	0.04	2.5
							SN	0.05	4.4
							SE	0.05	5.4
01 19	0853	30.77	117.10	1.8	CA-S	(6)/(4)	LZ	0.066	7.8
							LN	0.054	6.9
							LE	0.048	5.9
01 19	1035	30.77	117.10	2.4	CA-S	(6)/(4)	SZ	0.042	2.0
							SN	0.042	1.0
					CAV	(0) ((9)	SE	0.048	3.9
					CA-K	(9)/(8)	LZ LN	0.027 0.030	2.9 2.9
							LE	0.030	3.9
02 06	1018	30.78	117.08	3.4	CA-S	(7)/(5)	PZ	0.030	9.8
							PN	0.042	29.4
							PE LZ	0.042 0.042	4.9 36.3
							LN	0.042	52.9
							LE	0.071	45.1
					CA-K	(10)/(9)	LZ	0.027	2.0
						(), (-)	LN	0.030	2.9
							LE	0.030	2.0
03 01	0407	34.77	149.16	1.3	DAL	4/-	SH	0.08	36.
03 03	0317	34.76	149.20	1.5	DAL	4/-	SH	0.08	15.
03 03	0318	34.77	149.18	1.5	DAL	4/-	SH	0.08	10.
03 07	1535	34.79	149.19	1.1	DAL	6/-	SH	0.08	4.
03 07	1859	34.76	149.20	2.1	DAL	. 5/-	SH	0.08	77.
03 22	2204	34.78	149.22	1.1	DAL	5/-	SH	0.08	8.
03 24	1007	34.72	149.20	0.8	DAL	2/-	SH	0.08	22.
04 01	1054	34.79	149.18	2.1	DAL	7/-	SH	0.08	46.
04 01	1129	34.79	149.18	2.1	DAL	7/-	SH	0.08	26.
04 01	1210	34.80	149.18	2.3	DAL	7/-	SH	0.08	44.

TABLE 6 (cont.)

MN DY	TIME	LAT° S	LONG° E	ML	LOC	H/E	СОМ	T(s)	ACC
04 01	1958	34.79	149.19	2.0	DAL	7/-	SH	0.08	56.
04 11	1558	34.77	149.19	1.0	DAL	5/-	SH	0.08	16.
04 27	1617	34.76	149.18	0.9	DAL	3/-	SH	0.08	14.
04 28	0524	34.76	149.20	1.5	DAL	4/-	SH	0.08	15.
03 31	1032	30.72	117.13	1.8	CA-K	6/2	SZ SN	0.036 0.030	4.8 1.6
							SE	0.036	2.8
05 15	1206	117.13	30.76	3.4	CA-K	8/6.5	PZ PN	0.036 0.030	1.7 2.0
							PE	0.030	1.0
							SZ	0.042	3.4
							SN	0.024	5.3
							SE	0.042	15.0
					CA-S	5.5/4	PZ	0.042	4.2
					CA-S	3.3/4		0.036	
							PN		7.0
							PE	0.036	4.0
							SZ	0.036	2.5
							SN	0.088	14.0
							SE	0.072	6.0
							LZ	0.076	6.0
							LN	0.076	14.0
							LE	0.076	7.0
05 17	2244	34.77	149.20	1.6	DAL	5/-	SH	0.08	20.
05 20	0631	34.77	149.18	1.7	DAL	5/-	SH	0.08	44.
05 21	0327	30.78	117.10	2.4	CA-S	4.0/1.0	PZ	0.030	3.3
							PN	0.024	4.2
							PE	0.024	2.4
							SZ	0.030	2.5
							SN	0.036	1.8
							SE	0.052	10.0
05 27	0438	34.78	149.20	1.5	DAL	4/-	SH	0.08	22.
05 27	1711	30.83	117.12	3.0	CA-S	6.5/3.5	SZ	0.042	3.3
05 27	****	50.05		2.0	0.15	0.5,5.5	SN	0.042	6.0
							SE	0.042	9.1
							SL	0.040	7.1
05 30	0621	34.78	149.17	1.6	DAL	5/-	SH	0.08	27.
05 31	1748	(30.81)	(117.13)	1.5	CA-S	3.0/0.0	PZ	0.030	0.8
05 51	1170	(50.01)	(111.13)	1.5	C/ 1-0	3.0,0.0	PN	0.036	1.2
							PE	0.036	1.2
							SZ		
								0.036	1.3
							SN	0.054	2.4

TABLE 6 (cont.)

MN DY	TIME	LAT° S	LONG° E	ML	LOC	H/E	COM	T(s)	ACC
							SE	0.048	2.4
06 06	2052	34.76	149.21	1.1	DAL	3/-	SH	0.08	25.
06 16	1816	34.75	149.20	1.2	DAL	4/-	SH	0.08	19.
06 23	0629	34.92	149.86	2.8	DAL	67/-	SH	0.08	10.
06 25	0337	34.76	149.18	1.8	DAL	4/-	SH	0.08	33.
07 01	0839	34.77	149.19	1.1	DAL	4/-	SH	0.08	9.
07 05	0820	34.76	149.20	1.2	DAL	4/-	SH	0.08	24.
07 07	1351	34.79	149.19	1.9	DAL	6/-	SH	0.08	9.
07 07	2024	30.83	117.04	2.8	CA-S	9/9	PZ PN PE SZ SN SE LZ LN LE	0.04 0.04 0.04 0.03 0.03 0.05 0.03 0.05 0.03	4.0 0.6 1.8 3.2 2.8 1.8 4.0 4.0
					CA-K	15/15	LE LZ LN LE	0.03 0.03 0.03	1.6 1.6 2.3
					CA-R	11/11	LZ LN LE	0.03 0.05 0.05	2.8 5.4 2.8
07 18	1009	30.80	117.06	2.2	CA-K	(10)/(10)	LZ LN LE	0.025 0.03 0.03	1.4 1.1 1.2
08 09	1342	30.75	117.15	1.0	CA-A	(1)/(0)	LZ LN LE	0.065 0.020 0.026	6.0 19.1 28.4
08 13	0905	30.78	117.14	1.5	CA-R	(2)/(1)	LZ LN LE	0.030 0.061 0.073	0.6 0.6 0.6
08 20	2025	30.75	117.15	1.3	CA-A	2/1	SZ SN SE	0.025 0.025 0.035	11.8 46.0 22.5
08 23	0602	30.76	117.08	2.6	CA-S	8/7	PZ PN PE SZ	0.037 0.030 0.030 0.037	6.2 4.1 3.6 7.0

TABLE 6 (cont.)

MN DY	TIME	LAT° S	LONG° E	ML	LOC	H/E	СОМ	T(s)	ACC
							SN	0.030	3.5
							SE	0.037	9.5
					CA-A	6/4	SZ	0.067	5.9
					0	5, .	SN	0.030	13.7
							SE	0.030	14.7
08 27	0729	30.75	117.15	1.0	CA-A	(2)/(1)	SZ	0.065	8.3
00 2.	• , = ,	231.2		-10		(-), (-)	SN	0.030	16.6
							SE	0.025	8.8
09 11	0005	30.81	117.08	2.0	CA-K	(3)/(4)	LZ	0.030	0.7
							LN	0.030	1.1
							LE	0.043	1.5
09 18	0702	30.69	117.16	1.5	CA-K	(3)/(4)	LZ	0.024	0.4
							LN	0.030	1.1
							LE	0.043	1.2
09 27	0701	30.72	117.14	2.3	CA-A	(5)/(4)	SZ	(0.18)	3.4
							SN	0.038	11.8
							SE	0.038	6.9
09 28	1718	30.75	117.14	2.8	CA-A	(3)/(1.5)	PZ	0.12	5.4
							PN	0.23	2.0
							PE	0.13	0.8
							SZ	0.038	9.8
							SN	0.038	30.4
00.00	0157	20.72	117 12	2.2	C4 4	5 N 5	SE	0.038	14.7
09 29	2157	30.73	117.13	3.3	CA-A	5/2.5	PZ PN	0.13 0.17	4.9 5.1
							PE	0.17	0.9
							SZ	0.13	16.7
							SN	0.05	64.1
							SE	0.04	26.5
10 01	1921	30.78	117.12	2.0	CA-A	(5)/(5)	SZ	(0.14)	3.4
						(), ()	SN	0.038	16.2
							SE	0.038	10.8
10 03	0932	30.72	117.14	1.3	CA-K	(2)/(1)	SZ	0.030	1.4
							SN	0.030	2.7
							SE	0.030	5.7
10 04	1628	30.76	117.07	1.8	CA-K	(5)/(4)	PZ	0.021	0.7
							PN	0.021	0.6
							PE	0.021	0.6
							SZ	0.030	6.9
							SN	0.030	9.1
							SE	0.024	5.7
10 05	0132	30.76	117.08	2.6	CA-K	(5)/(4)	PZ	0.030	5.8
							PN	0.030	2.7

TABLE 6 (cont.)

MN DY	TIME	LAT° S	LONG° E	ML	LOC	H/E	СОМ	T(s)	ACC
							PE	0.030	2.9
							SZ	0.042	22.8
							SN	0.048	18.8
							SE	0.045	28.4
10 05	0132	30.76	117.08	2.6	CA-K	(5)/(4)	PZ	0.030	18.7
							PN	0.030	2.7
							PE	0.030	11.4
							SZ	0.030	21.9
							SN	0.042	21.5
							SE	0.036	22.8
					CA-A	(7)/(6)	SZ	0.16	2.9
							SN	0.051	13.2
							SE	0.05	4.9
10 05	0143	30.75	117.09	2.2	CA-K	(5)/(4)	PZ	0.024	2.3
							PN	0.024	1.1
							PE	0.024	0.3
							SZ	0.030	5.8
							SN	0.042	7.9
							SE	0.030	5.7
10 05	0402	30.73	117.14	0.4	CA-K	(2)/(1)	SZ	0.030	0.7
							SN	0.030	1.1
							SE	0.030	0.9
10 05	1048	30.73	117.13	0.7	CA-K	(3)/(2)	PZ	0.030	0.7
							PN	0.030	0.6
							PE	-	0.0
							SZ	0.030	3.4
							SN	0.024	3.7
		•					SE	0.030	6.9
10 06	1252	30.76	117.08	1.2	CA-K	(5)/(4)	PZ	0.024	0.7
							PN	-	0.0
							PE	-	0.0
							SZ	0.030	2.7
							SN	0.036	4.3
							SE	0.030	1.7
10 06	1252	30.76	117.08	0.9	CA-K	(5)/(4)	PZ	0.024	3.0
							PN	0.024	0.6
							PE	0.030	0.9
							SZ	0.030	2.1
							SN	0.030	3.2
							SE	0.030	2.3
10 08	1955	30.77	117.08	1.5	CA-K	(6)/(5)	PZ	0.024	0.7
							PN	-	0.0
							PE	0.024	0.3
							SZ	0.024	5.5
							SN	0.024	1.1

TABLE 6 (cont.)

MN DY	TIME	LAT° S	LONG° E	ML	LOC	H/E	COM	T(s)	ACC
							SE	0.024	1.2
10 08	1955	30.77	117.08	1.2	CA-K	(6)/(5)	PZ	0.024	1.7
10 08	1933	30.77	117.00	1.2	CA-K	(0)/(3)	PN	-	0.0
							PE	0.036	0.3
							SZ	0.030	2.1
								0.024	
							SN SE	0.024	0.5 1.2
10 09	0156	30.72	117.12	2.7	CA-K	4/1	PZ	0.024	3.4
							PN	0.024	2.7
							PE	0.024	2.4
							SZ	0.048	13.6
		÷					SN	0.045	40.3
							SE	0.045	21.7
					CA-A	6/4	SZ	0.08	4.4
					•	-,	SN	0.058	17.2
							SE	0.08	7.4
10 10	2026	20.75	117 15	1.8	CA A	3/1	D/7	0.019	9.0
10 19	2036	30.75	117.15	1.0	CA-A	3/1	PZ		
							PN	0.021	3.1
							PE	0.02	7.4
							SZ	0.029	19.1
							SN	0.029	52.4
							SE	0.03	39.2
10 25	0823	30.75	117.15	1.5	CA-A	2/1	SZ	0.019	12.3
							SN	0.019	14.2
							SE	0.02	20.6
10 27	1036	30.73	117.12	2.0	CA-K	4/2	PZ	0.021	0.7
10 27	1050	50.75	117.12	2.0	01111	.,	PN	0.021	0.5
							PE	0.021	0.6
							SZ	0.021	3.4
							SN	0.024	
							SE	0.030	3.7 6.3
11 03	1331	30.73	117.12	1.6	CA-K	(4)/(2)	SZ	0.030	2.0
							SN	0.030	0.5
							SE	0.030	1.0
11 07	2055	30.72	117.13	1.5	CA-K	(3)/(1)	PZ	0.030	0.3
							PN	0.030	0.5
							PE	0.030	0.6
							SZ	0.024	10.8
							SN	0.024	9.7
							SE	0.024	4.6
	22.55	00.75	1177.14		04.77	(2) ((2)			
11 10	2253	30.72	117.14	1.1	CA-K	(3)/(2)	PZ	0.030	0.7
							PN	0.030	0.5
							PE	0.030	0.6
							SZ	0.024	0.7
							SN	0.037	1.6

TABLE 6 (cont.)

MN DY	TIME	LAT° S	LONG° E	ML	LOC	H/E	COM	T(s)	ACC
							SE	0.037	2.2
11 16	0215	30.73	117.12	1.7	CA-K	(4)/(2)	PZ	0.021	3.1
							PN	0.021	0.5
							PE	0.043	0.6
							SZ	0.030	5.1
							SN	0.043	5.4
							SE	0.043	7.4
12 15	0932	30.79	117.09	2.1	CA-R	(6)/(5)	LZ	0.037	2.1
	•••						LN	0.037	(0.6)
							LE	0.037	(0.6)
12 31	2023	30.78	117.12	1.2	CA-R	(4)/(2)	LZ	0.04	(0.4)
01	- 3-2	22.70		_•-		(- // (- /	LN	0.04	(0.4)
							LE	0.04	(0.4)

MN	Month
DY	Day
TIME	Universal Coordinated Time (UTC)
ML	Richter magnitude
LOC	Accelerograph code/location
H/E	Hypocentral/epicentral distance (km)
COM	Component
T(s)	Ground period (s)
ACC	Peak ground acceleration (mm.s ⁻²)

TABLE 7. PRINCIPAL WORLD EARTHQUAKES, 1986

(Earthquakes of magnitude 7.0 or greater, or causing damage or fatalities. PAS--Pasadena, BRK--Berkeley, PMR--Palmer, Alaska, PAL--Palisades, New York, JMA--Japan Meterological Agency, TRI--Trieste, NEIS--US Geological Survey)*

Date	Origin time(UT)	Region	Lat.	Long.	Magnitude
11 Jan	19 42 21.9	Peru	9.51 S	77.51 W	5.3 mb
ple homel	km. One person killer ess in the Huarmey a d (II) at Chimbote.		•	•	-
3 Feb	15 12 46.7	Mexico-Guatemala border region	15.08 N	92.07 W	4.7 mb
	km. About 500 house ses in Mexico near the				mala. Damage to
12 Mar	16 32 56.0	Idaho	47.47 N	115.80 W	2.0 ML(NEIS)
Depth 1 I injured.	km. Rockburst in the	Lucky Friday mine	near Mullan Idal	no. One perso	n killed and two
5 Apr	20 14 28.7	Peru	13.41 S	71.79 W	5.3 mb 4.6 MS
-	km. At least 16 peo	•	and 2,000 hous	es destroyed in	the Cuzco area.
26 Apr	07 35 16.1	Kashmir-India border region	32.13 N	76.37 E	5.5 mb 5.3 MS
	km. Six people killed a, India area. Felt at L		red and 85 perce	nt of the house	es damaged in the
30 Apr	07 07 18.1	Near coast of Michoacan, Mexico	18.40 N	102.97 W	6.2 mb 7.0 MS 6.9 MS(BRK) 6.8 MS(PAS)
man and	km. Some minor dan Guadalajara. Felt stro seismogram.		• •		
5 May	03 35 38.8	Turkey	37.99 N	37.81 E	5.9 mb 5.9 MS

^{*} Based on USGS 'Earthquake Data Reports' and the SEAN bulletins.

TABLE 7 (cont.)

Date (Origin time(UT)	Region	Lat.	Long.	Magnitude
Dogansehir-Co around the c Kahramanman	olbasi area. Damag ities of Adiyaman as Diyarbakie, Anta	illed, 100 injured and the to all houses in the and Elbistan. Felt akya and Mardin. Son epicentral area. Depth	village of Kap strongly at Gane dangerous cr	idere. Slight d aziantep, Urfa, acks in the arc	lamage to houses Kayseri, Sivas, h of Surgu Dam.
7 May	22 47 10.8	Andreanof Islands, Aleutian Islands	51.52 N	174.78 W	6.4 mb 7.7 MS 7.9 MS(BRK) 7.8 MS(BRK)
wave heights Washington. Adak, 25 cm cm at Honolukaido; 24 cm City, Californ	91 to 122 cm at Ka Maximum recorded at Unalaska and 10 lu, Hawaii; 45 cm a at Chichi-shima, Bo ia; 10 cm at Wake	Damage (VI) on Adalapsa, Kauai and 61 to la wave heights at selection at Sand Point, Alat Copuimbo and 15 conin Islands; 40 cm at late Island and 5 cm at R; San Francisco, Cali	91 cm at Hanald ceted tide station laska; 55 cm at m at Valparaiso, Port Lyttleton, N Apia, Samoa.	ei, Kauai and a ns were as fol Hilo, 36 cm at Chile; 46 cm New Zealand; 1 Negative tsuna	long the coast of lows: 175 cm at t Kahului and 27 at Kushiro, Hok- 2 cm at Crescent ami reports were
13 May	08 44 02.1	Turkey-USSR border region	41.43 N	43.74 E	5.7 mb 5.4 MS
Slight damage and Tbilisi, (I'	in the Susuz area,	and about 1,500 build Turkey. Felt (VII) at Leninakan and Gegechl	Akhalkalaki an	d Bakuriani, ('	V) at Stepanavan
20 May	05 25 46.9	Taiwan	24.13 N	121.62 E	6.1 mb 6.4 MS 6.0 MS(BRK) 5.8 MS(PAS)
•	One person killed displacement seis	and 5 injured in the I mograms.	Hua-Lien area.	Felt throughout	t Taiwan. Depth
6 Jun	10 39 46.9	Turkey	38.08 N	37.88 E	5.6 mb 5.6 MS 5.8 MS(PAS)
	A landslide blocked	, 20 injured and dama I the road between Er			

TABLE 7 (cont.)

Date	Origin time(UT)	Region	Lat.	Long.	Magnitude
11 Jun	13 48 01.3	Near coast of	10.60 N	62.93 W	6.0 mb
		Venezuela			6.2 MS
					5.9 MS(BRK)
					6.1 MS(PAS)

Depth 19 km. Two people killed, 45 injured and many left homeless in the Cariaco area. Damage (VII) at Coropano, El Pilar and Rio Caribe. Felt (V) at Cumana and Maturin and (III) at Caracas. Felt at Barcelona, Peurto La Cruz and Valencia. Felt strongly on Trinidad; also felt at Bogota and Bucaramanaga, Colombia. Depth from broadband displacement seismograms.

20 Jun	17 12 46.9	Tibet	31.24 N	86.85 E	5.9 mb 6.1 MS
Depth 33 km	n. At least 58 hous	ses collapsed and many	damaged in the	Omba area.	
24 Jun	03 11 30.9	Papua New Guinea	4.45 S	143.94 E	6.6 mb 7.1 MS

Depth 102 km. Damage (VII) and landslides occurred throughout the Papua New Guinea highlands. Submarine cables from Madang to Guan and Madang to Cairns were damaged. Preliminary estimate of damage is approximately 500,000 U.S. dollars. Felt on New Guinea from Tabubil to Port Moresby and from Vanimo to Daru. Felt (III) at Arawa and Panguna, Bougainville. Depth from broadband displace-

ment seismograms.

6.9 mb(PAS)

8 Jul	09 20 44.5	Southern	34.00 N	116.61 W	5.8 mb
		California			6.0 MS
					6.0 ML(PAS)

Depth 12 km. At least 29 people injured and some damage in the Palm Springs- Morongo Valley area. Landslides occurred in the area. The most serious damage (VII) occurred at the Devers substation of Southern California Edison Company. Also some residences in the Whitewater Canyon area were badly damaged. Preliminary estimate of damage approximately 4.5 million dollars. Damage (VI) at Angelus Oaks, Desert Hot Springs, North Palm Springs, Palm Desert, Palm Springs and Yucca Valley. Felt throughout much of southern California. Also felt at Las Vegas, Nevada, Lake Havasu City, Arizona and in northern Baja California, Mexico. Depth 8.5 km from broadband displacement seismograms.

12 Jul	07 54 26.8	Southern Iran	29.96 N	51.58 E	5.7 mb	
					5.6 MS	

Depth 10 km. One person killed, four injured and about 300 homes damaged in the Mamasani area. Felt at Shiraz.

13 Jul	13 47 08.2	Southern	32.97 N	117.87 W	5.6 mb
		California			5.8 MS
					5.3 ML(PAS)

Date	Origin time(UT)	Region	Lat.	Long.	Magnitude
Newport B damage rep Diego Cou	Beach-San Diego are ported in the Tijuana inty. Felt throughou	eople injured, one crica. Preliminary estima area, Mexico. A smut the coastal area of d as far as Yuma, Ariz	ate of damage 72 all landslide occu southern Califor	20 thousand do rred near lakes	ollars. Also some ide in eastern San
18 Jul	17 22 38.2	Venezuela	10.77 N	69.43 W	5.9 mb 4.9 MS
	in Falcon, Lara, Car	l from a heart attack abobo, Zulia, Aragua a			
21 Jul	14 42 26.6	California Nevada border region	37.54 N	118.45 W	6.0 mb 6.2 MS 6.5 ML(BRK)
tions in the		California. Several bu	ildings were dam	aged (VI) at E	sishop, California.
tions in the Landslides faults in th earthquake south to Lo Depth 8.9 I	e Chalfant Valley, Coccurred in the area to Volcanic Tablelan was felt throughout os Angeles and Las		ildings were dam mum of 5 cm of alley and in the Wornia and Nevada ise buildings as fa	aged (VI) at E right-lateral sli hite Mountain from San Franc	sishop, California. p, occurred along s fault zone. The cisco to Reno and Lake City, Utah.
tions in the Landslides faults in the earthquake south to Lo Depth 8.9 In a Aug	e Chalfant Valley, Coccurred in the area to Volcanic Tablelan was felt throughout tos Angeles and Laskm from broadband of 01 33 20.3	California. Several bu a Fault rupture, maxind west of Chalfant Va a large area of Califo Vegas. Felt in high-r displacement seismogr	ildings were dam mum of 5 cm of alley and in the W ornia and Nevada ise buildings as fa ams. 37.20 N Jegoze and Sam, 6	aged (VI) at E right-lateral sli /hite Mountain from San France ar away as Salt 37.30 E Gaziantep Prov	sishop, California. p, occurred along s fault zone. The cisco to Reno and Lake City, Utah. 5.0 mb 4.1 MS ince and 3 houses
tions in the Landslides faults in the earthquake south to Lo Depth 8.9 In a Aug	e Chalfant Valley, Coccurred in the area to Volcanic Tablelan was felt throughout os Angeles and Laskm from broadband of 01 33 20.3	California. Several bu a Fault rupture, maxir d west of Chalfant Va a large area of Califo Vegas. Felt in high-r displacement seismogr Turkey damaged at Yesilce, U	ildings were dam mum of 5 cm of alley and in the W ornia and Nevada ise buildings as fa ams. 37.20 N Jegoze and Sam, 6	aged (VI) at E right-lateral sli /hite Mountain from San France ar away as Salt 37.30 E Gaziantep Prov	sishop, California. p, occurred along s fault zone. The cisco to Reno and Lake City, Utah. 5.0 mb 4.1 MS ince and 3 houses
tions in the Landslides faults in the earthquake south to Lo Depth 8.9 In a south 12 kdamaged at Felt also in 14 Aug	e Chalfant Valley, Coccurred in the area to Volcanic Tablelan was felt throughout os Angeles and Laskm from broadband of the Company of the Eskisehir area.	California. Several bu a Fault rupture, maxir d west of Chalfant Va a large area of Califo Vegas. Felt in high-r displacement seismogr Turkey damaged at Yesilce, U man Maras Province. Molucca	aildings were dam num of 5 cm of alley and in the Wornia and Nevada ise buildings as faams. 37.20 N Jegoze and Sam, of Felt at Kahrama	aged (VI) at E right-lateral sli /hite Mountain from San France ar away as Salt 37.30 E Gaziantep Provenmaras, Adiyan	sishop, California. p, occurred along s fault zone. The cisco to Reno and Lake City, Utah. 5.0 mb 4.1 MS ince and 3 houses man and Malatya. 6.6 mb 7.2 MS 7.4 MS(BRK)

Date	Origin time(UT)	Region	Lat.	Long.	Magnitude
		in the Focsani-Birlac			
		e killed, 558 injured, a			
		the Kishinev-Kagul a			
	_	(IV) at Simferopol an		_	_ , ,
		Yugoslavia. Felt throu			
Greece, Turk	tey, southern Italy a	nd eastern Poland. De	pth from broadb	and displacement	nt seismograms.
13 Sep	17 24 33.7	Southern Greece	37.03 N	22.20 E	5.8 mb
о обр	1, 2, 55,,	Doubles Circle	57.05 11		5.9 MS
					J.7 1415
Santh 20 Irm	m Turantu naanla	killed, about 300 inju	and about 1500	huildings dome	and on doctrors
_	•			-	-
_	-	e Kalamai area. Felt i	n Lakonia and c	on Zakintnos. A	also leit at Ather
ind in centra	al Greece.				
6 Oct	23 28 11.9	Yunnan	25.50 N	102.35 E	5.3 mb
		Province, China			4.5 MS
		·			
Depth 42 km	n. Several people in	jured and some houses	damaged in the	Fumin area.	
•	• •	•	Ü		
10 Oct	17 49 23.7	El Salvador	13.83 N	89.13 W	5.0 mb
.0 001	11 7/ 20.1	Li Saivauoi	13.03.11	07.13 **	
					5 1 NAC
San Salvado ige at Tegu	r area. About 50 fa acigalpa, Honduras.	ople killed, 10 000 injustalities were the result Felt strongly in part	red, 200 000 ho	the epicentral	area. Some dan
San Salvado ige at Tegu	r area. About 50 fa acigalpa, Honduras.	italities were the result	red, 200 000 ho	the epicentral	ere damage in th area. Some dan
San Salvado age at Tegu Central Ame	r area. About 50 fa acigalpa, Honduras.	italities were the result	red, 200 000 ho	the epicentral	ere damage in th area. Some dam Felt throughor
San Salvado age at Tegu Central Ame	or area. About 50 fa acigalpa, Honduras. erica.	atalities were the result Felt strongly in part	red, 200 000 ho of landslides ir s of Guatemala	the epicentral and Honduras.	ere damage in th area. Some dam Felt throughor
San Salvado age at Tegu Central Ame	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3	atalities were the result Felt strongly in part	ared, 200 000 ho of landslides in s of Guatemala	the epicentral and Honduras.	ere damage in tharea. Some dam
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km.	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage	Felt strongly in part El Salvador e in the San Salvador	ared, 200 000 ho of landslides in s of Guatemala 13.81 N	the epicentral and Honduras. 89.39 W	ere damage in the area. Some dam Felt throughout 3.9 MC(CCC
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km.	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3	Atalities were the result Felt strongly in part El Salvador	ared, 200 000 ho of landslides in s of Guatemala	the epicentral and Honduras.	ere damage in tharea. Some dam
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km.	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage	Felt strongly in part El Salvador e in the San Salvador	ared, 200 000 ho of landslides in s of Guatemala 13.81 N	the epicentral and Honduras. 89.39 W	ere damage in the area. Some dam Felt throughout 3.9 MC(CCC
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km.	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage	Felt strongly in part El Salvador e in the San Salvador a Kermadec Islands	ared, 200 000 ho of landslides in s of Guatemala 13.81 N	the epicentral and Honduras. 89.39 W	ere damage in the area. Some dam. Felt throughout 3.9 MC(CCC) 6.6 mb 8.2 MS
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km.	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage	El Salvador e in the San Salvador Kermadec	ared, 200 000 ho of landslides in s of Guatemala 13.81 N	the epicentral and Honduras. 89.39 W	ere damage in the area. Some damage. Felt throughout 3.9 MC(CCC) 6.6 mb 8.2 MS
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km.	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage	El Salvador e in the San Salvador Kermadec Islands region	ared, 200 000 hors of landslides in s of Guatemala 13.81 N area.	89.39 W	ere damage in the area. Some damage in the are
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke	El Salvador e in the San Salvador Kermadec Islands region d from shelves on Ra	red, 200 000 hors of landslides in s of Guatemala 13.81 N area. 28.10 S	89.39 W 176.43 W	ere damage in the area. Some damage in the are
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated w	El Salvador e in the San Salvador Kermadec Islands region d from shelves on Ra ith maximum wave he	red, 200 000 hors of landslides in s of Guatemala 13.81 N area. 28.10 S oul Island. Feltights 22 cm at 1	89.39 W 176.43 W at Napier and Hilo, 15 cm at 1	ere damage in the area. Some dan Felt throughout 3.9 MC(CCC) 6.6 mb 8.2 MS 8.3 MS(BRK) Wellington, Ne Kahului, 13 cm
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated w	El Salvador e in the San Salvador Kermadec Islands region d from shelves on Ra	red, 200 000 hors of landslides in s of Guatemala 13.81 N area. 28.10 S oul Island. Feltights 22 cm at 1	89.39 W 176.43 W at Napier and Hilo, 15 cm at 1	ere damage in the area. Some dan Felt throughout 3.9 MC(CCC) 6.6 mb 8.2 MS 8.3 MS(BRK) Wellington, Ne Kahului, 13 cm
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts Honolulu an	ar area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated w ad 7 cm at Kona, Ha	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he twaii; 14 cm at Papeete	13.81 N area. 28.10 S oul Island. Feltights 22 cm at 10, Tahiti and 10	89.39 W 176.43 W at at Napier and Hilo, 15 cm at Pago Pag	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm o, Samoa Island
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts Honolulu an	or area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated w	El Salvador e in the San Salvador Kermadec Islands region d from shelves on Ra ith maximum wave he	red, 200 000 hors of landslides in s of Guatemala 13.81 N area. 28.10 S oul Island. Feltights 22 cm at 1	89.39 W 176.43 W at Napier and Hilo, 15 cm at 1	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm o, Samoa Island
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts Honolulu an	ar area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated w ad 7 cm at Kona, Ha	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he twaii; 14 cm at Papeete	13.81 N area. 28.10 S oul Island. Feltights 22 cm at 10, Tahiti and 10	89.39 W 176.43 W at at Napier and Hilo, 15 cm at Pago Pag	ere damage in the area. Some dam. Felt throughout 3.9 MC(CCC) 6.6 mb 8.2 MS 8.3 MS(BRK) Wellington, Ne Kahului, 13 cm to, Samoa Islands
San Salvado lige at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts Honolulu an	ar area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated w ad 7 cm at Kona, Ha	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he twaii; 14 cm at Papeete	13.81 N area. 28.10 S oul Island. Feltights 22 cm at 10, Tahiti and 10	89.39 W 176.43 W at at Napier and Hilo, 15 cm at Pago Pag	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm o, Samoa Islands 6.2 mb 7.8 MS
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts Honolulu an	ar area. About 50 fa acigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated w ad 7 cm at Kona, Ha	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he twaii; 14 cm at Papeete	13.81 N area. 28.10 S oul Island. Feltights 22 cm at 10, Tahiti and 10	89.39 W 176.43 W t at Napier and Hilo, 15 cm at Pago Pag	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm o, Samoa Island 6.2 mb 7.8 MS
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 kg Zealand. Ts Honolulu an	ar area. About 50 far area. About 50 far area. Honduras. Prica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocker sunami generated wind 7 cm at Kona, Haran 21 20 04.6	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he iwaii; 14 cm at Papeeta Taiwan	13.81 N area. 28.10 S oul Island. Feltights 22 cm at 16, Tahiti and 10 23.96 N	89.39 W 176.43 W at at Napier and Hilo, 15 cm at Pago Page 121.82 E	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm o, Samoa Island 6.2 mb 7.8 MS 7.5 MS(BRK
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 kg Zealand. Ta Honolulu an 14 Nov	ar area. About 50 far area. About 50 far area. Honduras. Prica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocker sunami generated ward 7 cm at Kona, Hara 21 20 04.6 m. Fifteen people 1	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he awaii; 14 cm at Papeeta Taiwan	13.81 N area. 28.10 S oul Island. Feltights 22 cm at 10, Tahiti and 10 23.96 N damage in the 7	89.39 W 176.43 W 176.43 W 1 at Napier and Hilo, 15 cm at Pago Pag 121.82 E	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm o, Samoa Island 6.2 mb 7.8 MS 7.5 MS(BRK
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts Honolulu an 14 Nov	ar area. About 50 far area. About 50 far area. Honduras. Prica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocker sunami generated ward 7 cm at Kona, Haran 21 20 04.6 m. Fifteen people 1 and the highway be	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he awaii; 14 cm at Papeeta Taiwan killed, 44 injured and atween Su-ao and Hua	13.81 N 13.81 N	89.39 W 176.43 W 176.43 W 1 at Napier and Hilo, 15 cm at Pago Pag 121.82 E Taipei- Hua-lien o Guam and Ta	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm 6.2 mb 7.8 MS 7.5 MS(BRK area. Landslidaiwan to Okinav
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts Honolulu an 14 Nov	or area. About 50 farcigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated ward 7 cm at Kona, Harcing 21 20 04.6 m. Fifteen people is pong the highway be ecommunication cal	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he awaii; 14 cm at Papeete Taiwan killed, 44 injured and atween Su-ao and Hua oles were damaged. Fe	13.81 N 14.10 S	89.39 W 176.43 W 176.43 W 1 at Napier and Hilo, 15 cm at Pago Pag 121.82 E Taipei- Hua-lien o Guam and Ta	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm 6.2 mb 7.8 MS 7.5 MS(BRK area. Landslidaiwan to Okinav
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 ki Zealand. Ts Honolulu an 14 Nov	or area. About 50 farcigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated ward 7 cm at Kona, Harcing 21 20 04.6 m. Fifteen people is pong the highway be ecommunication cal	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he awaii; 14 cm at Papeeta Taiwan killed, 44 injured and atween Su-ao and Hua	ared, 200 000 hors of landslides in s of Guatemala 13.81 N area. 28.10 S oul Island. Feltights 22 cm at 10 graphs 22 cm at 10 graphs 23.96 N damage in the 7-lien. Taiwan telt strongly through	89.39 W 176.43 W 176.43 W 1 at Napier and Hilo, 15 cm at Pago Pag 121.82 E Taipei- Hua-lien o Guam and Ta	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm 10, Samoa Island 6.2 mb 7.8 MS 7.5 MS(BRK 11 area. Landslide aiwan to Okinaw
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 kg Zealand. Ts Honolulu an 14 Nov Depth 33 kg occurred alc undersea tel Yonaguni-jii	m. Objects knockersunami generated wid 7 cm at Kona, Haran 21 20 04.6	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he awaii; 14 cm at Papeeta Taiwan killed, 44 injured and atween Su-ao and Hua bles were damaged. For a Ishigaki-shima, Ryuk	13.81 N 14. Taiwan the strongly through Islands.	89.39 W 176.43 W 176.43 W 1 at Napier and Hilo, 15 cm at Pago Pag 121.82 E Faipei- Hua-lien o Guam and Taughout Taiwan.	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm 10, Samoa Island 6.2 mb 7.8 MS 7.5 MS(BRK 11 area. Landslide aiwan to Okinaw Felt (III JMA) of
San Salvado age at Tegu Central Ame 10 Oct Depth 5 km. 20 Oct Depth 33 km Zealand. Ts Honolulu an 14 Nov Depth 33 km occurred alc undersea tel	or area. About 50 farcigalpa, Honduras. erica. 20 50 14.3 Additional damage 06 46 10.4 m. Objects knocke sunami generated ward 7 cm at Kona, Harcing 21 20 04.6 m. Fifteen people is pong the highway be ecommunication cal	El Salvador El Salvador e in the San Salvador a Kermadec Islands region d from shelves on Ra ith maximum wave he awaii; 14 cm at Papeete Taiwan killed, 44 injured and atween Su-ao and Hua oles were damaged. Fe	ared, 200 000 hors of landslides in s of Guatemala 13.81 N area. 28.10 S oul Island. Feltights 22 cm at 10 graphs 22 cm at 10 graphs 23.96 N damage in the 7-lien. Taiwan telt strongly through	89.39 W 176.43 W 176.43 W 1 at Napier and Hilo, 15 cm at Pago Pag 121.82 E Taipei- Hua-lien o Guam and Ta	6.6 mb 8.2 MS 8.3 MS(BRK Wellington, Ne Kahului, 13 cm 6.2 mb 7.8 MS 7.5 MS(BRK area. Landslidaiwan to Okinav

TABLE 7 (cont.)

Origin time(UT)	Region	Lat.	Long.	Magnitude
many parts of southw	vestern Yugoslavia.			
05 19 48.1	Brazil	5.55 S	35.75 W	5.0 mb
. Approximately 150	0 houses damaged	(VII) in the Joao C	amara area. Fe	lt at Natal.
14 17 10.5	Bulgaria	43.29 N	25.85 E	5.1 mb
•	-	_	•	
20 24 20.9	Poland	51.25 N	15.71 E	3.8 ML(KBA) 3.7 ML(GRF)
n. Three people kille	ed and 5 injured in	the Zabrze-Bielszov	vice Mine near	Katowice.
23 47 09.8	Iran	29.96 N	51.61 E	5.4 mb 5.1 MS
n. About 80 houses	damaged in the Ma	masani area.		
• • • • • • • • • • • • • • • • • • •	n. At least 12 people many parts of southwithe Graz-Klagenfurt a 05 19 48.1 . Approximately 150 14 17 10.5 cm. At least 3 people area. Felt throughout 20 24 20.9 n. Three people killed 23 47 09.8	m. At least 12 people injured, damage of many parts of southwestern Yugoslavia. The Graz-Klagenfurt area, Austria. 05 19 48.1 Brazil Approximately 1500 houses damaged 14 17 10.5 Bulgaria The least 3 people killed, 60 injured in 20 24 20.9 Poland Three people killed and 5 injured in 23 47 09.8 Iran	m. At least 12 people injured, damage (VIII) and landslides many parts of southwestern Yugoslavia. Also felt along the Graz-Klagenfurt area, Austria. 05 19 48.1 Brazil 5.55 S Approximately 1500 houses damaged (VII) in the Joao Carlot 14 17 10.5 Bulgaria 43.29 N am. At least 3 people killed, 60 injured and damage area. Felt throughout Bulgaria. Also felt at Bucharest, Rose 20 24 20.9 Poland 51.25 N Three people killed and 5 injured in the Zabrze-Bielszov	n. At least 12 people injured, damage (VIII) and landslides in the Knin-Grany parts of southwestern Yugoslavia. Also felt along the northeastern the Graz-Klagenfurt area, Austria. 05 19 48.1 Brazil 5.55 S 35.75 W Approximately 1500 houses damaged (VII) in the Joao Camara area. Felt 17 10.5 Bulgaria 43.29 N 25.85 E cm. At least 3 people killed, 60 injured and damage (VIII) in the area. Felt throughout Bulgaria. Also felt at Bucharest, Romania and Istar 20 24 20.9 Poland 51.25 N 15.71 E n. Three people killed and 5 injured in the Zabrze-Bielszowice Mine near 23 47 09.8 Iran 29.96 N 51.61 E

TABLE 8. NUCLEAR EXPLOSIONS, 1986

DATE	TIME (UT)	SITE*	mb	Ms	LAT⁰	LONG°	REF#	CODE NAME
m d	hm s							
03 22	1615 00.0	NTS	5.1		37.083 N	116.066 W	PDE	'glencoe'
04 10	1408 30.1	NTS	4.9		37.218 N	116.183 W	PDE	'mighty oak'
04 20	2312 29.9	NTS	4.0		37. N	116. W	PDE	'mogolion'
04 22	1430 00.1	NTS	5.3	4.2	37.264 N	116.440 W	PDE	'jefferson'
04 26	1701 56.6	Mur	4.8		22.150 S	139.120 W	PDE	
05 06	1658 00.0	Mur	4.8		22 S	139 W	NZ	
05 21	1359 00.0	NTS			37.125 N	116.060 W	PDE	'panamint'
05 27	1715 00.0	Mur	4.7		22 S	139 W	NZ	
05 30	1724 58.6	Mur	5.6	4.3	21.860 S	139.030 W	ISC	
06 05	1504 00.1	NTS	5.3	4.2	37.098 N	116.016 W	PDE	'tajo'
06 25	2027 45.1	NTS	5.5	4.2	37.265 N	116.499 W	PDE	'darwin'(UK)
07 17	2100 00.1	NTS	5.7		37.279 N	116.356 W	PDE	'cybar'
07 24	1505 00.1	NTS	4.4		37.143 N	116.071 W	PDE	'cornucopia'
09 04	1609 00.1	NTS			37 N	116 W	NRDC	'galveston'
09 11	1457 00.1	NTS			37.069 N	116.050 W	PDE	'aleman'
09 30	2230 00.1	NTS	5.5	4.5	37.300 N	116.307 W	PDE	'labquark'
10 16	1925 00.1	NTS	5.6		37.220 N	116.462 W	PDE	'belmont'
11 10	1658 00.0	Mur	4.9		22 S	139 W	NZ	
11 12	1701 58.3	Mur	5.3		21.911 S	139.085 W	PDE	
11 14	1600 00.1	NTS	5.8	4.5	37.100 N	116.048 W	PDE	'gascon'
12 06	1710 00.0	Mur	5.0		22 S	139 W	NZ	
12 10	1714 58.3	Mur	5.2		21.926 S	138.917 W	PDE	
12 13	1750 05.1	NTS	5.5		37.263 N	116.412 W	PDE	'bodie'

^{*}NTS Nevada, USA

EKaz East Kazakh, USSR

MUR Muroroa, French Polynesia

[#] ISC International Seismological Centre, UK

NZ Department of Scientific and Industrial Research, New Zealand

PDE Preliminary Determination of Epicentres, USA

FOA National Defence Research Institute, Sweden

NRDC Natural Resources Defense Council, USA

APPENDIX

MODIFIED MERCALLI (MM) SCALE OF EARTHQUAKE INTENSITY (after Eiby, 1966)

- MM I Not felt by humans, except in especially favourable circumstances, but birds and animals may be disturbed. Reported mainly from the upper floors of buildings more than ten storeys high. Dizziness or nausea may be experienced. Branches of trees, chandeliers, doors, and other suspended systems of long natural period may be seen to move slowly. Water in ponds, lakes, reservoirs, etc., may be set into seiche oscillation.
- MM II Felt by a few persons at rest indoors, especially by those on upper floors or otherwise favourably placed. The long-period effects listed under MM I may be more noticeable.
- MM III Felt indoors, but not identified as an earthquake by everyone. Vibrations may be likened to the passing of light traffic. It may be possible to estimate the duration, but not the direction. Hanging objects may swing slightly. Standing motorcars may rock slightly.
- MM IV Generally noticed indoors, but not outside. Very light sleepers may be awakened. Vibration may be likened to the passing of heavy traffic, or to the jolt of a heavy object falling or striking the building. Walls and frame of building are heard to creak. Doors and windows rattle. Glassware and crockery rattle. Liquids in open vessels may be slightly disturbed. Standing motorcars may rock, and the shock can be felt by their occupants.
- MM V Generally felt outside, and by almost everyone indoors. Most sleepers awakened. A few people frightened. Direction of motion can be estimated. Small unstable objects are displaced or upset. Some glassware and crockery may be broken. Some windows crack. A few earthenware toilet fixtures crack. Hanging pictures move. Doors and shutters swing. Pendulum clocks stop, start, or change rate.
- MM VI Felt by all. People and animals alarmed. Many run outside. Difficulty experienced in walking steadily. Slight damage to masonry D. Some plaster cracks or falls. Isolated cases of chimney damage. Windows and crockery broken. Objects fall from shelves, and pictures from walls. Heavy furniture moves. Unstable furniture overturns. Small school bells ring. Trees and bushes shake, or are heard to rustle. Material may be dislodged from existing slips, talus slopes, or slides.
- MM VII General alarm. Difficulty experienced in standing. Noticed by drivers of motorcars. Trees and bushes strongly shaken. Large bells ring. Masonry D cracked and damaged. A few instances of damage to Masonry C. Loose brickwork and tiles dislodged. Unbraced parapets and architectural ornaments may fall. Stone walls crack. Weak chimneys break, usually at the roof-line. Domestic water tanks burst. Concrete irrigation ditches damaged. Waves seen on ponds and lakes. Water made turbid by stirred-up mud. Small slips, and caving-in of sand and gravel banks.
- MM VIII Alarm may approach panic. Steering of motor cars affected. Masonry C damaged, with partial collapse. Masonry B damaged in some cases. Masonry A undamaged. Chimneys, factory stacks, monuments, towers, and elevated tanks twisted or brought down. Panel walls thrown out of frame structures. Some brick veneers damaged. Decayed wooden piles break. Frame houses not secured to the foundation may move. Cracks appear on steep slopes and in wet ground. Landslips in roadside cuttings and unsupported excavations. Some tree branches may be broken off.

- MM IX General panic. Masonry D destroyed. Masonry C heavily damaged, sometimes collapsing completely. Masonry B seriously damaged. Frame structures racked and distorted. Damage to foundations general. Frame houses not secured to the foundations shift off. Brick veneers fall and expose frames. Cracking of the ground conspicuous. Minor damage to paths and roadways. Sand and mud ejected in alluviated areas, with the formation of earthquake fountains and sand craters. Underground pipes broken. Serious damage to reservoirs.
- MM X Most masonry structures destroyed, together with their foundations. Some well-built wooden buildings and bridges seriously damaged. Dams, dykes, and embankments seriously damaged. Railway lines slightly bent. Cement and asphalt roads and pavements badly cracked or thrown into waves. Large landslides on river banks and steep coasts. Sand and mud on beaches and flat land moved horizontally. Large and spectacular sand and mud fountains. Water from rivers, lakes, and canals thrown up on the banks.
- MM XI Wooden frame structures destroyed. Great damage to railway lines. Great damage to underground pipes.
- MM XII Damage virtually total. Practically all works of construction destroyed or greatly damaged. Large rock masses displaced. Lines of slight and level distorted. Visible wave-motion of the ground surface reported. Objects thrown upwards into the air.

Categories of non-wooden construction

- Masonry A Structures designed to resist lateral forces of about 0.1 g, such as those satisfying the New Zealand Model Building By-law, 1955. Typical buildings of this kind are well reinforced by means of steel or ferro-concrete bands, or are wholly of ferro-concrete construction. All mortar is of good quality and the design and workmanship are good. Few buildings erected prior to 1935 can be regarded as Masonry A.
- Masonry B Reinforced buildings of good workmanship and with sound mortar, but not designed in detail to resist lateral forces.
- Masonry C Buildings of ordinary workmanship, with mortar of average quality. No extreme weakness, such as inadequate bonding of the corners, but neither designed nor reinforced to resist lateral forces.
- Masonry D Buildings with low standards of workmanship, poor mortar, or constructed of weak materials like mud brick and rammed earth. Weak horizontally.
- Windows Window breakage depends greatly upon the nature of the frame and its orientation with respect to the earthquake source. Windows cracked at MM V are usually either large display windows, or windows tightly fitted to metal frames.
- Chimneys The 'weak chimneys' listed under MM VII are unreinforced domestic chimneys of brick, concrete block, or poured concrete.
- Water tanks The 'domestic water tanks' listed under MM VII are of the cylindrical corrugated-iron type common in New Zealand rural areas. If these are only partly full, movement of the water may burst soldered and riveted seams. Hot-water cylinders constrained only by supply and delivery pipes may move sufficiently to break pipes at about the same intensity.

9 780644 132220

B89/22113 Cat. No. 89 23913