

Woodcutters

OZCHRON '99 DOCUMENTATION

AGSO's National Geochronology Database of Australia

AGSORECORD 1999/02

by S.M. Edgecombe, M. Hazell, R.W. Page, L.P. Black, S-S. Sun and R.J. Ryburn

BMR comp 1999/02 copy 2

AGSO's National Geochronology Database of Australia

OZCHRON99 Dataset Documentation

AGSO Record 1999/02

by S. M. Edgecombe, M. Hazell, R. W. Page, L. P. Black, S-S. Sun and R. J. Ryburn

DEPARTMENT OF INDUSTRY, SCIENCE & RESOURCES

Minister for Industry, Science & Resources: Senator the Hon. Nick Minchin Secretary: Russell Higgins

AUSTRALIAN GEOLOGICAL SURVEY ORGANISATION

Executive Director: Dr Neil Williams

ISSN: 1039-0073 ISBN: 0 642 27377 4

© Commonwealth of Australia 1999

This work is copyright. Apart from any fair dealings for the purposes of study, research, criticism or review, as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Executive Director, Australian Geological Survey Organisation. Inquiries should be directed to the Executive Director, Australian Geological Survey Organisation, GPO Box 378, Canberra City, ACT, 2601

AGSO has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not rely solely on this information when making a commercial decision.

TABLE OF CONTENTS

SECTION 1—THE STRUCTURE OF THE OZCHRON DATABASE	7
1.1 INTRODUCTION	7
1.2 STRUCTURE OF OZCHRON AND ASSOCIATED DATABASE TABLES	7
SECTION 2—DESCRIPTIONS OF THE MAIN TABLES USED IN OZCH	RON13
2.1 – THE SITES TABLE	13
2.2 – THE OUTCROPS TABLE	16
2.3 – THE ROCKS TABLE	17
2.4 – THE LITHDATA TABLE	19
2.5 THE SECTHOLES TABLE	20
2.6 THE INTERIZONS TABLE	22
2.7 THE STRUCTURES TABLE	24
2.8. THE RB-SR TABLES 2.8.1. RB_SR TABLE 2.8.2 RBSR_AGES TABLE	25 25 26
2.9. CONVENTIONAL U-PB DATA TABLES 2.9.1 U_PB TABLE 2.9.2. UPB_AGES TABLE 2.10 THE U-PB 'SHRIMP' DATA TABLES	27 28 29
2.10 THE U-PB 'SHRIMP' DATA TABLES 2.10.1. SHRIMP TABLE 2.10.2. SHRIMP_AGES TABLE	30 30 32
2.11 THE SM-ND DATA TABLES 2.11.1 SMND_AGES TABLE 2.11.2 SM_ND TABLE	33 35 36
SECTION 3—DESCRIPTION OF THE AUTHORITY TABLES	39
3.1 AGE_USED AUTHORITY TABLE	39
3.2 AGSOAUTHS AUTHORITY TABLE	39
3.2 AGSOCOUNTRIES AUTHORITY TABLE	39
3.3 AGSOREFS AUTHORITY TABLE	40
3.4 AGSOSTATES AUTHORITY TABLE	40
3.5 AGSOMINERALS AUTHORITY TABLE	41
3.6 COMMON_PB AUTHORITY TABLE	4:

OZCHRON99 Release

3.7 CONTACTS AUTHORITY TABLE	43
3.8 GEOPROVS AUTHORITY TABLE	43
3.9 GEOREGIONS AUTHORITY TABLE	50
3.10 GEOTIME AUTHORITY TABLE	51
3.11 HMAPS AUTHORITY TABLE	53
3.12 IZ_RECTYPES AUTHORITY TABLE	54
3.13 LANDF AUTHORITY TABLE	54
3.14 LITHDATATYPES AUTHORITY TABLE	55
3.15 LITHOLOGIES AUTHORITY TABLE	55
3.16 LITHUNITS AUTHORITY TABLE	66
3.17 LOCMETHODS AUTHORITY TABLE	66
3.18 MEAN_METHOD AUTHORITY TABLE	67
3.19 METHODS TABLE	67
3.20 ORIGINATORS AUTHORITY TABLE	68
3.20 THE PROVRANKS AUTHORITY TABLE	71
3.21 QMAPS AUTHORITY TABLE	71
3.22 ROCKTYPES AUTHORITY TABLE	72
3.23 SECTYPES AUTHORITY TABLE	72
3.25 STRATLEX AUTHORITY VIEW	72
3.26 THE STRATRELS AUTHORITY TABLE	75
3.27 THE STRUCTYPES AUTHORITY TABLE	75
3.28 VEGTYPES AUTHORITY TABLE	76
SECTION 4—DATA DICTIONARY	79
4.1 OZROX TABLES	79
4.1.1 Main Tables	79
4.1.1.1 INTERIZONS table data dictionary	79
4.1.1.2 LITHDATA table data dictionary	79
4.1.1.3OUTCROPS table data dictionary	80
4.1.1.4 ROCKS table data dictionary	80
4.1.1.5 SECTHOLES table data dictionary	81
4.1.1.6 SITES table data dictionary	82
4.1.1.7 STRUCTURES table data dictionary	83
4.1.2 Authority Tables	83
4.1.2.1 AGSOAUTHS table data dictionary	83
4.1.2.2 AGSOCOUNTRIES authority table data dictionary	84
4.1.2.3 AGSOMINERALS authority table data dictionary	84
4 1 2 4 AGSOREFS table data dictionary	84

OZCHRON99 Release

4.1.2.5 AGSOSTATES authority table data dictionary	85
4.1.2.6 CONTACTS authority table data dictionary	85
4.1.2.7 GEOPROVS authority table data dictionary	85
4.1.2.8 GEOREGIONS authority table data dictionary	86
4.1.2.9 GEOTIME authority table data dictionary	86
4.1.2.10 HMAPS authority table data dictionary	86
4.1.2.11 IZ_RECTYPES authority table data dictionary	87
4.1.2.12 LANDF authority table data dictionary	87
4.1.2.13 LITHDATATYPES authority table data dictionary	87
4.1.2.14 LITHNAMES view data dictionary	88
4.1.2.15 LITHOLOGIES authority table data dictionary	88
4.1.2.16 LITHUNITS authority table data dictionary	88
4.1.2.17 LOCMETHODS authority table data dictionary	89
4.1.2.18 ORIGINATORS authority table data dictionary	89
4.1.2.19 PROVRANKS authority table data dictionary	89
4.1.2.20 QMAPS authority table data dictionary	89
4.1.2.21 ROCKDATATYPES view data dictionary	90
4.1.2.22 ROCKTYPES authority table data dictionary	90
4.1.2.23 SECTYPES authority table data dictionary	90
4.1.2.24 STRATLEX authority table data dictionary	91
4.1.2.25 STRATRANK authority table data dictionary	91
4.1.2.26 STRATRELS authority table data dictionary	91
4.1.2.27 STRATSTATUS authority table data dictionary	92
4.1.2.28 STRUCTYPES authority table data dictionary	92
4.1.2.29 TIMERANK authority table data dictionary	92
4.1.2.30 TIMESCOPE authority table data dictionary	93
4.1.2.31 TIMESTATUS authority table data dictionary	93
4.1.2.32 VEGET authority table data dictionary	93
42 OZCHDON TADI EC	94
4.2 OZCHRON TABLES 4.2.1 Main Tables	94
4.2.1 Wall Tables 4.2.1.1 RBSR_AGES table data dictionary	94
4.2.1.1 RBSR_AGES table data dictionary	94
4.2.1.3 SHRIMP_AGES table data dictionary	95
4.2.1.4 SHRIMP table data dictionary	95
4.2.1.5 SMND_AGES table data dictionary	96
4.2.1.6 SM_ND table data dictionary	96
4.2.1.7 UPB_AGES table data dictionary	97
4.2.1.8 U_PB table data dictionary	97
4.2.2 Authority Tables	98
4.2.2.1 AGE_USED authority table data dictionary	98
4.2.2.2 COMMON_PB authority table data dictionary	98
4.2.2.3 MAXNOS table data dictionary	99
4.2.2.4 MEAN_METHOD authority table data dictionary	99
4.2.2.5 METHODS authority table data dictionary	99
SECTION 5—OZCHRON MICROSOFT ACCESS FORMS	101
Carrier Carrier moneton i nombo i onimo	
5.1 OZCHRON MAIN MENU	101
5.2 THE SITES FORM	102
5.3 THE ROCKS FORM	102
5.4 THE REFERENCES FORM	103
5.5 THE CONVENTIONAL U-PB FORM	103
5.6 THE SHRIMP FORM	105

OZCHRON99 Release

5.7 THE RB-SR FORM	105
5.8 THE SM-ND FORM	106
5.9 THE SM-ND MODEL AGE FORM	106
5.10 THE OUTCROPS FORM	106
5.11 THE SECTHOLES FORM	108
5.12 REPORTS	108
SECTION 6—OZCHRON99 DATA SET	111

Section 1

The Structure of the OZCHRON Database

Section 1—The structure of the OZCHRON Database

1.1 INTRODUCTION

OZCHRON is the geochronological data storage and retrieval system of the Australian Geological Survey Organisation (AGSO). It is a dynamic database that will be continuously updated as volume, variety and quality of geochronological data increase.

Geochronological information on Australian Precambrian and Phanerozoic terranes has been generated over more than 30 years, and the data in OZCHRON have been compiled from a variety of published and unpublished sources. Unpublished ages and interpretations acquired by AGSO under co-operative agreements are also included. OZCHRON summarises the analytical data and resultant ages, and acknowledges the primary source of the data. Comments are also included on the geological relevance and reliability of those ages.

This manual describes the structure of OZCHRON and the purpose of the individual fields. Listings of authority table contents are also included, as well as a complete data dictionary for all tables. The manual has been prepared on the assumption that the purchaser is setting up their own database. In AGSO, OZCHRON is implemented under ORACLE's relational database management system running under the Sun OS 5.6 UNIX operating system on a Sun Systems computer. Those purchasers who acquire the database in ORACLE format may also find useful an AGSO in-house Record by Ryburn, R.J., Page, R.W., & Richards, J.R. 1993, 'User's guide to the OZCHRON database'. AGSO Record 1993/11.

This manual has been prepared in loose leaf format so that descriptive data on additional releases, or on new methods can easily be added.

1.2 STRUCTURE OF OZCHRON AND ASSOCIATED DATABASE TABLES

OZCHRON is part of a system of databases (Figure 1.1) set up for the National Geoscience Mapping Accord (NGMA) (Blewett, R. 1993, The NGMA Field Databases a field guide. AGSO Record 1993/46). The central component of these databases is the OZROX Field Geology Database (Figure 1.2) which records all sample attribute data (e.g., location, stratigraphic formation, lithology, etc.). A useful guide to OZROX is the in house record, Ryburn, R.J., Bond, L.D. and Hazell, M.S. 1995, Guide to OZROX AGSO's Field Geology Database).

The OZCHRON database comprises eight main tables for analytical and derived age information for four age determination methods, Rubidium-Strontium (Rb-Sr), Uranium-Lead conventional (U-Pb), Sensitive High Resolution Ion MicroProbe (SHRIMP) Uranium-Lead and Samarium-Neodymium (Sm-Nd). Each age determination can be related back to attribute and locational data in the OZROX database (Figure 1.3), or to information in other databases (e.g., whole rock geochemistry in the OZCHEM database) (Figure 1.1). Authority or lookup tables are used by OZROX and OZCHRON to supply standard values for many fields. These are listed in Tables 1.1 and 1.2 along with the main tables for OZCHRON and OZROX.

Some of these authority tables are combined as database Views, which are listed in Table 1.3. Full definitions are listed in Sections 2, 3 and 4.

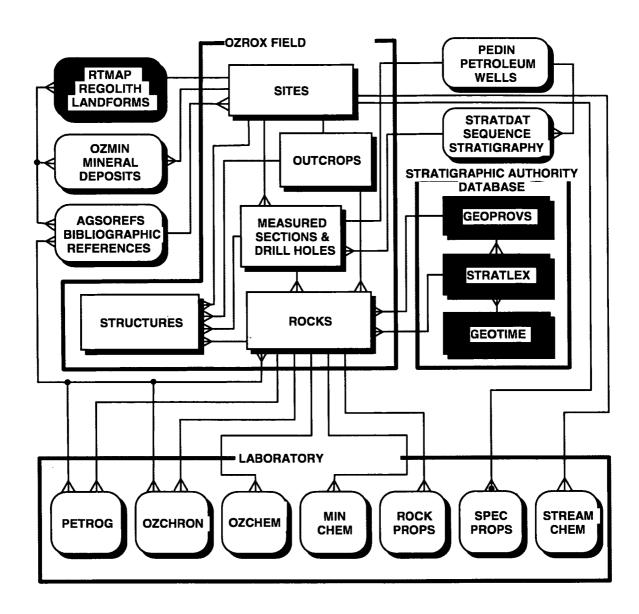


Figure 1.1: A schematic diagram of AGSO's field and laboratory databases showing the relationships between component databases and tables. OZCHRON is one of AGSO's laboratory databases. Locational, lithological and stratigraphic data for samples are accessed through the ROCKS table. The "crows" feet on the lines joining tables indicate the many side of many-to-one links.

Each geochronological method covered by the OZCHRON database employs one or two tables of geochronological data (Figure 1.3). Where a number of analytical results are required to arrive at one age determination, as in Rb-Sr whole-rock isochron work, there are two tables, one for analytical results and one for the pooled age result and interpretation. The analytical results are joined to a pooled-result table by a foreign key field, called AGE_POINTER or RECNO depending on the table.

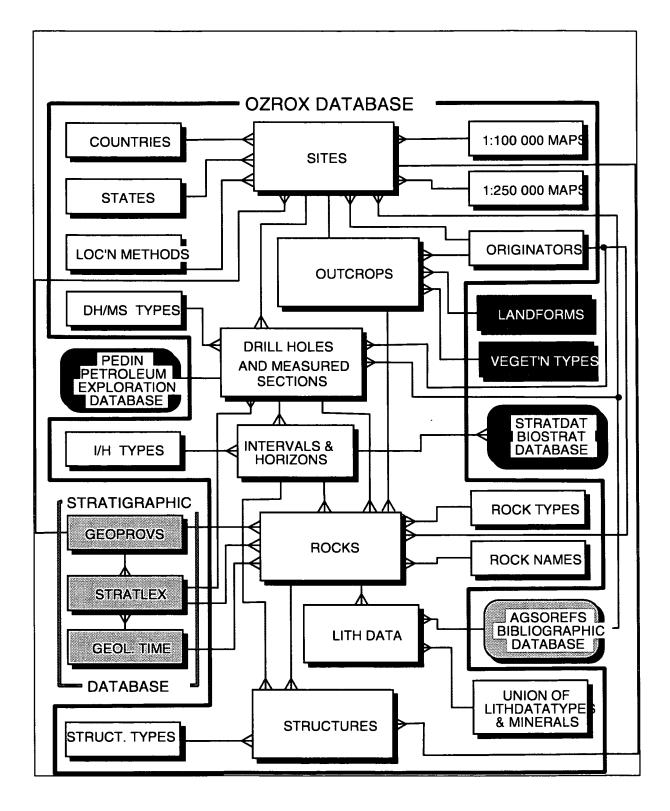


Figure 1.2: A schematic diagram of the OZROX database showing the relationships between component tables and some other AGSO field databases. The "crows" feet on the lines joining tables indicate the many side of many-to-one links.

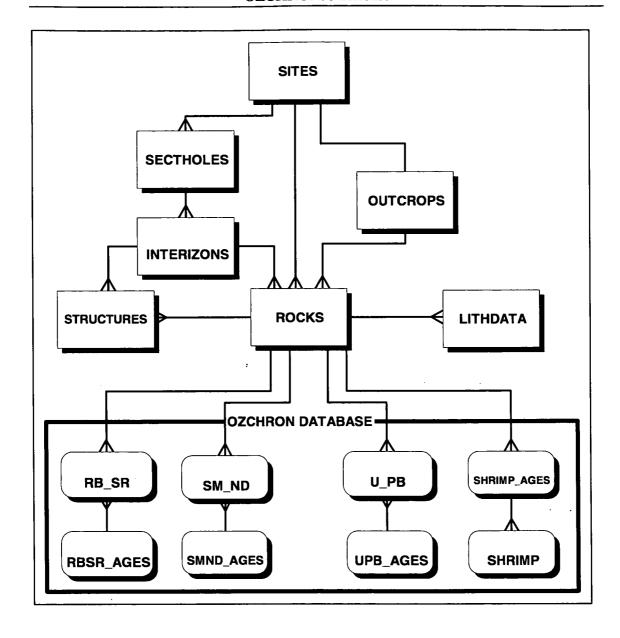


Figure 1.3: A schematic relationship diagram showing the relationships between the OZCHRON tables and the OZROX Field Geology Database. The "crows" feet on the lines joining the tables indicate the many side of many-to-one links.

OZCHRON data can be joined to the sample information in OZROX (Figure 1.2) by a combined primary key on the originator number (ORIGNO) plus sample number (SAMPLEID). The originator is the person/organisation responsible for collecting the sample and/or publishing the results, while the sample number can be any combination of numbers or characters up to 16 characters long. This dual primary key allows published sample numbers to be preserved and obviates the need for an additional numbering system. The only requirement is that the sample numbers from any one originator must be unique within his or her numbering system. OZCHRON data can also be joined to OZROX using the originator number (ORIGNO) plus siteid (SITEID). However while this combination is unique for any site information if more than one sample has been collected at a site then the correct lithology description for the age determination can only be derived using the sample number.

A sample in OZCHRON is therefore fully identified only by a combination of originator number (ORIGNO) and sample number (SAMPLEID). A sample number on its own is usually sufficient to retrieve the required sample, but do not forget that duplicate sample numbers are permitted if the originators are different.

With the exception of the **SHRIMP** table, all analytical tables record both originator number, sample number and siteid. For **SHRIMP** data these are found only in the **SHRIMP_AGES** table (Figure 1.3).

Where necessary, OZCHRON and OZROX draw on information contained in the authority tables listed below in Table 1.2. Some of these tables are shared by other databases and therefore represent standard coding and attribute lists used by AGSO. The owner of each table is that part of the name before the full stop, but within MS Access the owner's name is separated from the table name by an underscore (eg: NGMA.AGSOCOUNTRIES becomes NGMA_AGSOCOUNTRIES). As there is only one owner in MS Access all tables automatically belong to the MS Access system owner ADMIN.

MAIN TABLES

	Table Name	Contents
1	NGMA.SITES	Individual site location data, accuracy and lineage
2	NGMA.OUTCROPS	Outcrop-scale data
3	NGMA.ROCKS	Stratigraphic and lithological data for individual samples
4	NGMA.LITHDATA	Extendable lithological attribute table for rocks
5	NGMA.SECTHOLES	Drill hole or measured section name, and type
6	NGMA.INTERIZONS	Drill hole or measured section interval information
7	NGMA.STRUCTURES	Structural data for rock or drill hole descriptions
8	OZCHRON.RB_SR	Rubidium-Strontium analytical data
9	OZCHRON.RBSR_AGES	Rubidium-Strontium pooled results
10	OZCHRON.U_PB	Uranium-Lead mineral analytical data
11	OZCHRON.UPB_AGES	Uranium-Lead mineral pooled results
12	OZCHRON.SHRIMP	Uranium-Lead ion microprobe analytical data
13	OZCHRON.SHRIMP_AGES	Uranium-Lead ion microprobe pooled results
14	OZCHRON.SM-ND	Samarium-Neodymium analytical data
15	OZCHRON.SMND_AGES	Samarium-Neodymium pooled results

Table 1.1 List of main tables in OZROX and OZCHRON.

AUTHORITY TABLES

	Table Name	Contents			
1	NGMA.AGSOCOUNTRIES	Valid country codes			
2	NGMA.AGSOSTATES	Valid codes of Australian states			
3	STRATA.GEOPROVS	Valid geological provinces			
4	NGMA.HMAPS	Australian 1:100 000 map names and four digit codes			
5	NGMA.QMAPS	Australian 1:250 000 map names and six character codes			
6	GEODX.AGSOREFS	References in AGSO's bibliographic database			
7	GEODX.AGSOAUTHS	Authors of references in the bibliographic database			
8	NGMA.LOCMETHODS	Methods used for locating field sites			
9	NGMA.ORIGINATORS	Originators and collectors of the samples			
10	RTMAP.LANDF	Landform types			
11	RTMAP.VEGET	Vegetation types			
12	STRATA.GEOTIME	Geological time terms			
13	NGMA.ROCKTYPES	17 broad lithology categories			
15	NGMA.LITHOLOGIES	Rock names and qualifiers			
15	NGMA.LITHDATATYPES	Lithological data descriptors			
16	NGMA.STRUCTYPES	Structural data types			
17	STRATA.STRATRELS	Stratigraphic relationships			
18	NGMA.GEOREGIONS	Geological regions			
19	NGMA.AGSOMINERALS	Minerals			
20	GEODX.STRATSTATUS	Status of stratigraphic units			
21	NGMA.SOURCES	Laboratory or organisation which analysed the sample			
22	OZCHRON.METHODS	Analytical methods used in deriving the analyses			
23	GEODX.STRATRANK	Ranks of stratigraphic units			
24	NGMA.CONTACTS	Geological contact types			
25	NGMA.IZ_RECTYPES	List of record types for the INTERIZONS table			
26	NGMA.SECTYPES	Type of measured section			
27	STRATA.PROVRANKS	Ranks of geological provinces			
27	STRATA.TIMESCOPE	The geographical scope of a geological time range			
29	STRATA.TIMERANK	Ranking terms for the geological time ranges			
30	STRATA.TIMESTATUS	Status of geological time range			
31	NGMA.LITHUNITS	Map symbols for regions with no formal stratigraphy			
32	OZCHRON.MEAN_METHOD	Methods used to calculate the mean for SHRIMP age determinations			
33	OZCHRON.COMMON_PB	Lead isotopes used for correcting for common lead			
34	OZCHRON.AGE_USED	Isotope ratios used for SHRIMP age determinations			

Table 1.2: List of authority tables in OZCHRON and OZROX.

DATABASE VIEWS

	View Name	Underlying Tables
	ROCKDATATYPES	LITHDATATYPES and AGSOMINERALS
2	LITHNAMES	LITHOLOGIES and AGSOMINERALS
3	STRATLEX	Current stratigraphic names from the Australian Register of Stratigraphic Names

Table 1.2: List of database views and their underlying tables.

Descriptions of the Main Tables used in OZCHRON

Section 2—Descriptions of the main tables used in OZCHRON

2.1 - THE SITES TABLE

The SITES table standardises the recording of geographic point location data in AGSO's corporate databases. The table is mainly for surface location data for field geological, geochemical, drill hole collars and geophysical observations. For example, an entry in the SITES table may record location data for observations at an outcrop, sample(s) data, a gravity reading, or all three. Geographic coordinates are recorded as decimal latitudes and longitudes, and AMG eastings and northings. Information is also recorded on how the location was obtained and its accuracy.

The primary key for the SITES table is a combination of the ORIGNO and SITEID fields.

Description of columns

- **ORIGNO:** Mandatory integer of up to 5 digits. The originator is represented by this number and their full name is stored in the related **ORIGINATORS** table. The originator is usually the person or organisation that collected the data at the site, and is also an indication of where to go for more information.
- SITEID: Mandatory field of up to 16 characters for a user-supplied number or ID for the site. Any combination of numbers and letters is used, but the SITEID must be unique to the originator. There may be more than one sample collected from each site but only one site record is recorded in the SITES table. The multiple sample descriptions for each site are stored as multiple records in the ROCKS table each identified by a unique SAMPLEID.
- **FIELDID:** An optional field of up to 16 characters for an alternative site number or ID. The FIELDID is not necessarily unique.
- **OBSDATE:** The date the field site was visited or observed in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- **OBSTIME:** The time the field site was observed in ORACLE's 24-hour format of HH:MM e.g. '14:47'.
- **COUNTRYID:** Mandatory 3 capital characters indicating the country. Valid codes are stored in the **AGSOCOUNTRIES** authority table.
- **STATE:** A field of up to 3 capital characters indicating the State. Mandatory if the country is Australia. Valid codes are stored in the **AGSOSTATES** authority table.
- REGNO: An integer field of up to 5 digits indicating the geological region. Mandatory if the country is Australia. Valid entries are stored in the GEOREGIONS authority table. Geological regions are based on Palfreyman's Geological provinces (see Palfreyman, 1984). The Geological region is similar to the geological province however it only represents the two-dimensional geographical region in which the sample was collected. Geological regions therefore cater for situations that can occur with drill holes which are, for

- example, collared in the Cainozoic Karumba Basin and extend into an underlying Proterozoic basement. The sample site is in the Karumba Basin while the samples belonging to that site may be from the Karumba Basin or the Proterozoic basement.
- **GEOGAREA:** An optional descriptive field of 64 characters for the name of the geographic area (valley, plain, mountain range) from which the sample comes e.g., Newcastle Ranges, Tuggeranong Valley.
- **LOCDESC:** An optional descriptive field of 64 characters for additional information relating to the site's location e.g., '5 km SE of Brown's Bore'.
- **HMAPNO:** A 4-digit integer identifying the 1:100 000 map sheet-area on which the site falls. The name of the map sheet is stored in the **HMAPS** authority table.
- **QMAPID:** The 6-character ID of the 1:250 000 map sheet-area on which the site falls e.g., 'SF5402'. The name is stored in the **QMAPS** authority table. The first four characters identify the 1:1 000 000 map, and the first two letters in the ID give the UTM zone.
- **EASTING:** A 10-digit positive numeric field including 2 decimal places for the full AMG easting of the site in metres, (A coordinate entered to 2 decimal places achieves a precision of +/- 1.0 cm on the ground which is rarely achieved but allows precisely surveyed samples or drill collars to be recorded to their full surveyed precision).
- **NORTHING:** A 9-digit positive numeric field including 2 decimal places for the full AMG northing of the site in metres. (A coordinate entered to 2 decimal places achieves a precision of +/- 1.0 cm on the ground which is rarely achieved but allows precisely surveyed samples or drill collars to be recorded to their full surveyed precision).
- ACCURACY: A mandatory integer field of up to 5 digits for the absolute accuracy of the given coordinates in metres on the ground. Data transferred from the pre-1992 SAMPLES table, which stored locality information associated with earlier versions of the OZCHEM database, did not include accuracy estimates. The following assumptions were therefore made in translating these results to the SITES table.
 - 1 Unless otherwise known, it is assumed that all geographic coordinates were obtained from 1:100 000-scale maps, and were therefore accurate to about 100 metres.
 - 2 Results known to have been measured only from 1:250 000-scale maps are assumed accurate to 250 metres.
 - 3 Other approximately known localities have had their accuracies appropriately estimated at distances up to 10 km.
- **HEIGHT:** An integer with up to 5 digits for the elevation of the site in metres above mean sea level. Can be negative.
- **HEIGHTACC:** A positive integer of up to 3 digits for the absolute error in metres of the elevation entered in the previous field.
- **DLAT:** A positive numeric field with up to 2 digits in front of the decimal point, and up to 6 digits after the decimal point.

- NS: A single character field that can only take the values 'N', 'n', 'S' or 's' for northern hemisphere or southern hemisphere, respectively. The value in this field is automatically set to a capital 'S' when a latitude is entered. However if the latitude has been calculated from the AMG Northing then the default will be a lower case 's'.
- **DLONG:** A positive numeric field with up to 3 digits in front of the decimal point and up to 6 digits after the decimal point.
- EW: A single character field that can only take the values 'E', 'e', 'W' or 'w' for east or west, respectively. The value in this field is automatically set to a capital 'E' when a longitude is entered. However if the longitude has been calculated from the AMG Easting then the default will be a lower case 'e'.
- **METHOD:** A mandatory integer of up to 3 digits pointing to a record in the **LOCMETHODS** authority table showing the method used to obtain the geographic coordinates of the site.
- BIBREF: A 9-character field that identifies a reference in AGSOREFS, AGSO's Bibliographic References Database, which locates or refers to the site. The reference could be a locality diagram in a publication, a non-standard published map or a map from a PhD thesis or company report. This column is provided principally as a means of recording the lineage or provenance of data that have come from another source. Note that almost any map can be treated as a bibliographic reference using the standard 'Harvard-style' of reference notation. A future user of the SITES table can then refer to this map to do their own assessment of the accuracy of the geographic coordinates.
- **AIRPHOTO:** An optional field of 36 characters to identify the airphoto on which the site is located and/or was plotted. The field is for the name of the airphoto series, the run number and the photo number e.g. 'Cloncurry 8/2134'.
- **RELATED DATA SETS:** Twelve single character fields that show what data sets join to the site. Only two values are allowed, null or capital 'X' the 'X' being placed in all fields with related data sets. The field names are as follows:
 - OC OUTCROPS table
 - **ST** STRUCTURES table
 - RO ROCKS table
 - **PE** PETROGRAPHY database
 - RC OZCHEM database
 - **OZ** OZCHRON database
 - OM OZMIN database
 - SC STREAMCHEM database
 - **RT** RTMAP database
 - RP ROCKPROPS database
 - **SP** SPECPROPS database
 - SH SECTHOLES database
 - **RS** ROCSTOR database

ENTRYDATE: The date the site description was entered - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

- **LASTUPDATE**: The date of the last update in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- **ENTEREDBY**: An 8-character field for the username of the person who entered the data. This column is used by AGSO's ORACLE system to identify the records to which a user has update privileges. Users are therefore only able to update the records which belong to them, or to which they have been granted explicit access.
- **DATUM:** A mandatory 8-character field for the datum of the coordinates used to locate the site. The value in this field may be set to "AGD66", "GDA94", or, as in the case of some of the very early **SITES** data, "Unknown". The default value is "AGD66". All sites in the current release have been converted to AGD66.
- **ENTERED_COORDS**: A mandatory single character field used to identify whether the coordinates where originally entered as metric or as imperial latitudes and longitudes. This column is required because the **SITES** table stores both metric and geographical coordinates either of which can be derived from the other.

2.2 - THE OUTCROPS TABLE

The **OUTCROPS** table is designed for descriptions of the outcrop as a whole and for describing relationships between lithologies and structures in the outcrop. Information on individual lithologies, samples and structures belongs in the ROCKS and **STRUCTURES** tables - both of which have a many-to-one relationship with **OUTCROPS**. The **OUTCROPS** table has a one-to-one relationship with the **SITES** table, and uses the same primary key covering the originator (ORIGNO) and site (SITEID). The reason for the separation is that tables other than **OUTCROPS** need to link in with the location information in **SITES**.

Description of columns

ORIGNO: As for the **SITES** table.

SITEID: As for the **SITES** table.

ROCKRELS: An optional field of 128 characters for a description of the rock relations in the outcrop.

SKETCH: An optional field of 64 characters noting any sketches made at the outcrop.

PHOTO: An optional field of 64 characters noting any photos taken at the outcrop.

VEGCODE: An optional field of up to 5 characters for the vegetation type in AGSO's vegetation types authority table (**VEGET**). Vegetation classes in this are based on legend from AUSLIG's 1:5 000 000 Vegetation Map of Australia.

VEGETATION: An optional 64 character field for a text description of the vegetation at the site of the outcrop. Important for remote sensing database.

LANDCODE: An optional field of up to 4 characters for the landform in AGSO's landforms authority table (**LANDF**). Landform classes in the **LANDF** table are based on the `Australian Soil and Land Survey Handbook' by Gunn, R.H.,

Beattie, J.A., Reid, R.E., and van der Graff, R.H.M., 1988, Inkata Press, Melbourne.

LANDFORM: An optional 64 character field for a text description of the landform at the site of the outcrop.

ENTRYDATE: As for the **SITES** table.

ENTEREDBY: As for the SITES table.

2.3 - THE ROCKS TABLE

The **ROCKS** table has a many-to-one relationship with the **SITES** table, and also with the **OUTCROPS** table if an outcrop record exists for a site. This is a natural relationship as a number of different lithologies and samples commonly occur at the one site.

The primary key for the **ROCKS** table is **ROCKNO**.

Description of columns

ROCKNO: A system generated unique sequential number of up to 6 digits which links attributes in the **LITHDATA**, **STRUCTURES** and **INTERIZONS** tables to records in the **ROCKS** table.

ORIGNO: As for the **SITES** and **OUTCROPS** tables.

- **SITEID:** As for the **SITES** and **OUTCROPS** tables except that the ORIGNO and SITEID, combined, are no longer a unique key. This is because there can be more than one record in the **ROCKS** table for a particular **SITES** record.
- **SAMPLEID:** A mandatory field of up to 16 characters for the ID of a sample. The number must be unique to the originator, although it can be identical to the SITEID, if there is only one sample from a given site.
- **ROCKTYPE:** A positive integer of up to 2 digits that identifies the basic rock type from the **ROCKTYPES** authority table. This field is designed to allow easy selection of all samples of a particular rock type (e.g., intrusive mafic rocks, clastic sediments, felsic gneisses).
- QUALIFIER: A 20-character optional field for a qualifying term, if any, before the lithology name field that follows. Up to three qualifiers, one in each qualifier field, are allowed for each lithology name. The qualifying term must be in the LITHNAMES view, which is a view on the LITHOLOGIES authority table and the common minerals from the AGSOMINERALS authority table. Qualifiers in the LITHNAMES view are classified as Type 'Q' for qualifier. An example of a qualifier is 'pelitic', as in 'pelitic schist'.
- **QUALIFIER2:** A 20-character optional field for a second qualifying term for the lithology name. A qualifier can only be entered into this column after a first qualifier has been entered into the qualifier column above.
- QUALIFIER3: A 20-character optional field for a third qualifying term for the lithology name. A qualifier can only be entered into this column after first and second qualifiers have been entered into the QUALIFIER and QUALIFIER2

columns above. The correct representation of the qualifier columns to LITHNAME is always: QUALIFIER3, QUALIFIER2, QUALIFIER, LITHNAME. Table 2.1 below shows the relationship between the 3 qualifier columns and the LITHNAME column, and the order in which they should always be represented.

QUALIFIER3	QUALIFIER2	QUALIFIER	LITHNAME	
		micaceous	sandstone	
			tonalite	
foliated	plagioclase	hornblende	tonalite	
_	coarse	hornblende	granodiorite	
coarse	foliated	plagioclase	granodiorite	
coarse	pyroxene	plagioclase	gabbro	
		foliated	granite	

Table 2.1: This table shows the relationship between the three qualifier columns and the LITHNAME column, and the order in which they should always be represented. A value cannot be entered into the QUALIFIER2 column until a value has been entered into the QUALIFIER column. Likewise a value cannot be entered into QUALIFIER3 column unless there are values in the QUALIFIER2 and QUALIFIER columns.

- LITHNAME: A 32-character field for a lithology name. Only names already in the LITHOLOGIES authority table and classified as Type 'I', 'M', 'S' or 'H' (igneous, metamorphic, sedimentary, hybrid) may be entered into the LITHNAME field. The hybrid classification has been introduced to cater for non-specific lithology names, e.g. breccia, which can be sedimentary, volcanic or tectonic. Hybrid names must always be preceded by a qualifier.
- **GROUPING:** A 50-character optional field for a user-defined classification. This field is used to classify suites of rocks from particular regions into classes other than those suggested by other fields on the form. The values entered here are chosen by the Originator and have no global significance.
- **STRATNO:** A positive integer of up to 5 digits that automatically identifies the formal stratigraphic name, and age from the **STRATLEX** authority view of current stratigraphic names from the Australian Register of Stratigraphic Names.
- INFORMAL: Optional free-text field of 64 characters for an informal stratigraphic name, which is not in AGSO's STRATLEX authority view. Due to ongoing updating of the Australian Register of Stratigraphic Names some of the names currently entered in the informal field may now be current formal names in STRATLEX. From time to time AGSO runs checks on the informal field to identify names which should be in the STRATNO field. Purchasers of OZCHEM can view the current status of stratigraphic names online via the AGSO home page on the world wide web. This page also displays the history of the name showing all previous and superseded names and terms. The web address for the AGSO home page is: http://www.agso.gov.au/

- AGE: Optional free-text field of 54 characters for the geological age (e.g., Proterozoic, Archaean). Only age terms in the GEOTIME authority table may be entered.
- **DESCRIPTION:** A 64-character optional free-text field for a description of the lithology. If a lithology is sufficiently characterised by the previous fields, then this field can be used for additional descriptive information relating to the lithology.
- **OTHERINFO:** A 64-character optional free-text field that may be used for any data not covered by the above fields that the user feels are relevant.
- GEOLPROVNO: An integer of up to 3 digits for the geological province, subprovince or domain in which the sample occurs. Valid codes must be in the GEOPROVS authority table. Samples can be recorded as belonging to one of a domain, subprovince or province. The province hierarchy is included in the GEOPROVS table so that all samples belonging to a particular province can be retrieved regardless of whether they have been saved as a province, a subprovince, or a domain. For ORACLE users the following statement will retrieve a list of all subprovinces and their domains that belong to the *Mount Isa Inlier*. These can then be used to retrieve the required records from the database -

select provno from geoprovs connect by prior provno = parent start with provno = 54

- MAPSYMBOL: An 8-character optional field for recording recognised map symbols for lithological units. Only symbols already in the LITHUNITS authority table can be entered. This field is primarily for identifying units in Archaean terranes where little or no formal stratigraphy has been defined (the Yilgarn is the only province with symbols in this table so far). Map symbols are unique for each province. The development of province-wide stratigraphy with matching geological units having the same symbol between sheets facilitates the easy integration of the data within a GIS.
- MODEOCC: A 4-character field for recording the mode of occurrence of the sample (xenolith, dyke, sill, pipe). Valid occurrence modes are described in the LITHDATATYPES authority table having the Data Type 'IOM' for igneous occurrence mode or 'SOM' for sedimentary occurrence mode.
- **SECTHOLENO:** An optional integer of up to 5 digits. The SECTHOLENO is used to link records in the **ROCKS** table with drill hole or measured section records in the **SECTHOLES** table. The SECTHOLENO can only be entered if there is a matching record in **SECTHOLES**.

ENTRYDATE: As for the **SITES** and **OUTCROPS** tables.

ENTEREDBY: As for the SITES and OUTCROPS tables.

LASTUPDATE: As for the **SITES** and **OUTCROPS** tables.

2.4 - THE LITHDATA TABLE

The LITHDATA table, which has a many-to-one relationship with the ROCKS table, provides an extendable attribute system for the ROCKS table. All entries in

LITHDATA are controlled by the ROCKDATATYPES database view which is a view covering the LITHDATATYPES table and the AGSOMINERALS table.

Description of columns

ROCKNO: A 6-digit integer which links attribute records in the **LITHDATA** table to records in the **ROCKS** table.

DATATYPE: A mandatory field of up to 4 capital letters for an abbreviation pointing to a data type (attribute name) in the **ROCKDATATYPES** view. Only data types already in the **ROCKDATATYPES** view may be entered, but the same DATATYPE may be inserted more than once (e.g., a sample may exhibit two types of alteration - sericitic and potassic in a porphyry system).

SUBTYPE: A mandatory field of up to 4 capital letters for an abbreviation pointing to a subtype (value of an attribute) of a DATATYPE in the **ROCKDATATYPES** view. Table 2.2 is a listing of subtype values for the *alteration* DATATYPE.

DATATYPE		SUBTYPE	
ALT	Alteration	PR	propylitic
ALT	Alteration	PO	potassic
ALT	Alteration	KA	kaolinitic
ALT	Alteration	AR	argillic
ALT	Alteration	SE	sericitic
ALT	Alteration	SI	silicified
ALT	Alteration	ZE	zeolitic
ALT	Alteration	GR	greisen
ALT	Alteration	PY	pyritic
ALT	Alteration	SK	skarn
ALT	Alteration	EP	epidotised
ALT	Alteration	CL	chloritic
ALT	Alteration	CA	carbonate
ALT	Alteration	SP	serpentinised
ALT	Alteration	AB	albitic
ALT	Alteration	HM	hematitic
ALT	Alteration	AL	alunitic

Table 2.2: An example of a DATATYPE and its SUBTYPES.

DESCRIPTION: An optional field of 128 characters for any additional descriptive information relating to the DATATYPE/SUBTYPE record.

ENTRYDATE: As for the SITES, OUTCROPS and ROCKS tables - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.

LASTUPDATE: As for the **SITES** and **OUTCROPS** and **ROCKS** tables.

2.5 THE SECTHOLES TABLE

The **SECTHOLES** table has a many-to-one relationship with the **SITES** table and is for 'header' information for each drill hole or measured stratigraphic section. It records the

ID, section type, initial azimuth, initial inclination, total section length, the relationship of the section or drill hole to bedding and if the section is up or down sequence.

The primary key for the **SECTHOLES** table is **SECTHOLENO**.

Description of columns

SECTHOLENO: A unique sequential integer of up to 5 digits which links SECTHOLE records with matching records in the INTERIZONS and ROCKS tables.

ORIGNO: As for the SITES, OUTCROPS and ROCKS tables.

SITEID: As for the **SITES**, **OUTCROPS** and **ROCKS** tables.

SECTYPE: A single-character field which indicates the type of measured section being described (ie, surface measured section or type of drillhole). Valid choices come from the **SECTYPES** authority table

TYPESEC: A mandatory single-character field which indicates if the section is a type section "T", reference section "R" or other "O".

PEDIN_UNO: An optional 8-character field. This provides a link to well descriptions in the PEDIN database (National Petroleum Exploration Data Index).

DH_COMPANY: An optional free-text field of up to 48 characters for the name of the company or organisation which drilled the hole.

DH_ID: An optional free-text field of up to 48 characters for the name of the drill hole.

AV_AZIMUTH: An optional three-digit field for the average azimuth of a non-vertical, essentially straight measured section or drill hole in degrees east of true north.

AV_INCLIN: An optional up to two-digit field for the average inclination of a essentially straight measured section or the drill hole in degrees. Positive if above the horizontal, negative if below.

TOT_METRES: An optional six-digit field for the total down hole depth of the drill hole in metres. Up to two digits are allowed after the decimal place, allowing depths to the nearest centimetre.

BEDPERP: A mandatory single-character field for either a 'Y' or an 'N', for yes or no, indicating if the drill hole or measured section is perpendicular to bedding. If the drill hole or measured section is perpendicular to bedding then intervals given in INTERIZONS table can be regarded as true thicknesses.

REFID: A 9-character field that identifies a reference in AGSOREFS, AGSO's Bibliographic References Database, which refers to the drill hole or measured section.

UPORDOWN: A mandatory single-character field for either 'U', 'D' or '?', to indicate if the drill hole or measured section is up or down sequence or not known.

ENTRYDATE: As for the **SITES**, **OUTCROPS** and **ROCKS** tables - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTEREDBY: As for the **SITES**, **OUTCROPS** and **ROCKS** tables.

LASTUPDATE: As for the SITES and OUTCROPS and ROCKS tables.

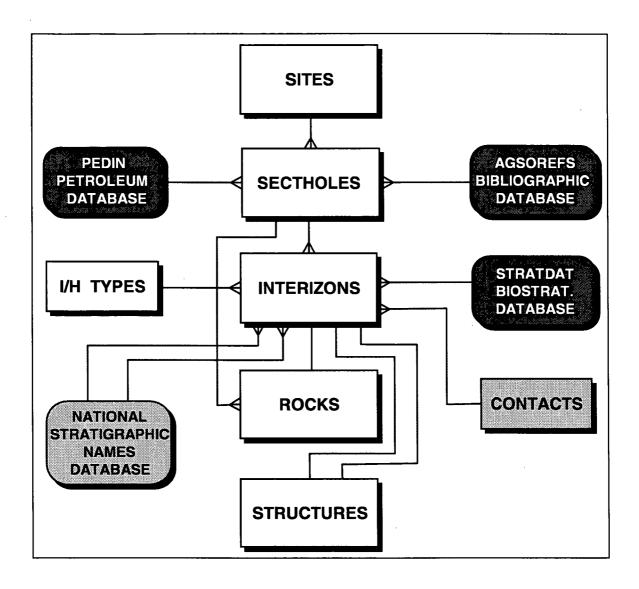


Figure 2.1 A schematic diagram of the table and data relationships for recording measured sections and drill holes. "Crows" feet indicate the many end of many-to-one links.

2.6 THE INTERIZONS TABLE

The INTERIZONS table has a many-to-one relationship with the SECTHOLES table. For any one drill hole or measured section many intervals may be described, and for any one interval several types of information may be recorded. The INTERIZONS table records only the lengths of described intervals and the type of data being described. Pointers in the table point to full descriptions which are stored in the ROCKS and STRUCTURES tables, and the STRATLEX view. The CONTACTS and some STRATDAT authority tables are also pointed to by the INTERIZONS table. The relationships of associated tables is shown in figure 2.1.

The primary key for **INTERIZONS** is the interizons number, IZ_NO.

Description of columns

- IZ_NO: A unique sequential integer of up to 6 digits.
- SECTHOLENO: An integer of up to five digits which links records in the INTERIZONS table with their parent record in the SECTHOLES and ROCKS tables.
- RECTYPE: A mandatory field of up to three characters which indicates the type of information recorded (record type) for each interval. For any interval several types of information could be described, e.g. lithology, structure or stratigraphy, so that for any one interval there may be one or more records. The data for each record type are stored in the table that relates to that data type, and the record type is the pointer to the table which stores that particular record. Lithological data record type "LTH" are stored in the ROCKS table, and structural data record type "STR" are stored in the STRUCTURES table. Vector information for a measured section traverse or a drill hole record type "SVY" are stored in the STRUCTURES table. Rock unit boundary indicates either the overlying or underlying stratigraphic unit, details of which are stored in the STRATLEX authority view. STRATDAT geochronographic datum information is stored in the STRATDAT authority tables STD_DATM_AGE, STD_DATM_NAME and STD_TYPE.
- **D1:** A mandatory number field of up to 6 digits for the commencing distance or depth of the described interval in metres. Up to 2 digits are allowed after the decimal place.
- **D2:** An optional number field of up to 6 digits for the terminating distance or depth of the described interval in metres. Up to 2 digits are allowed after the decimal place.
- **PERCENT:** An optional number field of up to 7 digits. Up to 2 digits are allowed after the decimal place. This field is used to record the percentage occurrence of a particular lithology within an interval. It is mandatory if the RECTYPE is 'LTH'.
- DETAIL_PTR: An optional number field of up to 7 digits which holds a value which is a pointer to a record in another table. Only 1 record per record type is stored in this field and can be a value for any of the following record types contact type, overlying stratigraphic unit number, ROCKNO, or STRUCNO. The code for the geological contact type points to the full name in the CONTACTS authority table, the name and defining details of the overlying stratigraphic unit is in the STRATLEX authority view, the lithological description is in the ROCKS table, and structural and survey information is in the STRUCTURES table. Table 2.3 shows the record types and the corresponding data types and the tables which hold the information.
- **DETAIL_PTR_CHR:** An optional field of up to 7 characters which holds a value which is a pointer to a record in another table. Only 1 record per record type is stored in this field. The record could be a value for either the overlying stratigraphic unit or STRATDAT datum code. As for the overlying stratigraphic unit in the field **DETAIL_PTR**, the name and defining details of the underlying stratigraphic unit are in the STRATLEX authority view. The

- STRATDAT datum code indicates a STRATDAT datum name defined in the STRATDAT tables STD_DATM_NAME and STD_DATM_AGE.
- **DETAIL_PTR_CHR2:** An optional field of up to 7 characters which holds several values separated by a colon which are pointers to records in the STRATDAT table **STD_TYPE**. The **STD_TYPE** table is for the type of geostratigraphic datum.
- **COMMENTS:** A 128-character optional free-text field for any additional comments regarding the interval.
- ENTRYDATE: As for the SITES, OUTCROPS, ROCKS and SECTHOLES tables in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.

LASTUPDATE: As for the SITES and OUTCROPS and ROCKS tables.

RECTYPE	RUB	LTH	STR	SVY	CON	STD
POINTS TO TABLE	Stratlex	Rocks	Structures	Structures	Contacts	Stratdat
DETAIL_PTR	stratno (overunit)	rockno	structno	structno	contactid	
DETAIL_PTR_CHR	stratno (underunit)					datum name
DETAIL_PTR_CHR2						datum type

Table 2.3: The relationship of the detail pointer fields (DETAIL_PTR, DETAIL_PTR_CHR and DETAIL_PTR_CHR2) in the INTERIZONS table with the tables that hold the data for each interval description. The table that each record type (RECTYPE) refers to is shown in the second row. For each of the Record Types the values in the Detail Pointer fields will correspond to the primary key fields for the table shown in the second row.

2.7 THE STRUCTURES TABLE

The **STRUCTURES** table contains structural measurements for lithological descriptions in the **ROCKS** table or the **INTERIZONS** table.

The primary key for **STRUCTURES** is STRUCNO.

Description of columns

ORIGNO: As for the **SITES**, **OUTCROPS** and **ROCKS** tables.

SITEID: As for the SITES, OUTCROPS and ROCKS tables.

STRUCNO: A system generated unique 6-digit integer. This field links structural measurements with parent records in the **INTERIZONS** table.

ROCKNO: A 6-digit integer. This is a foreign key which links structural measurements to parent lithology descriptions in the **ROCKS** table.

TYPE: A mandatory 2-digit integer pointing to a structural type in the **STRUCTYPES** authority table.

SUBTYPE: An optional 2-digit integer pointing to a structure subtype in the **STRUCTYPES** authority table.

- **AZIMUTH:** A 3-digit integer for the azimuth of the structural observation in degrees between 0° and 360°. For planar observations the azimuth always the direction of dip. The azimuth of horizontal planar structures is always zero.
- **INCLINATION:** A 2-digit integer between 0° and 90° for the vertical inclination of the structural vector below the horizontal.
- **DEFNO:** A single-digit integer for the number of the deformation that produced the structure being measured.
- **DEFSURFNO:** A single-digit integer for the deformation that produced the deformed surface being measured.
- **PLOTRANK:** A 3-digit integer indicating the order of importance in plotting the structure on a map. Where a number of structures have been measured at the one locality, plot rank determines which structures will be plotted first.
- ENTRYDATE: As for the SITES, OUTCROPS and ROCKS tables in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.

ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.

LASTUPDATE: As for the SITES and OUTCROPS and ROCKS tables.

2.8. THE RB-SR TABLES

The Rb-Sr tables embody the standard isochron method of Rb-Sr dating. Analysed samples may be from crushed whole rocks or mineral separates. Analytical results yield a pair of isotope ratios which can be plotted on the coordinates ⁸⁷Sr/⁸⁶Sr versus ⁸⁷Rb/⁸⁶Sr. A suite of geologically related whole rock samples should form a straight line, with the slope indicating the time since the rock system cooled beneath the strontium migration temperature and the ⁸⁷Sr/⁸⁶Sr axis intercept giving the isotopic composition of the Sr (initial ⁸⁷Sr/⁸⁶Sr ratio) at that time. Data from a combination of a whole rock and its constituent minerals may provide data about the timing of a subsequent metamorphic event.

The Rb-Sr data are stored in two tables. The RB_SR table records analytical data on individual samples or separates. The RBSR_AGES table is for the 'pooled' age information derived from combined analytical results. The common keys for linking the two tables are the record number (RECNO) in RBSR_AGES and age pointer (AGE_POINTER) in RB_SR.

2.8.1. RB SR TABLE

The primary key for **RB_SR** is ANALNO.

Description of columns

- **AGE_POINTER:** A mandatory number field of up to 8 digits with 2 decimal placesPoints to the record number (RECNO) of a 'pooled result' in the **RBSR_AGES** table.
- **ANALNO:** A system generated unique 6 digit integer which determines the ordering of records in the table.

- **ORDERNO:** Optional 2 digit number for establishing the ordering of analytical results associated with a particular record number in the **RBSR_AGES** table.
- ORIGNO: When combined with the sample number, forms a unique key to point to stratigraphic information in the ROCKS table. As for SITES, OUTCROPS and ROCKS.
- SITEID: Mandatory character field of up to 16 characters. When combined with the originator number, forms a unique key to point to the location information in the SITES and OUTCROPS tables. Having the SITEID in this table obviates the need to join first with the ROCKS table to acquire the SITEID before location information can be obtained from SITES. As for SITES, OUTCROPS and ROCKS.
- **SAMPLEID:** Mandatory character field of up to 16 characters. When combined with the originator number forms a unique key to point to stratigraphic information in the **ROCKS** table.
- **REFID:** Mandatory pointer to an existing reference in the **AGSOREFS** table.
- **METHODNO:** Optional pointer to a description of the analytical method in the **METHODS** table.
- **MINERAL:** Optional field of up to 16 characters for indicating the material analysed 'whole rock' or the name of the separated mineral.
- **RB_PPM:** Mass abundance of rubidium in parts per million.
- **SR_PPM:** Mass abundance of strontium in parts per million.
- **RB87SR86:** Calculated isotope ratio ⁸⁷Rb/⁸⁶Sr.
- SR87SR86: Observed isotope ratio ⁸⁷Sr/⁸⁶Sr.
- **COMMENTS:** Optional 240-character field for any additional information.
- **RELEASED:** The date the data were first released for sale in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- **ENTRYDATE:** As for the **SITES**, **OUTCROPS** and **ROCKS** tables in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.
- **LASTUPDATE:** The date of the last update in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- **RESTRICTED:** A single-character field which may contain either 'U' or 'R' for unrestricted or restricted, respectively.

2.8.2 RBSR_AGES TABLE

The primary key for the RBSR_AGES table is RECNO.

Description of columns

RECNO: System supplied number. Links this table with analytical results in the **RB_SR** table.

AGE: The Rb-Sr isochron or model age expressed in Ma.

STD_DEVA: Error in age at the 95% confidence level in Ma

INIT_RATIO: The isochron's intercept on the ⁸⁷Sr/⁸⁶Sr axis.

STD_DEVI: Error in intial ⁸⁷Sr/⁸⁶Sr at the 95% confidence level.

COMMENTS: Optional field of up to 240 characters for additional information and commentary on the geological significance of the results.

MSWD: Mean square of weighted deviates.

RELEASED: The date the data were released for sale - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTRYDATE: As for the SITES, OUTCROPS and ROCKS tables - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.

LASTUPDATE: The date of the last update - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

RESTRICTED: A single-character field which may contain either 'U' or 'R' for unrestricted or restricted, respectively.

2.9. CONVENTIONAL U-PB DATA TABLES

There are two isotopic methods currently used which are based on the radioactive decay of uranium to lead: conventional and ion microprobe (or SHRIMP) analysis. The conventional method involves chemical pre-treatment of uranium-bearing minerals - commonly zircon - in amounts ranging from milligrams to a few grains, and reduction of the data using the 'Concordia' diagram, consisting of a Y-axis ($^{206}\text{Pb*}/^{238}\text{U}$) and an X axis ($^{207}\text{Pb*}^{235}\text{U}$). The asterisk in these relationships denotes the radiogenic component generated over the lifetime of the host mineral, a quantity obtained by subtracting the common Pb in proportion to the observed ^{204}Pb abundance. Conventionally, this contaminant is isotopically likened to the average Pb in the country rock, or the ratios prescribed by the Pb growth curve most favoured by the author for Pb of the appropriate age.

A further complication is possible contamination in the laboratory during processing. Since there is an inevitable uncertainty about the isotopic character of the common Pb, the corrected Concordia variables, and the consequent age estimates, are most reliable when the observed ²⁰⁶Pb/²⁰⁴Pb is large (~10,000).

The power of the Concordia treatment lies in the assumption that the present-day value of the ratio ²³⁸U/²³⁵U is a natural constant. This is true for most localities and for all of the analysed samples in the database. However, one case is known of a "natural reactor" at Oklo, Gabon, West Africa. Here a mid-Proterozoic uranium accumulation in an old river bed "went critical", and a significant proportion of its ²³⁵U was consumed.

Assumed constancy in the U ratio leads to a single, time-dependent exponential curve ("Concordia") which is the locus of all samples which have neither lost nor gained U or Pb in the time since zircon crystal formation. Loss of Pb (or gain of U) yields a point

below Concordia. The converse, plotting above the curve, is less common. A suite of zircon fractions from the one sample, in which there is a range of Pb loss, defines a single line ("Discordia"), for which the upper intercept with Concordia corresponds with zero Pb loss and the age of crystal formation. Displacement along Discordia is related to the degree of loss.

There are several algorithms which describe such a line. The simplest permits a second, lower, intercept which may be related to the time of a second event associated with an "instantaneous" loss of the missing Pb. A chord joining the sample point with the origin intercepts Concordia at the minimum possible age estimate for the host sample. There is yet another possible complication, arising from the inheritance of Pb from an earlier source. This is discussed below under the SHRIMP data.

Conventional U-Pb data are stored in two tables. In the U-PB table, data from the individual minerals are stored, whilst in the UPB_AGES table, the results from the individual minerals are pooled. The U_PB table has a many-to-one relationship to the UPB_AGES table, as there are commonly a number of analyses that go to make up one pooled result stored in the UPB_AGES table.

2.9.1 U_PB TABLE

The primary key for **U_PB** is ANALNO.

Description of columns

RECNO: System supplied number, which is automatically generated. Points to the record number of a pooled result in the **UPB_AGES** table.

ANALNO: System-generated unique number.

ORIGNO: As for the **RB_SR** table.

SITEID: As for the **RB_SR** table.

SAMPLEID: As for the **RB_SR** table.

ORDERNO: Optional number for establishing the ordering of analytical results associated with a particular record number in the **UPB_AGES** table.

FRACTION: Optional 16-character field for the analysed fraction of a sample.

REFID: Mandatory pointer to an existing reference in the **AGSOREFS** table.

METHODNO: Optional pointer to a description of the analytical method in the **METHODS** table.

WEIGHT: Sample weight in milligrams.

U_PPM: Mass abundance of uranium in parts per million.

PB_PPM: Mass abundance of lead in parts per million.

PBRAD_PPM: Optional. Calculated mass abundance of radiogenic lead in parts per million - after correction for common lead.

PB206PB204: Optional. Measured ²⁰⁶Pb/²⁰⁴Pb ratio. An indicator of the amount of common lead contamination.

PB206RAD: Optional. Mass abundance of radiogenic ²⁰⁶Pb in parts per million.

PB207RAD: Optional. Mass abundance of radiogenic ²⁰⁷Pb in parts per million.

PB208RAD: Optional. Mass abundance of radiogenic ²⁰⁸Pb in parts per million.

PB207PB206: Optional. Atomic ratio of radiogenic ²⁰⁷Pb and ²⁰⁶Pb.

PB206U238: Optional. Atomic ratio of radiogenic ²⁰⁶Pb and ²³⁸U - ordinate of Concordia diagram.

PB207U235: Optional. Atomic ratio of radiogenic ²⁰⁷Pb and ²³⁵U - abscissa of Concordia diagram.

MIN76_AGE: Optional. Minimum Pb-Pb age in Ma derived from the slope of the chord from origin to sample point. This age is also given by the intercept of this chord on Concordia.

STD_DEV1: Optional. The 67% error limits in the minimum age estimated in Ma.

APP206_238: Age in Ma derived from the ratio ²⁰⁶Pb*/ ²³⁸U.

STD_DEV2: Optional. The 67% error limits in the ²⁰⁶Pb*/²³⁸U age in Ma.

APP207_235: Age in Ma derived from the ratio ²⁰⁷Pb*/ ²³⁵U.

STD_DEV3: Optional. The 67% error limits in the ²⁰⁷Pb*/²³⁵U age in Ma.

APP208_232: Optional. Age in Ma calculated from the ratio ²⁰⁸Pb*/ ²³²Th.

STD_DEV4: Optional. The 67% error limits in the ²⁰⁸Pb*/ ²³²Th age in Ma.

COMMENTS: Optional field of up to 240 characters for additional information.

RELEASED: The date the data were first released for sale - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTRYDATE: As for the SITES, OUTCROPS and ROCKS tables - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.

LASTUPDATE: The date of the last update - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

RESTRICTED: A single-character field which may contain either 'U' or 'R' for unrestricted or restricted, respectively.

2.9.2. UPB_AGES TABLE

The primary key for the **UPB_AGES** table is RECNO.

Description of columns

RECNO: Links this table with analytical results in the U_PB table.

AGE: Pooled age expressed in Ma. Commonly deduced from the upper intercept of the Discordia line with Concordia.

STD_DEVA: Optional 95% confidence level error in Ma.

LI_AGE: Age in Ma indicating the time of Pb-loss allowed for in the simplest model, i.e., the lower intercept of the Discordia line with Concordia.

STD_DEVI: Optional 95% confidence level error in Ma.

MSWD: Mean square of weights deviates

COMMENTS: Optional field of up to 240 characters for additional information or a commentary on the geological significance of the age result.

RELEASED: The date the data were released for sale - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTRYDATE: As for the SITES, OUTCROPS and ROCKS tables - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.

LASTUPDATE: The date of the last update - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

RESTRICTED: A single-character field which may contain either 'U' or 'R' for unrestricted or restricted, respectively.

2.10 THE U-PB 'SHRIMP' DATA TABLES

These tables are used for U-Pb data obtained from the Sensitive High-Resolution Ion MicroProbe (SHRIMP). The calculations are similar to those described above under the conventional U-Pb Minerals Form. The difference is that polished sections of individual zircon grains are analysed. A primary beam of oxygen ions is focussed to a spot about 30 microns in diameter, and multiple analyses of a single zircon grain are possible. Distinctions can be drawn between older cores of mineral grains and later material forming the rims.

The **SHRIMP** table has a many-to-one relationship to the **SHRIMP_AGES** table, a rock sample is usually associated with multiple spot analyses.

2.10.1. SHRIMP TABLE

The primary key for **SHRIMP** table is ANALNO.

Description of columns

ANALNO: System-generated unique number.

RECNO: System-supplied number, which is automatically generated by the **SHRIMP_AGES** table. Links this table with analytical results in the **SHRIMP_AGES** table.

LABNO: Optional 16-character field for laboratory identification, as distinct from field sample numbering.

GRAINO: Optional 16-character field for identifying a particular mineral grain on the sample mounting.

SPOTNO: Optional 16-character field for identifying a spot analysis amongst several on a single mineral grain.

ORDERNO: Optional number for establishing the ordering of analytical results associated with a particular **SHRIMP_AGES** record number, usually in the time sequence in which they were analysed.

REFID: Mandatory pointer to an existing reference in the **AGSOREFS** table.

U_PPM: Mass abundance of uranium in parts per million.

TH_PPM: Mass abundance of thorium in parts per million.

TH OVER_U: Calculated atomic ratio of thorium to uranium.

PB204_PPB: Calculated mass abundance of ²⁰⁴Pb.

PB206PB204: Measured ²⁰⁶Pb/²⁰⁴Pb ratio.

F_PCT: Percentage of common ²⁰⁶Pb in measured ²⁰⁶Pb.

PB207PB206: Atomic ratio of radiogenic ²⁰⁷Pb to ²⁰⁶Pb after correction for common lead.

STD_DEV1: Optional. The 67% error limits in the 207 Pb*/ 206 Pb* ratio.

PB208PB206: Atomic ratio of radiogenic ²⁰⁸Pb to ²⁰⁶Pb after correction for common lead.

STD_DEV2: Optional. The 67% error limits in the ²⁰⁸Pb*/²⁰⁶Pb* ratio.

PB206U238RAD: Atomic ration of radiogenic ²⁰⁶Pb* to parent ²³⁸U - ordinate of Concordia diagram.

STD_DEV3: Optional. The 67% error limits in the ²⁰⁶Pb*/²³⁸U ratio.

PB207U235RAD: Atomic ratio of radiogenic ²⁰⁷Pb* to parent ²³⁵U - abscissa of Concordia diagram.

STD_DEV4: Optional. The 67% error limits in the ²⁰⁷Pb*/²³⁵U ratio.

PB208TH232RAD: Atomic ratio of radiogenic ²⁰⁸Pb* to parent ²³²Th.

STD_DEV5: Optional. The 67% error limits in the 208 Pb*/ 232 Th ratio.

MIN76_AGE: The ²⁰⁷Pb*/²⁰⁶Pb* age in Ma derived from the slope of the chord from origin to sample point. This age is also given by the intercept of this chord on Concordia.

STD_DEV6: Optional. The 67% error limits in the minimum age estimate in Ma.

AGE206_238: Age in Ma derived from the ratio ²⁰⁶Pb*/ ²³⁸U.

STD_DEV7: Optional. The 67% error limits of the ²⁰⁶Pb*/ ²³⁸U in Ma.

AGE207_235: Age in Ma derived from the ratio ²⁰⁷Pb*/ ²³⁵U.

AGE208_232: Optional. Age in Ma calculated from the ratio ²⁰⁸Pb*/ ²³²Th.

COMMENTS: Optional field of up to 240 characters for additional information.

RELEASED: The date the data were released for sale - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

- **ENTRYDATE:** As for the SITES, OUTCROPS and ROCKS tables in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.
- **LASTUPDATE:** The date of the last update in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- **RESTRICTED:** A single-character field which may contain either 'U' or 'R' for unrestricted or restricted, respectively.

2.10.2. SHRIMP_AGES TABLE

The primary key for the **SHRIMP_AGES** table is RECNO.

Description of columns

RECNO: System-supplied number, which is automatically generated. Links this table with analytical results in the **SHRIMP** table.

ORIGNO: As for the **RB_SR** and **U_PB** table.

SITEID: As for the **RB_SR** and **U_PB** table.

SAMPLEID: As for the **RB_SR** and **U_PB** table.

AGE: Pooled age expressed in Ma. Commonly deduced from the upper intercept of the Discordia line with Concordia.

STA_DEVA: 95% confidence level error of the pooled age in Ma.

LI_AGE: Age in Ma indicating the time of Pb-loss allowed for in the simplest model, i.e., the lower intercept of the Discordia line with Concordia.

STD DEVI: 95% confidence level error of the lower intercept age in Ma.

COMMENTS: Optional field of up to 240 characters for additional information, or a commentary on the geological significance of the age result.

RELEASED: The date the data were released for sale - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTRYDATE: As for the SITES, OUTCROPS and ROCKS tables - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTEREDBY: As for the **SITES**, **OUTCROPS** and **ROCKS** tables.

LASTUPDATE: The date of the last update - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

RESTRICTED: A single-character field which may contain either 'U' or 'R' for unrestricted or restricted, respectively.

METHOD: A single-integer field which points to values in the MEAN_METHOD authority table. This field records the method used to calculate the mean values for each analysis recorded in the SHRIMP table. For each analysis of a zircon grain the ratios of the isotopes are derived by calculating the mean of seven individual mass spectrometer measurements. The mean is calculated from either a linear data fit, a curved data fit or a combination of both.

COMMON_PB: A single integer field which points to values in the **COMMON_PB** authority table. This field records common lead isotope used for correcting for common lead.

AGE_USED: A single-integer field which points to values in the **AGE_USED** authority table. This field records which isotope ratio was used to give the pooled age.

2.11 THE SM-ND DATA TABLES

All data reported in this document were collected in the Research School of Earth Sciences, Australian National University (RSES, ANU) following standard analytical procedures (eg., McCulloch & Chappell, 1982; Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Sciences Letters 58; Maas and McCulloch, 1991 The provenance of Archaean clastic sediments in the Narryer Gneiss Complex, Western Australia: trace element geochemistry, Nd isotopes and U-Pb ages from detrital zircons. Geochimica et Cosmchimica Acta, 27). Many samples were analysed through collaboration between AGSO staff and members of the RSES, ANU. Whole rock chemistry and isotopic age determination for many of these samples can be found in the AGSO OZCHEM and OZCHRON databases.

Compared to the Rb-Sr system, the Sm-Nd system has the advantage of being more robust to alteration and weathering. However, since Sm and Nd have very similar geochemical behaviour, they commonly show limited fractionation through magmatic generation and differentiation. Thus, under normal circumstances this method is not ideal for whole-rock isochron dating. A common practice of pooling data for samples with a range of Sm/Nd but not genetically related (e.g. basalts, komatiites and granites of a greenstone belt) often results in an unreliable isochron. In contrast, Sm-Nd mineral-whole rock isochrons are generally reliable, unless isotopic disequilibrium occurred during metamorphism.

The geological meaning of Nd isotope model ages is interpretative. Ion-probe zircon U-Pb dating of the same sample can greatly help to improve the interpretation.

Neodymium isotope data combined with geological and chemical information can be useful for ore genesis studies and as an exploration guide. For example, Ordovician shoshonites and calc-alkaline rocks in central western New South Wales have very distinctly high initial epsilon Nd (ɛNd) (commonly +7), whereas granites in the region have initial ɛNd values ranging from 0 to -10. Thus, Nd isotope analysis of tourmaline-bearing hydrothermal veins from this region is potentially useful for fingerprinting of Cu/Au mineralisation associated with the Ordovician shoshonites and calc-alkaline rocks.

A method analogous to the Rb-Sr isochron technique can be applied to the Nd-Sm system using a plot of ¹⁴³Nd/¹⁴⁴Nd versus ¹⁴⁷Sm/¹⁴⁴Nd. Indeed, mineral ages can occasionally be obtained from a combination of whole rock samples and mineral separates. For this reason the arrangement of the Sm-Nd tables has been kept the same as the Rb-Sr tables. However, a linear regression through a suite of related whole rock samples is usually not practical because of insufficient spread in the Sm/Nd ratio. Furthermore, whole rock isochron ages obtained by pooling data for a group of

unrelated samples commonly are erroneous because of variation in initial ¹⁴³Nd/¹⁴⁴Nd values. In most cases each analysis must be treated separately, with model age calculated from assumptions about the protolith. Similar assumptions were required in the early days of dating by other radioactive decay systems. The assumed quantity is the 'initial ratio' - the isotopic composition of the daughter nuclide at the time diffusive losses ceased.

In the Sm-Nd system, the principle of model age calculations remains the same. The model age (T Nd) derives from the slope of the chord on the isochron diagram which connects sample point and reference point. In early publications the latter was chosen assuming that the original mantle (assumed protolith) was chemically similar to cosmic material represented by chrondritic meteorites (CHUR = CHrondritic Uniform Reservoir). This is no longer considered adequate as the mantle is now known to be inhomogeneous and "depleted" as a result of crust formation. Since different depleted parameters are used by different authors for model age calculation, one needs to be cautious or consult an expert when the data are assessed. However, the time-adjusted initial epsilon Nd value (ɛNd) is still presented as a (parts per 10,000) difference from the CHUR value for ¹⁴³Nd/¹⁴⁴Nd.

To calculate the depleted mantle model age (T_{DM}) for a sample we follow a common practice which assumes the mantle formed at 4.56 Ga (age of the earth) and there is a linear increase of initial ϵ Nd to +10 in the present day mantle $(^{143}\text{Nd}/^{144}\text{Nd} = 0.51316)$ relative to a CHUR value of 0.51265). For Proterozoic rocks with $^{147}\text{Sm}/^{144}\text{Nd} = 0.11$ (common for felsic rocks) T_{DM} calculated this way is generally 200 Ma older than model ages calculated (following McCulloch, 1987 Sm-Nd isotopic constraints on the evolution of Precambrian crust in the Australian continent in Proterozoic lithospheric evolution. In: Proterozoic Lithospheric Evolution. American Geophysical Union 17), which assumes mantle depletion began at 2.7 Ga.

$$\begin{split} T_{DM}(\text{in Ma}) &= \frac{1}{\lambda} \text{ In } \begin{bmatrix} (^{143}\text{Nd}/^{144}\text{Nd})\text{sample} - (^{143}\text{Nd}/^{144}\text{Nd})_{DM}] &+ 1 \\ \hline (^{147}\text{Sm}/^{144}\text{Nd})\text{sample} - (^{147}\text{Sm}/^{144}\text{Nd})_{DM}] &+ 1 \\ \end{bmatrix} \\ \text{where } \lambda = 6.54 * 10^{-12} \text{ yr}^{-1} \text{ ; the decay constant of } ^{147}\text{Sm to } ^{143}\text{Nd} \\ (^{143}\text{Nd}/^{144}\text{Nd})_{DM} &= 0.51316 \text{ and } (^{147}\text{Sm}/^{144}\text{Nd})_{DM} &= 0.2136 \end{split}$$

In this database two-stage model ages (T_2) are reported for felsic rocks which have $^{147}\text{Sm}/^{144}\text{Nd}$ outside the commonly observed range of 0.09 to 0.13. The most recent stage of Nd isotope evolution is calculated with the measured $^{147}\text{Sm}/^{144}\text{Nd}$ to the geological age (T_1) of the sample.

A commonly observed 147 Sm/ 144 Nd = 0.11 is assigned to earlier evolution (from the gological age to T_{DM}). This approach is quite successful for granites with high 147 Sm/ 144 Nd as a result of extensive crystal fractionation involving LRE enriched minerals.

The equation used for T_2 is as follows

$$T_2(Ma) = 10^3 * \left(\frac{-0.456 \Sigma NdT_1 + 5.051T_{1/1000} + 4.56}{6.051} \right)$$

The calculated Nd model age represents the average crustal residence time of source material. The initial ΣNd (ΣNd_i) value at the geological age of the sample (Tg) can be the result of mixing material derived from different sources such as depleted mantle and older crust components (Figure 2.2)

There has been a change, in the normalisation of mass-spectrometer bias. Pre-1987 data in this document were collected on a single collector mass spectrometer (MSZ) at the Research School of Earth Sciences, ANU. To correct for mass fractionation during analysis Nd isotopic ratios were normalised to ¹⁴⁶Nd/¹⁴²Nd = 0.636151 (e.g. McCulloch and Chappell, 1982). The conversion now adopted is use a normalisation value of ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. A conversion factor of 1.001596, based on comparison of values for standards, has been applied to all ¹⁴³Nd/¹⁴⁴Nd data collected on the MSZ.

2.11.1 SMND_AGES TABLE

The primary key for the **SMND_AGES** table is RECNO.

Description of columns

RECNO: System supplied 6-digit integer.

MSWD: Optional. Mean square of weighted deviates.

AGE: Optional. The pooled isochron age (if applicable) expressed in Ma.

STD_DEVA: Optional. Age error envelope at the 95% confidence level.

INIT_RATIO: Optional: Extrapolated intercept on the isochron on the ¹⁴³Nd/¹⁴⁴Nd axis, or a calculated value based on the measured or estimated geological age.

STD DEVI: Optional. The Initial Ratio error envelope at the 95% confidence level.

EPSILON: Initial ΣNd value at the assigned geological age -

$$\Sigma Nd = \left[\frac{{\binom {^{143}Nd}/{^{144}}Nd})_{\text{ sample at time of formation}}}{{\binom {^{143}Nd}/{^{144}}Nd})_{\text{ CHUR at same time}}} - 1 \right] * 10^4$$

STD_DEV2: Optional. The epsilon error envelope at the 95% confidence level

COMMENTS: Optional 240-character field for additional information.

RELEASED: The date the data were first released for sale - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTRYDATE: As for the SITES, OUTCROPS and ROCKS tables - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.

LASTUPDATE: The date of the last update - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

RESTRICTED: A single-character field which may contain either 'U' or 'R' for unrestricted or restricted, respectively.

2.11.2 SM_ND TABLE

The primary key for the **SM_ND** table is ANALNO.

Description of columns

AGE_POINTER: System-generated. Points to the record number of a 'pooled result' in the **SMND_AGES** table.

ANALNO: System-generated unique number. Determines the ordering of records in the table.

ORDERNO: Optional number for establishing the ordering of analytical results associated with a particular record number in the **SMND_AGES** table.

ORIGNO: When combined with the sample number, forms a unique key to point to stratigraphic information in the **ROCKS** table. When combined with SAMPLEID in **ROCKS**, the SITEID can be identified and location and outcrop information can be obtained from the **SITES** and **OUTCROPS** table, respectively.

SITEID: As for the RB_SR, U_PB and SHRIMP_AGES tables.

SAMPLEID: As for the **RB_SR**, **U_PB** and **SHRIMP_AGES** tables.

GEOL_AGE: Age of the sample (eg. emplacement or metamorphism) used for initial ɛNd calculation. It is mainly determined by isotope dating methods such as zircon U-Pb, and Rb-Sr isochrons. For some samples it is inferred from geological information.

EPSN_ND: Initial εNd value at the assigned geological age.

REFID: Mandatory pointer to an existing reference in the **AGSOREFS** table.

METHODNO: Optional pointer to a description of the analytical method in the **METHODS** table.

MINERAL: Optional field of up to 16 characters for indicating the material analysed - 'whole rock' or the name of the separated mineral.

SM_PPM: Optional. Mass abundance of samarium in parts per million.

ND_PPM: Optional. Mass abundance of neodymium in parts per million.

SM147ND144: Optional. The isotope ratio ¹⁴⁷Nd/¹⁴⁴Nd.

ND143ND144: Optional. The isotope ratio ¹⁴³Nd/¹⁴⁴Nd.

TND: The depleted mantle (DM) model age in Ma.

COMMENTS: Optional 240-character field for any additional information.

RELEASED: The date the data were first released for sale - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTRYDATE: As for the SITES, OUTCROPS and ROCKS tables - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.

LASTUPDATE: The date of the last update - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

- **SIGMA2X10_6:** Uncertainty of measured ¹⁴³Nd/¹⁴⁴Nd value at the 95% confidence level.
- **RESTRICTED:** A single-character field which may contain either 'U' or 'R' for unrestricted or restricted, respectively.

Description of the Authority Tables

Section 3—Description of the Authority Tables

The authority tables used by OZROX and OZCHRON are listed in alphabetical order. Listings of the entries in the more commonly used authority tables are also given.

3.1 AGE USED AUTHORITY TABLE

The AGE_USED authority table lists the isotope ratios that are used for SHRIMP age determinations. The geochronologist selects the isotope ratio which he considers gives the most precise age.

Description of Columns

AGE_CODE: System generated sequence.

AGE USED: Isotopic ratio used to determine the weighted mean age.

AGE_CODE	AGE_USED
1	6/38
2	7/6
3	208/232
4	207/235

3.2 AGSOAUTHS AUTHORITY TABLE

The **AGSOAUTHS** authority table is for the names of authors of references. Each record is one author and is linked to its reference in the **AGSOREFS** table by the REFID.

Description of columns

REFID: Mandatory field of up to 9 characters. A system generated sequence which joins **AGSOAUTHS** to **AGSOREFS**.

AUTHORS: A mandatory field of 60 characters. The name of the author of the reference with the surname first in lower case except for the first letter, followed by a space, a comma and the initials with full stops - for example, "Chowmondlier, K.L".

SEQUENCE: A mandatory integer of up to 2 digits indicating the order of the author in the reference list.

ENTEREDBY: As for the SITES, OUTCROPS and ROCKS tables.

ENTRYDATE: The date the record was entered - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

3.2 AGSOCOUNTRIES AUTHORITY TABLE

With a few minor additions, the countries and abbreviations used in this table are taken from Australian Standard 2632-1983 (Standards Association of Australia, 1983). Below is a listing of some of the entries in the AGSOCOUNTRIES authority table.

COUNTRYID	COUNTRYNAME	
ATA	Antarctica	
AUS	Australia	
INA	Indonesia	
INT	International Waters	
NZL	New Zealand	
PNG	Papua New Guinea	
SLB	Solomon Islands	

3.3 AGSOREFS AUTHORITY TABLE

The **AGSOREFS** authority table stores bibliographic references on either the source of the original data or some further information. This table is shared by all AGSO databases.

Description of columns

REFID: Mandatory field of up to 9 characters. A system generated sequence

OTHERID: Optional field of up to 16 characters. Any identifying sequence that the user may care to apply.

ENTEREDBY: The group or database that entered the data.

YEAR: An optional 4-digit integer for the year of publication of the reference.

TITLE: An optional field of up 1024 characters for the title of the reference.

SOURCE: A mandatory field of up to 1024 characters for the publication details of the reference.

VOLPART: An optional field of up to 36 characters for the volume, issue or part of a serial reference.

PAGES: An optional field of up to 36 characters for the page range of articles in serials. The AGSO standard does not require total number of pages for monographs.

ENTRYDATE: The date the record was entered - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992'.

3.4 AGSOSTATES AUTHORITY TABLE

The AGSOSTATES authority table lists states and territories of Australia only, and is required when the country listed in the SITES record is set to Australia.

Description of columns

STATEID: Three character identifier for the Australian State or Territory.

STATENAME: Name of the Australian State or Territory

STATEID	STATENAME	
ACT	Australian Capital Territory	
NSW	New South Wales	
NT	Northern Territory	
QLD	Queensland	
SA	South Australia	
TAS	Tasmania	
VIC	Victoria	
WA	Western Australia	

3.5 AGSOMINERALS AUTHORITY TABLE

The AGSOMINERALS authority table is a list of mineral names, their standard abbreviations and classifications into common, ore, and alteration type minerals. The full AGSOMINERALS tables has 847 minerals. Only the 135 minerals flagged as 'C', for common mineral, are listed here. Minerals flagged 'O' are economic minerals. The flags are used to provide useful subsets of minerals for use within different databases.

Description of columns

MINABBREV: A 4 character field containing the standard abbreviation for mineral. Each abbreviation is unique.

MINNAME: A 32 character field containing the mineral name.

COMMON: A single character field either null or containing "C", indicating that the mineral is classed as a 'common' mineral.

ORE: A single character field either null or containing "O", indicating that the mineral is classed as an 'ore mineral.

ALTERATION: A single character field either null or containing "A", indicating that the mineral is classed as an 'alteration mineral.

MINABBREV	MINNAME	COMM	ORE
ACT	actinolite	C	
AB	albite	C	
ALN	allanite	C	0
ALM	almandine	С	
ALSI	aluminosilicate	С	
АМРН	amphibole	С	
ANL	analcime	С	
AND	andalusite	C	
ADS	andesine	С	
AN	anorthite	С	
ANR	anorthoclase	С	
ATH	anthophyllite	C	
AP	apatite	С	О
APY	arsenopyrite	С	О
AUG	augite	С	
AZ	azurite	С	О
BRT	barite	С	О
BRL	beryl	С	0

MINABBREV	MINNAME	COMM	ORE
BT	biotite	С	
BN	bornite	С	О
BTW	bytownite	С	
CAL	calcite	С	
CARB	carbonate	С	
CST	cassiterite	С	О
CC	chalcocite	С	О
ССР	chalcopyrite	С	О
CL	chlorite	С	
CLD	chloritoid	С	
CHR	chromite	С	О
CIN	cinnabar	C	О
CLAY	clay mineral	С	О
CAMP	clino-amphibole	C .	
CPX	clinopyroxene	C	
CZO	clinozoisite	С	
CRD	cordierite	С	
COR	corundum	С	О

MINABBREV MINNAME		COMM	ORE
CV	covellite	C	0
CRS	cristobalite	C	
CUM	cummingtonite	С	
CUP	cuprite	С	O
DMD	diamond	С	O
DI .	diopside	C	
DOL	dolomite	С	О
EN	enstatite	С	
EP	epidote	С	1
FY	fayalite	С	
FELD	feldspar	С	
FSPD	feldspathoid	C	
FL	fluorite	c	О
GN	galena	C	0
GNT	garnet	C	
GLT	glauconite	C	-
GLN	glaucophane	c	
GT	goethite	C	0
GR	graphite	C	+ -
GRS	grossular	C	<u> </u>
GP	gypsum	C	0
HL	halite	C	
HEM	hematite	C	0
HBL	hornblende	C	+
ILL	illite	c	<u> </u>
ILM	ilmenite	C	0
JD	jadeite	c	0
KFS	k-feldspar	c	10-
KLN	kaolinite	C	0
KY		c	0
LAB	kyanite labradorite	C	10
LMT		C	
	laumontite	<u> </u>	+
LWS	lawsonite	C	ļ
LCT	leucite		
MGS	magnesite	С	0
MGT	magnetite	С	0
MAL	malachite	С	0
MCS	marcasite	C .	0
MICA	mica	С	0
MC	microcline	С	<u> </u>
MOL	molybdenite	С	0
MNZ	monazite	С	О
MNT	montmorillonite	С	
MS	muscovite	C	
NE	nepheline	С	
OGC	oligoclase	С	
OL	olivine	С	
OPL	opal	С	О
OPQ	opaque mineral	С	
OAMP	orthoamphibole	С	
OR	orthoclase	С	
OPX	orthopyroxene	С	

MINABBREV	MINNAME	COMM	ORE
ASOX	oxidised	С	
	arsenopyrite		
CUOX	oxidised copper minerals	C	
РВОХ	oxidised lead	С	1
	minerals		
PYOX	oxidised pyrite	С	
ZNOX	oxidised zinc mins	C	
PHL	phlogopite	С	
PHOS	phosphate	С	О
PGT	pigeonite	С	
PL	plagioclase	С	
PRH	prehnite	С	
PMP	pumpellyite	С	
PY	pyrite	Ċ	О
PRP	ругоре	С	
PRL	pyrophyllite	С	
PYRX	pyroxene	С	
PO	pyrrhotite	С	0
QZ	quartz	С	0
RDN	rhodonite	С	0
RT	rutile	С	0
SANI	sanidine	С	
SCP	scapolite	C	
SCH	scheelite	С	0
SRL	schorl	С	1
SERI	sericite	С	+
SERP	serpentine	С	
SD	siderite	c	1
SIL	sillimanite	c	
SPS	spessartine	С	
SP	sphalerite	С	О
SPL	spinel	С	
ST	staurolite	С	
STB	stibnite	С	О
STP	stilpnomelane	С	<u> </u>
SULP	sulphide	C	1
TLC	talc	С	О
TTN	titanite	C	1
TOZ	topaz	С	1
TOUR	tourmaline	С	1
TR	tremolite	C	О
TRD	tridymite	C	
USP	ulvospinel	С	
U	uranium	C	0
UROX	uranium oxide	C	1
	mineral		Ш
VRM	vermiculite	С	
VES	vesuvianite	С	
ZEOL	zeolite	С	
ZRN	zircon	С	О

3.6 COMMON PB AUTHORITY TABLE

This table lists the Pb isotopes used for correcting for non-radiogenic (or "common") lead in the sample.

Description of columns

PB_CODE: System generated sequence of unique number.

COMMON_PB: Pb isotope correction used in determining the weighted mean age.

PB_CODE	COMMON_PB
1	207
2	204
3	208
4	uncorrected

3.7 CONTACTS AUTHORITY TABLE

The **CONTACTS** authority table lists different type of geological contacts, and is used when the **RECTYPE** for the **INTERIZONS** table is set to 'CON'.

Description of columns

CONTACTID: System generated sequence of unique number.

CONTACTNAME: A 32 character field containing the type of contact.

CONTACTID	CONTACTNAME
1	faulted
2	gradational
3	unconformity
4	disconformity
5	nonconformity
6	intrusive

3.8 GEOPROVS AUTHORITY TABLE

This table lists geological provinces, subprovinces and domains. Granitic batholiths are listed as domains.

The table below is sorted by province name alphabetically.

PROVNO	PROVNAME	RANKNAME	PARENTNAME
1	Adavale Basin	Province	
2	Adelaide Fold Belt	Province	
3	Albany-Fraser Province	Province	
371	Alpine Dyke Swarm	Sub-province	New Zealand Intraplate Volcanic Province
4	Amadeus Basin	Province	
5	Arafura Basin	Province	
6	Arckaringa Basin	Province	
7	Arnhem Block	Province	
136	Arnhem Shelf	Sub-province	McArthur Basin

	PROVNAME	RANKNAME	PARENTNAME
8	Arrowie Basin	Province	
9	Arunta Block	Province	
112	Ashburton Basin	Province	
305	Atherton	Sub-province	Tertiary Volcanic Province
359	Auckland	Sub-province	New Zealand Intraplate Volcanic Province
10	Bancannia Trough	Province	
	Bangemall Basin	Province	
I	Barossa Basin	Province	
345	Barrington	Sub-province	Tertiary Volcanic Province
	Bass Strait Batholith	Domain	Lachlan Fold Belt
L	Bassian Batholith	Domain	Lachlan Fold Belt
	Bathurst Batholith	Domain	Lachlan Fold Belt
	Batten Trough	Sub-province	McArthur Basin
	Bauhinia	Sub-province	Tertiary Volcanic Province
	Bauhinia Shelf	Sub-province	McArthur Basin
	Bega Batholith	Domain	Lachlan Fold Belt
	Bellenden Ker Batholith		Hodgkinson Carboniferous-Permian
2/8	Bellenden Ker Batholith	Domain	Subprovince
381	Berri Basin	Province	
152	Berridale Batholith	Domain	Lachlan Fold Belt
179	Big Toby Batholith	Domain	Western Fold Belt
379	Bight Basin	Province	
382	Billa Kalina Basin	Province	
12	Birrindudu Basin	Province	
400	Blake Sub-basin	Sub-province	Savory Basin
153	Blue Tier Batholith	Domain	Lachlan Fold Belt
	Bonang Batholith	Domain	Lachlan Fold Belt
	Bonaparte Basin	Province	
	Boolaloo Batholith	Domain	Gascoyne Block
	Boorabbin Batholith	Domain	Eastern Goldfields Province
	Bow River Batholith	Province	
	Bowen Basin	Province	
	Boyce Batholith	Domain	Eastern Goldfields Province
	Bremer Basin	Province	Date II Gold I To vine
	Brisbane	Sub-province	Tertiary Volcanic Province
	Broken Hill Block	Province	Terriary voicance rovince
	Broken River Carboniferous-	Sub-province	North Queensland Igneous Province
190	Permian Subprovince	Sub-province	North Queensiand igneous i formee
192	Broken River Province	Province	
	Bryah Basin	Province	
	Buckland and Mitchell	Sub-province	Tertiary Volcanic Province
	Bundaberg and Boyne	Sub-province	Tertiary Volcanic Province
	Burnside Batholith	Domain	Albany-Fraser Province
· ·	Caledon Shelf	Sub-province	McArthur Basin
	Callabonna Sub-basin	Sub-province	Lake Eyre Basin
	Canning Basin	Province	
	Canobolas	Sub-province	Tertiary Volcanic Province
	Canterbury & Marlborough	Sub-province	New Zealand Intraplate Volcanic Province
	Cape York Peninsula Batholith	Domain	Coen Siluro-Devonian Subprovince
	Cape York Plutonic Belt	Province	Com onato bevonan outprovince
	Cape York-Oriomo Inlier	Province	
	Carnarvon Basin	Province	
	Carpentaria Basin	Province	
437	2 Carr Boyd Basin	Province	L

	PROVNAME	RANKNAME	PARENTNAME
	Carrandibby Batholith	Domain	Gascoyne Block
	Central Province	Sub-province	Arunta Block
	Central Victorian Batholith	Domain	Lachlan Fold Belt
340	Central and Doughboy	Sub-province	Tertiary Volcanic Province
	Chewings Zone	Domain	Southern Province
239	Chiratta Batholith	Domain	Pilbara Block
308	Chudleigh	Sub-province	Tertiary Volcanic Province
21	Clarence-Moreton Basin	Province	
388	Cleve Subdomain	Sub-domain	Gawler Craton
97	Cloncurry-Selwyn Zone	Domain	Eastern Fold Belt
22	Coen Block	Province	
	Coen Carboniferous-Permian Subprovince	Sub-province	North Queensland Igneous Province
211	Coen Siluro-Devonian Subprovince	Sub-province	Cape York Plutonic Belt
	Coen Subprovince	Sub-province	Coen Block
403	Collie Basin	Province	
	Comboyne	Sub-province	Tertiary Volcanic Province
200	Connors Arch Subprovince	Sub-province	New England Fold Belt
224	Coolgarra Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
156	Cooma Batholith	Domain	Lachlan Fold Belt
23	Cooper Basin	Province	
225	Copperfield Batholith	Domain	Georgetown Siluro-Devonian Subprovince
157	Corryong Batholith	Domain	Lachlan Fold Belt
201	Croydon Block	Sub-province	Georgetown Block
208	Croydon Cauldron	Domain	Croydon Block
241	Cullen Batholith	Domain	Pine Creek Geosyncline
24	Daly River Basin	Province	
202	Dargalong Inlier	Sub-province	Georgetown Block
25	Darling Basin	Province	
216	Darling Range Batholith	Domain	Western Gneiss Terrane
26	Davenport Geosyncline	Province	
27	Denison Block	Province	
383	Denman Basin	Province	
246	Dido Batholith	Domain	Einasleigh Siluro-Devonian Subprovince
28	Drummond Basin	Province	
	Drummond Carboniferous-Permian Subprovince	Sub-province	North Queensland Igneous Province
29	Duaringa Basin	Province	
347	Dubbo	Sub-province	Tertiary Volcanic Province
375	Dumbano Batholith	Domain	Georgetown Siluro-Devonian Subprovince
30	Dundas Trough	Province	· · · · · · · · · · · · · · · · · · ·
370	Dunedin Volcanic Group	Sub-province	New Zealand Intraplate Volcanic Province
376	Duntroon Basin	Sub-province	
430	Earaheedy Basin	Province	
352	East Australian leucitite suite	Sub-province	Tertiary Volcanic Province
99	East Kimberley	Sub-province	Kimberley Basin
	Eastern Fold Belt	Sub-province	Mount Isa Inlier
	Eastern Goldfields Province	Province	Yilgarn Craton
	Ebor	Sub-province	Tertiary Volcanic Province
	Edmund Batholith	Domain Domain	Gascoyne Block
	Einasleigh Carboniferous-Permian Subprovince	Sub-province	North Queensland Igneous Province
205	Einasleigh Siluro-Devonian Subprovince	Sub-province	Cape York Plutonic Belt

PROVNO	PROVNAME	RANKNAME	PARENTNAME
215	Einasleigh Subprovince	Sub-province	Georgetown Block
31	Eromanga Basin	Province	
32	Esk Trough	Province	
226	Esmeralda Batholith	Domain	Croydon Block
33	Eucla Basin	Province	
181	Ewen Batholith	Domain	Western Fold Belt
147	Ewen Block	Domain	Western Fold Belt
209	Featherbed Cauldron Complex	Domain	Hodgkinson Carboniferous-Permian
			Subprovince
	Finlayson Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
	Fly-Highlands Province	Province	
	Focal Peak	Sub-province	Tertiary Volcanic Province
	Forsayth Batholith	Domain	Georgetown Inlier
	Furneaux Batholith	Domain	Lachlan Fold Belt
159	Gabo Island Batholith	Domain	Lachlan Fold Belt
34	Galilee Basin	Province	
	Gascoyne Block	Province	
36	Gawler Craton	Province	·
37	Georgetown Block	Province	
207	Georgetown Carboniferous-Permian Subprovince	Sub-province	North Queensland Igneous Province
189	Georgetown Inlier	Sub-province	Georgetown Block
212	Georgetown Siluro-Devonian Subprovince	Sub-province	Cape York Plutonic Belt
38	Georgina Basin	Province	
160	Gingera Batholith	Domain	Lachlan Fold Belt
39	Gippsland Basin	Province	
321	Glass Houses	Sub-province	Tertiary Volcanic Province
113	Glengary Sub-basin	Sub-province	Nabberu Basin
228	Glenmore Batholith	Domain	Einasleigh Subprovince
85	Granites-Tanami Block	Province	
203	Greenvale Subprovince	Sub-province	Broken River Province
161	Grenfell Batholith	Domain	Lachlan Fold Belt
162	Gulgong Batholith	Domain	Lachlan Fold Belt
402	Gunbarrel Basin	Province	
387	Gunnedah Basin	Province	
131	Halls Creek Inlier	Sub-province	Halls Creek Province
40	Halls Creek Province	Province	·
41	Hamersley Basin	Province	
312	Hillsborough	Sub-province	Tertiary Volcanic Province
42	Hillsborough Basin	Province	
197	Hodgkinson Carboniferous-Permian Subprovince	Sub-province	North Queensland Igneous Province
43	Hodgkinson Fold Belt	Province	
315	Hoy	Sub-province	Tertiary Volcanic Province
268	Ingham Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
384	Itiledoo Basin	Province	
393	Jim Jim Batholith	Domain	Pine Creek Geosyncline
280	Kalinjala Mylonitic Zone	Sub-domain	Gawler Craton
	Kalkadoon Batholith	Domain	Kalkadoon-Leichhardt Belt
L	Kalkadoon-Leichhardt Belt	Sub-province	Mount Isa Inlier
	Kanmantoo Fold Belt	Province	
	Karara Basin	Province	
	1	1	

ROVNO	PROVNAME	RANKNAME	PARENTNAME
45	Karumba Basin	Province	
277	77 Kelly Saint George Batholith Domain Hodgkinson Carboniferous-Personal Subprovince		Hodgkinson Carboniferous-Permian Subprovince
46	Kimberley Basin	Province	
132	King Leopold Inlier	Sub-province	Halls Creek Province
163	Kosciusko Batholith	Domain	Lachlan Fold Belt
47	Lachlan Fold Belt	Province	
374	Lake Eyre Basin	Province	
281	Lakefield Basin	Province	
243	Landor Batholith	Domain	Gascoyne Block
48	Laura Basin	Province	
145	Lawn Hill Platform	Domain	Western Fold Belt
49	Leeuwin Block	Province	
146	Leichhardt River Fault Trough	Domain	Western Fold Belt
242	Litchfield Batholith	Domain	Pine Creek Geosyncline
50	Litchfield Block	Province	
343	Liverpool Range	Sub-province	Tertiary Volcanic Province
229	Lolworth Batholith	Domain	Lolworth Subprovince
219	Lolworth Subprovince	Sub-province	Thompson Fold Belt
	Lolworth-Ravenswood Block	Province	
354	Macedon-Trentham	Sub-province	Tertiary Volcanic Province
303	Maer	Sub-province	Tertiary Volcanic Province
322	Main Range	Sub-province	Tertiary Volcanic Province
	Malbon Thompson Batholith	Domain	North Queensland Igneous Province
	Maragle Batholith	Domain	Lachlan Fold Belt
	272 Mareeba Batholith Domain Hodgkinson Carbonife		Hodgkinson Carboniferous-Permian Subprovince
165	Marulan Batholith	Domain	Lachlan Fold Belt
143	Mary Kathleen Zone	Domain	Eastern Fold Belt
51	Maryborough Basin	Province	
	McArthur Basin	Province	
307	McBride	Sub-province	Tertiary Volcanic Province
122	Mendlyarri Batholith	Domain	Eastern Goldfields Province
	Mingella	Sub-province	Tertiary Volcanic Province
	Minnie Creek Batholith	Domain	Gascoyne Block
351	Monaro, Snowy Mountains, and South Coast	Sub-province	Tertiary Volcanic Province
53	Money Shoal Basin	Province	
319	Monto	Sub-province	Tertiary Volcanic Province
459	Moola Bulla Basin	Province	
166	Moruya Batholith	Domain	Lachlan Fold Belt
230	Mossman Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
240	Mount Edgar Batholith	Domain	Pilbara Block
	Mount Isa Inlier	Province	
245	Mount Marquis Batholith	Domain	Gascoyne Block
	Mount Painter Block	Province	
217	Mount Sterling Batholith	Domain	Eastern Goldfields Province
	Mount Storth Batholith	Domain	Connors Arch Subprovince
	Murchison Province	Province	Yilgarn Craton
	Murchison Terrane	Province	Yilgarn Craton
	Murphy Inlier	Province	
	Murray Basin	Province	
	Murrumbidgee Batholith	Domain	Lachlan Fold Belt

PROVNO	PROVNAME	RANKNAME	PARENTNAME
148	Myally Shelf	Domain	Western Fold Belt
59	Nabberu Basin Province		
339	Nandewar	Sub-province	Tertiary Volcanic Province
183	Naraku Batholith	Domain	Eastern Fold Belt
425	Narryer Terrane	Province	Yilgarn Craton
313	Nebo	Sub-province	Tertiary Volcanic Province
60	New England Fold Belt	Province	
357	New Zealand Intraplate Volcanic Province	Province	
355	Newer Volcanics	Sub-province	Tertiary Volcanic Province
61	Ngalia Basin	Province	
279	Norseman-Wiluna Belt	Domain	Eastern Goldfields Province
405	North D'Aguilar Block	Sub-province	New England Fold Belt
100	North Kimberley	Sub-province	Kimberley Basin
369	North Otago	Sub-province	New Zealand Intraplate Volcanic Province
193	North Queensland Igneous Province	Province	
	Northern Province	Sub-province	Arunta Block
232	Northern Tate Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
62	Northhampton Block	Province	
358	Northland	Sub-province	New Zealand Intraplate Volcanic Province
310	Nulla	Sub-province	Tertiary Volcanic Province
63	Oaklands Basin	Province	
168	Oberon Batholith	Domain	Lachlan Fold Belt
64	Officer Basin	Province	
353	Older Volcanics	Sub-province	Tertiary Volcanic Province
65	Ord Basin	Province	•
	Osmond Basin	Province	
	Otway Basin	Province	1
	Padbury Basin	Province	
	Paterson Orogen	Province	
	Paterson Province	Province	
	Peak Range	Sub-province	Tertiary Volcanic Province
	Pedirka Basin	Province	
	Perth Basin	Province	
	Pilbara Block	Province	
	Pine Creek Geosyncline	Province	
	Polda Basin	Province	
	Promontory Batholith	Domain	Lachlan Fold Belt
	Quamby-Malbon Zone	Domain	Eastern Fold Belt
	Raeside Batholith	Domain	Eastern Goldfields Province
	Ravenswood (Ordovician) Subprovince	Sub-province	Thompson Fold Belt
233	Ravenswood Batholith	Domain	Ravenswood Siluro-Devonian Subprovince
	Ravenswood Carboniferous-	Sub-province	North Queensland Igneous Province
	Permian Subprovince Ravenswood Siluro-Devonian	Sub-province	Cape York Plutonic Belt
	Subprovince Red Rock Basin	Province	Capo Tota Tatomo Dot
	Redbank Thrust Zone	Domain	Central Province
			Central Frovince
	Revolver Creek Basin	Province	Corrections Ciling Description
	Robin Hood Batholith	Domain	Georgetown Siluro-Devonian Subprovince
	Rocky Cape Block	Province	
	Rum Jungle Block	Province	
398	Savory Basin	Province	

PROVNO	PROVNAME	RANKNAME	PARENTNAME
170	Scottsdale Batholith	Domain	Lachlan Fold Belt
304	Silver Plains, Piebald, and McLean Sub-province Tertiary Volcanic Province		Tertiary Volcanic Province
75	South Nicholson Basin Province		
373	South Westland	Sub-province	New Zealand Intraplate Volcanic Province
95	Southern Cross Province	Province	Yilgarn Craton
	Southern Highlands, Grabben Gullen, Abercrombie, and Kandos	Sub-province	Tertiary Volcanic Province
	Southern Province	Sub-province	Arunta Block
435	Speewah Basin	Province	
378	Spencer Shelf	Province	
316	Springsure	Sub-province	Tertiary Volcanic Province
78	St Vincent Basin	Province	
76	Stansbury Basin	Province	Adelaide Fold Belt
	Stuart Shelf	Province	
309	Sturgeon	Sub-province	Tertiary Volcanic Province
	Styx Basin	Province	
	Surat Basin	Province	
	Sybella Batholith	Domain	Western Fold Belt
	Sydney	Sub-province	Tertiary Volcanic Province
	Sydney Basin	Province	
	Sylvania Dome	Province	
	Tasmania & Bass Strait	Sub-province	Tertiary Volcanic Province
	Tasmania Basin	Province	
	Taswegia Batholith	Domain	Lachlan Fold Belt
	Tate Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
84	Tennant Creek Block	Province	Jacobio Villo
283	Tertiary Volcanic Province	Province	
	Texas Downs Basin	Province	
	Thompson Fold Belt	Province	
	Thornton Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
368	Timaru and Geraldine	Sub-province	New Zealand Intraplate Volcanic Province
271	Tinaroo Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
385	Tirari Sub-basin	Sub-province	Lake Eyre Basin
86	Torrens Basin	Province	
399	Trainor Platform	Sub-province	Savory Basin
269	Tully Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
172	Tumut Batholith	Domain	Lachlan Fold Belt
325	Tweed	Sub-province	Tertiary Volcanic Province
87	Tyenna Block	Province	
235	Urannah Batholith	Domain	Connors Arch Subprovince
138	Urapunga Tectonic Ridge	Sub-province	McArthur Basin
88	Victoria River Basin	Province	
173	Wagga Batholith	Domain	Lachlan Fold Belt
	Walcha	Sub-province	Tertiary Volcanic Province
139	Walker Trough	Sub-province	McArthur Basin
	Wallaroo	Sub-province	Tertiary Volcanic Province
	Warburton Basin	Province	
9,	2 Warrumbungle	Sub-province	Tertiary Volcanic Province
342			
	Wearvan Shelf	Sub-province	McArthur Basin
135	Wearyan Shelf Weberra Batholith	Sub-province Domain	McArthur Basin Western Fold Belt

PROVNO	PROVNAME	RANKNAME	PARENTNAME
101	West Kimberley Sub-province Kimberley Basin		Kimberley Basin
142	Western Fold Belt	Sub-province	Mount Isa Inlier
121	Western Gneiss Terrane	Province	Yilgarn Craton
174	Western Victoria Batholith	Domain	Lachlan Fold Belt
236	White Springs Batholith	Domain	Georgetown Siluro-Devonian Subprovince
186	Williams Batholith	Domain	Eastern Fold Belt
108	Willyama Block	Province	
273	Windsor Batholith	Domain	Hodgkinson Carboniferous-Permian Subprovince
90	Wiso Basin	Province	
439	Wolfe Basin	Province	
431	Wolfe Creek Basin	Province	
175	Wologorong Batholith	Domain	Lachlan Fold Belt
187	Wonga Batholith	Domain	Kalkadoon-Leichhardt Belt
91	Wonominta Block	Province	
210	Woolgar Inlier	Domain Einasleigh Subprovince	
176	6 Wyangala Batholith Domain Lachlan Fold Belt		Lachlan Fold Belt
92	Yambo Block	Province	
396	Yeneena Basin	Sub-province	Paterson Orogen
177	Yeoval Batholith	Domain	Lachlan Fold Belt
429	Yerrida Basin	Province	
93	Yilgarn Craton	Super-province	
392	392 Yinnetharra Batholith Domain Gascoyne Block		Gascoyne Block
178	Young Batholith	Domain	Lachlan Fold Belt
0	unknown	Province	

3.9 GEOREGIONS AUTHORITY TABLE

Geological regions recorded in the **SITES** table are based on Palfreyman's geological provinces (Palfreyman, 1984). They indicate the geographical region in which the sample was collected, unlike the geological provinces GEOLPROV listed in the **ROCKS** table, which are specific to the geological unit. Geological regions cater for drill holes which are, for example, collared in the Karumba Basin and extend into the Proterozoic basement, or samples which are collected at an unconformity between geological provinces. The site location could in this instance be in either province, however, geologically each sample can come from only one province.

REGNO	REGNAME	COUNTRY
2	Adelaide Region	AUS
3	Albany Region	AUS
4	Amadeus Region	AUS
6	Anakie Region	AUS
5	Arafura Region	AUS
7	Arnhem Region	AUS
8	Arrowie Region	AUS
9	Arunta Region	AUS
112	Ashburton Region	AUS
10	Bancannia Region	AUS
11	Bangemall Region	AUS
12	Birrindudu Region	AUS
13	Bonaparte Region	AUS
14	Bowen Region	AUS
15	Bremer Region	AUS
94	Bresnahan Region	AUS

REGNO	REGNAME	COUNTRY
16	Broken Hill Region	AUS
95	Burke River Region	AUS
43	Cairns Region	AUS
97	Caloola Region	AUS
17	Canning Region	AUS
19	Carnarvon Region	AUS
20	Carpentaria Lowlands	AUS
	Region	
83	Central Tasmania	AUS
	Region	
98	Charters Towers Region	AUS
21	Clarence-Moreton	AUS
	Region	
99	Clarke River Region	AUS
22	Coen Region	AUS
24	Daly River Region	AUS
25	Darling Region	AUS

REGNO	REGNAME	COUNTRY
26	Davenport Region	AUS
27	Denison Region	AUS
28	Drummond Region	AUS
29	Duaringa Region	AUS
30	Dundas Region	AUS
31	Eromanga Region	AUS
33	Eucla Region	AUS
282	Fly-Highlands Region	PNG
100	Fraser Region	AUS
34	Galilee Region	AUS
35	Gascoyne Region	AUS
36	Gawler Region	AUS
37	Georgetown Region	AUS
38	Georgina Region	AUS
39	Gippsland Region	AUS
40	Halls Creek Region	AUS
41	Hamersley Region	AUS
44	Kanmantoo Region	AUS
46	Kimberley Region	AUS
101	King Island Region	AUS
102	King Leopold Region	AUS
47	Lachlan Region	AUS
49	Leeuwin Region	AUS
50	Litchfield Region	AUS
51	Maryborough Region	AUS
103	Marymia Region	AUS
52	McArthur Region	AUS
53	Money Shoal Region	AUS
54	Mount Isa Region	AUS
55	Mount Painter Region	AUS
56	Murphy Region	AUS
57	Murray Region	AUS
58	Musgrave Region	AUS
59	Nabberu Region	AUS
60	New England Region	AUS
357	New Zealand Intraplate	NZ
	Volcanic Region	
61	Ngalia Region	AUS
104	Nongra Region	AUS
62	Northampton Region	AUS

REGNO	REGNAME	COUNTRY
105	Northeast Tasmania	AUS
	Region	
64	Officer Region	AUS
65	Ord Region	AUS
66	Otway Region	AUS
67	Paterson Region	AUS
68	Pedirka Region	AUS
69	Perth Region	AUS
70	Pilbara Region	AUS
71	Pine Creek Region	AUS
72	Polda Region	AUS
106	Proserpine Region	AUS
48	Quinkan Region	AUS
73	Rocky Cape Region	AUS
107	Savory Region	AUS
75	South Nicholson	AUS
	Region	
_ 78	St Vincent Region	AUS
77	Stuart Region	AUS
79	Styx Region	AUS
80	Surat Region	AUS
81	Sydney Region	AUS
82	Sylvania Region	AUS
85	Tanami Region	AUS
84	Tennant Creek Region	AUS
108	Tibooburra Region	AUS
86	Torrens Region	AUS
18	Torres Strait Region	AUS
87	Tyennan Region	AUS
88	Victoria River Region	AUS
96	Wilsons Promontory	AUS
	Region	
109	Winnecke Region	AUS
90	Wiso Region	AUS
91	Wonominta Region	AUS
93	Yilgarn Region	AUS
0	unknown	

3.10 GEOTIME AUTHORITY TABLE

This authority table lists geological time terms.

Description of columns

AGENO: A mandatory integer of up to 4 digits automatically allocated by the system.

AGENAME: Mandatory field of 24 characters for the name of the geological age or time term: e.g. 'Permian'.

RANK: Mandatory single-integer field indicating the RANK of the time term, and is a foreign key to the STRATA.TIMERANKS table. The current rank terms from the TIMERANKS table are as follows-

RANKNO	RANK
1	Eon
2	Erathem
3	Period
4	Epoch
5	Series
6	Stage
7	Substage
8	Unknown

SCOPE: Mandatory single-integer field indicating the SCOPE of the time term: i.e., to what regions does the term apply. This links to the STRATA.TIMESCOPE authority table via SCOPENO. For example, the Australian Ordovician Stage names are also used in New Zealand, so the scope description is given as Australasian. The following values are currently valid timescopes in the TIMESCOPE authority table:

SCOPENO	DESCRIPTION
1	International
2	Australia
3	Australasia
4	New Zealand
5	United Kingdom
6	North America
7	China

STATUS: Mandatory single-integer field indicating the STATUS of a time term, and links to the **STRATA.TIMESCOPE** table via STATUSNO. There are only three records at present in the **TIMESTATUS** authority table:

STATUSNO	DESCRIPTION
1	Current
2	Obsolete
3	Deleted

PARENT: An optional integer of up to 4 digits that points to the AGENO of the term next higher in rank in the **GEOTIME** table. For example, the parent age for the Ordovician Period is the Palaeozoic Era.

YNGBOUND: An optional 8-digit number field for the absolute youngest age of the geologic time term in million years.

OLDBND: An optional 8-digit number field for the absolute oldest age of the geologic time term in million years.

COMMENTS: An optional 64-character field for any additional comments.

GEODXID: An optional field of up to 6 characters for the **GEODX** reference ID of the primary reference to the time term. This is usually the most authoritative reference to the absolute age boundaries of the unit.

LASTALT: Date field - in the standard ORACLE date format of DD-MMM-YYYY - e.g. '23-JUL-1992', in which the current date is automatically inserted whenever a new record is entered or an old one updated.

3.11 HMAPS AUTHORITY TABLE

The **HMAPS** table is an authority table for 1:100 000 Map Sheet areas.

Description of columns

- HMAPNO: This unique four-digit number identifies any 1:100 000 Australian map.
- MMAPID: The 1:1 000 000 map sheet in which the 1:100 000 sheet lies. This is identified by two capital letters followed by two digits, e.g., 'SF54'. The two digits are the UTM zone, which is needed to convert metric references to latitude and longitude.
- QMAPNO: Up to 2 digits identifying the 1:250 000 map sheet from the 16 covering each 1:1 000 000 map area. The full 1:250 000 map ID is obtained by joining the 1:1 000 000 map ID to this number, e.g., SF54-12, which is the Winton 1:250 000 map sheet in Queensland. Note that the 1:250 000 map sheets in Tasmania are the theoretical ones, not the shifted ones actually published.
- **HMAPNAME:** A field of up to 22 upper case characters for the name of the 1:100 000 map sheet identified by the 1:100 000 Map Number. There are many offshore sheets which are identified as 'UNNAMED'.
- **N_LAT:** The latitude of the northwest corner of the 1:100 000 map sheet in degrees and decimal degrees.
- **W_LONG:** The longitude of the northwest corner of the 1:100 000 map sheet in decimal degrees.
- MEAST: The metric easting of the southeast corner of the 1:100 000 map sheet.
- MNORTH: The metric northing of the southeast corner of the 1:100 000 map sheet.
- STATE1: A three character field for the abbreviation of the state in which the 1:100 000 map sheet is located. Valid state abbreviations are derived from the AGSOSTATES authority table. If the map sheet straddles a border the state which covers the most area on the map sheet is recorded in this field.
- STATE2: A three-character field for the abbreviation of the state name, which is only used for 1:100 000 map sheets which straddle a border. The state with the least area on the map sheet is recorded in this field. Valid state abbreviations are derived from the AGSOSTATES authority table.

3.12 IZ_RECTYPES AUTHORITY TABLE

This is the authority table of record types for the INTERIZONS table.

RECTYPE	RECNAME
LTH	Lithology
STR	Structure
STD	STRATDAT Datum
RUB	RockUnitBoundary
SVY	Survey
CON	Contact type
REG	Regolith
RP	Rock Property

3.13 LANDF AUTHORITY TABLE

This is the authority table for landforms.

L_CODE	L_DESC	MAP_CODE
AL00	alluvial landforms	a
AL10	alluvial plain	ap
AL11	flood plain	af
AL12	anastomatic plain	aa
AL13	bar plain	ab
AL14	covered plain	ac
AL15	meander plain	am
AL16	floodout	ao
AL20	alluvial terrace	at
AL30	stagnant alluvial plain	as
AL40	terraced land	al
AL50	alluvial swamp	aw
CO00	coastal lands	С
CO01	beach ridge	cb
CO02	chenier plain	сс
CO03	coral reef	cr
CO04	marine plain	cm
CO05	tidal flat	ct
CO06	coastal dunes	cd
CO07	coastal plain	ср
CO08	beach	сс
DE00	delta	d
DU00	dunefield	u
DU01	longitudinal dune field	ul
ER00	erosional landforms	e
ER10	erosional plain	ер
ER11	pediment	ei
ER12	pediplain	ea
ER13	peneplain	en
ER14	etchplain	ee
ER20	rises	er
ER21	residual rise	eu
ER30	low hills	el
ER31	residual low hill	es

L_CODE	L_DESC	MAP_CODE
ER40	hills	eh
ER50	mountains	em
ER60	escarpment	ec
ER70	badlands	eb
ER80	drainage depression	ed
FA00	fan	f
FA01	alluvial fan	fa
FA02	colluvial fan	fc
FA03	sheet-flood fan	fs
GL00	glacial features	g
GL10	depositional glacial features	gd
GL20	erosional glacial features	ge
KA00	karst	k
MA00	made land	m
ME00	meteor crater	t
PL00	plain	p
PL01	depositional plain	pd
PL02	lacustrine plain	pl
PL03	playa plain	pp
PL04	sand plain	ps
PT00	plateau	1
PT01	plateau edge	le
PT02	plateau surface	ls
VO00	volcano	v
VO01	caldera	vc
VO02	cone (volcanic)	vv
VO03	lava plain	vl
VO04	ash plain	va
VO05	lava flow	vf
VO06	lava plateau	vp

3.14 LITHDATATYPES AUTHORITY TABLE

The **LITHDATATYPES** authority table contains all the lithological attributes associated with a sample and their permitted values.

DATATYPE	TYPEDESC
ALTI	Alteration Intensity
ALT	Alteration Style
BED	Bedding Thickness
СОН	Coherence
COL	Colour
COP	Colour pattern
FOS	Fossil
RAD	Gamma Ray Spectrometry (cps)
GS	Grain Size
IOM	Igneous Occurrence Mode
ITX	Igneous Texture
IS	Internal Stratification
MAG	Magnetic sus. (SI Units x 10-5)
MET	Metamorphic Grade
MTX	Metamorphic Texture
РНО	Photodata
REF	Reference
REM	Remarks
RSTR	Rock Strength
SP	Sample Provenance
ST	Sample type
SF	Sampled For
SOM	Sedimentary Occurrence Mode
SS	Sedimentary Structures
STX	Sedimentary Texture
SEQ	Sequence Types
SSTR	Soil Strength
SOR	Sorting
SPH	Sphericity
TEC	Tectonic Features
VEIN	Vein, dyke or sill
WEA	Weathering

3.15 LITHOLOGIES AUTHORITY TABLE

The **LITHOLOGIES** authority table contains all permitted lithological terms which are then classified into qualifiers outlined below.

QUALIFIER	DESCRIPTION
Н	
I	igneous
Q	generic (eg: banded)
R	regolith
S	sedimentary
M	metamorphic
U	
Z	

Listed below are the permitted lithological terms, sorted by QUALIFIER then by LITHNAME alphabetically.

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
BX	Н	breccia		
CVN	H	carbonate vein	VEIN	19
CLAS	H	clast	1221	
CLBX	Н	clast supported breccia	BX	
GOUG	Н	gouge		
MQZ	Н	massive quartz		
MTX	Н	matrix		
MTBX	Н	matrix supported breccia	BX	
QZBX	H	quartz breccia	BX	
QZVN	H	quartz vein	VEIN	19
QHBX	H	quartz-hematite breccia	BX	19
ROCK	H	rock	DX	
SED	H	sediment		
SINT	H	sinter		
TGWK			TTT	20
TMST	H	tuffaceous greywacke tuffaceous mudstone	TFT	20
TSDS	H H	tuffaceous mudstone	TFT	20
TSST			TFT	20
	H	tuffaceous siltstone	TFT	20
VEIN	Н	vein	DV	19
VEBX	H	vein breccia	BX	
ADK	I	adakite		
AGL	I	agglomerate		1
ALB	I	albitite		15
AFG	I	alkali feldspar granite	GRT	2
AFR	-I	alkali feldspar rhyolite	RHY	5
AFS	I	alkali feldspar syenite	SYN	3
AIRK	I	alkaline intrusive		9
ALO	I	alnoite	LPY	9
AGB	I	analcime gabbro = teschenite	GAB	9
ANA	I	analcimite	FDT	9
ANT	I	andesite	IVOL	6
ANS	I	anorthosite		2
APL	I	aplite	FIRK	2
ASH	I	ash		
BLT	I	basalt	MVOL	7
BAD	I	basaltic andesite	IVOL	6
BTA	I	basaltic trachyandesite	IVOL	6
BSN	I	basanite		9
BMT	I	benmoreite	TYA	6
BTH	I	bomb, block tephra	ТРН	
BON	I	boninite	IVOL	6
ССТ	I	calciocarbonatite	СВТ	9
CMP	I	camptonite	LPY	9
CBT	I	carbonatite		9
CHAR	I	charnockite	FIRK	2
CHT	I	chromitite		8
CPN	I	clinopyroxene norite	NRT	4
СРТ	I	clinopyroxenite	PRX	8
COM	I	comendite	RHY	9
XTUF	I	crystal tuff	TUF	

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
DAC	I	dacite	FVOL	5
DRT	I	diorite	IIRK	3
DLT	I	dolerite	GAB	4
DUN	I	dunite	PER	8
EPCR	I	epiclastic rock	VCR	20
FPY	I	feldspar porphyry		
FIRK	I	felsic intrusive	FRK	2
FLVA	I	felsic lava	FVOL	5
FRK	I	felsic rock	ROCK	
FVOL	I	felsic volcanic	VOLR	5
FNT	I	fenite		15
FGS	I	fergusite	FDT	9
FCT	I	ferrocarbonatite	CBT	9
FFS	I	foid-bearing alkali feldspar sye	SYN	9
FAT	I	foid-bearing alkali feldspar tra	TRC	9
FAN	I	foid-bearing anorthosite	ANS	9
FDR	I	foid-bearing diorite	DRT	9
FBG	I	foid-bearing gabbro	GAB	9
FLT	I	foid-bearing latite	TYA	9
FMD	I	foid-bearing monzodiorite	MZD	9
FMG	I	foid-bearing monzogabbro	MZB	9
FBM	I	foid-bearing monzonite	MZT	9
FSY	I	foid-bearing syenite	SYN	9
FTR	I	foid-bearing trachyte	TRC	9
FDI	I	foid-diorite	DRT	9
FDT	I	foidite		9
FDL	I	foidolite		9
GAB	I	gabbro	MIRK	4
GBN	I	gabbronorite	GAB	4
GRT	I	granite	FIRK	2
GRD	I	granodiorite	FIRK	2
GRP	I	granophyre	FIRK	2
HZB	I	harzburgite	PER	.8
HWT	I	hawaiite	TYB	7
MGBS	I	high-Mg basalt		8
HDG	I	hornblende gabbro	GAB	4
HBT	I	hornblendite		8
HYA	I	hyaloclastite		
IGM	I	ignimbrite	TUF	
IJL	Ï	ijolite	FDL	9
IIRK	I	intermediate intrusive	IRK	3
ILVA	I	intermediate lava	IVOL	6
IRK	I	intermediate rock		
IVOL	I	intermediate volcanic	VOLR	6
KZT	I	kersantite	LPY	9
KBL	I	kimberlite		9
KTT	I	komatiite		8
LPR	I	lamproite		9
LPY	I	lamprophyre		9
LTUF	I	lapilli tuff	TUF	
LTT	I	latite	TYA	6
LAVA	I	lava	VOLR	
LCTT	Ī	leucitite	FDT	9

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
LHZ	I	lherzolite	PER	8
LBG	I	limburgite	BSN	9
LITF	I	lithic tuff	TUF	
MIRK	I	mafic intrusive	MIRK	4
MLAV	I	mafic lava	MVOL	7
MRK	I	mafic rock	ROCK	
MVOL	I	mafic volcanic	VOLR	7
MCT	· I	magnesiocarbonatite	СВТ	9
MCH	I	meimechite		8
MPD	I	melilite-bearing peridotite	MLT	9
MPT	Ī	melilite-bearing pyroxenite	MLT	9
MUV	I	melilite-bearing ultramafic volc	MLT	9
MLT.	I	melilitite	IVALI	9
MLL	I	melilitolite	 	9
MLG	I .	melteigite	FDT	9
MSK	I	miaskite	MSYN	9
MNTT	I	minette	LPY	9
MSS	I	missourite	FDL	9
			LPY	9
MCQ MZD	I	monchiquite	IIRK	3
	I	monzodiorite		
MZB	I	monzogabbro	MIRK	4
MZG	I.	monzogranite	GRT	2
MZT	I	monzonite	IIRK	3
MSYN	I	monzosyenite		9
MUG	I	mugearite	BTA	6
NGB	I	nepheline gabbro = theralite	GAB	9
NMD	I	nepheline monzodiorite = essexit	MZD	9
NMG	I	nepheline monzogabbro = essexite	MZB	9
NSY	I	nepheline syenite	SYN	9
NPH	I	nephelinite	FDT	9
NLL	I	nephelinolite	FDL	9
NRT	I	norite	GAB	4
OBS	I	obsidian	FVOL	5
OCP	I	olivine clinopyroxenite	PRX	8
OHP	I	olivine hornblende pyroxenite	PRX	8
OHT	I	olivine hornblendite	НВТ	8
OMT	I	olivine melilitite	MLT	9
OML	I	olivine melilitolite	MLL	9
OOP	I	olivine orthopyroxenite	PRX	8
OWT	I	olivine websterite	PRX	8
OPHL	I	ophiolite	MVOL	7
OFG	I	opx alkali feldspar granite	GRT	2
OFS	I	opx alkali feldspar syenite	SYN	3
ODT	I	opx diorite = norite	DRT	3
OGT	I	opx granite = charnockite	GRT	2
OGD	I	opx granodiorite = opdalite	GRD	2
OMD	I	opx monzodiorite = jotunite	MZD	3
OMZ	Ī	opx monzonite = mangerite	MZT	3
OST	I	opx syenite	SYN	3
OTT	I	opx tonalite = enderbite	TNL	2
OPT	I	orthopyroxenite	PRX	8
PTT	I	pantellerite	RHY	9
			I T T T T	1 2

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
PKR	I	peralkaline rhyolite	RHY	9
PER	I	peridotite		8
PNT	I	phonolite		9
PBS	I	phonolitic basanite	BSN	9
PFD	I	phonolitic foidite	FDT	9
PTR	I	phonolitic tephrite	ТРТ	9
PCT	I	picrite	MVOL	7
PBT	I	picrobasalt	BLT	8
PHD	I	plagioclase-bearing hornblendite	НВТ	8
PPX	Ī	plagioclase-bearing pyroxenite	PRX	8
PLZ	Ī	polzenite	LPY	9
PHY	I	porphyry		
РТВ	Ī	potassic trachybasalt	TYB	7
PYCR	I	pyroclastic rock	VCR	20
PHG	I	pyroxene hornblende gabbro	GAB	4
PHP	I	pyroxene hornblende peridotite	PER	8
PHT	I	pyroxene hornblendite	НВТ	8
PML	I	pyroxene melilitolite	MLL	9
POM	I	pyroxene olivine melilitolite	MLL	9
PPD	† I	pyroxene peridotite	PER	8
PRX	I	pyroxenite	T DR	8
QAS	I	quartz alkali feldspar syenite	SYN	3
QZA QZA	I	quartz anan teruspai syemie	ANS	2
QZA QZD	I	quartz diorite	DRT	3
QFPY	I	quartz diorne quartz feldspar porphyry	PHY	J
	I	quartz feldspar rock	1111	<u> </u>
QFRK			GAB	4
QGB	I	quartz gabbro quartz latite	TYA	6
QZL	I	^	MZD	3
QMD	I	quartz monzodiorite	MZB	4
QMG	I	quartz monzogabbro	MZT	3
QZM	I	quartz monzonite		3
QZPY	I	quartz porphyry	PHY	3
QZS	I	quartz syenite	SYN TRC	5
QTY	I	quartz trachyte	IRC	2
QZG	I	quartz-rich granitoid	070	
QTE	I	quartzolite	QZG	15
RHD	I ·	rhyodacite	DAC	5
RHY	I	rhyolite	FVOL	5
SAN	I	sannaite	LPY	9
SHK	I	shonkinite	SYN	9
SHT	I	shoshonite	BTA	6
SMD	I	sodalite monzodiorite	MZD	9
SSY	I	sodalite syenite	SYN	9
SDT	I	sodalitite	FDT	9
SPT	I	spessartite	LPY	9
SPIL	I	spilite	MVOL	7
SYN	I	syenite	IIRK	3
SYG	I	syenogranite	GRT	2
TPH	I	tephra		
TPT	I	tephrite		9
TFD	I	tephritic foidite	FDT	9
TPL	I	tephritic phonolite	PNT	9
TNL	I	tonalite	FIRK	2

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
TYA	I	trachyandesite	IVOL	6
TYB	I	trachybasalt	MVOL	7
TYD	I	trachydacite	DAC	5
TRC	I	trachyte	IVOL	6
TTL	I	troctolite	GAB	4
TDJ	I	trondhjemite	TNL	2
TUF	I	tuff		
TFT	I	tuffite		
UMRK	I	ultramafic		
UVOL	I	ultramafic volcanic	VOLR	
URT	I	urtite	FDL	9
VTUF	I	vitric tuff	TUF	
VGT	Ι.	vogesite	LPY	9
VBX	Ī	volcanic breccia	VCR	20
VOLR	I	volcanic rock		
VCR	I	volcaniclastic rock	VOLR	
WEB	I	websterite	PRX	8
WHL	Ī	wehrlite	PER	8
ATRK	M	altered rock	1.220	
AMP	M	amphibolite		12
AUGN	M	augen gneiss	GNS	12
CSRK	M	calc-silicate rock	GNS	1
EGL	M	eclogite	- 	12
GNS	M	gneiss	<u> </u>	13
GFL	M	granofels		13
GRN	M	granulite		
GST	M	greenstone		12
GRSN	M	greisen		15
HFL	M	hornfels		1.5
MBL	M	marble		14
METB	M	metabasite		14
METS	M	metasediment	+	14
MTS	M	metasomatite		15
MIG	M	migmatite		13
MYL	M	mylonite	_	15
PHYL	M	phyllite	_	14
PSAM	M	psammopelite		14
QZT	M	quartzite	+	14
SCHT	M	schist		14
SRP	M			12
	 	serpentinite		4
SKN SLA	M M	skarn		15 14
		slate	-	14
TOUM	M	tourmalinite		
ABND	Q	abundant		
ADC	Q	adcumulate	+	
AEOL	Q	aeolian		
AGAL	Q	algal		<u> </u>
ALK	Q	alkali		
ALT	Q	altered		
AL	Q	aluminous		ļ
AMY	Q	amygdaloidal		
APH	Q	aphanitic	_	
ARE	Q	arenaceous	_1	

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
AR	Q	argillic		
ARK	Q	arkosic		
BA	Q	banded		
BLTC	Q	basaltic		
BAS	Q	basic		
BED	Q	bedded		·
BTM	Q	bitumenous		
BLE	Q	bleached		
BLK	Q	blocky	 -	
BOT	Q	botryoidal		
BO1 BO	Q	bouldery	•	
BR		brecciated		
CS	Q			
	Q	calc-silicate		
CALC	Q	calcareous		
CLC	Q	calcic		
CAR	Q	carbonaceous		
CHEM	Q	chemical		
CHY	Q	cherty		
CLT	Q	chloritic	_	
CLSS	Q	clast supported		
CLAC	Q	clastic		
С	Q	coarse		
CGC	Q	conglomeratic		
XL	Q	crystal		
CUMM	Q	cumulate		
CYC	Q	cyclic	i	
DK	Q	dark		
DIA	Q	diapiric		
DMT	Q	dolomitic		
EPC	Q	epiclastic		
EQ	Q	equigranular		
EU	Q	eutaxitic		
EXV	Q	extrusive		
FA	Q	fault		
FEL	Q	feldspathic		
FOI	Q	feldspathoidal		
FLS	Q	felsic		
FER	Q	ferruginous		<u> </u>
FIA	Q	fiamme		
F	Q	fine		
FGR	Q	fine grained		
FLAG	Q	flaggy		
FOID	Q	foid		
FO	Q	foliated		-
FR	Q	fractured		
FRI	Q	friable	 	
GL				·
	Q	glassy		
GSN	Q	gossanous		
GRAN	Q	granitic		
GPT	Q	graphitic		
GTY	Q	gritty		-
НМ	Q	hematitic		
HET	Q	heterolithic	<u> </u>	

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
HK	Q	high-K		
HMG	Q	high-Mg		
HGR	Q	high-grade		
MAG	Q	highly magnetic		
ITM	Q	intermediate		
ITV	Q	intrusive		
JSP	Q	jaspilitic	 	
KA	Q	kaolinised	 	
LA	Q	laminated	 	
LPL	Q	lapilli	†	
LAT	Q	lateritic		
LAY	Q	layered	 	
LEA	Q	leached	+	
LCC		leucocratic	 	
LT	Q		+	
	Q	light limonitic		
LIM LI	Q	<u> </u>	- 	<u> </u>
	Q	lineated		
LTH	Q	lithic	ļ	
LK	Q	low-K	↓	
LGR	Q	low-grade	ļ	
MAF	Q	mafic		
MGSN	Q	magnesian		
MAS	Q	massive		
MTXS	Q	matrix supported		
MK	Q	medium-K		
MEG	Q	megacrystic	ļ <u>.</u>	
MCC	Q	melanocratic		
MCL	Q	mesocumulate		
MET	Q	meta		
METM	Q	metamorphosed		
MIC	Q	micaceous		
MIO	Q	micro		
MX	Q	microcrystalline		
MIGM	Q	migmatitic		
MIK	Q	milky		
MON	Q	monomictic		
MDY	Q	muddy		
MY	Q	mylonitic		
NOD	Q	nodular		
00	Q	oolitic		
ORG	Q	organic	-	
ORT	Q	ortho		
OCL	Q	orthocumulate		
PALE	Q	pale	+	
PAR	Q	para	-	
PBY	Q	pebbly		
PEL	Q	pelitic		
PERA	Q	peralkaline	 	
PHC	Q	phosphatic		
			 	-
PCR	Q	picro		-
POD	Q	poddy	-	1
POIK	Q .	poikilitic		
PLY	Q	polymict	<u> </u>	

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
POOR	Q	poor		
P	Q	poorly sorted		
PORS	Q	porous		
POR	Q	porphyritic		
POT	Q	potassic		
PSC	Q	psammitic		
PBX	Q	pseudobrecciated		
PYR	Q	pyritic		
PYC	Q	pyroclastic		
QF	Q	quartzo-feldspathic		
RDL	Q	radiolarian		
RX	Q	recrystallised		
RES	, Q	residual		
RSNS	Q	resinous		
RTRO	Q	retrograde		
REW	Q	reworked		
RL	Q	rhythmic-layered		
RICH	Q	rich	**	
SA	Q	sandy		
SCHS	Q	schistose		
SERC	Q	sericitic		
SH	Q	sheared		
SILI	Q	siliceous	_	
SI	Q	silicified		
SLY	Q	silty		
SDC	Q	sodic		
SPCR	Q	specular	-	
STRO	Q	stromatilitic		
SUL	Q	sulphidic		
TPI	Q	tephri		
THL	Q	tholeiitic		-
TCY	Q	trachy	<u> </u>	
TFC	Q	tuffaceous	 	
UB	Q	ultrabasic		
UM	Q	ultramafic	 	<u> </u>
UND	Q	undifferentiated	<u> </u>	
UNW	Q ·	unwelded		
VND	Q	veined		
VE		vesicular		
VI	Q	vitric		
	Q		1	+
VOL VCC	Q	volcanic volcaniclastic	 	
	Q			+
WEA	Q	weathered	 	
WEL	Q	welded	1	17
ALUV	R	alluvium	DIE	17
CLCR	R	calcrete	DUR	17
CLY	R	clay	-	17
COLV	R	colluvium		17
DUR	R	duricrust	-	17
DST	R	dust	<u> </u>	17
FRCT	R	ferricrete	DUR	17
GO	R	gossan		17
GSQ	R	gossanous quartz	GO	17

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
GVL	R	gravel		17
GRU	R	grus		17
LAG	R	lag		17
LATT	R	laterite		17
LOM	R	loam		17
LOS	R	loess		17
MUD	R	mud		17
PLDZ	R	pallid zone		17
PIS	R	pisolite		17
PIST	R	pisolitic ironstone	DUR	17
SND	R	sand		17
SPRK	R	saprock		17
SPLT	R	saprolite		17
SCRE	R	scree		17
SLCT	R	silcrete	DUR	17
SLT	R	silt		17
SOIL	R	soil	-	17
AMBR	S	amber		.,
ANTH	S	anthracite	COAL	
ARNT	S	arenite	COAL	10
AGLT	S	argillite		10
ARKS	S	arkose		10
BIF	S	banded iron formation	IRFM	10
BHRK	S	beachrock	IKIWI	10
BIOC	S	biocarbonate		11
BIOM	S	biomicrite		11
BIOS	S	biosparite		11
BIT	S	bitumen		11
BLSH	, S	black shale	SHLE	10
BNBD	S	bone bed	SHLE	11
BLD	S	boulder		10
BDST	S	boundstone		11
CALR	S	calcarenite	ARNT	11
CALU	S	calcilutite	AKNI	11
CBIF	S	carbonate iron formation	IRFM	11
CBRK	S	carbonate rock	IKIVI	
CRNL	S	carnieule		11
CHLK	S	chalk		11
CHRT	S	chert		11
CLST	S	claystone		10
	S	coal		10
COAL	S	conglomerate		10
	S	coquina		11
CQNA	S			11
CORL	S	coral diamictite		10
DMCT	S			10
DTMT		diatomite	ADAM	10
DLAR	S	dolarenite	ARNT	11
DLST	S	dolostone		11
EVPT	S	evaporite		11
FGLT	S	fanglomerate		10
FLNT	S	flint		11
FOS	S	fossil		
GYST	S	geyserite		11

LITHID	QUALIFIER	LITHNAME	PARENT	ROCKTYPE
GNST	S	grainstone		11
GPST	S	grapestone		11
GSD	S	greensand		
GYWK	S	greywacke		10
GUN	S	guano		11
GYT	S.	gyttja		11
IRFM	S	iron formation		11
IRST	S	ironstone		11
JASP	S	jasper		11
JSPL	S	jaspilite	IRFM	11
LIG	S	lignite	COAL	
LMST	S	limestone		11
MGST	S	magnesite		
MTIF	S	magnetite iron formation	IRFM	
MARL	S	marl		10
MCRT	S	micrite		11
MDST	S	mudstone		10
NFOS	S	nanofossil		1
NVLT	S	novaculite		10
OOZ	S	ooze		
OXIF	S	oxide iron formation	IRFM	
PKST	S	packstone		
PEAT	S	peat		
PELT	S	pelite		10
PHSP	S	phosphorite		11
PCLN	S	porcellanite		10
PSMT	S	psammite		10
RDLT	S	radiolarite		10
SDST	S	sandstone		10
SDBX	S	sedimentary breccia	SED	10
SHLE	S	shale	·	10
SLST	S	siltstone		10
SPGT	S	sparagmite		10
SUIF	S	sulphide iron formation	IRFM	
TLL	S	till		10
TLLT	S	tillite		10
TLLD	S	tilloid		10
TORB	S	torbanite		
TRVN	S	travertine		11
TBDT	S	turbidite		10
CAV	U	cavity		
MNRK	U	manganese rock		
MSI	U	massive silica		
QMRK	U	quartz magnetite rock		
WD	U	wood		
MTRK	Z	magnetite rock		16
MSU	Z	massive sulphide		
ORE	Z	ore		
SURK	Z	sulphide-rich material		16

3.16 LITHUNITS AUTHORITY TABLE

This table is for lithological map unit symbols and definitions. It is primarily for identifying units in Archaean terranes where no formal stratigraphy has been defined. Map symbols are unique for each province. Note: Yilgarn is the only province with symbols in this table so far. The development of province-wide stratigraphy with matching geological units having the same symbol between sheets facilitates the easy integration of the data within a GIS.

Description of Columns

MAPSYMBOL: A mandatory 8-character mandatory field for the characters which comprise the map symbol.

PROVNO: A mandatory number field of up to 5 digits for the geological province in which the unit occurs. Valid codes for geological provinces are derived from the GEOPROVS table.

UNITNAME: 128-character field for the name or description of the map unit.

3.17 LOCMETHODS AUTHORITY TABLE

This table is for the method by which the locality of a sample was determined, and the maximum accuracy measure in metres allowed for a given method.

METHODNO	LOCMETHOD	ACCURACY
0	unknown	
1	GPS observation (WGS84 - World Geodetic System 1984)	100
2	GPS observation (AGD66 - Australian Geodetic Datum 1966)	100
3	GPS observation (AGD84 - Australian Geodetic Datum 1984)	100
4	GPS observation (GDA94 - Geocentric Datum of Australia 1994)	100
5	astronomical observation	
6	surveyed from ground control	5
7	published report	
8	unpublished report	
10	non-standard topographic map	
11	1:25 000 topographic map	25
12	1:50 000 topographic map	50
13	1:100 000 topographic map (AMG66)	100
14	1:250 000 topographic map	250
15	1:500 000 topographic map	500
16	1:1 000 000 topographic map	1000
20	non-standard geological map	
21	1:25 000 geological map	25
22	1:50 000 geological map	50
23	1:100 000 geological map (AMG66)	100
24	1:250 000 geological map	250
25	1:500 000 geological map	500
26	1:1 000 000 geological map	1000
30	Differential GPS - Survey quality (WGS84)	1
31	Differential GPS (AGD66)	2
40	Orthophoto image	
41	Orthophoto image 1:25 000 scale 10	

3.18 MEAN_METHOD AUTHORITY TABLE

This table lists the methods available for calculating the mean analysis values for each ion probe analysis. Each analysis on a zircon grain consists of between 5 and 7 measurements from which the mean is calculated.

METHODNO	METHOD
1	Linear data fits (Claoue-Long, Maxwell)
2	Curved data fits (Ireland)
3	Combination - linear fits used to derive interelement ratios, curved fits used to derive
	intraelement ratios

3.19 METHODS TABLE

This table describes the analytical methods used in deriving the analyses. It will be noted that all the methods listed here are for geochemical analyses. It was intended to also use this table for listing analysis methods for OZCHRON, however up to this stage no methods for OZCHRON have been added. Therefore this table is not required for OZCHRON, however it was decided to include it for completeness.

METHODNO	METHOD
1	unknown
2	XRF (Norrish & Hutton, 1969); FeO Vol.; LOI Grav.
3	XRF (Norrish & Hutton, 1969); FeO Vol.; H2O+, H2O-, & CO2 Grav.
4	XRF (Norrish & Chappell, 1977); Ag, Be, Co, Li by AAS
5	XRF (Norrish & Chappell, 1977); Ag, Be, Co, Cu, Li, Ni, Zn by AAS
6	XRF (Norrish & Hutton, 1969); FeO, H2O(total), CO2 by AMDEL
7	XRF (Norrish Chappell 1967); Li Be Cr Co Ni Cu Zn Sn AAS F AMDEL
8	Rb, Sr by XRF (Norrish & Chappell, 1967); Ni, Co, V by AAS
9	XRF (Norrish & Chappell, 1977); FeO vol.; LOI grav.
10	XRF (N & C, 1977); REE Hf Ta Cr Sc Sb Cs INA; Th U Gamma spectrm
11	XRF (N & C, 1977); REE Hf Ta Sb Cs INA; U delayed neutron count
12	XRF (Norrish & Chappell, 1977).
13	XRF (Norrish & Chappell, 1977); Co Cu Ni Pb Zn by emiss. spectrm
14	ICP,AES Inductively Coupled Plasma, Atomic Emission Spectroscopy
15	XRF (N & C, 1977) at ANU; Na, K by AAS (JCUNQ).
16	XRF(N&C 1977) UQ; REE Th U Pb Hf Ba Cs Sn Mo Nb Y Bi W MS7 RSES.
17	AMDL `wet' chem. +/- XRF (N & H, 1969)?
18	Tas. Dept. Mines Assay Labs Launceston: "classical methods".
19	J. Klominsky & D.I. Groves: X-ray spectrography.
20	XRF (Norrish & Chappell, 1977); REE,Sc,Hf,Th,U INAA
21	XRF (N & C, 1977); REE ion-exchange/XRF (Robinson & others, 1986)
22	AMACHEM Nickel sulfide assay- neutron activation.
23	XRF (Norrish & Hutton, 1969) on 1:1 purified silica mix
24	AAS
25	ANALABS: fire assay, Pb collection, carbon rod finish (30g samp)
26	ANALABS: fire assay fusion, AAS finish (30g sample)
27	ANALABS: combination of methodno = 25 (Pd & Pt) and 26 (Au)
28	RNAA from Melbourne University
29	ANALABS: fire assay, Pb collection, ICP-MS finish (30g samp)
30	Direct-reading optical spectrograph (DROS), BMR.
31	XRF (Norrish & Hutton, 1969), LOI Grav. by University of WA

METHODNO	METHOD
32	GSWA Government Chemical Laboratories.
33	Isotope dilution mass spectrometry, Sun & Nesbitt (1978)
34	XRF Nesbitt & Stanley (1980); traces
35	XRF (Nesbitt, et al, 1976); traces, by pressed powders
36	XRF (N&H, 1969, N&C 1977) at ANU; FeO, H2O+, H2O-, CO2 grav LaTb
37	Wet chemistry by University of WA (O'Beirne, 1968)
38	XRF (Mo,Sr,Rb,Pb,As,Zn,Cu,Ni,Cr), AAS (Li) (UWA: O'Beirne, 1968)

3.20 ORIGINATORS AUTHORITY TABLE

This table generally refers to the collector of the sample in the field, and is sorted below alphabetically. With some AGSO authors, it is possible to refer to original sample notebooks which are archived at AGSO in order to obtain more precise location descriptions of samples of interest.

ORIGNO	ORIGINATOR
	ANU RSES
	Abell, R.S.
	Abeysinghe, A.
	Adamides, N.G.
	Adams, C.J.
	Allen, A.R.
	Apak, S.N.
	Arriens, P.A.
	Aspin, S.J.
	Audetat, A.
	Backhouse, J.
	Bagas, L.
	Bailey, J.
	Bain, J.H.C.
	Bajwah, Z.
	Bandy, S.J.
	Barton, J.M.
	Bastrakov, E.N.
	Beirworth, P.
	Bennett, V.C.
	Bettenay, L.
	Black, L.P.
	Blake, D.H.
	Blewett, R.S.
	Bodorkos, S.
	Bofinger, V.M.
	Bradshaw, B.
	Brakel, A.
	Branch, C.D.
	Brauhart, C.
	Brown, M.C.
	Budd, A.
	Bultitude, R.J.
	CSIRO-Yilgarn data
	Camacho, A.
196	Campbell, I.D.

ORIGNO	ORIGINATOR
269	Carlsen, G.M.
	Carson, L.
	Cassidy, K.F.
	Chakraborty, K.K
	Champion, D.
181	Chan, R.A.
	Chappell, B.W.C.
	Chapple, K.
	Chen, C.F.
	Chin, R.J.
	Churchward, M.
	Claoue-Long, J.C.
	Clark, W.
	Clarke, G.
111	Collins, W.J.
142	Compston, D.M.
	Compston, W.
	Connors, K.A.
	Conor, C.H.H.
	Cook, P.
	Cooke, D.
82	Cooper, J.A.
	Cooper, R.W.
	Copp, I.A.
	Cox, S.F.
	Craig, M.A.
	Cranfield, L.
	Creaser, R.A.
	Crick, I.
	Crispe, A.
	Crostella, A.
	Croxford, W.
	Cruikshank, B.I.
	Currie, K.L.
	D'Addario, G.W.
10	Dallwitz, W.B.

	ORIGINATOR
337	Davy, R.
81	De Laeter, J.R.
11	Derrick, G.M.
101	Dobos, S.K.
184	Dohrenwend, J.C.
	Domagala, J.
201	Donchak, P.
	Duff, B.
	Duggan, M.B.
	Edgecombe, S.M.
	Edgoose, C.
137	Ellis, D.J.
	England, R.N.
	Etheridge, M.
	Ewers, G.R.
	Farrell, T.R.
	Ferguson, J.
	Ferguson, K.M.
	Fetherston, M.
	Fleming, C.
139	Fletcher, I.R.
102	Foden, J.D.
344	Foster, C.
	Fraser, S.
	Fredericks, D.
	Freeman, M.J.
	GSQ (Geol Surv of Qld)
	Gardner, C.
	Gee, R.D.
	Geol. Survey of N.S.W.
	Ghori, K.A.R.
	Gibson, D.L.
	Gibson, G.
	Giles, C.W.
	Glikson, A.Y.
203	Goldrick, G.
_	Goleby, B.R.
185	Gozzard, R.
85	Gray, C.M.
	Gregory, I.
	Grew, E.S.
	Grey, K.
	Griffin, T.J.
	Grimes, K.
	Gunther, M.
	Haines, P.
	Halfpenny, R.
	Hamlyn, P.R.
	Hancock, S.L.
	Haren, R.
	Harley, S.L.
204	Harris, D.
307	Hassan, L.Y.

ORIGNO	ORIGINATOR
	Havord, P.J.
	Hazell, M.
	Hegge, M.R.
	Heinrich, C.A.
	Henderson, G.A.M.
270	Henry, R. Hickman, A.A.
219	Higgins, N.C.
	Hill, R.I.
	Hill, R.M.
	Hills, J.
	Hine, R.
	Hinman, M.C.
	Hoatson, D.M.
	Hocking, R.M.
	Holliday, J.
	Holmes, R.D.
303	Huston, D.L.
21	Hutton, L.J.
281	Iasky, R.P.
239	Idnurm, M.
	Jackson, M.J.
	Jagodzinski, E.A.
	Jaques, A.L.
	Johnson, J.P.
	Johnson, R.W.
	Johnston, C.
	Joklik, G.F.
	Jones, M.
	Joplin, G.
	Jung, P.
	Kamprad, J.
	Kent, A.J.R.
	Kinny, P.D.
	Kjolle, I.
166	Knight, J.
23	Knutson, J.
282	Kojan, C.J.
100	Korsch, R.
107	Kralik, M.
195	Krassay, A.
	Kremarov, R.
	Lambert, I.
	Langford, R.L.
	Langworthy, A.P.
	Lanyon, R.
	Lewis, J.D.
	Lindsay, J.
	Liu, S
	Logan, R.G.
	Ludwig, K.R.
	Lyons, P.
1 9	MESA - Mines Energy SA

ORIGNO	ORIGINATOR		
	MINDEP		
	MINLOC		
	MINOCC		
	MLU Geochem Survey Gp		
	Maas, R.		
	Mackenzie, D.E.		
	Madigan, T.		
	Maidment, D.		
	Marjoribanks, R.W.		
	Mason, D.R.		
	McConachie, B.		
	McCulloch, M.T.		
	McDougall, I.		
	McGoldrick, P.		
	McKee, C.		
	McMahon, T.P.		
	McNaughton, N.J.		
	McPhie, J.		
	Mernagh, T.		
	Meyers, J.S.		
	Miller, A.		
	Min. Res. Tas.		
	Mitchell, J.M.		
	Mock, C.M.		
	Morris, P.A.		
	Morrison, R.S.		
	Morrow, N.		
	Mortimer, G.E.		
	Mory, A.J.		
	Munday, T.		
	NPD (Nat Petrol Dbase)		
	Needham, R.S.		
	Nelson, D.R.		
	Netherway, N.M.		
	O'Beirne, W.		
	Occhipinti, S.A.		
	Offe, L.A.		
	Ogasawara, M.		
	Ojala, J.		
	Ollier, C.D.		
	Oversby, B.S.		
	PIRSA		
	Page, R.W.		
	Pain, C.F.		
	Payne, N.		
	Pearson, P.J.		
	Pederson, C.P.		
	Peljo, M.		
	Perincek, D.		
	Perkins, C.		
	Perring, C.S.		
	Pidgeon, B.		
1 104	Pidgeon, R.T.		

ORIGNO	ORIGINATOR			
	Pieters, P.E.			
	Pietsch, B.			
	Pirajno, F.			
	Plumb, K.A.			
	Pollard, P.			
	Pope, J.			
	Price, R.			
	Radke, B.			
	Rao, C.P.			
	Rattenbury, M.S.			
	Rawlings, D.			
	Raymond, O.L.			
	Rees, I.			
	Rhodes, J.			
	Richards, D.			
108	Richards, J.R.			
	Richmond, J.			
168	Rienks, I.P.			
	Roarty, M.J.			
	Roberts, J.			
	Roberts, W.M.B.			
291	Rogerson, R.J.			
292	Ruddock, I.			
179	Ryburn, R.J.			
331	Sami, T.			
	Sandiford, M.			
41	Santul, J.			
	Schiotte, L.			
	Scillieri, R.C.			
	Scott, D			
	Sedgmen, A			
69	Shaw, R.D.			
193	Shaw, S.E.			
294	Sheppard, S.			
42	Sheraton, J.W.			
295	Shevchenko, S.I.			
	Shibata, K.			
	Sims, J.			
	Skirrow, R.G.			
	Smart, P.			
	Smith, J.B.			
	Smith, S.E.			
	Smithies, R.H.			
	Southgate, P.N.			
	Stevens, B.P.J.			
	Stevens, M.K.			
	Stewart, A.J.			
	Stewart, K.P.			
	Stratton, J.			
	Street, M.			
	Streit, J.E.			
	Stuart, J.E.			
	Stuart-Smith, P.G.			

ORIGNO ORIGINATOR		
	Sun, S.	
298	Svalbe, A.K.	
299	Swager, C.P.	
	Sweet, I.P	
321	Sweetapple, M.	
219	Szychowska, L.	
18	Tanaka, H.	
341	Taylor, G.	
153	Taylor, W.R.	
300	Thorne, A.M.	
	Thost, D.E.	
247	Tingey, R.J.	
164	Trail, D.S.	
315	Tripp, G.	
44	Tunks, A.	
110	Turek, A.	
122	Turner, N.J.	
150	Tyler, I.M.	
39	Valenta, R.	
126	Vanderhor, F.	
105	W.A. Geological Survey	
136	Wakelin-King, G.	
194	Wall, V.J.	
45	Wallace, D.A.	
62	Walpole, B.	
248	Wang, Q.	
16	Warren, R.G.	
72	Watchman, A.	
ORIGNO	ORIGINATOR	

91	Webb, A.W.	
309	Wellman, P.	
325	Wells, A.	
301	Westaway, J.M.	
158	Whalen, J.B.	
218	Whitaker, A.J.	
329	Wiedenbeck, M.	
176	Wilford, J.	
60	Wilkes, P.G.	
302	Williams, I.R.	
53	Williams, P.R.	
83	Williams, S.J.	
46	Willmott, W.F.	
47	Wilson, I.H.	
84	Windrim, D.P.	
48	Withnall, I.W.	
198	Witt, W.K.	
314	Woods, B	
238	Worrall, L.	
49	Wyborn, D.	
50	Wyborn, L.A.I.	
71	Wyche, S.	
	Yeates, A.N.	
128	Young, D.N.	
351	Young, G.C.	
171	Zhao, JX.	
1	unknown	
213	von Gnielinski, F.	

3.20 THE PROVRANKS AUTHORITY TABLE

This table is for indicating the rank of geological provinces in the GEOPROVS table. Valid terms are listed below:

RANKNO	RANKNAME	
1	Province	
2	Sub-province	
3	Domain	
4	Sub-domain	
0	Super-province	

3.21 QMAPS AUTHORITY TABLE

The QMAPS table is an authority table for 1:250 000 Map Sheet areas.

Description of columns

MAPNO: A mandatory field of up to 6 characters identifying the 1:250 000 map sheet e.g., 'SF5412', is the Winton 1:250 000 map sheet in Queensland. Note that the

1:250 000 map sheets in Tasmania are the theoretical ones, not the shifted ones actually published.

MAPNAME: A mandatory field of up to 22 upper case characters for the name of the 1:250 000 map sheet identified by the 1:250 000 Map Number.

N_LAT: The latitude of the northwest corner of the 1:250 000 map sheet in degrees and decimal degrees.

W_LONG: The longitude of the northwest corner of the 1:250 000 map sheet in decimal degrees.

3.22 ROCKTYPES AUTHORITY TABLE

This table provides a basic subdivision of samples based on rock type. It is intended primarily for database management and block retrieval.

ROCKNO	ROCKTYPE		
1	unknown		
2	felsic intrusive		
3	intermediate intrusive		
4	mafic intrusive		
5	felsic extrusive		
6	intermediate extrusive		
7	mafic extrusive		
8	ultramafite		
9	alkaline igneous		
10	clastic sediment		
11	chemical sediment		

ROCKNO	ROCKTYPE	
12	metabasite	
13	felsic gneiss	
14	metasediment	
15	metasomatite	
16	mineralisation	
17	regolith	
19	vein	
20	volcaniclastic	
21	tectonite	

3.23 SECTYPES AUTHORITY TABLE

This table is a lists types of drill holes or sections described in the **SECTHOLES** table.

CODE	SECTION TYPE	
P	Petroleum Well	
W	Water Bore	
M	Mineral Drill Hole	
S	Surface Measured Section	
C	Costean or Trench	
Α	Mine Adit or Shaft	
Е	Engineering Drill Hole	
G	Geological Drill Hole	
Z	Seismic Drill Hole	

3.25 STRATLEX AUTHORITY VIEW

STRATLEX is a view of the Australian Register of Stratigraphic Names. It contains the names of approximately 15 000 stratigraphic units which are in current usage. It is derived from the GEODX database of stratigraphic names, administered by Stratigraphic Index staff of AGSO. Additional information for each unit covering such things as age, parent units, and overlying and underlying units is continually being added. Information on stratigraphic names can now be viewed online through the AGSO

home page on the world wide web. Information provided includes currency, superseded names, if the name has been replaced by another and defining references.

The web address for the AGSO home page is: http://www.agso.gov.au/

Description of columns

UNITNO: A unique system-supplied integer of up to 5 digits.

UNITNAME: Mandatory field of 50 characters for the name of the stratigraphic unit, including any rank term that may be part of the name, e.g., 'Soldiers Cap Group' (where 'Group' is the rank term). Where a unit occurs in more than one state, the abbreviation of the state appears in brackets after the name of the stratigraphic unit.

RANK: A single-digit field to indicate stratigraphic rank. Valid ranks are derived from the **STRATRANKS** authority table listed below:

RANKNO	RANKNAME	
1	Supergroup	
2	Group	
3	Subgroup	
4	Formation, beds	
5	Member	
6	Bed	
7	unknown	

STATUS: A mandatory 2-digit field for the status of the unit. Valid status codes are derived from the STRATSTATUS authority table listed below:

STATUS	STATUSNAME	
1	Redefined	
2	Defined	
3	Fully described	
4	Described	
5	Briefly described	
6	Mentioned	
7	Reserved	
8	Informal	
9	Superseded	
10	Probably obsolete	
11	Obsolete	
12	Probably misspelt	
13	Misspelt	
14	Not recorded	
99	Processing pending	

AGE1: An integer of up to 4 digits pointing to the older age limit of the stratigraphic unit. This integer corresponds to a term from the GEOTIME authority table. Where no younger age limit is given, AGE1 is taken to be a general age for the unit as a whole.

AGE2: As for the AGE1 pointer, but referring to a younger age limit for the unit, if known.

- **GEOLPROV**: An integer of up to 5 digits pointing to the geological province in the **GEOPROVS** table.
- **COMMENTS**: A field of 255 characters for comments on the unit, particularly those on any synonym and the history of definition and nomenclature. Any conflicts with other stratigraphic names in **STRATLEX** can also be noted.

Type Area Data:

- TYPESTATE: A three-capital character field for the State in which the type area lies.
- **PARENT**: An integer of up to 5 digits. The unit number of the parent stratigraphic unit, i.e., the related unit that is higher in rank. For example, the parent unit for a Member would always be a Formation, while the parent unit for a Formation could be a Group or a Subgroup.
- **OVERLYING:** An integer of up to 5 digits. The stratigraphic unit number of the overlying stratigraphic unit.
- **OVEREL**: Integer fields indicating boundary relationships to the overlying units. Valid numbers and terms are stored in the **STRATRELS** authority table.
- **UNDERLYING:** An integer of up to 5 digits. The stratigraphic unit number of the underlying stratigraphic unit.
- **UNDEREL**: Integer field indicating boundary relationships to the underlying units. Valid numbers and terms are stored in the **STRATRELS** authority table.
- **DEFREF**: A 9-character field pointing to the reference publication in GEODX which defines the unit.
- **ENTRYDATE**: The date the record was entered in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- **LASTUPDATE**: The date the record was last updated in the standard ORACLE date format of DD-MMM-YYYY e.g. '23-JUL-1992'.
- **SECTHOLENO:** A 6-digit integer identifying a stratigraphic section or type section which defines the unit from the **SECTHOLES** table. Currently no type section has been defined in the **SECTHOLES** table, but in the future we are hoping make to these data available for newly defined units.
- **MAXTHICKNESS**: A 7-digit number with up to 2 digits allowed after the decimal point for the maximum thickness of the unit.
- ISCURRENT: A single-character field for a 'Y' or 'N' to indicate whether the unit is current. Within the STRATLEX view this field will always be 'Y'. Due to the continual updating taking place on the Australian Register of Stratigraphic Names the currency of some names may change from time to time. This could result in a STRATNO in the ROCKS table having no matching stratigraphic unit description in the STRATLEX view that we have sent you. If you have any records from the ROCKS table with no matching unit description in STRATLEX please contact us and we can then provide you with the current name of the unit.

3.26 THE STRATRELS AUTHORITY TABLE

The STRATRELS authority table is for indicating stratigraphic relationships to overlying and underlying stratigraphic units. Valid numbers and terms are:

NUMBER	NAME	
1	unknown	
2	not exposed	
3	conformity	
4	unconformity	
5	disconformity	
6	nonconformity	
7	paraconformity	
8	diastem	

3.27 THE STRUCTYPES AUTHORITY TABLE

The **STRUCTYPES** authority table is the list of valid structural types and codes for the **STRUCTURES** table.

TYPE	TYPEDESC	SUBTYPE	LEGEND
0	Vector	0	drill hole/measured section vector
1	Bedding	1	Bedding (gen. dipping)
1		2	Bedding (gen. vertical)
1		3	Bedding gen. horizontal
1		4	Bedding gen. overturned
1		11	Bedding(facing definite)
1		12	Bedding vertical
1	-	13	Bedding horizontal
1		14	Bedding overturned
1		15	Bedding horizontal invert
1		21	Bedding (facing unknown)
1		22	Bedding unknown vertical
1		23	Bedding unknown horizontal
2	Cleavage	1	Cleavage dipping
2		2	Cleavage vertical
2		3	Cleavage horizontal
2		11	Crenulation cleavage
2		12	Crenulation cleavage vert
2		13	Crenulation cleavage hori
3	Foliation	1	Foliation dipping
3		2	Foliation vertical
3		3	Foliation horizontal
4	Igneous Layering	1	Igneous layering dipping
4		2	Igneous layering vertical
4		3	Igneous layering horizont
5	Axial Surface	1	Axial surface dipping
5		2	Axial surface vertical
5		3	Axial surface horizontal
6	Fault Plane	1	Fault dipping
6		2	Fault vertical
6		3	Fault horizontal
7	Vein	1	Vein quartz
7		2	Vein porphyry

TYPE	TYPEDESC	SUBTYPE	LEGEND
7		3	Vein dolerite
7		4	Vein granite
7		5	Vein lamprophyre
7		6	Vein pegmatite
7		7	Vein rodingite
7		8	Vein aplite
7		9	Vein microgranite
7		10	Vein syenite
8	Joint	1	Joint dipping
8		2	Joint vertical
8		3	Joint horizontal
9	Airphoto Dip	1	0-5 degree dip
9		2	5-15 degree dip
9		3	15-45 degree dip
9		4	45-90 degree dip
9		5	dip not estimated
9		6	vertical dip
9		7	horizontal dip
20	Fold	1	Fold hinge
21		1	Mineral elongation
21	Lineation	2	Stretching lineation
21		3	Intersection lineation
21		4	Crenulation lineation
21		5	Slickenside
21		6	Mullion
22	Palaeocurrent	1	Palaeocurrent
23	Boudin axis	1	Boudin axis
31	Kink band	1	Kink band
32	Shearing	1	Shearing direction
35	Mylonite fabric	1	C plane
35		2	S plane

3.28 VEGTYPES AUTHORITY TABLE

This table is the AGSO vegetation types authority table **VEGET** and is based on AUSLIG's vegetation map of Australia.

VEGID	VEGDESC
F1	Sparse open herbfield
G1	Sparse open tussock grassland
G2	Open tussock grassland
G3	Tussock grassland or sedgeland
G4	Closed tussock grassland or sedgeland
H2	Hummock grassland
L1	Low open woodland with no significant lower stratum
L1F	Low open woodland with other herbaceous plants
L1G	Low open woodland with tussock grasses
L1H	Low open woodland with hummock grasses
L1S	Low open woodland with tall shrubs
L1Z	Low open woodland with low shrubs
L2	Low woodland with no significant lower stratum
L2G	Low woodland with tussock grasses

VEGID	VEGDESC
L2H	Low woodland with hummock grasses
L2S	Low woodland with tall shrubs
L2Z	Low woodland with low shrubs
L3	Low open forest with no significant lower stratum
L3G	Low open forest with tussock grasses
L3S	Low open forest with tall shrubs
L3Z	Low open forest with low shrubs
L4	Low closed forest
M1G	Open woodland with tussock grasses
M1H	Open woodland with hummock grasses
M1L	Open woodland with low trees
M1S	Open woodland with tall shrubs
M2G	Woodland with tussock grasses
M2H	Woodland with hummock grasses
M2L	Woodland with low trees
M2S	Woodland with tall shrubs
M2Z	Woodland with low shrubs
M3	Open forest with no significant lower stratum
M3G	Open forest with tussock grasses and graminoids
M3L	Open forest with low trees
M3S	Open forest with tall shrubs
M3Z	Open forest with low shrubs
M4	Closed forest
MIX	Mix of several categories
NIL	No significant vegetation
S1G	Tall open shrubland with tussock grasses
S1H	Tall open shrubland with hummock grasses
S1Z	Tall open shrubland with low shrubs
S2F	Tall shrubland with other herbaceous plants
S2G	Tall shrubland with tussock grasses
S2H	Tall shrubland with hummock grasses
S2Z	Tall shrubland with low shrubs
S3G	Open scrub with tussock grasses or graminoids
S3H	Open scrub with hummock grasses
S3Z	Open scrub with low shrubs
T3L	Tall open forest with low trees
T3M	Tall open forest with medium trees
T3S	Tall open forest with tall shrubs
T4	Tall closed forest
Z1	Low open shrubland with no significant lower stratum
Z1F	Low open shrubland with other herbaceous plants
Z1G	Low open shrubland with tussock grasses
Z1H	Low open shrubland with hummock grasses
Z 2	Low shrubland with no significant lower stratum
Z2F	Low shrubland with other herbaceous plants
Z2G	Low shrubland with tussock grasses and graminoids
Z 3	Open heath
Z3G	Open heath with tussock grasses
Z 4	Closed heath

Section 4

Data Dictionary

Section 4—Data Dictionary

The data dictionary descriptions are divided into OZROX and OZCHRON components. Within these components, the tables are identified as either main data tables or authority tables, and each section is listed alphabetically.

4.1 OZROX TABLES

4.1.1 Main Tables

4.1.1.1 INTERIZONS table data dictionary

INTERIZONS is the table of interval descriptions for measured sections or drill holes.

```
Columns
   IZ_NO
                    NUMBER (6)
                                  NOT NULL
   SECTHOLENO
                    NUMBER (5)
                                  NOT NULL
  RECTYPE
                    VARCHAR2 (3)
                                  NOT NULL
  D1
                    NUMBER (6,2)
                                  NOT NULL
                    NUMBER (6,2)
  D2
   PERCENT
                    NUMBER(7,2)
   DETAIL_PTR
                    NUMBER (7)
   DETAIL_PTR_CHR
                    VARCHAR2 (7)
   DETAIL_PTR_CHR2 VARCHAR2(7)
   COMMENTS
                    VARCHAR2 (128)
   ENTEREDBY
                    VARCHAR2 (8)
                                  NOT NULL
                                  NOT NULL
   ENTRYDATE
                    DATE
   LASTUPDATE
                    DATE
Primary Key
   IZ_NO
Indexes
   IZPOINTER1
                  NONUNIQUE
                               DETAIL_PTR
   IZENTEREDBY
                  NONUNIOUE
                               ENTEREDBY
   IZSECTHOLENOS NONUNIQUE
                               SECTHOLENO
                  NONUNIQUE
                               RECTYPE
   IZRECTYPES
   IZPOINTER2
                  NONUNIQUE
                               DETAIL_PTR_CHR
                  NONUNIQUE
                               DETAIL_PTR_CHR2
   IZPOINTER3
Foreign Keys
    SECTHOLENO REFERENCES NGMA.SECTHOLES (SECTHOLENO)
    RECTYPE REFERENCES NGMA.IZ_RECTYPES (RECTYPE)
Check Constraints
    CK_INTERIZONS_D1 (D1 BETWEEN 0.0 AND 99999.9 )
    CK_INTERIZONS_D2 (D2 BETWEEN 0.0 AND 99999.9 )
```

4.1.1.2 LITHDATA table data dictionary

LITHDATA is the extendable lithological attributes table for the **ROCKS** table.

```
Columns
   ROCKNO
                 NUMBER (6)
                                NOT NULL
   DATATYPE
                 VARCHAR2 (4)
                                NOT NULL
                 VARCHAR2 (4)
   SUBTYPE
   DESCRIPTION
                 VARCHAR2 (128)
   ENTEREDBY
                 VARCHAR2(16) NOT NULL
                                NOT NULL
   ENTRYDATE
                 DATE
   LASTUPDATE
                 DATE
Primary Key
   <none>
Indexes
```

LDROCKNO

NONUNIQUE

ROCKNO

Foreign Keys

Check Constraints

4.1.1.3OUTCROPS table data dictionary

The **OUTCROPS** table is for outcrop-scale data.

```
Columns
  ORIGNO
                NUMBER (5)
                              NOT NULL
                VARCHAR2 (16) NOT NULL
  SITEID
  ROCKRELS
                VARCHAR2 (128)
   SKETCH
                VARCHAR2 (64)
   PHOTO
                VARCHAR2 (64)
  VEGCODE
                VARCHAR2 (5)
   VEGETATION VARCHAR2 (64)
  LANDCODE
LANDFORM
                VARCHAR2 (4)
                VARCHAR2 (64)
   ENTEREDBY
                VARCHAR2 (16)
                              NOT NULL
                              NOT NULL
  ENTRYDATE
                DATE
  LASTUPDATE
                DATE
  STD ID
                VARCHAR2 (7)
   SITENO
                NUMBER (7)
Primary Key
   ORIGNO, SITEID
Indexes
  OCUSERS
               NONUNIOUE
                                ENTEREDBY
Foreign Keys
    ORIGNO, SITEID REFERENCES NGMA.SITES (ORIGNO, SITEID)
    ORIGNO REFERENCES NGMA.ORIGINATORS (ORIGNO)
    LANDCODE REFERENCES RTMAP.LANDF (L_CODE)
    VEGCODE REFERENCES QUATDB. VEGET (VEGID)
```

Check Constraints

4.1.1.4 ROCKS table data dictionary

The **ROCKS** table is for data on stratigraphy and lithology for individual samples.

Columns			
ROCKNO	NUMBER (6)	NOT	NULL
ORIGNO	NUMBER (5)	TOM	NULL
SITEID	VARCHAR2 (16)	NOT	NULL
SAMPLEID	VARCHAR2 (16)		
ROCKTYPE	NUMBER (2)		
QUALIFIER	VARCHAR2 (20)		
LITHNAME	VARCHAR2 (32)		
GROUPING	VARCHAR2 (50)		
STRATNO	NUMBER (5)		
STRATHEIGHT	NUMBER(8,3)		
HOLEDEPTH	NUMBER (10,2)		
DESCRIPTION	VARCHAR2 (64)		
OTHERINFO	VARCHAR2 (64)		
ENTEREDBY	VARCHAR2 (16)	NOT	\mathtt{NULL}
ENTRYDATE	DATE	NOT	\mathtt{NULL}
AGE	VARCHAR2 (54)		
INFORMAL	VARCHAR2 (64)		
HOLEDEPTH2	NUMBER (10,2)		
SECTHOLENO	NUMBER (5)		
GEOLPROVNO	NUMBER (3)		
QUALIFIER2	VARCHAR2(20)		
QUALIFIER3	VARCHAR2(20)		
MODEOCC	VARCHAR2(4)		
LASTUPDATE	DATE		
MAP_SYMBOL	VARCHAR2(8)		

```
SITENO
                 NUMBER (7)
Primary Key
  ROCKNO
Indexes
                     NONUNIQUE
  ROCKSORIGNO
                                   ORIGNO
                     NONUNIQUE
  ROCKSTRATNO
                                   STRATNO
   ROCKORIGSAMP
                     NONUNIQUE
                                   ORIGNO, SAMPLEID
                                   ORIGNO, SITEID
                     NONUNIQUE
  ROCKORIGSITE
   ROCKSGEOLPROVNO
                     NONUNIQUE
                                   GEOLPROVNO
   ROCKSITE
                     NONUNIQUE
                                   SITEID
   ROCKSMAPSYMBOLS
                     NONUNIQUE
                                   MAP_SYMBOL
                                   ENTEREDBY
   ROCKUSER
                     NONUNIQUE
Foreign Kevs
    ROCKTYPE REFERENCES NGMA.ROCKTYPES (ROCKNO)
    ORIGNO REFERENCES NGMA.ORIGINATORS (ORIGNO)
    GEOLPROVNO REFERENCES STRATA.GEOPROVS (PROVNO)
Check Constraints
    CK_ROCKS_MAPSYMBOL (not(map_symbol is not null and geolprovno is null))
    CK_ROCKS_UNIT ( not (map_symbol is not null and stratno is not null)
```

4.1.1.5 SECTHOLES table data dictionary

SECTHOLES is a table of header information for measured sections and drill holes.

```
Columns
   SECTHOLENO
                NUMBER (5)
                              NOT NULL
   ORIGNO
                NUMBER (3)
                              NOT NULL
   SITEID
                VARCHAR2 (16)
                              NOT NULL
   SECTYPE
                VARCHAR2 (1)
                              NOT NULL
   TYPESEC
                VARCHAR2 (1)
   PEDIN_UNO
                VARCHAR2(8)
   DH_COMPANY
                VARCHAR2 (48)
   DH_ID
                VARCHAR2 (48)
   AV_AZIMUTH
                NUMBER (3)
   AV_INCLIN
                NUMBER (2)
   TOT_METRES
                NUMBER (6,2)
   BEDPERP
                              NOT NULL
                VARCHAR2 (1)
   REFID
                VARCHAR2 (9)
                              NOT NULL
   ENTEREDBY
                VARCHAR2 (8)
   ENTRYDATE
                DATE
                               NOT NULL
                               DEFAULT '?'
   UPORDOWN
                VARCHAR2(1)
                                               NOT NULL
   LASTUPDATE
                DATE
   SITENO
                NUMBER (7)
Primary Key
   SECTHOLENO
Indexes
                                ORIGNO, SITEID
   SHORIGSITES
                  NONUNIQUE
                   NONUNIQUE
                                SECTYPE
   SHSECTYPES
   SHENTEREDBY
                                ENTEREDBY
                   NONUNIQUE
   SHTYPESEC
                   NONUNIQUE
                                TYPESEC
Foreign Keys
    ORIGNO, SITEID REFERENCES NGMA.SITES (ORIGNO, SITEID)
    SECTYPE REFERENCES NGMA.SECTYPES (FLAG)
    ORIGNO REFERENCES NGMA.ORIGINATORS (ORIGNO)
Check Constraints
    CK_SECTHOLES_AV_AZIMUTH (AV_AZIMUTH BETWEEN 0 AND 359 )
    CK_SECTHOLES_AV_INCLIN (AV_INCLIN BETWEEN -90 AND 90 )
    CK_SECTHOLES_BEDPERP (BEDPERP IN ('N', 'Y') )
    CK_SECTHOLES_TYPESEC (TYPESEC IN ('O','R','T')
    CK_SECTHOLES_UPORDOWN (UPORDOWN IN ('U', 'D', '?') )
```

4.1.1.6 SITES table data dictionary

The **SITES** table is for location data for each sample site.

Columns				
ORIGNO	NUMBER (5)	NOT NULL		
SITEID	VARCHAR2 (16)			
FIELDID	VARCHAR2 (16)			
OBSDATE	DATE			
OBSTIME	NUMBER (4,2)			
COUNTRYID	VARCHAR2(3)	NOT NULL		
STATE	VARCHAR2(3)			
REGNO	NUMBER (5)			
GEOGAREA	VARCHAR2 (64)			
LOCDESC	VARCHAR2 (64)			
HMAPNO	NUMBER (4)			
QMAPID	VARCHAR2 (6)			
EASTING	NUMBER (8,2)			
NORTHING	NUMBER (9,2)	NOTE ATTE T		
ACCURACY	NUMBER (5)	NOT NULL		
HEIGHT HEIGHTACC	NUMBER (5) NUMBER (3)			
DLAT	NUMBER (8,6)			
NS	VARCHAR2(1)			
DLONG	NUMBER (9,6)			
EW	VARCHAR2 (1)			
METHOD	NUMBER (3)	NOT NULL		
BIBREF	VARCHAR2 (9)			
AIRPHOTO	VARCHAR2 (36)			
oc	VARCHAR2(1)			
SH	VARCHAR2(1)			
RO	VARCHAR2(1)			
ST	VARCHAR2(1)			
PE	VARCHAR2(1)			
RC	VARCHAR2(1)			
OZ	VARCHAR2(1)			
OM	VARCHAR2(1)			
SC	VARCHAR2(1)			
RT	VARCHAR2 (1)			
RP	VARCHAR2(1)			
SP	VARCHAR2(1)	NOW WILL I		
ENTEREDBY ENTRYDATE	VARCHAR2(8) DATE	NOT NULL NOT NULL		
LASTUPDATE	DATE	NOT NOBE		
SITENO	NUMBER (7)			
RS	VARCHAR2(1)			
DATUM		NOT NULL		
ENTERED_COORDS	VARCHAR2(1)			
-	· .			
Primary Key				
ORIGNO, SITEID				
•				
Indexes				
SITESQMAPS	NONUNIQUE	QMAPID		
SITESDLATS	NONUNIQUE	DLAT		
SITESDLONGS	NONUNIQUE	DLONG		
SITESUSERS	NONUNIQUE	ENTEREDBY		
SITESHMAPS	NONUNIQUE	HMAPNO		
SITESREGIONS	NONUNIQUE NONUNIQUE	REGNO RT		
SITESRTMAP UK_SITES_SITENO	UNIQUE	SITENO		
SITESID	NONUNIQUE	SITEID		
SITESOZMIN	NONUNIQUE	OM		
SITESRP	NONUNIQUE	RP		
SITESSC	NONUNIQUE	SC		
SITESSTRUC	NONUNIQUE	ST		
	~			
Foreign Keys				
ORIGNO REFERENC				
HMAPNO REFERENCES NGMA.HMAPS (HMAPNO)				
METHOD REFERENCES NGMA.LOCMETHODS (LOCMETHNO)				
		SOCOUNTRIES (COUNTRYID)		
QMAPID REFERENCE				
REGNO REFERENCE	LO NGMA.GEUREGI	LONS (REGNO)		

```
Check Constraints
   CK_SITES_DATUM ( datum in ('UNKNOWN', 'GDA94', 'AGD66') )
   CK_SITES_DLAT (dlat between 0 and 90 )
   CK_SITES_DLONG (dlong between 0 and 359 )
   CK_SITES_ENTERED_COORDS ( entered_coords in ('L', 'M') )
   CK_SITES_EW (ew in ('E', 'e', 'W', 'w') )
   CK_SITES_NS (ns in ('N', 'n', 'S', 's') )
   CK_SITES_RS (rs = 'X')
```

4.1.1.7 STRUCTURES table data dictionary

STRUCTURES is the table for recording structural measurements for rock descriptions and survey data from the **INTERIZONS** table.

```
Columns
  ENTRYDATE
                 DATE
                               NOT NULL
   ENTEREDBY
                 VARCHAR2(8) NOT NULL
   ORIGNO
                 NUMBER (5)
                              NOT NULL
   SITEID
                 VARCHAR2(16) NOT NULL
                NUMBER (2)
   TYPE
                               NOT NULL
              NUMBER (2)
   SUBTYPE
   AZIMUTH NUMBER(3)
INCLINATION NUMBER(2)
DEFNO NUMBER(1)
   DEFSURFNO
                NUMBER (1)
               NUMBER (3)
   PLOTRANK
                 NUMBER (6)
   ROCKNO
                NUMBER (7)
   STRUCNO
                                NOT NULL
   LASTUPDATE DATE
                 NUMBER (7)
   SITENO
Primary Key
   STRUCNO
Indexes
   STRUCTUSER
                 NONUNIQUE
                               ENTEREDBY
   STRUCTORIGSITE NONUNIQUE ORIGNO, SITEID
   STRUCTSITEID NONUNIQUE
                                SITEID
   STRUCTROCKNO
                   NONUNIQUE
                                ROCKNO
Foreign Keys
Check Constraints
```

4.1.2 Authority Tables

4.1.2.1 AGSOAUTHS table data dictionary

The **AGSOAUTHS** table is for the authors of references recorded in the **AGSOREFS** table.

```
Columns
               VARCHAR2(9)
   REFID
                               NOT NULL
   AUTHOR
                               NOT NULL
               VARCHAR2 (60)
   SEQUENCE
               NUMBER (3)
                               NOT NULL
               VARCHAR2(8)
  ENTEREDBY
                               NOT NULL
Primary Key
  REFID
Indexes
Foreign Keys
Check Constraints
```

4.1.2.2 AGSOCOUNTRIES authority table data dictionary

AGSOCOUNTRIES is the AGSO authority table for countries.

Columns

COUNTRYID VARCHAR2(3) NOT NULL COUNTRYNAME VARCHAR2(32) NOT NULL

Primary Key COUNTRYID

Indexes

Foreign Keys

Check Constraints

4.1.2.3 AGSOMINERALS authority table data dictionary

AGSOMINERALS is the AGSO authority table of mineral names.

Columns

MINABBREV VARCHAR2(4) NOT NULL MINNAME VARCHAR2(32) NOT NULL

COMMON VARCHAR2 (1)
ORE VARCHAR2 (1)
ALTERATION VARCHAR2 (1)

Primary Key
MINABBREV

Indexes

BMRMINCOMM NONUNIQUE COMMON
BMRMINABBS UNIQUE MINABBREV
BMRMINNAME UNIQUE MINNAME
AGSOMINORE NONUNIQUE ORE

Foreign Keys

Check Constraints

4.1.2.4 AGSOREFS table data dictionary

The **AGSOREFS** table is for the title and source details of references in AGSO's Bibliographic References Database.

Columns

REFID VARCHAR2(9) NOT NULL

OTHERID VARCHAR2 (16) ENTEREDBY VARCHAR2 (8) ENTRYDATE DATE

YEAR VARCHAR2 (40)

TITLE VARCHAR2(1024)
SOURCE VARCHAR2(1024) NOT NULL

VOLPART VARCHAR2 (36)
PAGES VARCHAR2 (36)

Primary Key REFID

Indexes

Foreign Keys

Check Constraints

4.1.2.5 AGSOSTATES authority table data dictionary

AGSOSTATES is the AGSO authority table for Australian states.

```
Columns
STATEID VARCHAR2(3) NOT NULL
STATENAME VARCHAR2(32) NOT NULL
Primary Key
STATEID
Indexes
Foreign Keys
```

Check Constraints

4.1.2.6 CONTACTS authority table data dictionary

CONTACTS is the AGSO authority table of geological contact types for the **INTERIZONS** table.

```
Columns
CONTACTID NUMBER(5) NOT NULL
CONTACTNAME VARCHAR2(32) NOT NULL
Primary Key
CONTACTID

Indexes
Foreign Keys
Check Constraints
```

4.1.2.7 GEOPROVS authority table data dictionary

GEOPROVS is the AGSO authority table for geological provinces, subprovinces and domains.

```
Columns
   PROVNO NUMBER(3) NOT NULL
PROVNAME VARCHAR2(64) NOT NULL
PROVLETS VARCHAR2(4)
   PROVLETS
   TYPE
                  VARCHAR2 (16)
                 NUMBER (1)
   RANK
   STATUS
                 NUMBER (1)
                                  NOT NULL
   PARENT
                  NUMBER (3)
   GEODX_REF
                  VARCHAR2 (9)
   COMMENTS VARCHAR2 (64)
                  VARCHAR2 (16)
   USERID
   LASTCHANGED DATE
                  NUMBER (5,2)
   ELON
   WLON
                  NUMBER (5,2)
                  NUMBER (5,2)
   TT.AT
   BLAT
                  NUMBER (5,2)
   COORDS
                  LONG RAW
   COUNTRYID
                  VARCHAR2(3)
Primary Key
   PROVNO
Indexes
   PROVLETTS
                    UNIQUE
                                   PROVLETS
   PROVNAMES
                    UNIQUE
                                   PROVNAME
Foreign Keys
```

Check Constraints

4.1.2.8 GEOREGIONS authority table data dictionary

GEOREGIONS is the AGSO authority table of geographical region names.

```
Columns
              NUMBER (3)
                            NOT NULL
  REGNO
  PROVNO
              NUMBER (3)
                            NOT NULL
  REGNAME
              VARCHAR2 (64) NOT NULL
  REGLETS
              VARCHAR2(4) NOT NULL
  COUNTRYID VARCHAR2(3)
                            NOT NULL
  COMMENTS
              VARCHAR2 (64)
  ENTEREDBY VARCHAR2(8) NOT NULL
  ENTRYDATE DATE
                           NOT NULL
Primary Key
  REGNO
Indexes
Foreign Keys
   COUNTRYID REFERENCES AGSOCOUNTRIES (COUNTRYID)
Check Constraints
```

4.1.2.9 GEOTIME authority table data dictionary

GEOTIME is the AGSO authority table on geological ages.

```
Columns
   AGENO
               NUMBER (4)
                               NOT NULL
   AGENAME
               VARCHAR2(24) NOT NULL
   SCOPE
               NUMBER (2)
                               NOT NULL
                               NOT NULL
              NUMBER (1)
   RANK
             NUMBER (1)
   STATUS
                               NOT NULL
   PARENT NUMBER (4)
YNGBOUND NUMBER (8,3)
   OLDBOUND NUMBER (8,3)
   COMMENTS VARCHAR2 (64)
GEODXID VARCHAR2 (10)
LASTALT DATE
Primary Key
   AGENO
Indexes
   GEOTIMEAGENOS
                      UNIQUE
                                 AGENO
   GEOTIMEAGENAMES UNIQUE AGENAME
Foreign Keys
Check Constraints
```

4.1.2.10 HMAPS authority table data dictionary

HMAPS is the AGSO authority table for 1:100 000 Map Sheet areas.

```
Columns
  HMAPNO
              NUMBER (4)
                            NOT NULL
             VARCHAR2 (4)
   MMAPTD
   OMAPNO
              NUMBER (2)
  HMAPNAME VARCHAR2 (22)
            NUMBER(3,1)
   N_LAT
             NUMBER (4,1)
   W_LONG
            NUMBER (6)
  MEAST
   MNORTH
            NUMBER (7)
```

STATE1 VARCHAR2(3) STATE2 VARCHAR2(3)

Primary Key HMAPNO

Indexes

HMAPNAMES NONUNIQUE HMAPNAME
HMAPLATS NONUNIQUE N_LAT
HMAPLONGS NONUNIQUE W_LONG

Foreign Keys

Check Constraints

4.1.2.11 IZ_RECTYPES authority table data dictionary

IZ_RECTYPES is the authority table of record types for the INTERIZONS table.

```
Columns
  RECTYPE
                VARCHAR2(3)
                               NOT NULL
                               NOT NULL
  RECNAME
                VARCHAR2 (16)
                VARCHAR2 (10)
  PHEADER
  LHEADER
               VARCHAR2 (10)
  Q1HEADER
                VARCHAR2 (10)
   Q2HEADER
                VARCHAR2 (10)
  O3HEADER
               VARCHAR2 (10)
             VARCHAR2(10)
   CHEADER
   POINT
                VARCHAR2(1)
                               DEFAULT 'N'
                               DEFAULT 'N'
  PCT_ENABLED VARCHAR2(1)
Primary Key
   RECTYPE
Indexes
Foreign Keys
```

4.1.2.12 LANDF authority table data dictionary

LANDF is the AGSO authority table which describes landform classes.

```
Columns
L_CODE VARCHAR2(4) NOT NULL
L_DESC VARCHAR2(30) NOT NULL
MAP_CODE VARCHAR2(2)
DEFINITION VARCHAR2(704)

Primary Key
L_CODE

Indexes
```

Check Constraints

Foreign Keys

Check Constraints

4.1.2.13 LITHDATATYPES authority table data dictionary

LITHDATATYPES is the AGSO authority table for extendable attributes for the **LITHDATA** table.

```
Columns
DATATYPE VARCHAR2(4) NOT NULL
TYPEDESC VARCHAR2(32)
```

```
SUBTYPE VARCHAR2(4) NOT NULL
SUBDESC VARCHAR2(32)

Primary Key
DATATYPE, SUBTYPE

Indexes
UK_LITHDATATYPES_SUBDESC UNIQUE DATATYPE, SUBDESC

Foreign Keys

Check Constraints
```

4.1.2.14 LITHNAMES view data dictionary

LITHNAMES is a view on the LITHOLOGIES and AGSOMINERALS tables.

4.1.2.15 LITHOLOGIES authority table data dictionary

The **LITHOLOGIES** authority table contains the AGSO detailed lithological nomenclature table, including qualifiers.

```
Columns
             VARCHAR2(4)
  LITHID
                           NOT NULL
  QUALIFIER VARCHAR2(1) NOT NULL
  LITHNAME VARCHAR2(32) NOT NULL
  PARENT
             VARCHAR2(4)
  ROCKTYPE NUMBER (2)
Primary Key
  LITHID
Indexes
  UK_LITHNAMES_LITHNAME UNIQUE
                                      QUALIFIER, ROCKTYPE, LITHNAME
Foreign Keys
   ROCKTYPE REFERENCES NGMA.ROCKTYPES (ROCKNO)
Check Constraints
```

4.1.2.16 LITHUNITS authority table data dictionary

LITHUNITS is the AGSO authority table for map unit symbols and definitions.

```
Columns

MAP_SYMBOL VARCHAR2(8) NOT NULL
PROVNO NUMBER(5) NOT NULL
UNITNAME VARCHAR2(128) NOT NULL

Primary Key
MAP_SYMBOL, PROVNO

Indexes

Foreign Keys

Check Constraints
```

4.1.2.17 LOCMETHODS authority table data dictionary

LOCMETHODS is the AGSO authority table for location methods.

Columns

LOCMETHNO NUMBER(3) NOT NULL LOCMETHOD VARCHAR2(64) NOT NULL

ACCURACY NUMBER (4)

Primary Key LOCMETHNO

Indexes

Foreign Keys

Check Constraints

4.1.2.18 ORIGINATORS authority table data dictionary

ORIGINATORS is the AGSO authority table for originators.

Columns

ORIGNO NUMBER(5) NOT NULL ORIGINATOR VARCHAR2(22) NOT NULL

Primary Key ORIGNO

Indexes

ORIGINS UNIQUE ORIGINATOR

Foreign Keys

Check Constraints

4.1.2.19 PROVRANKS authority table data dictionary

PROVRANKS is the AGSO authority table for ranking provinces, subprovinces and domains in the **GEOPROVS** table.

Columns

RANKNO NUMBER(1) NOT NULL RANKNAME VARCHAR2(20) NOT NULL

Primary Key RANKNO

Indexes

Foreign Keys

Check Constraints

4.1.2.20 QMAPS authority table data dictionary

QMAPS is the AGSO authority table for 1:250 000 map sheet areas.

Columns

MAPNO VARCHAR2(6) NOT NULL

MAPNAME VARCHAR2 (22) N_LAT NUMBER (3,1) W_LONG NUMBER (4,1)

```
Primary Key
MAPNO

Indexes
QMAPNAMES UNIQUE MAPNAME

Foreign Keys

Check Constraints
```

4.1.2.21 ROCKDATATYPES view data dictionary

ROCKDATATYPES is a view on the **LITHDATATYPES** and **AGSOMINERALS** tables.

```
CREATE OR REPLACE VIEW ROCKDATATYPES (
DATATYPE, TYPEDESC, SUBTYPE, SUBDESC)

AS (
SELECT DATATYPE, TYPEDESC, SUBTYPE, SUBDESC
FROM NGMA.LITHDATATYPES

UNION

SELECT 'ALTM', 'Alteration Mineral', MINABBREV, MINNAME
FROM NGMA.AGSOMINERALS
WHERE ALTERATION = 'A'

UNION

SELECT 'MI', 'Mineral', MINABBREV, MINNAME
FROM NGMA.AGSOMINERALS);
```

4.1.2.22 ROCKTYPES authority table data dictionary

ROCKTYPES is an AGSO authority table which is a broad classification of all rocks into 20 basic rock types.

```
Columns
ROCKNO NUMBER(5) NOT NULL
ROCKTYPE VARCHAR2(64) NOT NULL
Primary Key
ROCKNO
Indexes
Foreign Keys
Check Constraints
```

4.1.2.23 SECTYPES authority table data dictionary

SECTYPES is the AGSO authority table of measured section types for the **SECTHOLES** table.

```
Columns
   FLAG VARCHAR2(1) NOT NULL
   FLAGNAME VARCHAR2(24) NOT NULL

Primary Key
   FLAG

Indexes

Foreign Keys

Check Constraints
```

4.1.2.24 STRATLEX authority table data dictionary

STRATLEX is AGSO's database of current Australian Stratigraphic Names.

```
Columns
   UNITNO
                  NUMBER (5)
                                  NOT NULL
                  VARCHAR2 (50)
                                 NOT NULL
   UNITNAME
   RANK
                  NUMBER (1)
                 NUMBER (2)
                                 NOT NULL
   STATUS
   CARD
                 VARCHAR2(1)
                               NOT NULL
   CATEGORY
                 NUMBER (2)
                                 NOT NULL
   AGE1
                  NUMBER (4)
                 NUMBER (4)
   AGE2
   GEOLPROV NUMBER (5)
                 VARCHAR2 (255)
VARCHAR2 (3)
   COMMENTS
   TYPESTATE
                NUMBER (5)
   PARENT
   OVERLYING
                NUMBER (5)
   OVEREL NUMBER(3)
UNDERLYING NUMBER(5)
UNDEREL NUMBER(3)
   DEFREF
                 VARCHAR2 (9)
                 VARCHAR2(8)
DATE
                                  NOT NULL
   ENTRYID
   ENTRYDATE
                                  NOT NULL
                 VARCHAR2 (8)
   UPDATEID
   LASTUPDATE DATE
                 VARCHAR2(16)
NUMBER(5)
   SITEID
   ORIGNO
   SECTHOLENO NUMBER (6)
   MAXTHICKNESS NUMBER (9)
   ISCURRENT VARCHAR2 (1)
                                  NOT NULL
```

Primary Key
UNITNO

Indexes

Foreign Keys

Check Constraints

4.1.2.25 STRATRANK authority table data dictionary

STRATRANK is the AGSO authority table of stratigraphic unit ranks in the **STRATLEX** table.

Columns

RANKNO NUMBER(1) NOT NULL RANKNAME VARCHAR2(16) NOT NULL

Primary Key RANKNO

Indexes

Foreign Keys

Check Constraints

4.1.2.26 STRATRELS authority table data dictionary

STRATRELS is the AGSO authority table on stratigraphic relationships.

Columns

RELNO NUMBER (1) RELNAME VARCHAR2 (32)

```
Primary Key
   RELNO
```

Indexes

Foreign Keys

Check Constraints

4.1.2.27 STRATSTATUS authority table data dictionary

STRATSTATUS is the AGSO authority table of levels of data entry status for the units in the STRATLEX table.

Columns

STATUSTYPE VARCHAR2(1) NOT NULL STATUS NUMBER(2) NOT NULL STATUSNAME VARCHAR2 (50) NOT NULL

Primary Key

STATUS, STATUSTYPE

Indexes

Foreign Keys

Check Constraints

4.1.2.28 STRUCTYPES authority table data dictionary

STRUCTYPES is the AGSO authority table of structural types used by the STRUCTURES table.

Columns

TYPE NUMBER(3) NOT NULL SUBTYPE NUMBER(2) NOT NULL LEGEND VARCHAR2(35) NOT NULL ENDPT NUMBER(6,2)

SYMBOL LONG

TYPEDESC VARCHAR2 (16) AGSOCODE NUMBER (5) AGSO_CODE NUMBER(5)

Primary Key

TYPE, SUBTYPE

Indexes

Foreign Keys

Check Constraints

4.1.2.29 TIMERANK authority table data dictionary

TIMERANK is AGSO's authority table of geological time ranks for the **GEOTIMES** table.

Columns

RANKNO NUMBER(1) NOT NULL RANKNAME VARCHAR2(16) NOT NULL

Primary Key RANKNO

Indexes

Foreign Keys

Check Constraints

4.1.2.30 TIMESCOPE authority table data dictionary

TIMESCOPE is the AGSO authority table for the geographic scope of the geological time terms in the GEOTIMES table.

Columns

SCOPENO

NUMBER (1)

NOT NULL

SCOPENAME VARCHAR2(20) NOT NULL

Primary Key

SCOPENO

Indexes

Foreign Keys

Check Constraints

4.1.2.31 TIMESTATUS authority table data dictionary

TIMESTATUS is the AGSO authority table for the status of the geological time terms in the GEOTIMES table.

Columns

STATUSNO

NUMBER (1)

NOT NULL

STATUSNAME VARCHAR2 (20) NOT NULL

Primary Key STATUSNO

Indexes

Foreign Keys

Check Constraints

4.1.2.32 VEGET authority table data dictionary

VEGET is the AGSO authority table which describes vegetation classes.

Columns

VEGID

VEGDESC

VARCHAR2 (5)

VARCHAR2 (60) NOT NULL

NOT NULL

Primary Key

VEGID

Indexes

Foreign Keys

Check Constraints

4.2 OZCHRON TABLES

4.2.1 Main Tables

4.2.1.1 RBSR_AGES table data dictionary

RBSR_AGES is the pooled results table for the Rb-Sr method.

```
Columns
                NUMBER (8,2)
  RECNO
                               NOT NULL
   AGE
                NUMBER (6,2)
   STD DEVA
                NUMBER (6,2)
   INIT_RATIO NUMBER(7,6)
   STD_DEVI
                NUMBER (7,6)
                VARCHAR2 (240)
   COMMENTS
   MSWD
                NUMBER (6,2)
   RELEASED
                DATE
   ENTEREDBY
                VARCHAR2 (8)
   ENTRYDATE
                DATE
   LASTUPDATE
                DATE
   RESTRICTED
                VARCHAR2(1)
                              NOT NULL
Primary Key
   RECNO
Indexes
Foreign Keys
Check Constraints
```

4.2.1.2 RB_SR table data dictionary

Columns

RB_SR is the analytical data table for the Rb-Sr method.

```
AGE_POINTER NUMBER(8,2)
                               NOT NULL
                 NUMBER (6)
                               NOT NULL
  ANALNO
  ORDERNO
                 NUMBER (2)
  ORIGNO
                NUMBER (5)
                               NOT NULL
  SITEID
                VARCHAR2 (16)
                 VARCHAR2 (16)
                               NOT NULL
  SAMPLEID
                VARCHAR2 (9)
  REFID
  METHODNO
                NUMBER (6)
  MINERAL
                 VARCHAR2 (16)
  RB_PPM
                NUMBER(9,4)
                NUMBER (9,4)
  SR_PPM
  RB87SR86
                NUMBER (10,5)
                 NUMBER (10,5)
   SR87SR86
   COMMENTS
                 VARCHAR2 (240)
   RELEASED
                 DATE
                 VARCHAR2(8)
   ENTEREDBY
   ENTRYDATE
                 DATE
   LASTUPDATE
                 DATE
   RESTRICTED
                 VARCHAR2(1)
                               NOT NULL
Primary Key
   ANALNO
Indexes
  NEWRBSRAGEPOINTS NONUNIQUE
                                  AGE_POINTER
                                  ORIGNO, SAMPLEID ORIGNO, SITEID
   NEWRBSRORIGSAMPS NONUNIQUE
   NEWRBSRORIGSITES NONUNIQUE
Foreign Keys
    AGE_POINTER REFERENCES RBSR_AGES (RECNO)
Check Constraints
```

4.2.1.3 SHRIMP_AGES table data dictionary

SHRIMP_AGES is the pooled results table for the U-Pb Shrimp method.

```
Columns
                              NOT NULL
                NUMBER (6)
  RECNO
                              NOT NULL
   ORIGNO
                NUMBER (5)
                VARCHAR2 (16)
   SITEID
                              NOT NULL
   SAMPLEID
                VARCHAR2 (16)
                NUMBER (6,2)
   AGE
   STD_DEVA
                NUMBER (6,2)
                NUMBER (6,2)
   LI_AGE
   STD_DEVI
                NUMBER (6,2)
   COMMENTS
                VARCHAR2 (255)
   ENTEREDBY
                VARCHAR2(8)
                DATE
   ENTRYDATE
   LASTUPDATE
                DATE
   RELEASED
                DATE
   RESTRICTED
                VARCHAR2(1)
                               NOT NULL
                NUMBER (1)
   METHOD
   COMMON_PB
                NUMBER (1)
                NUMBER (1)
   AGE_USED
Primary Key
   RECNO
Indexes
   NEWSHRIMPAGEORIGSAMPS
                            NONUNIQUE
                                         ORIGNO, SAMPLEID
Foreign Keys
    METHOD REFERENCES MEAN_METHOD (METHODNO)
    AGE_USED REFERENCES AGE_USED (AGE_CODE)
    COMMON_PB REFERENCES COMMON_PB (PB_CODE)
```

4.2.1.4 SHRIMP table data dictionary

Check Constraints

SHRIMP is the analytical data table for the U-Pb shrimp method

Columns		
RECNO	NUMBER (6)	NOT NULL
ANALNO	NUMBER (6)	NOT NULL
LABNO	VARCHAR2(16)	
GRAINO	VARCHAR2(16)	
SPOTNO	VARCHAR2(16)	
ORDERNO	NUMBER (3)	
REFID	VARCHAR2(9)	
WEIGHT	NUMBER (5,3)	
U_PPM	NUMBER $(7,2)$	
TH_PPM	NUMBER $(7,2)$	
TH_OVER_U	NUMBER(6,3)	
PB204_PPB	NUMBER (9,2)	
PB206PB204	NUMBER(10,1)	
F_PCT	NUMBER (6,3)	
PB207PB206	NUMBER(7,5)	
STD_DEV1	NUMBER(6,5)	
PB208PB206	NUMBER(6,5)	
STD_DEV2	NUMBER (4,4)	
PB206U238RAD	NUMBER(6,5)	
STD_DEV3	NUMBER(6,5)	
PB207U235RAD	NUMBER $(7,4)$	
STD_DEV4	NUMBER(7,4)	
PB208TH232RAD	NUMBER(5,4)	
STD_DEV5	NUMBER (5,4)	
MIN76_AGE	NUMBER (4)	
STD_DEV6	NUMBER (4)	
AGE206_238	NUMBER (5)	
STD_DEV7	NUMBER (4)	

```
AGE207_235
AGE208_232
                    NUMBER (5)
                    NUMBER (5)
   COMMENTS
                    VARCHAR2 (240)
   ENTEREDBY
                    VARCHAR2(8)
   ENTRYDATE
                    DATE
  LASTUPDATE
                    DATE
   RELEASED
                    DATE
  RESTRICTED
                    VARCHAR2(1)
                                   NOT NULL
Primary Key
   ANALNO
Indexes
   NEWSHRIMPRECPTRS
                       NONUNIQUE
Foreign Keys
Check Constraints
```

4.2.1.5 SMND_AGES table data dictionary

SMND_AGES is the pooled results table for the Sm-Nd method

```
Columns
  RECNO
                NUMBER (6)
                              NOT NULL
  MSWD
                NUMBER (6,2)
  AGE
                NUMBER (6,2)
   STD_DEVA
                NUMBER (6,2)
   INIT_RATIO NUMBER(7,6)
   STD_DEVI
                NUMBER(7,6)
                NUMBER (4,1)
  EPSILON
   STD_DEV2
                NUMBER (3,1)
   COMMENTS
                VARCHAR2 (240)
   ENTEREDBY
                VARCHAR2 (8)
  ENTRYDATE
                DATE
  LASTUPDATE
                DATE
   RELEASED
                DATE
  RESTRICTED
                VARCHAR2(1)
Primary Key
   RECNO
Indexes
Foreign Keys
Check Constraints
```

4.2.1.6 SM_ND table data dictionary

SM_ND is the analytical data table for the Sm-Nd method

Columns			
AGE_POINTER	NUMBER (6)	NOT	NULL
ANALNO	NUMBER (6)	NOT	NULL
ORDERNO	NUMBER (2)	NOT	NULL
ORIGNO	NUMBER (5)	NOT	NULL
SITEID	VARCHAR2(16)		
SAMPLEID	VARCHAR2 (16)	TOM	NULL
GEOL_AGE	NUMBER (6,2)		
EPSN_ND	NUMBER(4,1)		
REFID	VARCHAR2(9)		
METHODNO	NUMBER (6)		
MINERAL	VARCHAR2 (16)		
SM_PPM	NUMBER (8,4)		
ND_PPM	NUMBER (9,4)		
SM147ND144	NUMBER (8,5)		
ND143ND144	NUMBER (9,6)		
TND	NUMBER (4)		
COMMENTS	VARCHAR2 (240)		

ENTEREDBY VARCHAR2(8)
ENTRYDATE DATE
LASTUPDATE DATE
RELEASED DATE
SIGMA2X10_6 NUMBER(2)
RESTRICTED VARCHAR2(1)

Primary Key ANALNO

Indexes

NEWSMNDAGEPOINTS NONUNIQUE AGE_POINTER
NEWSMNDORIGSAMPS NONUNIQUE ORIGNO, SAMPLEID
NEWSMNDORIGSITES NONUNIQUE ORIGNO, SITEID

Foreign Keys

Check Constraints

4.2.1.7 UPB_AGES table data dictionary

UPB_AGES is the analytical data table for the U-Pb whole mineral method.

Columns NUMBER (6) NOT NULL RECNO NUMBER (6,2) AGE STD_DEVA NUMBER (6,2) NUMBER (6,2) LI_AGE STD_DEVI NUMBER (6,2) COMMENTS VARCHAR2 (240) NUMBER (6,2) MSWD RELEASED DATE ENTEREDBY VARCHAR2(8) ENTRYDATE DATE LASTUPDATE DATE VARCHAR2(1) RESTRICTED NOT NULL

Primary Key RECNO

Indexes

Foreign Keys

Check Constraints

4.2.1.8 U_PB table data dictionary

U_PB is the analytical data table for the U-Pb whole mineral method

Columns NOT NULL RECNO NUMBER (5) ANALNO NUMBER (6) NOT NULL NOT NULL NUMBER (5) ORIGNO VARCHAR2 (16) SITEID NOT NULL SAMPLEID VARCHAR2 (16) NUMBER (3) ORDERNO VARCHAR2 (16) FRACTION VARCHAR2 (9) REFID METHODNO NUMBER (6) WEIGHT NUMBER (6,4) NUMBER (8,2) U_PPM PB_PPM NUMBER (8,2) NUMBER (8,2) PBRAD_PPM PB206PB204 NUMBER (8,2) PB206RAD NUMBER (8,2) PB207RAD NUMBER (8,2) PB208RAD NUMBER (6,2) PB207PB206 NUMBER (6,5) PB206U238 NUMBER (6,5)

```
PB207U235 NUMBER(7,5)
MIN76_AGE NUMBER(4)
STD_DEV1 NUMBER(3)
   APP206_238 NUMBER (4)
   STD DEV2
                NUMBER (3)
   APP207_235
                NUMBER (4)
   STD DEV3
                NUMBER (3)
   APP208_232 NUMBER(4)
   STD_DEV4
                NUMBER (3)
   COMMENTS
                VARCHAR2 (240)
   ENTEREDBY
                VARCHAR2(8)
   ENTRYDATE
                DATE
   LASTUPDATE
                DATE
   RELEASED
                DATE
   RESTRICTED
                VARCHAR2(1)
                               NOT NULL
Primary Key
   ANALNO
Indexes
  NEWUPBORIGSAMPS
                      NONUNIOUE
                                   ORIGNO, SAMPLEID
   NEWUPBORIGSITES NONUNIQUE
                                   ORIGNO, SITEID
   NEWUPBRECPTRS NONUNIQUE
                                   RECNO
Foreign Keys
    RECNO REFERENCES UPB_AGES (RECNO)
Check Constraints
```

4.2.2 Authority Tables

4.2.2.1 AGE_USED authority table data dictionary

The **AGE_USED** authority table is for the isotope ratios that can be used for determining an age.

```
Columns

AGE_CODE NUMBER(1) NOT NULL

AGE_USED VARCHAR2(8) NOT NULL

Primary Key
 AGE_CODE

Indexes

Foreign Keys

Check Constraints
```

4.2.2.2 COMMON_PB authority table data dictionary

The **COMMON_PB** authority table is for the lead isotope used to correct **SHRIMP** U-Pb age determinations for non-radiogenic lead.

```
Columns
PB_CODE NUMBER(1) NOT NULL
COMMON_PB VARCHAR2(12) NOT NULL
Primary Key
PB_CODE

Indexes
Foreign Keys
Check Constraints
```

4.2.2.3 MAXNOS table data dictionary

Columns

IDMAXNO VARCHAR2(16) NOT NULL
MAXNO NUMBER(6) NOT NULL

Primary Key
MAXNO

Indexes

Foreign Keys

Check Constraints

4.2.2.4 MEAN_METHOD authority table data dictionary

The MEAN_METHOD authority table is for the methods used to calculate mean of isotope measurements for each analysis.

Columns

METHODNO NUMBER(1) NOT NULL METHOD VARCHAR2(128) NOT NULL

Primary Key METHODNO

Indexes

Foreign Keys

Check Constraints

4.2.2.5 METHODS authority table data dictionary

METHODS is AGSO's authority table of analytical methods.

Columns

METHODNO NUMBER(5) NOT NULL METHOD VARCHAR2(64) NOT NULL

Primary Key METHODNO

Indexes

Foreign Keys

Check Constraints

OZCHRON Microsoft Access Forms

Section 5—OZCHRON Microsoft Access Forms

Release 3 of the AGSO's geochronology dataset is available as a Microsoft Access 95 database. The database design, structure, attributes and values used in the Access version are the same as those developed for the ORACLE version as described in the earlier sections of the manual, with a few minor exceptions. The purpose of this section is to provide some general guidance in the use of the OZCHRON database in Access.

A brief description of each form in the OZCHRON Access database is included in this section accompanied by screen captures of the forms. Lookup values for a given attribute are available as dropdown menus within most forms, or can be viewed by accessing the relevant codes through the main menu. Queries on the dataset are best handled by using the filter by form query button.

5.1 OZCHRON MAIN MENU

The OZCHRON Main Menu is illustrated in Figure 5.1 and is the entry point for the various forms within the database. The 3 main authority tables for geochronology data are also directly accessible from the menu, and the user is able to access some geochronology reports.

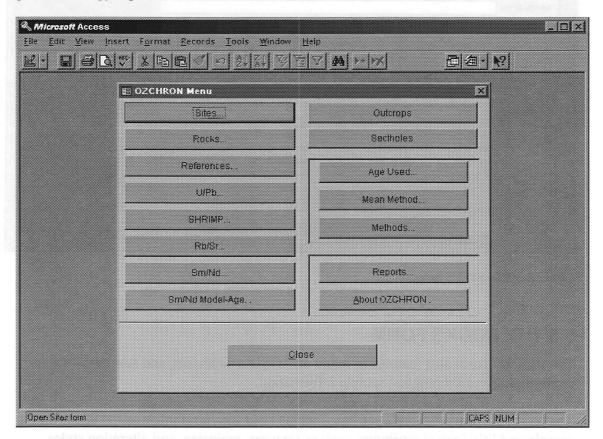


Figure 5.1 The main menu for OZCHRON.

5.2 THE SITES FORM

The standard SITES form that is a feature of most AGSO databases displays the full location information for given samples. The fields on the form are colour coded to quickly allow users to identify mandatory (yellow), optional (white), and system generated (blue) information. The form is illustrated in Figure 5.2.

Included on the form are 2 buttons. The button labelled 'Convert AMG to Lat/Long' runs a script that will convert AGD66 coordinates to latitudes and longitudes. The other button, labelled 'Lat & Long in Deg, Min and Sec' toggles the latitude and longitude fields between decimal and degrees.

There is also a section at the base of the form which indicates by an 'X' in the appropriate box where in the database system there is data relating to the SITE. To navigate to the related information, simply double click on the relevant box.

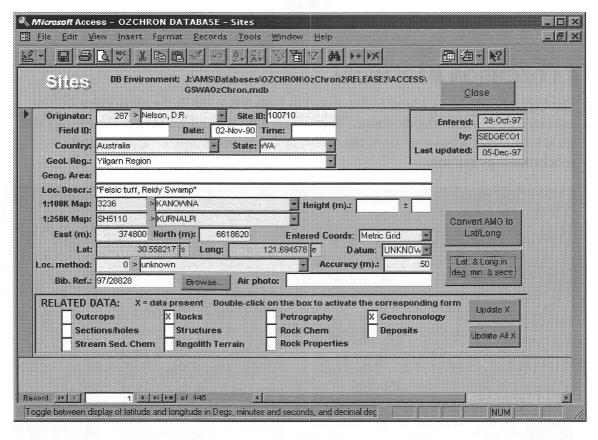


Figure 5.2 The SITES form.

5.3 THE ROCKS FORM

The ROCKS form also features in many of AGSO's databases, and summarises stratigraphic and lithological sample information.

The ROCKS form contains 2 subforms which hold structural information about the sample and lithological attributes, such as textures, grainsize, and alteration styles.

The form is illustrated in Figure 5.3.

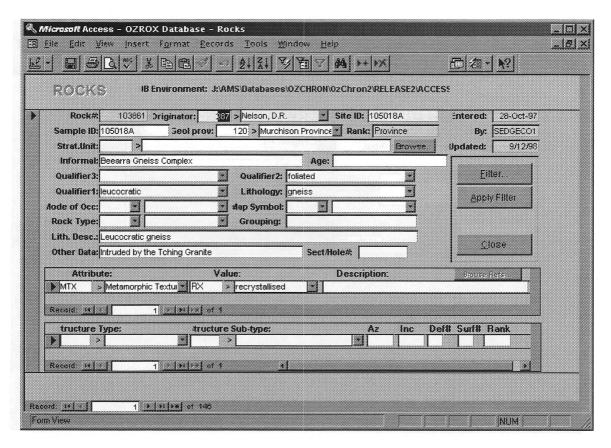


Figure 5.3 The ROCKS form.

5.4 THE REFERENCES FORM

Details in the REFERENCES form are extracted from the AGSOREFS database. The form displays the publication details for each reference, and lists the authors with a sequence number indicating whether they were first author, second author and so forth.

The form is illustrated in Figure 5.4.

5.5 THE CONVENTIONAL U-PB FORM

The CONVENTIONAL U-PB form is comprised of 2 sections. The information contained in the fields near the top of the form is based in the U-PB table, which contains the "pooled" result.

The remainder of the form is a subform, based on the UPB_AGES table, contains the analytical data for that sample. By utilising the inner set of scrollbars at the base of this section, the user can view the full set of analytical data for a given sample.

The form is illustrated in Figure 5.5.

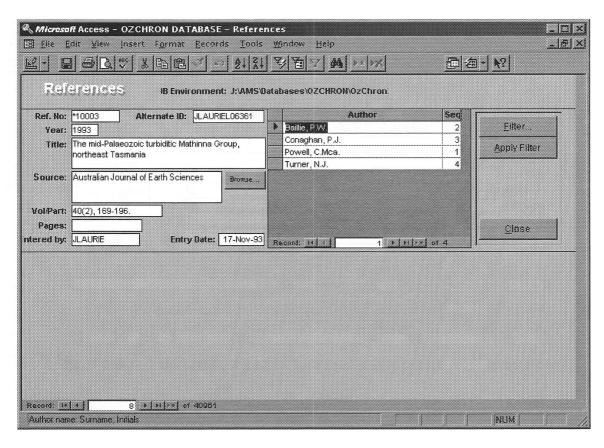


Figure 5.4 The REFERENCES form

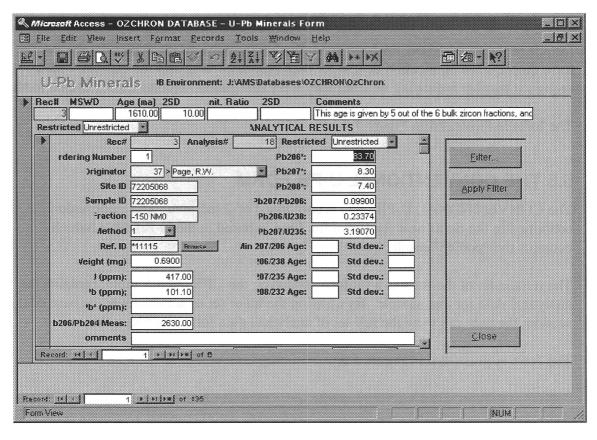


Figure 5.5 The Conventional U-PB form

5.6 THE SHRIMP FORM

The SHRIMP Form is designed in a similar manner to the CONVENTIONAL U-PB form, with 2 sections. Again the upper section contains "pooled age" information, and the lower section displays the analytical data that relates to that pooled age.

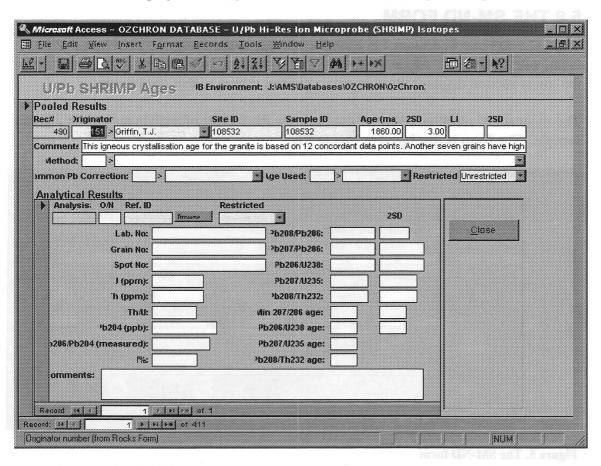


Figure 5.6 The SHRIMP form

5.7 THE RB-SR FORM

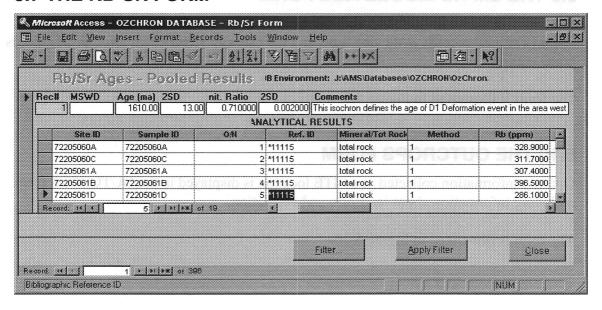


Figure 5.7 The RB-SR form

The RB-SR form, displayed in Figure 5.7, is again comprised of a pooled age section and a section that displays analytical data. The second section is displayed in tabulated form for ease of comparison of data.

5.8 THE SM-ND FORM

The SM-ND Form is designed in a similar manner to the CONVENTIONAL U-PB form, with 2 sections. Again the upper section contains "pooled age" information, and the lower section displays the analytical data that relates to that pooled age.

The inner set of scrollbars may be used to view the full set of analytical data for a given sample. The form is displayed in Figure 5.8.

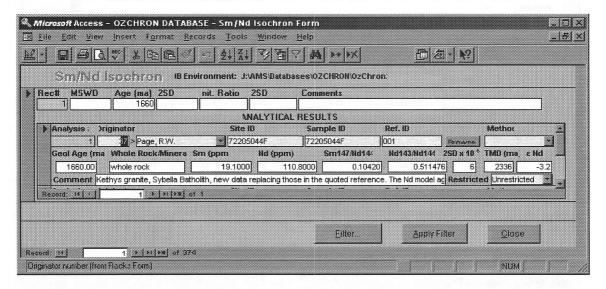


Figure 5. The SM-ND form

5.9 THE SM-ND MODEL AGE FORM

The SM-ND MODEL AGE form contains calculated Nd model age data. The form displays several records at the one time, and the user can scroll down through all records in the dataset.

The form is illustrated in Figure 5.9.

5.10 THE OUTCROPS FORM

Outcrop information collected at a SITE location is displayed in the OUTCROPS form, including information about landform and vegetation.

The form is illustrated in Figure 5.10.

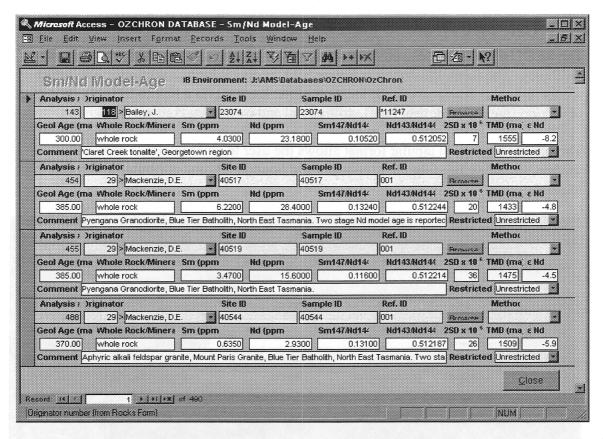


Figure 5.9 The SM-ND MODEL AGE Form

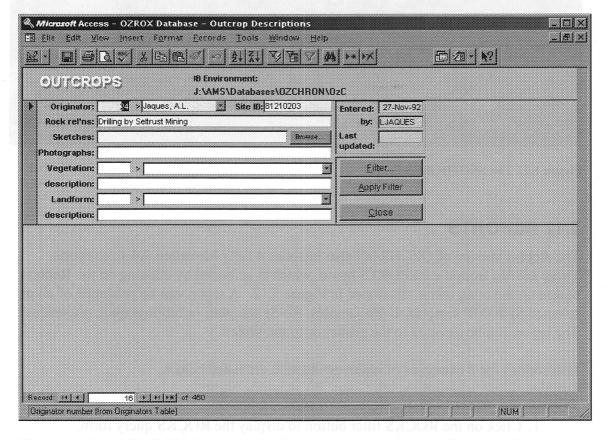


Figure 5.10 The OUTCROPS Form

5.11 THE SECTHOLES FORM

The SECTHOLES database contains information relating to measured sections and drillholes. The form, illustrated in Figure 5.11, is divided into 2 sections. The upper section contains details about the location of the section (via a link to SITES), the type of section (measured or drill hole), drillhole id and owner (eg company).

The second section, in tabular format allows the user to enter intervals within the section, including bedding units, contacts and boundaries, and attributes about that interval.

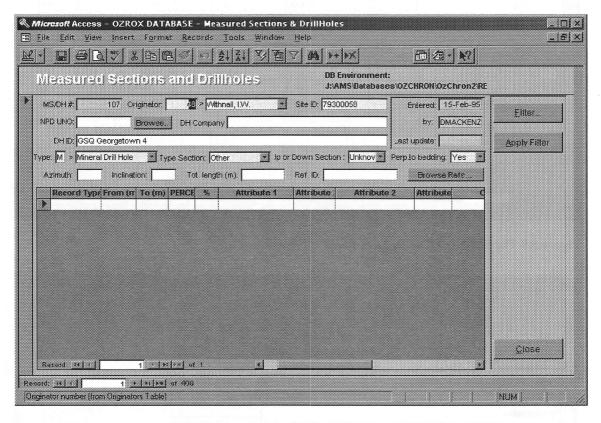


Figure 5.11 The SECTHOLES Form

5.12 REPORTS

The Access version of OZCHRON also includes 4 fully formatted A4 size reports. These are run from the REPORTS menu, which is activated by clicking on the Reports button on the main menu, illustrated in Figure 5.12. A report can be produced of all or selected SHRIMP samples, U-Pb samples, Rb-Sr samples, or bibliographic references. The report can be directed to the printer or to the screen.

Instructions for 2 examples of report production are listed below.

To produce a report of Rb-Sr samples derived from granites:

- 1. Click on the ROCKS filter button to display the ROCKS query form.
- 2. Click on Clear to clear any unwanted query parameters.
- 3. Go to the LITHOLOGY field and select "granite"
- 4. Select OK to accept query results. You will drop back to the Reports Menu.

- 5. In the Reports menu click on "Apply Filter". This will bring up a dialogue telling the user how many records have been selected to this point.
- 6. When this process has been completed, click on the RB-SR Report button to display the results of your query in print preview mode.
- 7. You can now either choose to print your report or return to the Reports menu and redefine the filter.

To produce a report of SHRIMP samples from NSW:

- 1. Click on the SITES filter button to display the SITES form.
- 2. Click on Clear to clear any unwanted query parameters.
- 3. Go to the STATE field and select "NSW".
- 4. Select OK to accept query results.. You will drop back to the Reports Menu.
- 5. In the Reports menu click on "Apply Filter". This will bring up a dialogue telling the user how many records have been selected to this point.
- 6. When this process has been completed, click on the SHRIMP Report button to display the results of your query in print preview mode.
- 7. You can now either choose to print your report or return to the Reports menu and redefine the filter.

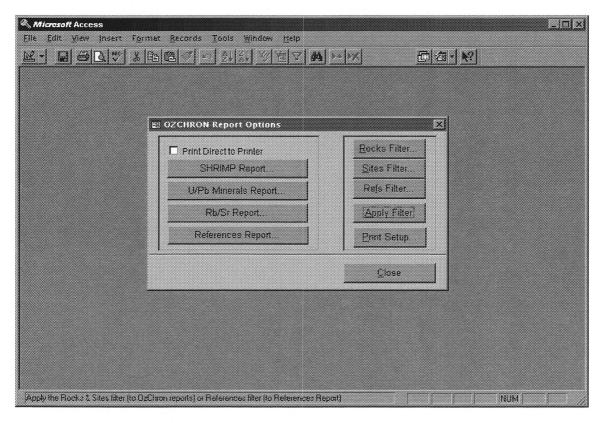


Figure 5.12 The Reports Menu

OZCHRON99 Data Set

Section 6—OZCHRON99 Data Set

This OZCHRON release contains geochronological data derived from different isotopic systems from Australian Archaean, Proterozoic and Palaeozoic provinces. This data lists 1317 age determinations. The third release contains 221 new SHRIMP (ion microprobe) U-Pb ages and 138 Samarium- Neodymium ages. The new release adds to the 395 Rb-Sr ages, 135 U-Pb conventional ages, 376 Samarium- Neodymium ages and 411 SHRIMP U-Pb ages previously released in Version 2 of OZCHRON. Table 6.1 lists all the ages by province. Figures 6.1, 6.2, 6.3 and 6.4 show the distribution of sites at which the samples for these age determinations have been collected.

The data base, as it has been developed so far, has not endeavoured to cover all analytical techniques. This new data set principally contains additional U-Pb results by SHRIMP ion probe methods, and Sm - Nd data.

All of the reported conventional U-Pb and Rb-Sr results define Proterozoic ages, but it is now recognised that most Rb-Sr ages in early to middle Proterozoic terranes reflect metamorphic overprinting or alteration. However in some cases they may very relevant to dating metamorphism and alteration events.

All results are normalised to decay constants recommended by the IUGS Subcommission on Geochronology (Steiger and Jäger, 1977; Subcommission on Geochronology: Convention on the use of decay constants in geo- and cosmology. Earth and Planetary Science Letters, 36: 359-362).

DATASET	PROVINCE	SHRIMP		RB/SR	
Arunta Block	Arunta Block	31	73	38	13
Broken Hill Block	Broken Hill	5	6		3
	Willyama Block			10	7
Lachlan Fold Belt	Dundas Trough	18			
	Lachlan Fold Belt	88	65	Ī	
	Rocky Cape Block	13			
	Tyenna Block	8			
McArthur Basin	Arnhem Block	5		1	
	McArthur Basin	47		7	3
	Murphy Inlier			1	
	South Nicholson Basin	1		1	
Mt Isa Inlier	Mt Isa Inlier	109	38	74	48
Musgrave Block	Musgrave Block	11	62	19	
New England Fold Belt	New England Fold Belt	1			
North Queensland	Cape York Plutonic Belt	14	34	1	
	Carpentaria Basin	1	<u> </u>		
	Coen Block	12			
	Drummond Basin	2			
	Georgetown Block	35	lk	L	6
	Nth Queensland Igneous Province	18			
	Yambo Block	- 10		-	
Northern Territory Proterozoic	Litchfield Batholith	- 		2	1 2
Pilbara	Pilbara Block		44		
Pine Creek Geosyncline	Pine Creek Geosyncline	34	 	 	23
South Australian Proterozoic	Adelaide Basin			1	
	Curnamona Craton		<u> </u>	<u> </u>	1 1
	Denison Block		1	3	1
	Gawler Craton			79	
	Stuart Shelf		-	1 72	
		3			<u>'</u>
Sydney Basin Tennant Creek Block	Sydney Basin Birrindudu Basin		<u>'</u>	 	
				 	
	Davenport Geosyncline Tennant Creek Block	28		<u> </u>	
				5 10	
Western Australian Proterozoic	Albany-Fraser Province		+	, 10	
	Bangemall Basin		2:		
	Fitzroy Lamproites		<u></u>	+	
	Gascoyne Block	10	1.	7	
	Granites-Tanami Block	54			
	Halls Creek Province				
	Kimberley Basin		2		2
	Northhampton Block		 		2
Yilgarn Craton	Paterson Province		<u>.</u>	 	5
	Eastern Goldfields Province	3:		 	ļ ·
	Murchison Province		3	<u> </u>	_
	Southern Cross Province			<u> </u>	ļ
	Yilgarn Craton	20	<u> </u>	 	ļ
				1	<u> </u>
	Houghton Inlier		_		1
				1	<u> </u>
Totals		633	2 51	4 39:	5 13

Table 6.1 List of samples from Australian geological provinces in OZCHRON.

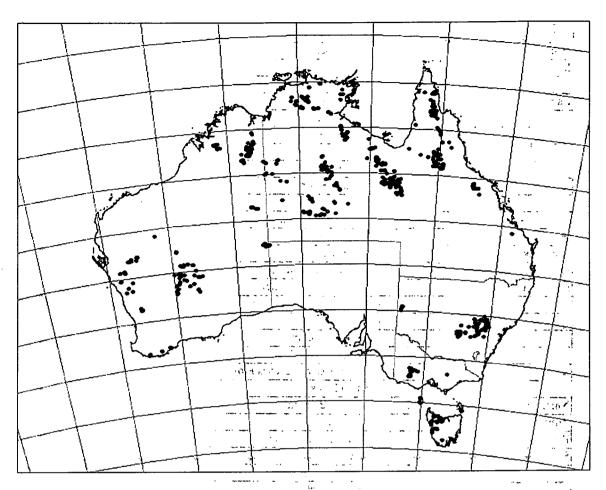


Figure 6.1 Distribution of the Australian SHRIMP dataset

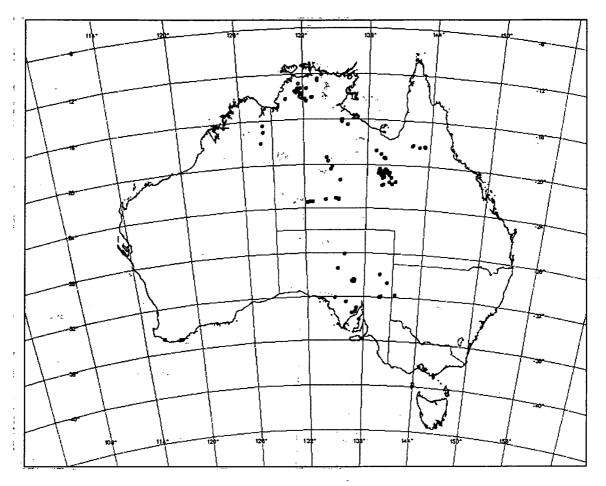


Figure 6.2 Distribution of the Australian U/Pb dataset & 6

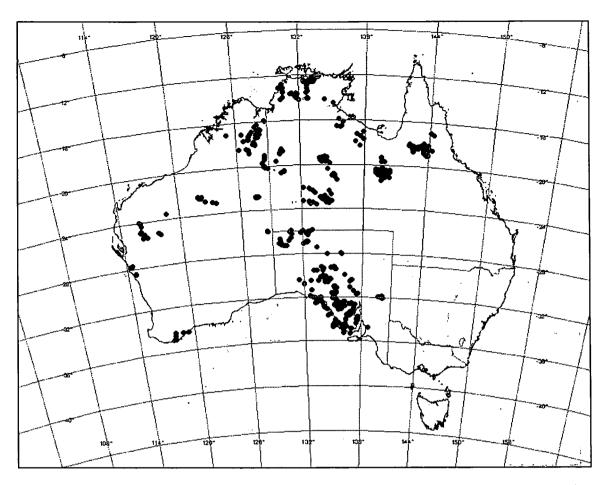


Figure 6.3 Distribution of the Australian Rb/Sr dataset

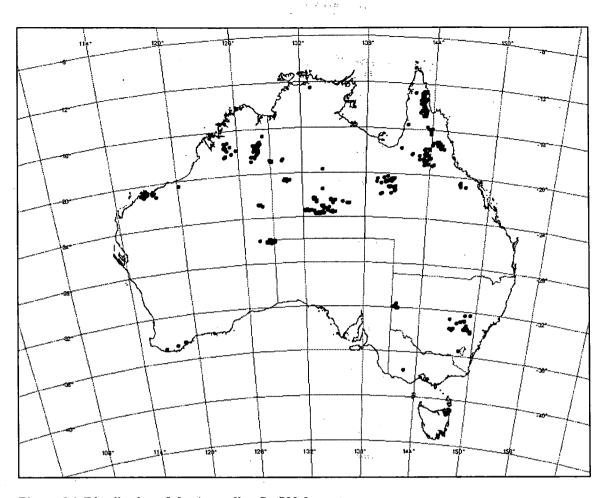


Figure 6.4 Distribution of the Australian Sm/Nd dataset