## Data Analysis for Determination of International Terrestrial Reference Frame (ITRF) Coordinates for the August 2007 Southern Fiji Islands GPS Survey Campaign Network

GEOSCIENCE AUSTRALIA RECORD 2008/04

by

G. Luton <sup>1</sup>, G. Hu<sup>1</sup>.



<sup>1.</sup> National Geospatial Reference Systems Project, Geospatial & Earth Monitoring Division, c/- Geoscience Australia GPO Box 378 Canberra ACT 2601

#### Department of Resources, Energy and Tourism

Minister for Resources, Energy and Tourism: The Hon. Martin Ferguson, MP

Secretary: Dr. Peter Boxall

#### Geoscience Australia

Chief Executive Officer: Dr Neil Williams

#### © Commonwealth of Australia, 2008

This work is copyright. Apart from any fair dealings for the purpose of study, research, criticism, or review, as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Chief Executive Officer, Geoscience Australia. Requests and enquiries should be directed to the **Chief Executive Officer**, **Geoscience Australia**, **GPO Box 378 Canberra ACT 2601**.

Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision.

ISSN 1448-2177 ISBN 978-1-921236-77-8

GeoCat # 65650

**Bibliographic reference**: Luton, G. and Hu, G., 2008. Data Analysis for Determination of International Terrestrial Reference Frame (ITRF) Coordinates for the August 2007 Southern Fiji Islands GPS Survey Campaign Network. Geoscience Australia, Record 2008/04. 11pp.

## Contents

| Executive Summaryiv                                                     |
|-------------------------------------------------------------------------|
| ntroduction                                                             |
| GPS Data Set                                                            |
| Data Processing Scheme                                                  |
| Results                                                                 |
| The repeatability RMS (root mean square) of the station coordinates     |
| Final computed station coordinates                                      |
| Fransformation between ITRF2005@2007.603 and Fiji WGS72 Geodetic Datum7 |
| Fiji WGS72 geodetic datum values supplied by SOPAC                      |
| Derivation of WGS72 N values from EGM96 N values                        |
| Determination of 7-parameter transformation values                      |
| Limitations of the determined 7-parameter transformation                |
| References                                                              |

## **Executive Summary**

## DATA ANALYSIS FOR DETERMINATION OF INTERNATIONAL TERRESTRIAL REFERENCE FRAME (ITRF) COORDINATES FOR THE AUGUST 2007 SOUTHERN FIJI ISLANDS GPS SURVEY CAMPAIGN NETWORK

The Pacific Islands Applied Geoscience Commission (SOPAC) requested Geoscience Australia to compute International Terrestrial Reference Frame (ITRF) coordinates for 9 survey sites on islands in the southern Fiji archipelago from continuous geodetic GPS measurements observed from 4<sup>th</sup> to 11<sup>th</sup> August 2007 inclusive. The GPS data was processed using version 5.0 of the Bernese GPS Software in a regional network together with selected IGS sites. The GPS solution was constrained to the ITRF2005 reference frame through adopting IGS05 coordinates on selected IGS reference sites and using the final IGS earth orientation parameters and satellite ephemerides products.

These coordinates provide the coordinate reference frame to be used to define Fiji's claim to extended continental shelf under the provisions of Article 76 of the United Nations Convention on the Law of the Sea.

## Introduction

This report documents the data processing and analysis of the 2007 Southern Fiji Islands 8-day GPS survey campaign from 4<sup>th</sup> to 11<sup>th</sup> August inclusive (days of year 216 to 223). The data set of the campaign is described first. Then the data processing scheme is detailed, followed by the results of processing including the final computed station coordinates and the repeatability RMS (root mean square) of these coordinates. Finally a set of transformation parameters was determined to enable transformation of existing Fiji WGS72 geodetic datum coordinates into the new coordinate system.

### **GPS Data Set**

The GPS data set was provided by the Secretariat of the Pacific Islands Applied Geoscience Commission (SOPAC) in RINEX format for nine stations within the Southern Fiji Islands. Figure 1 shows the relative positions of these stations. Each station was equipped with one Leica GPS antenna and dual frequency GPS receiver. Table 1 summarises the receivers, antennas and antenna heights for the GPS data set, which used a 30-second sampling interval.



Figure 1: The distribution of the nine stations of the 2007 Southern Fiji Islands GPS campaign.

**Table 1.** GPS receivers and antennas used for the stations of the Fiji 2007 campaign.

| SITE          | 4-char.<br>ID | RECEIVER<br>TYPE | ANTENNA<br>TYPE        | ANTENNA<br>DOME | ANTENNA<br>HEIGHT   |
|---------------|---------------|------------------|------------------------|-----------------|---------------------|
|               |               |                  |                        | TYPE            | TO ARP              |
|               |               |                  |                        |                 | (m)                 |
| Ceva-i-Ra     | CEVA          | LEICA GX1230     | LEIAX1202              | NONE            | 1.6330              |
| Kadavu        | KADV          | LEICA GX1230     | LEIAX1202              | NONE            | 1.7530              |
| Matuku        | MATU          | LEICA GX1230     | LEIAX1202              | NONE            | 1.6000              |
| Ogea Driki    | ODRI          | LEICA SR520      | LEIAT502               | NONE            | 1.4600              |
| Ono-i-Lau     | ONOI          | LEICA GX1230     | LEIAX1202              | NONE            | 1.6890 <sup>b</sup> |
| Tuvana-i-Colo | TUCO          | LEICA GX1230     | LEIAX1202 <sup>a</sup> | NONE            | 1.4990              |
| Tuvana-i-Ra   | TURA          | LEICA SR520      | LEIAT502               | NONE            | 1.7940              |
| Lakeba        | UNAV          | LEICA GX1230     | LEIAX1202 <sup>a</sup> | NONE            | 1.6550              |
| Vatoa         | VATO          | LEICA SR520      | LEIAT502               | NONE            | 1.6760              |

Note **a**. Antenna type adopted from GPS Survey Log sheet. LEIAT502 incorrectly listed in RINEX file header record.

Note **b**. Antenna height adopted from RINEX file header record. Antenna height information listed in GPS Survey Log sheet may be in error. This information verbally provided by SOPAC.

**Table 2.** GPS receivers and antennas for other stations included in the data analysis.

| SITE        | RECEIVER TYPE        | ANTENNA TYPE   | ANTENNA<br>DOME | ANTENNA<br>HEIGHT |
|-------------|----------------------|----------------|-----------------|-------------------|
|             |                      |                | TYPE            | TO ARP (m)        |
| ASPA        | TRIMBLE 4700         | TRM33429.20+GP | UNAV            | 0.0000            |
| AUCK        | TRIMBLE NETRS        | TRM41249.00    | NONE            | 0.0550            |
| CHAT        | ASHTECH Z-XII3       | ASH701945C_M   | NONE            | 0.0062            |
| CKIS        | ASHTECH UZ-12        | ASH701945C_M   | SCIS            | 0.0000            |
| DARW        | ASHTECH UZ-12        | ASH700936D_M   | NONE            | 0.0025            |
| <b>FALE</b> | ASHTECH Z-XII3       | ASH701945E_M   | SNOW            | 0.0000            |
| HOB2        | ASHTECH UZ-12        | AOAD/M_T       | NONE            | 0.0000            |
| KIRI        | <b>ASHTECH UZ-12</b> | ASH701945C_M   | SCIS            | 0.0000            |
| KOUC        | TRIMBLE NETRS        | TRM41249.00    | TZGD            | 0.0000            |
| LAUT        | ASHTECH UZ-12        | ASH701945C_M   | SCIS            | 0.0000            |
| MAJU        | ASHTECH UZ-12        | ASH701945C_M   | SCIS            | 0.0000            |
| NAUR        | ASHTECH UZ-12        | ASH701945C_M   | SCIS            | 0.0000            |
| <b>PNGM</b> | <b>ASHTECH UZ-12</b> | ASH701945C_M   | SCIS            | 0.0000            |
| POHN        | <b>ASHTECH UZ-12</b> | ASH701945C_M   | SCIS            | 0.0000            |
| SAMO        | <b>ASHTECH UZ-12</b> | ASH701945C_M   | SCIS            | 0.0000            |
| SUNM        | JPS LEGACY           | JPSREGANT_SD_E | NONE            | 0.0770            |
| TIDB        | ASHTECH Z-XII3       | AOAD/M_T       | JPLA            | 0.0614            |
| TONG        | ASHTECH UZ-12        | ASH701945C_M   | SCIS            | 0.0000            |
| TOW2        | ASHTECH UZ-12        | $AOAD/M_T$     | AUST            | 0.0035            |
| TUVA        | <b>ASHTECH UZ-12</b> | ASH701945C_M   | SCIS            | 0.0000            |
| VANU        | ASHTECH UZ-12        | ASH701945C_M   | SCIS            | 0.0000            |

## **Data Processing Scheme**

The processing engine of the Bernese GPS software (Version 5.0) was used to carry out the data processing. The data of six IGS reference stations surrounding the area at the time of the campaign, i.e. ASPA, CHAT, DARW, HOB2, TIDB and TOW2, were included in the analysis to serve as ties

with the global reference frame ITRF2005 as illustrated in Figure 2 (Altamimi et al., 2007). These IGS stations were selected because they are IGS Reference Frame (RF) stations used for the IGS realization (IGS05) of the ITRF2005. They have reliable published ITRF2005 positions and velocities at epoch 2000.0 with a long observation history as permanent stations (Altamimi et al., 2007) such that their coordinates can be accurately propagated to the epoch of the measurements.

In order to aid ambiguity resolution and to reduce baseline lengths between the above IGS stations and the Fiji campaign stations, data from 11 CGPS stations of the South Pacific Sea Level and Climate Monitoring Project (SPSLCMP), LAUT, CKIS, KIRI, NAUR, PNGM, POHN, SAMO, TONG, TUVA, VANU and MAJU, were included in the regional daily solutions together with data from a selection of other IGS sites within the area, AUCK, FALE, KOUC and SUNM, where the data were available during the period of the campaign. Fig. 2 shows the extended regional network of IGS and SPSLCMP sites used in the GPS data processing. Table 2 lists the receivers, antennas and antenna heights for the above IGS stations and SPSLCMP stations included in the data analysis.

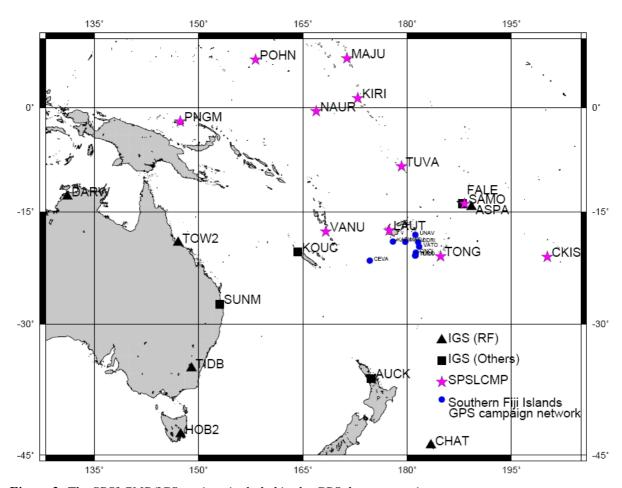



Figure 2: The SPSLCMP/IGS stations included in the GPS data processing.

The models applied and processing strategy adopted adhered closely to the procedures typically used by IGS Analysis Centres and Regional Network Associate Analysis Centres in the routine generation of final IGS products with the following particular points highlighted in this study (e.g., Steigenberger et al., 2006):

(1) IGS final precise GPS satellite ephemerides and Earth orientation parameters in ITRF2005 were used for the daily solutions.

- (2) To achieve the highest accuracy positions, the IGS absolute antenna phase centre variation (PCV) models were used to correct for both receiver and satellite antenna phase centre offsets (Ge et al., 2005).
- (3) During the processing, baseline selection was driven by the following considerations: let the baseline length be as short as possible, and if possible, the same receiver and antenna types should be connected.
- (4) Site displacements due to ocean tidal loading for all stations were corrected by using the GOT00.2 model (e.g., Scherneck, 1991).

The final solution (see Tables 6 and 7) was generated using a minimum constraints approach using the above six IGS reference stations (i.e. ASPA, CHAT, DARW, HOB2, TIDB and TOW2) as constraints (Hugentobler et al., 2006; Altamimi et al., 2007). Table 3 lists the ITRF2005 (IGS05 realization) coordinates and velocities of the six IGS reference stations at epoch 2000.0. As part of this process the daily solutions were compared with the combined solution and the resulting differences were analysed for the presence of outliers and computation of the daily repeatability.

**Table 3.** The IGS05 realization of ITRF2005 coordinates and velocities for the six IGS Reference Frame stations at epoch 2000.0.

| SITE | X             | Y               | Z             |
|------|---------------|-----------------|---------------|
|      |               | Coordinates (m) |               |
| ASPA | -6100259.9844 | -996503.7575    | -1567978.0332 |
| CHAT | -4590670.9849 | -275482.8716    | -4404596.7082 |
| DARW | -4091358.9070 | 4684606.7121    | -1408580.2927 |
| HOB2 | -3950071.4760 | 2522415.2101    | -4311638.2398 |
| TIDB | -4460996.2402 | 2682557.0825    | -3674443.5584 |
| TOW2 | -5054582.7913 | 3275504.4130    | -2091539.5466 |
|      |               | Velocity (m/yr) |               |
| ASPA | -0.0184       | 0.0617          | 0.0329        |
| CHAT | -0.0257       | 0.0387          | 0.0244        |
| DARW | -0.0350       | -0.0146         | 0.0569        |
| HOB2 | -0.0403       | 0.0087          | 0.0408        |
| TIDB | -0.0371       | 0.0006          | 0.0455        |
| TOW2 | -0.0321       | -0.0136         | 0.0522        |

### Results

#### THE REPEATABILITY RMS (ROOT MEAN SQUARE) OF THE STATION COORDINATES

The repeatability RMS (root mean square) of the station coordinates, which is an estimate of the day-to-day scatter of coordinate components about a weighted epoch mean, can be used to assess the quality of the final combined epoch solution and as a measure of internal precision. Table 4 shows the repeatability RMS of the station coordinates for each station included in the data analysis. The agreement between the final combined campaign and daily solutions is at the few millimetres to sub-millimetre level for the horizontal components and at the few millimetre level for the vertical component. The average of the repeatability RMS of the station coordinates are 3.0 mm, 1.9 mm and 6.3 mm for the easting, northing and height components, respectively.

For the purpose of comparison, Table 5 lists the difference in coordinate values between the coordinates estimated in this data analysis and the coordinates published by IERS in the ITRF2005 solution for the IGS site AUCK.

**Table 4.** The repeatability RMS (root mean square) of the station coordinates for each station for the data analysis.

| SITE | EAST (mm) | NORTH (mm) | UP (mm) |
|------|-----------|------------|---------|
| CEVA | 1.67      | 1.55       | 2.40    |
| KADV | 2.54      | 0.92       | 4.14    |
| MATU | 1.72      | 1.12       | 4.34    |
| ODRI | 1.54      | 1.66       | 7.49    |
| ONOI | 2.01      | 0.60       | 3.17    |
| TUCO | 2.22      | 0.87       | 5.02    |
| TURA | 4.73      | 2.91       | 2.64    |
| UNAV | 2.62      | 1.20       | 3.97    |
| VATO | 2.53      | 1.55       | 4.86    |
|      |           |            |         |
| ASPA | 3.72      | 1.77       | 9.07    |
| AUCK | 1.99      | 1.85       | 5.66    |
| CHAT | 2.04      | 2.55       | 4.63    |
| CKIS | 3.51      | 2.12       | 4.87    |
| DARW | 3.37      | 2.00       | 5.47    |
| FALE | 0.68      | 1.41       | 2.13    |
| HOB2 | 2.39      | 3.12       | 5.59    |
| KIRI | 4.35      | 1.26       | 3.71    |
| KOUC | 1.40      | 1.18       | 5.53    |
| LAUT | 1.85      | 0.85       | 2.50    |
| MAJU | 3.80      | 1.30       | 8.79    |
| NAUR | 4.68      | 1.38       | 5.97    |
| PNGM | 4.50      | 4.60       | 5.05    |
| POHN | 3.87      | 2.35       | 7.00    |
| SAMO | 3.08      | 2.09       | 2.61    |
| SUNM | 1.40      | 1.97       | 5.31    |
| TIDB | 4.06      | 2.27       | 4.61    |
| TONG | 2.34      | 0.64       | 3.93    |
| TOW2 | 2.37      | 1.47       | 3.46    |
| TUVA | 2.89      | 3.01       | 2.23    |
| VANU | 1.43      | 0.78       | 1.95    |

**Table 5.** The difference in coordinate values between the coordinates estimated in this data analysis and those published by IERS in the ITRF2005 solution for the IGS site AUCK.

| SITE | EAST (mm) | NORTH (mm) | UP (mm) |
|------|-----------|------------|---------|
| AUCK | 0.6       | 1.0        | 3.3     |

#### FINAL COMPUTED STATION COORDINATES

The final computed geodetic and Cartesian coordinates (ITRF2005, GRS80 ellipsoid) are listed in Tables 6 and 7, respectively.

**Table 6.** Final computed geodetic coordinates in ITRF2005 at the mean epoch of the measurements, i.e. @2007.603 (8 August 2007).

| SITE | LONGITUDE |    |          |   | LATITUDE |     |            | ELLIPSOIDAL |
|------|-----------|----|----------|---|----------|-----|------------|-------------|
|      | (DMS)     |    |          |   | (DN      | IS) | HEIGHT (m) |             |
| CEVA | E 174     | 37 | 57.47920 | S | 21       | 44  | 10.55364   | 63.5479     |
| KADV | E 177     | 59 | 17.45239 | S | 19       | 07  | 5.31825    | 860.5357    |
| MATU | E 179     | 44 | 59.71645 | S | 19       | 10  | 27.91403   | 387.6648    |
| ODRI | W 178     | 24 | 21.20689 | S | 19       | 12  | 1.06425    | 130.9099    |
| ONOI | W 178     | 44 | 21.36593 | S | 20       | 38  | 34.47590   | 155.0690    |
| TUCO | W 178     | 45 | 12.47489 | S | 21       | 00  | 40.25961   | 57.0808     |
| TURA | W 178     | 50 | 51.74177 | S | 21       | 01  | 54.49938   | 56.2543     |
| UNAV | W 178     | 46 | 47.59242 | S | 18       | 11  | 14.35045   | 112.6497    |
| VATO | W 178     | 15 | 06.88044 | S | 19       | 49  | 43.54319   | 91.0613     |
|      |           |    |          |   |          |     |            |             |
| ASPA | W 170     | 43 | 20.76851 | S | 14       | 19  | 33.94230   | 53.6446     |
| AUCK | E 174     | 50 | 03.78913 | S | 36       | 36  | 10.23030   | 132.7114    |
| CHAT | W 176     | 33 | 57.03688 | S | 43       | 57  | 20.82399   | 57.9969     |
| CKIS | W 159     | 48 | 02.20254 | S | 21       | 12  | 03.69498   | 18.4370     |
| DARW | E 131     | 07 | 57.86453 | S | 12       | 50  | 37.33286   | 125.1232    |
| FALE | W 171     | 59 | 58.30283 | S | 13       | 49  | 55.96649   | 47.5893     |
| HOB2 | E 147     | 26 | 19.44545 | S | 42       | 48  | 16.96117   | 41.0599     |
| KIRI | E 172     | 55 | 22.42026 | N | 01       | 21  | 16.49704   | 36.1754     |
| KOUC | E 164     | 17 | 14.41235 | S | 20       | 33  | 31.29180   | 84.1842     |
| LAUT | E 177     | 26 | 47.69055 | S | 17       | 36  | 31.72706   | 89.6832     |
| MAJU | E 171     | 21 | 52.27644 | N | 07       | 07  | 08.93356   | 33.7000     |
| NAUR | E 166     | 55 | 31.97673 | S | 00       | 33  | 06.22863   | 46.2622     |
| PNGM | E 147     | 21 | 57.63495 | S | 02       | 02  | 35.62788   | 116.3521    |
| POHN | E 158     | 12 | 36.40873 | N | 06       | 57  | 35.80075   | 90.6783     |
| SAMO | W 171     | 44 | 18.32206 | S | 13       | 50  | 57.15651   | 76.8809     |
| SUNM | E 153     | 02 | 07.08084 | S | 27       | 29  | 5.61155    | 92.0461     |
| TIDB | E 148     | 58 | 47.99535 | S | 35       | 23  | 57.13214   | 665.3537    |
| TONG | W 175     | 10 | 45.18906 | S | 21       | 08  | 40.96688   | 56.3270     |
| TOW2 | E 147     | 03 | 20.47968 | S | 19       | 16  | 9.40361    | 88.1310     |
| TUVA | E 179     | 11 | 47.61176 | S | 08       | 31  | 31.04516   | 38.4268     |
| VANU | E 168     | 18 | 54.53439 | S | 17       | 44  | 38.30912   | 97.5890     |

**Table 7.** Final computed Cartesian coordinates in ITRF2005 at the mean epoch of the measurements, i.e. @2007.603 (8 August 2007).

| SITE | X (m)        | Y (m)        | <b>Z</b> (m) |
|------|--------------|--------------|--------------|
| CEVA | -5901432.295 | 554458.552   | -2347334.805 |
| KADV | -6025613.941 | 211663.544   | -2075992.097 |
| MATU | -6026782.908 | 26305.253    | -2081722.468 |
| ODRI | -6023324.388 | -167626.921  | -2084343.306 |
| ONOI | -5969817.808 | -131380.591  | -2234496.561 |
| TUCO | -5955264.956 | -129583.998  | -2272571.377 |
| TURA | -5954650.392 | -119772.048  | -2274702.372 |
| UNAV | -6060202.213 | -129071.474  | -1978127.194 |
| VATO | -5999585.503 | -183103.599  | -2149904.639 |
| ASPA | -6100260.118 | -996503.285  | -1567977.780 |
| AUCK | -5105681.259 | 461564.027   | -3782181.415 |
| CHAT | -4590671.191 | -275482.572  | -4404596.528 |
| CKIS | -5583182.276 | -2054143.411 | -2292166.637 |
| DARW | -4091359.179 | 4684606.601  | -1408579.860 |
| FALE | -6134111.986 | -862144.688  | -1514974.362 |
| HOB2 | -3950071.777 | 2522415.270  | -4311637.925 |
| KIRI | -6327822.445 | 785604.349   | 149769.163   |
| KOUC | -5751222.899 | 1617967.472  | -2225743.765 |
| LAUT | -6075194.567 | 270923.916   | -1917189.448 |
| MAJU | -6257572.299 | 950332.653   | 785215.223   |
| NAUR | -6212555.101 | 1442786.867  | -61006.686   |
| PNGM | -5367943.053 | 3437431.437  | -225885.900  |
| POHN | -5879158.613 | 2350291.989  | 767748.287   |
| SAMO | -6129702.318 | -890029.183  | -1516807.322 |
| SUNM | -5046794.079 | 2567554.654  | -2926027.699 |
| TIDB | -4460996.523 | 2682557.090  | -3674443.218 |
| TONG | -5930303.688 | -500147.631  | -2286366.206 |
| TOW2 | -5054583.030 | 3275504.304  | -2091539.147 |
| TUVA | -6307543.782 | 88454.554    | -939278.000  |
| VANU | -5950766.632 | 1230703.818  | -1931445.032 |

# Transformation between ITRF2005@2007.603 and Fiji WGS72 Geodetic Datum

#### FIJI WGS72 GEODETIC DATUM VALUES SUPPLIED BY SOPAC

Table 8 lists the Fiji WGS72 geodetic datum coordinates supplied by SOPAC for six of the nine geodetic sites in the southern Fiji Islands archipelago. WGS72 coordinates are unavailable for the other 3 sites. Table 9 lists the Fiji WGS72 geodetic datum coordinates converted to Cartesian values.

Geoid-ellipsoid separations (N values) were derived from EGM96 N values for these sites by the method described below. This was required to enable derivation of ellipsoidal height values for sites ODRI and UNAV. The agreement between the WGS72 N values derived from the EGM96 N values with those WGS72 N values derived from the SOPAC supplied MSL height and ellipsoidal height values is acceptable considering the accuracy of the EGM96 N values and the accuracy of precise Transit Doppler positioning systems.

**Table 8.** Fiji WGS72 geodetic datum coordinates.

| SITE              | LONGITUDE <sup>c</sup> (DMS) | LATITUDE <sup>c</sup> (DMS) | MSL <sup>c</sup><br>HEIGHT<br>(m) | N (m)                                 | ELLIPSOIDAL<br>HEIGHT<br>(m) |
|-------------------|------------------------------|-----------------------------|-----------------------------------|---------------------------------------|------------------------------|
| KADV <sup>e</sup> | E 177 59 16.925              | S 19 07 05.393              | 805.3                             | 57.48 a 57.45 b                       | 862.75 °                     |
| MATU <sup>e</sup> | E 179 44 59.199              | S 19 10 27.984              | 334.0                             | 52.43 <sup>a</sup> 55.57 <sup>b</sup> | 389.57 °                     |
| ODRI              | W 178 24 21.6827             | S 19 12 01.1761             | 77.03                             | 53.25 <sup>a</sup> -                  | 130.28 <sup>d</sup>          |
| ONOI <sup>e</sup> | W 178 44 21.899              | S 20 38 34.631              | 100.2                             | 54.05 <sup>a</sup> 54.65 <sup>b</sup> | 154.85 <sup>c</sup>          |
| UNAV              | W 178 46 48.070              | S 18 11 14.440              | 59.77                             | 52.82 a -                             | 112.59 <sup>d</sup>          |
| VATO <sup>e</sup> | W 178 15 07.427              | S 19 49 43.622              | 34.1                              | 53.54 a 57.47 b                       | 91.57 °                      |

- Note a. WGS72 N value derived from EGM96 N value using the method described below.
- Note b. WGS72 N value derived by subtracting MSL Height from Ellipsoidal height.
- *Note c. Values supplied by SOPAC.*
- Note d. Ellipsoidal Height derived by adding MSL height and N value.
- Note e. Royal Australian Survey Corps (RASvy) station with precise ephemeris Transit Doppler WGS72 position.

**Table 9.** Fiji WGS72 geodetic datum coordinates (Cartesian values).

| SITE | X (m)        | Y (m)       | <b>Z</b> (m) |
|------|--------------|-------------|--------------|
| KADV | -6025612.829 | 211678.930  | -2075994.466 |
| MATU | -6026782.025 | 26320.369   | -2081724.597 |
| ODRI | -6023321.140 | -167612.926 | -2084345.816 |
| ONOI | -5969814.367 | -131365.080 | -2234500.378 |
| UNAV | -6060199.677 | -129057.382 | -1978129.289 |
| VATO | -5999583.742 | -183087.633 | -2149906.544 |

#### **DERIVATION OF WGS72 N VALUES FROM EGM96 N VALUES**

EGM96 N values were computed for the six sites having WGS72 coordinates using the online National Geospatial-Intelligence Agency (NGA) EGM96 geoid calculator at  $\frac{1}{100}$  http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/intpt.html.

The EGM96 N values were converted to N values in the WGS72 system using the formulae listed at Table E.1 of NIMA Technical report TR8350.2. These formulae are:

$$N_{WGS72} = N_{WGS84} - \Delta h$$

where:

 $N_{WGS84} = EGM96 \ N \ value$ 

 $\Delta h = 4.5 \sin \phi + 0.1991 \sin^2 \phi - 0.6$ 

 $\phi$  = latitude of site

Table 10 lists both EGM96 and WGS72 N values.

Table 10. EGM96 and WGS72 N values.

| SITE | N <sub>EGM96</sub> (m) | N <sub>WGS72</sub> (m) |
|------|------------------------|------------------------|
| KADV | 55.43                  | 57.48                  |
| MATU | 50.37                  | 52.43                  |
| ODRI | 51.19                  | 53.25                  |
| ONOI | 51.89                  | 54.05                  |
| UNAV | 50.83                  | 52.82                  |
| VATO | 51.44                  | 53.54                  |

#### **DETERMINATION OF 7-PARAMETER TRANSFORMATION VALUES**

A 7-parameter Helmert transformation was computed between the ITRF2005@2007.603 and Fiji WGS72 geodetic datum coordinate sets for the six common sites. The following formula represents the 7-parameter transformation for small rotation angles ( $R_X$ ,  $R_Y$ ,  $R_Z$ ):

$$\begin{bmatrix} X_{ITRF05} \\ Y_{ITRF05} \\ Z_{ITRF05} \end{bmatrix} = \begin{bmatrix} T_X \\ T_Y \\ T_Z \end{bmatrix} + (1+S) \times \begin{bmatrix} 1 & R_Z & -R_Y \\ -R_Z & 1 & R_X \\ R_Y & -R_X & 1 \end{bmatrix} \begin{bmatrix} X_{WGS72} \\ Y_{WGS72} \\ Z_{WGS72} \end{bmatrix}$$

#### Where:

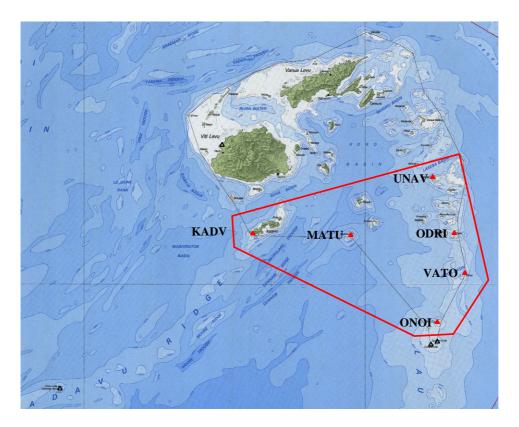
 $(X_{ITRF05}, Y_{ITRF05}, Z_{ITRF05}) \quad \text{are the transformed Cartesian coordinates (m) consistent with the} \\ (X_{WGS72}, Y_{WGS72}, Z_{WGS72}) \quad \text{are the Cartesian Fiji WGS72 geodetic datum coordinates (m).} \\ (T_X, T_Y, T_Z) \quad \text{are the coordinate origin translation parameters (m).} \\ (RX, RY, RZ) \quad \text{are the coordinate axis rotations (radians).} \\ S \quad \text{is the scale change between both coordinate systems.}$ 

#### **Important Note:**

There are two different ways of applying the sign conventions for the rotations. In both cases the sign convention is the same (a positive rotation is an anti-clockwise rotation, when viewed along the positive axis towards the origin) but:

- a) the International Earth Rotation Service (IERS) assumes the rotations to be of the position around the coordinate axes, while
- b) the method historically used in Australia assumes the rotations to be of the coordinate axes.

The only difference in the transformation formula is a change in the signs of the rotation angles in the rotation matrix. If the sign of the rotation parameters and the formulae used are consistent the correct results will be obtained. In this document the method historically used in Australia (b) is adopted.


Table 11 lists the 7-parameter transformation values and Table 12 lists the coordinate residuals resulting from the least squares transformation computation process. These residuals are consistent with the accuracy of precise Transit Doppler positioning systems. Figure 3 shows the location of the six sites used to derive the 7-parameter transformation and the suggested boundary of the region where these parameters may be considered to be valid.

**Table 11.** 7-parameter transformation values- Fiji(WGS72) geodetic datum to ITRF05@2007.603.

| $T_{X}(m)$ | $T_{Y}(m)$ | $T_{Z}(m)$ | <b>R</b> <sub>X</sub> (") | <b>R</b> <sub>Y</sub> (") | <b>R</b> <sub>Z</sub> (") | S (ppm) |
|------------|------------|------------|---------------------------|---------------------------|---------------------------|---------|
| -16.594    | -43.725    | -2.677     | +0.3014                   | +0.0029                   | +1.0842                   | -2.447  |

**Table 12.** 7-paramater transformation coordinate residuals.

| SITE | East (m) | North (m) | Up (m) |
|------|----------|-----------|--------|
| KADV | +0.20    | -0.48     | -0.27  |
| MATU | +0.04    | +0.42     | +0.69  |
| ODRI | +0.72    | -0.10     | -0.52  |
| ONOI | -0.21    | -1.14     | -0.43  |
| UNAV | +0.36    | +0.13     | -0.16  |
| VATO | -1.12    | +1.17     | +0.69  |



*Figure 3: Distribution of sites used to compute 7-parameter transformation.* 

#### LIMITATIONS OF THE DETERMINED 7-PARAMETER TRANSFORMATION

The 7-parameter transformation has been determined with the following premises about the Fiji WGS72 geodetic datum coordinates:

- Three stations (CEVA, TUCO, and TURA) are new marks without WGS72 coordinates and were not used in the determination of the transformation parameters.
- Four stations have precise ephemeris Transit Doppler WGS72 coordinates (KADV, MATU, ONOI and VATO) observed in the early 1980s.
- Two stations (ODRI and UNAV) have WGS72 coordinates determined by survey methods other than Transit Doppler measurement.
- Neither the WGS72 coordinates nor the ITRF2005 coordinates were propagated to a common epoch of date using crustal motion coordinate velocities. There are no measurements available to determine reliable crustal motion vectors for these stations.
- It is unknown if the crustal motion in the southern Fiji archipelago is uniform or non-uniform. Any non-uniform crustal motion will contribute additional error to the transformation parameters due to the approximate 25 year time difference between the Transit Doppler surveys and the 2007 GPS survey campaign.
- Any error sources in the propagation of the WGS72 coordinates within each island group will contribute additional error to the transformation parameters.

The above factors need to be considered when assessing the quality or accuracy of any ITRF2005 coordinate determined by transformation from a Fiji WGS72 geodetic datum coordinate. The suggested boundary of the region where these transformation parameters may be considered valid is shown by the polygon in Figure 3.

## References

- Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher, 2007. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, *J. Geophys. Res.*, 112, B09401, doi:10.1029/2007JB004949.
- Ge, M., Gendt, G., Dick, G., Zhang, F.P., Reigber, C., 2005. Impact of GPS satellite antenna offsets on scale changes in global network solutions. *Geophys. Res. Lett.* 32, L06310. doi:10.1029/2004GL022224.
- Hugentobler U., Dach R., P. Fridez and M. Meindl (eds), 2006. *Bernese GPS Software, Version 5.0 DRAFT*, Astronomical Institute, University of Berne.
- National Imagery and Mapping Agency, *Department of Defense World Geodetic System 1984*, NIMA TR8350.2, Third Edition, January 2000.
- Niell, A.E., 1996. Global mapping functions for the atmosphere delay at radio wavelengths. *J. Geophys. Res.*, 101(B2): 3227-3246.
- Scherneck, H.-G., 1991. A parametrized solid Earth tide mode and ocean loading effects for global geodetic base-line measurements. *Geophys. J. Int.*, 106(3):677-694, 1991.
- Steigenberger P., M.Rothacher, R.Dietrich, M.Fritsche, A.Rülke and S.Vey, 2006. Reprocessing of a global GPS network. *J. Geophys. Res.* 111, B05402,doi:10.1029/2005JB003747.