C.3.

CANGE ENDE D

AD owny

2 cepus

CANCIETE PED

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

CANCERCE PO

RECORD

CANCEPPED

RECORD 1979/23

AN ASSESSMENT OF THE TITHONIAN PLAY IN THE

DAMPIER SUB-BASIN AND RANKIN TREND,

OFFSHORE WESTERN AUSTRALIA

by

D.J. FORMAN & W.J. MCAVOY

BMR Record 1979/23 c.3

ormation contained in this report has been obtained by the Bureau of Mineral Resources, Geology and Geophysics as the policy of the Australian Government to assist in the exploration and development of mineral resources. It may not be ed in any form or used in a company prospectus or statement without the permission in writing of the Director.

IN-CONFIDENCE

RECORD 1979/23

IN CONFIDENCE

AN ASSESSMENT OF THE TITHONIAN PLAY IN THE

DAMPIER SUB-BASIN AND RANKIN TREND,

OFFSHORE WESTERN AUSTRALIA

by

D.J. FORMAN & W.J. McAVOY

CONTENTS

	n n	T)
V.	is a second of the second of t	Page
ADCIT	TD ACIE	
	PRACT	1
TML	RODUCTION	2
	Identified resources	_
PLAY	ASSESSMENT .	2
•	Play definition	2
	Prospects	3
	Generation	3
	Time of migration	4
	Reservoir	4
RESE	ERVOIR PARAMETERS	4
EXIS	STENCE RISK	6
RESU	JLTS	7
	Recoverable hypothetical resources	
REF	ERENCES	8
	e ·	
	TABLES	
1.	Reservoir parameters	
2.	Existence risk	
in us.		
	FIGURES	
	TIGOLUS	
1.	Prospect location map	
2.	Cumulative probability curve of hypothetical unrisked	
	recoverable oil resources	
3.	Cumulative probability curve of hypothetical unrisked	·
	recoverable gas resources	
4.	Cumulative probability curve of hypothetical risked	
	recoverable oil resources	
5.	Cumulative probability curve of hypothetical risked	
	recoverable gas resources	

ABSTRACT

The hydrocarbon potential of the Tithonian play in the Dampier Sub-basin has been rapidly assessed as part of a continuing program of quantitative appraisal of Australia's hydrocarbon potential. Six wells have already tested the play; of these Angel was a significant gas discovery and Egret was a significant oil discovery. The remaining potential in four undrilled prospects (Courtenay, Wallcot, Nickol, and Finucane) has been assessed by the prospect by prospect method, using a Monte Carlo simulation computer program called SIMULAT.

If all four prospects are drilled there is a 70 percent chance of finding some gas and a 50 percent chance of finding some oil. Addition of the hypothetical resources yields a risked mean estimate for the four propects of 21 x $10^6 \, \mathrm{m}^3$ of recoverable oil and 38 x $10^9 \, \mathrm{m}^3$ of recoverable gas.

INTRODUCTION

The recoverable hydrocarbon potential of the Tithonian play in the Dampier Sub-basin has been assessed as part of a continuing program of quantitative appraisal of the hydrocarbon potential of Australia. All relevant information available to BMR (from BOCAL) has been used to arrive at the conclusions presented in this report. The geology has been summarised by Powell (1976) and the environments of deposition of the Tithonian sediments are summarised in BOCAL (1976a).

Identified resources

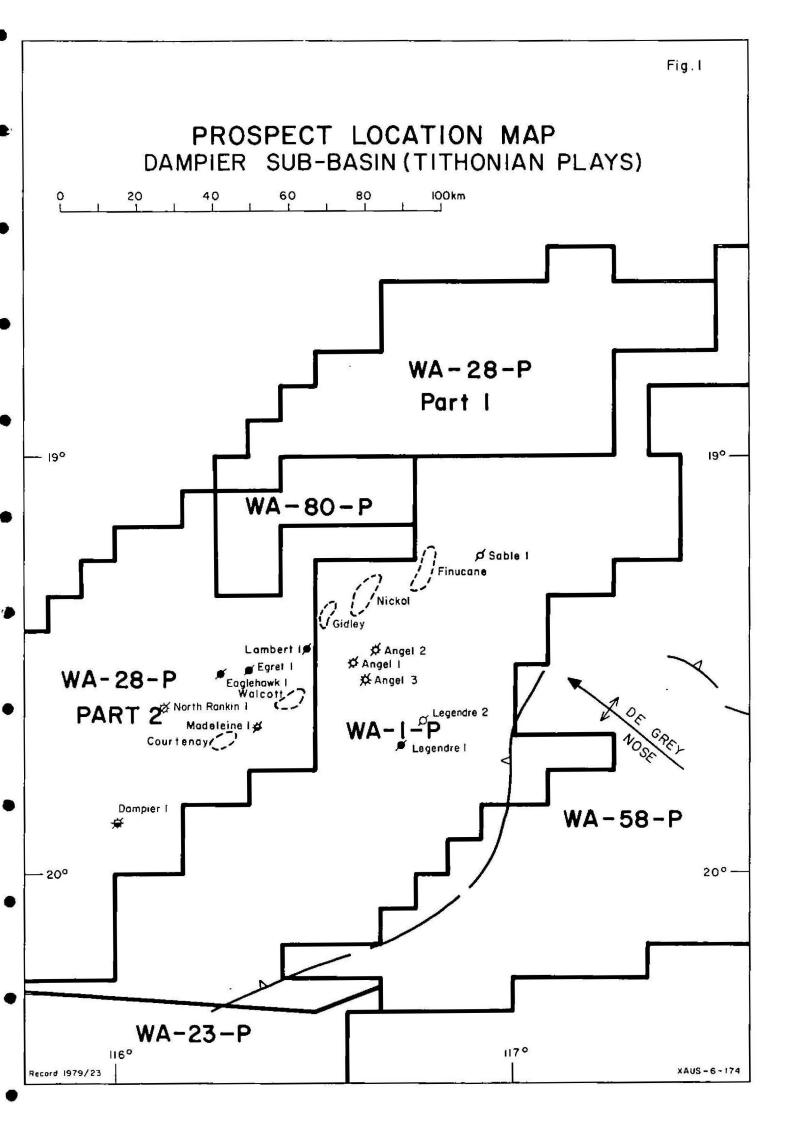
Demonstrated

The Angel gas and condensate field and the Egret oil field contain demonstrated resources. The most recent estimates (BOCAL, 1977) are tabulated below.

DEMONSTRATED RESOURCES (m3)

31 March 1977

,	A	ugel	Egret							
	in place	recoverable	in place	recoverable						
natural gas	77.6x10 ⁹	40•4×10 ⁹		i i						
sales gas condensate	23.9x10 ⁶	36x10 ⁹ 9.5x10 ⁶		*						
LPG		8.25x10 ⁶		# #						
crude oil		*	4.3x10 ⁶	1 x 10 ⁶						


PLAY ASSESSMENT

Play definition

Fold, fault, and stratigraphic traps containing Tithonian (Upper Jurassic) reservoir sandstones sealed by Tithonian or Cretaceous claystone and sourced by Upper Jurassic or Cretaceous claystone.

Prospects (Fig. 1)

- (1) The Courtenay structure appears on the main unconformity and top Tithonian horizon maps as a faulted closure against a major fault with a downthrow to the southeast. It is located about 16 km south of North Rankin No. 1 and 15 km west of Madeleine No. 1.
- (2) The Walcott structure appears on the main unconformity and top Tithonian horizon maps as a high closed against a major fault with a downthrow to the southeast. It is located 10 km northeast of Madeleine No. 1.

- (3) The Finucane structure is shown as a north-northeast-trending horst block on the main unconformity and the top Tithonian horizon maps. It is situated 15 km west of Sable No. 1.
- (4) The Nickel structure is a fault trap visible on the main unconformity and the top Tithonian horizon maps. Vertical closure exists only if the fault forms a seal. It is located about 30 km southwest of Sable No. 1.
- (5) The Gidley structure appears on the main unconformity and top Tithonian horizon maps as a poorly developed fault block. It is located about 8 km northeast of Lambert No. 1. Because of the small areal and vertical closures associated with Gidley, no estimate of resources has been made.

Generation

The following tests of the play discovered recoverable hydrocarbons: Angel Nos. 1-3 (gas) and Egret No. 1 (oil).

Minor hydrocarbon shows were reported at several levels from the play in Madeleine No. 1 and another promising zone could not be tested. The failure to produce significant quantities of hydrocarbons from this well is tentatively attributed to a position off-structure from a hypothetical accumulation in the Walcott structure. Dampier No. 1 discovered a high-pressure low-volume hydrocarbon accumulation (gas?) in a Tithonian formation with no permeability. Legendre No. 1 discovered oil in lower Neocomian to Tithonian? sandstones which were missing in Legendre No. 2. Tithonian sandstones in Legendre No. 2 were found to be 100-percent water-bearing.

These discoveries prove that both oil and gas have been generated. All the oil occurrences are of a paraffinic oil sourced from Upper Jurassic and Lower Cretaceous beds in the Dampier Sub-basin.

The threshhold temperature for commercial generation of the paraffinic oils was estimated by BOCAL (Woodside, 1976) to be about 130°C, or at spore maturation index 8.

Time of migration

No study of the time of migration has been made. The three prospects on the Rankin Trend (Finucane, Nickol, and Gidley) probably developed at about the same time as the oil-bearing structures Eaglehawk, Egret, and Lambert, and therefore the timing with respect to maturation is probably favourable. The two best prospects, Walcott and Courtenay, on the flanks of the Rankin Trend in the Kendrew Terrace, like Angel, are assumed to have a favourable sequence of trap development with respect to maturation.

Reservoir

Reservoir-quality sandstone is present within the Tithonian sequence penetrated at Lambert No. 1, Egret No. 1, Angel Nos. 1-3, and Madeleine No. 1. The sands disappear by shaling out towards Dampier No. 1. The Tithonian sequence is absent in uplifted areas of the Rankin Trend such as at Eaglehawk No. 1, the North Rankin wells, and Sable No. 1.

RESERVOIR PARAMETERS

Estimated reservoir parameters are listed in Table 1.

Trap volume

A range of values for trap volume was estimated using the area versus depth-of-contour method on the 1:100 000-scale time maps of the top Tithonian horizon (BOCAL, 1976b).

Percent net pay

A range of values for percent net pay was estimated for the Walcott and Courtenay prospects using Map 9 (BOCAL, 1976b) and data from wells drilled in the vicinity; Egret No. 1 (BOCAL, 1972), Lambert No. 1 (BOCAL, 1973), Angel No. 1 (BOCAL, 1971), and Madeleine No. 1 (BOCAL, 1969). The range of values for Finucane and Nickol is based on correlation and extrapolation of lithologies between Lambert No. 1 and

Sable No. 1 and seismic data. A study of record sections 76-1581 and 76-1582 from the Tessa-Troubadour marine survey (BOCAL, 1976b) suggest a facies change from shals to sand west of Sable No. 1, indicating that there are improved prospects of good Tithonian reservoirs at the Finucane and Nickol locations.

Percent trap fill

A range of values for percent trap fill was estimated from general considerations of source potential and thermal history, and by comparison with trap fill in the Egret and Angel accumulations.

Demaison (1974) concluded that the Upper Jurassic and Neocomian delta-front shales of the Barrew-Dampier Sub-basin are generally organic rich, and show excellent potential for generation of mainly wet gas and subordinate light paraffinic oil. Demaison's Degree of Organic Maturity Map of the top of the Upper Jurassic shows the maturity in the area adjacent to the Courtenay and Walcott prospects as suitable mainly for wet gas, and the maturity near to the Finucane and Nickol prospects as suitable for wet gas and oil.

The established presence of hydrocarbons in other wells situated near the margin of the Lewis Trough of the Dampier Sub-basin indicates that adequate migration paths are available.

Porosity of reservoir

The range of porosity values selected was based on actual porosity determinations in the nearest wells. Porosity is expected to improve at the Nickol and Finucane prospects which are closer to the expected source of sediments, the de Grey Nose.

Water saturation

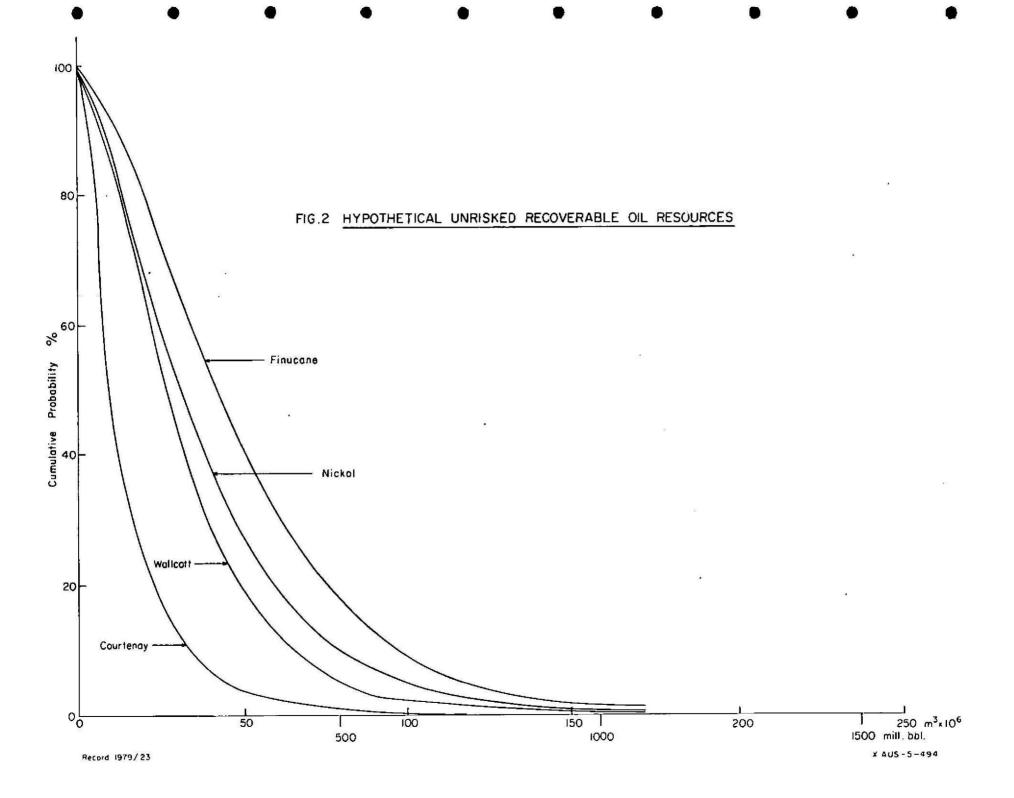
The range of values of water saturation selected was based on actual water saturations in adjacent fields.

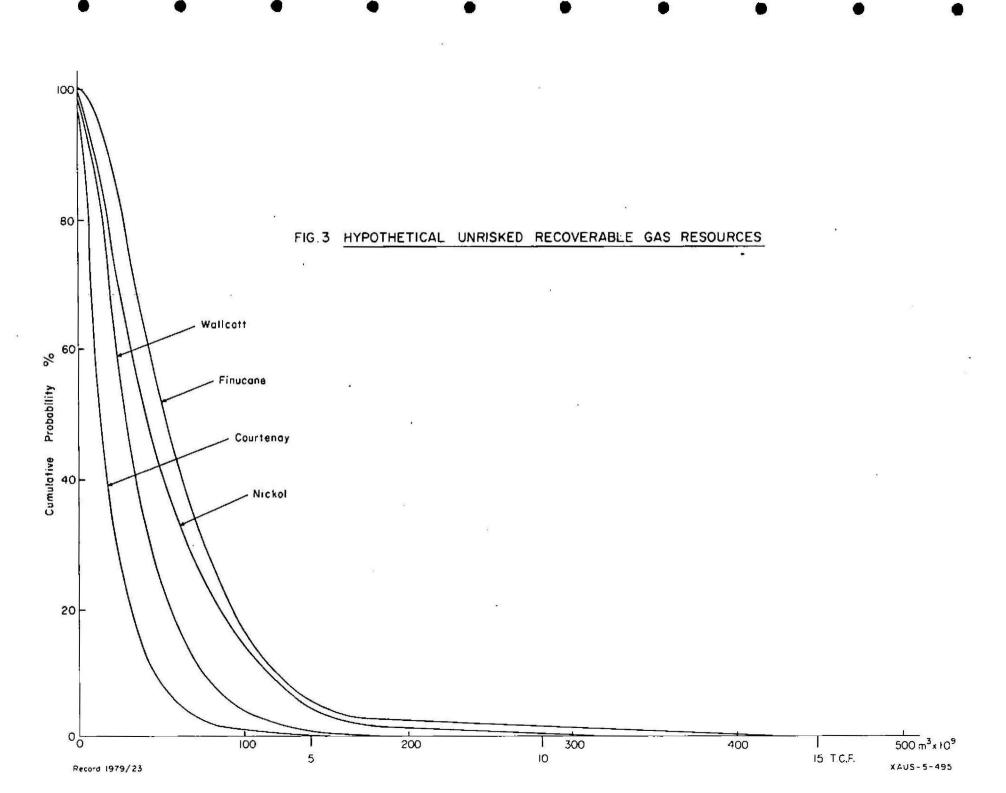
Pressure, temperature, gas deviation factor, and formation volume factor

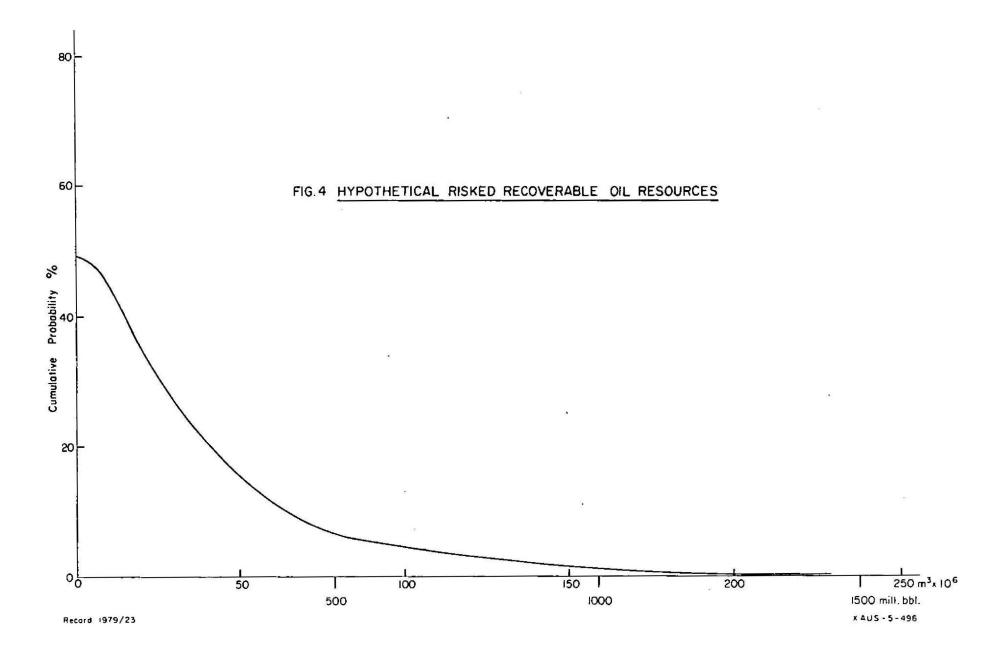
Single-value estimates were made of the gas deviation factor, formation volume factor, reservoir temperature (T), and reservoir pressure (P).

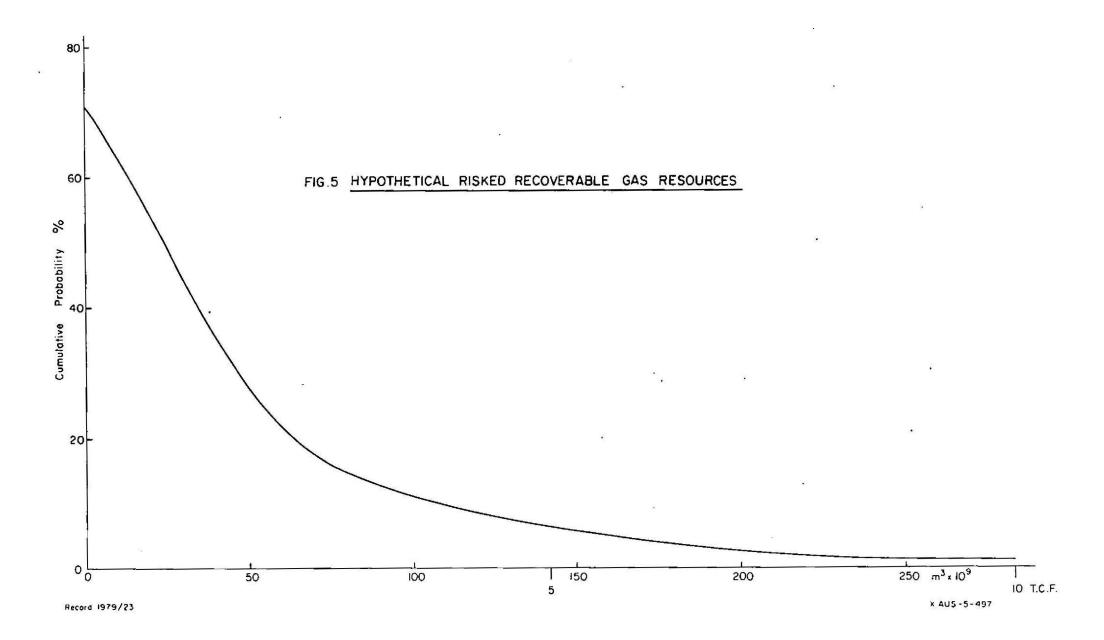
Reservoir temperature was obtained by interpolation from temperature maps (BOCAL, 1975). Reservoir pressure was estimated using the formula $P = 15 + 0.44 \times \text{depth}$ in feet.

Recovery factor


Gas-recovery factors were calculated from pressure data, on the assumption of an abandonment reservoir pressure of 1000 psi. Primary oil-recovery factors were estimated from figures for existing fields (BOCAL, 1974).


EXISTENCE RISK


The risks for each critical factor are summarised in Table 2. These risks have been used to calculate the existence risks for each prospect and for the remaining play potential.


RESULTS

The hypothetical unrisked recoverable resources of each prospect have been estimated using program SIMULAT (Riesz, 1978), and the results are compared in Figures 2 and 3. The hypothetical resources of the prospects have also been added using program SIMULAT, and the results are plotted in Figures 4 and 5. Mean estimates, risked and unrisked, are summarised below.

Recoverable hypothetical resources (m3)

et s	mean estima	ıte (unrisked)	0.25	mean		
v	oilx10 ⁶	.gasx10 ⁹	oil	gas	oilx10 ⁶	gasx10 ⁹
Wallcott	34	38	0.25	0.5	8	18
Courtenay	15	20	0.13	0.27	2.0	5.6
Finucane	51	63	0.13	0.13	6	7.9
Nickol ·	40	53	0.13	0.13		6.7
All prospects combined	٠		0.50	0.70	21	38

REFERENCES

- BOCAL, 1969 Madeleine No. 1 well completion report. BOC of Australia Ltd Company Report (unpublished).
- BOCAL, 1971 Angel No. 1 well completion report. BOC of Australia Ltd Company Report (unpublished).
- BOCAL, 1972 Egret No. 1 well completion report. BOC of Australia Ltd Company Report (unpublished).
- BOCAL, 1973 Lambert No. 1 well completion report. BOC of Australia Ltd Company Report (unpublished).
- BOCAL, 1974 Hydrocarbon reserves Northwest Shelf as at 30 September 1974.

 BOC of Australia Ltd Company Report (unpublished).
- BOCAL, 1975 Formation temperature data as an aid to the evaluation of hydrocarbon prospects on the Northwest Shelf. BOC of Australia Ltd Company Report (unpublished).
- BOCAL, 1976a Tithonian environmental study of the Dampier Sub-basin.
 BOC Ltd Company Report (unpublished).
- BOCAL, 1976b Final report, Tessa-Troubadour marine seismic survey.

 BOC of Australia Ltd Company Report (unpublished).
- BOCAL, 1977 Hydrocarbon reserves Northwest Shelf as of 31 March, 1977
 BOC of Australia Ltd Company Report (unpublished).
- DEMAISON, G.J., 1974 Hydrocarbon generation analysis of the Carnarvon Basin. West Australian Petroleum Pty Ltd (unpublished).
- POWELL, D.E., 1976 The geological evolution and hydrocarbon potential of the continental margin off northwest Australia. APEA Journal 16 (1).
- RIESZ, E.J., 1978 SIMULAT, a computer program for the 'prospect by prospect' method of estimating petroleum resources using Monte Carlo simulation. Bureau of Mineral Resources, Australia, Record 1978/2 (unpublished)
- WOODSIDE, 1976 The geochemistry and hydrocarbon potential of Cretaceous napthenic oils in the northern Carnarvon Basin. Woodside Petroleum Development Pty Ltd (unpublished).

RESERVOIR PARAMETERS

	RESERVOIR PARAMETERS														Table											
Trap	e - vo	Trap Volume Net Pay					Trap	Fill	,	<i>z</i>	S		Recovery Factor				Reservoir						Z Gas Dev. Fract		Formation Volume Factor	
	contours	area km²	volume m³ x 10 ⁶	weight	m	weight	fract	weight	fract	weight	fract	weight	oil	weight	gas	weight	depth m	T °R	weight	P psig	weight		weight		weight	
5	2.050	34.7	277.6	0		_																				
į į	2.065		100000000000000000000000000000000000000	- 0	5 15	0	15_ 50	0	10 15	0	10	0	~			.				-	ļ					
Courtenay	2.080		9221-2	0	100	0	100	0	23	0	25 42	0	25	<u> </u>	78		3109	691	<u> </u>	4503	1	0.92	1	1.70	L	
							100	,	3												-				_	
																			tie suge							
t co	1.850	2	2313.8	0	10	0	15	0	17	0	10	o														
Walcott	1·875 1·900		5750·1	0	25 100	0	50 100	0	20	0	25 42		25	1	75	_ I	2743	673	1	3975		0.92	1	1:70	1	
	1 300		1000 14		100	0	100		_23		.42	0	·									-				
ا م		SEZ SEW	100000					57 <u>0</u> 107								- 10										
Finucane	5.50	28.2		0	15	0	15	. 0	15	0		0_														
ijij	2·25 2·28	51·5 122·9		0	40_	-	50		25		25	I	25	I I	77		3005	677	1	4353	1	0.92		1.70	1	
	2 20	142.5	13362	<u> </u>	100	0_	100	_0	30	0	42	0_				-										
ko.	2250	13.0	318.5	0	15	0	15		15	0	10	0		40.00												
Nickol	2300 2360	<u>59·5</u> 95·7	3834 13323	0	40_ 100	0	50 100		25_		25_		25_	1	80	1	3383	694		4899	1 .	0.92	L	1.70	1	
	2300	33.1	13323		100	. 0	100	0_	30_	0	42_	0			_	NB.1		-		-						
		-			-																					
					_					-	to copens					_										
						_		-		-																
				-	-		-	-					***	-		-							-			
				-									-	P. (1955)	-							1940	•		_	
	200								The Wo								-									
		_						39270000				100								-						
		_										9			_									9-8		
ļ						2	-								-			// ***								
			-		1 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					_		-														
		-				_						-	-	•	-	_		_			12.00%					
		_											-													
4	8															-								-	nest .	
					25. 82	tie de la company																			300	
		2.30	_								-															
										·						JE-50	-	_					-			
	-	F-1			20 <u>.00</u> .		-		is v						_							<u>.</u>				
					_				_ :		7.00															
		76										<u> </u>			· · · · · ·		42.5									
														-									 .		- T	
																		200						20.0		
																									K 925	
	-																								2.5	
		- 1				-			12	-																
		2	-	-				745 - 5 5	-				-													
			-				- +		15				•			-				-						
Record 197	0.40.						-							- 0.0							100					

	So	ırce	Thermal History Reservoir					nd Seal		Table Jushing Oil vs Gas				
Trap	risk	weight	risk	weight	risk	weight	risk	weight	risk	weight	risk	weight	oil	gas
lay ,														
Courtenay			1		0.5		0.9		0.9				<u> </u>	2
				-										
Walcott	<u> </u>		0.9		0.9		0.9		0.9		1.		1	2_
ane														
Finucane	1		I		0.5		1.		0.5		1		1	_1
lo lo														
Nickol	I				0.5				0.5		1			
	7,0-000													
		12 2												
					_									
	200								-					
									-					