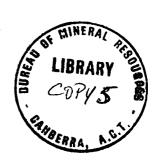
COMMONWEALTH OF AUSTRALIA


DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

Petroleum Search Subsidy Acts
PUBLICATION No. 88

SUMMARY OF DATA AND RESULTS OTWAY BASIN, VICTORIA

Pecten No. 1-1A Nerita No. 1

OF

SHELL DEVELOPMENT (AUSTRALIA) PROPRIETARY LIMITED

Published by Bureau of Mineral Resources, Geology and Geophysics, Canberra and issued under the Authority of the Hon. David Fairbairn Minister for National Development 1969

COMMONWEALTH OF AUSTRALIA

DEPARTMENT OF NATIONAL DEVELOPMENT

Minister: The Hon. David Fairbairn, D.F.C., M.P.

SECRETARY: R. W. BOSWELL, O.B.E.

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS DIRECTOR: J. M. RAYNER, O.B.E.

this report was prepared for publication in the petroleum exploration branch ${\bf Assistant\ Director} \colon L.\ W.\ Williams$

FOREWORD

Under the Petroleum Search Subsidy Act 1959-1967, agreements relating to subsidized operations provide that the information obtained may be published by the Commonwealth Government six months after the completion of field work.

The growth of the exploration effort has greatly increased the number of subsidized projects and this increase has led to delays in publishing the results of operations.

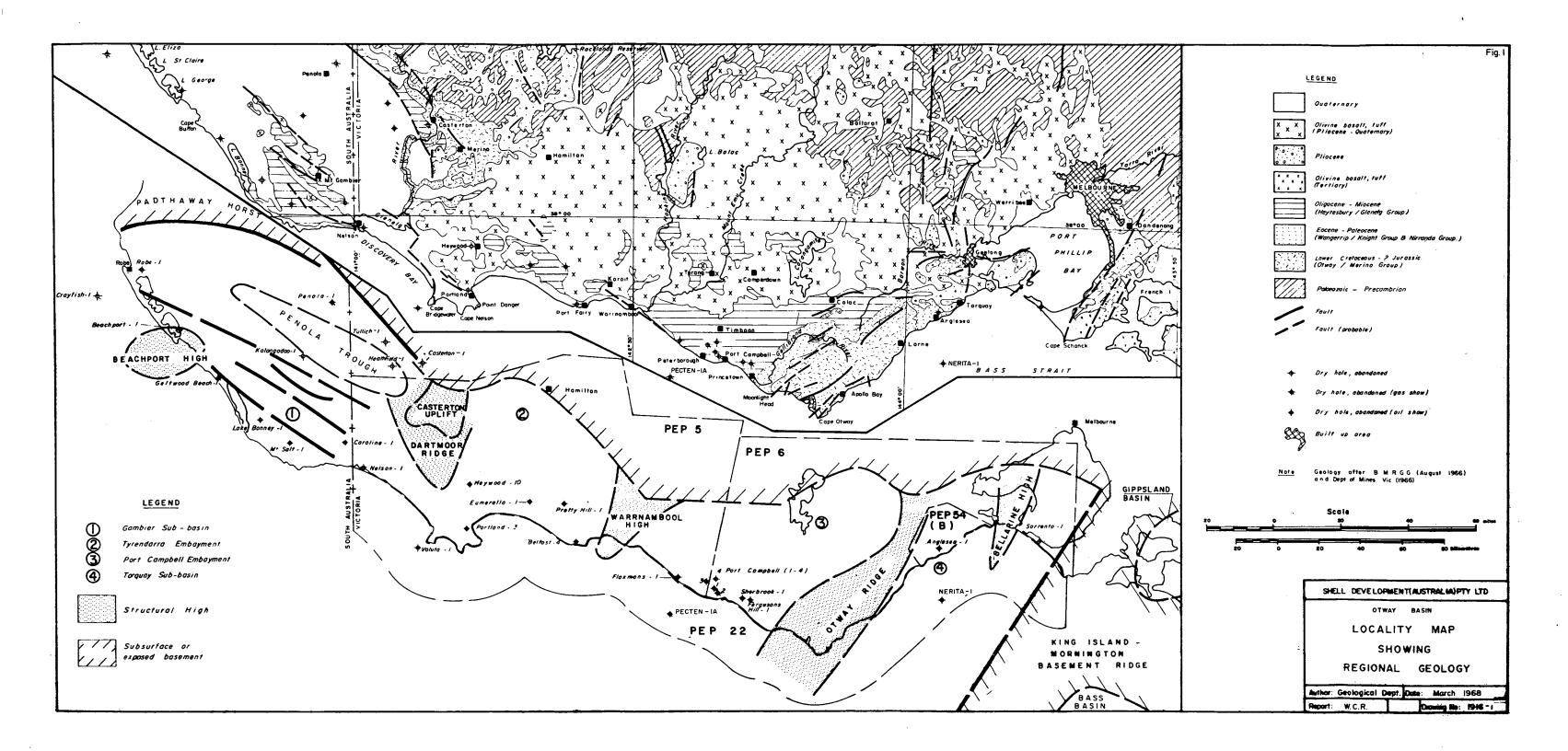
The detailed results of subsidized operations may be examined at the office of the Bureau of Mineral Resources in Canberra (after an agreed period), and copies of the reports may be purchased.

In order to make the main results of operations available early, short summaries are being prepared for publication. These will be grouped by area and date of completion as far as practicable. Drilling projects and geophysical projects will be grouped separately. In due course, full reports will be published concerning those operations which have produced the more important new data.

This Publication contains summaries of data and results of two offshore drilling operations undertaken in the Otway Basin, Victoria: Pecten No. 1-1A and Nerita No. 1. The information has been abstracted by the Petroleum Exploration Branch of the Bureau of Mineral Resources from well completion reports furnished by Shell Development (Australia) Proprietary Limited.

J.M. RAYNER
<u>Director</u>

CONTENTS


				Page
PECTEN No. 1-1A				
SUMMARY	••	••	••	1
WELL HISTORY	? · ••	••	••	2
GEOLOGY		••	••	2
ADDITIONAL D RESOURCES	ATA FILED I	N THE BURE	AU OF MINERAL	4
NERITA No. 1				
SUMMARY	••	••	••	. 9
WELL HISTORY	·	••	••	10
GEOLOGY	••	••	••	10
REFERENCES	••	••	••	12
ADDITIONAL D	ATA FILED I	IN THE BURE	AU OF MINERAI	. 14
	••		••	
		ILLUSTRA	rions	
FIGURES				
Figure 1 : Regio well 1	nal geological ocations	l map, showing	S	Frontispiece
Figure 2 : Well	correlation, F	Pecten 1A - T	imboon 5	Opposite p. 6
Figure 3 : Well	correlation,	Anglesea 1 -	Nerita 1	Opposite p. 11
PLATES				
Plate 1 : Comp		g, Pecten No. 1	l A	At back of report
Plate 2 : Comp	_	g, Nerita No. 1		At back of report

PECTEN NO. 1-1A

of

SHELL DEVELOPMENT (AUSTRALIA) PROPRIETARY LIMITED

SUMMARY OF DATA AND RESULTS

PECTEN NO. 1-1A

SUMMARY OF DATA AND RESULTS*

SUMMARY

Pecten No. 1-1A was the first well drilled offshore in the Otway Basin in south-western Victoria. It was located on the culmination of a seismically defined anticlinal structure with a closed area of approximately 28 square miles and vertical closure of 150 to 350 feet, nine miles offshore in the Port Campbell Embayment. Pecten-1A was drilled as a test of the hydrocarbon-bearing potential of the Tertiary and Upper Cretaceous sequence in which reservoir rocks were known from onshore wells. The main target was the Waarre Formation, the basal unit of the Upper Cretaceous Sherbrook Group.

The well was drilled by Southeastern Drilling, Inc., using the Sedco 135E semi-submersible rig, for Shell Development (Australia) Proprietary Limited. Positioning of the Sedco unit over the location proved to be troublesome; efforts to anchor conventionally were given up after twenty individual setting trials. Jet tests with a bit failed to penetrate the crust of the seafloor and a 15-foot core cut from the seabed revealed a top surface of smooth hard rock overlying soft sediments. An alternative location on the same structure was tried with similar results. Finally six specially designed anchor piles were drilled into the seabed and these proved to be sufficient to hold the unit in position.

Drilling commenced on 26th March, 1967 but the hole had to be abandoned on 11th April at 887 feet because of mechanical troubles just before setting the 20-inch casing. The Sedco unit was moved 50 feet to the south and a new hole - Pecten 1A - was spudded on 12th April. Drilling then proceeded uneventfully to total depth of 9352 feet reached on 4th June.

The sequence penetrated in Pecten-1A consisted of carbonates of the Oligocene - Miocene Heytesbury Group to 1880 feet; interbedded sands, marls and ferruginous sands of the upper Eocene Nirranda Group to 2630 feet; sands, silts and clays of the Palaeocene Wangerrip Group to 3894 feet; sands, siltstones and clays of the Upper Cretaceous Sherbrook Group to 5892 feet; and sandstones, siltstones and shales of the Lower Cretaceous Otway Group to total depth at 9352 feet. While the sequence penetrated is broadly similar to that onshore, significant changes in thickness and facies have taken place and the several stratigraphic breaks have been confirmed and more precisely defined. Good quality reservoir rocks were present in the Tertiary and Upper Cretaceous section but no significant quantities of hydrocarbons were encountered.

One sand only, in the Upper Cretaceous Waarre Formation, was drillstem tested through perforations in the 95/8-inch casing and yielded gas at a maximum flow rate of 145,000 cubic feet per day together with 615 barrels per day of salt water. The well was plugged and abandoned as a dry hole on 11th June, 1967, and after rigging down and de-anchoring the unit left for the Nerita location on 14th June.

The test drilling operation at Pecten No. 1-1A Well was subsidized under the Petroleum Search Subsidy Act 1959-1964 from seabed to total depth.

^{*} Abstracted from: Pecten Nos 1 and 1A, Offshore Victoria, Well Completion Report, by Shell Development (Australia) Pty Limited, October, 1967.

WELL HISTORY

General Data

Well name and number:	Pecten No. 1-1	A
Location:	Latitude 3 Longitude 14	8 ⁰ 40'41" S. 2 ⁰ 39'56" E.
Total Depth:	Pecten-1	Pecten-1A
	887 feet	9352 feet (bdf)
Date drilling commenced:	26. 3.67	12. 4.67
Date drilling completed:	3. 4.67	4. 6.67
Date well abandoned:	11. 4.67	11. 6.67
Date rig released:	-	14. 6.67
Elevation:		
Permanent datum:	Mean Sea Level	ı
Derrick floor:	112 feet above I (datum for dept	• • • • • •
Depth of water:	205 feet	
Status:	Dry hole; plugg	ed and abandoned
Total Cost (estimated):	Pecten-1 Pecten-1A	\$ 294,000 \$2,259,650 (below 887 feet)

GEOLOGY

Stratigraphy

The stratigraphic sequence encountered in Pecten No. 1-1A Well is shown in the following Table. $\dot{}$

Age	Rock Unit	Depth Intervals (feet)	Thickness (feet)
? Pleistocene	Limestone unit	Seabed - 318	1
Oligocene-Miocene	Heytesbury Group	318 - 1880	1562
	Limestone unit Marl unit	318 - 1250 1250 - 1880	932 630
Upper Eocene	Nirranda Group	1880 - 2630	750
	Narrawaturk Marl Mepunga Formation	1880 - 2150 2150 - 2630	270 480
Palaeocene	Wangerrip Group	2630 - 3894	1264
	Dilwyn Formation Pebble Point Formation	2630 - 3468 3468 - 3894	838 426

Age	Rock Unit	Depth Intervals (feet)	Thickness (feet)
Upper Cretaceous	Sherbrook Group	3894 - 5892	1998
	Curdies Formation	3894 - 4713	819
	Paaratte Formation	4713 - 5274	561
	Belfast Mudstone	5274 - 5706	432
	Flaxmans Formation	5706 - 5810	104
	Waarre Formation	5810 - 5892	82
Lower Cretaceous	Otway Group	5892 - 9352	3460+
	Unit 1	5892 - 7455	1563
	Unit 2	7455 - 9352 (T.D.)	1897+

Relevance to Occurrence of Petroleum

No indications of hydrocarbons were noted from cuttings, cores or sidewall samples. Below 4000 feet traces of gas were recorded from the mud returns by gas detector with peaks over the intervals 4680 to 4860 feet, 5810 to 5870 feet, 6590 to 6620 feet, 7040 to 7450 feet and 7890 to 8560 feet. Two porous sands in the Waarre Formation (5810 to 5822 feet and 5834 to 5852 feet) were tested but yielded only minor quantities of gas (max. 145 Mcf/D) and formation water (615 bbl/D).

Petrophysical evaluation of the section drilled in Pecten-1A shows all sands to be water bearing with water saturation never less than 70 percent. Logs show also that the section is freshwater flushed down into the Curdies Formation with freshwater influence as deep as approximately 4400 feet.

Contribution to Geological Concepts resulting from Drilling

The more important factors resulting from the drilling of Pecten No. 1-1A are summarized below:

- (i) The 3460 feet of Otway Group penetrated confirmed the uniformity of these sediments and demonstrated once more the complete absence of porosity and permeability in sandstones of the unit.
- (ii) Correlation with Flaxmans No. 1 Well shows a considerable thickness (± 2300 feet) of the upper part of the Otway Group to be missing in Pecten-1A thus confirming the magnitude of the basal Sherbrook Group angular unconformity indicated by seismic data. The presence of this unconformity strongly supports the inclusion of the Waarre Formation as the basal unit of the Sherbrook Group.
- (iii) Time-stratigraphic studies have shown the several formations of the Sherbrook Group to be facies units of one major transgressive-regressive depositional cycle.
- (iv) Erosion of Permian rocks is indicated by the presence of reworked spores of Permian age throughout the Cretaceous sequence, and reworked Lower Cretaceous spores in the Curdies and Paaratte Formations suggest that Otway Group sediments, probably from the Otway horst, were being eroded at this time.
- (v) Marked disconformities occur in the Tertiary sequence of Pecten No. 1-1A between the Upper Palaeocene and lower-middle Eocene and between the upper Eocene and middle Oligocene. The interval between these disconformities is formally defined as the Nirranda Group comprising the Mepunga Formation and the overlying Narrawaturk Marl.

ADDITIONAL DATA FILED IN THE BUREAU OF MINERAL RESOURCES

The following additional data relating to Pecten-1A Well have been filed in the Bureau of Mineral Resources, Canberra, and are available for reference:

(i)	Well Comp Pty Limi	letion Report, by Shell Development (Australia) ited	21 pp.
	Appendix	1 : List of Schlumberger Logs run in Pecten-1A	1 p.
	Appendix 1	A: Summary of Schlumberger Logs	1 p.
	Appendix 2	2: Petrophysical Evaluation Pecten-1A	3 pp.
	Appendix 3	: Deviation Survey Record Pecten-1A	1 p.
	Appendix 4	: Drillstem Test Results Pecten-1A	1 p.
	Appendix 5	: Water Analysis Pecten-1A, by J. Puchel, Bureau of Mineral Resources	1 p.
	Appendix 6	: Gas Analysis Pecten-1A, by J. Puchel, Bureau of Mineral Resources	1 p.
	Appendix 7	: Core and Sidewall Core Descriptions Pecten-1A, by Shell Development (Australia) Pty Ltd	5 pp.
	Appendix 8	: The Foraminiferal Sequence Pecten-1A, by S.D.A. Geological Laboratory	7 pp.
	Appendix 9	: Palynological Examination of Tertiary Samples from Pecten-1A, by J. Muller, B.I.P.M., The Hague	3 pp.
	Appendix 10): Palynological Report on Pecten-1A, by M.E. Dettmann, University of Queensland	28 pp.

- (ii) Daily Drilling Reports for the period 26th March, 1967 to 17th June, 1967.
- (iii) Schlumberger Well Logs including the following:
 - (a) Induction-Electrical Log

```
Run 1: 849 - 2184 feet (scale 1", 5" : 100 ft)
Run 2: 2164 - 6261 feet (scale 1", 5" : 100 ft)
Run 3: 6246 - 8387 feet (scale 1", 5" : 100 ft)
Run 4: 8200 - 9352 feet (scale 1", 5" : 100 ft)
```

(b) Sonic Log

```
Run 1: 849 - 2166 feet (scale 1", 5" : 100 ft)
Run 2: 2164 - 6250 feet (scale 1", 5" : 100 ft)
```

(c) B.S.G.R.C. Log

```
Run 3: 6246 - 8378 feet (scale 1", 5" : 100 ft)
Run 4: 8200 - 9338 feet (scale 1", 5" : 100 ft)
```

(d) Gamma Ray - Neutron Log

Run 1: 849 - 2192 feet (scale 1", 5" : 100 ft)

(e) Neutron Log

Run 2: 5700 - 9353 feet (scale 1", 5": 100 ft)

(f) Gamma Ray Log

Run 2: 2164 - 6261 feet (scale 1", 5" : 100 ft)

(g) Formation Density Log

Run 1: 2164 - 6258 feet (scale 1", 5" : 100 ft) Run 2: 6246 - 8386 feet (scale 1", 5" : 100 ft)

Run 3: 8290 - 9352 feet (scale 1", 5" : 100 ft)

(h) Microlog

Run 1: 2164 - 6261 feet (scale 1", 5" : 100 ft)

(i) Microlaterolog

Run 1: 6246 - 9352 feet (scale 1", 5" : 100 ft)

(j) Cement Bond Log

Run 1: 310 - 2164 feet (scale 1", 5" : 100 ft)

Run 2: 2100 - 6246 feet (scale 1", 5" : 100 ft)

(k) Continuous Dipmeter

Run 1: 2164 - 6256 feet (scale 2": 100 ft)

NERITA NO. 1

of

SHELL DEVELOPMENT (AUSTRALIA) PROPRIETARY LIMITED

SUMMARY OF DATA AND RESULTS

NERITA NO. 1

SUMMARY OF DATA AND RESULTS*

SUMMARY

Nerita No. 1 was the second offshore exploration well in the Otway Basin. It was drilled to test the hydrocarbon-bearing potential of a seismically defined structure with an area of closure of approximately fifteen square miles and a vertical closure of up to 350 feet, situated twelve miles offshore in the Torquay Sub-basin which forms the eastern part of the Otway Basin.

The well was drilled by Southeastern Drilling, Inc., with the Sedco 135E semi-submersible rig, for Shell Development (Australia) Proprietary Limited. Anchoring the Sedco unit over the location did not require any pile drilling as at the Pecten No. 1-1A location. However, numerous re-settings of the anchors had to be made and additional back-up anchors (and in one case heavy chain) had to be added to obtain sufficient holding capacity.

The well was spudded on 1st July, 1967 and drilling proceeded uneventfully to total depth of 6700 feet reached on 30th July.

Nerita No. 1 drilled through a sequence of marine carbonates and marls of the Miocene - upper Eocene Torquay Group to 1180 feet, and then penetrated the mainly marine silty clays of the upper Eocene Demon's Bluff Formation to 2091 feet and a section of continental sands, silty claystones and coal seams of the upper Eocene Boonah Formation to an unconformity at 2555 feet, the level of the seismic 'B' horizon. Below this unconformity the well drilled through a mainly continental sequence of sands, sandstones, siltstones, claystones and coal of the Palaeocene - Upper Cretaceous Eastern View Coal Measures to 4798 feet and continental sandstones, siltstones and shales of the Lower Cretaceous Otway Group to total depth of 6700 feet,

Although sandstones with reasonable reservoir properties were present no significant quantities of hydrocarbons were encountered in the well. Only minor methane shows were recorded from the Eastern View Coal Measures and the Otway Group. Three Formation Interval Tests in sandstones of the Eastern View Coal Measures produced only fresh to brackish water. The Lower Cretaceous Otway Group, which, as elsewhere in the Otway Basin, proved to be a fairly monotonous sequence of interbedded lithic sandstones, siltstones and claystones of fluviatile origin, was plugged back without testing and the well was abandoned as a dry hole on 2nd August, 1967. After rigging down and deanchoring, the Sedco unit left for the Voluta location on 17th August.

The test drilling operation at Nerita No. 1 Well was subsidized under the Petroleum Search Subsidy Act 1959-1967 from seabed to total depth.

^{*} Abstracted from: Nerita No. 1, Offshore Victoria, Well Completion Report, by Shell Development (Australia) Pty Limited, December, 1967.

WELL HISTORY

General Data

Well name and number:

Nerita No. 1

Location:

Latitude 38° 37' 43.19" S. Longitude 144° 13' 44.83" E.

Total Depth:

6700 feet (bdf)

Date drilling commenced:

1st July, 1967

Date drilling completed:

30th July, 1967

Date well abandoned:

2nd August, 1967

Date rig released:

17th August, 1967

Elevation:

Permanent datum:

Mean Sea Level

Derrick floor:

112 feet above M.S.L.

(datum for depths)

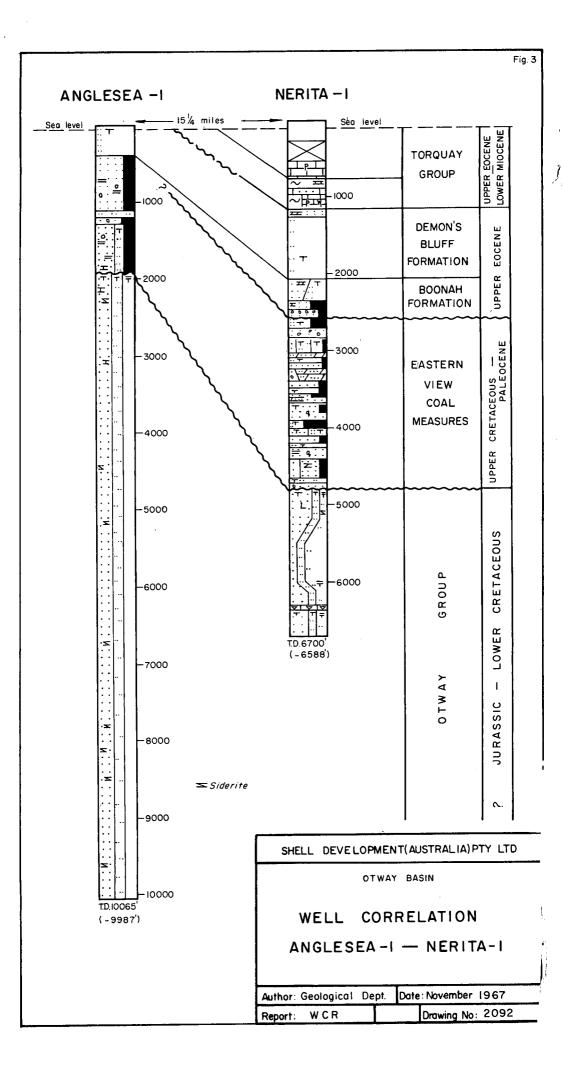
Depth of water:

245 feet

Status:

Dry hole: plugged and abandoned

Total Cost:


\$1,300,000

GEOLOGY

Stratigraphy

The stratigraphic sequence encountered in Nerita No. 1 Well is shown in the following Table.

Age	Rock Unit	Depth Intervals (feet)	Thickness (feet)
Upper Eocene -	Torquay Group	Seabed - 1180	823+
Lower Miocene			
Upper Eocene	Demon's Bluff Form-		
	ation	1180 - 2091	911
Upper Eocene	Boonah Formation	2091 - 2555	464
	Unconformi	ty	
Upper Cretaceous-	Eastern View Coal	2555 - 4798	2243
Palaeocene	Measures		
	Unconformity		
Lower Cretaceous	Otway Group	4798 - 6700(T.D.)	1902+

The Upper Cretaceous and lower Tertiary section in the offshore part of the Torquay Sub-basin, as drilled in Nerita No. 1, is basically different from that in the remainder of the Otway Basin, and in fact shows greater similarity to the Gippsland sequence. In particular, the Upper Cretaceous and lower Tertiary transgressive regressive cycles in the Port Campbell Embayment are absent in the Torquay Sub-basin, and the Eastern View Coal Measures have no lithological equivalent in the Port Campbell Embayment. The stratigraphy of the section in Nerita No. 1 is based on the local nomenclature defined by Raggatt and Crespin in coastal exposures of the Lower Cretaceous and Tertiary along the western margin of the Sub-basin. The only probable Upper Cretaceous previously known in the Sub-basin was penetrated in Anglesea No. 1 Well, drilled in 1962.

Relevance to Occurrence of Petroleum

No hydrocarbon indications were noted from cuttings or sidewall cores, but minor shows of methane and traces of ethane and propane were recorded on the mud-return gas detector in the Eastern View Coal Measures, from 2850 feet downward and in the Otway Group.

Petrophysical evaluation of the section drilled in Nerita No. 1 shows all sands to be 100 percent water saturated. The formation water is characterized by a gradual and continuous downward increase in salinity from approximately 2000 ppm to a maximum of 25,000 ppm NaCl at total depth.

Sandstones of the Boonah Formation and the Eastern View Coal Measures show locally fair porosities. Three Schlumberger F.I.T.'s taken in this section at 2404, 3670 and 4777 feet recovered only fresh to brackish water. Sandstones in the Otway Group are too tight throughout to be regarded as potential reservoirs and did not warrant testing.

Porosity and Permeability of Sediments Penetrated

No cores were cut in Nerita No. 1 and, consequently, no direct measurements are available on porosity and permeability of the sediments.

Calculated values of porosities were obtained from the Formation Density log. For sands and sandstones of the Boonah Formation and Eastern View Coal Measures porosity values range from 21-31% and for the sandstones of the Otway Group values from 725% to less than 10% were determined.

Porosities as described from sidewall cores give generally lower values, partly due to impact compaction of the sample, but also due to the presence of much clayey matrix in the unconsolidated sands, which undoubtedly accounts for part of the porosity value indicated in the FDC log.

Contribution to Geological Concepts resulting from Drilling

Before drilling Nerita No. 1 Well it was known from surface and subsurface geological studies by various authors that in its post-Lower Cretaceous development the Torquay Sub-basin differed in many respects from the remainder of the Otway Basin.

The marine seismic surveys undertaken by Shell Development and the drilling of Nerita No. 1 have confirmed the validity of this concept and at the same time have provided much new information leading to a better understanding of the geological history of the Torquay Sub-basin:

- (i) The 1902 feet of Otway Group sediments penetrated showed similar characteristics to the sediments of this Group elsewhere, thus confirming once more the uniformity of sedimentary development in the Otway Basin during the Lower Cretaceous. In Nerita No. 1, as elsewhere, sandstones of the Otway Group were found to be too tight to have any reservoir possibilities.
- (ii) The Upper Aptian-Upper Albian <u>Coptospora paradoxa</u> Zone found in the upper 2000 feet of the Otway Group in Pecten No. 1-1A in the Port Campbell Embayment is missing in Nerita No. 1, indicating comparatively deeper erosion of the Otway Group at the Nerita location.
- (iii) The presence of Upper Cretaceous sediments in the offshore part of the Torquay Sub-basin, a possibility which was suggested previously in several studies, was definitely established. The lower 650 feet (approx.) of the Eastern View Coal Measures are of Upper Cretaceous age and are overlain by a section approximately 350 feet thick which has to be considered as an Upper Cretaceous Palaeocene transition zone.
- (iv) An angular unconformity was found at the top of the Eastern View Coal Measures, separating this formation from an overlying sequence of similar lithology, the Boonah Formation. Previously known only from limited surface outcrops, the Boonah Formation shows much more variety in lithology than originally described.
- (v) The post-Otway Group rock units in Nerita No. 1 are readily correlated with the stratigraphic units established previously in the onshore part of the Sub-basin and are equally different from the remainder of the Otway Basin. A main difference is the absence of transgressive-regressive cycles in the Upper Cretaceous and lower Tertiary as are found in the Port Campbell Embayment. In fact, the continental Eastern View Coal Measures and Boonah Formation seem to have more resemblance to the sequence in the Gippsland Basin.

REFERENCES

BOCK, P.E., and GLENIE, R.C.,	1965:	Late Cretaceous and Tertiary depositional cycles in south-western Victoria. Proc. Roy. Soc. Vic., 79 (1), 153-163.
BOLLEN, P.W., and STACH, L.W.,	1963:	Anglesea No. 1 Well Completion Report. Unpublished report for Oil Development N.L.
BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS,	1966:	A preliminary review of the Otway Basin. <u>Bur. Min. Resour. Aust. Rec.</u> 1966/170 (unpubl.).
LESLIE, R.B.,	1966:	Petroleum Exploration in the Otway Basin. 8th Comm. Min. metall. Cong. 39th Sess., Qld, 1965, Paper 109, 203-216.

REFERENCES (Cont'd)

RAGGATT, H.G., and CRESPIN, I.,

1955:

Stratigraphy of Tertiary rocks between Torquay and Eastern View, Victoria. Proc. Roy. Soc. Vic., 67, 75-142.

SHELL DEVELOPMENT (AUSTRALIA) 1967:

PTY LIMITED,

Pecten Nos 1 and 1A, offshore Victoria, Well Completion Report. Unpublished P.S.S.A. Report.

SHELL DEVELOPMENT (AUSTRALIA) 1967: PTY LIMITED,

Nerita No. 1, offshore Victoria, Well Completion Report. Unpublished P.S.S.A. Report.

SMIT, A., and DUERST, T., 1967:

Report on the marine seismic survey PEP 22/D1, Otway Basin, Victoria. Unpublished report for Shell Development (Australia) Pty Limited.

ADDITIONAL DATA FILED IN THE BUREAU OF MINERAL RESOURCES

The following additional data relating to Nerita No. 1 Well have been filed in the Bureau of Mineral Resources, Canberra, and are available for reference:

(i)		etion Report, by Shell Development Pty Limited	21	pp.
	Appendix	1 : List of Schlumberger Logs run in Nerita-1	1	p.
	Appendix	A: Summary of Schlumberger Logs	1	p.
	Appendix	2 : Petrophysical Evaluation Nerita-1	2	pp.
	Appendix	3 : Deviation Surveys Record Nerita-1	1	p.
	Appendix	: Sidewall Core Descriptions Nerita-1	14	pp.
	Appendix	by S.D.A. Geological Laboratory	5	pp.
	Appendix	S: Palynological Report on Shell Nerita No. 1 Well, 2106-6456 feet, by M.E. Dettmann, University of Queensland	18	pp.
	Appendix	: Palynological Examination of Tertiary Samples from Nerita-1, by B.I.P.M., The Hague	2	pp.
	Appendix	3: Velocity Survey Nerita-1, by Shell Development (Australia) Pty Limited	6	pp.

- (ii) Daily Drilling Reports for the period 17th June, 1967 to 16th August, 1967.
- (iii) Schlumberger Well Logs including the following:
 - (a) Induction Electrical Log

```
Run 1: 617 - 1300 feet (scale 1", 5": 100 ft)
Run 2: 1296 - 3224 feet (scale 1", 5": 100 ft)
Run 3: 3216 - 6678 feet (scale 1", 5": 100 ft)
```

(b) B.S.G.R.C. Log

```
Run 1: 617 - 1280 feet (scale 1", 5": 100 ft)
Run 2: 1296 - 3208 feet (scale 1", 5": 100 ft)
Run 3: 3216 - 6664 feet (scale 1", 5": 100 ft)
```

(c) Formation Density Log

```
Run 1: 1296 - 3224 feet (scale 1", 5": 100 ft)
Run 2: 3216 - 6678 feet (scale 1", 5": 100 ft)
```

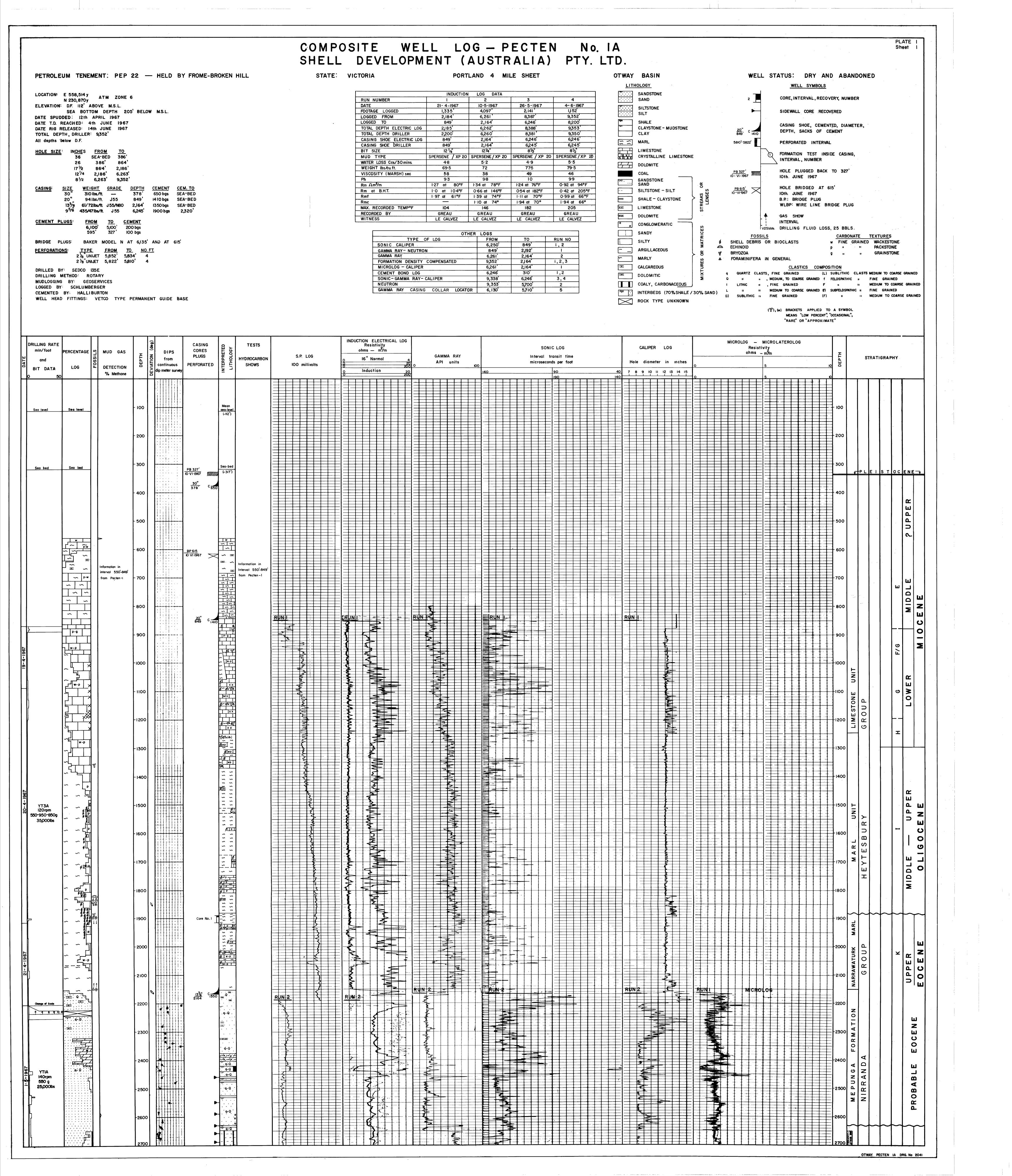
(d) Microlog

Run 1: 1296 - 3224 feet (scale 1", 5": 100 ft) Run 2: 3216 - 6679 feet (scale 1", 5": 100 ft)

(e) Neutron Log

Run 1: 3216 - 6678 feet (scale 1", 5": 100 ft)

(f) Cement Bond Log


Run 1: 342 - 1296 feet (scale 1", 5": 100 ft)
Run 2: 690 - 3216 feet (scale 1", 5": 100 ft)

(g) Continuous Dipmeter

Run 1: 617 - 1287 feet (scale 2", 5": 100 ft)
Run 2: 1296 - 3220 feet (scale 2", 5": 100 ft)
Run 3: 3216 - 6675 feet (scale 2", 5": 100 ft)

(h) Formation Tester

Run 1: 2404, 3670, 4777 feet (scale 5": 100 ft)

COMPOSITE WELL LOG SHELL DEVELOPMENT (AUSTRALIA) PTY. LTD.	PLATE I Sheet 2
PECTEN NO. IA DRILLING RATE MID GAS From GAMMA RAY GAMM	MICROLOG — MICROLATEROLOG Resistivity ohms — m/m 5 10 STRATIGRAPHY
The content of the	STEATIBRARRY ST

COMPOSITE WELL LOG-NERITA No. I SHELL DEVELOPMENT (AUSTRALIA) PTY. LTD.

PETROLEUM TENEMENT: PEP 22 — HELD BY FROME - BROKEN HILL PTY. LTD.

LOCATION E 231,346y AT M ZONE 7
N 236,677y AT M ZONE 7
ELEVATION D.F. II2' ABOVE M.S.L.
SEA BOTTOM DEPTH 245' BELOW M.S.L.
DATE SPUDDED 1st JULY 1967
DATE T.D. REACHED 30th JULY 1967
DATE RIG RELEASED 17th AUGUST 1967
TOTAL DEPTH, DRILLER 6,700'
ALL DEPTHS BELOW D.F.

HOLE SIZE: INCHES FROM IO
36 SEA-BED 470'
26 470' 629'
17'/2 629' 1,305'
12'/4 1,305' 3,226'
8/y2 3,226' 6,700'

CASING: SIZE WEIGHT GRADE DEPTH CEMENT CEM. TO
30'' 3101bs/ft 462' 1280 bgs SEA-BED

30" 310 lbs/ft 462' 1280 bgs SEA-BED
20" 94 lbs/ft H40 618' 680 bgs SEA-BED
13³/8 72 lbs/ft N80 1,295' 630 bgs 500'
9⁵/8" 47/43·5 lbs/ft PIIO/N80 3,216' 730 bgs 1000'

CEMENT PLUGS: FROM TO CEMENT

PERFORATIONS: TYPE FROM TO NO.FT
NOT APPLICABLE

DRILLED BY: SEDCO 135E

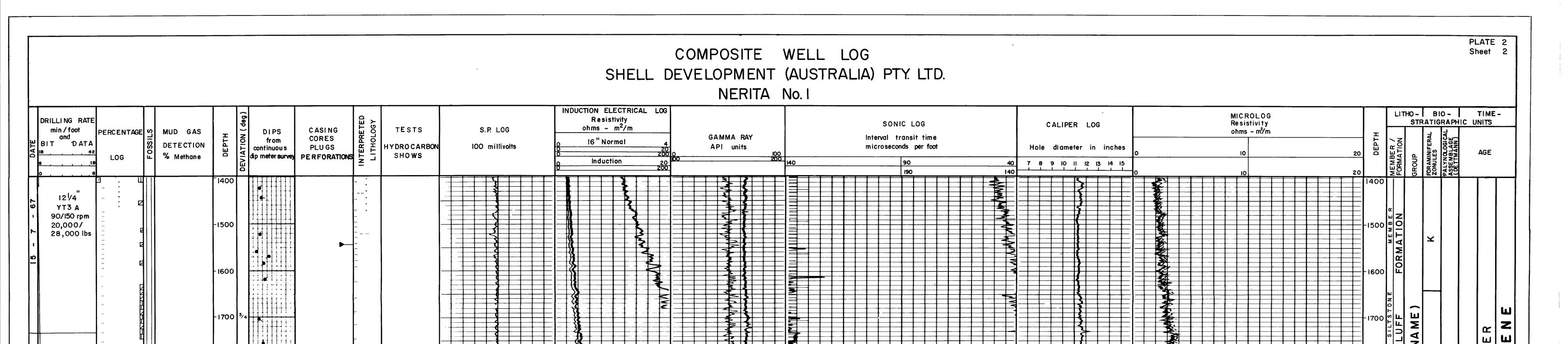
DRILLING METHOD: ROTARY

MUDLOGGING BY: GEOSERVICES

LOGGED BY: SCHLUMBERGER

CEMENTED BY: HALLIBURTON

WELL HEAD FITTINGS: VETCO TYPE PERMANENT GUIDE BASE


STATE: VICTORIA QUEENSCLIFF 4 MILE SHEET

	INDUCTION LOG	DATA	
RUN NUMBER	I	2	3
DATE	10-7-1967	17-7-1967	30-7-1967
FOOTAGE LOGGED	683'	1,928'	3,461
LOGGED FROM	.1,300	3,224'	6,679'
LOGGED TO	617'	1,296'	3,218'
TOTAL DEPTH-ELECTRIC LOG	1,301	3,225'	6,680'
TOTAL DEPTH-DRILLER	1,305	3,227	6,700'
CASING SHOE-ELECTRIC LOG	617'	1,296	3,218
CASING SHOE-DRILLER	618'	1,295	3,216'
BIT SIZE	121/4"	121/4"	81/2"
MUD TYPE	SPERSENE / XP 20	SPERSENE/XP 20	SPERSENE/XP 2
WATER LOSS Ccs/30 mins	6.4	4.0	6⋅1
WEIGHT Ibs/au.ft.	68·5	73	76
VISCOSITY (MARSH) sec	43	39	42
Ph	9.5	9.5	10.4
Rm Ωm²/m	1·35 at 64° F	1·15 at 80°F	1·14 at 86° F
Rm at B.H.T.	0.9 at 100°F	0.8 at III°F	0-64 at 150°F
Rmf	1·15 at 70° F	1 · 16 of 68°F	I-28 at 73°F
Rmc		1.90 at 68°F	2.31 at 73°F
MAX RECORDED TEMP°F	100°	111°	150°
RECORDED BY	GREAU	GREAU	GREAU
WITNESS	LILLIE	DE NYS	LE CALVEZ

OTHER	LOGS		
TYPE OF LOG	FROM	TO	RUN NO
BHC SONIC/CALIPER/GAMMA RAY LOGGING	6,664	617	1,2,3
DIPMETER - CONTINUOUS	6,675	617'	1, 2, 3
FORMATION DENSITY COMPENSATED	6,678	1,296'	1,2
MICROLOG - CALIPER	6,679'	1, 296'	1,2
NEUTRON LOGGING	6,678'	3,216	1
CEMENT BOND LOGGING	3 216	342'	2 3

				STATUS: DRY AND	ABANDONED
LITHO	<u>LOGY</u>		WELL SYMBOL	<u>.s</u>	
.	SANDSTONE SAND				
	SILTSTONE SILT	CLASTIC ROCKS		SIDEWALL CORE RECOVERE	D
T	SHALE CLAYSTONE - MUDSTONE CLAY	CLA		SIDEWALL CORE NOT RECO	OVERED
\$ \$ \$ \$ \$ \$ \$ \$ \$	MARL LIME WACKESTONE *	—	13 ³ /8" 1295' 630	CASING SHOE, DIAMETER	, SACKS OF CEMENT
p		CARBONATE	PB 2900 ' 2 -VIII - 67	HOLE PLUGGED BACK TO	2900'
_ g] LIME GRAINSTONE *	CAR	BP 2806'	2 nd AUGUST 1967 HOLE BRIDGED AT 2806	
	COAL	_	3-VIII-67	3rd AUGUST 1967 B.P. : BRIDGE PLUG	
\triangle \triangle	CHERT				
of carb	d on R.J.Dunham(1962): Clasenate rocks according to depos		*	0.4.00110111	
of carb	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT	sification sitional SES S		GAS SHOW	
of carb texture	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT SHALE - CLAYSTONE	sification sitional SES S	COMPOSITION	GAS SHOW OF FRAMEWORK FRACTION (>2	20/4) OF SILICICLASTIC
of carb texture	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT	sification sitional	Q MEDI	OF FRAMEWORK FRACTION (>2	*2 Brackets applied
of carb	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SILTSTONE - SILT SHALE - CLAYSTONE LIMESTONE DOLOMITE CONGLOMERATIC	STREAKS OR controlling LENSES	Q MEDI	OF FRAMEWORK FRACTION (>2 UM - COARSE QUARTZ UM - COARSE	* Brackets applied to letter symbol indicasub - , e.g.
of carb	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT SHALE - CLAYSTONE LIMESTONE DOLOMITE	STREAKS OR controlling LENSES	Q MEDI	OF FRAMEWORK FRACTION (>2 UM - COARSE QUARTZ UM - COARSE FELDSPATHIC *2	* Brackets applied to letter symbol indicates
of carb texture	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT SHALE - CLAYSTONE LIMESTONE DOLOMITE CONGLOMERATIC SANDY - VERY SANDY SILTY	sification sitional SES S	Q MEDI Q FINE F MEDI f FINE	OF FRAMEWORK FRACTION (>2 UM - COARSE QUARTZ UM - COARSE FELDSPATHIC *	** Brackets applied to letter symbol indica sub - , e.g. (F) = sub - feldspathic,
of carb texture	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT SHALE- CLAYSTONE LIMESTONE DOLOMITE CONGLOMERATIC SANDY - VERY SANDY SILTY ARGILLACEOUS	STREAKS OR controlling LENSES	Q MEDI Q FINE F MEDI f FINE	OF FRAMEWORK FRACTION (>2 UM - COARSE UM - COARSE FELDSPATHIC *2 UM - COARSE LITHIC *2	** Brackets applied to letter symbol indica sub - , e.g. (F) = sub - feldspathic,
of carb tex ture	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT SHALE - CLAYSTONE LIMESTONE DOLOMITE CONGLOMERATIC SANDY - VERY SANDY SILTY ARGILLACEOUS MARLY	OR MATRICES STREAKS OR DOING LENSES CONTRACT CON	q MEDI q FINE F MEDI f FINE L MEDI I FINE	OF FRAMEWORK FRACTION (>2 UM - COARSE UM - COARSE FELDSPATHIC *2 UM - COARSE LITHIC *2	** Brackets applied to letter symbol indica sub - , e.g. (F) = sub - feldspathic,
of carb tex ture	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT SHALE - CLAYSTONE LIMESTONE DOLOMITE CONGLOMERATIC SANDY - VERY SANDY SILTY ARGILLACEOUS MARLY CALCAREOUS	OR MATRICES STREAKS OR DOING LENSES CONTRACT CON	Q MEDI Q FINE F MEDI f FINE L MEDI I FINE FOSSILS **3 SHEL	OF FRAMEWORK FRACTION (>2 UM - COARSE UM - COARSE FELDSPATHIC *2 UM - COARSE LITHIC *2	** Brackets applied to letter symbol indica sub - , e.g. (F) = sub - feldspathic, medium - coarse
of carb tex ture	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT SHALE- CLAYSTONE LIMESTONE DOLOMITE CONGLOMERATIC SANDY - VERY SANDY SILTY ARGILLACEOUS MARLY CALCAREOUS DOLOMITIC	MATRICES STREAKS OR voites to the contract of	Q MEDI Q FINE F MEDI f FINE L MEDI I FINE FOSSILS **3 SHELL S SHELL	OF FRAMEWORK FRACTION (>2 UM - COARSE UM - COARSE FELDSPATHIC *2 UM - COARSE LITHIC *2 L DEBRIS OR BIOCLASTS ELLIBRANCHS, FRAGMENTS OF -	** Brackets applied to letter symbol indica sub -, e.g. (F) = sub - feldspathic, medium - coarse ** Brackets applied to symbol indicate
of carb tex ture	onate rocks according to depose A.A.P.G. Mem. I SANDSTONE SAND SILTSTONE - SILT SHALE - CLAYSTONE LIMESTONE DOLOMITE CONGLOMERATIC SANDY - VERY SANDY SILTY ARGILLACEOUS MARLY CALCAREOUS	MIXTURES OR MATRICES STREAKS OR DISTRIBUTION OF THE MATRICES OR DISTRIBUTION OF THE MIXTURES O	Q MEDI Q FINE F MEDI F FINE L MEDI I FINE FOSSILS * 3 SHEL S SHEL S A ECHI	OF FRAMEWORK FRACTION (>2 UM - COARSE UM - COARSE FELDSPATHIC *2 UM - COARSE LITHIC *2	** Brackets applied to letter symbol indica sub - , e.g. (F) = sub - feldspathic, medium - coarse ** Brackets applied

									,													PE UN KNOW			ω γ φ	BRYOZ		N GENERAL				
DRILLI NG RAT	min/foot PERCENTAGE W MUD GAS TO DIPS CASING				CASING	ETED -0GY	TESTS	S.P. LOG	INDUCTION ELECTRICAL LOG Resistivity ohms - m²/m						SONIC LOG			CALIPER LOG				MICROLOG Resistivity ohms - m/m				LITHO - BIO - TIME - STRATIGRAPHIC UNITS						
BIT DATA S DETECTION			DETECTION % Methane	DEPTH	from continuous	CORES PLUGS PERFORATION	ERPR THOL	HYDRO CARBON SHO WS	100 millivolts	0 16" Normal 4 0 20 0 200 (GAMMA RAY API units 0 100		100	Interval transit time microseconds per foot					Hole diameter in inches			10			DEPTH BER /	ATION P IINIFERA	ABLAGE MANN) MANN) MANN)	Ε		
0						= -			Induction 20 200		200			140	90 190			40 140	40 7 8 9 10 11 12 13 14 15 140		14 15	- 0 10			20 Z	GROU FOR AN	ASSE					
Sea level	Sea lev	vel		- 100 - 200			Mean Sea level (-112')	Datum Level -																					200			
Sea bed	Sea be	ed		- 300 - 400 - 500 - 600	3/4	30" 462' C 1280		245'	RUN	RUN											RUNI								- 300 PUEB FOR - 400	G R O U P		MIOCENE
12 1/4 Y T3 A 80 rpm 25,000 lbs		→		- 700 - 800 - 900 - 1100	3/4		#								March Marc														900 H		LOWER	GOCENE
				-1200 -1300	3/4	13 ³ /8" c				R			UN 2			RUN 2					RUN I		F 17						1300		UPPER	EOCENE

