

A1 Project Brainstorming Session

ARRC, Perth, August 11th, 2004

Today's Agenda & Objectives

- Review outcomes of A1 workshop, May 3-4, 2004
- Database interrogation; Yilgarn faults example
- Distil and prioritise small number of hypotheses
- Define input parameters for modelling scenarios (for output by 04/05)
- (recommendations for future directions?)

What we know (or think we know) - potentially critical factors:

- Long-lived, complex damage zones (kinematic evolution); degree of non-linearity & gradients
- Rheological contrast; strain partitioning
- Steeply-dipping orientation at shallow levels
- Proximity to (ancient) plate margins, sutures
- Presence of mafic intermediate igneous rocks
- Extensive alteration
- Kinematic evolution
- Length, relay zones, displacement

Interrogation of A1 TT database

- Number of Faults on the Database: <u>132</u>
- Number of mineralised Faults: 80 = 60.6%
- Number of non-mineralised Faults: 52 = 39.4%
- Number of Faults with all styles of gold mineralisation: 52 = 39.4% (65%)

	mineralised faults	unmineralised faults
Evidence of magmatism along fault	58 (72.5%)	26 (50%)
Presence of ophiolites - uncertain	8 (10%) 10 (12.5%)	4 (7.7%) 14 (26.9%)
Magmatism associated with Au - major felsic/intermediate - bimodal - no magmatism	38 (70.4%) 2 (3.7%) 14 (25%)	
Source of fluid: magmatic - in gold-mineralised systems	48 (60%) 37 (68.5%)	1 (2%)
Geodynamic regime -compressional/transpressional - extensional/transtensional	69 (86.3%) 5 (6.3%)	37 (71.2%) 10 (19.2%)

	mineralised faults	unmineralised faults	
Geometry of fault	24 (42 E0/)	47 (22 70/)	
- planar	34 (42.5%) 44 (55%)	17 (32.7%) 30 (57.7%)	
Rheology - brittle-dominated - brittle/ductile	10 (12%) 70 (87.5%)	15 (28.9%) 33 (63.5%)	
Evidence of basin inversion - unspecified	34 (42.5%) 30 (37.5%	17 (37.7%) 21 (40.4%)	
Dip at surface - steep (>60°) - shallow (<60°)	46 (57.5%) 28 (35%)	36 (69.2%) 8 (15.4%)	
Fault active: yes	14 (17.5%)	17 (32.7%)	

ľ	nineralised faults	unmineralised faults	
Manifestation at current level - linear - complex	10 (12.5%) 70 (87.5%)	19 (36.5%) 33 (63.5%)	
Associated with current plate boundary	1 (1.3%)	3 (5.8%)	
Lateral extent >200 km	19 (23.7%)	19 (36.5%)	
Width of corridor			
- <1 km	43 (53.8%)	23 (44.2%)	
- 1 - 6 km	27 (33.8%)	14 (26.9%)	
- > 6 km	7 (8.8%) [*]	8 (15.4%)	
Depth extent > 10 km	45 (56.2%)	33 (63.4%)	

	mineralised faults	unmineralised faults
Relationship with other faults		
- master structure	22 (27.5%)	21 (40.4%)
- semi-parallel	53 (66.3%)	26 (50%)
- cross-cutting	5 (6.3%)	5 (9.6%)
Linkage of single fault segments	00 (050()	4.4.40.4.00()
- continuous	68 (85%)	44 (84.6%)
-discontinuous	12 (15%)	8 (15.4%)
Tectonic setting		
- collisional orogen	48 (60%)	20 (38.5%)
- convergent margin	5 (6.3%)	6 (11.5%)
- intraplate	9 (11.3%)	8 (15.4%)
- other (rift, passive margin)	19 (23.8%)	18 (34.6%)

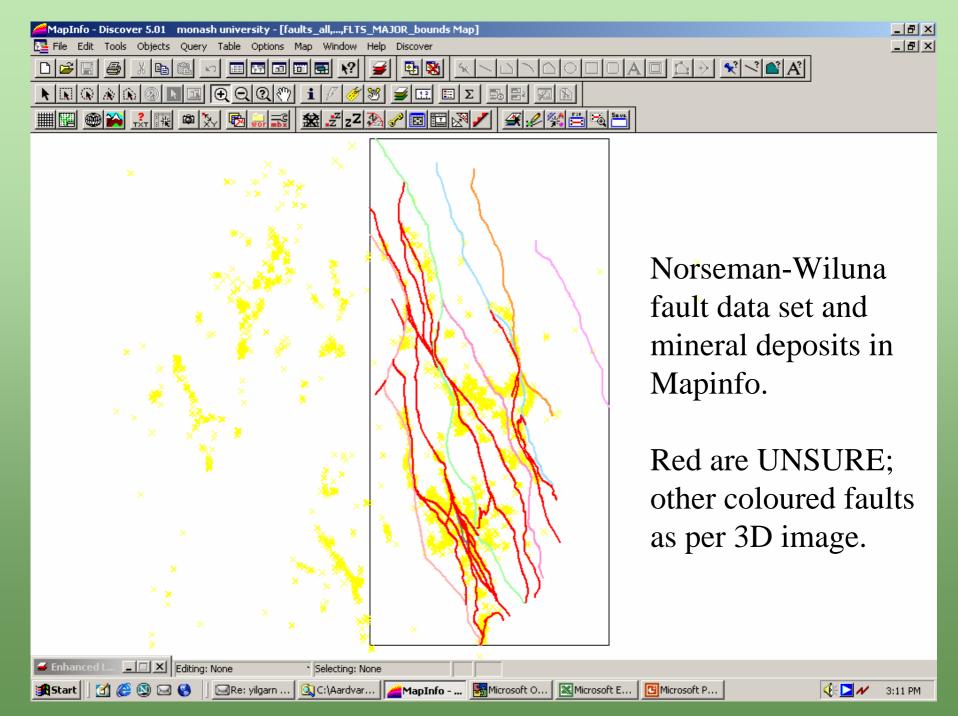
Yilgarn Faults Interrogation

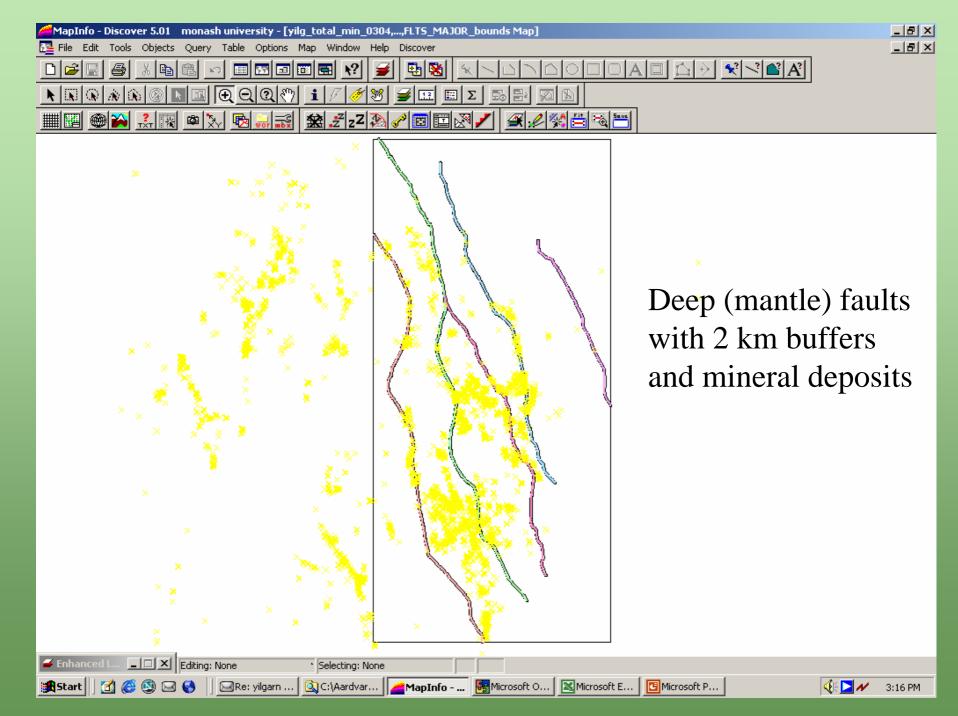
(Terry Lees, Frank Bierlein)

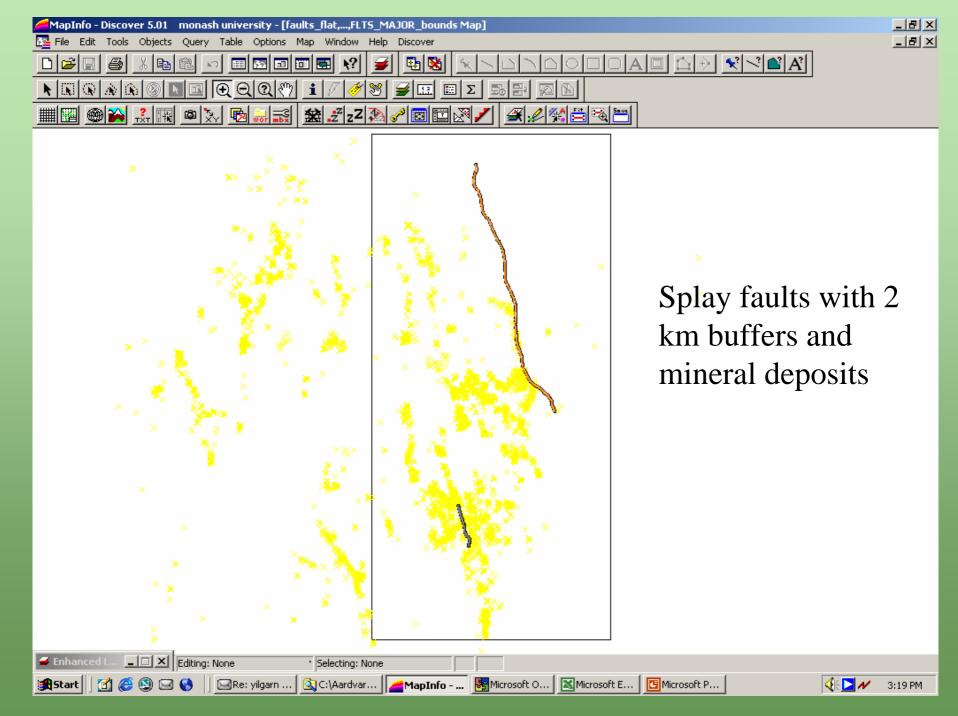
A simple test of (potentially) mantle-tapping faults in the Yilgarn, and their significance for gold endowment

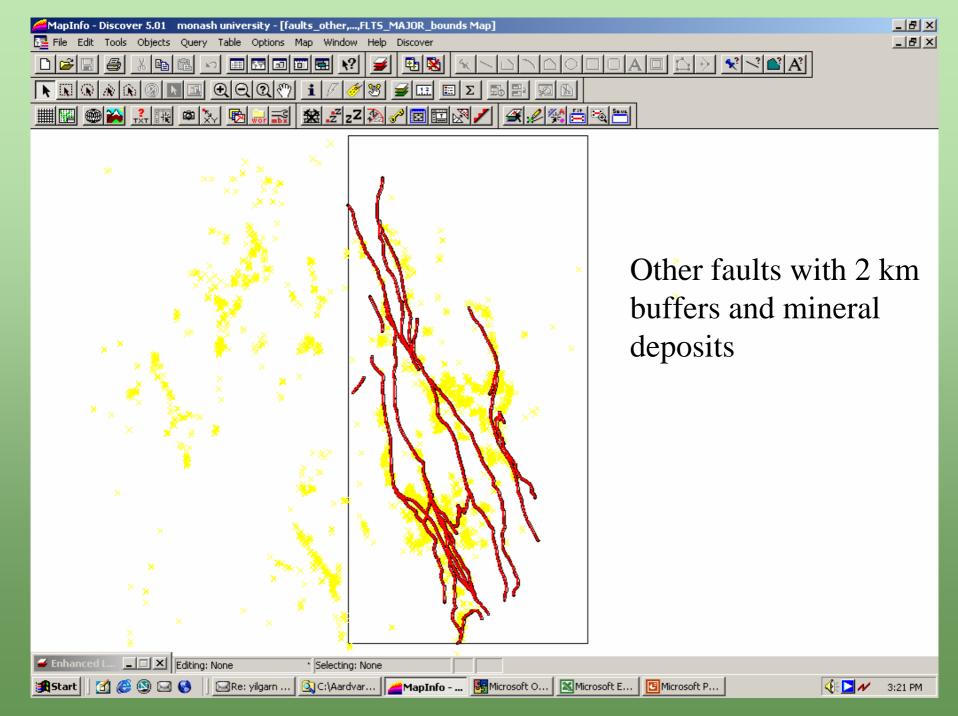
Hypothesis:

Mineralisation is associated with faults that intersect(ed) the mantle at the time of mineralisation


Test: from a subset of the Yilgarn data, select and define faults that intersect the mantle into: DO, DO NOT and UNSURE categories


Relate mineralisation contained within buffers around these faults to the categories


Data and Assumptions


- Fault data set from GA
- Fault categories defined by interpretation of seismic by GA
- Mineralisation data from Minloc and Ozmin, modified and ranked by Lees/Murphy
- Assumed that faults seen now reflect the geometry at time of mineralisation
- Assumed that there are enough data to be meaningful, although only 5 major and 2 splay faults

Methodology

- Define faults and 2 and 4 km buffers
- Sum mineralisation (both ranked and production) within buffers, divide by buffer area

Mineral deposit ranking:

```
1 = < 100kg Au

10 = 100 - 1,000 kg Au

100 = 1,000 - 10,000 kg Au

1000 = 10,000 -100,000 kg Au

10000 = > 100,000 kg Au
```

Results

	area	sum minz rank	Minz-rank/area	Sum production	Sum prod/area
2km buffer					
splay faults	2103	189	0.09	0	0
major faults	12100	12938	1.07	159050278	13145
other faults	16930	39971	2.36	813161884	48031
4km buffer					
splay faults	4252	511	0.12	1400000	329
major faults	23230	14652	0.63	378773484	16305
other faults	32050	57069	1.78	2736459186	85381

Results

- 1: Virtually no mineralisation is associated with the splays, despite being located in a heavily endowed area.
- 2: 'Other' faults (UNSURE) are best mineralised. Further definition of these in 3D would be very interesting!

Ought to look at...

pmd*CR

(modelling scenarios; future directions?)

- Roughness of fault (gradients) vs location of deposits (bends & jog tool?)
- Convection in plane of fault vs focused upflow in discrete zones (also: down-flow, alteration)
- Role of antiforms & related geometric features
- Model/compare vertical structure to surface vs diffuse damage zone above conduit
- Compare with shallow-dipping structures (~40°)
- Dislocation of mantle-tappers along ductile layer

[Predictive Mineral Cliscovery

1) Fluid flow along plane of fault versus 'chimney' model

Start with generic models (& relate to what we see in rocks!)

Add layers of complexity and look at:

- permeability/porosity (+ changes)
- fluid flow (including convection/single-pass?)
- orientation/change in far field stress
- rheological properties (host rock, complexity; intrusions?)
- storage capability/access to reservoir
- change dip angle (vertical to <40°)
- angle of misplacement/roughness of plane
- width and diffuseness of fault plane (along-strike + down-dip variations)
- evolution of processes with time (i.e., time-dependence)
- alteration patterns (distribution and variation along plane of fault; chemistry)
 e.g., silica vs carbonate alteration

2) Model/compare vertical structure to surface vs diffuse damage zone above conduit

Predictive Mineral Cliscovery

pmd*CRC

- 3) Role of antiforms & related geometric features
- geometry/architecture
- dome beneath seal; shortening -> dilation, fluid flow
- -- major structure required
- -- differential uplift (T gradient)
- 4) Convection (upflow/downflow geom., distrb.)
- 5) evolution/transition from compression to transpressional deformation timing/extent/component required? (to be considered/modeled as part of Ynew project?)
- 6) Integration of/with existing data sets (eg, JGS data; GA; Placer; ongoing M project work)