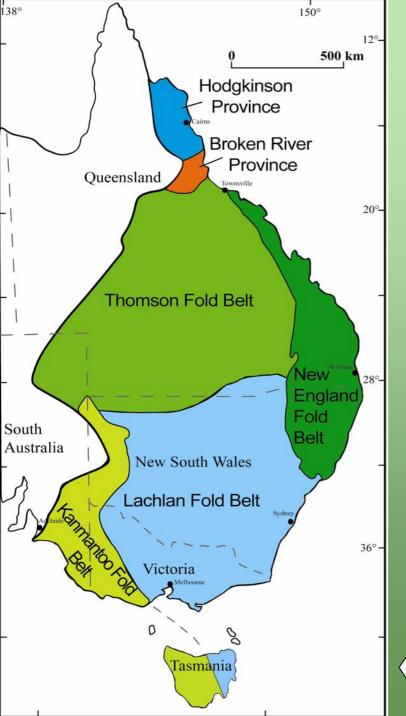
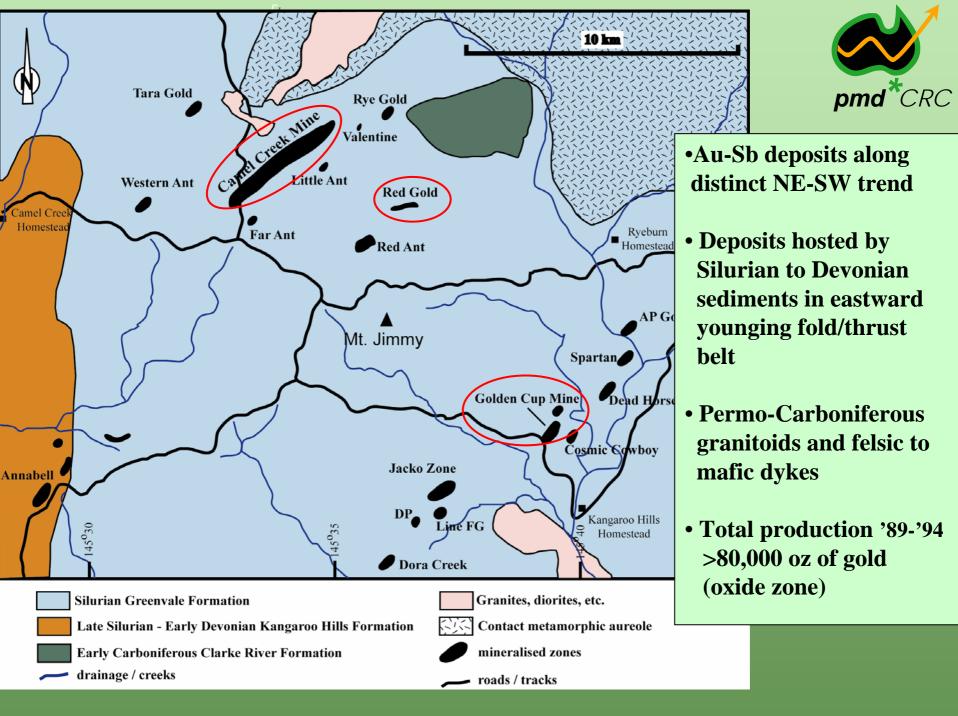


Timing, nature and characteristics of orogenic gold deposits in the Broken River Province, NE Queensland, Australia

I.M.A. Vos¹, F.P. Bierlein¹, G.S. Teale²


¹ pmd*CRC, School of Geosciences, Monash University, VIC 3800, Australia

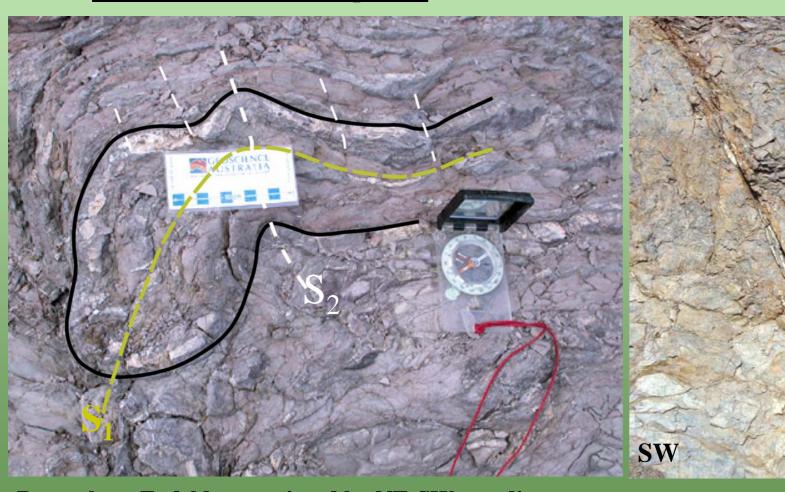
² Teale & Associates Pty Ltd, PO Box 740, North Adelaide SA 5006, Australia



Talk outline

- Geological setting
- Structural framework
- Sulphide paragenesis
- Fluid inclusions
- Implications and applications of this study

The Palaeozoic Tasman Fold Belt
System in Eastern Australia


Predictive Mineral Cliscovery **LEGEND** Graveyard Creek Subprovince Camel Creek Subprovince Intrusives L. Ordovician - E. Silurian Everett Creek Volcanics / Carriers Well Formation Cambrian to Ordovician Ordovician Wairuna granitoids bmd Formation Silurian to Early Ordovician Tribute Silurian - Early Devonian Devonian granitoids Hills arenite Graveyard Creek Group Carboniferous to Permian granitoids and rhyolite Devonian Shield Silurian/Devonian Creek Formation Kangaroo Hills Fm Devonian Broken Silurian Perry **Faults** River Group Creek Formation Proterozoic metasediments, mafic/ultramafic complexes and granitoids Gold Gold Ordovician Pelican Range Fm / Tribute Hills sst Tin Proterozoic metasediments Ordovician Greenvale ☆ Copper and metavolcanics Formation Pb-Zn-Ag Devonian to Carboniferous Bundock Creek Gp / Clarke River Gp Cenozoic basalts w Uranium and sediments Greenvale 19°30' Fault names 1. Teddy Mount Fault 7. Tank Creek Fault 2. Clarke River Fault / 8. Gray Creek Fault Mylonite zone 9. Halls Reward Fault 3. Catfish Creek Fault 10. Nickel Mine Fault 4. Poley Cow Fault 11. Lincoln Springs 5. Jessey Springs / Shear Zone Lockup Well Fault 6. Shield Creek Fault

Structural framework

At least 3 deformation phases

Recumbent F_1 -fold overprinted by NE-SW trending S_2 foliation co-axial to S_1 (Camel Creek deposit)

Quartz-filled D₃ reverse fault (Camel Creek deposit)

Deformation history

Structural and temporal framework for deformation (GSQ):

D₁: NE-SW recumbent and isoclinal folding (*E. Dev*)

D₂: NE-SW upright isoclinal folding (*L.Dev-E. Carb*)

D₃: NW-SE striking thrust fault and open folding (L. Carb)

Our work:

Testing application of temporal framework to mineralisation (Re-Os, Ar-Ar)

Diadictive Mineral Cliscovery

Deformation history and mineralising episodes

Syn-D1 mineralisation

- Refolded NE-SW trending quartzstibnite-gold lenses
- Confined within folded carbonaceous shale horizons

D₁: NE-SW recumbent and isoclinal folding (*E. Dev*)

D₂: NE-SW upright isoclinal folding (*L.Dev-E. Carb*)

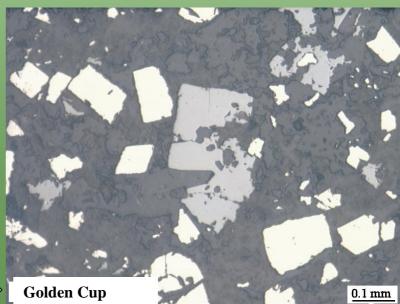
D₃: NW-SE striking thrust fault and open folding (L. Carb)

Gold-bearing quartz-stibnite vein from the Camel Creek deposit

Deformation history and mineralising episodes

Syn-D2 mineralisation

- Boudinaged quartz veins / stockworks
- Confined within carbonaceous shales in \ NE-SW-striking shear zones // F2 axial plane



Gold-bearing arsenopyrite and pyrite at Golden Cup

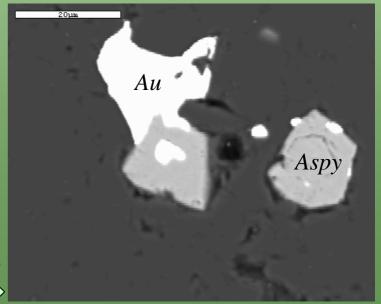
D₁: NE-SW recumbent and isoclinal folding (E. Dev)

D₂: NE-SW upright isoclinal folding (*L.Dev-E. Carb*)

D₃: NW-SE striking thrust fault and open folding (*L. Carb*)

Disciplination of the covery

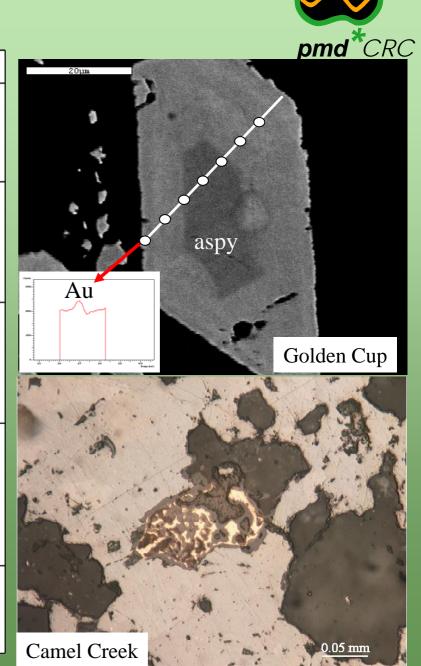
Deformation history and mineralising episodes

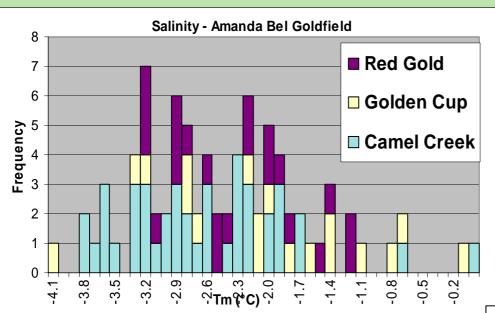

Post-D2/D3 mineralisation

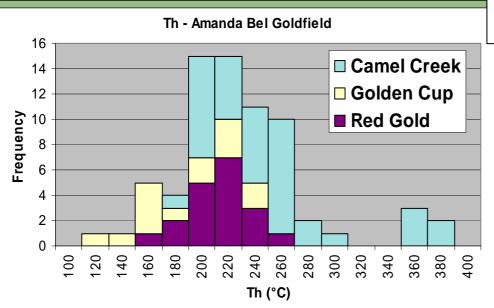
- Gold-stibnite-aspy veins
- Confined within NW-SE trending extension fracture zones

D₁: NE-SW recumbent and isoclinal folding (*E. Dev*)

D₂: NE-SW upright isoclinal folding (*L.Dev-E. Carb*)


D₃: NW-SE striking thrust fault and open folding (L. Carb)


Gold-Aspy association at Blue Gold (SEM image)


Sulphide paragenesis

		D ₁	$\mathbf{D_2}$	post-D ₂ /D ₃
Airport Gold	Sphalerite Pyrite Arsenopyrite Gold			
Blue Gold	Arsenopyrite Rutile Galena Gold Pyrite Stibnite			0
Camel Creek	Sphalerite Pyrite Arsenopyrite Stibnite Gold Aurostibite			
Golden Cup	Chalcopyrite Tetrahedrite Sphalerite Galena Pyrite Arsenopyrite Gold			
Red Gold	Chalcopyrite Tertrahedrite Pyrite Gold			

Fluid inclusions

Absence of (detectable) gas phases from Laser Raman

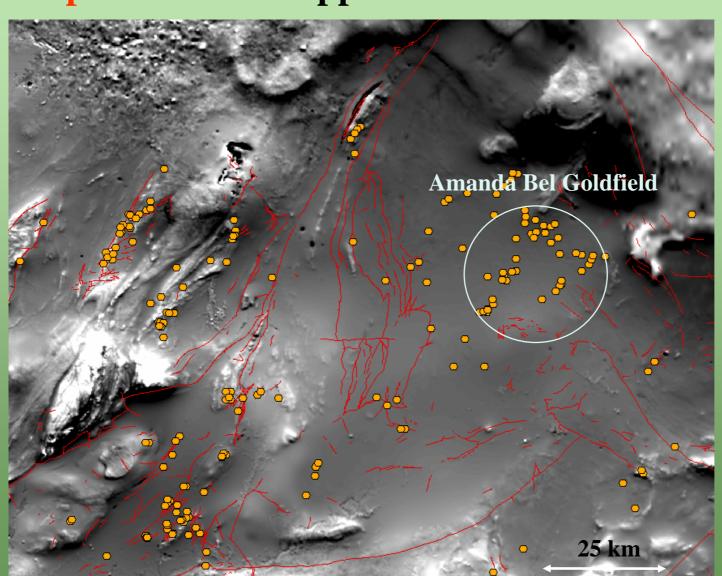
- Fluid salinities between 2 and 5 wt% NaCl equiv.
- Th suggest minimal fluid trapping T between 160°C and 300°C
- D1 slightly higher salinities and Th then D2

Implications and applications

Timing of gold mineralisation (before major magmatic activity)

Nature of fluids (metamorphic origin trapped at epizonal conditions)

Orogenic gold deposits


Close relationship with deformation (in eastward younging fold-thrust belt)

Visible gold, aurostibite and stibnite from the Camel Creek deposit

Implications and applications

Potential for gold mineralisation away from recognized fault structures

Challenge for future exploration

Implications and applications

Controls on mineralisation

Comparison with Vic Au deposits

metallogeny as a key to tectonic evolution of TFBS

predictive mineral discovery

Acknowledgements

Stafford McKnight, Terry Mernagh, Mike Barlow, Lynch Mining Pty Ltd