

"What are the fundamental characteristics of mineralised (trans-lithospheric) fault systems?"

Project Leader: Frank Bierlein, Monash University

Key Researchers: Peter Betts, Ivo Vos (Monash University)

Bruce Goleby, Barry Drummond (Geoscience Australia)

Program: A1 (Architecture)

Linkages: H1, H4, I4, T1, Y2, Y3

Commencement Date: May 2002

Project Duration: 3 years

Project Aims

- To understand why some fault systems are mineralised, and why others are barren
- Determine set of critical parameters that can be applied to identify favourable conduits and faults that are well-endowed

 Predictive mineral discovery at significantly reduced risk

Progress against Plan

Deliverables

- Data base (initial design)
- Data base (population)
- Data base (web-enabled)
- Data base interrogation
- Detailed analysis of key faults
- Critical parameters
- PhD study (Ivo Vos)

Progress

- Completed (to 1 Dec 02)
- Ongoing (52 entries by Nov 02)
- Resource-dependent
- Commenced Nov 02
- Commenced Aug 02 (Mt Isa)
- In progress (anticipated Dec 04)
- Completion Apr 05

Major Highlights and Implications

(by 30 June 2003)

- Data base design & structure
- 2. Key area studies
- 3. Fractal dimensions of fault traces
- 4. Geophysical indicators of fluid systems in faults

Dimensions Dynamics Lithology and metamorphism **Magmatism** Mineralising events Mineralisation and alteration Most important deposit Geophysical data **Additional Information** References

Fault ID

range of strike length width of fault zone/corridor dip geometry

tectonic setting kinematic evolution duration of fault movement

dominant lithology hosting fault nature of basement metamorphic grade

nature of dominant magmatism timing of magmatism method used to determine age

MIME? age of mineralising event

endowment alteration fluid source

name of deposit fault kinematics during ore stage source of ore-stage fluid

depth of Moho & LAB interpreted strike length Magnetics

key reference number reliability rating Comments (key words)

				Linkage of single fault					
		Fault segment -	Single fault	segments/relationship	Range of strike	Range of strike	Width of corridor/	Width of corridor/	
	Fault or Segment of Fault being	single structure or	segments	between structural	length	length	fault zone	fault zone	Dip geometry
Fault ID	documented	structural corridor	distinguished by	elements within corridor	(minimum - km)	(maximum - km)	(minimum - km)	(maximum - km)	of fault
1	Turkestan Suture	single	offset by fault	discontinuous	1000		2	6	listric
2	Atbashi-Inylchek Suture	single	offset by fault	discontinuous	1000				
3	Talas-Ferghana Fault	single	not applicable	continuous	800	900			
4	Atacama Fault Zone	corridor	change in strike	continuous	200	500			
5	Sumatra Fault	corridor	jog separation	discontinuous	50	200	1	20	planar
6	New Guinea Suture	corridor	not applicable	continuous	1000				
7	Gowk Fault	single	not applicable	continuous	100	200	2	4	planar
8	Carlin Trend	corridor	not applicable	discontinuous	50	100	8	10	planar

		Timing of dominant magmatism along fault	Absolute age of dominant	Absolute age of dominant			Mineral used to	
Occurrence of	Nature of dominant	relative to fault zone	magmatism along fault	magmatism along fault	Error associated	Method used to determine	determine absolute	Subordinate
magmatism along fault	magmatism along fault	formation	(minimum - my)	(maximum - my)	with age (+/- my)	absolute age of magmatism	age of magmatism	magmatism
felsic-intermediate dykes	both S- and I-type	syn-tectonic and post-tectonic	90	100	5	Ar/Ar	biotite	
major felsic-intermediate intrusives	I-type granite	post-tectonic	390	400	2	SHRIMP U-Pb	zircon	
major felsic-intermediate intrusives	I-type granite	post-tectonic	400	400	4	SHRIMP U-Pb	zircon	andesitic-tholeiitic
major felsic-intermediate intrusives	S-type granite	syn-tectonic and post-tectonic	370	400	4	Ar/Ar	muscovite	andesitic-tholeiitic
major felsic-intermediate intrusives	I-type granite	post-tectonic	360	370	4	Ar/Ar	amphibole	
major felsic-intermediate intrusives	S-type granite	post-tectonic	360	400		other		andesitic-tholeiitic
major felsic-intermediate intrusives	I-type granite	post-tectonic	380	390	10	K/Ar	amphibole	
major felsic-intermediate intrusives	S-type granite	syn-tectonic and post-tectonic	380	390	2	Ar/Ar	biotite	
major felsic-intermediate intrusives	S-type granite	syn-tectonic	420	430		other		
major felsic-intermediate intrusives	S-type granite	syn-tectonic	390	430	20	K/Ar	biotite	
major felsic-intermediate intrusives	both S- and I-type	syn-tectonic	400	420	4	Ar/Ar	biotite	
major felsic-intermediate intrusives	both S- and I-type	syn-tectonic and post-tectonic	240	300	4	SHRIMP U-Pb	zircon	

Fault ID	Mineralising event	Endowment	Mineralisation interval along fault	Mineralisation styles
1	1	world-class (several major deposits; > 10t Au > 1mt Cu etc)	irregular with discrete deposits	orogenic gold
2	1	significant (at least one major depost historically/currently mined)	irregular mineralisation - some good deposits	orogenic gold
3	1	poor (no known deposits historically/currently mined)	none	
4		world-class (several major deposits; > 10t Au > 1mt Cu etc)	regular	porphyry Cu-W-Sn-Mo (associated greissen and skarn)
7	1	poor (no known deposits historically/currently mined)	none	
8	1	world-class (several major deposits; > 10t Au > 1mt Cu etc)	irregular with discrete deposits	sediment-hosted disseminated Au
9	1	world-class (several major deposits; > 10t Au > 1mt Cu etc)	irregular with discrete deposits	sediment-hosted disseminated Au
10	1	significant (at least one major depost historically/currently mined)	irregular with discrete deposits	sediment-hosted disseminated Au
11	1	world-class (several major deposits; > 10t Au > 1mt Cu etc)	irregular with discrete deposits	sediment-hosted disseminated Au
12	1	significant (at least one major depost historically/currently mined)	irregular with discrete deposits	orogenic gold
13	1	world-class (several major deposits; > 10t Au > 1mt Cu etc)	irregular mineralisation - some good deposits	orogenic gold
13	2	significant (at least one major depost historically/currently mined)	irregular mineralisation - some good deposits	orogenic gold
14	1	world-class (several major deposits; > 10t Au > 1mt Cu etc)	irregular mineralisation - some good deposits	orogenic gold
15	1	anomalous (several known deposits historically/currently mined)	irregular with discrete deposits	volcanogenic-hosted massive sulphides

Key Reference Number	Reliability rating
1, 2, 3	good (1 - 5 published references)
4, 5, 6	good (1 - 5 published references)
7, 8, 68	good (1 - 5 published references)
4	poor (1 published reference)
10, 11, 12, 13, 14, 39	excellent (> 5 published references)
11, 13, 14, 39	good (1 - 5 published references)

Fault ID: The Moyston Fault (#13)

Geographic information: Australia; western Lachlan Orogen; Palaeozoic Dimensions: single fault structure; not applicable; continuous; 50 - 100km Dynamics: active; reverse top-west; 140-160°; 60-90°; compressional; brittledominated; complex; terrane; accretionary prism; 440 - 90 Ma; Ar/Ar, fission-track Lithology and metamorphism: continental; 500 Ma; basement exposed; oceanic; sub-greenschist; mid-amphibole Magmatism: major felsic-intermediate; I-type; post-tectonic; 390-400 Ma; SHRIMP U-Pb; zircon, none Mineralisation and alteration: significant; irregular; orogenic gold; silicification; no data Most important deposit: Moyston goldfield; 440 -390 Ma Geophysical: 251-500km; discrete structure; 31-60 km; 151-200 km Additional information: 15, 16, 17, 18, 28, 46, 90; excellent References:

(15) Gray, D.R., Foster, D.A. 1998: Journal of Structural Geology

Data base interrogation (example)

besilts unmineralised structured structured with the structure of the stru

Fault dimensions:

linear fault 6/34

5/17

Fault dynamics:

brittle-dominated	9/34
intra-plate	7/34
evidence for inverted extension	?

6/17 8/17

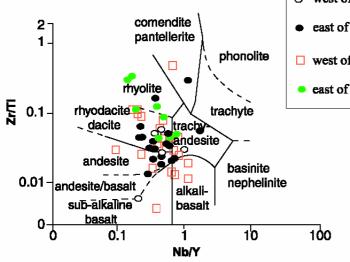
Lithology:

presence of ophiolites 9/34

1/17

Magmatism:

no magmatism along fault 4/34


10/17

Key area studies (I)

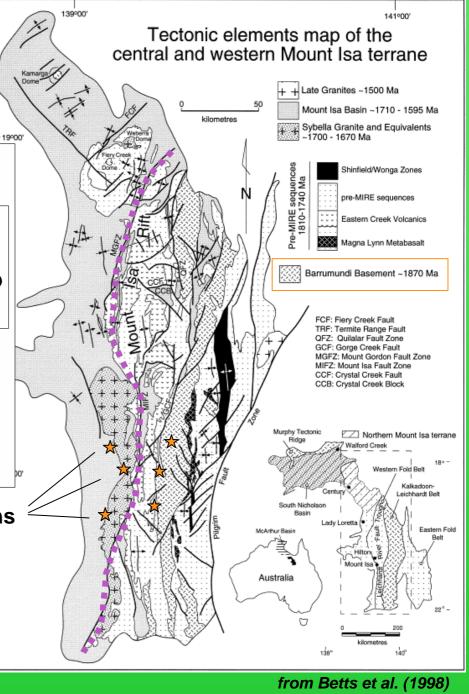
(Frank Bierlein & Peter Betts)

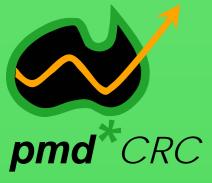
basement rocks, western fold belt, Mt Isa Inlier (Amdel w-r data & GA Ozchem data base)
n = 54

o west of Mt Isa Fault

east of Mt Isa Fault

□ west of Mt Isa Fault (Ozchem)


east of Mt Isa Fault (Ozchem)


sample locations

also: Yilgarn Craton (Y2, Y3)

Lachlan Orogen (H1, H4, T5)

Colorado Mineral Belt (USGS)

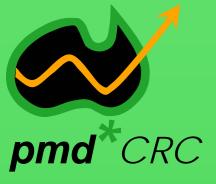
Key area studies (II)

Ivo Vos' PhD project at Monash University

(see poster display)

Fractal dimensions of fault traces: Quantifying fault irregularity

(Thomas Blenkinsop & Frank Bierlein)


Rationale:

- * bends and jogs on faults are well-known to control syn-tectonic hydrothermal mineralisation
- * a method of quantifying fault irregularity may reveal significant aspects of fault-related mineralisation

 $L \sim e^{1-D}$

- L length of fault; e ruler dimension;
- **D Fractal Dimension (D increases with fault irregularity)**

Some examples:

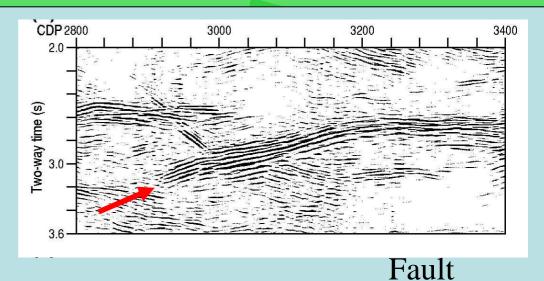
D = 1.000

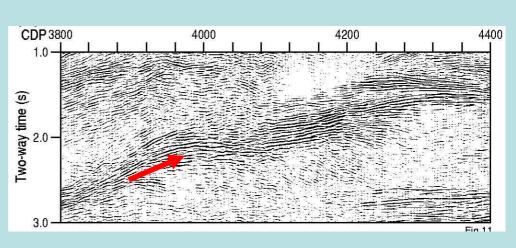
(e.g. San Andreas fault; D = 1.008 - 1.0191)

$$D = 1.198$$

$$D = 1.262$$

$$D = 1.533$$


Investigating deep faults as fluid pathways using seismic data



develop

geophysical

tool for fluid pathways within fault zones

Shear Zone

Key Project Issues

- Currently on track (deliverables; db open-ended)
- Resources required for development of data base
- Empirical parameters from data base
- High-risk (faults not cause, just provider; deposits away from faults; detection of obscure(d) faults; local processes; scale)
- Needs improved collaboration and linkages with other projects!

Future Directions

(beyond 30 June 2003)

- Web-enabled interactive data base
- Set of geological, geochemical and geophysical criteria for distinguishing mineralised from non-mineralised faults
- Improved understanding of role, significance of deepseated structures in generating major ore deposits
- Provision of scenarios for numerical modelling
- Powerful predicitive tool in exploration for major mineral deposits

