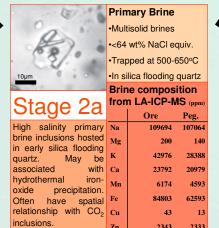
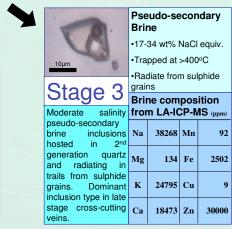
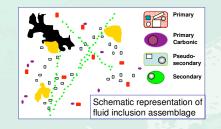
Source and evolution of the Osborne ore fluids


CO₂-bearing Brine Rare (<2% of flinc) and pegmatitic quartz ·High salinity (~50%


•CO₂ ± <10% CH₄/N₂


This may represent the earliest fluid in the ore forming system, prior to fluid unmixing or may be a product of fluid mixing. Fluid inclusion trails containing both brine and CO₂ inclusions support unmixing processes which may be trigger ore deposition.

-	Carbonic Fluid	Raman Compositions			
0	•CO ₂ rich		CO ₂	CH ₄	N ₂
10um	•Minor CH ₄ /N ₂	Реσ	>92%	<0.4%	<8%
		105.			
Stage 2b	•Density 0.68-0.99 g/cm ³	Ore	≥94%	≤6%	-
		•CO ₂ rich •Minor CH ₄ /N ₂	•CO ₂ rich •Minor CH ₄ /N ₂ •Rare CH ₄ rich flinc	•CO $_2$ rich •Minor CH $_4$ /N $_2$ •Rare CH $_4$ rich flinc Peg. $\geq 92\%$	•CO $_2$ rich •Minor CH $_4$ /N $_2$ •Rare CH $_4$ rich flinc

Often found in inclusion trails associated with multisolid brines, they give trapping pressure estimates of 2-2.5 kbar (6-8km). Different gas ratios measured in carbonic inclusions in ore stage quartz and pegmatites.

Secondary Brine ·Liquid-vapour flinc <12 wt% NaCl equiv.</p>

Trapped at >200°C

Typically small

fluids, trails cross-cut all other Probably unrelated to mineral deposition

Albitisation

Iron-oxide precipitation

indicates

Halogen and argon data supports fluid mixing and

was meteoric in origin.

salinities

acquired by dissolution of

evaporitic material. Second

fluid may be magmatic or a modified seawater. It is

most dominant in the 2M

lens where Cu/Au ratios are

dominant fluid

were

2000

Peak Metamorphism

Pegmatite anatexis

38000

25

10

40000

2nd generation quartz

Late-stage veining

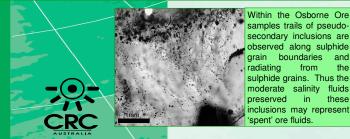
Late fluid flow

Silica flooding

low

3E

 $I/CI \times 10^{-6}$


Sulphides deposited

20 = 15 Ö

> Cathode-luminesence image of Osborne ore. Sulphides are hosted by secondary quartz (dark grey) that cuts through and replaces silica-flooding quartz (light quartz).

Summary

- 1. The fluid inclusion assemblage at Osborne comprises 5 types of inclusions.
- 2. The assemblage may document successive fluid flow events or the progressive evolution of a single fluid or mixing product.
- 3. Halogen and argon data suggests that at least two fluids are implicated in the formation of the Osborne deposit
- 4. Fluid one is a high salinity evaporite dissolution fluid of upper crustal/surficial origin.
- 5. Fluid two has a slightly lower salinity and is either of a magmatic or modified seawater
- 6. If fluid two had a magmatic origin it is required that Osborne lost most of its magmatic ⁴⁰Ar/³⁶Ar signature during an early phase of devolatilization.
- 7. Variable mixing may account for the variation in redox state and Cu:Au ratios that are observed across the Osborne deposit.
- 8. The distinction between ore stage halogen signatures and those measured in the moderate salinity fluids (in pseudosecondary fluid inclusions) in late stage quartz veins suggest the presence of a third fluid or the evolution of the mixing product.

predictive mineral discovery Cooperative Research Centre

Louise Fisher James Cook University Mark Kendrick University of Melbourne

Phone: +61 7 4781 5572 Fax: +61 7 4725 1501 Email: louise.fisher@jcu.edu.au www.pmdcrc.com.au