

Goldfields St Ives and Y4 Project Targeting Exercise

28-29 September 2007

Purpose

Science Meeting first and foremost

- Rigorous debate
- Gap analysis (will help sponsors)
- Realise a unique opportunity
 - last big get together with sponsors
 - SIG access to researchers 1-on-1
 - test of what data are most 'valuable'
 - to understand the 'orogenic' gold mineral system
 - team work for Y4 and true test of our capability and utility for predictive mineral discovery
- Final report

Part II: Practical Targeting across the scales

SCALE 1: REGIONAL ANALYSIS—How to recognise a gold (metal) bearing province (1000 km x1000 km area selection)

KEY CRITERIA (inc. Ranking)
NECESSARY DATA
MINIMUM DATA DENSITY

Data Data Density

SCALE 2: DISTRICT ANALYSIS—How to identify the location of major mineral camps (60 km x 60 km area selection)

KEY CRITERIA (inc. Ranking)
NECESSARY DATA
MINIMUM DATA DENSITY
An undercover example and how to explore in this space

Data Data Density

SCALE 3: PROSPECT ANALYSIS-How to identify the location of a specific ore deposit (5 km x 5 km area selection)

KEY CRITERIA (inc. Ranking)
NECESSARY DATA
MINIMUM DATA DENSITY
An undercover example and how to explore in this space

Data Data Density

SCALE 4: ORE SYSTEM DEFINITION

KEY CRITERIA (inc. Ranking) NECESSARY DATA MINIMUM DATA DENSITY

Data Data Density

predictive mineral discovery Cooperative Research Centre

SCALE 1: REGIONAL ANALYSIS-How to recognise a gold (metal) bearing province (1000 km x1000 km area selection)

- Why be in the Yilgarn cf. Pilbara
- Benefits for area selection globally and in Australia under cover
- more comparison synthesis needed (eg Superior, Slave, Birrimian, Soa Francisco, Pilbara, Barberton etc?

KEY CRITERIA (inc. Ranking) NECESSARY DATA MINIMUM DATA DENSITY

Process: Mantle metasomatism or rejuvenation

- thinned lithosphere
- relatively juvenile crustal age TDM
- mantle plumes
- 'greenstone' sequences incl. komatiites
- mantle magmas incl. sanukitoids

Process: Pathways to mantle

- alkalic intrusions incl. syenites, kimberlites, lamprophyres, carbonatites etc.
- sutures
- mantle edges
- crustal cracks
- big worms
- mafic dykes (even young ones)

Process: Large-scale heating/melting/fluid systems

- large volume crustal melts (Low-Ca or Atype granites)
- metamorphic aureoles
- electrically conductive crustal anomalies

Process: Rapid exhumation

- core complexes
- late-stage siliciclastic basins with granite (deep rock) detritus
- fluviatile systems
- compressed event history incl. relevant PTt paths (isothermal decompression)

Process: Active orogenesis

- elongate orogenic belts
- subduction-accretion
- tectonic mode switching
- changing subduction vector, slab dip or delamination

Process: Cratonisation and preservation

 erosion level with widespread greenschist grade metamorphic rocks preserved

Process: "Convergence" of favourable processes

Presence of known giants

SCALE 2: DISTRICT ANALYSIS-How to identify the location of major mineral camps (60 km x 60 km area selection)

- Where in the Yilgarn?
- Youanmi cf. Eastern Goldfields
- Kalgoorlie terrane cf. Burtville terrane

KEY CRITERIA (inc. Ranking) NECESSARY DATA MINIMUM DATA DENSITY

Process: Connected fluid pathways

- Strain partitioning with large areas of low strain with preserved stratigraphy separated by narrow elongate high strain domains
- large scale alteration cells (W, As??, Phengite-Ms)
- large scale metamorphic 'cells' note gradients or boundaries in grade

60km x 60km targeting Process: Fluid Focus - Structural complexity

- reactivation of old structures especially basin or domain bounding
- switching tectonic mode: strike-slip and dip slip kinematics
- cross structures with domain/stratigraphic boundaries or other structures that were active with mineralisation and
- high 'D numbers' (fractal dimensions?)
- worms

60km x 60km targeting Process: Fluid Focus - structural architecture

- bends and deviations from mean strike on faults
- soft and hard accommodation or stress transfer zones
- domes at all depths
- domes linked to deep cracks and through-going breaching faults
- growth faults
- low-angle shear zones (seals?)
- 2nd and 3rd order structures linked to 'major' structures??

predictive mineral discovery Cooperative Research Centre

60km x 60km targeting Process: Fluid Focus - Rheological or lithological complexity

- abundant porphyries, esp enriched Mafic and Syenite-types
- complex stratigraphic architecture volcanic domes/centres, sequence boundaries
- thick greenstone sequences?
- deep-marine late basins (seals?) within 1 km of u/c???????
- early alteration systems (silicification etc)
- Fe-rich rock types
- carbonaceous rocks

60km x 60km targeting Process: Fluid-chemical complexity

- gradients of oxidised and reduced fluid types in alteration mineralogy
- sharp metamorphic gradients and metamorphic overprints
- range of stable isotopes

60km x 60km targeting Process: Cover and dispersion processes

- <<1 km to target depth</p>
- depth of weathering
- age of weathering
- architecture of regolith (palaeochannels, conductors, ground water)
- landscape evolution presence of salt lakes

SCALE 3: PROSPECT ANALYSIS-How to identify the location of a specific ore deposit (5 km x 5 km area selection)

- Where in the Kalgoorlie Terrane (undercover) do I want to be in?
- When I chose my area and put down a hole, what should I expect?
 - decision tree?
 - probably the most valuable scale to get 'right'
 - this is the domain of the stretched Junior who may be on good ground
 - danger of major walking away too early
 - change paradigms (St Ives) dolerite not only favourable lithology, not just restraining bends (better process understanding will help decision making)

Process: Active hydrothermal system

- magnetic anomalies and broad haloes, demagnetised zones
- buried granites (in domes)
- widespread silification
- topography or palaeotopography

Process: Active hydrothermal system - Fluid-chemical complexity

- gradients of oxidised and reduced fluid types in alteration mineralogy
- range of stable isotopes
- Au and pathfinders (As ++++?) above background

Process: Fluid Focus - Structural complexity

- reactivation of old structures
- switching tectonic mode: strike-slip and dip slip kinematics
- cross structures active with mineralisation

Process: Fluid Focus - structural architecture

- bends and deviations from mean strike on faults
- soft and hard accommodation or stress transfer or damage zones, fault tips
- domes and near dome regions
- growth faults
- seals
- 2nd and 3rd order structures

Process: Fluid Focus - Rheological or lithological complexity

- small stocks, plutons, porphyries, dykes, boudins
- complex stratigraphic architecture volcanic domes/centres, sequence boundaries
- early alteration systems (silicification etc)
- Fe-rich rock types
- carbonaceous rocks

Process: Fluid-chemical complexity

- detailed gradients of oxidised and reduced fluid types in alteration mineralogy
- complex metal associations

Process: Cover and dispersion processes

- <<1 km to target depth</p>
- depth of weathering
- age of weathering
- architecture of regolith (palaeochannels, conductors, ground water)
- landscape evolution

- Quality depends on bounding 5x5 selection
- Develop a deposit model:
 - alteration
 - architectural features
 - structural complexity
 - competency contrasts
 - favourable hosts
- First 'chase' surficial gold anomalies in stream seds and supergene
- Three aspects to target model
 - structural
 - alteration geochemical
 - lithological

1km x 1km targeting: Structure

- structural mapping
 - worms
 - fwd models
 - test jogs and intersections
- which way to drill?
- define lithology will constrain structure
 - targeted geophysics
 - magnetic quiet zones
 - sub audio magnetics

1km x 1km targeting: Alteration/geochemistry

- define gradients
 - PIMA
 - white mica composition and peaks
 - whole-rock multi-element geochem
 - As/Sb ratios
 - · W, Mo, B, Te, V
 - inversions of potential fields (see Chopping)
 - rock property changes (velocity, density, susceptibility)
 - Stable isotope variations
 - · C, O, S, D
- Caveats
 - read map patterns
 - conscious of lithology
 - conscious of mineralisation style

1km x 1km targeting: lithology

- geological map variations in lithology
 - look at maps
 - multi-element geochemistry
- competency contrasts
- differentiated dolerites

So you want to drill?

- direction then orient the core
- sample for Au and log
- collect PIMA and ME geochem
- integrate alteration and lithology
- detailed structural analysis
- Does all this new data support or invalidate the model – be objective?
- Decide where next

Mine scale

- decide what model is NB and what scale to look at it
- process can be confusing and dynamic
- scrutinise data (eg density, 'right' direction, incomplete, poorly logged)
- many decision trees operating
- go back and forth to 5x5 is it still supported
- don't assume model correct
 - structure and kinematics, alteration, high-strain zones

Guiding Thoughts

- Integration: Space and Time
 - ALL of our process-criteria must be integrated in time and space

 We should be looking to better integrate features-criteria into process and justification of why the feature-criteria is NB

