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We wish we could…We wish we could…
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But inverting the data alone gives…But inverting the data alone gives…
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Adding geological constraints gives…Adding geological constraints gives…
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What’s the difference?What’s the difference?

• Infinite number of solutions

• Geophysical data and mathematics are 
the onlyonly constraints

• Model does not have to be geological

• Could be a decent first guess if nothing 
else is known

• If you don’t agree with the model you 
MUST have some other information 

• Infinite number of solutions

• Geophysical data, mathematics, and and 
expected geologyexpected geology are constraints

• May start to be predictive of geology, 
because model is based on some 
geological expectations

• If you don’t agree with the model you 
MUST have some other information 
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Types of geological constraintsTypes of geological constraints

Greenfields → brownfields

Greenfields → brownfields

Greenfields → brownfields

Brownfields

Brownfields

Greenfields → brownfields

Framework

Physical properties
Orientations

Physical properties
Orientations

Positions & shapes

Physical properties
Orientations

Physical properties
Orientations

Positions & shapes

Physical properties
Orientations

Positions & shapes
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• A geophysical survey, measures:

• Inversion seeks to find m given dobs

InversionInversion

Kernel, or Forward Operator:
Specifies the physics

Model:
Physical properties

Observed data

True response

Noise

= +obs trued ε d

=trued Gm
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Inversion problemsInversion problems

• Several problems arise in obtaining a solution to the inverse problem:
►► UnderdeterminedUnderdetermined: More unknowns (m) than data (dobs)
►► NonNon--existenceexistence: Noise may mean that there is NO model that can fit 

the data
►► InstabilityInstability: Small changes in the data, especially noise, can cause 

large changes in the recovered model
►► NonNon--uniquenessuniqueness:

■ Even a finite number of noise-free data can be reproduced in an 
infinite number of ways

■ Potential field data has no inherent depth information – single layer 
at surface could fit the data as well as a detailed 3D model

• Calculate the inverse model solution using optimisation
► Optimal model and optimal data misfit
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Model objective function: SmallnessModel objective function: Smallness

• Attempts to match the recovered model to a reference model (small 
differences)
► Specific cells can be matched more closely than others

• m: Recovered model – our result

• mref: Reference model – expected physical properties

• wr(z): Depth weighting function
► Balances decay of potential field response with increasing depth in 

the model

• ws: Cell smallness – confidence in reference model for each cell

• αs: Model smallness – confidence in whole reference model
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PropertyProperty--based constraintsbased constraints

Greenschist B

Greenschist A

Fault

Recovered model (m)

Reference model (mref)

Smallness or “confidence” (ws)

• Smallness weights (ws)
► Default is 1: “low confidence”
► Weights are relative

■ ws = 10 is 10 × more confident than
ws = 1

► Higher smallness weights → closer match
■ May compensate elsewhere in the model

Granite

N
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Model objective function: SmoothnessModel objective function: Smoothness

• Spreads differences between the recovered model and reference model 
over several cells in the x-direction
► Allows specific pairs of cells to vary more or less smoothly

• wx: Smoothness across each cell boundary in the x-direction

• αx: Model smoothness in the x-direction
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PositionPosition--based constraintsbased constraints

Greenschist B

Greenschist A

Granite

Fault

Reference model (mref)

Smoothness (wx)

0

Recovered model (m)

• Default reference model is zero everywhere

• Smoothness weights (wx, wy, wz)
► Default is 1: “moderately smooth”
► Weights are relative

■ wx = 10 means smoothness is 10 ×
more important than wx = 1

► Values < 1 indicate promote roughness N

1
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Model objective function: SmoothnessModel objective function: Smoothness

• Smoothes model differences in the y- and z-directions

• αy, αz, wy, wz

2

2

( )( ) ...

( )( )

y y r refV

z z r refV

w w z m m dV
y

w w z m m dV
z

α

α

⎡ ⎤∂
− +⎢ ⎥∂⎣ ⎦

∂⎡ ⎤−⎢ ⎥∂⎣ ⎦

∫

∫



AESC 2006

Cross-section

W 
x

y
E 

OrientationOrientation--based constraintsbased constraints

Greenschist B

Greenschist A

Reference model (mref)

Smoothness (wx)

Recovered model (m)

Recovered model (m)Ref. model (mref)

Smoothness (wz)

0

0

Granite

Fault

N
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Balancing model smoothness and smallnessBalancing model smoothness and smallness

• Balance is defined for the whole model by 4 user-defined α parameters
► Fundamentally controlled by cell size-squared:

• Δx, Δy, and Δz: cell dimensions in each direction

• αs: Proportion of smallness: default = 0.0001

• cx, cy, and cz: Model smoothness parameters in each direction
► Values of 1 should equally balance smallness versus smoothness

( )2
y y sc yα α= ⋅ Δ

( )2
z z sc zα α= ⋅ Δ

( )2
x x sc xα α= ⋅ Δ
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Model smoothness parameters: Model smoothness parameters: ccxx, , ccyy, , cczz

• Typically use values between 4 and 25
► Equivalent to old length scales:

• Geological strike or continuity can be reproduced with high c values
► Empirical rule of thumb:

(n is number of cells influenced)

2x xL x c x= Δ ⋅ = Δ

( )2 7          9x x xc n n≥ ⋅ − ≥
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Data misfitData misfit

• Ensures the response of the recovered model matches the observed
data, to within uncertainty

• Wd: Weights based on expected standard deviations (σi) for each data 
point
► Large uncertainty → fit that data point less closely

• Gm: Predicted response of the recovered model

• dobs: Observed data

( ) 2

dφ = − obs
dW Gm d

1diag
iσ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
dW
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Obtaining a solution: OptimisationObtaining a solution: Optimisation

• φ: Total objective 

• φm: Model objective function

• φd: Data misfit

• φd
*: Target data misfit
► Usually equals the number of data points

• β: Trade-off parameter
► Balances data misfit and model-objective function

*

minimize 

such that 
d m

d d

φ φ βφ

φ φ

= +

=
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TradeTrade--off parameteroff parameter

Just right…
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Additional nonAdditional non--linear constraintslinear constraints
• Physical property bounds (lower bound and upper bound)

► Assigned for individual cells
► Can be used with or without a reference model and smallness 

weights
► Recovered model MUSTMUST lie between the lower and upper bounds

■ Extremely powerful for restricting possible model space
■ Can lead to convergence problems if bounds are too narrow over 

too much of the model

• Positivity (only for magnetics)
► Enforces a lower bound of 0 SI

■ Only positive magnetic susceptibilities are recovered
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PropertyProperty--based constraints: another waybased constraints: another way

Greenschist B

Greenschist A

Fault

Lower bound

Recovered model (m)
Upper bound

• Use wider bounds if less confident

• Use narrower bounds if more confident

N
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Parameter summaryParameter summary

• Must set:
► Cell sizes (Δx, Δy, Δz)

■ Default model smallness and smoothness (αs, αx, αy, αz)
► Standard deviations of the data (σi)

• If geological information is available, set:
► Model smoothness parameters (cx, cy, cz) → (αx, αy, αz)
► Cell reference model (mref) & smallness weights (ws)
► Cell property bounds (lower, upper)
► Cell boundary smoothness weights (wx, wy, wz)

• No need to change (but is possible):
► Depth weighting
► Trade-off parameter (β)
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UBCUBC--GIF inversion summaryGIF inversion summary

• Minimum input required is geophysical data and a 3D mesh

• Resulting default recovered model will reproduce the data to within 
uncertainty, with a model that appears “small” and “smooth”

• 3 ways to include detailed geological information
► Property-based:

■ Reference model with smallness weights

■ Bounds
► Position-based:

■ Smoothness weights
► Orientation-based:

■ Smoothness weights

• Use which ever methods are most appropriate given the available 
geological information
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Comparison of propertyComparison of property--based constraintsbased constraints
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PositionPosition-- and orientationand orientation--based constraintsbased constraints

Granite
Default smoothness:

wx = 1
wy = 1
wz = 1

Vertical fault
No smoothness:

wx = 00
wy = 4
wz = 4

Cross-section

S 
y

z
N 

Cross-section

W 
x

y
E 

Greenschist B
East-west strike,

steep dip:
wx = 10
wy = 11
wz = 44

Greenschist A
North-south strike,

shallow dip:
wx = 44
wy = 1010
wz = 1

N



AESC 2006

Options for geological constraintsOptions for geological constraints

N
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Brief inversion preparation checklistBrief inversion preparation checklist

1. Define problem to be addressed

2. Define volume of interest (depth, width and length of desired mesh)

3. Define data area

4. Define cell sizes

5. Pad the mesh to prevent boundary effects

6. Upward continue the potential field data to the width of the cells
• Removes high frequencies that can only be attributed to smaller 

cells

7. Calculate and remove any regional data trend (Li and Oldenburg, 1998)
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A synthetic geological exampleA synthetic geological example

• Simple geological model
► North-south-striking granite-greenstone belt
► Some outcropping ultramafic units and sulphides, but more 

expected under extensive cover

1 km
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Densities and density contrastsDensities and density contrasts

Rock typeRock type Actual Actual 
(g/cm3)

Basic Basic 
samplingsampling
Minimum 
(g/cm3)

Basic Basic 
sampling sampling 
Maximum 

(g/cm3)

Detailed Detailed 
sampling sampling 
Minimum 
(g/cm3)

Detailed Detailed 
sampling sampling 
Maximum 

(g/cm3)

Regolith and 
sediments 2.0 1.7 2.4 1.85 2.15

Granite 2.7 2.65 2.85 2.55 2.85
Sulfides 3.8 3.4 4.2 3.65 3.95
Ultramafics 3.1 2.75 3.2 2.95 3.25
Metamorphics 2.8 2.6 3.0 2.65 2.95

• Converting between density and density contrast → approximate
► Estimate average density expected within inversion volume

■ Perhaps the average density of most abundant rock (→ median)
► Subtract average density to get density contrast:

• No conversion required for magnetic susceptibility

3,        2.8 g/cmρ ρ ρ ρΔ = − ≅
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Densities and density contrastsDensities and density contrasts

Rock typeRock type Actual Actual 
(g/cm3)

Basic Basic 
samplingsampling
Minimum 
(g/cm3)

Basic Basic 
sampling sampling 
Maximum 

(g/cm3)

Detailed Detailed 
sampling sampling 
Minimum 
(g/cm3)

Detailed Detailed 
sampling sampling 
Maximum 

(g/cm3)

Regolith and 
sediments 2.0 1.7 2.4 1.85 2.15

Granite 2.7 2.65 2.85 2.55 2.85
Sulfides 3.8 3.4 4.2 3.65 3.95
Ultramafics 3.1 2.75 3.2 2.95 3.25
Metamorphics 2.8 2.6 3.0 2.65 2.95

Regolith and 
sediments –0.8 –1.1 –0.4 –0.95 –0.65

Granite –0.1 –0.15 +0.05 –0.25 +0.05

Sulfides +1.0 +0.6 +1.4 +0.85 +1.15

Ultramafics +0.3 –0.05 +0.4 +0.15 +0.45

Metamorphics 0.0 –0.2 +0.2 –0.15 +0.15
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A synthetic geological exampleA synthetic geological example

• Synthetic gravity data, with noise added, upward continued to width of 
the cells

• Series of 3D gravity inversions incrementally adding geological 
constraints as they become available during exploration and 
development

1 km
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Inversion setupInversion setup

• Mesh (volume of interest): 42,000 cells (+ extra padding)
► East-west: 70 × 100 m cells (7 km)
► North-south: 30 × 100 m cells (3 km)
► Vertical: 20 × 50 m cells (1 km)

• Assigning α’s
► Use default model smoothness parameters: cx = cz = 4
► Know north-south strike:

■ cy ≥ 2 ⋅ (ny – 7):        ny = 20 cells (2 km) → cy = 26
■ αs = 0.0001, αx = 4, αy = 26, αz = 1



AESC 2006

Default inversionDefault inversion
• No geological constraints • Zero reference model

• Default bounds

West East

Greenfields → brownfields
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Default inversionDefault inversion
• No geological constraints • Zero reference model

• Default bounds

Greenfields → brownfields
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Add outcrop (smooth Add outcrop (smooth mm –– mmrefref))
• Surface mapping
• Some surface density measurements
• Estimate background density

= 2.8 g/cm3

• Reference model for surface cells 
based on mapping and mean 
densities

• Default bounds

Greenfields → brownfields
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Add outcrop (smooth Add outcrop (smooth mm))
• Surface mapping
• Some surface density measurements

• Zero reference model
• Narrow bounds for surface cells 

based on measured densities

Greenfields → brownfields
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Add geological zones (smooth Add geological zones (smooth mm))
• General geological concepts based 

on expected variability
• Narrow bounds for surface cells 

based on measured densities
• Broad bounds based on concepts

Greenfields → brownfields
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Add detailed surface sampling (smooth Add detailed surface sampling (smooth mm))
• Detailed surface sampling over small 

area
• Tight (± 0.15 g/cm3) bounds over

1 km × 1 km area at surface

Greenfields → brownfields
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Add partial 3D model (smooth Add partial 3D model (smooth mm))
• 3D model based on shallow drilling, 

sampling and structural 
interpretation

• Tight (± 0.15 g/cm3) bounds over 3D 
model that is 1 km × 1 km to a depth 
of 350 m

Greenfields → brownfields
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Add 1 deep drill hole (smooth Add 1 deep drill hole (smooth mm)…)…
• Deep drilling with sampling • 1 drill hole, 2 km long

Greenfields → brownfields
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……Or many drill holes (smooth Or many drill holes (smooth mm)…)…
• Drilling: 7 holes in section, 14 out of 

section (up to 1.7 km away)
• Tight (± 0.15 g/cm3) bounds along 

drill holes
• No detailed surface sampling or 3D 

model

Greenfields → brownfields
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……and structural trends (smooth and structural trends (smooth mm))
• Drilling: 7 holes in section, 14 out of 

section (up to 1.7 km away)
• Tight (± 0.15 g/cm3) bounds along 

drill holes
• Smoothness weights based on 

structural trends and contacts

Greenfields → brownfields
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Inversion example summaryInversion example summary

•• OnlyOnly difference is that geological information routinely collected in 
exploration and development was included as inversion constraints as 
it became available
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Inversion example summaryInversion example summary
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Both fit the data equally wellBoth fit the data equally well

Default inversion Final geologically-constrained inversion
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Inversion example summaryInversion example summary

• Constraints used (in approximate order of usefulness):
► Partial 3D model

■ Only if trustworthy and good property measurements are available
► Many drill holes

■ Drill holes remain only way to get actual geological information from 
depth

► Surface maps with basic density estimates
■ Identifying zones of weathered material is especially important

► Geological concepts
■ Wider bounds where more geological variety is expected

■ Narrower bounds where geology is expected to be more 
homogeneous

► Smoothness weights based on observed structural trends and 
contact positions

► Detailed surface property measurements
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Geological constraints summaryGeological constraints summary

• A basic model can be obtained using no geological information
► Identify lateral positions of anomalies
► Identify relative magnitudes and sizes of anomalies
► Basic depth estimates
► Low confidence in targets

• A large range of geological information can be readily included to 
improve recovered models
► Mapping, density measurements, drilling, 3D models
► No “special” data requirements
► Include new geological data as it becomes available to refine model

■■ Don’t need to create a full 3D model!Don’t need to create a full 3D model!

• Where constraints are sparse, use bounds instead of a reference model
► Extrapolate the constraints out into the model
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Some continuing research at UBCSome continuing research at UBC--GIFGIF

• Other types of geological constraints
► How might structural style be imparted on a model?
► Supplying smoothness weights in non-orthogonal directions

• Other forms of regularisation
► “Blocky” models, sharp contacts

• How to ease the inclusion of constraint information?

• Volume-scaling of physical property measurements

• Interpreting and classifying physical property models in terms of 
geology
► How can we get geology instead of physical properties?
► Mapping mineralogy in 3D
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