

National Geochemical Survey of Australia: Sample collection training

Patrice de Caritat, Andrew McPherson, Megan Lech

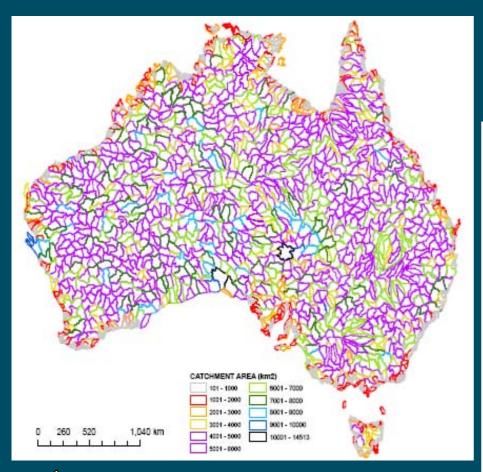
Training Overview

- Background on NGSA
- Target sample point selection
- In-field sample site selection
- Sampling via auger holes/trenches
- Bag labelling (random numbers)
- Field measurements (pH, colour)
- Collection of field duplicates
- In-field documentation (digital data template, photos)

Background

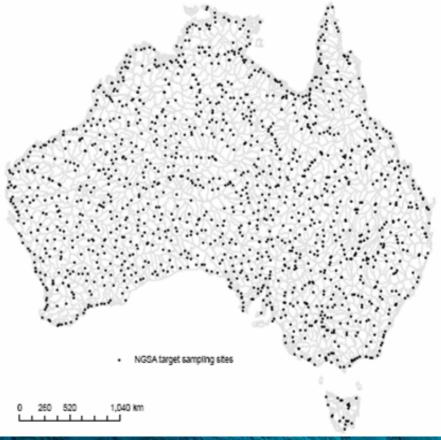
- Part of Onshore Energy Security Initiative
- Aims:
 - Calibrate & ground truth radiometrics
 - Fill gaps in radiometric and geochemical data
 - Multi-element characterisation & ranking of radiometric anomalies
 - Characterisation of geothermal hot spots
 - Mineral exploration for non-energy related commodities

Target/Theoretical Sample Points (1)


ANU's Australian
Nested Catchments
and Sub-Catchments

9 Second Digital Elevation Model

ArcHydro extension for ArcGIS®


Catchments
Target Sample Site
(lowest point in catchment)

Target/Theoretical Sample Points (2)

Catchments (~ 5000 km²)

In-field site selection

- Sample at a representative location
- Obtain permission to sample
- To avoid contamination:
 - Sample upstream of roads, buildings, dams, fences
 - Avoid disturbed sites e.g. campsites, graded areas, rehabilitated areas
 - Preserve site to be sampled
 - Sample near open cluster of mature trees
 - Remove jewellery, don't handle sample
 - Precondition sampling equipment

In-field site selection

- Sample in a transported, depositional environment (not in situ on weathered bedrock)
- If dunes present, sample in swale
- Radiation screen site must be below 5
 µSv/hr
 - If above 5 μSv/hr & cannot sample catchment, provide details in digital data entry template

What can happen if sampling is not homogeneous

- Even at high density, noisy maps can result from sampling of various materials.
- This can happen for instance where there is a poor description of what to aim for in the field.
- Loose adherence to instructions in the Field Manual could result in a dissapointing end product...
- Therefore it is important to conduct this in-field training and stick to the instructions in the Field Manual.

Equipment

- GA: Field kits (augers, crowbar, bags...)
- State/NT:
 - Vehicles
 - Lap top for data entry
 - GPS
 - Digital Camera
 - Fuel & oil
 - First aid kit
 - Communication equipment

Field equipment

Sample Collection

- 2 x ~10 cm intervals to be collected
- 0-10 cm = Top Outlet Sediment (TOS)
- ~60-90 cm = Bottom Outlet Sediment (BOS)

1 Collect TOS:

- scrape away vegetation
- prepare with crowbar
- sample with white scoop over large area

2 Collect BOS:

Sample Collection

1 Collect TOS:

- scrape away vegetation
- prepare with crowbar
- sample with white scoop over large area

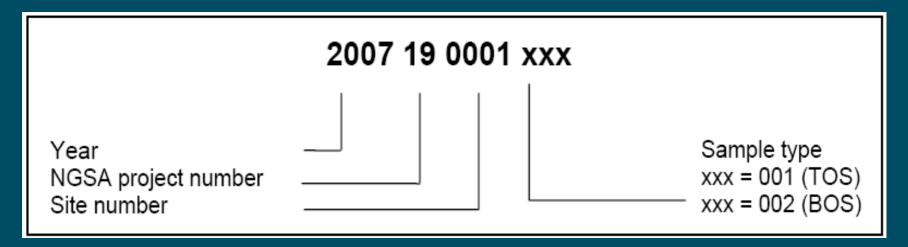
2 Collect BOS:

- Dig pit (~50 cm wide & between 70 & 150 cm long)
- Collect sample with white scoop over large area
- 3 Radiation screen keep if <5 µSv/hr

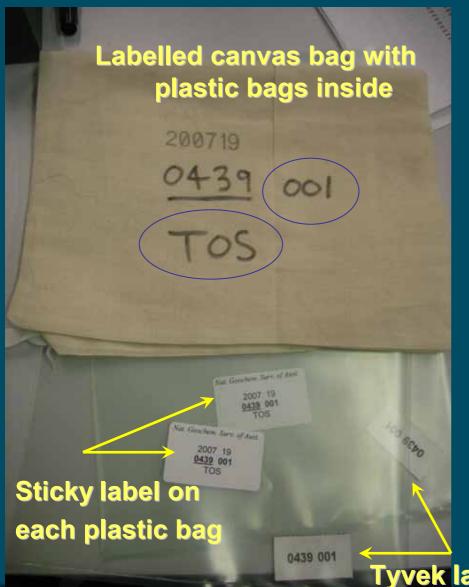
Only 1 trench neede

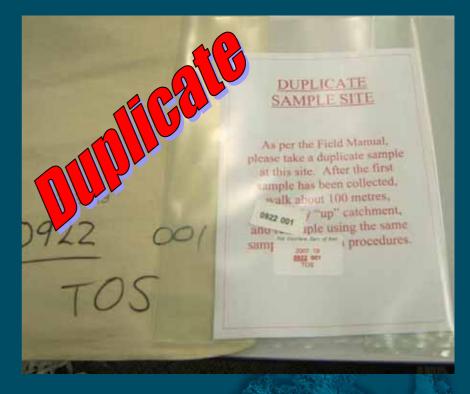
Sample collection (Trench)

GEOSCIENCE AUSTRALIA

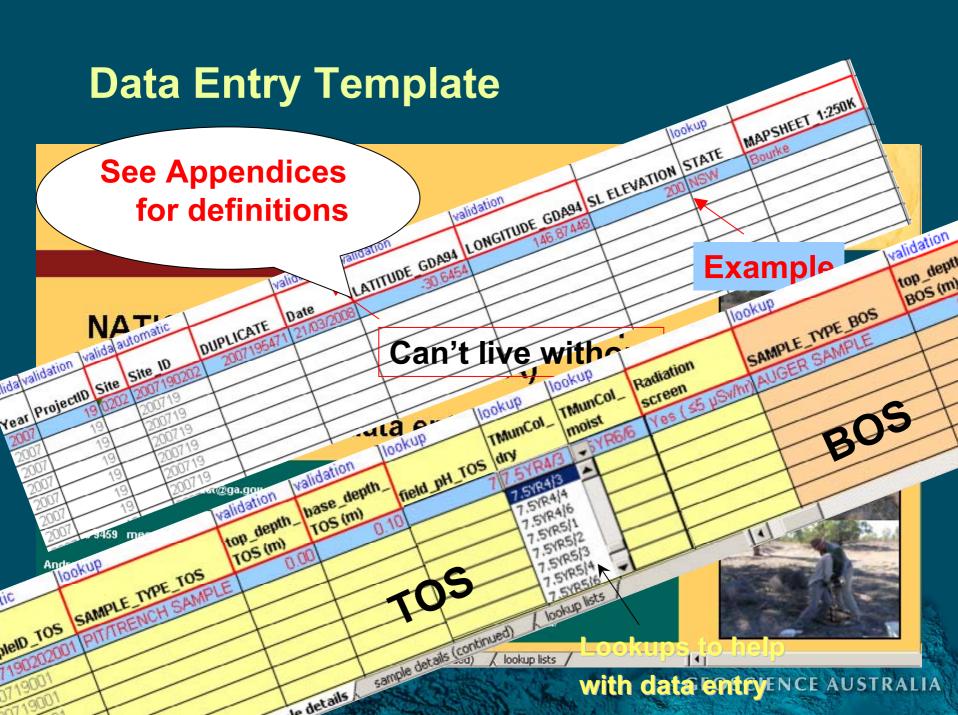

In-field measurements

- Munsell colour (wet & dry)
- pH




Sample numbering

- Bags arranged in random order (Plant 1973)
 - Reduction in false anomalies
 - Enables meaningful estimates of variance based on duplicates


Sample bags

Tyvek label (short no.)

in each plastic bag

NATIONAL GEOCHEMICAL SURVEY OF AUSTRALIA (NGSA)	
SITE_ID: 2007 19	Date/_ / (dd/mm/yyyy) Time: Entered by:
LOCATION	Time. Entered by.
LATITUDE_GDA94:°S LONGITUDE_GDA94:°E	SL ELEVATION: m MAPSHEET_1:250K: STATE:
SITE DETAILS	31A1L
HOLE_TYPE J: PROPERTY_NAME:	TARGET_SITEID: <u>TS</u> WATERCOURSE:
LANDFORM_TYPE J:	GEOMORPH_PR J: GEOMORPH_PR2 J:
Site LANDUSE_TYPE_SITE J: LANDUSE_SUBTYPE_SITE J:	AN USE_TYPE_CATCH J: LA IDUSE_SUBTYPE_CATCH J:
Sources of Contamination:	
Comments:	
SAMPLE DETAILS	
Top Outlet Sediment (TOS) SITE_X 1	Bottom Outlet Sediment (BOS) SITE_ID+002
TOSm	BOS m
SAMPLE_TYPE J: AUGER T, PIT/TRENCH T (tick)	SAMPLE_TYPE J: AUGER T, PIT/TRENCH T (tick)
field_pH_TOS J:	field_pH_BOS J:
TMunCol_dry J:	BMunCol_dry J:
TMunCol_moist J:	BMunCol_moist J:
Radiation screen: Yes, ≤5 µSv/hr T (tick)	Radiation screen: Yes, ≤5 µSv/hr T (tick)
Induration? J: (m)	No. of holes augered:

NGSA field sampling check list

HAVE YOU:

- 1 Used the Field Manual to determine a suitable site location?
- **2** Gained permission to sample at this site?
- Checked site for obvious signs of contamination maintained the integrity of the site before sampling?
 - Screened the site for radiation? [NB_higher than]
- 4 > 5 μSv/hr, reselect sample site as ler beld Manual]
- **5** Cleaned/conditioned the equipment to reduce chance of cross-contamination?
- Read all instructions and manuals, and used the correct PPE for the job? (e.g., for close soil contact or use of power auger)
- Worn gloves at all times while handling the samples and sample bags?

- 8 Collected the bottom sample from least 3 holes?
- Taken 2-3 kg of TOS and BOS sample? (i.e., 2 full bags for each)
- Placed correct Tyvek label inside each bag?
 - Checked that all plastic bags have the same mpleID as the calico bag they are placed into?
- Screened the samples for radiation? [NB: If higher
- *12 than 5 μSv/hr, return the sample & reselect sample site as per Field Manual]
- Photographed the site (sample bag, general view of site, holes)?
- **14** Refilled the holes to ensure safety of others/stock?
- Taken a sample duplicate after the plastic bags with red labels? Is the Site_ID to which this duplicate relates documented in the digital data entry template?

Site documentation – photos

1 Photograph bag

- 3 Take photograph away from river/creek showing holes
- 4 Rename photos with site number

Freighting

Finally

- Read OH&S guidelines before departure
- Refer to: Lech et al. (2007) National Geochemical Survey of Australia: Field Manual, Geoscience Australia Record 2007/08
- Enjoy yourselves and THANK YOU!!

