



The Genesis and Exploration Potential of 1000 and Base Metal deposits, Eastern Succession, Mount Isa Inlier

## The Role of Matics

Kris Butera





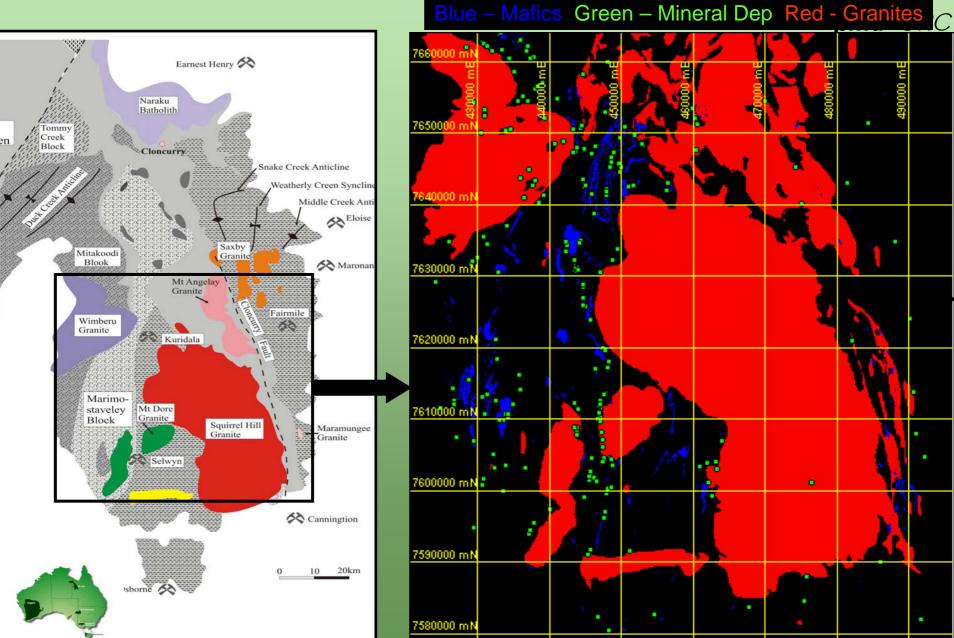






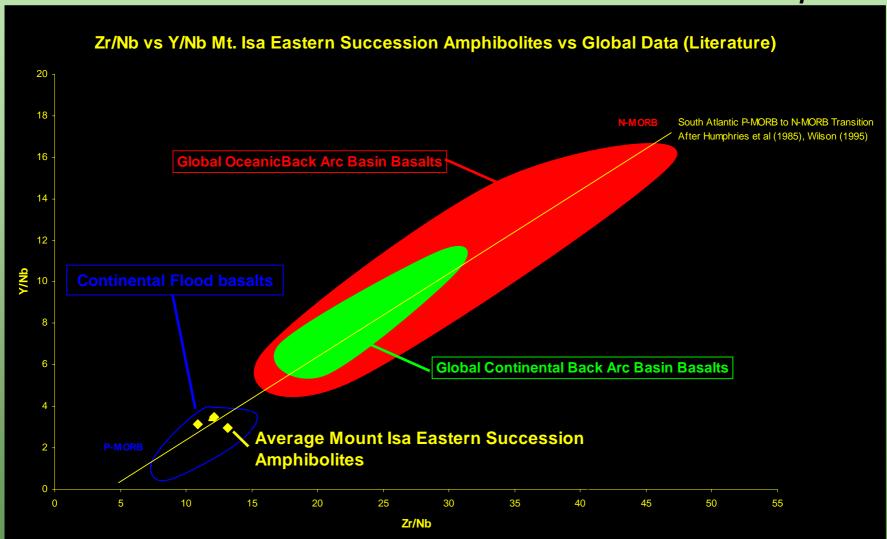




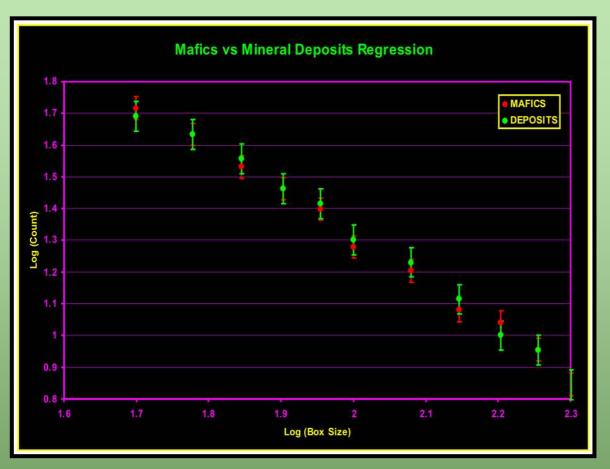



# The Genesis and Exploration Potential of IOCG and Base Metal deposits, Eastern Succession, Mount Isa Inlier

- Study Area
- Mafic Rocks
- Spatial and Process
   Relationships of Mafics and Mineralisation
- IOCG Deposit Models
- Exploration Potential


#### Study Area






#### Mafic Rocks - Geochemistry









Fractal Analysis of the spatial distribution of Mafic Rocks and all Mineral Deposits was performed over the study area

- •The fractal dimensions of mineral deposits and mafics over the study area are the same within error.
- This is strongly permissive of a genetic relationship between mafics and mineralisation

|          | Regres<br>Limits |      | Number<br>(Deposits) | Fractal<br>Dimension | Standard<br>Error | Correlation<br>Coefficient |
|----------|------------------|------|----------------------|----------------------|-------------------|----------------------------|
|          | Min              | Max  | N                    | D                    | E                 | R                          |
| Mafics   | 8.53             | 34.2 | -                    | 1.43                 | 0.0357            | 0.997221                   |
| Deposits | 8.53             | 34.2 | 240                  | 1.43                 | 0.0468            | 0.99523                    |



#### Weights of Evidence Results

INSIGNIFICANT

SIGNIFICANT

HIGH

VERY HIGH

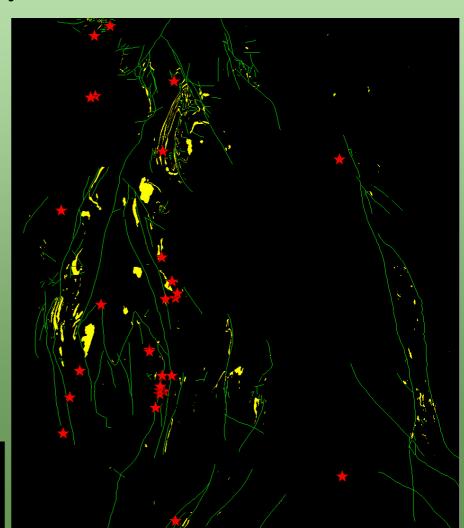
| All Granites | All Deposits | Larger Deposits | Ironoxide Cu Au | Cu Deposits | Au Deposits |
|--------------|--------------|-----------------|-----------------|-------------|-------------|
| Distance     | 3.25-3.5km   | INSIGNIFICANT   | INSIGNIFICANT   | 1.25-1.5km  | 1.25-1.5    |
| Contrast     | 1.41         | INSIGNIFICANT   | INSIGNIFICANT   | 1.19        | 2.29        |
| Confidence   | 5.28         | INSIGNIFICANT   | INSIGNIFICANT   | 3.45        | 5.07        |
| NumPoints    | 15           | INSIGNIFICANT   | INSIGNIFICANT   | 9           | 6           |
| Mafic Dykes  | All Deposits | Larger Deposits | Ironoxide Cu Au | Cu Deposits | Au Deposits |
| Distance     | 0-250m       | 0-250m          | 250-500m        | 0-250m      | 0-250m      |
| Contrast     | 1.99         | 1.77            | 1.71            | 1.7         | 1.2         |
| Confidence   | 14.2         | 4.09            | 3.48            | 8.2         | 2.5         |
| NumPoints    | 71           | 7               | 5               | 30          | 5           |
| Major Faults | All Deposits | Larger Deposits | Ironoxide Cu Au | Cu Deposits | Au Deposits |
| Distance     | 0-100m       | 0-100m          | 0-100m          | 0-100m      | 0-100m      |
| Contrast     | 1.23         | 3.03            | 2.18            | 1.23        | 2.21        |
| Confidence   | 5.62         | 7.92            | 4.76            | 4.06        | 5.2         |
| NumPoints    | 23           | 11              | 6               | 12          | 7           |

#### The IOCG Family - Matics and Faults



#### Faults that intersect 1km buffers of mafic dykes:

(29 Ironoxide Cu Au Deposits)


0-250m

Contrast = 7.78

Confidence = **18.73** 

n = 8

Yellow = mafics, Red Stars = IOCG Deposits Green Lines = Faults



#### Spatial Distributions & The Process Link



Fractal Analysis and Weights of Evidence of the spatial distribution of a number of rock, deposit and fault types is strongly permissive of a genetic relationship between IOCG and Base Metal mineralisation and mafic rocks.

- Mafic rocks and mineral deposits share the same degree of clustering their fractal dimensions are the same within error
- Mafic rocks show the strongest spatial relationship of all rock types studied with All Deposits and Base Metal Deposits
- Mafic rocks also show a high correlation with IOCG and Larger Deposits
- Faults that intersect areas of mafic rocks are excellent predictors of IOCGs
- Preliminary Petrographic and Geochemical studies indicate that sulphur (in the form of primary magmatic sulphides) is removed from the mafics in areas of alteration (& amphibolitisation). These observations, in addition to the Spatial Analysis, add creditability to the process model of

Mafics as the source of Sulphur for ore deposits.

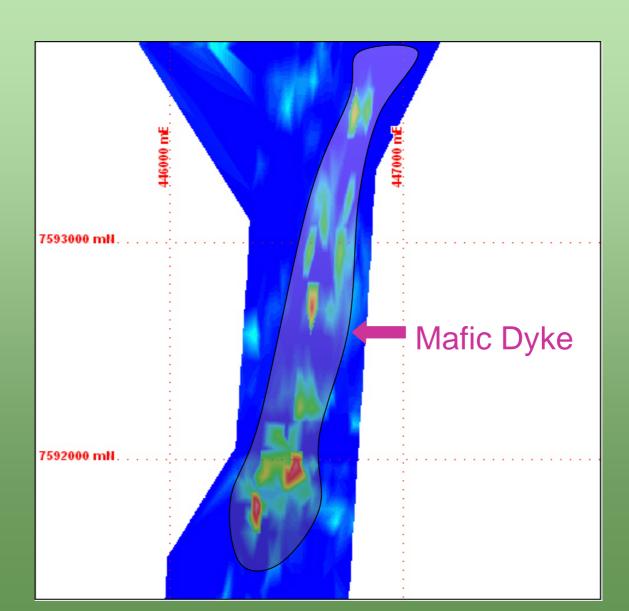
#### Sulphur Availability



Mass fraction calculations for sulphur in all known deposits within the study area were compared to a number of calculations of sulphur sequestering from of the mafics. This was used to test the notion that mafics were the source of sulphur for mineralisation

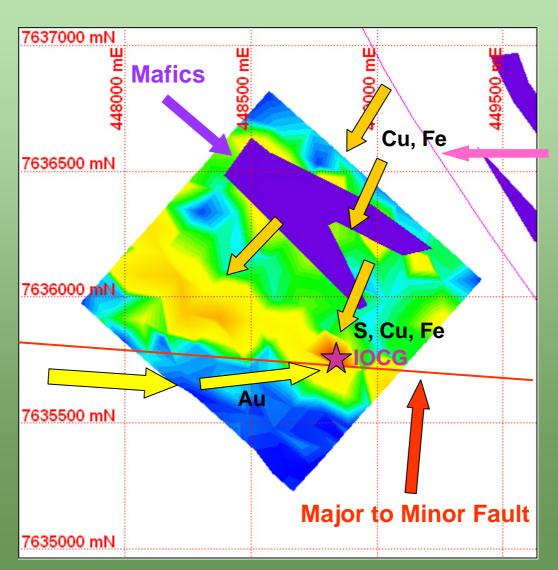
Total Mineralisation = 3.34Mt Cu (334Mt Ore @1%ave grade), Requires ~ 6.5Mt Sulphur

Total Surface Area of Mafics = 98sq km (average density ~2.8t/m³)


Sulphur Availability @ initial S concentration at 100ppm, thickness (depth) of mafic unit from which S extracted of 1000m, with a 30% extraction efficiency would yield ~ 8Mt Sulphur (enough for mineralisation)

A more realistic calculation of 150ppm initial S, 7500m depth (Soldiers Cap group), 70% extraction efficiency = 216Mt Sulphur

\*enough S to supply ~120Mt Cu or 12000Mt Ore @ 1%Average Cu (6kt Au @ 0.5g/t)










#### Preliminary IOCG Genesis Model



**Major D3 Fault** 



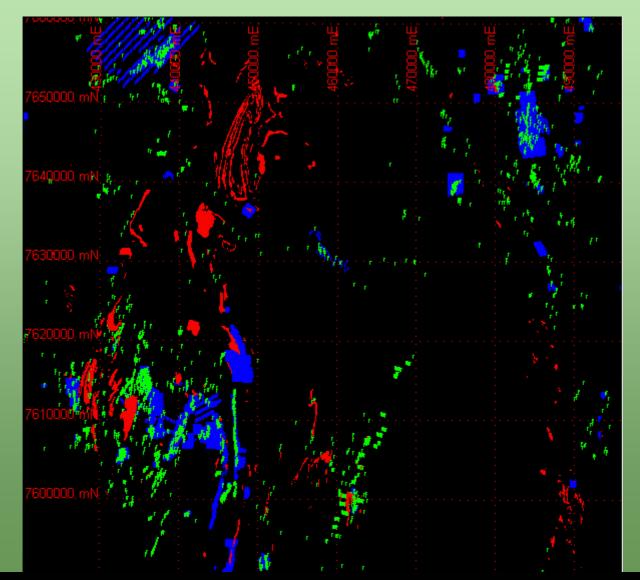
### Predictive Mineral Discovery: Exploration Philosophy

#### **Mineralisation Potential**

CL

Volume of Mafics + Plumbing System

**OVER ANY GIVEN AREA** 




### Predictive Mineral Discovery: Exploration Potential

- Calculations indicate that there is enough sulphur available to supply ~12 Billion Tonnes of Ore
- Areas proximal to Mafics remain underexplored
- Exploration Potential = Very High

# pmd\*CRC

#### Predictive Mineral Discovery: Exploration Potential



**Blue = Soil Geochem, Green = Rock Chip Geochem, Red = Mafics**