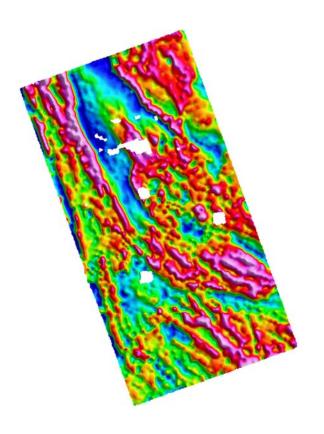
# GEOSCIENCE AUSTRALIA PATERSON GRAVITY SURVEY PROJECT 200560

# **August 2005 – October 2005**

Report Number 05003 LR Mathews


# **CLIENT**



**Geoscience Australia** 

#### **CLIENT CONTACT**

Mr Mario Bacchin Senior Geophysicist Geoscience Australia GPO Box 378, Canberra ACT 2601 Australia



#### **SURVEY CONTRACTOR**



DAISHSAT PTY. LTD P.O. Box 766 MURRAY BRIDGE S.A. 5253

Tel: (08) 8531 0349 Fax: (08) 8531 0684

#### **CONTRACTOR CONTACT**

Mr. David. Daish DAISHSAT PTY. LTD. P.O. Box 766 MURRAY BRIDGE S.A. 5253

Tel: (08) 8531 0349 Fax: (08) 8531 0684 Mob: 0418 800 122

Email:david.daish@daishsat.com

# **TABLE OF CONTENTS**

| 1.  | INTRODUCTION2                               |      |
|-----|---------------------------------------------|------|
| 2.  | SURVEY OVERVIEW3                            |      |
| 3.  | PERSONNEL AND EQUIPMENT6                    |      |
| 3.1 | Personnel                                   | 6    |
| 3.2 | Survey equipment                            | 7    |
| 3.3 | Vehicles                                    | 7    |
| 3.4 | Helicopter                                  | 7    |
| 3.5 | Camp                                        | 9    |
| 3.6 | Communications                              | 9    |
| 4.  | GPS SURVEYING AND PROCESSING10              |      |
| 4.1 | Set out of the grid                         | .10  |
| 4.2 | Survey datum and control                    | . 10 |
| 4.3 | Processing of the position and level data   | .10  |
| 4.4 | GPS Performance                             | .12  |
| 5.1 | Gravity data acquisition                    | .13  |
| 5.2 | Gravity base stations                       | .13  |
| 5.4 | Gravity data processing                     | .14  |
| 5.4 | Gravity meter calibration and scale factors | 16   |
| 5.5 | Gravity meter drift calibration             | . 17 |
| 5.6 | Terrain Corrections                         | .17  |
| 5.  | RESULTS23                                   |      |
| 6.1 | Stations Surveyed and Survey Progress       | . 23 |
| 6.2 | Data Repeatability                          | 23   |

#### **APPENDICES**

Appendix A - Plots of station location and images

Appendix B - Repeat analysis and listing

Appendix C - Survey metadata and specifications

**Appendix D - Base station information** 

Appendix E - Data formats

**Appendix F - Calibration Data** 

Appendix G - Earth Tide Correction Formulae Listing

Appendix H – Data CD

# 1. INTRODUCTION

A precision GPS-Gravity survey was carried out between 31<sup>st</sup> August 2005 and October 6<sup>th</sup> 2005 on behalf of Geoscience Australia funded by the Geological Survey of Western Australia under GA project number 200560. A total of 4236 new gravity stations were surveyed over the Paterson region of northern Western Australia.

Gravity data were acquired using Scintrex CG3M/CG5 and Lacoste Romberg gravity meters. Position and level data were obtained using Ashtech Z12 geodetic grade GPS receivers operating in post-processed kinematic mode. Data were acquired using Daishsat helicopter-borne methods.

Gravity data were reduced using standard Geoscience Australia reductions on the ISOGAL84 gravity network. GPS data were reduced to MGA coordinates with levels expressed as metres above the Australian Height Datum.

#### 2. SURVEY OVERVIEW

The gravity survey was located within a large area of the Paterson Province in the Great and Little Sandy Deserts which lie 1250 km north of Perth, Western Australia (Figure 1). The area is very remote, with the gold and copper mines of Nifty and Telfer being the only proximal places of significance.

Access to the survey is via the town of Marble Bar along the main road into Telfer mine. The area contains numerous sandy tracks which were utilized for helicopter refueling and service.

The survey area is dominated by WNW trending sand dunes up to 30m high and 100-500m apart (Photo 1) In the dune swales, minor scattered rock outcrops and gravels can be found. Intruding the vast dune fields, are the Throssel and Paterson Ranges which stretch from the centre of the survey to the south of survey and extend into the Rudall River national park (Photo 2). The main vegetation in the area is spinifex and desert grass, with some small trees including Eucalyptus and Acacia.

Climate in the region is semi arid, with the mean annual rainfall of about 300mm falling mainly between late November and March. The mean daily temperature during the survey varied between 30°C and 45°C.

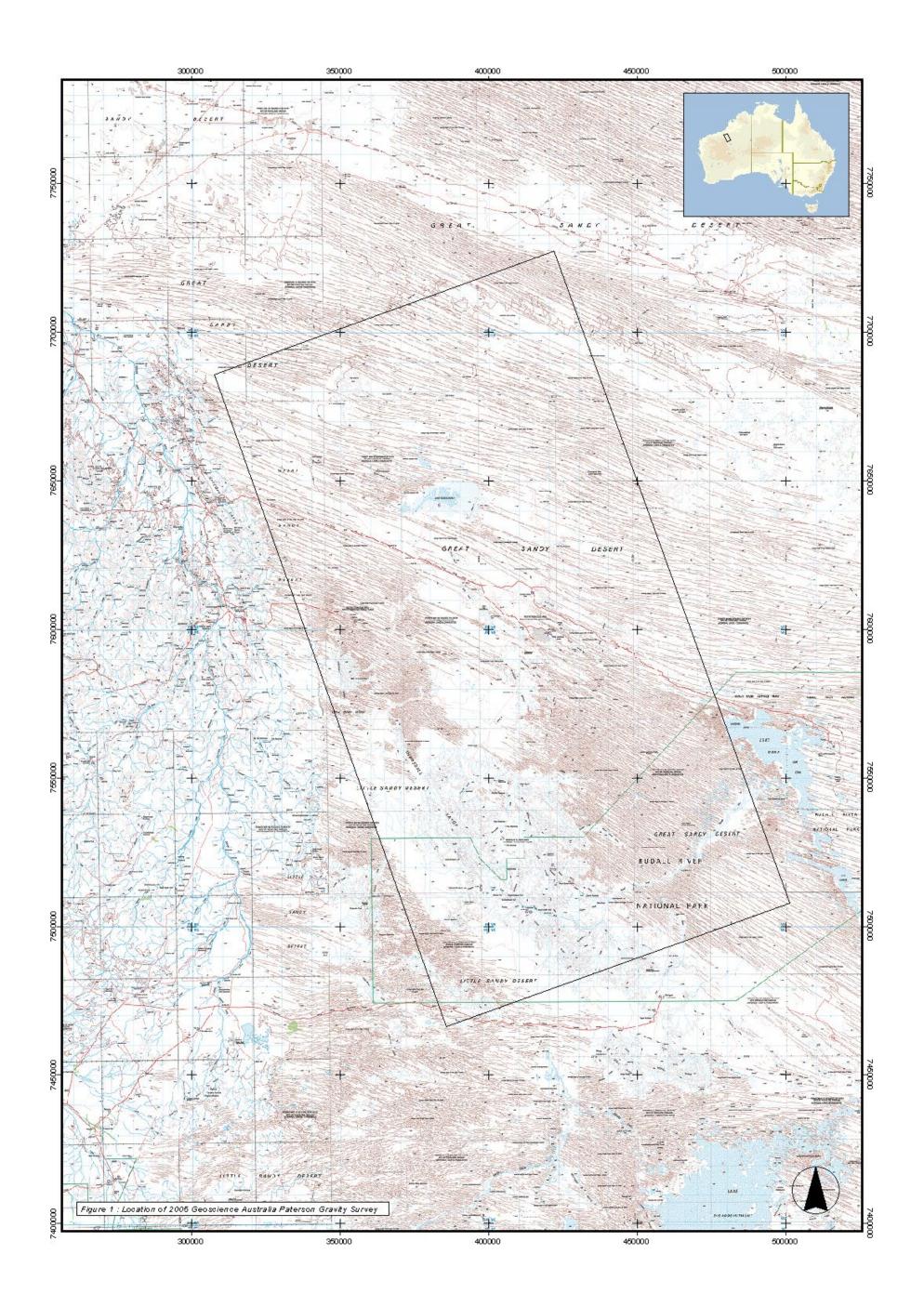

Gravity surveying was conducted on a 2.5km x 2.5km spaced grid configuration, with a grid orientation of approximately 330 degrees (NNW). Several large areas were omitted from the survey due to clearance and native title issues. A single area to the west was omitted where gravity data already existed. Several stations in sensitive mining areas were acquired using a vehicle. Appendix A contains a plot of the final station locations.



Photo 1: Numerous dunes prevalent throughout the survey area.



Photo 2: Rocky outcrops within the Throssel Ranges.



#### 3. PERSONNEL AND EQUIPMENT

#### 3.1 Personnel

The supervisor in charge of the project was David Daish. David was responsible for daily management of the job and for nightly data processing to ensure quality and integrity. Gravity and GPS measurements were carried out by:

Grant Coopes, Geophysicist – helicopter and control operations Allan Cowie, Surveyor – helicopter operations Matthew Ingall, Surveyor – gravity control

Two helicopter pilots were used for the helicopter surveying:

Peter Muddle – Chief pilot Bruce Turner

Final data reduction, terrain correction, inspection and reporting were performed by the company geophysicist, Leon Mathews.



Photo: 3 - Chief pilot, Peter Muddle.

# 3.2 Survey equipment

The following survey equipment was utilized on the gravity survey:

- Two Scintrex CG-3M digital gravity meters:

SN 408275 G

SN 711410 S

- One Scintrex CG-5 digital gravity meters:

SN 24921 A

- Two LaCoste Romberg gravity meters

SN G80 M

SN G711 L

- One Leica System 500 dual frequency GPS receiver
- Two Ashtech Z12 dual frequency GPS receivers
- Notebooks for data processing and backup
- Magellan FX324 GPS receiver for helicopter navigation
- Garmin Handheld GPS receivers for vehicle navigation
- Notebook computers for data processing and backup
- Various chargers, solar cells and batteries

#### 3.3 Vehicles

Due to the type of terrain to be encountered, 4wd Landcruiser vehicles were used for the duration of the job. To maintain the high Daishsat safety record, vehicles were fitted with a range of safety equipment including:

- One 20l jerry can of water
- Dual fuel tanks
- Two spare tyres
- HF radio and satellite phone with car kit
- Self-recovery equipment including a hand winch, snatch straps and rope
- Tyre pliers to effect tyre repairs in the field
- Tools and spares to enable field repairs as necessary
- Survival kit with EPIRB emergency locator beacon

#### 3.4 Helicopter

Ferry between the gravity stations was necessitated by a turbine powered Bell-47 Soloy helicopter – call sign VH-DTA (Photo 5). This particular type of helicopter was well suited to the project as large amounts of lift were required given the hot conditions.



Photo 4 – Helicopter, vehicles and caravan utilised on the Paterson survey.



Photo 5 – Daishsat helicopter VH-DTA with chief pilot, Peter Muddle.

# **3.5 Camp**

Camping was facilitated through use of a single Daishsat caravan (Photo 6). The caravan was setup as the operations centre and was equipped with full satellite, radio and broadband communications as well as facilities for cooking, showering and equipment storage. A nearby bore was used to extract washing water, with drinking water obtained from Telfer mine.

Whilst camping, all rubbish was deeply buried and burnt so that it could not be later disturbed by the native fauna.



Photo: 6 – Daishsat field camp at Rocky Ridge.

#### 3.6 Communications

The helicopter crew was equipped with hand-held Globalstar satellite phones as well as UHF and VHF transceivers.

Skeds were made by all crews to the communications centre at the camp at prescribed intervals. Communication with the Perth and Murray Bridge offices was ongoing for the duration of the job.

#### 4. GPS SURVEYING AND PROCESSING

#### 4.1 Set out of the grid

This was done concurrently with the gravity data acquisition using navigation grade receivers operating in autonomous mode. Where possible, the readings were taken as close to the ideal coordinates as possible. Some stations were offset or omitted due to the nature of the terrain, e.g. hilly or thickly vegetated areas. As the receivers were operating in autonomous mode, set out accuracy was usually better than 10m.

Raw kinematic GPS data were logged by a dual-frequency Ashtech Z-12 receiver inside the helicopter cabin, with the GPS antenna mounted on the rear tail shaft boom. Static GPS data were logged at each of the base stations using Ashtech Z-12 and Leica System 500 receivers for later post-processing.

At the repeat stations, a fence dropper marked with the station number was used for identification. At each station, the station number, position and RL were recorded digitally by the crew.

# 4.2 Survey datum and control

The gravity surveying, and hence any gravity reductions, used the Australian Height Datum (AHD) as the reference datum. All new GPS/Gravity base stations were established using at least three days worth of static data, and connections to ITRF stations using Geoscience Australia's online GPS processing system, AUSPOS. For more information on this system, please visit the Geoscience Australia website at <a href="http://www.ga.gov.au/geodesy/sgc/wwwgps/">http://www.ga.gov.au/geodesy/sgc/wwwgps/</a>. Final deviations of better than 5mm were obtained for x, y and z, for all occupations. Appendix D contains the GPS base station information. The base stations were numbered in accordance with the GA format.

#### 4.3 Processing of the position and level data

Depending on the receiver type, the raw GPS data were recorded onto either internal RAM or onto Compact Flash cards. The data were downloaded nightly onto laptop computer for post processing using Waypoint Grafnav v7.00.

Waypoint combines the processing components, GrafNav and GrafNet, in a complete package.

GrafNav processes data for one baseline (e.g. one base and one remote). GrafNav is normally used for kinematic data which it is extremely well suited for. It can also process single static baselines. Receiver types can be mixed and matched via the use of a common format. This component of Waypoint was used for processing the kinematic data acquired each day.

GrafNav and GrafNet share the same processing engine that has been under continuous development since its original inception by Waypoint in 1992. The core of this robust engine is its carrier phase kinematic (CPK) Kalman filter. Some of the major advantages of Waypoint's kernel are:

Fast processing - The GrafNav kernel is one of the fastest on the market. It will process ~0.8 epochs per MHz per second on a Pentium II.

Robust Kalman filter - From experience with processing GPS data from fast jets and

NASA sounding rockets, the processing kernel has become extremely robust. Efforts have been made to account for all of the various data error possibilities given the different types of GPS receivers that GrafNav/GrafNet can handle.

Reliable OTF - Waypoint's on-the-fly (OTF) algorithm, called Kinematic Ambiguity Resolution (KAR), has had years of development and stresses reliability. Variations are implemented for both single and dual frequencies, and numerous options are available to control this powerful feature

Accurate Static Processing - Three modes of static processing are implemented in the processing kernel. Fixed static is the most accurate. A quick static solution is also available as an alternative, while the float and iono-free float solution is useful for long baselines.

Dual Frequency - Full dual frequency support comes with GrafNav/GrafNet. For ambiguity resolution, this entails wide/narrow lane solutions for KAR, fixed static and quick static. Ionospheric processing is very important with the peak of the ionosphere's cycle occurring in 2000. The GrafNav kernel implements two ionospheric processing modes including the iono-free and relative models. The relative model is especially useful for airborne applications where initialization is near the base station, and this method is much less susceptible to L2 phase cycle slips.

Forward and Reverse - Processing can be performed in both the forward and reverse directions. Both GrafNav and GrafNet also have the ability to combine these two solutions to obtain a globally optimum one.

*Velocity Determination* - Since the GrafNav kernel includes the L1 Doppler measurement in its Kalman filter, velocity determination is very accurate. In addition to this, a considerable about of code has been added specifically for the detection and removal of Doppler errors.

Long Baseline - Because precise ephemeris and dual frequency processing is supported, long baselines accuracies can be as good as 0.1 PPM.

For more information about Waypoint processing software, and in particular, Grafnav, please visit the Waypoint <a href="http://www.waypnt.com/grafnav\_d.html">http://www.waypnt.com/grafnav\_d.html</a>.

Simple transformations to MGA and AHD were done using the GPS derived WGS84 positions.

MGA94 coordinates were obtained by simply projecting the GPS-derived WGS84 coordinates using a UTM projection with zone 51S. For all practicable purposes, the WGS84 geodetic coordinates are equivalent to GDA94 geodetic coordinates, so no transformation is necessary. For more information about GDA94 and MGA94, please visit <a href="http://www.ga.gov.au/geodesy/datums/gda.jsp">http://www.ga.gov.au/geodesy/datums/gda.jsp</a>.

AHD heights were calculated via Waypoint software using the latest geoid model for Australia, AUSGEOID98. Information about the geoid and the modeling process used to extract separations (N values) can be found at <a href="http://www.ga.gov.au/geodesy/ausgeoid/">http://www.ga.gov.au/geodesy/ausgeoid/</a>. To obtain AHD heights, the modeled N value is subtracted from the GPS derived WGS84 ellipsoidal height (Figure 4).

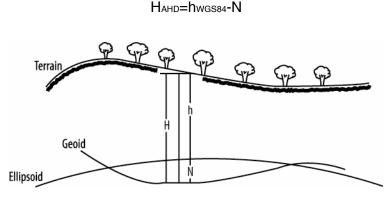



Figure: 2: Geoid-Ellipsoid separation

#### 4.4 GPS Performance

Performance from the Ashtech and Leica receivers was exceptional. Contributing to this was the lack of trees and other vegetation, as well as the excellent satellite geometry, or DOP that was present for the duration of the survey.

#### 5. GRAVITY SURVEYING AND PROCESSING

## 5.1 Gravity data acquisition

Gravity observations were made concurrently with the GPS measurements (Photo 7). Multiple observations were made at each station so that any seismic or instrumental noise could be immediately detected. The tolerance between readings was set at 0.03 of a dial reading (0.3gu). Vertical and horizontal levels were restricted to 5 arc seconds at all times. At each station, the station number, time and two gravity readings (in dial units) were recorded in DAISHSAT carbon-copy gravity field books. The Scintrex meters also automatically record the station, time and readings digitally to allow for downloading to computer.



Photo 7: Gravity observation in the Paterson Ranges.

# 5.2 Gravity base stations

Gravity base stations were used for calculation of absolute gravity and drift determination. Details of the gravity bases utilised are contained in Appendix D. When in the field, a base station reading was taken in the morning before observing, and at evening after the last observation. When taking a base station reading, the observed gravity values were stacked over 60 seconds and the readings repeated to 0.010 mGals (0.1qu) of a dial reading or less to ensure accuracy

A primary gravity base station (2005600006) was established at Telfer Aerodrome through an ABABA loop tie to the Newman AFGN station (9893.1602) with thee gravity meters. Ferry between the two stations was facilitated through use of a light aircraft. The tie was conducted over about six hours.

Secondary base stations were established via ABABA ties with multiple meters to the primary base station at Telfer.

Expected accuracy of the tie control surveys would be better than 0.1gu.



Photo 8: Surveyor Matt Ingall taking a tie reading at the Newman AFGN station.

#### 5.4 Gravity data processing

Raw gravity data were processed on a daily basis to check for quality and integrity. This interim process produced a set of Bouguer Gravity values which were contoured and imaged to provide a check for any anomalous readings that would need repeating. Geosoft GRAVRED software was used for the gravity reduction in the field. Upon conclusion of the job, the data were reprocessed using the contract specified GA formulae with Daishsat proprietary software. Other software used on this project includes Arcview, ChrisDBF, RasterTC, Waypoint and ERMapper. The formulae used for final processing are listed below.

**Instrument scale factor:** This correction was used to correct a gravity reading (in dial units) to a relative gravity unit value based on the meter calibration.

**Tidal correction:** This correction was used to correct for background variations due to changes in the relative position of the moon and sun. The Scintrex calculated ETC was removed and a new ETC calculated using Geosoft Formulae and the surveyed GPS latitude. The formulae used are contained in Appendix G.

**Instrument Drift:** Since gravity meters are mechanical, they are prone to drift (extension of the spring with heat, obeying Hooke's law). If two base readings are taken one can assume that the drift between the two readings is linear and can therefore be calculated. The drift and tidal corrected value is referred to as the *observed gravity*.

**Normal Gravity:** The theoretical value of gravity was calculated using the 1967 variant of the International Gravity Formula and used to latitude correct the observed gravity.

Gn=9,780,318.456\*(1+0.005 278 895\*
$$\sin^2 \phi$$
+0.000 023 462\* $\sin^4 \phi$ ) where  $\phi$  represents degrees of latitude;

**Free-Air Correction:** Since gravity varies inversely with the square of distance, it is necessary to correct for changes in elevation between stations to reduce field readings to a datum surface (in this case, AHD).

$$(3.08768 - 0.00440 \sin^2 \phi)^*h - 0.000001442^*h^2 \mu ms^{-2}$$
 per metre

**Bouguer Correction:** This correction accounts for the attraction of material between the station and datum plane that is ignored in the free-air calculation. A value of 2.67 tm<sup>3</sup> was used in the correction.

0.4191\* 
$$\rho$$
 µms<sup>-2</sup> per metre where  $\rho$  = density 2.67 tm<sup>3</sup>

**Terrain Correction:** This correction accounts for the attraction of material above the assumed Bouguer slab and for the over-correction made by the Bouguer correction when in valleys. See Section 5.6 for a more in-depth discussion.

**Free Air Anomaly:** This is obtained by applying the free air correction (FAC) to the observed gravity reading.

**Bouguer Anomaly:** This is obtained when all the preceding reductions or corrections have been applied to the observed gravity reading.

**Complete Bouguer Anomaly**: This is obtained by adding the terrain correction to the Bouguer Gravity Anomaly

# 5.4 Gravity meter calibration and scale factors

The gravity meters used on the project were calibrated pre survey at the Kensington Park - Norton Summit calibration range in Adelaide. At the conclusion of the survey, the meters were calibrated again at the Kensington Park – Norton Summit range or at the Mundaring Weir – Mt Gungin calibration range east of Perth. Table 1 shows the pre and post survey results. The LaCoste and Scintrex meters used for the initial control were not calibrated post-survey as they were overseas undergoing service. There was good agreement with the known value for the control values for each range which indicated that the scale factors for each meter (Table 2) were valid.

| PRE SURVEY<br>OBSG84 (gu) | POSTSURVEY<br>OBSG84 (gu)                                                           |
|---------------------------|-------------------------------------------------------------------------------------|
| 9796300.910 NS            | 9796301.130 NS                                                                      |
| 9796300.950 NS            | 9793989.283 MG                                                                      |
| 9796300.647 NS            |                                                                                     |
| 9796300.960 NS            | NA                                                                                  |
| 9796300.720NS             | NA                                                                                  |
|                           | OBSG84 (gu)<br>9796300.910 NS<br>9796300.950 NS<br>9796300.647 NS<br>9796300.960 NS |

Known Norton Summit (NS) OBSG84 value = 9796301.000 gu Known Mount Gungin (MG) OBSG84 value = 9793990.000 gu

Table 1: Results from pre and post calibration runs

| <b>Gravity Meter</b> | Scale Factor |
|----------------------|--------------|
| G 9408275            | 1.000000     |
| S 9711410            | 1.000000     |
| A 24921              | 1.000000     |
| L G711               | 1.017560     |
| M G80                | 1.042280     |

Table 2 : Scale factors for each gravity meter

#### 5.5 Gravity meter drift calibration

While the survey was in progress, the Scintrex meters were cycled overnight as a check on instrument drift. Changes were made to the drift constant where appropriate.

#### 5.6 Terrain Corrections

Terrain corrections were rigorously applied to the final data in an effort to minimize the effect of terrain encountered near areas of moderate to high relief. Digital elevation data supplied from the client were used with program RASTERTC to perform near zone to far zone corrections. The software utilized was coded by Geophysical Software and is ideally suited to this project. For more details regarding the method and a more in depth discussion of the algorithm used, please visit <a href="http://geopotential.com">http://geopotential.com</a>.

The terrain correction procedure corrects gravity measurements for the effect of terrain from a distance Rmin to a distance Rmax. Each gravity station is processed independently, and therefore corrections calculated for a particular station do not depend upon possible location errors of other stations.

The correction procedure divides the circular area enclosed by Rmax into an inner zone and an outer zone; the radius separating the inner and outer zones is denoted Rmed. A surface is fit to the elevations between Rmin and Rmed; this surface is numerically integrated to calculate that portion of the terrain correction that is due to the terrain located in the interval Rmin <= R <= Rmed. The figure below illustrates the subdivision of areas used in the calculation.




Figure 2: Calculation areas used by RASTERTC

The program uses triangulation and interpolation procedures to interpolate elevations between Rmin and Rmed. Between Rmed and Rmax, the terrain effect is calculated by assuming that each elevation sample represents the elevation of a rectangular compartment; a line element formula is used to calculate the effect of each such compartment. Terrain compartments lying between Rmed and Rmax that partially intersect the circular radius Rmed are treated in such a way that only the effect of that portion lying outside Rmed is added to the overall terrain effect. A similar procedure is applied to those compartments that partially intersect the outer radius Rmax

Note that the numerical integration procedure used to calculate the effect of terrain lying between Rmin and Rmed essentially integrates the effect of a line element between the two radii. This integration is repeated every 8° to obtain the effect of all the terrain lying within the circular region. The radial portion of the integration is performed using an adaptive technique called QUAN8.

A terrain surface is used close to the station location because the elevations provided by the DTM are samples and do not actually represent mean elevations of rectangular compartments. The use of a surface provides a terrain representation that should be much closer to reality than the use of compartments of constant mean elevation. At a certain distance from the station, the procedure of considering the elevation samples as representing the mean elevation of a rectangular compartment should yield numerical results than are not distinguishable from the results that would be obtained by actually using mean elevations of compartments whose size would necessarily be larger than 30 m on a side. In fact, the method used is equivalent to numerically integrating the terrain effect (at distances greater than Rmed) using a rectangular rule. Because the compartment size is relatively small, use of the rectangular rule should be rather accurate.

The elevation of the gravity station is not directly used during the computation of the effect of terrain effects. Instead, the elevation at the horizontal location of the gravity station is calculated from the multiquadric representation of the terrain surface, and this calculated elevation is used in the computation of the effect of terrain. The actual elevation of the gravity station is not used at all.

Numerically, the procedures used for the calculation of the terrain effect are extremely accurate, especially when compared to terrain corrections calculated using template methods. However, the corrections calculated are no better than the terrain data that are used to represent the terrain about each gravity station.

Various parameters were experimented with to obtain the optimum result for this particular survey. A brief discussion of the process and trials used to obtain the final result follows. All output files from the correction procedure have been included on the DATA CD to make follow-up interpretations easier. Note that all terrain corrections used a rock density of 2.67 tm<sup>3</sup>.

#### 5.6.1 DEM Preparation

Before attempting terrain corrections, the provided DEM was checked for consistency and then converted into a suitable format for input into the RASTERTC algorithm. The elevation data were from an SRTM (Shuttle Radar Topography Mission) grid excerpt and were at a grid cell size of 90m. Terrain over the area varied from about 10m to 700m above sea level, with some quite severe terrain proximal to the stations (Figure 3).

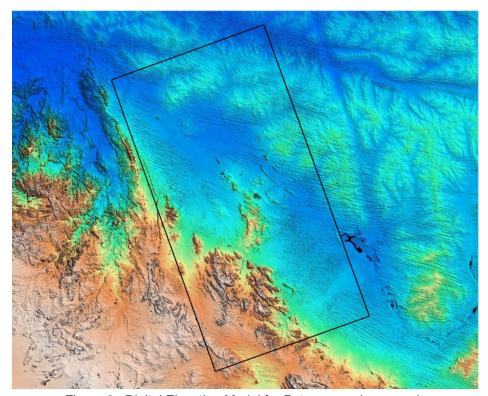



Figure 3: Digital Elevation Model for Paterson and surrounds.

#### 5.6.2 RASTERTC Correction

A terrain correction from 90m to 20000m from the gravity station was conducted using RASTERTC, with the following radius parameters:

Rmin = 90m Rmed = 600m Rmax = 20000m Azimuthal Integration Angle = 8 degrees

Rmin was selected to correct for all terrain in the immediate vicinity of the station. Rmax was specified to allow correction for the extreme terrain at large distances from the station (outer zone). Rmed of 600m was chosen so that the terrain would be "sampled" at an interval close to that of the grid cell size when using an integration angle of 8

degrees. During the radial integration, near the maximum radial portion of the integration (600m), the terrain surface is being sampled at approximately Rmed(sin(angle)), where "angle" is the azimuthal integration angle selected and R is the maximum radius chosen for the surface integration.

The correction process works in two parts, with an inner and outer correction calculated. The inner correction is calculated quite rapidly, with terrain in the vicinity of the station (up to 600m distance) used for the calculation. The outer zone correction takes much longer, and calculates a correction based on the zone 600m – 20000m. The complete correction for each station is obtained by adding the two corrections together.

When calculating the RASTERTC correction, the station GPS elevations were not used. Instead, the elevation at the horizontal location of the gravity station was calculated from the multiquadric representation of the terrain surface, and this calculated elevation was used in the computation of the effect of terrain. The actual elevation of the gravity station is not used at all. The use of the actual elevation, rather than one consistent with the DTM terrain, effectively leads to gravity stations being located in deep holes or on very steep hills, whereas in fact such terrain features probably do not exist in the immediate vicinity of the gravity station.

#### 5.6.3 Accuracy of the corrections

The terrain correction procedure produced highly accurate corrections for the most part. As with any terrain correction procedure, the accuracy of the final correction is dependant on the accuracy of the DEM used.

It was found that a slight bias existed between the GPS derived heights from the survey and the heights from the SRTM data. This bias was about 5-6m and was corrected for using grid arithmetic on the SRTM data. After correcting the data, excellent agreement between the survey data and SRTM data was achieved. RASTERTC outputs a difference variable for each survey station and it is found that for most of the survey, these differences are less than 5m, which is insignificant when dealing with terrain corrections. The average difference is -0.008m, with a standard deviation of 2.1m. Figure 6 shows the distribution of these differences.

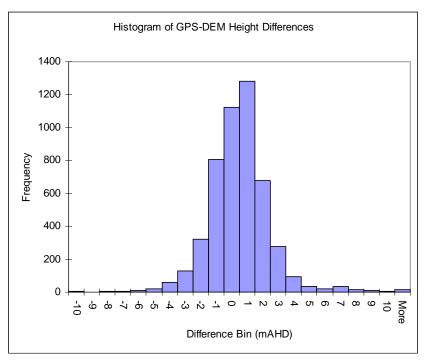



Figure 6: Difference between interpolated DEM elevation and station GPS elevation

Since the DEM has been confirmed as being accurate, one can rely on the corresponding terrain corrections as being also highly accurate. Indicators of quality are provided for both the innermost terrain correction and the outer terrain correction. On the listing and the output files, such indicators are listed under the column headings "QF-Inner" and "QF-Outer", respectively. If the TC calculation is OK, the quality factors should be 0 for both the inner- and the outer-zone portion of the calculation. Otherwise, the quality factors provide an indication of what might be wrong.

Additionally, a rough indicator of how well the terrain in the immediate vicinity of a gravity station is represented by the available elevation samples is obtained by examining the spatial distribution of the elevation samples. In the radial interval Rmin to Rmed, RasterTC counts the number of samples falling within the 8 octants surrounding the station. If any of these octants are missing elevation samples, that fact is noted, and the tabulated quality factor simply notes how many of octants are missing samples (see Table 3).

The QF-Outer codes are simple to interpret. A result of 0 means that the outer-zone calculation proceeded successfully. If a portion of the outer-zone terrain is missing from the elevation grids supplied, the value of QF-Outer will reflect the per cent of terrain that was available (rounded to the nearest per cent). For example, if QF-Outer is 91, the implication is that 9% of the terrain in the outer zones was missing for some reason, and that the terrain correction calculated for that particular station is too small by some amount.

| QF-<br>Inner | Meaning of Error Code                                                     |
|--------------|---------------------------------------------------------------------------|
| 0            | Inner-zone terrain calculation OK                                         |
| 1            | No elevation samples occur in 1 octant surrounding the gravity station    |
| 2            | No elevation samples occur in 2 octants surrounding the gravity station   |
| 3            | No elevation samples occur in 3 octants surrounding the gravity station   |
| 4            | No elevation samples occur in 4 octants surrounding the gravity station   |
| 5            | No elevation samples occur in 5 octants surrounding the gravity station   |
| 6            | No elevation samples occur in 6 octants surrounding the gravity station   |
| 7            | No elevation samples occur in 7 octants surrounding the gravity station   |
| 22           | Duplicate elevation nodes encountered while calculating terrain gradients |
| 23           | All elevation nodes collinear or triangulation structure corrupted        |
| 24           | Invalid parameters passed to gradient calculation routine                 |
| 26           | Convergence not attained in calculation of terrain gradients              |
| 48           | Internal logic error while attempting to delete duplicate nodes           |
| 49           | Unable to allocate memory while deleting duplicate nodes                  |
| 96           | Internal error occurs while attempting to triangulate nodes near station  |
| 99           | Less than 3 elevation samples are available near station                  |
| 101          | Duplicate nodes occur in elevation samples near station                   |
| -99          | Unable to allocate sufficient memory for inner-zone TC calculation        |

Table 3: QF-Inner Error Codes

#### 5. RESULTS

Raw and processed GPS and gravity data are contained on CDROM as Appendix H. Hardcopy plots of station location and coloured images are contained in Appendix A. Existing data from another Daishsat project (Project 05013) has been merged into data collected on this project and forms part of the final database.

# 6.1 Stations Surveyed and Survey Progress

In total, 4236 new stations were acquired during the survey. A brief production summary for the survey is shown in Table 4 below. Generally, production during the survey was excellent. Production was hindered only by helicopter maintenance that was required at the prescribed intervals. There was no downtime due to geophysical/GPS equipment failure.

#### **Paterson Survey**

Gravity stations acquired (including repeats)

Gravity station repeats

New gravity stations acquired

Total accidents

Total hours lost from accidents

4441 stations

205 4.6%

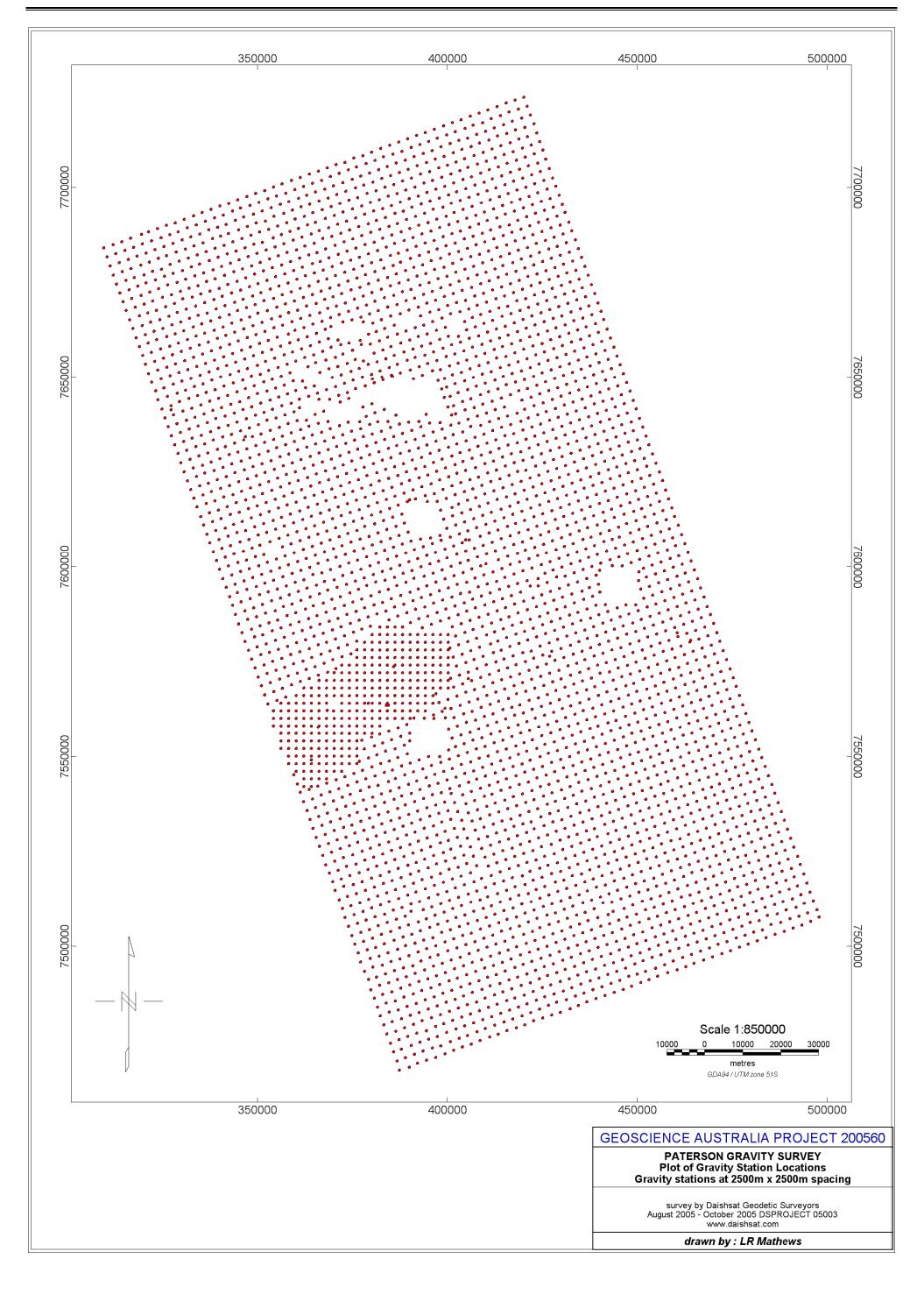
4236 stations

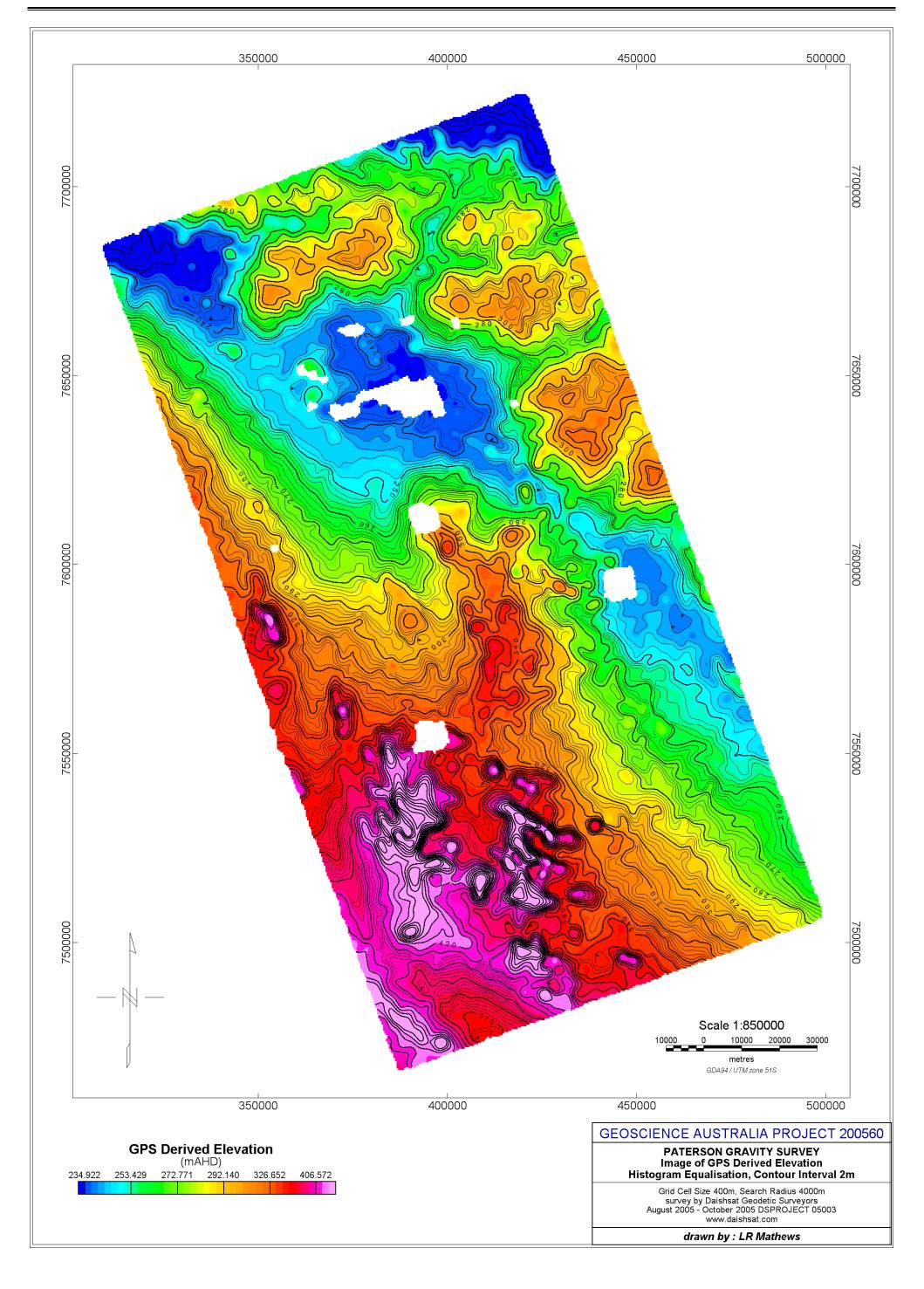
0 accidents

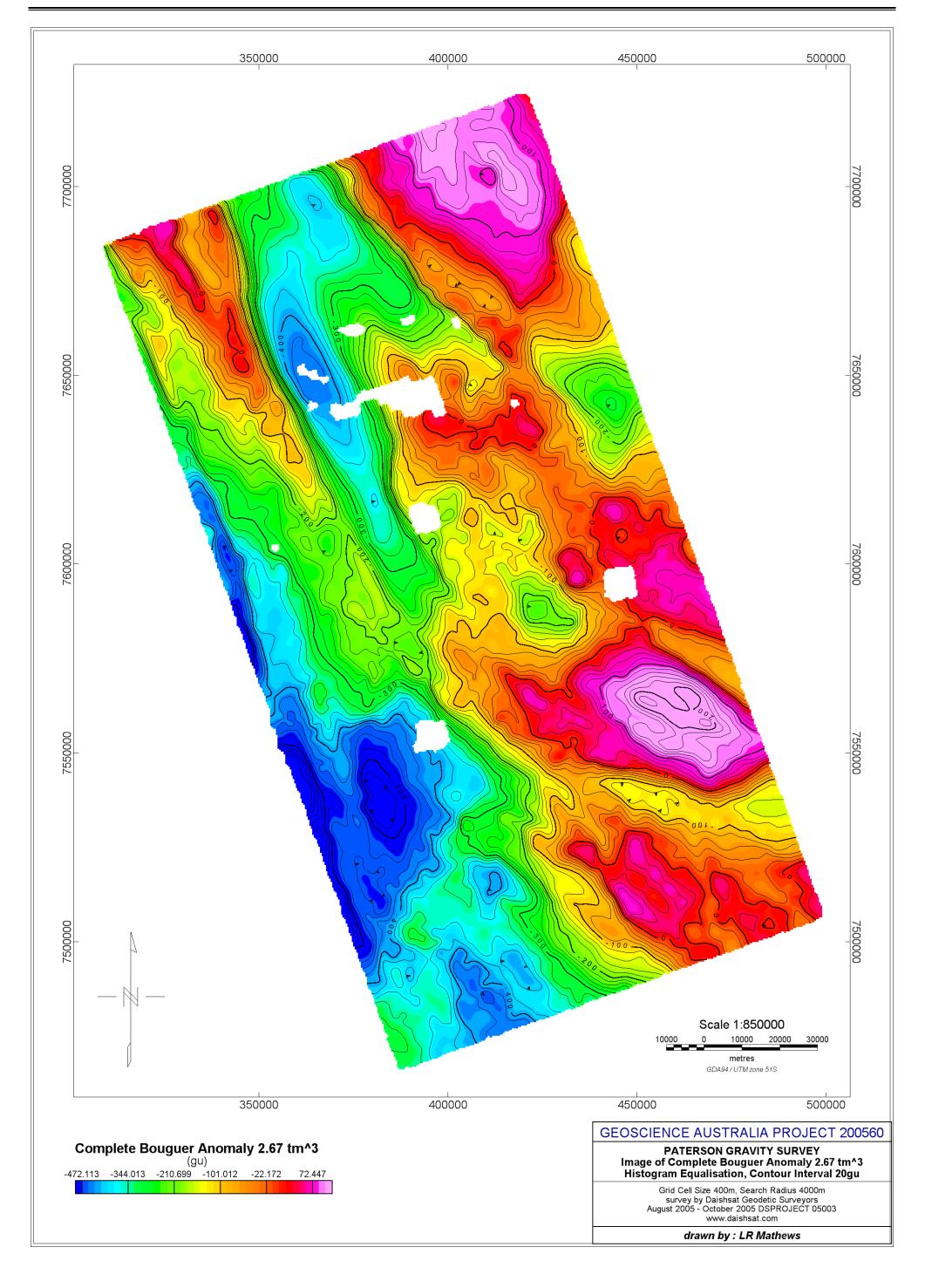
hours

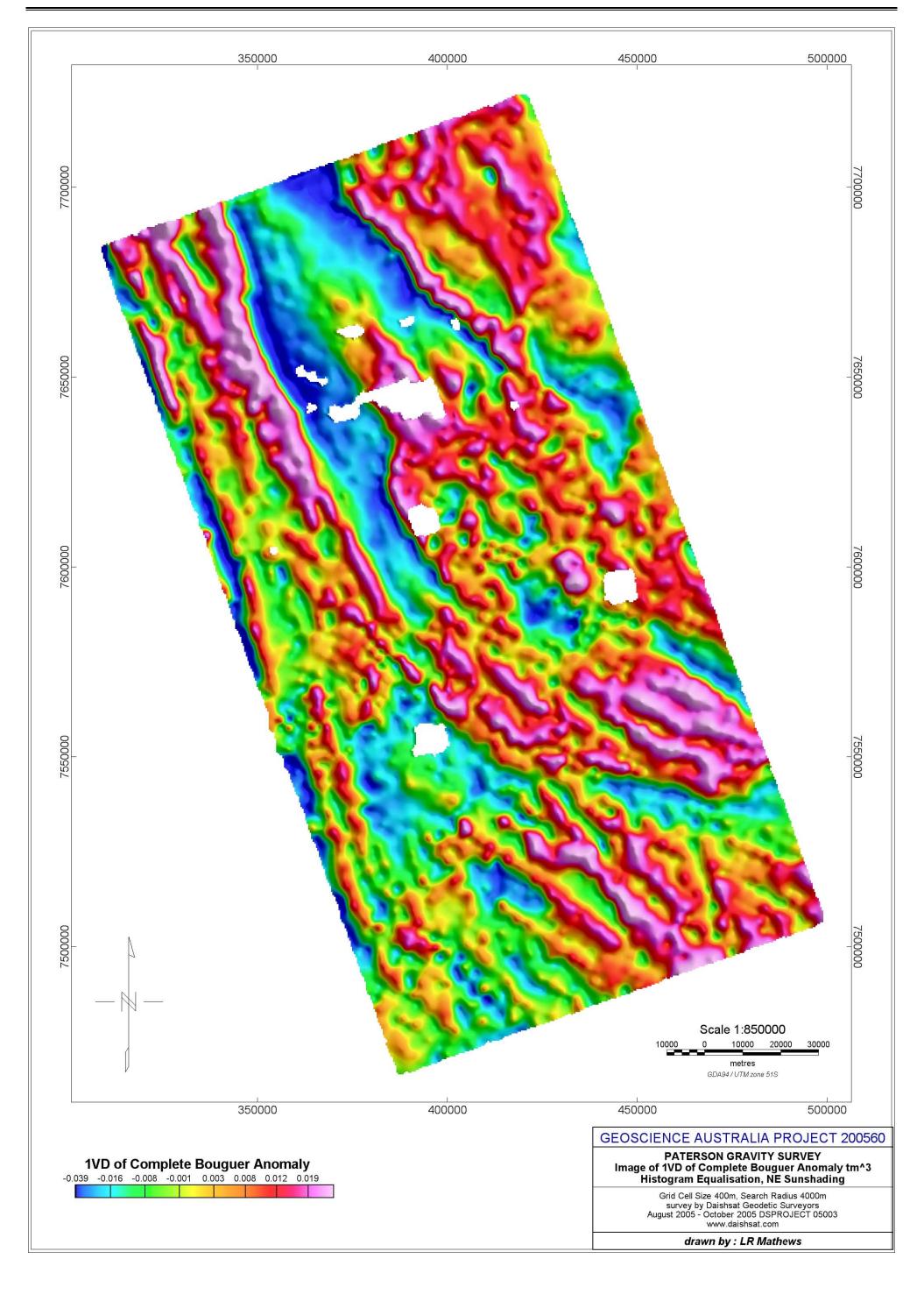
Table 4: Gravity Production Summary

#### 6.2 Data Repeatability


Analysis of the repeat data shows that measurement repeatability is excellent for both GPS and gravity observations. Appendix B contains histograms and summary statistics from the analysis, as well as a tabulation of the repeat data. Based on the repeat data, one can assume the following typical accuracies for the observables:


Z position observation: < 0.10 m


Gravity observation: < 0.37 gu (0.037 mGals)


# APPENDIX A

Plots of station location / Images







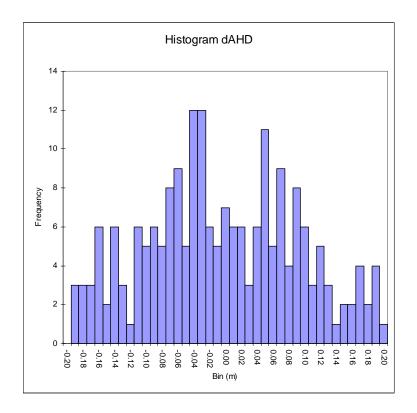


# **APPENDIX B**

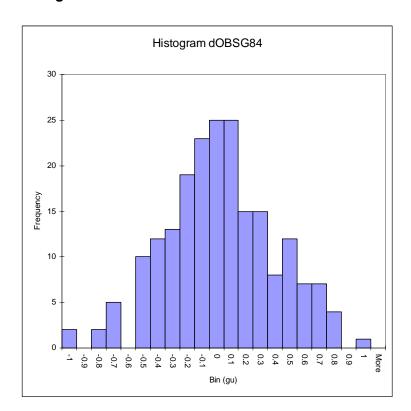
Repeat Listing and Analysis

| STATION    | dEAST<br>(m) | dNORTH<br>(m) | dAHD<br>(m) | dOSBG84<br>(gu) | MGA51EAST  | MGA51NORTH  | DATE       | AHD     | TIME     | OBSG84 (gu) | METER_SN |
|------------|--------------|---------------|-------------|-----------------|------------|-------------|------------|---------|----------|-------------|----------|
| 2005601010 | 0.438        | -0.355        | -0.008      | 0.347           | 439187.620 | 7619087.325 | 31/08/2005 | 265.977 | 11:36:05 | 9786735.160 | 408275   |
| 2005601010 | 0.498        | 0.500         | 0.158       | -0.443          | 439187.680 | 7619088.180 | 08/09/2005 | 266.143 | 12:33:23 | 9786734.370 | 711410   |
| 2005601024 | 11.933       | -5.824        | 0.019       | -0.250          | 449657.821 | 7641632.610 | 31/08/2005 | 292.362 | 15:16:43 | 9786348.250 | 408275   |
| 2005601021 | 0.505        | -1.786        | 0.185       | -0.250          | 451758.980 | 7628583.960 | 31/08/2005 | 306.801 | 14:36:28 | 9786524.530 | 408275   |
| 2005601039 | 5.556        | 5.421         | -0.186      | -0.700          | 433623.047 | 7619733.458 | 31/08/2005 | 263.928 | 13:51:44 | 9786718.610 | 408275   |
| 2005601061 | 1.630        | 0.384         | 0.167       | 0.400           | 444129.920 | 7642149.992 | 31/08/2005 | 314.514 | 16:23:37 | 9786249.160 | 408275   |
| 2005601063 | -11.308      | 4.899         | 0.035       | 0.670           | 448845.011 | 7643866.964 | 31/08/2005 | 302.706 | 15:22:08 | 9786295.730 | 408275   |
| 2005601090 | -0.158       | -3.909        | 0.070       | 0.630           | 429421.100 | 7623590.344 | 01/09/2005 | 275.300 | 07:08:53 | 9786685.500 | 408275   |
| 2005601120 | 0.357        | -0.085        | 0.002       | -1.030          | 435190.183 | 7652198.137 | 03/09/2005 | 291.048 | 14:11:51 | 9786317.490 | 711410   |
| 2005601137 | 0.172        | 0.211         | 0.116       | -1.000          | 431177.072 | 7656054.976 | 03/09/2005 | 271.150 | 16:16:08 | 9786397.530 | 711410   |
| 2005601153 | -0.170       | 0.934         | -0.037      | -0.760          | 425502.449 | 7627488.762 | 03/09/2005 | 273.033 | 12:38:11 | 9786676.050 | 711410   |
| 2005601183 | 0.195        | -0.845        | 0.182       | -0.120          | 436126.460 | 7679150.834 | 03/09/2005 | 296.708 | 15:20:19 | 9786243.630 | 711410   |
| 2005601204 | -0.178       | 0.557         | -0.065      | 0.513           | 427946.022 | 7657578.156 | 04/09/2005 | 268.496 | 06:44:09 | 9786409.910 | 711410   |
| 2005601204 | 0.275        | -0.446        | 0.037       | -0.147          | 427946.475 | 7657577.153 | 04/09/2005 | 268.598 | 11:12:22 | 9786409.250 | 711410   |
| 2005601242 | -0.246       | 0.158         | -0.010      | -0.760          | 427220.516 | 7689280.939 | 04/09/2005 | 268.669 | 10:06:07 | 9786387.820 | 711410   |
| 2005601259 | 0.510        | 0.785         | 0.118       | -0.550          | 417734.949 | 7723002.664 | 04/09/2005 | 189.237 | 15:47:48 | 9786409.380 | 711410   |
| 2005601266 | 0.262        | -0.106        | -0.027      | -0.430          | 423723.567 | 7706410.477 | 04/09/2005 | 225.412 | 15:13:36 | 9786457.240 | 711410   |
| 2005601284 | -0.058       | -0.623        | -0.040      | -0.060          | 429266.738 | 7668620.104 | 04/09/2005 | 283.326 | 14:03:18 | 9786415.070 | 711410   |
| 2005601295 | -1.524       | -2.035        | -0.075      | -0.780          | 428959.251 | 7647183.344 | 04/09/2005 | 298.951 | 13:10:26 | 9786356.950 | 711410   |
| 2005601303 | -0.854       | -0.708        | -0.062      | 0.243           | 420681.314 | 7662972.031 | 05/09/2005 | 294.082 | 06:45:55 | 9786403.050 | 711410   |
| 2005601303 | 0.373        | 0.080         | -0.045      | -0.567          | 420682.541 | 7662972.819 | 05/09/2005 | 294.099 | 10:42:48 | 9786402.240 | 711410   |
| 2005601317 | 1.002        | -0.786        | -0.037      | 0.020           | 420817.062 | 7692205.361 | 04/09/2005 | 292.031 | 16:55:34 | 9786414.250 | 711410   |
| 2005601351 | -9.385       | -4.455        | 0.046       | -0.580          | 422669.684 | 7679536.241 | 05/09/2005 | 288.690 | 07:26:30 | 9786431.770 | 711410   |
| 2005601367 | 0.059        | 0.062         | -0.174      | -0.360          | 416940.758 | 7688154.440 | 05/09/2005 | 285.189 | 09:58:37 | 9786436.740 | 711410   |
| 2005601383 | -0.248       | 1.345         | -0.020      | -0.280          | 408298.254 | 7719579.487 | 05/09/2005 | 212.817 | 14:38:03 | 9786429.220 | 711410   |
| 2005601394 | 0.346        | 0.395         | -0.108      | 0.100           | 411217.716 | 7696733.951 | 05/09/2005 | 264.933 | 14:01:14 | 9786438.000 | 711410   |
| 2005601440 | 0.401        | -0.082        | 0.123       | -0.220          | 408008.998 | 7698204.861 | 05/09/2005 | 260.481 | 15:24:25 | 9786443.750 | 711410   |
| 2005601451 | -0.113       | -0.310        | 0.024       | 0.340           | 403541.813 | 7717785.477 | 06/09/2005 | 208.637 | 08:33:04 | 9786457.530 | 711410   |
| 2005601483 | 0.146        | -0.103        | 0.085       | 0.720           | 421006.026 | 7646968.146 | 06/09/2005 | 281.015 | 06:31:55 | 9786534.450 | 711410   |
| 2005601514 | 0.503        | -0.157        | -0.162      | 0.270           | 409219.407 | 7680094.491 | 09/09/2005 | 267.268 | 07:40:02 | 9786421.210 | 711410   |
| 2005601543 | 0.177        | 1.953         | -0.145      | 0.300           | 398468.848 | 7702684.083 | 09/09/2005 | 265.303 | 08:58:33 | 9786431.220 | 711410   |
| 2005601547 | -0.253       | -0.198        | -0.063      | -0.280          | 423497.580 | 7610763.295 | 08/09/2005 | 272.240 | 14:27:48 | 9786681.560 | 711410   |
| 2005601568 | -0.066       | 0.273         | -0.021      | -0.090          | 455749.740 | 7617300.652 | 08/09/2005 | 282.989 | 16:33:27 | 9786707.150 | 711410   |
| 2005601585 | -0.098       | 0.068         | 0.148       | 0.790           | 417415.244 | 7605910.591 | 18/09/2005 | 304.358 | 17:14:54 | 9786621.490 | 711410   |
| 2005601615 | 0.248        | -0.074        | -0.049      | 0.480           | 426023.018 | 7603706.511 | 20/09/2005 | 276.571 | 16:45:38 | 9786749.310 | 711410   |
| 2005601620 | 0.325        | -0.478        | -0.040      | 0.630           | 415447.679 | 7648012.175 | 09/09/2005 | 257.192 | 10:29:00 | 9786586.710 | 711410   |
| 2005601649 | 3.222        | 1.315         | -0.183      | -0.430          | 391815.939 | 7713701.508 | 09/09/2005 | 227.275 | 14:58:07 | 9786450.610 | 711410   |

| STATION    | dEAST<br>(m) | dNORTH<br>(m) | dAHD<br>(m) | dOSBG84<br>(gu) | MGA51EAST  | MGA51NORTH  | DATE       | AHD     | TIME     | OBSG84 (gu) | METER_SN |
|------------|--------------|---------------|-------------|-----------------|------------|-------------|------------|---------|----------|-------------|----------|
| 2005601666 | 0.063        | -0.289        | 0.164       | -0.040          | 403027.572 | 7675284.534 | 09/09/2005 | 289.405 | 13:50:28 | 9786340.010 | 711410   |
| 2005601697 | 0.120        | 0.302         | -0.120      | 0.040           | 411723.284 | 7643641.083 | 10/09/2005 | 241.614 | 06:47:25 | 9786605.880 | 711410   |
| 2005601716 | 1.941        | -3.367        | -0.033      | 0.400           | 397139.668 | 7691570.202 | 09/09/2005 | 252.955 | 16:57:40 | 9786441.080 | 711410   |
| 2005601742 | 0.255        | 0.361         | 0.182       | 0.080           | 400686.318 | 7674323.173 | 10/09/2005 | 294.083 | 07:41:12 | 9786323.210 | 711410   |
| 2005601767 | -0.739       | 0.100         | -0.067      | -0.230          | 395690.467 | 7680677.089 | 10/09/2005 | 266.540 | 09:52:43 | 9786344.730 | 711410   |
| 2005601803 | -1.092       | -1.671        | -0.089      | -0.450          | 401052.658 | 7658612.716 | 10/09/2005 | 255.303 | 13:27:33 | 9786418.400 | 711410   |
| 2005601829 | -0.132       | 0.028         | 0.019       | 0.080           | 404596.984 | 7641369.112 | 10/09/2005 | 235.930 | 16:49:06 | 9786620.420 | 711410   |
| 2005601829 | 0.091        | -0.287        | -0.072      | -0.220          | 404597.207 | 7641368.797 | 11/09/2005 | 235.839 | 06:42:10 | 9786620.120 | 711410   |
| 2005601853 | -0.401       | -0.218        | 0.009       | -0.330          | 384363.528 | 7697729.599 | 10/09/2005 | 276.977 | 15:18:49 | 9786321.690 | 711410   |
| 2005601877 | -0.337       | 0.435         | -0.115      | -0.220          | 392893.532 | 7666166.241 | 11/09/2005 | 262.662 | 07:25:31 | 9786252.190 | 711410   |
| 2005601923 | 0.227        | -0.402        | 0.067       | -0.460          | 385663.113 | 7679383.719 | 11/09/2005 | 277.817 | 09:38:45 | 9786111.620 | 711410   |
| 2005601939 | -0.192       | -0.400        | -0.135      | 0.430           | 374882.199 | 7702113.762 | 11/09/2005 | 267.220 | 14:15:03 | 9786178.070 | 711410   |
| 2005601955 | -0.210       | 0.162         | -0.138      | -0.260          | 385963.932 | 7663740.537 | 11/09/2005 | 245.382 | 13:17:36 | 9786290.320 | 711410   |
| 2005601973 | -0.433       | -0.561        | -0.109      | 0.020           | 414064.638 | 7615234.994 | 11/09/2005 | 259.374 | 17:14:22 | 9786686.940 | 711410   |
| 2005601985 | 0.226        | 0.327         | -0.089      | -0.030          | 387553.920 | 7651149.718 | 11/09/2005 | 234.046 | 16:03:03 | 9786593.820 | 711410   |
| 2005601985 | -0.134       | -0.141        | 0.067       | 0.180           | 387553.560 | 7651149.250 | 06/10/2005 | 234.202 | 06:21:33 | 9786594.030 | 711410   |
| 2005602031 | -0.933       | -0.297        | 0.072       | -0.300          | 389740.835 | 7638134.763 | 12/09/2005 | 240.779 | 06:50:40 | 9786664.670 | 711410   |
| 2005602072 | 0.019        | 0.003         | 0.013       | 0.690           | 374584.702 | 7672997.809 | 12/09/2005 | 267.899 | 10:03:29 | 9786150.100 | 711410   |
| 2005602085 | -0.010       | 1.007         | -0.169      | -0.140          | 362100.042 | 7700274.345 | 12/09/2005 | 265.770 | 14:25:27 | 9785936.140 | 711410   |
| 2005602151 | -0.607       | 0.209         | -0.060      | -0.280          | 372434.285 | 7664593.998 | 12/09/2005 | 237.869 | 16:38:59 | 9786286.560 | 711410   |
| 2005602161 | -0.464       | 0.297         | -0.156      | 0.230           | 367150.852 | 7686513.649 | 12/09/2005 | 273.882 | 16:09:18 | 9785996.280 | 711410   |
| 2005602179 | -0.112       | 0.012         | -0.012      | -0.430          | 338660.308 | 7691908.517 | 13/09/2005 | 256.611 | 07:40:49 | 9786369.620 | 711410   |
| 2005602226 | 0.016        | 0.188         | -0.096      | 0.260           | 350492.535 | 7688194.323 | 13/09/2005 | 252.689 | 09:02:17 | 9786084.370 | 711410   |
| 2005602252 | -0.087       | 0.051         | -0.034      | 0.010           | 349009.065 | 7684963.089 | 13/09/2005 | 250.067 | 14:27:47 | 9786108.470 | 711410   |
| 2005602268 | -1.564       | 1.447         | -0.111      | -0.100          | 368607.539 | 7660179.767 | 13/09/2005 | 240.574 | 13:20:54 | 9786240.480 | 711410   |
| 2005602287 | 0.234        | 0.191         | -0.144      | -0.150          | 386911.740 | 7624084.325 | 13/09/2005 | 245.775 | 12:10:37 | 9786630.090 | 711410   |
| 2005602312 | 1.294        | -1.105        | 0.076       | 0.070           | 367118.529 | 7656857.749 | 13/09/2005 | 246.964 | 16:36:12 | 9786193.950 | 711410   |
| 2005602328 | 0.133        | 0.345         | -0.101      | -0.490          | 347482.154 | 7681751.716 | 13/09/2005 | 249.601 | 15:36:42 | 9786156.910 | 711410   |
| 2005602368 | -0.306       | 0.479         | -0.088      | 0.510           | 371537.923 | 7637209.800 | 14/09/2005 | 241.235 | 07:04:52 | 9786307.160 | 711410   |
| 2005602380 | -0.009       | 0.880         | 0.082       | 0.210           | 372502.935 | 7626897.167 | 14/09/2005 | 246.292 | 16:58:17 | 9786388.600 | 711410   |
| 2005602380 | -0.097       | -0.391        | -0.025      | 0.420           | 372502.847 | 7626895.896 | 15/09/2005 | 246.185 | 16:26:02 | 9786388.810 | 711410   |
| 2005602399 | -1.417       | 0.723         | 0.160       | -0.360          | 355618.352 | 7674015.304 | 14/09/2005 | 298.634 | 15:33:17 | 9786007.160 | 711410   |
| 2005602439 | -0.116       | -0.058        | -0.006      | -0.280          | 312844.383 | 7674511.085 | 14/09/2005 | 256.436 | 12:40:31 | 9786242.170 | 711410   |
| 2005602509 | 0.305        | 0.501         | -0.137      | -0.580          | 356590.331 | 7663737.222 | 15/09/2005 | 251.631 | 07:03:37 | 9786128.070 | 711410   |
| 2005602529 | -0.671       | 0.432         | -0.100      | 0.050           | 361024.238 | 7641951.198 | 15/09/2005 | 247.501 | 15:33:11 | 9786322.940 | 711410   |
| 2005602550 | -0.082       | 0.020         | 0.020       | 0.090           | 332042.707 | 7665521.537 | 15/09/2005 | 241.286 | 08:47:28 | 9786500.610 | 711410   |
| 2005602583 | -0.164       | -0.173        | 0.066       | -0.110          | 336048.610 | 7661632.964 | 15/09/2005 | 243.793 | 13:18:24 | 9786525.070 | 711410   |
| 2005602611 | -0.186       | 0.073         | -0.162      | -0.130          | 331003.016 | 7646551.839 | 17/09/2005 | 270.802 | 09:11:48 | 9786414.400 | 711410   |


| STATION    | dEAST<br>(m) | dNORTH<br>(m) | dAHD<br>(m) | dOSBG84<br>(gu) | MGA51EAST  | MGA51NORTH  | DATE       | AHD     | TIME     | OBSG84 (gu) | METER_SN |
|------------|--------------|---------------|-------------|-----------------|------------|-------------|------------|---------|----------|-------------|----------|
| 2005602626 | -0.349       | 1.525         | -0.162      | -0.230          | 351910.330 | 7662088.089 | 15/09/2005 | 260.112 | 14:57:36 | 9786171.910 | 711410   |
| 2005602650 | 0.484        | -0.192        | -0.079      | -0.260          | 357005.043 | 7647894.062 | 17/09/2005 | 246.639 | 08:04:59 | 9786293.200 | 711410   |
| 2005602673 | -2.972       | -2.054        | -0.078      | -0.080          | 367106.782 | 7619759.291 | 17/09/2005 | 255.653 | 07:01:59 | 9786594.150 | 711410   |
| 2005602713 | 2.182        | 1.844         | -0.069      | -0.200          | 353811.805 | 7649464.517 | 17/09/2005 | 246.560 | 16:14:36 | 9786429.500 | 711410   |
| 2005602736 | 0.040        | -0.050        | 0.124       | -0.310          | 329775.895 | 7627481.742 | 17/09/2005 | 314.393 | 11:08:53 | 9786270.970 | 711410   |
| 2005602746 | 1.265        | 1.368         | -0.056      | 0.490           | 339836.847 | 7607225.253 | 17/09/2005 | 322.056 | 12:51:26 | 9786250.900 | 711410   |
| 2005602771 | -0.038       | -0.034        | -0.148      | -0.150          | 338737.660 | 7617435.113 | 17/09/2005 | 301.045 | 14:58:30 | 9786343.100 | 711410   |
| 2005602791 | 0.270        | 0.280         | 0.163       | -0.150          | 350820.448 | 7576942.001 | 19/09/2005 | 368.438 | 08:31:36 | 9786381.940 | 711410   |
| 2005602817 | -0.326       | 0.018         | -0.144      | -0.360          | 340786.579 | 7634256.688 | 18/09/2005 | 275.901 | 09:27:03 | 9786459.770 | 711410   |
| 2005602836 | -0.050       | 0.021         | -0.087      | 0.013           | 355721.521 | 7636778.247 | 18/09/2005 | 246.434 | 07:20:26 | 9786591.590 | 711410   |
| 2005602836 | 0.241        | 0.111         | 0.111       | 0.033           | 355721.812 | 7636778.337 | 18/09/2005 | 246.632 | 08:50:02 | 9786591.610 | 711410   |
| 2005602856 | -0.035       | 0.098         | 0.186       | 0.250           | 360122.651 | 7617088.110 | 18/09/2005 | 266.773 | 14:17:25 | 9786584.400 | 711410   |
| 2005602923 | -0.705       | 0.834         | 0.098       | 0.470           | 345758.721 | 7619957.684 | 18/09/2005 | 284.272 | 13:28:25 | 9786438.520 | 711410   |
| 2005602974 | 0.459        | 0.940         | -0.034      | 0.000           | 362709.876 | 7610120.457 | 18/09/2005 | 272.087 | 15:37:34 | 9786568.430 | 711410   |
| 2005602981 | -0.017       | 0.294         | -0.033      | 0.410           | 361155.761 | 7606967.861 | 19/09/2005 | 276.059 | 07:15:08 | 9786581.660 | 711410   |
| 2005603026 | 0.134        | 0.118         | -0.149      | -0.260          | 376285.111 | 7601733.379 | 19/09/2005 | 277.149 | 10:49:40 | 9786652.600 | 711410   |
| 2005603041 | -0.312       | 0.213         | -0.180      | 0.020           | 348706.251 | 7597148.168 | 19/09/2005 | 341.483 | 09:58:50 | 9786364.900 | 711410   |
| 2005603064 | -0.197       | 1.297         | 0.031       | 0.530           | 357128.531 | 7573600.011 | 19/09/2005 | 335.649 | 14:25:29 | 9786487.310 | 711410   |
| 2005603077 | -0.270       | -0.155        | 0.088       | 0.570           | 359083.999 | 7598231.873 | 19/09/2005 | 290.355 | 13:29:35 | 9786534.520 | 711410   |
| 2005603104 | -0.100       | 0.106         | 0.009       | 0.080           | 395356.424 | 7600727.867 | 19/09/2005 | 278.340 | 17:09:01 | 9786587.410 | 711410   |
| 2005603114 | -3.283       | -0.473        | -0.048      | 0.140           | 373384.088 | 7595335.343 | 19/09/2005 | 280.060 | 16:20:41 | 9786663.410 | 711410   |
| 2005603142 | 0.128        | 0.157         | 0.065       | -0.180          | 363595.169 | 7570647.700 | 20/09/2005 | 321.010 | 07:36:48 | 9786555.140 | 711410   |
| 2005603167 | -0.006       | 0.193         | 0.056       | -0.100          | 371743.315 | 7592112.688 | 20/09/2005 | 287.873 | 06:54:01 | 9786648.260 | 711410   |
| 2005603193 | 1.491        | -0.657        | 0.002       | -0.370          | 382860.265 | 7590623.298 | 20/09/2005 | 287.488 | 09:55:26 | 9786685.910 | 711410   |
| 2005603268 | 0.159        | 0.006         | -0.196      | -0.110          | 397808.056 | 7593691.261 | 28/09/2005 | 286.436 | 05:50:00 | 9786627.090 | 711410   |
| 2005603283 | -0.448       | 0.076         | 0.100       | -0.010          | 436390.180 | 7604763.185 | 20/09/2005 | 251.424 | 16:30:09 | 9786840.760 | 711410   |
| 2005603297 | -0.116       | 0.289         | -0.141      | -0.520          | 463283.197 | 7603839.637 | 20/09/2005 | 262.929 | 15:30:57 | 9786817.280 | 711410   |
| 2005603309 | -0.042       | -0.157        | -0.049      | 0.082           | 470220.794 | 7577088.389 | 21/09/2005 | 242.492 | 08:46:14 | 9786984.350 | 711410   |
| 2005603309 | 0.041        | 0.016         | 0.104       | 0.383           | 470220.877 | 7577088.562 | 21/09/2005 | 242.645 | 11:35:39 | 9786984.650 | 711410   |
| 2005603309 | 0.024        | 0.093         | -0.051      | -0.328          | 470220.861 | 7577088.639 | 30/09/2005 | 242.491 | 11:13:58 | 9786983.940 | 711410   |
| 2005603325 | -0.223       | -0.154        | 0.092       | 0.500           | 453644.926 | 7608344.695 | 21/09/2005 | 248.361 | 07:41:52 | 9786860.430 | 711410   |
| 2005603336 | -0.079       | 0.236         | -0.007      | -0.120          | 426976.837 | 7601323.857 | 21/09/2005 | 266.155 | 06:51:51 | 9786795.370 | 711410   |
| 2005603351 | -1.923       | -0.221        | 0.047       | 0.110           | 430091.409 | 7599907.990 | 25/09/2005 | 268.205 | 13:15:53 | 9786874.480 | 711410   |
| 2005603366 | -0.062       | 0.002         | 0.173       | 0.190           | 459403.238 | 7599877.473 | 25/09/2005 | 246.175 | 14:27:25 | 9786950.760 | 711410   |
| 2005603381 | 0.141        | 0.007         | -0.017      | -0.460          | 476809.384 | 7566190.733 | 21/09/2005 | 252.609 | 11:15:30 | 9787020.150 | 711410   |
| 2005603411 | -0.475       | -0.166        | -0.037      | -0.890          | 473513.403 | 7567731.147 | 26/09/2005 | 248.410 | 14:39:51 | 9787030.760 | 711410   |
| 2005603419 | -0.162       | 0.297         | 0.062       | 0.020           | 362050.597 | 7538181.411 | 24/09/2005 | 364.226 | 07:00:56 | 9786414.060 | 711410   |
| 2005603454 | 0.165        | -0.167        | 0.008       | -0.070          | 386380.191 | 7477724.695 | 24/09/2005 | 430.033 | 08:48:51 | 9786909.480 | 711410   |

| STATION    | dEAST<br>(m) | dNORTH<br>(m) | dAHD<br>(m) | dOSBG84<br>(gu) | MGA51EAST  | MGA51NORTH  | DATE       | AHD     | TIME     | OBSG84 (gu) | METER_SN |
|------------|--------------|---------------|-------------|-----------------|------------|-------------|------------|---------|----------|-------------|----------|
| 2005603469 | 0.019        | -0.054        | 0.090       | -0.210          | 373644.472 | 7513214.124 | 24/09/2005 | 390.214 | 07:43:13 | 9786627.490 | 711410   |
| 2005603470 | 1.532        | -1.521        | 0.114       | 0.074           | 383895.277 | 7563597.473 | 25/09/2005 | 323.238 | 11:23:00 | 9786604.890 | 711410   |
| 2005603470 | -3.128       | 4.750         | -0.033      | -0.586          | 383890.617 | 7563603.744 | 26/09/2005 | 323.091 | 06:05:07 | 9786604.230 | 711410   |
| 2005603470 | 2.912        | -1.047        | -0.004      | 0.004           | 383896.657 | 7563597.947 | 27/09/2005 | 323.120 | 06:00:42 | 9786604.820 | 711410   |
| 2005603470 | -3.410       | -1.408        | -0.042      | 0.314           | 383890.335 | 7563597.586 | 05/10/2005 | 323.082 | 06:07:09 | 9786605.130 | 711410   |
| 2005603473 | -0.445       | 1.365         | 0.082       | -0.070          | 377587.968 | 7546405.956 | 24/09/2005 | 368.543 | 11:41:27 | 9786453.280 | 711410   |
| 2005603494 | -0.194       | 1.300         | -0.160      | 0.730           | 378543.980 | 7506898.521 | 24/09/2005 | 397.345 | 10:24:33 | 9786692.320 | 711410   |
| 2005603551 | -1.971       | -1.445        | -0.079      | -0.500          | 372616.096 | 7531377.463 | 25/09/2005 | 385.618 | 10:33:52 | 9786546.230 | 711410   |
| 2005603566 | -0.174       | -0.162        | 0.095       | 0.070           | 387468.547 | 7496697.641 | 25/09/2005 | 404.430 | 09:36:13 | 9786787.220 | 711410   |
| 2005603585 | -0.201       | 0.273         | -0.040      | -0.520          | 412382.181 | 7479323.223 | 05/10/2005 | 370.212 | 07:59:05 | 9786923.380 | 711410   |
| 2005603597 | 0.028        | 0.207         | -0.011      | 0.370           | 393176.982 | 7488433.196 | 26/09/2005 | 386.335 | 08:10:16 | 9786911.920 | 711410   |
| 2005603615 | 0.127        | -0.195        | -0.016      | 0.020           | 376350.382 | 7527492.701 | 26/09/2005 | 408.866 | 06:51:11 | 9786547.510 | 711410   |
| 2005603624 | 0.080        | -0.283        | -0.097      | -0.840          | 381680.331 | 7542428.415 | 26/09/2005 | 390.619 | 06:19:58 | 9786405.280 | 711410   |
| 2005603637 | -0.221       | -0.212        | 0.071       | -0.090          | 430958.956 | 7597521.287 | 25/09/2005 | 271.526 | 17:06:01 | 9786854.230 | 711410   |
| 2005603669 | 0.315        | 0.037         | 0.047       | 0.060           | 453300.442 | 7586989.904 | 25/09/2005 | 244.974 | 16:20:33 | 9786985.350 | 711410   |
| 2005603691 | -2.123       | 2.714         | -0.118      | -0.520          | 442177.063 | 7588259.313 | 26/09/2005 | 247.638 | 13:28:32 | 9786915.780 | 711410   |
| 2005603707 | 0.185        | 0.541         | -0.050      | 0.120           | 410683.110 | 7587513.620 | 27/09/2005 | 325.698 | 12:14:27 | 9786699.020 | 711410   |
| 2005603707 | 0.173        | 0.589         | 0.047       | -0.010          | 410683.098 | 7587513.668 | 27/09/2005 | 325.795 | 17:30:09 | 9786698.890 | 711410   |
| 2005603707 | -0.256       | -1.385        | -0.082      | -0.060          | 410682.669 | 7587511.694 | 02/10/2005 | 325.666 | 17:06:02 | 9786698.840 | 711410   |
| 2005603737 | 0.101        | -1.210        | 0.094       | 0.080           | 394813.037 | 7491467.447 | 26/09/2005 | 392.496 | 09:33:00 | 9786874.880 | 711410   |
| 2005603759 | -0.024       | -0.042        | -0.048      | -0.370          | 396287.081 | 7494819.989 | 27/09/2005 | 407.820 | 07:58:30 | 9786814.920 | 711410   |
| 2005603786 | -0.002       | -0.245        | 0.040       | -0.140          | 420987.773 | 7588708.388 | 26/09/2005 | 297.136 | 17:32:47 | 9786637.300 | 711410   |
| 2005603803 | 0.056        | 0.095         | -0.119      | -0.100          | 450381.023 | 7580519.896 | 26/09/2005 | 244.527 | 16:31:43 | 9787038.670 | 711410   |
| 2005603824 | 1.162        | -0.487        | 0.071       | 0.290           | 477268.331 | 7550180.726 | 29/09/2005 | 250.114 | 07:49:46 | 9787291.360 | 711410   |
| 2005603835 | -0.128       | 0.111         | 0.198       | -0.410          | 464831.455 | 7569807.484 | 27/09/2005 | 248.682 | 14:16:38 | 9787175.770 | 711410   |
| 2005603857 | 0.560        | 0.187         | 0.067       | 0.060           | 429637.031 | 7586410.472 | 27/09/2005 | 273.714 | 12:48:42 | 9786722.250 | 711410   |
| 2005603887 | 0.182        | 0.203         | 0.147       | 0.410           | 395275.871 | 7504975.612 | 27/09/2005 | 440.682 | 09:34:41 | 9786708.950 | 711410   |
| 2005603901 | 2.127        | 0.555         | 0.105       | 0.420           | 415557.121 | 7485780.325 | 05/10/2005 | 391.230 | 08:59:52 | 9786856.530 | 711410   |
| 2005603912 | -0.059       | 0.139         | -0.199      | -0.790          | 400941.072 | 7496423.209 | 28/09/2005 | 404.650 | 09:40:35 | 9786775.220 | 711410   |
| 2005603934 | -0.131       | 0.078         | -0.102      | -0.260          | 385461.357 | 7546478.995 | 28/09/2005 | 438.859 | 08:05:02 | 9786341.940 | 711410   |
| 2005603941 | -1.343       | -0.698        | -0.079      | 0.510           | 389247.307 | 7558566.393 | 28/09/2005 | 346.588 | 07:29:37 | 9786538.510 | 711410   |
| 2005603951 | -0.005       | -0.480        | 0.056       | 0.120           | 430500.169 | 7584116.246 | 27/09/2005 | 279.133 | 16:53:43 | 9786724.100 | 711410   |
| 2005603965 | 0.097        | 0.221         | -0.062      | 0.370           | 455237.558 | 7574370.811 | 27/09/2005 | 250.245 | 15:48:34 | 9787122.140 | 711410   |
| 2005603980 | 0.381        | 0.250         | 0.083       | 0.690           | 470138.781 | 7547826.306 | 28/09/2005 | 256.205 | 14:56:30 | 9787323.660 | 711410   |
| 2005603998 | -0.134       | 0.033         | -0.076      | 0.720           | 445851.929 | 7571141.802 | 28/09/2005 | 261.446 | 13:53:17 | 9787116.980 | 711410   |
| 2005604033 | -0.070       | 0.485         | 0.120       | 0.220           | 398594.180 | 7562019.150 | 28/09/2005 | 325.887 | 11:50:53 | 9786744.410 | 711410   |
| 2005604050 | 1.179        | 0.912         | -0.002      | 0.140           | 392117.467 | 7535710.658 | 28/09/2005 | 487.733 | 11:01:28 | 9786316.790 | 711410   |
| 2005604060 | 3.543        | -0.342        | -0.025      | 0.170           | 397424.631 | 7513730.827 | 28/09/2005 | 423.806 | 10:30:39 | 9786695.850 | 711410   |


| 07.47.01.  | dEAST  | dNORTH | dAHD   | dOSBG84 |            |                           | 5.475         | 4115    |          | 000044      |          |
|------------|--------|--------|--------|---------|------------|---------------------------|---------------|---------|----------|-------------|----------|
| STATION    | (m)    | (m)    | (m)    | (gu)    | MGA51EAST  | MGA51NORTH                | DATE          | AHD     | TIME     | OBSG84 (gu) | METER_SN |
| 2005604076 | -1.412 | 0.280  | 0.201  | 0.500   | 403970.591 | 7502885.353               | 05/10/2005    | 413.129 | 07:24:47 | 9786763.650 | 711410   |
| 2005604118 | 0.478  | -0.817 | 0.081  | -0.080  | 439481.785 | 7574168.570               | 28/09/2005    | 269.205 | 16:20:28 | 9787012.040 | 711410   |
| 2005604129 | 0.121  | -0.169 | -0.043 | -0.350  | 454712.505 | 7561048.287               | 28/09/2005    | 257.590 | 15:40:59 | 9787297.100 | 711410   |
| 2005604149 | -0.204 | 1.034  | -0.077 | -0.130  | 453235.353 | 7557713.649               | 29/09/2005    | 261.046 | 06:53:47 | 9787253.220 | 711410   |
| 2005604166 | -1.216 | -2.622 | 0.026  | -0.150  | 428259.186 | 7575438.402               | 29/09/2005    | 296.463 | 17:00:18 | 9786855.050 | 711410   |
| 2005604184 | -0.086 | 0.012  | 0.049  | 0.680   | 441366.837 | 7561361.573               | 29/09/2005    | 278.523 | 10:35:11 | 9787146.170 | 711410   |
| 2005604200 | -0.175 | 0.088  | -0.185 | 0.090   | 463786.007 | 7542938.004               | 29/09/2005    | 271.235 | 09:37:59 | 9787194.320 | 711410   |
| 2005604261 | -0.103 | 0.175  | 0.012  | -0.060  | 440675.549 | 7555915.640               | 29/09/2005    | 280.554 | 13:53:34 | 9787122.770 | 711410   |
| 2005604261 | -0.301 | -0.095 | 0.020  | 0.250   | 440675.351 | 7555915.370               | 29/09/2005    | 280.562 | 14:59:35 | 9787123.080 | 711410   |
| 2005604283 | 0.444  | -0.087 | 0.022  | -0.100  | 448952.623 | 7540245.650               | 29/09/2005    | 283.295 | 14:18:42 | 9787038.170 | 711410   |
| 2005604283 | 0.423  | 0.204  | 0.052  | 0.220   | 448952.602 | 7540245.941               | 30/09/2005    | 283.325 | 07:55:24 | 9787038.490 | 711410   |
| 2005604299 | 0.769  | 0.514  | 0.084  | -0.010  | 442532.993 | 7543344.828               | 29/09/2005    | 285.176 | 15:45:14 | 9787033.200 | 711410   |
| 2005604319 | -0.705 | 0.217  | 0.094  | -0.060  | 439583.232 | 7536855.991               | 30/09/2005    | 293.994 | 07:23:48 | 9787090.700 | 711410   |
| 2005604336 | 0.771  | -0.884 | -0.005 | 0.170   | 423655.472 | 7573621.142               | 01/10/2005    | 313.974 | 16:50:07 | 9786840.420 | 711410   |
| 2005604336 | -0.512 | 0.529  | 0.000  | -0.480  | 423654.189 | 7573622.555               | 02/10/2005    | 313.979 | 06:04:10 | 9786839.770 | 711410   |
| 2005604353 | 0.146  | -0.032 | -0.035 | -0.020  | 438031.818 | 7533652.161               | 01/10/2005    | 308.103 | 10:30:31 | 9787094.100 | 711410   |
| 2005604353 | 0.153  | -0.088 | -0.066 | 0.340   | 438031.825 | 7533652.105               | 02/10/2005    | 308.072 | 06:58:48 | 9787094.460 | 711410   |
| 2005604364 | -0.079 | 0.193  | 0.031  | 0.250   | 460843.384 | 7536563.685               | 30/09/2005    | 278.800 | 09:07:54 | 9787073.160 | 711410   |
| 2005604364 | -0.004 | 0.003  | -0.062 | -0.430  | 460843.459 | 7536563.495               | 01/10/2005    | 278.707 | 06:44:06 | 9787072.480 | 711410   |
| 2005604399 | 0.210  | -0.082 | -0.164 | 0.230   | 477859.725 | 7526717.379               | 30/09/2005    | 274.822 | 12:33:39 | 9787191.260 | 711410   |
| 2005604415 | 0.178  | -0.003 | 0.044  | -0.090  | 481891.701 | 7522706.887               | 30/09/2005    | 269.791 | 14:46:12 | 9787248.020 | 711410   |
| 2005604466 | -0.233 | -0.114 | -0.021 | 0.140   | 481034.318 | 7517431.679               | 01/10/2005    | 276.421 | 07:51:48 | 9787286.490 | 711410   |
| 2005604485 | 0.049  | -0.282 | 0.121  | 0.180   | 450686.039 | 7535688.228               | 01/10/2005    | 292.387 | 09:56:37 | 9787068.010 | 711410   |
| 2005604500 | -0.256 | 0.327  | -0.125 | -0.140  | 463145.392 | 7516092.755               | 01/10/2005    | 297.006 | 09:17:54 | 9787288.620 | 711410   |
| 2005604515 | 0.406  | 0.102  | 0.170  | 0.560   | 481523.343 | 7501467.442               | 01/10/2005    | 299.411 | 14:21:39 | 9787372.560 | 711410   |
| 2005604528 | 0.351  | -0.203 | 0.050  | 0.120   | 461548.922 | 7513042.058               | 01/10/2005    | 301.620 | 13:37:54 | 9787316.400 | 711410   |
| 2005604554 | -0.024 | 0.179  | -0.109 | -0.180  | 428186.788 | 7546059.031               | 02/10/2005    | 313.208 | 06:47:43 | 9787014.500 | 711410   |
| 2005604554 | -0.132 | 0.199  | 0.043  | 0.020   | 428186.680 | 7546059.051               | 02/10/2005    | 313.360 | 10:21:59 | 9787014.700 | 711410   |
| 2005604563 | 0.259  | 0.052  | -0.044 | 0.580   | 435853.961 | 7524838.905               | 02/10/2005    | 330.806 | 10:09:34 | 9787194.360 | 711410   |
| 2005604582 | -0.083 | -0.828 | -0.172 | -0.130  | 466871.836 | 7512076.455               | 01/10/2005    | 300.220 | 15:34:11 | 9787300.330 | 711410   |
| 2005604604 | -0.206 | 0.609  | -0.069 | -0.060  | 472192.734 | 7498121.364               | 02/10/2005    | 314.175 | 08:31:30 | 9787337.210 | 711410   |
| 2005604621 | -0.027 | -0.110 | 0.133  | -0.530  | 451712.701 | 7525238.968               | 02/10/2005    | 301.329 | 07:15:54 | 9787244.480 | 711410   |
| 2005604647 | -0.621 | -0.373 | 0.046  | -0.190  | 459234.251 | 7504075.655               | 02/10/2005    | 316.780 | 08:57:53 | 9787348.880 | 711410   |
| 2005604672 | -0.193 | -0.417 | -0.191 | -0.060  | 446986.509 | 7523585.769               | 02/10/2005    | 307.614 | 13:29:20 | 9787236.320 | 711410   |
| 2005604688 | 0.299  | -0.273 | 0.051  | -0.120  | 417509.383 | 7568753.967               | 02/10/2005    | 334.268 | 16:33:47 | 9786918.470 | 711410   |
| 2005604724 | -6.837 | -4.846 | 0.106  | 0.690   | 448299.330 | 7497514.491               | 03/10/2005    | 359.876 | 07:55:40 | 9787143.770 | 711410   |
| 2005604780 | -0.821 | -0.920 | 0.067  | 0.247   | 420317.907 | 7545956.788               | 03/10/2005    | 340.661 | 10:42:56 | 9786855.500 | 711410   |
| 2005604780 | -0.639 | -0.489 | -0.033 | -0.493  | 420318.089 | 7545957.219               | 03/10/2005    | 340.561 | 12:30:05 | 9786854.760 | 711410   |
|            | 0.500  | 3.100  | 5.500  | 0.100   | 00.000     | . 0 . 0 . 0 . 1 . 2 . 1 0 | 30, . 3, 2000 | 0.0.001 |          | 3. 5555 50  |          |

| STATION    | dEAST<br>(m) | dNORTH<br>(m) | dAHD<br>(m) | dOSBG84<br>(gu) | MGA51EAST  | MGA51NORTH  | DATE       | AHD     | TIME     | OBSG84 (gu) | METER SN |
|------------|--------------|---------------|-------------|-----------------|------------|-------------|------------|---------|----------|-------------|----------|
|            | . ,          | • •           |             |                 |            |             |            |         |          | ισ ,        | _        |
| 2005604837 | 0.317        | -0.447        | -0.150      | -0.300          | 436958.339 | 7506772.950 | 03/10/2005 | 338.041 | 13:44:10 | 9787163.560 | 711410   |
| 2005604840 | -0.034       | -0.116        | -0.055      | -0.380          | 429829.620 | 7512028.645 | 03/10/2005 | 357.363 | 13:31:50 | 9787055.820 | 711410   |
| 2005604854 | 0.279        | 0.381         | -0.014      | 0.110           | 413417.893 | 7564702.245 | 03/10/2005 | 351.545 | 11:58:17 | 9786865.150 | 711410   |
| 2005604856 | -0.023       | 0.159         | -0.031      | -0.380          | 404785.178 | 7574837.247 | 04/10/2005 | 316.399 | 17:19:07 | 9786852.600 | 711410   |
| 2005604866 | 1.113        | -0.398        | 0.064       | -0.240          | 418018.301 | 7544960.119 | 03/10/2005 | 374.032 | 16:00:36 | 9786726.650 | 711410   |
| 2005604881 | -0.611       | 0.482         | 0.043       | -0.020          | 427463.072 | 7511228.876 | 03/10/2005 | 424.612 | 15:07:36 | 9786862.250 | 711410   |
| 2005604881 | 0.034        | 0.145         | 0.045       | 0.160           | 427463.717 | 7511228.539 | 04/10/2005 | 424.614 | 08:18:45 | 9786862.430 | 711410   |
| 2005604886 | 0.144        | -0.312        | -0.035      | -0.157          | 436447.766 | 7501202.776 | 03/10/2005 | 339.265 | 14:49:52 | 9787127.110 | 711410   |
| 2005604886 | -0.854       | -0.159        | 0.036       | 0.283           | 436446.768 | 7501202.929 | 04/10/2005 | 339.336 | 08:42:47 | 9787127.550 | 711410   |
| 2005604914 | 2.436        | 1.295         | -0.097      | 0.210           | 416688.042 | 7533579.609 | 04/10/2005 | 450.653 | 07:28:04 | 9786635.970 | 711410   |
| 2005604935 | -0.047       | 0.112         | 0.058       | -0.267          | 408399.280 | 7578873.512 | 04/10/2005 | 332.504 | 06:06:18 | 9786762.850 | 711410   |
| 2005604935 | 0.084        | -0.148        | -0.052      | 0.113           | 408399.411 | 7578873.252 | 04/10/2005 | 332.394 | 11:30:37 | 9786763.230 | 711410   |
| 2005604956 | 1.777        | 0.694         | -0.097      | 0.910           | 412551.349 | 7545738.984 | 04/10/2005 | 428.128 | 11:01:22 | 9786552.670 | 711410   |
| 2005605004 | -1.912       | 0.949         | -0.115      | -0.070          | 417739.663 | 7515786.027 | 04/10/2005 | 461.092 | 13:17:22 | 9786596.640 | 711410   |
| 2005605038 | -0.091       | 0.004         | -0.092      | -0.320          | 413847.466 | 7519711.120 | 04/10/2005 | 394.700 | 16:11:34 | 9786685.720 | 711410   |
| 2005605175 | 0.082        | -0.731        | 0.158       | -0.170          | 405193.272 | 7528579.887 | 05/10/2005 | 373.803 | 13:39:51 | 9786750.470 | 711410   |

# Histogram dAHD



# Histogram dOBSG84



# **Summary Statistics**

|                    | dAHD  | dOBSG |
|--------------------|-------|-------|
|                    | (m)   | (gu)  |
|                    |       |       |
| Mean               | -0.01 | -0.02 |
| Standard Error     | 0.01  | 0.03  |
| Median             | -0.02 | -0.06 |
| Mode               | -0.04 | -0.06 |
| Standard Deviation | 0.10  | 0.37  |
| Sample Variance    | 0.01  | 0.14  |
| Kurtosis           | -0.74 | -0.07 |
| Skewness           | 0.10  | 0.00  |
| Range              | 0.40  | 1.94  |
| Minimum            | -0.20 | -1.03 |
| Maximum            | 0.20  | 0.91  |
| Sum                | -1.81 | -4.95 |
| Count              | 205   | 205   |

# **APPENDIX C**

Survey Metadata/Specifications

SURVEY NAME PATERSON 200560

START DATE 01/09/05

END DATE 06/10/05

OPERATORS GEOSCIENCE AUSTRALIA

CONTRACTOR DAISHSAT JOB05003

PROCESSOR DAISHSAT/LR MATHEWS

SOFTWARE GEOSOFT/CHRISDBF/ERMAPPER/INHOUSE

VESSEL BELL-47 HELICOPTER

GEODETIC DATUM GDA94

PROJECTION SUTM51/MGA51

HORIZONTAL ACCURACY 0.05M

LOCATION METHOD AUTONOMOUS GPS

GRAVITY STATION SPACING MIN 2500M

GRAVITY STATION SPACING MAX 2500M

NUMBER OF NEW STATIONS 4236

**ELEVATION ACCURACY 0.1M** 

GRAVITY ACCURACY 0.370GU

TERRAIN CORRECTION RASTERTC

LAYOUT CELL CENTRE

EQUIPMENT 1\*LEICA GPS500, 2\*ASHTECH Z12, CG3 SN 408275,711410, CG5 24921, LR SN G80, G711

OBSERVERS DAVID DAISH, GRANT COOPES, ALAN COWIE, MATT INGALL

BASE TIE NEWMAN AFGN 9893.1602

GPS TIE AUSPOS CONNECTIONS OVER MULTIPLE DAYS

# **APPENDIX D**

Base Station Information

# GPS/Gravity Base 2005600006 - Rocky Ridge

#### MGA94

## EASTING (m) 404 763.200 NORTHING (m) 7 607 182.520 ZONE (UTM) 51 South HEIGHT (AHD, m) 289.262

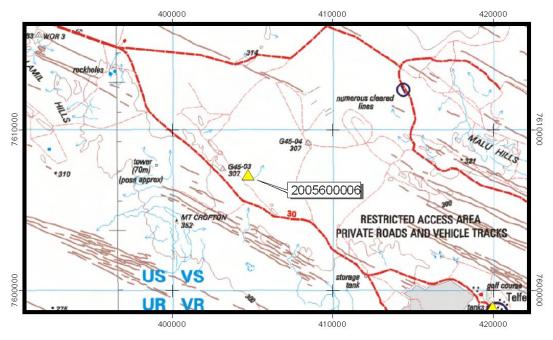
### **OBSERVED GRAVITY**

9786619.088 gu ISOGAL84

#### GDA94

LATITUDE (DMS) 21 38 9.5124 S LONGITUDE (DMS) 122 4 46.9504 E GDAHT (m) 294.509 N (AUSGEOID98, m) 5.247

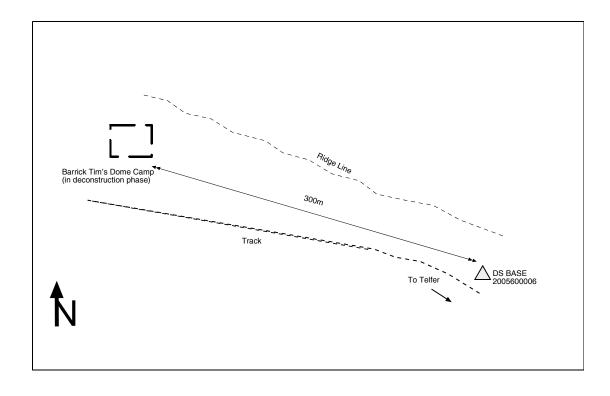
#### **SURVEYED BY**


GPS - Daishsat using a multiple static sessions and the AUSPOS online GPS Processing system. Expected accuracy of station coordinates better than 0.005m.

Gravity – ABABA ties to primary base station 2005600106 at Telfer using two gravity meters. Expected accuracy better than 0.1gu.

### **MISCELLANEOUS DETAILS**

This station consists of a small star picket protruding approximately 150mm above ground level, and is witnessed by a large star picket with a Daishsat Witness Plate attached ~ 0.3m to the right The gravity station consists of a hexagonal shaped concrete monument opposite the star picket.


The station is located to the north of the haul road leading into the Telfer Gold Mine. 15km from the Telfer security gate along the haul road, an old Barrack exploration track heads to the North. This track then heads North-east for 2.5km. Located approximately 350m east of Tim's Dome Barrick Exploration Camp in a small gibber plain. The station can be accessed by taking the Barrack exploration track off to the left, when inbound (15km from) to the Telfer Mine. Following this track to the North-East will lead to a N-S ridge line, with the base station on the eastern side of this ridge.



Location Map



Base Station Photograph



Locality Sketch (not to scale)

# GPS/Gravity Base 20056000106 - Telfer AS

### MGA94

## EASTING (m) 419 985.830 NORTHING (m) 7 598 963.626 ZONE (UTM) 51 South HEIGHT (AHD, m) 294.213

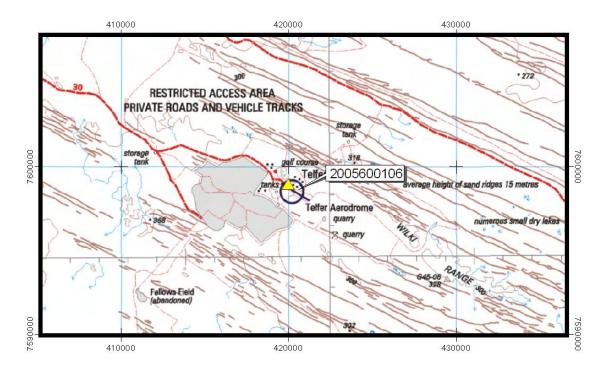
### **OBSERVED GRAVITY**

9786676.348 gu ISOGAL84

#### GDA94

LATITUDE (DMS) 21 42 39.5126 S LONGITUDE (DMS) 122 13 35.0447 E GDAHT (m) 270.260 N (AUSGEOID98, m) -23.953

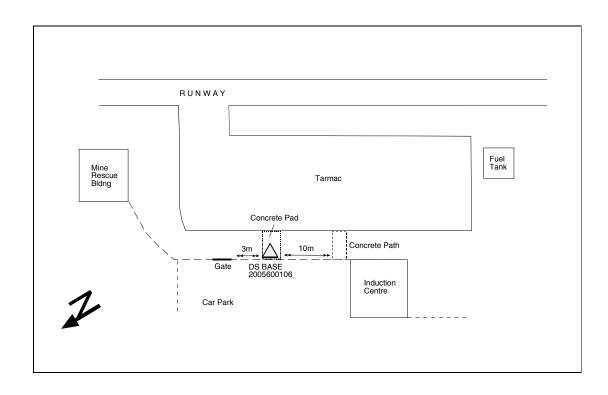
#### **SURVEYED BY**


GPS - Daishsat using a single kinematic occupation. Coordinates for location only, coordinates not for geodetic use. Expected accuracy of station coordinates better than 0.2m.

Gravity – ABABA ties meters to the Newman AFGN station 9893.1602 with three meters. Expected accuracy better than 0.1gu.

#### **MISCELLANEOUS DETAILS**

The base at Telfer Airport is located on a large concrete slab which is used to store the portable aircraft stairs on the side of the runway apron. It is marked by three drill holes in a triangle, approximately 200mm from the base of a sandstone wall pillar which separates the apron from the car park. The station sits 450mm to the east of the edge of the slab. A steel bench chair sits just west of the station. Access is through the gate leading onto the apron.


Note to access the Telfer Airstrip, a short induction is required and this can be gained from the Telfer gatehouse.



Location Map



Base Station Photograph



Locality Sketch (not to scale)

# GPS Gravity Base 20056000101 - Yeneena Camp

# MGA94 GDA94

EASTING 384 402.755 LATITUDE 22 01 41.7534 S NORTHING 7 563 620.695 LONGITUDE 121 52 47.7386 E ZONE 51 GDAHT 325.906

HEIGHT (AHD) 322.709

#### **OBSERVED GRAVITY**

9786602.290 gu ISOGAL84

#### **SURVEYED BY**

GPS - Daishsat using multiple static sessions and the AUSPOS online GPS Processing system. Expected accuracy of station coordinates better than 0.005m.

Gravity base tied to Daishsat Telfer base 20056000106 using an ABABA loop with one gravity meter.

### **MISCELLANEOUS DETAILS**

This base is located within the Yeneena Exploration Camp. The station is marked by a steel star picket driven into the ground with about 20cm protruding; a centre punch marks the point. The station is witnessed with a 1.5m steel picket and Daishsat plaque located approximately 30cm south. Access to the camp is via unsealed road from Telfer mine.



Photo of GPS Gravity Base 20056000101 with distinguishing features in background

# **Gravity Base 102 – Field Base (West)**

## MGA94 GDA94

| EASTING  | 365 931.248   | LATITUDE  | 22 4 45.847070 S    |
|----------|---------------|-----------|---------------------|
| NORTHING | 7 557 812.753 | LONGITUDE | 121 42 1.80834314 E |
| ZONE     | 51            | GDAHT     | 336.029             |

HEIGHT (AHD) 333.708

### **OBSERVED GRAVITY**

9786579.100 gu ISOGAL84

### **SURVEYED BY**

GPS - Daishsat using multiple kinematic sessions during field occupations. Field station only, coordinates not for geodetic use. Accuracy better than 0.2m x,y,z.

Gravity base tied to Yeneena base 20056000106 with multiple field occupations with two gravity meters.

### **MISCELLANEOUS DETAILS**

This base is located west of the Yeneena Exploration Camp, approximately 4km west off the main track. The station is marked by a steel star picket driven into the ground with about 20cm protruding; a centre punch marks the point. The station is witnessed with a 1.5m steel picket and Daishsat plaque located approximately 30cm east.



Photo of Gravity base 20056000102 with distinguishing features in background.

# **Gravity Base 103 - Field Base (North)**

## MGA94 GDA94

| EASTING  | 385 769.826   | LATITUDE  | 21 56 11.785551 S  |
|----------|---------------|-----------|--------------------|
| NORTHING | 7 573 777.765 | LONGITUDE | 121 53 37.978171 E |
| ZONE     | 51            | GDAHT     | 330.367            |

HEIGHT (AHD) 326.743

### **OBSERVED GRAVITY**

97866264.300 gu ISOGAL84

#### **SURVEYED BY**

GPS - Daishsat using multiple kinematic sessions during field occupations. Field station only, coordinates not for geodetic use. Accuracy better than 0.2m x,y,z.

Gravity base tied to Yeneena base 20056000106 with multiple field occupations with two gravity meters.

### **MISCELLANEOUS DETAILS**

This base is located on a hill approximately 11km to the north of the Yeneena Exploration Camp, approximately 200m east off the main track from Goosewhacker to the Rudall Track. The station is marked by a steel star picket driven into the ground with about 20cm protruding; a centre punch marks the point. The station is witnessed with a 1.5m steel picket and Daishsat plaque located approximately 30cm east.



Photo of Gravity base 20056000103 with distinguishing features in background.

# **APPENDIX E**

**Data Formats** 

### Data formats

- Raw field data supplied in .RAW Geosoft format. The files contain the dial reading in milliGals, as well as the GPS data in MGA51 coordinates, with heights expressed as AHD. Each file contains the acquisition date and meter serial number. Base station readings are flagged with a – sign.

| Job:5003. Line:0. |             | Oper:1. CG3#:71 |          | 11410.   |       |         |  |
|-------------------|-------------|-----------------|----------|----------|-------|---------|--|
| dt=2005/09        | /11  gm=-8. |                 |          |          |       |         |  |
| Stn               | X           | Y               | Time     | Rdng     | In_Ht | Elev    |  |
| -6                | 404798.037  | 7607146.724     | 05:52:32 | 3332.571 | 0.0   | 289.343 |  |
| 6                 | 404798.029  | 7607146.729     | 05:53:48 | 3332.580 | 0.0   | 289.354 |  |
| 1898              | 407399.364  | 7618259.266     | 06:07:03 | 3335.480 | 0.0   | 273.302 |  |
| 1899              | 406618.296  | 7620572.161     | 06:10:34 | 3337.607 | 0.0   | 265.964 |  |
| 1900              | 405869.422  | 7622980.587     | 06:13:46 | 3342.397 | 0.0   | 252.764 |  |
| 1901              | 404753.576  | 7625445.519     | 06:17:59 | 3340.430 | 0.0   | 252.182 |  |
| 1902              | 404037.137  | 7627787.674     | 06:21:23 | 3338.994 | 0.0   | 244.759 |  |
| 1903              | 403264.682  | 7630097.029     | 06:24:37 | 3342.797 | 0.0   | 239.566 |  |
| 1904              | 402404.225  | 7632395.356     | 06:27:41 | 3342.055 | 0.0   | 236.576 |  |
| 1905              | 401444.797  | 7634845.331     | 06:30:59 | 3342.334 | 0.0   | 239.710 |  |
| 1906              | 400852.661  | 7637336.346     | 06:34:07 | 3341.872 | 0.0   | 237.182 |  |
| 1907              | 401079.321  | 7640020.126     | 06:37:53 | 3339.094 | 0.0   | 236.746 |  |
| 1829              | 404597.207  | 7641368.797     | 06:42:10 | 3332.689 | 0.0   | 235.839 |  |

- Calibration data are presented as RAW files, as well as in a processed form in MS Excel format.
- GPS data supplied as RAW Ashtech Z12 carrier phase data in "b-files".
- Terrain correction data are presented as RASTERTC output, in comma delimited format. Note, all data are output in **milliGals**. Data headings are self explanatory.
- Final data supplied in a format specified by GA. See overleaf.

```
PROJECT
                  1-7 Length = 6 Decimal places = 0 Null Value = -99 Units = None Desc = GA Project Name I6
STATION 8-18 Length = 10 Decimal places = 0 Null Value = -99 Units = None Desc = GA Station Number I10
GDA94 LATITUDE DD
                           19-31 Length = 12 Decimal places = 6 Null Value = -99 Units = Decimal Degrees Desc = Latitude GDA94 F12.6
                           32-44 Length = 12 Decimal places = 6 Null Value = -99 Units = Decimal Degrees Desc = Longitude GDA94 F12.6
GDA94 LONGITUDE DD
MGA94_EAST_M 45-53 Length = 8 Decimal places = 1 Null Value = -99 Units = Metres Desc = Easting MGA94_F8.1
MGA94 NORTH M 54-63 Length = 9 Decimal places = 1 Null Value = -99 Units = Metres Desc = Northing MGA94 F9.1
N AUSGEOID98 M
                           64-72 Length = 8 Decimal places = 3 Null Value = -99 Units = Metres Desc = Geoid-Ellipsoid Separation using AUSGEOID98 F8.3
ELEVATION GROUND MAHD
                                     73-81 Length = 8 Decimal places = 3 Null Value = -99 Units = Metres Desc = Station Elevation at Ground Level AHD F8.3
                  82-93 Length = 11 Decimal places = 3 Null Value = -99 Units = Gravity Units (micrometre/sec^2) Desc = Station Observed Gravity F11.3
OBS84 GU
                                    94-102 Length = 8 Decimal places = 3 Null Value = -99 Units=Metres Desc = Station Height of Gravity Meter F8.3
HT GRAVITY METER MAHD
INNER TC GU
                  103-109 Length = 6 Decimal places = 2 Null Value = -99 Units = Gravity Units (micrometre/sec^2) Desc = Inner Zone (<300m)) Terrain Correction F6.2
OF INNER TC GU
                           110-113 Length = 3 Decimal places = 0 Null Value = -99 Units = None Desc = Quality Factor of Inner Zone Terrain Correction I3
ERROR INNER TC GU
                           114-126 Length = 12 Decimal places = 10 Null Value = -99 Units = Gravity Units (micrometre/sec^2) Desc = Error in Inner Zone Terrain Correction F12.10
                  127-133 Length = 6 Decimal places = 2 Null Value = -99 Units = Gravity Units (micrometre/sec^2) Desc = Outer Zone (300m-20000m) Terrain Correction F6.2
OUTER TC GU
                  134-137 Length = 3 Decimal places = 0 Null Value = -99 Units = None Desc = Quality Factor of Outer Zone Terrain Correction I3
QF OUTER TC
                  138-144 Length = 6 Decimal places = 2 Null Value = -99 Units = Gravity Units (micrometre/sec^2) Desc = Total Terrain Correction Applied (Inner + Outer) F6.2
TOTAL TC GU
FAA GU 145-154 Length = 9 Decimal places = 2 Null Value = -99 Units = Gravity Units (micrometre/sec^2) Desc = Free Air Anomaly F9.2
BA GU 155-164 Length = 9 Decimal places = 2 Null Value = -99 Units = Gravity Units (micrometre/sec^2) Desc = Simple Bouquer Anomaly for a density of 2.6 tm^-3 F9.2
                           165-174 Length = 9 Decimal places = 2 Null Value = -99 Units = Gravity Units (micrometre/sec^2) Desc = Complete Bouquer Anomaly for a density of 2.6 tm^-3 F9.2
COMPLETE BA GU
HORIZONTAL DIFF M
                           175-183 Length = 8 Decimal places = 2 Null Value = -99 Units = Metres Desc = Horizontal Offset from pre-planned station F8.2
GRAVITY BASE REF
                           184-194 Length = 10 Decimal places = 0 Null Value = -99 Units = None Desc = Gravity base station referenced to I10
206-214 Length = 8 Decimal places = 0 Null Value = -99 Units = None Desc = Time of gravity observation NA
DATE
         215-223 Length = 8 Decimal places = 0 Null Value = -99 Units = None Desc = Date of gravity observation NA
MGAZONE
                  224-227 Length = 3 Decimal places = 0 Null Value = -99 Units = None Desc = MGA Zone Number I3
GMTYPEGMSN
                  228-258 Length = 30 Decimal places = 0 Null Value = -99 Units = None Desc = Gravity Meter Type A30
                  259-289 Length = 30 Decimal places = 0 Null Value = -99 Units = None Desc = Description of station
STATION DESC
```

# **APPENDIX F**

Calibration Data

# Calibration Data

2001 Kensington Garden Station, SA 2001.9108
 208 Norton Summit Station, SA 6091.0208
 1 Mundaring Weir, WA 8909.0317
 2 Mt Gungin, WA 7391.0217

### **CALIBRATION PRE-SURVEY**

| 24291                                                             |                                                                                                  |                                                                                |                                                                                  |                                                                                                          |                                                                                                         |                                                                                                                                                     |                                                                                              |                                                                                                                                                                             |                                                                                                                       |                                                                                        |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Station -2001 2001 208 -2001 -2001 208 -2001 -2001 208 2001 -2001 | Date * 12/05/2005 12/05/2005 12/05/2005 12/05/2005 12/05/2005 12/05/2005 12/05/2005 12/05/2005 * | Ht * 111.620 455.380 111.620 111.620 455.380 111.620 111.620 455.380 111.620 * | Long * 138.6515 138.7267 138.6515 138.7267 138.6515 138.6515 138.7267 138.6515 * | -34.9216<br>-34.9250<br>-34.9216<br>-34.9250<br>-34.9250<br>-34.9216<br>-34.9250<br>-34.9250<br>-34.9216 | Time 14:41:28 14:43:39 15:13:55 15:39:14 15:39:14 16:06:01 16:30:11 16:30:11 16:58:25 17:22:18 17:22:18 | Rdng<br>2663.947<br>2663.946<br>2595.472<br>2663.953<br>2663.953<br>2595.513<br>2663.979<br>2663.979<br>2595.526<br>2663.976<br>2663.976<br>AVG OBS | ETC -0.037 -0.040 -0.044 -0.044 -0.053 -0.053 -0.059 -0.063 G gu                             | OBSG84<br>(mGals)<br>979698.526<br>979698.525<br>979630.048<br>979698.526<br>979630.072<br>979698.526<br>979698.526<br>979630.074<br>979698.526<br>979698.526<br>979690.647 | Closure<br>(mGals)<br>-0.001<br>-0.001<br>-0.001<br>-0.001<br>0.017<br>0.017<br>-0.013<br>-0.013<br>-0.013<br>-0.013  | Meter<br>24921<br>24921<br>24921<br>24921<br>24921<br>24921<br>24921<br>24921<br>24921 |
| G711                                                              |                                                                                                  |                                                                                |                                                                                  |                                                                                                          |                                                                                                         |                                                                                                                                                     |                                                                                              |                                                                                                                                                                             |                                                                                                                       |                                                                                        |
| Station<br>-2001<br>208<br>-2001<br>-2001<br>208<br>-2001         | Date<br>10/05/2005<br>10/05/2005<br>10/05/2005<br>10/05/2005<br>10/05/2005                       | Ht<br>111.620<br>455.380<br>111.620<br>111.620<br>455.380<br>111.620           | Long<br>138.6515<br>138.7267<br>138.6515<br>138.6515<br>138.7267<br>138.6515     | Lat<br>-34.9216<br>-34.9250<br>-34.9216<br>-34.9216<br>-34.9250<br>-34.9216                              | Time 09:44:00 10:20:00 10:47:00 10:47:00 12:15:00 12:49:00                                              | Rdng<br>3222.870<br>3155.660<br>3222.860<br>3222.860<br>3155.630<br>3222.880<br>AVG OBS                                                             | ETC<br>-0.066<br>-0.055<br>-0.046<br>-0.046<br>-0.022<br>-0.019<br><b>G gu</b>               | OBSG84<br>(mGals)<br>979698.526<br>979630.114<br>979698.526<br>979698.526<br>979630.077<br>979698.526                                                                       | Closure<br>(mGals)<br>0.010<br>0.010<br>0.010<br>0.047<br>0.047<br>0.047                                              | Meter<br>G711.<br>G711.<br>G711.<br>G711.<br>G711.                                     |
| G80                                                               |                                                                                                  |                                                                                |                                                                                  |                                                                                                          |                                                                                                         |                                                                                                                                                     |                                                                                              |                                                                                                                                                                             |                                                                                                                       |                                                                                        |
| Station<br>-2001<br>208<br>-2001<br>-2001<br>208<br>-2001         | Date<br>10/05/2005<br>10/05/2005<br>10/05/2005<br>10/05/2005<br>10/05/2005<br>10/05/2005         | Ht<br>111.620<br>455.380<br>111.620<br>111.620<br>455.380<br>111.620           | Long<br>138.6515<br>138.7267<br>138.6515<br>138.6515<br>138.7267<br>138.6515     | Lat<br>-34.9216<br>-34.9250<br>-34.9216<br>-34.9216<br>-34.9250<br>-34.9216                              | Time 09:34:00 10:15:00 10:41:00 10:41:00 12:22:00 12:45:00                                              | Rdng<br>3197.730<br>3132.110<br>3197.720<br>3197.720<br>3132.080<br>3197.730<br>AVG OBS                                                             | ETC<br>-0.069<br>-0.056<br>-0.048<br>-0.048<br>-0.021<br>-0.019<br><b>G gu</b>               | OBSG84<br>(mGals)<br>979698.526<br>979630.088<br>979698.526<br>979630.056<br>979698.526<br><b>9796300.720</b>                                                               | Closure<br>(mGals)<br>0.011<br>0.011<br>0.011<br>0.039<br>0.039<br>0.039                                              | Meter<br>G80.<br>G80.<br>G80.<br>G80.<br>G80.<br>G80.                                  |
| 711410                                                            |                                                                                                  |                                                                                |                                                                                  |                                                                                                          |                                                                                                         |                                                                                                                                                     |                                                                                              | OBSG84                                                                                                                                                                      | Clasuma                                                                                                               |                                                                                        |
| Station -2001 2001 208 -2001 -2001 208 -2001 -2001 208 2001 -2001 | Date * 31/05/2005 31/05/2005 31/05/2005 31/05/2005 31/05/2005 31/05/2005 31/05/2005 31/05/2005 * | 111.620<br>111.620<br>455.380<br>111.620<br>111.620                            | Long * 138.6515 138.7267 138.6515 138.6515 138.6515 138.6515 138.7267 138.6515 * | -34.9216<br>-34.9216<br>-34.9250                                                                         | 14:35:02<br>14:58:25<br>15:20:08<br>15:20:08<br>15:49:10                                                | Rdng<br>4273.804<br>4273.804<br>4205.369<br>4273.787<br>4273.787<br>4205.347<br>4273.777<br>4273.777<br>4205.332<br>4273.754<br>4273.753<br>AVG OBS | ETC -0.071 -0.070 -0.064 -0.057 -0.057 -0.046 -0.038 -0.038 -0.027 -0.018 -0.018 <b>G gu</b> | (mGals)<br>979698.526<br>979698.527<br>979630.100<br>979698.526<br>979698.526<br>979698.526<br>979698.526<br>979630.094<br>979698.527<br>979698.526<br><b>979630.950</b>    | Closure<br>(mGals)<br>-0.004<br>-0.004<br>-0.004<br>-0.004<br>-0.010<br>0.010<br>-0.004<br>-0.004<br>-0.004<br>-0.004 | Meter 711410 711410 711410 711410 711410 711410 711410 711410 711410 711410 711410     |

| 400075     |                          |                    |                      |                      |                      |                      |                |                          |                  |                  |
|------------|--------------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------|--------------------------|------------------|------------------|
| 408275     |                          |                    |                      |                      |                      |                      |                | OBSG84                   | Closure          |                  |
| Station    | Date                     | Ht                 | Long                 | Lat                  | Time                 | Rdng                 | ETC            | (mGals)                  | (mGals)          | Meter            |
| -2001      | *                        | *                  | *                    |                      | 14:41:12             | 4241.605             | -0.036         | 979698.526               | 0.005            | 408275           |
| 2001       | 12/05/2005               | 111.620            | 138.6515             | -34.9216             | 14:43:46             | 4241.605             | -0.036         | 979698.526               | 0.005            | 408275           |
| 208        | 12/05/2005               | 455.380            | 138.7267             | -34.9250             | 15:13:12             | 4173.185             | -0.035         | 979630.103               | 0.005            | 408275           |
| -2001      | *                        | *                  | *                    |                      | 15:38:14             | 4241.611             | -0.037         | 979698.526               | 0.005            | 408275           |
| -2001      | *                        | *                  | *                    |                      | 15:38:14             | 4241.611             | -0.037         | 979698.526               | -0.003           | 408275           |
| 208        | 12/05/2005               | 455.380            | 138.7267             | -34.9250             | 16:04:22             | 4173.165             | -0.039         | 979630.079               | -0.003           | 408275           |
| 2001       | 12/05/2005               | 111.620            | 138.6515             | -34.9216             | 16:56:13             | 4241.618             | -0.047         | 979698.525               | -0.003           | 408275           |
| -2001      | *                        | *                  | *                    |                      | 16:59:33             | 4241.619             | -0.047         | 979698.526               | -0.003           | 408275           |
|            |                          |                    |                      |                      |                      | AVG OBS              | G gu           | 9796300.910              |                  |                  |
| CALIBRATIO | ON POST-SU               | DVEV               |                      |                      |                      |                      |                |                          |                  |                  |
| CALIBRATI  | JN F031-30               | RVEI               |                      |                      |                      |                      |                |                          |                  |                  |
| 408275     |                          |                    |                      |                      |                      |                      |                |                          |                  |                  |
|            |                          |                    |                      |                      |                      |                      |                | OBSG84                   | Closure          |                  |
| Station    | Date                     | Ht                 | Long                 | Lat                  | Time                 | Rdng                 | ETC            | (mGals)                  | (mGals)          | Meter            |
| -2001      | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 14:39:04             | 4281.353             | 0.118          | 979698.526               | -0.008           | 408275           |
| 2001       | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 14:41:28             | 4281.353             | 0.117          | 979698.525               | -0.008           | 408275           |
| 208        | 19/10/2005               | 455.380            | 138.7267             | -34.9250             | 15:12:10             | 4212.956             | 0.094          | 979630.109               | -0.008           | 408275           |
| 208        | 19/10/2005               | 455.380            | 138.7267             | -34.9250             | 15:13:22             | 4212.952             | 0.093          | 979630.104               | -0.008           | 408275           |
| 2001       | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 15:39:11             | 4281.390             | 0.072          | 979698.524               | -0.008           | 408275           |
| -2001      | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 15:41:22             | 4281.394             | 0.070          | 979698.526               | -0.008           | 408275           |
| -2001      | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 15:41:22             | 4281.394             | 0.070          | 979698.526               | 0.000            | 408275           |
| 208        | 19/10/2005               | 455.380            | 138.7267             | -34.9250             | 15:57:12             | 4212.995             | 0.055          | 979630.113               | 0.000            | 408275           |
| 208        | 19/10/2005               | 455.380            | 138.7267             | -34.9250             | 16:00:08             | 4213.002             | 0.053          | 979630.117               | 0.000            | 408275           |
| 2001       | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 16:19:41             | 4281.424             | 0.036          | 979698.522<br>979698.526 | 0.000            | 408275           |
| -2001      | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 16:22:01             | 4281.430             | 0.033          | 979698.526               |                  | 408275           |
| -2001      | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 16:22:01             | 4281.430             | 0.033          | 979630.120               | -0.006<br>-0.006 | 408275           |
| 208<br>208 | 19/10/2005<br>19/10/2005 | 455.380<br>455.380 | 138.7267<br>138.7267 | -34.9250<br>-34.9250 | 16:38:12<br>16:41:11 | 4213.036<br>4213.034 | 0.019<br>0.016 | 979630.120               | -0.006           | 408275<br>408275 |
| 2001       | 19/10/2005               | 111.620            | 138.6515             | -34.9230             | 17:01:11             | 4213.034             | -0.001         | 979698.523               | -0.006           | 408275           |
| -2001      | 19/10/2005               | 111.620            | 138.6515             | -34.9216             | 17:01:11             |                      | -0.001         | 979698.526               | -0.006           | 408275           |
| -2001      | 19/10/2003               | 111.020            | 130.0313             | -34.3210             | 17.05.52             | AVG OBS              |                | 9796301.132              | 0.000            | 400273           |
|            |                          |                    |                      |                      |                      | AVO OBO              | O gu           | 3730001.102              |                  |                  |
| 711410     |                          |                    |                      |                      |                      |                      |                |                          |                  |                  |
| O          | 5.                       |                    |                      |                      | <b>-</b> -           | <b>D</b> .           | FT6            | OBSG84                   | Closure          |                  |
| Station    | Date                     | Ht                 | Long                 | Lat                  | Time                 | Rdng                 | ETC            | (mGals)                  | (mGals)          | Meter            |
| -1         | 20/10/2005               | 115.000            | 31.9550              | 116.1600             | 10:36:31             | 4111.830             | -0.093         | 979453.240               | -0.012           | 711410           |
| 2          | 20/10/2005               |                    | 31.9880              | 116.1270             |                      | 4057.514             | -0.092         | 979398.932               | -0.012           | 711410           |
| -1         | 20/10/2005               | 115.000            | 31.9550              | 116.1600             |                      | 4111.815             | -0.090         | 979453.240               | -0.012           | 711410           |
| -1         | 20/10/2005               |                    | 31.9550              | 116.1600             |                      | 4111.815             | -0.090         | 979453.240               | -0.034           | 711410           |
| 2          | 20/10/2005               |                    | 31.9880              | 116.1270             |                      | 4057.481             | -0.087         | 979398.926               | -0.034           | 711410           |
| -1<br>-1   | 20/10/2005               |                    | 31.9550              | 116.1600             |                      | 4111.775             | -0.084         | 979453.240               | -0.034           | 711410           |
| -1         | 20/10/2005               |                    | 31.9550              | 116.1600             |                      | 4111.775             | -0.084         | 979453.240               | -0.034           | 711410           |
| 2          | 20/10/2005               |                    | 31.9880              | 116.1270             | 12:20:55             | 4057.443             |                | 979398.927               | -0.034           | 711410           |
| -1         | 20/10/2005               | 115.000            | 31.9550              | 116.1600             | 12.40.17             | 4111.731             |                | 979453.240               | -0.034           | 711410           |
|            |                          |                    |                      |                      |                      | AVG OBS              | o gu           | 9793989.283              |                  |                  |

# **APPENDIX G**

Earth Tide Correction Formulae Listing

```
input dLat (latitude)
input dLon (longitude)
input dDate (date)
*Date broken down into year, month and date
input dTime (time)
array pClndr[12]={0,31,59,90,120,151,181,212,243,273,304,334}
lYr=vear
lMo=month
lDa=day
ny=(1Yr-1900)
days=(dTime/24.0+lDa-1+pClndr[lMo-1])
lLeap=(ny/4)
if(lLeap/2=ny and lMo<3)then lLeap=lLeap-1
lDay=(ny*365+lLeap+lDa+pClndr[lMo-1])
dcent = (ny*365.0+lLeap+days+0.5)/36525)
dhrs = (ny*365.0+lLeap+days+0.5)*24.0)
ds = (dcent*8399.709299+4.720023434+(dcent*dcent)*4.40696e-5)
dp=(dcent*71.01800936+5.835124713-(dcent*dcent)*1.80545e-4-dcent*2.1817e-
7*(dcent*dcent)
dh=(dcent*628.3319509+4.88162792+(dcent*dcent)*5.27962e-6)
doln=(4.523588564-dcent*33.757153303+(dcent*dcent)*3.6749e-5)
dps=(dcent*0.03000526416+4.908229461+(dcent*dcent)*7.902463e-6)
des=(0.01675104-dcent*4.18e-5-(dcent*dcent)*1.26e-7)
dsoln=(sin(doln))
dci=(0.91369-cos(doln)*0.03569)
dsi=(sqrt(1.0-(dci*dci))
dsn=(dsoln*0.08968/dsi)
dcn=(sqrt(1.0-(dsn*dsn))
dtit=(dsoln*0.39798/(dsi*cos(doln)*dcn+1.0dsoln*0.91739*dsn))
det=(atan(dtit)*2.0)
if (det<0.0)then det=det+6.2831852)
dolm1=(ds-doln+det+sin(ds-dp)*0.10979944)
dolm=(dolm1+sin((ds-dp)*2.0)*0.003767474+sin(ds-dh*2.0+dp)*0.0154002+sin((ds-
dh)*2.0)*0.00769395)
dha=((dTime*15.0-180)*0.0174532925199+dLon/57.295779513)
dchi=(dha+dh-atan(dsn/dcn))
dal=(dLat/57.295779513)
dct=(sin(dal)*dsi*sin(dolm)+cos(dal)*((dci+1.0)*cos(dolm-dchi)+(1.0-
dci)*cos(dolm+dchi))/2.0)
dda = (cos(ds-dp)*0.14325+2.60144+cos((ds-dp)*2.0)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.0078644+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da)*0.007864+cos(ds-da
dh*2.0+dp)*0.0200918+cos((ds-dh)*2.0)*0.0146006)
dr=(6.378388/sqrt((1.0-((cos(dal)*cos(dal))*0.00676902+1.0))
r 1=(dda)
r_2=(dct)
r_3=(dr)
r_4=(dda)
r_5 = (dda*dda)
r_6 = (dct)
dgm = (dr80.49049*dda*(r_1*r_1)*((r_2*r_2)*3.0-1.0)+(r_3*r_3)*7.4e-
4*(r_5*r_5)*dct*((r_6*r_6)*5.0-3.0))
dols=(dh+des*2.0*sin(dh-dps))
dchis=(dha+dh)
dds=((des*cos(dh-dps)+1.0)*0.668881/(1.0-(des*des)))
dcf=(sin(dal)*0.39798*sin(dols)+cos(dal)*(cos(dols-
dchis)*0.95869+cos(dols+dchis)*0.0413))
dgs=(dr*13.2916*((dcf*dcf)*3.0-1.0)*dds*(dds*dds))
dTide = (dgm + dgs) * 0.00116
```