COMMONWEALTH OF AUSTRALIA

DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES GEOLOGY AND GEOPHYSICS

RECORDS

1948/57

NOTES ON AUSTRALIAN OCCURRENCES OF CERAMIC CLAYS.

Ву

N.H. LUDBROOK

NOTES ON AUSTRALIAN OCCURRENCES OF CERANIC CLAYS.

Report No. 1948/4.

NO 57

NEW SOUTH WALES.

Clerate (Mullion Creek) 10 miles north of Orange. "Low in placticity; firing porperties satisfactory. Utilised in Sydney potteries in manufacture of whiteware". (1928)

Analysis	Per cent	
H ₂ C at 100°C	0.84	THERAL
H20 above 100°C	3.58	LIBRARY &
SiO	66.95	LIBRARY
A 12 Ö3	20.20	(Copy 2)
F0203	1.50	13 9/11
FeO -	0.27	SANRENDA . T.
CaO	0.60	GANBERRA. P.S.
Meo	0.75	
Mazo	0.20	
K ₂ 0	2.56	NON-LENDING COPY
MΩO	0.02	CENDING COPY
T102	0.63	NOT TO BE REMOVED
P205	0.05	EBON TIBE SEMONED
803	trace	FROM LIBRARY
C1	0.01	
609	0.02	
BaÖ	0.06	

No information on reserves.

<u>Dunbible</u> - 4 miles south of Murwillumbeh. "Residual clay resulting from alteration of porphyry dyke about 20 feet wide. Clay remarkably white, used mainly for the manufacture of cold water paint. Said to be suitable for inclusion in whiteware body mixture". (1928)

Analysis	Per cent.
H ₂ O at 100°C	0.90
H2O above 100°C	4.64
S 10 9	70.64
å1 ₂ 0 ₃	20.14
Pezoź	0.80
CaO	0.24
MgO	0.10
Na ₂ 0	1.13
K20	1.22

Marrangaroo (Lidsdale) 7 miles northwest of Lithgow. "Clay occurring as a bed I foot to 2 feet 6 inches thick at the base of No. 3 coal seam in the upper coal measures. Clay lacking in plasticity, very hard and strong when air dried. Becomes white and stell-hard on firing. Used in potteries when a vitrified body is required". (1928)

Analysis	Per cent
H ₂ O at 100°C	3 . 04
H ₂ O 100°C	4.54
8102	67.84
Al203	16.86
Fe ₂ 0 ₃	2.70
Pe0	0.27
Ca0	0.52
MgO	0.75

Marrangaroo.

malysis	(Cont.)	Per cent.
Na ₂ 0	•	0.38
Χ ϩ Õ	<i>E</i>	3.06
TĪ02		0.10

Mudgee (Gulgong District) - A number of deposits of clay derived from alteration of silurian slates occur in the district. Low in plasticity, vitrify at a relatively low temperature, and have a good firing range between vitrification and the commencement of bloating. Extensively used in Sydney potteries.

Near Puggoon clays also associated with granite; are plastic; have a good body feel. (1928)

Auglysie	Ren cent.	*
H ₂ 0 at 100°C	0.34	
H ₂ C above 100°C	3.82	
8102	70.18	APP 161
A1203	19.16	
Fe ₂ 0 ₃	0.70	181 181
PeO	0.18	H' P. I'
CaO	0.18	r
Mg0 Na90	6.4 7	
k ⊋Ō	4.12	
TIO2	0.60	
P2 ^C 5	trace.	

Mudgee (Puggoon).

AURLYS18	Per cent.
S 10 9	56.76
S10 A1263	28.75
Pe ₂ 03	8: <i>7</i> 5
TiŌ2	0.70

Sydney District - High-grade clays in the Sydney district are obtained from three sources, namely (a) Wianamatta shale, (b) Hawkesbury sandstone, (c) Dykes intrusive into (a) and (b).

- (a) Wianamatta Shale Formation. Relatively small amounts of ceramic clays have been won from weathered shale beds, chiefly at Heathcote, Loftus and Engadine.
- (b) Hawkesbury Sandstone Formation. Lenticular shale beds within 200 to 300 feet of the top of this formation, are an important source of supply of ball and semi-ball clays. Principal deposits are at Asquith, Brookvale, French's Forest and Hornsby. Brookvale deposit has been the main source of high-grade clay in New South Wales.
- (c) Intrusive Dykes. Plastic clays containing noteworthy percentage of titanium occur in dykes intrusive into the Triassic rocks of the Sydney district. Exact details of occurrence are not stated, but they have been used in Sydney potteries for a long time.

Ceramic clays are also known to occur at the following localities -

Pambula.

<u>Anelysis</u>	Per cent.
8102	(72.80 (free and combined) (11.64
Al203	9.16

Pambula

Analysis (Cont.)	Per cent.
Pe ₂ O ₃	1.05
Pool of a second second	0.14
ugo	0.18 Wi
CaO	0.16 (A)
ЙаоО	0.05
1.	2.41
150 ()	1.56
H90 (-)	0.30
TiOo	0.24
Pa05	0.06
CI (as NeCl)	0.24

Marulen

Analysis	Per cent.
H ₂ O at 100°C H ₂ O above 100°C S102	0.42 5.23 74.80 16.77 a. P.W. D. M., 1905 0.50 0.18
A1203 Fe203 Fe0 Ca0	0.50 0.18 0.18
Ngo Na20 K-0 To-/H-0	0.18 0.34 1.06 0.64
P ₂ C ₅ SC ₃ Organic matter	abs. abs. trace

No Long

H2O at 100°C	0.34
H20 above 100°C	8.77
8102	66.42
A1 ₂ Ō ₃	21.95
Fe ₂ 0 ₃	1.10
CaO	0.20
MgO	trace
Ne ₂ 0	0.08
K ₂ 0	0.04
M n O	0.03
T10g	0.85
P205	trace.

Mount Werong

Analysis	Per cent.	
810,	71.4	
A1203	20.0 (including any T	

Ulladulla

	The Martin Lynn Hard Table 2 - 1-2	•
	Analysis	Per cent.
	H ₂ 0 at 100°C	1.1/ P
•	Combined water	13.88
	810,	43.45
	· · · · · · · · · · · · · · · · · · ·	1.17 13.88 13.45 (A)
1 - 154 A Z	FaŌ	.18
	Al203	39.21
	GRO 7	•23
Date of a species	Mao	.02
$\Gamma(\mathcal{D}_{G_{n}}, \mathcal{L}^{W_{G_{n}}}) = I$	K-0	.17
	NE-0	•25
	Ροΰς	•06
	V302	•03
	π₹ο 2	1.05
	NeCI	•06
	The state of the s	* * *

Other Localities - Dubbo, Goulburn, Rockley (Main Ridge) and Walcha. No analyses are available for these localities.

The following production of kaolin (including filler clays) is recorded for 1946 -

Diatrict	tons	£
Darrebe	1.7	13
Blayney	8	24
Gulgong	13761	13869
Gunn in g	6	18
Mudge e	498	618
Oberon	10	14
Orenge	253	507
Pambula	150	200
Furices	26	99
(Amileorumion		_ 2
Urena	6300	6029
	21021	21.393

This does not include 935,160 tons valued at £170,482 of brick and pottery clays produced in Sydney District.

CUESICILEID.

Pottery clay or kaolin has been recorded from the following localities. No analyses have been given.

Robe Vale Colliery, Dinmore.

Haly Creek - 10 miles south-south-west of Kingaroy.

Namengo Gold and Mineral field.

VICTORIA.

Pottery clay is mined and marketed by various firms. Ball clay is obtained from the following localities.-

Rowsley

Analysis	er cent.
Ignition loss	6.9 63.5
A12 ⁰ 3 P 02 ⁰ 3	3
Mg0	.83 89
K20°	1.29 .06

olaboxa

Analtonia	rer cent.
Ignition loss	.7.5
310 ₂	6T.0
A1203	71.00
Fe2 ⁰ 3	1.50
CaO	.81
	1.57
Ŕ - O	1.52

Campbellfleld

AMALTELE		
Lenition	loss	5.7
310 ₂		68.8

Campbellfield

Anglycie (C	ont.	Fer cent.
A l2 03		23.4
Fo ₇ O ₇		1.96
CaŌ		•69
MgO	4.7	.5
T109		-

China clay is obtained from the following localities -

Gordon

<u>Analvais</u>			Fer cent.
Ignition SiO ₂ Al ₂ O ₃	1088		13.2 48.4 37.4
Pe203		9	.0101
CaO			
MgO		474	.05
T102			•4
Mn02			.002

Lal Lal

Analysis		er cent.
Ignition lo Sio Al263 Paco	988	12.8 19.0 37.9
CaC. ³		4
Ti02 MnO2	,	64

Other localities from which kaolin has been recorded are Briagolong, 17 miles north of Sale, Ballan, Ballarat District, Bendigo, Berringa, Bacchus Marsh, Heathcote, Lilydale, Linton - 20 miles west-south-west of Ballarat, Stawell.

SOUTH AUSTRALIA.

Most of the South Australian occurrences are described in Jack, R.C. "Clay and Cement in South Australia", Geological Survey of South Australia, Bulletin No. 12.

Most of the deposits of pottery clay occur within a few miles of Adelaide.

It might be possible to obtain a copy of Bulletin No. 12 by application to the South Australian Mines Department.

TAMANIA.

Many deposits of clay are known to exist, but no investigation of these has been made. Domestic pottery is manufactured in Launceston from local clay.

Ball clay has been recorded from Beaconsfield, Forcet and Chinaclay, from George's Bay, Hagley, Kingston, St. Helens, the Upper Derwent Valley and Beehan. Most of these are said to be good quality clays, suitable for creckery.

WHSTERN AUSTRALIA.

The State is said to be abundantly supplied with every type of clay. No details of analyses are available but white clay and ball clay have been recorded from -

Baker's Hill - 30 miles east-north-east of Perth (considered in 1919 to be suitable for chinaware).

Bolgart - 62 miles north-east of Perth.

Denmark - 30 miles west of Albany.

Donnybrook - 115 miles south of Perth.

Glen Forrest - 17 miles east of Ferth.

Goomalling - 75 miles cast-north-east of Perth.

Cosnella - 13 miles south-east of Perth.

Jimperding - 37 miles north-east of Ferth.

indee Station

Morewa West - 180 miles north of Perth.

Mount Helena - 25 miles east of Ferth.

Mount Kokeby - 70 miles east-south-east of Perth.

Wagin - 130 miles south-cent of Perth (semi refractory clay).

Westonia - 35 miles west of Southern Cross.

The Western Australian Department of Mines would no doubt supply further information on any of these deposits on request.

GANBERRA. A.C.T. Reissued 17.9.48. N.H. Ludbrook. Geologist.