



# The Geomorphology and Sediments of Cockburn Sound

Darren Skene, David Ryan, Brendan Brooke, Jodie Smith and Lynda Radke

Record

2005/10



SPATIAL INFORMATION FOR THE NATION

# The Geomorphology and Sediments of Cockburn Sound

GEOSCIENCE AUSTRALIA RECORD 2005/10

by

Darren Skene, David Ryan, Brendan Brooke, Jodie Smith and Lynda Radke





Cooperative Research Centre – Coastal Zone, Estuary and Waterway Management, c/- Geoscience Australia GPO Box 378
 Capherra ACT 2601

The Geomorphology and Sediments of Cockburn Sound

# **Department of Industry, Tourism and Resources**

Minister for Industry, Tourism and Resources: The Hon. Ian Macfarlane, MP

Parliamentary Secretary: The Hon. Warren Entsch, MP

Secretary: Mark Paterson

# Geoscience Australia

Chief Executive Officer: Dr Neil Williams

# © Commonwealth of Australia 2005

This work is copyright. Apart from any fair dealings for the purpose of study, research, criticism or review, as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Chief Executive Officer, Geoscience Australia. Requests and enquiries should be directed to the Chief Executive Officer, Geoscience Australia, GPO Box 378 Canberra ACT 2601.

Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision.

ISSN 1448-2177 ISBN 1 920871 39 X (hardcopy) ISBN 1 920871 40 3 (web)

GeoCat No. 61848

This record was originally prepared as a milestone report for the Coastal Geomorphology Subproject in the Coastal CRC Coastal Water Habitat Mapping Project.

**Bibliographic reference:** Darren Skene, David Ryan, Brendan Brooke, Jodie Smith and Lynda Radke, 2005. The Geomorphology and Sediments of Cockburn Sound. Geoscience Australia, Record 2005/10. 88pp.

# Contents

| Executive Summary                                              | iv |
|----------------------------------------------------------------|----|
| Introduction                                                   | 1  |
| Aims                                                           | 1  |
| Study Participants and Collaboration                           | 1  |
| Regional Setting                                               | 1  |
| Climate and Oceanography                                       | 3  |
| Bathymetry                                                     | 3  |
| Geology and Geomorphology                                      | 4  |
| Anthropogenic Changes                                          | 6  |
| Methods                                                        | 8  |
| Field Approach                                                 | 8  |
| Sample Analysis                                                | 8  |
| Geochemical Analysis                                           | 11 |
| Data Analysis                                                  | 11 |
|                                                                |    |
| Results                                                        |    |
| Surficial Sediments of Cockburn Sound                          |    |
| Calcium Carbonate                                              |    |
| Sediment Composition and Underwater Video                      | 12 |
| Sediment Facies                                                | 13 |
| Principal Components Analysis of Sediment and Geochemical Data | 19 |
| Fine-Fraction Metal Concentrations                             | 24 |
| Sub-Surface Sediments                                          | 29 |
| Lithostratigraphic Units                                       | 33 |
| Downcore Geochemical Data                                      | 34 |
| Discussion                                                     | 39 |
| Surface Sediment Facies                                        | 39 |
| Geochemical Relationships                                      |    |
| Sediment Metal Concentrations                                  |    |
| Quaternary Stratigraphy                                        | 41 |
| Holocene                                                       |    |
| Pleistocene                                                    |    |
| Sub-Surface Geochemical Characteristics                        |    |
| Geological Evolution of Cockburn Sound                         |    |
| Conclusions                                                    | 46 |
| References                                                     | 47 |
| Appendices                                                     |    |
| Appendix I                                                     | 50 |
| Appendix II                                                    | 60 |
| Appendix III                                                   | 64 |

# **Executive Summary**

Cockburn Sound is a large, low-energy coastal waterway located on a moderate to high-energy coast near Fremantle, Western Australia. It has formed in an elongate depression in the lee of a remnant Pleistocene shore-parallel dune ridge. This study, undertaken as part of the Coastal CRC Project at Geoscience Australia, examined the geomorphology of the sea bed, the spatial distribution of the various sediment types and the geomorphic evolution of Cockburn Sound. Sediment grab samples and 3–6 m long vibracores were collected. Samples dominantly comprise biogenic carbonates, with sandy mud and mud in the large relatively deep (15–20 m) central basin; the marginal banks (2–10 m) are composed of carbonate sand; and there is mixed carbonate and quartz sand in the eastern nearshore zone.

The stratigraphic analysis of Cockburn Sound reveals that much of the clay soil that formed on the original calcarenite land surface prior to the Holocene rise in sea level is preserved below the marine carbonate mud that has been deposited in the central basin. The central basin is partially infilled and considerable accommodation space remains for the further accumulation of muddy sediment. Up to four distinct lithostratigraphic units comprise the sediment fill identified in vibracores. The spatial extent of these units will be better defined with future acoustic sub-bottom profiling of the sound.

Submarine groundwater discharge in the central and northeastern sections of Cockburn Sound is suggested by surface sediment geochemical data and the presence of water-filled cavities within a vibracore that penetrated the Tamala Limestone that underlies the central basin sediments.

A higher proportion of fine terrestrial sediment with elevated levels of some trace metals was identified in surface sediments from the eastern side of the sound. Previously reported background metal concentrations in surface sediments are consistently higher than pre-industrial background values which have been determined from the new down-core geochemical data. Metal contamination in surface sediments, therefore, may have been greater than previously reported but there is evidence for recently improved conditions at some sites; mainly due to large reductions in discharges from industry. Importantly, the spatial distributions of trace metals in the surface sediments identified in this study need to be compared to maps of changes in the extent of benthic habitats in the sound to help identify any long-term ecological impacts of the sediment contamination, as well as their impacts on benthic habitat composition.

Our maps of surface sediment types and their characteristics provide new insights into the physical controls on the distribution of benthic habitats in the sound. These maps can now also be compared with maps of acoustic backscatter to help explain patterns in the acoustic data that has been collected as part of the Coastal CRC Coastal Water Habitat Mapping Project.

# Introduction

Cockburn Sound is a key study site for the Coastal CRC Coastal Water Habitat Mapping (CWHM) Project. At this site, benthic habitats have been mapped at a range of scales and levels of detail using a suite of acoustic and video techniques. The focus of the Coastal Geomorphology subproject in Cockburn Sound is to examine the geomorphology of the sea bed, the spatial distribution of the various sediment types and the geomorphic evolution of this basin. These new geological data will be used to ground-truth acoustic data collected in Cockburn Sound, such as the multibeam backscatter data collected using the Coastal CRC's Reson 8125 Seabat system. This study will also provide a better understanding of the physical controls on the distribution of benthic habitats in the sound and substrate data that can be incorporated into a benthic habitat classification scheme.

Several environmental surveys on the carbonate sand resources of Parmelia and Success Banks have been conducted over the last two decades. However, relatively little attention has been paid to the broader nature of the sediments and stratigraphy of Cockburn Sound, particularly in the deeper central basin. Therefore, another focus of this study is to provide a more detailed level of knowledge of the benthic environments and sediment fill in the deeper reaches of the sound, and a linkage of these to more thoroughly studied shallow habitats.

### **AIMS**

This report examines the geomorphology and sediments of Cockburn Sound through the analysis of a suite of sediment grab samples and vibracores as well as existing data in published reports and scientific papers. The specific aims of this study are to: 1) Characterise the surface and sub-surface sediments and geochemistry of Cockburn Sound from a representative set of sediment grab samples and vibracores; and 2) Develop a conceptual model of the recent evolution of Cockburn Sound (spanning the Late Pleistocene and Holocene), based on the new and existing data. Importantly, these geological data are required to enable better interpretation of acoustic sub-bottom profiles and multibeam sonar datasets that have or will be collected in Cockburn Sound as part of the Coastal CRC's CHWM Project.

# STUDY PARTICIPANTS AND COLLABORATION

The field survey and sample analysis was undertaken by Darren Skene, David Ryan and Brendan Brooke (Geoscience Australia (GA)). Assistance in the field was provided by the crew of the vessel *FP Response*, Jamie Strickland (Fremantle Ports) and Mark Small (Fremantle Ports), Lee Woolhouse (hydrographic surveyor, Fremantle Ports) and Rob McCauley (Curtin University of Technology). Lynda Radke (GA) undertook the analysis of the surface sediment geochemical data and Jodie Smith (GA) interpreted the vibracore geochemical data and completed the editing and formatting of the report. Helen Bostock (GA) assisted with editing the report. Laboratory analyses at GA were undertaken by Alex McLachlan, Neal Ramsey and Richard Brown (sedimentology) and Bill Pappas, John Pike and Liz Webber (geochemistry).

# **REGIONAL SETTING**

Cockburn Sound is an elongate, shallow, partially enclosed coastal basin with an area of approximately 124 km², located immediately south of Fremantle, Western Australia (Fig. 1). The sound is approximately 22 km long and ranges from 15 km wide in the north to 9 km wide in the south and sits between the mainland and a remnant Pleistocene dune ridge that forms Garden Island. This relatively quiescent coastal water body has contrasting shoreline environments with heavy industry along much of its eastern coast whereas the western shoreline of Garden Island, apart from the naval base at Careening Bay, is largely undeveloped.

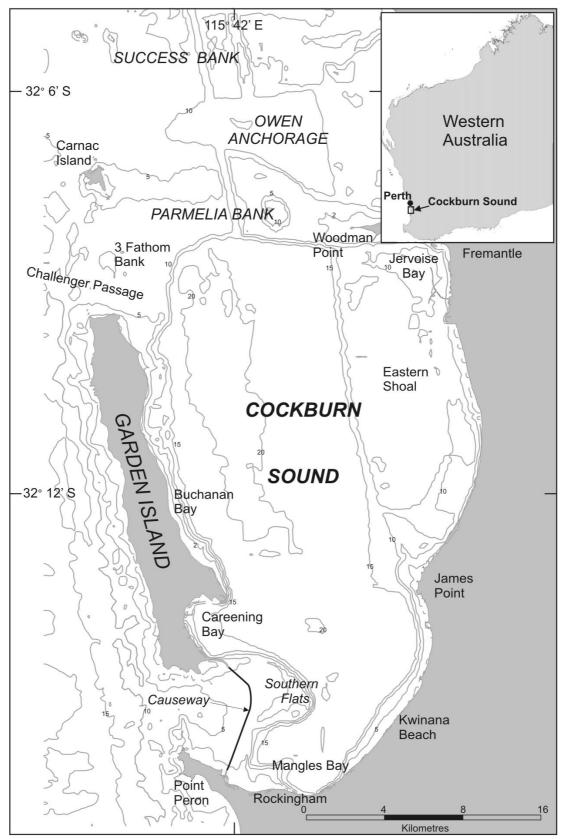



Figure 1: The location and bathymetry of Cockburn Sound. Depths are shown in metres.

### **CLIMATE AND OCEANOGRAPHY**

Cockburn Sound forms part of the coastal margin of the Rottnest Shelf which is characterised by a high energy swell-wave regime and subtropical waters (water temperatures range between 16 to 20°C) that are influenced by the warm, low-nutrient waters of the Leeuwin Current (Collins, 1988). The wind regime for the region varies seasonally with the dominant onshore winds from the southwest operating in summer (October to April), whereas winter winds are more variable and lower in strength. However, storms during winter and spring generate strong north westerly to south westerly winds, producing large waves (6-7 m), and enhanced tides. Swell waves are generated by the extreme fetch of the Southern Ocean (known as the 'Roaring Forties') throughout the year. Wave data for outside Cockburn Sound between 1970 to 1976 indicated a maximum significant wave height of 5.1 m, with a maximum peak wave height of 8.5 m. Offshore wave conditions are more severe and variable during winter and spring, due to the passage of fronts and associated high and low pressure systems, while in Careening Bay (Fig. 1) wave conditions may be more severe and variable during spring and summer due to prevailing southerly winds. In contrast, within Cockburn Sound waves consist primarily of low amplitude 'wind chop' with a maximum recorded wave height in the order of 1 m (Department of Construction, 1977). Tides in Cockburn Sound, like the open coast of southwest Australia, are micro-tidal and mainly diurnal, with a maximum spring tide in the order of 0.9 m (Hearn, 1991).

Complex circulation patterns occur within the semi-enclosed waters of Cockburn Sound due to horizontal wind-pressure gradients, tides, waves, atmospheric pressure, changes in water density, and continental shelf waves (Pattiaratchi *et al.*, 1995; DAL, 2002). Due to combinations of these effects, three seasonal hydrodynamic regimes have been identified (Department of Environmental Protection, 1996). In summer the circulation is primarily wind-driven, during autumn the wind subsides and circulation is determined by atmospheric pressure gradients, while in winter and spring the circulation is driven primarily by pressure gradients with infrequent periods of wind-driven circulation due to storms. The exchange of water between Cockburn Sound and the open ocean is restricted by Parmelia Bank to the north and a narrow southern channel. As a consequence, flushing times are slow and estimates of the period required for 63% of the water body to be flushed range from 22 days in winter to 44 days in summer (Department of Environmental Protection, 1996; DAL, 2002).

# **BATHYMETRY**

Cockburn Sound comprises a large, low gradient basin area confined by shallow banks to the north and south (Fig. 1). The broad and relatively deep central basin, which gently slopes from the 17 m isobath to a maximum depth of 22 m, is flanked by the relatively steep slopes of the surrounding banks, shoals and shoreline to the north, south and Garden Island to the west, and a lower gradient bank to the east (Fig. 1). The Eastern Shoal is a relatively planar feature with an average water depth of approximately 8 m. Isolated limestone reefs (approximately 4 m water depth) outcrop along the western margin from James Point to Woodman Point. Cockburn Sound is bounded in the north by Parmelia Bank, a large, shallow (average water depth 5 m) sand bank extending from Carnac Island to Woodman Point. A north-south navigation channel has been dredged across Parmelia Bank to provide access for large vessels to the sound (Fig. 1). Challenger Passage provides access to the ocean for smaller vessels on the northwest margin of the sound. At the southern end of the sound there is a narrow inlet to the open ocean between Cape Peron and Garden Island. The inlet is flanked by an extensive sand bank, the Southern Flats, where water depths are only a few metres. The southeastern (south of James Point) and western margins (bordering Garden Island) of the sound are characterised by quite narrow sand banks less than 500 m wide where the water depth shoals rapidly to a couple of metres.

### **GEOLOGY AND GEOMORPHOLOGY**

The Quaternary geological units for the inner Rottnest Shelf have been described by several researchers (Searle and Semeniuk, 1985; Semeniuk and Searle, 1985; Semeniuk and Searle, 1987; Searle *et al.*, 1988) and the published lithostratigraphic classification is summarised in Table 1. Cockburn Sound has developed within an elongate depression that forms a margin between the Swan Coastal Plain and the Rottnest Shelf, known as the Cockburn-Warnbro Depression (Fig. 2). The deeper sections of this depression were likely formed by the solutional (karst) weathering of the Tamala Limestone during periods of low sea level. Cockburn Sound contains a variety of terrestrial and marine deposits and Pleistocene dune ridges (Fig. 2; Fairbridge, 1948; Playford *et al.*, 1976; Collins, 1988; Searle and Semeniuk, 1988; Searle *et al.*, 1988; Kelletat, 1991). The relict dunes, which form part of the Tamala Limestone Formation, were emplaced as coastal sand barrier deposits during or shortly after the last interglacial period approximately 120,000 to 80,000 years ago (Price *et al.*, 2001). As sea level fell below the present-day shelf during the last glacial period, the carbonate-rich sand dunes were subjected to weathering, soil formation, and subsequent cementation.

Following the last glacial maximum (~18,000 years ago), sea level began to rise and flooded the Rottnest Shelf, reaching its current level around 6,500 years ago. During the post-glacial marine transgression, a phase of rapidly rising sea level in the early to middle Holocene, the limestone ridges were significantly eroded by wave action and now form the current line of remnant islands and submerged reef that extends from Point Peron to Rottnest Island (Fig. 2).

Since sea level became relatively stable in the middle Holocene, large volumes of sediment have been transported across the shallow shelf and thick sand accumulations such as Success and Parmelia Banks began to develop (France, 1977; Coastal and Marine Geosciences, 1998a, b). The extensive series of beach ridges immediately south of Point Peron also began to build out from the coast at this time (Woods and Searle, 1983; Searle *et al*, 1988). Although carbonate sediment has been accumulating in Cockburn Sound during the last 7,000 years, the sheltering effect of Garden Island has restricted the ingress of carbonate sand that has piled up in sand banks on the northern and southern margins of the sound (Semeniuk and Searle, 1987; Searle and Semeniuk, 1988).

**Table 1:** Stratigraphic column detailing the main Quaternary sequences found in the vicinity of Cockburn Sound

|             | LITHOSTRATIGRAPHIC UNIT                          | SEDIMENT DESCRIPTION                                                         |  |  |
|-------------|--------------------------------------------------|------------------------------------------------------------------------------|--|--|
| HOLOCENE    | Lacustrine and swamp sediments                   | Peaty clay and sandy silt                                                    |  |  |
|             | Safety Bay Sand                                  | Beach ridges and dunes composed of calcareous quartz sand                    |  |  |
|             | Becher Sand                                      | Grey quartzo-skeletal muddy sand with seagrasses (Semeniuk and Searle, 1985) |  |  |
|             | Bridport Calcilutite (Early Holocene to Present) | Grey primarily carbonate mud (Semeniuk and Searle, 1987)                     |  |  |
|             | Ridge Apron Facies                               | Eroded Pleistocene aeolianite derived from the Tamala limestone              |  |  |
| PLEISTOCENE | Tamala Limestone                                 | Cemented aeolianite and shallow-marine carbonate sequences                   |  |  |

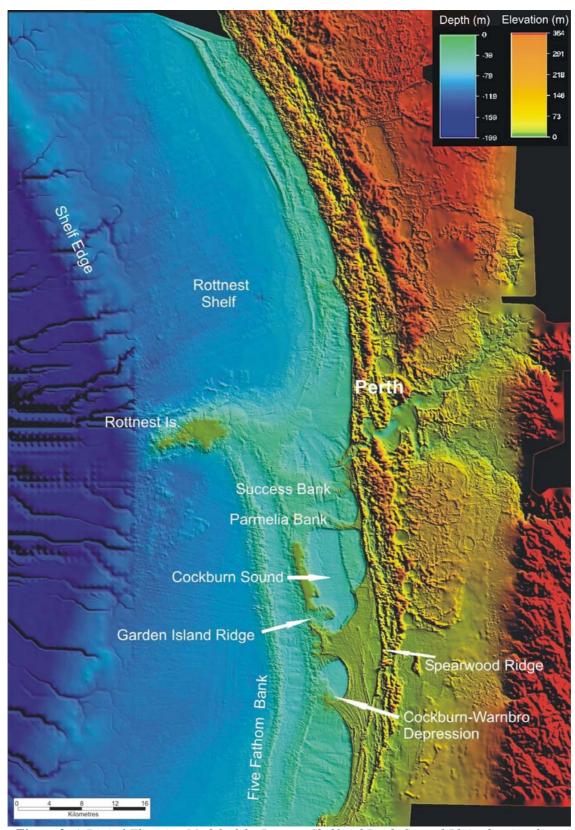



Figure 2: A Digital Elevation Model of the Rottnest Shelf and Perth Coastal Plain showing the major geomorphic features of Cockburn Sound and the adjacent coast.

### ANTHROPOGENIC CHANGES

Considerable human alteration of Cockburn Sound has occurred since European settlement of the area during the 1800s. This includes industrial development and building of ship loading facilities on the mainland coast, dredging for shipping channels within Parmelia Bank and the Eastern Shoal, and construction of a causeway across the southern opening between the mainland and Garden Island (Fig. 1). Extensive industrial development in Cockburn Sound began in 1954 with the construction of an oil refinery on its eastern shore. Subsequent development has been rapid and the area now includes iron, steel, alumina and nickel refineries and processing plants, chemical and fertilizer plants, a wastewater treatment plant, electricity station and a bulk grain terminal (Department of Environment, 2005).

Industrial discharge of pollutants along the east coast has included the metals Cd, Cu, Fe, Pb and Zn (Murphy, 1979; Rosman *et al.*, 1980), organic compounds (pesticides and petroleum products) and nutrients, most notably nitrogen. Tributyltin, from anti-fouling paint, is also an issue in the southern section of the bay (DAL, 2001). These industrial waste discharges into Cockburn Sound were made on the incorrect assumption that the waters of the sound are regularly flushed. Efforts were made to reduce pollution in industrial discharges that were identified in studies conducted in the 1970's (Department of Conservation and Environment, 1979) and by the early 1980's water quality had significantly improved (Department of Environment, 2005). However, water quality again declined in the late 1980's and it was subsequently found that up to 70% of the total nitrogen load to the sound was entering the bay through the groundwater system (Department of Environmental Protection, 1996). Contamination of the groundwater by nitrogen is a significant environmental issue, with N concentrations up to 220 mg L<sup>-1</sup> in shoreline sediment pore water and up to 130 mg L<sup>-1</sup> in offshore bottom sediment pore water (Smith *et al.*, 2003). Groundwater N loads to the sound have recently been estimated as 234 ± 88 t yr<sup>-1</sup> (Smith *et al.*, 2003).

Groundwater flows into Cockburn Sound from the east through Quaternary and recent sediments that form the regional unconfined aquifer. Discharge occurs both along the shoreline and at several offshore sites. Significant discharge has been measured in a narrow zone along the eastern shore, while submarine discharge points have been inferred from echosounder profiles of the water column and bottom sediment pore water chemistry (Smith *et al.*, 2003). However, the offshore sites of discharge have not been directly identified on the seabed. Possibly, they are related to solutional features in the Tamala Limestone, the porous limestone bedrock (Smith *et al.*, 2003).

Large quantities of metal contaminants have been discharged into Cockburn Sound from heavy industry on the eastern shoreline. These discharges impact the water quality and can settle out of the water column or bind with the fine fraction of surficial sediments. Analysis of sediments, compared to water monitoring, provides a longer-term assessment of the state of the marine environment. When compared with sediment quality guidelines that have been produced by the Australian and New Zealand Environment and Conservation Council (ANZECC, 2000), this also provides a tool for the assessment of environmental health.

The 1976-1979 Cockburn Sound Environmental Study found widespread metal contamination of sediments in the sound (Department of Conservation and Environment, 1979). Talbot and Chegwidden (1983) also examined the build up of several heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in sediments within Owen Anchorage, Cockburn Sound and Warnbro Sound. Anomalous and background values were estimated for each metal measured within Cockburn Sound and Owen Anchorage, and more than half of the metals in sediments from Cockburn Sound were above background levels. The contamination was found to be related to industrial discharge from Woodman Point (metropolitan sewage discharge) and James Point (steel mill, oil refinery and

superphosphate plant). Subsequent sediment studies within the sound in 1994 (Department of Environmental Protection, 1996) found that contamination levels had decreased significantly when compared with results reported in the 1976 to 1979 study due to large reductions in wastewater discharges. The 1994 study found metal levels in Cockburn Sound were below Department of Environmental Protection draft guidelines except for arsenic and mercury in some areas near industries or harbours (DAL, 2001). The 1999 study found that levels of all metals were well below the national 'Interim Sediment Quality Guidelines' (ISQG; ANZECC, 2000) for the protection of marine ecosystems. Attempts were also made in the 1999 survey to determine the natural levels of metals (Cr, Cu, Pb, Ni and Zn). Based on these values, it was indicated that there was lead contamination near areas of shipping and widespread zinc contamination throughout the sound.

At the southern end of Cockburn Sound, a causeway links the mainland at Point Peron to the southern end of Garden Island. It was completed in 1973 to provide vehicular access to the naval base at Careening Bay. Two openings were built into the causeway to maintain some water exchange, however, the southern channel has been reduced from 2 km wide prior to construction of the causeway to two separate channels that are 305 m and 610 m wide (DAL, 2002). The causeway has significantly reduced exchange between Cockburn Sound and the ocean, especially for the southern area. The exchange through the southern opening has been restricted by approximately 40%, and the overall flushing of the sound has been reduced by 30 to 50% (Department of Environmental Protection, 1996). However, water quality was a problem in Cockburn Sound prior to construction of the causeway, as noted above. Extensive areas of seagrass were lost due to poor water quality between 1954 to 1978 and approximately 260 ha were lost in Mangles Bay and Southern Flats, and 440 ha between Rockingham Beach and James Point (Fig. 1; Cambridge, 1979).

# Methods

# FIELD APPROACH

A total of 63 surface sediment grabs and 12 vibracores were collected throughout Cockburn Sound during a field survey in March 2004 (Figs. 3 and 4). The field work was conducted from the vessel *FP Response* hired from Fremantle Ports and the sediment sample sites were loaded into the vessel's differential global positioning system (DGPS), allowing the ships master to subsequently position the vessel accurately over the sample site. The majority of the surface sampling was conducted using a small (0.5 L) stainless steel Van Veen grab (Fig. 5) which was loaned from Quaternary Resources Pty Ltd. The grab was deployed and recovered by hand. Because of the small capacity, two grabs were collected at the majority of sites to ensure that there would be a large enough sample for the analyses. Several grabs per site were necessary where there were extensive seagrass beds because of limited sediment recovery at these sites. The remaining grabs were collected using a larger (8 L) Van Veen grab.

The drilling was carried out using a vibracoring system hired from Quaternary Resources Pty Ltd. The method uses a submersible, electrically driven, vibrating head to drive a disposable aluminium core barrel (80 mm OD, 76 mm ID) into the seabed (Fig. 5). Up to 6 m of core were collected at some sites. At each location the water depth, time and GPS position of the vibracorer off the stern of the vessel was recorded. Once the core barrel was removed from the vibracorer, the length of sediment recovered in the barrel was logged. The grab samples and vibracores were transported to GA where they were stored in a cool-room until examined. Underwater video traverses were also collected for representative sections of the various benthic environments of Cockburn Sound during March 2004 (Fig. 3). This survey was undertaken by project members from the University of Western Australia using a towed underwater video system (Fig. 5).

# **SAMPLE ANALYSIS**

Surface sediment samples were described lithologically and then subsampled for measurements of grain size and calcium carbonate (CaCO<sub>3</sub>) content in the Sedimentology Laboratory at GA. Subsamples were also collected for the measurement of trace and major elements by X-Ray Fluorescence (XRF) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in the Geochemistry Laboratory at GA. Vibracore barrels were split longitudinally to expose the core sediments, photographed and logged prior to sampling. Logging included visual estimation of colour, texture and composition of the various lithologic units, along with notes on any major stratigraphic changes. Samples of the various lithological units were collected from half of each core for grain size and CaCO<sub>3</sub> content and XRF-ICPMS (cores CSV03, CSV04, CSV05, CSV06, CSV07 and CSV09 only) and the other half was retained and archived.

Samples were analysed for sediment grain size using standard sieves and by laser diffraction using a Malvern Mastersizer 2000 (Malvern Instruments Ltd, Worcestershire, UK). Laser diffraction measures particle assemblages in the 0.02-2000  $\mu$ M size range as volume percentages. The percentage of calcium carbonate (of the combined sand and mud fraction only) was determined using the 'carbonate bomb' method (Muller and Gastner, 1971). Briefly, 20% orthophosphoric acid was warmed to 50°C and placed in a warm (35°C) Perspex chamber. The dried and crushed sediment samples, weighing 0.9 g, were introduced to the chambers. Pressure gauges were screwed onto the top of the chambers forming a seal. The chambers were agitated until all the carbonate dissolved, producing  $CO_2$  gas. The mass of carbonate was determined by a calibration curve of  $CO_2$  gas pressure as a function of carbonate content. The accuracy of the method is  $\pm 0.5\%$  (Muller and Gastner, 1971).

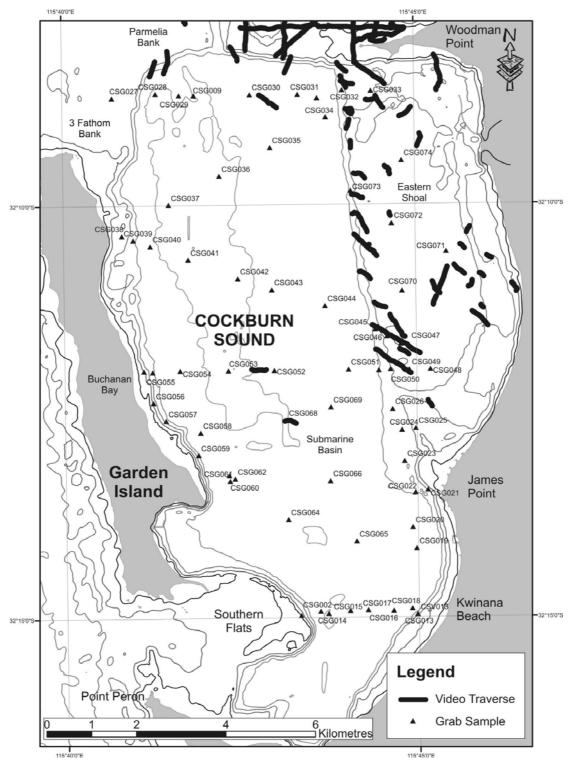



Figure 3: The location of sediment grab samples and video traverses within Cockburn Sound.

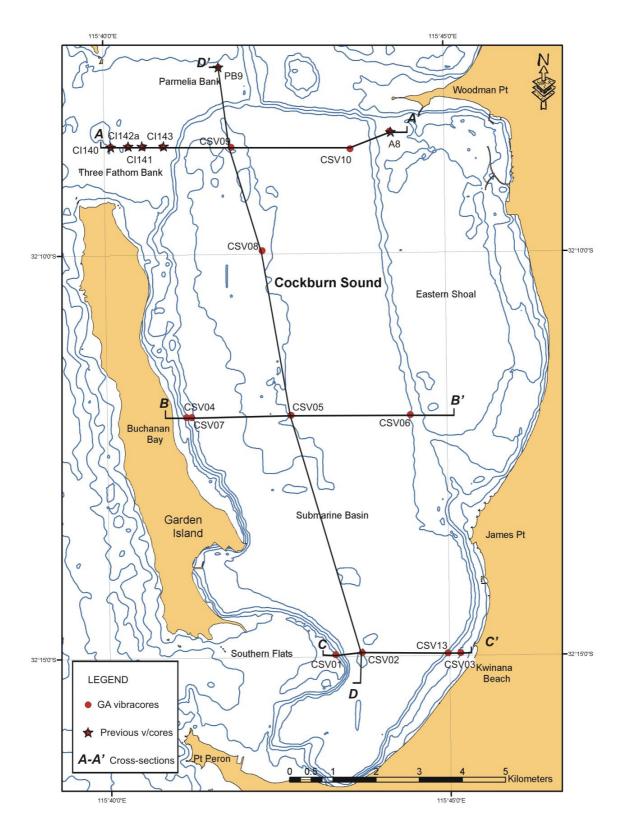



Figure 4: The location of vibracores and stratigraphic cross sections within Cockburn Sound (CSV12 is located in Owen Anchorage to the north of the map area).



Figure 5: Sediment sampling and underwater video equipment used in this study. A) Van-veen type grab sampler; B) Submersible vibracorer; C) Towed underwater video camera used by the CWHM team from University of Western Australia.

# **GEOCHEMICAL ANALYSIS**

Sub-samples were wet sieved using a 63  $\mu$ m nylon sieve and deionised water to separate the fine (<63  $\mu$ m) fraction from the bulk sample. Major element concentrations as oxides were determined by XRF using a modified version of the Norris and Hutton (1969) method whereby no heavy absorber was added to the flux. The instrumentation used was a Philips PW2404 4kW sequential spectrometer. A full description of the XRF method is given in Radke *et al.* (2004). Trace elements (including rare earth elements) were determined by ICP-MS at Geoscience Australia using a Perkin Elmer Elan 6000. The analysed XRF fusion discs were shattered and approximately 0.1 g of sample was weighed into Savillex teflon vessels. 5 ml of internal standard, 1 ml of distilled HF and 5 ml of distilled HNO<sub>3</sub> was added and the vessels sealed and heated for 12 hours at 120°C on a timed hotplate. The cooled samples were diluted with distilled water and analysed by ICP-MS. The instrument was calibrated against Australian Soil and Plant Analysis Council (ASPAC) standards, and a range of United States Geological Survey (USGS) and South African Reference Material (SARM) standards.

# **DATA ANALYSIS**

Various sedimentological and geochemical parameters and sample site PCA scores were plotted on a map of Cockburn Sound using *ArcGIS 8.3* software. The ESRI application *ArcGIS Spatial Analyst* was utilised to interpolate measured parameters employing an inverse-distance weighted contouring algorithm. Principal Components Analysis (PCA) was performed on the combined geochemical and sedimentological data using *Statistica 6* to investigate spatial patterns in, and significant relationships between, the physical and chemical composition of sediment samples from the bed of Cockburn Sound. The input variables included major element oxides and trace elements (<63 µm fraction only), proportion of CaCO<sub>3</sub> and the following grain size parameters: modal grain size, percentages of sand, mud and gravel, clay:silt ratio, skewness, kurtosis and a sediment sorting index (*i.e.* the standard deviation of the grain size/mean grain size). One sample (CSG027) was excluded from the PCA because the sample contained insufficient mud for an accurate measurement of this fraction. The grain size parameters were based on bulk sediment samples. The major element oxide and trace element datasets were log-transformed prior to analysis to improve the normality of their distributions.

Nd/Sr and K<sub>2</sub>O/Al<sub>2</sub>O<sub>3</sub> ratios (log transformed) were also integrated into the analysis. The Nd/Sr ratio is used to help trace the plume of terrestrially derived sediment into Cockburn Sound. Neodymium (Nd) is almost exclusively derived from terrestrial sources (McCulloch *et al.*, 2003), whereas Sr is abundant in seawater (~8 mg kg<sup>-1</sup>) and found in appreciable concentrations in marine carbonates. In comparison, the K<sub>2</sub>O/Al<sub>2</sub>O<sub>3</sub> ratio has been successfully used as an index of chemical weathering in estuaries in southwest Western Australia (Radke *et al.*, 2004).

# Results

# SURFICIAL SEDIMENTS OF COCKBURN SOUND

Surface sediment grain size characteristics for Cockburn Sound are presented in maps of mean grain size (Fig. 6), relative sediment grain sorting as defined by grain size standard deviation normalised to mean grain size (Fig. 7), and pie charts showing relative percentages of gravel, sand and mud for each sample site (Fig. 8). The results of all sedimentological analyses are provided in Appendix I (Table A1.1, A1.2).

Sediments within the central basin are dominantly fine with the mud content increasing in the south and southwest of the sound (Figs. 6 and 8). Coarser, mainly sandy sediments are confined to the sand banks and shoals as well as the margins of the sound. Samples from Parmelia and Three Fathom Banks in the north and Southern Flats to the south are almost exclusively sand with a low proportion or absence of mud (Figs. 6 and 8). Gravel deposits are confined to the Eastern Shoal and the western margin of the sound, adjacent to Garden Island (Fig. 8). Figure 7 indicates that the coarser sediments located on Three Fathom Bank, Eastern Shoal and the Southern Flats tend to be better sorted whereas the central basin sediments show a greater range in grain size.

# **Calcium Carbonate**

The highest proportions of calcium carbonate (CaCO<sub>3</sub>) occur on the banks at the northern and southwestern margins of Cockburn Sound, typically 80 to 90% CaCO<sub>3</sub> (Fig. 9). The proportion of CaCO<sub>3</sub> in the sediment samples appears to be related to mean sediment grain size (Figs. 6 and 9). CaCO<sub>3</sub> concentration in the muddy sand ranges between 77 and 87% (average 82%). Lower percentages, from 60 to 66%, were found in a number of sand samples collected on the Eastern Shoal and may be due to the mixing of the carbonate sand with quartz sand derived from the erosion of the underlying Tamala Limestone or the reworking of relict sand deposits. The lowest proportion (53%) is associated with gravely sand collected in the southeastern section of the sound, offshore from Kwinana Beach.

# **Sediment Composition and Underwater Video**

On the shallow northern banks and southern flats of Cockburn Sound the seabed consists of light grey, relatively uniform, moderately sorted, fine to coarse grained sand with varying proportions of shell gravel (fragments and whole shell), seagrass fiber and decaying seagrass fragments. Video footage from Parmelia Bank shows these sediments form the substrate of extensive seagrass meadows and patches of seagrass which alternates with bare sand flats, some covered with decaying seagrass debris.

The seabed of the Eastern Shoal comprises grey, very poorly sorted, very fine to very coarse grained muddy sand with scattered carbonate gravel (0 to 18% shell and foraminifera) and occasional blackened seagrass fragments. Gravels include *in situ* mollusc shells usually associated with seagrass and eroded fragments of limestone reefs that form talus slopes. Video footage across parts of the Eastern Shoal reveals patches of exposed limestone reef, especially along the western edge of the shoal. The adjoining slope that grades down to the central basin is strewn with calcarenite gravel in places.

The central basin is characterised by fine grained sediment in water depths greater than approximately 15 m. These deposits are cohesive, greenish-grey, poorly sorted, very fine grained, sandy carbonate muds (clayey silt) with varying proportions of shell fragments and whole shell. Localised high proportions of gravel in the central basin are typically related to isolated shell

deposits. Video transects of the floor of the central basin show a relatively flat, bioturbated seabed with patches of unidentified vegetation (e.g. macroalgae). Scattered large shells and carbonate encrustations are also evident.

# **Sediment Facies**

Four distinct sediment types were identified based upon the sedimentological analyses of the samples of surface sediment (Fig. 10).

Nearshore Quartz Sand (Gravelly shelly mixed carbonate/quartz sand): This unit comprises light greyish brown, fine to coarse grained (mean: 0.43 mm; standard deviation: 0.36 mm), poorly sorted, gravelly sand with a low fine material (<63 um) content of <5%. The total calcium carbonate content is >55% and comprises mainly broken fragments of molluscan shells, some gastropods, echinoids and bryozoa and abundant whole foraminifera (to 8 mm diameter). The carbonate fraction is platy while the quartz fraction is composed of rounded to well rounded, medium to very coarse grains.

Carbonate Banks (carbonate sand): This unit features a high carbonate content (typically ~90%), and an average mean grain size of 0.34 mm (range: 0.25-0.43 mm; standard deviation: 0.17 mm). The total amount of fine material is <5%. This unit was encountered at Parmelia Bank and Southern Flats, at the northern and southern margins of Cockburn Sound respectively; on the eastern shore of Garden Island; and to the north of Garden Island as a sheet blanketing the Three Fathom Bank (Fig. 10).

Eastern Shoal Sediments (Carbonate muddy sand): This unit features an average mean grain size of 0.29 mm (range: 0.12 - 0.43 mm; standard deviation: 0.28 mm). The calcium carbonate component typically exceeds 80% and the fines (<0.063 mm) range from 11 to 50% (average 27%). This facies occurs on the Eastern Shoal and the slopes surrounding the central basin and also mantle the seabed in the northern margin of the central basin (Fig. 10).

Central Basin (Carbonate sandy mud/mud): The average mean grain size of this facies is 0.062 mm (range: 0.023-0.12 mm: standard deviation: 0.11 mm). In this unit the proportion of fines ranges from 56 to 93% (average 76%). The calcium carbonate content averages approximately 80%. The proportion of mud in the central basin increases to the southwest. This pattern appears to be the result of reduced circulation within these regions, allowing suspended sediment to be deposited. This deposit covers the deeper reaches of the sound (Fig. 10).

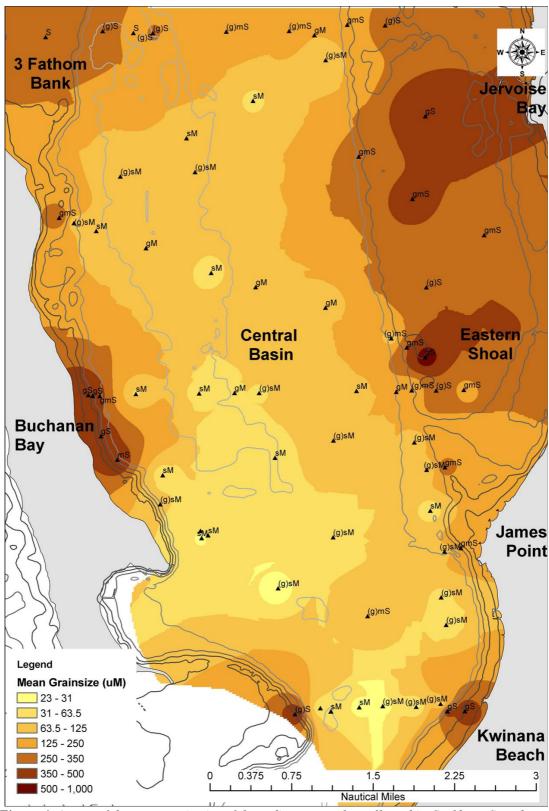



Figure 6: A map of the mean grain size of the sediment samples collected in Cockburn Sound. Sample sites are coded using grain size descriptors, (g)sM: gravely sandy mud; sM: sandy mud; gM: gravely mud; mS: muddy sand; gmS: gravely muddy sand; gS: gravely sand.

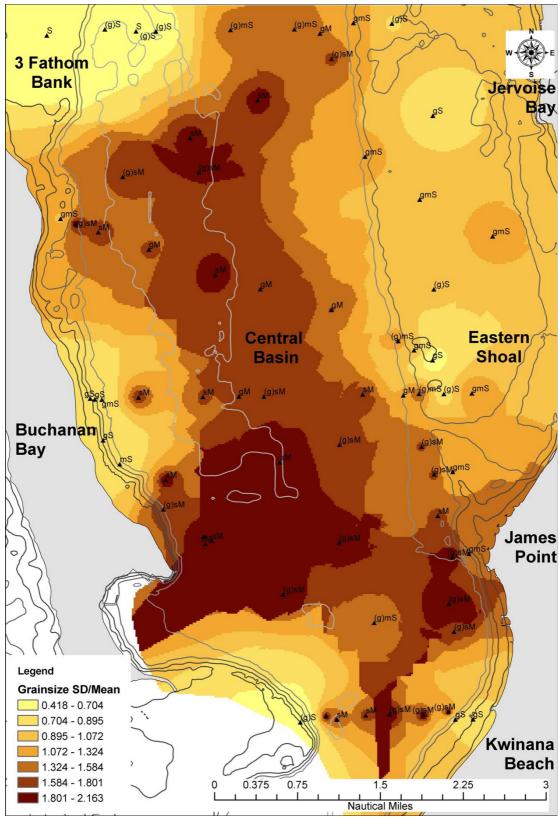



Figure 7: A map of the degree of sorting in the sediment samples collected in Cockburn Sound as indicated by the standard deviation/mean grain size ratio.

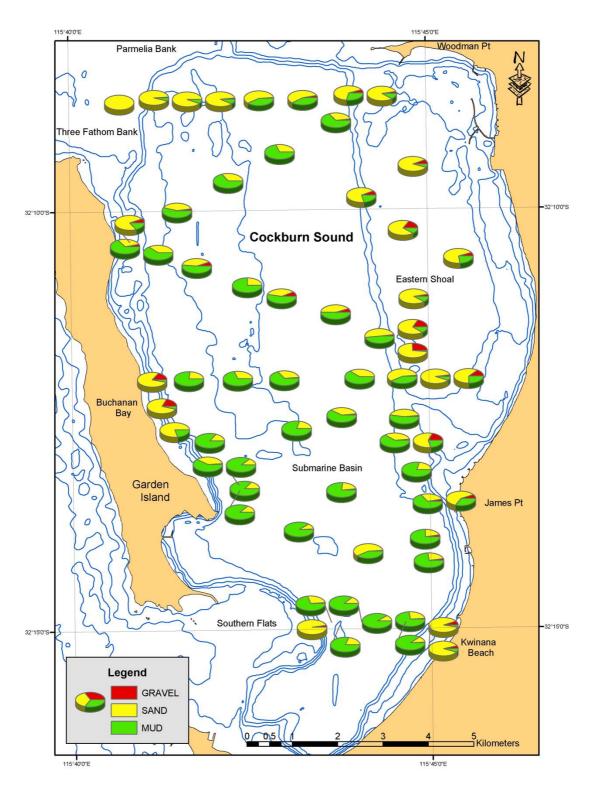



Figure 8: The proportion of gravel, sand and mud in the sediment samples from Cockburn Sound as determined by sieve measurements.

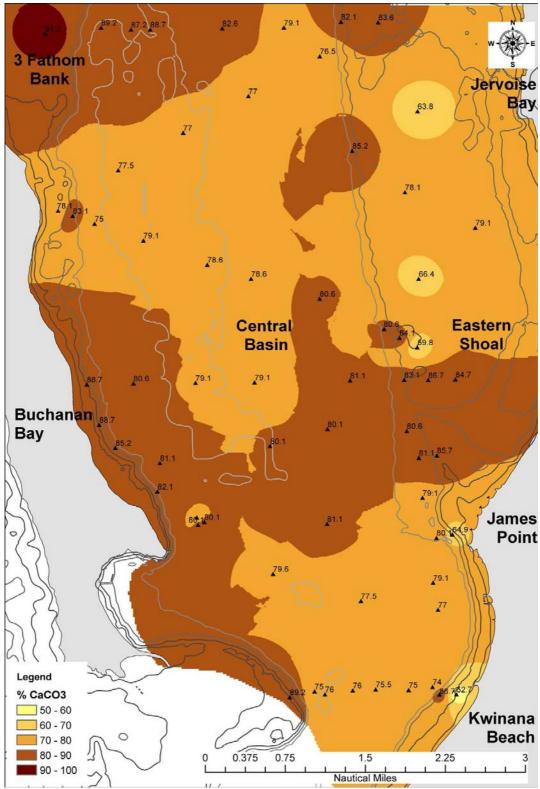



Figure 9: A map of the proportion of calcium carbonate (CaCO<sub>3</sub>) in sediment samples from Cockburn Sound.

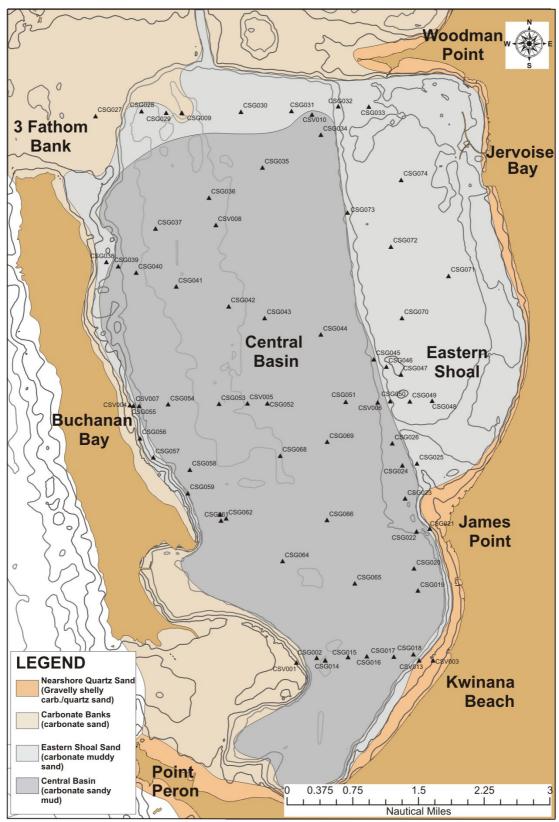



Figure 10: A map of the distribution of distinctive surface sediment types (facies) identified in Cockburn Sound.

# Principal Components Analysis of Sediment and Geochemical Data

The PCA factor coordinates of the geochemical and sedimentological variables are shown in Table 2 and the complete geochemical data are presented in Appendix II. The first principle component (PC1, Axis 1 of the PCA plot) explains 42.2% of variance in the data. Most trace and major elements and especially the Nd/Sr ratio have strong positive loadings on this axis and are inversely correlated to CaO and Sr and to a lesser extent the K<sub>2</sub>O/Al<sub>2</sub>O<sub>3</sub> ratio (Table 2). When the sample site scores for Axis 1 (Table 3) are plotted on the map of Cockburn Sound (Fig. 11a), the scores appear to define the source areas of trace metal contamination and to indicate likely sediment transport pathways from these sites. On this map, Kwinana Beach is a major location of elevated trace and major elements, with other sites on the southwestern margin of the Eastern Shoal near Woodman Point and east of Three Fathom Bank (Fig. 11a). The isolated site of relatively high contamination northeast of Three Fathom Bank (sample site CSG29) does not conform to this pattern and may be a spoil dump. A map of the Nd/Sr ratios confirms the pattern of distribution of fine terrestrial sediment (and contamination) identified by PC1 (Fig. 12). This map clearly indicates a major source of fine terrestrial sediment at Kwinana Beach and on the Eastern Shoal and suggests this sediment is transported in an anticlockwise direction within Cockburn Sound.

Axis 2 of the PCA explains 13.6 % of the variance in the data set. Sediment samples are differentiated along this axis on the basis of the grain size characteristics, from well-sorted sands with strong positive loadings to poorly sorted mud with strong negative loadings (Table 2). These sediment physical characteristics do not vary significantly on the first principle component axis (PC1), which reflects the fact that both sandy and muddy facies in Cockburn Sound can comprise marine-dominated sediment (bioclastic carbonate) and terrestrially-dominated sediment (quartz, feldspars and clay minerals). The map of site scores for Axis 2 (Fig. 11b) shows a good correlation with the map of sample grain size (Fig. 6) due to the strong influence of the proportion of sand and degree of sorting on these scores. Sites with the lowest scores in the southern end of the sound reflect a higher proportion of poorly sorted muds and higher proportions of most elements. This trend is also born out in the moderate degree of negative correlation between terrestrial elements and grain sorting (Table 4).

A further 9.3% of the variance in the dataset is explained by the third principle component, PC3 (Table 2). The SO<sub>3</sub> variable has the strongest (negative) loading on this axis and in association with the relatively strong negative loadings for Na<sub>2</sub>O<sub>3</sub> and Cl may indicate a relative lowering of seawater salt assemblage in these samples caused by the submarine discharge of comparably fresh groundwater. When the site scores for Axis 3 (Table 3) are plotted on the map of the sound (Fig. 11c) there is a distinct zonation focused on the northeastern coast and extending westwards into the central basin. This pattern appears to indicate either the source submarine groundwater discharge or the source and pathway of distinctive and relatively clay-rich terrestrial sediment or a combination of both influences.

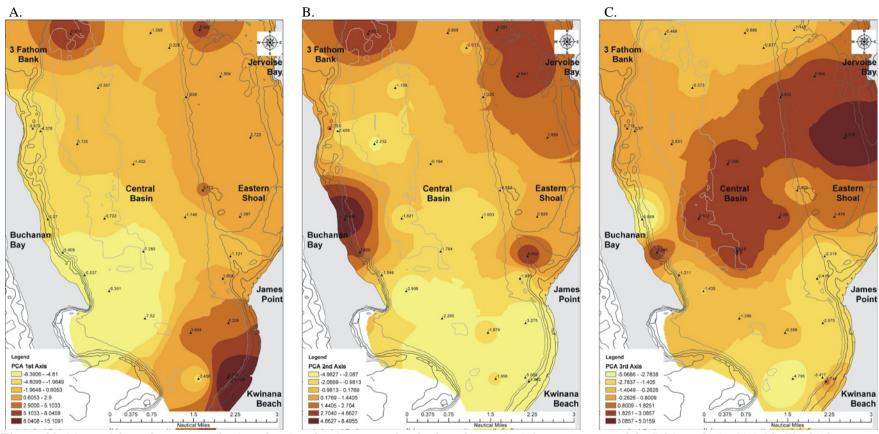



Figure 11: Maps of the sediment sample sites showing the site scores for the first three principle components of the PCA analysis. A) PC1: The high scores indicate a strong terrestrial sediment signature (Nd/Sr) and relatively high levels of several trace metals. B) PC2: The high scores reflect well sorted sediment. C) PC3: High scores reflect relatively low concentrations of S, Na and Cl that appear to indicate the influence of submarine groundwater discharge and possibly a relatively high proportion of clay-rich fine terrestrial sediment.

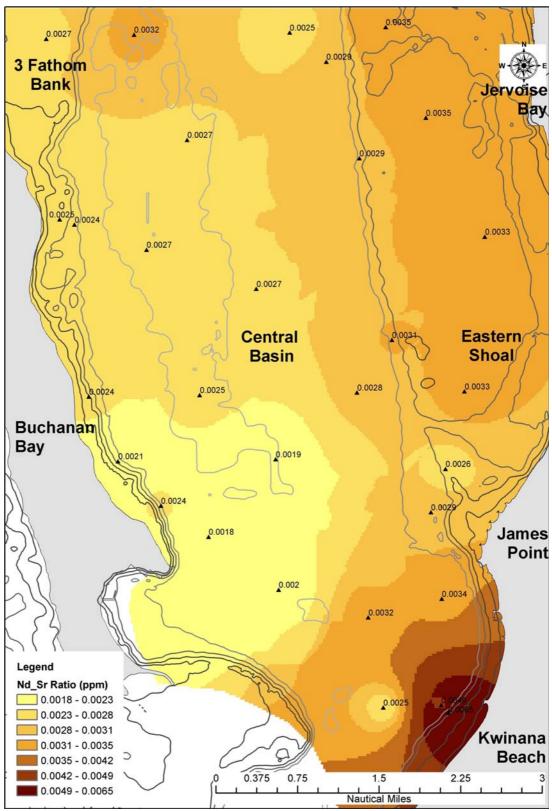



Figure 12: A map of the Nd/Sr ratios measured in surface sediment samples from Cockburn Sound. Higher ratios indicate a higher proportion of terrestrial sediment in the fine fraction of these samples.

**Table 2:** Factor coordinates of variables on Axes 1, 2 and 3 of the PCA. Relatively strong loadings for each axis are shown in bold.

| ELEMENT                         | AXIS 1 | AXIS 2 | AXIS 3 |
|---------------------------------|--------|--------|--------|
| ICd                             | 0.54   | -0.24  | -0.53  |
| ICr                             | 0.65   | -0.02  | -0.23  |
| lCu                             | 0.22   | 0.38   | -0.53  |
| INi                             | 0.55   | -0.01  | -0.49  |
| IPb                             | 0.77   | 0.46   | 0.01   |
| IZn                             | 0.83   | 0.30   | -0.10  |
| IAg                             | 0.18   | 0.06   | 0.10   |
| IAI <sub>2</sub> O <sub>3</sub> | 0.87   | 0.17   | 0.22   |
| IAs                             | 0.29   | 0.40   | 0.37   |
| IBa                             | 0.23   | 0.02   | 0.48   |
| IBe                             | 0.45   | 0.05   | -0.27  |
| IBi                             | 0.60   | -0.13  | -0.05  |
| ICaO                            | -0.69  | -0.54  | 0.27   |
| ICe                             | 0.90   | -0.26  | 0.26   |
| ICI                             | 0.16   | 0.66   | -0.54  |
| ICs                             | 0.74   | 0.26   | -0.33  |
| IDy                             | 0.91   | -0.27  | -0.01  |
| ľEr                             | 0.89   | -0.26  | -0.08  |
| lEu                             | 0.81   | -0.38  | -0.26  |
| IFe <sub>2</sub> O <sub>3</sub> | 0.87   | -0.11  | 0.12   |
| lGa                             | 0.89   | 0.16   | 0.00   |
| lGd                             | 0.90   | -0.32  | -0.03  |
| lGe                             | 0.59   | 0.02   | -0.08  |
| IHf                             | 0.75   | -0.11  | 0.41   |
| lHo                             | 0.87   | -0.25  | -0.29  |
| IK2O                            | 0.49   | 0.59   | -0.28  |
| lLa                             | 0.93   | -0.22  | 0.13   |
| ILu                             | 0.53   | -0.15  | -0.56  |
| IMgO                            | -0.07  | -0.30  | -0.45  |
| IMnO                            | 0.39   | 0.23   | 0.00   |
| lMo                             | 0.54   | -0.08  | -0.52  |
| INa <sub>2</sub> O <sub>3</sub> | 0.12   | 0.66   | -0.52  |
| INb                             | 0.95   | -0.06  | 0.17   |
| INd                             | 0.92   | -0.29  | 0.11   |
| $IP_2O_5$                       | 0.84   | -0.13  | -0.19  |
| IPr                             | 0.92   | -0.28  | 0.15   |
| IRb                             | 0.84   | 0.06   | 0.11   |
| ISb                             | 0.02   | 0.26   | -0.30  |
| ISc                             | -0.05  | -0.15  | 0.06   |
| ISiO <sub>2</sub>               | 0.84   | 0.17   | 0.02   |
| ISm                             | 0.80   | -0.32  | 0.27   |
| ISn                             | 0.56   | 0.07   | -0.02  |
| ISO <sub>3</sub>                | 0.45   | 0.20   | -0.68  |
| ISr                             | -0.69  | -0.58  | 0.09   |
| lTa                             | 0.66   | -0.08  | -0.20  |
| lTb                             | 0.57   | -0.30  | -0.32  |
| lTh                             | 0.81   | -0.07  | 0.35   |

| ELEMENT             | AXIS 1 | AXIS 2 | AXIS 3 |
|---------------------|--------|--------|--------|
| ITiO <sub>2</sub>   | 0.89   | 0.02   | 0.15   |
| IU                  | 0.45   | -0.53  | -0.23  |
| IV                  | 0.56   | 0.52   | 0.12   |
| IY                  | 0.87   | -0.29  | -0.05  |
| lYb                 | 0.91   | -0.18  | 0.00   |
| IZr                 | 0.71   | -0.09  | 0.47   |
| %Gravel             | 0.04   | 0.59   | -0.07  |
| %Sand               | 0.44   | 0.77   | 0.29   |
| %Mud                | -0.41  | -0.80  | -0.26  |
| CaCO <sub>3</sub> % | 0.03   | 0.34   | -0.06  |
| Kurtosis            | -0.27  | -0.50  | -0.49  |
| Skew                | -0.31  | -0.70  | -0.42  |
| Mode                | 0.10   | 0.80   | 0.15   |
| stdev/mean          | -0.32  | -0.84  | -0.26  |
| clay:silt           | 0.35   | -0.35  | 0.52   |
| $IK_2O/AI_2O_3$     | -0.58  | 0.35   | -0.52  |
| INd/Sr              | 0.94   | -0.22  | 0.11   |

**Table 3:** Site scores for the first three Principle Components

| SITE  | AXIS 1  | AXIS 2  | AXIS 3  |
|-------|---------|---------|---------|
| CSG13 | 15.1280 | -1.9025 | 1.7144  |
| CSG16 | -2.4559 | -1.9557 | -4.7952 |
| CSG18 | 8.7182  | -5.0093 | -3.4167 |
| CSG20 | 4.3262  | -3.2755 | -2.5750 |
| CSG23 | 1.8592  | -1.9810 | -2.4190 |
| CSG25 | -1.1208 | 4.0023  | -2.3178 |
| CSG29 | 6.8759  | 4.6334  | -0.4663 |
| CSG31 | -1.5995 | 0.8076  | -0.8863 |
| CSG33 | 5.6934  | 3.9905  | -1.1176 |
| CSG34 | 0.2275  | -0.0128 | -0.8766 |
| CSG36 | -0.3668 | -1.1087 | -0.3731 |
| CSG38 | -3.6728 | 1.7327  | 0.7182  |
| CSG39 | -4.3756 | -2.4587 | 0.5704  |
| CSG41 | 0.1354  | -2.2118 | 0.6312  |
| CSG43 | -1.4318 | -0.1939 | 2.2661  |
| CSG45 | 3.1727  | -0.5530 | 0.4032  |
| CSG48 | 1.3969  | 0.8292  | 1.4163  |
| CSG51 | -1.1461 | -1.9032 | 2.2804  |
| CSG53 | -3.7219 | -1.6213 | 2.9120  |
| CSG55 | -3.3703 | 8.4964  | -5.0686 |
| CSG57 | -5.4087 | 2.8256  | 2.3455  |
| CSG59 | -5.5366 | -1.0486 | -1.2112 |
| CSG62 | -8.3910 | -2.9976 | -1.4354 |
| CSG64 | -7.5200 | -2.2646 | -1.3464 |
| CSG65 | 3.6042  | -1.8793 | -0.3980 |
| CSG68 | -7.2852 | -1.7639 | 3.1598  |
| CSG71 | 2.7230  | 1.8576  | 5.0160  |
| CSG73 | 1.6381  | 1.3247  | 2.6032  |
| CSG74 | 1.9039  | 3.6412  | 2.6664  |

**Table 4:** Statistically significant (p<0.05) product-moment correlations between the grain sorting variable and various elements in the surface sediment samples from Cockburn Sound.

| ELEMENT           | CORRELATION WITH GRAIN SORTING |
|-------------------|--------------------------------|
| CaO               | 0.64                           |
| V                 | -0.63                          |
| Sr                | 0.63                           |
| Pb                | -0.61                          |
| As                | -0.54                          |
| $K_2O$            | -0.48                          |
| SiO <sub>2</sub>  | -0.45                          |
| $Al_2O_3$         | -0.43                          |
| Ga                | -0.43                          |
| Zn                | -0.42                          |
| CI                | -0.40                          |
| Na <sub>2</sub> O | -0.40                          |
| Cs                | -0.39                          |

# **Fine-Fraction Metal Concentrations**

A summary of the main trace metal results for surface sediments is presented in Table 5 including the background and anomalous values derived by Talbot and Chegwidden (1983) and the ANZECC (2000) recommended interim sediment quality guidelines (ISQG). The most common trace elements were analysed, however only seven are deemed important anthropogenic contaminants in Cockburn Sound and can be used to compare with results from the previous studies (Table 5). Zn, Cu and Ni concentrations measured in the surface sediments samples in this study are above the background values listed in Table 5. The spatial distribution of these trace metals in Cockburn Sound are displayed in Figures 13, 14, and 15.

Concentrations of Cr measured in this survey are on average higher compared to the results from the 1994 survey (Department of Environmental Protection, 1996). The new data also show that concentrations of As, which fell markedly between the 1994 and 1999 surveys, have on average continued to fall throughout the sound. Although well below the ISQG-low trigger value, 43% of the Zn results are above the anomalous values of Talbot and Chegwidden (1983). Concentrations of Zn are generally higher than both the 1994 and 1999 surveys. There are higher concentrations of Zn in sediments off Kwinana Beach in the southeast of the sound, at Buchanan Bay on the eastern shore of Garden Island, most of Eastern Shoal and on Three Fathom Bank north of Garden Island (Fig. 13). Sample sites with Cu concentrations greater than the ISQG-low trigger value occur near James Point, at Buchanan Bay and on Three Fathom Bank (Fig. 14). Concentrations of Ni greater than the ISQG-low trigger values were recorded in sediments off Kwinana Beach, on Three Fathom Bank and in the northern section of the central basin (Fig. 15).

**Table 5:** Sediment contaminant levels at Cockburn Sound sample sites. Comparisons are made with background, anomalous and the Interim Sediment Quality Guidelines low and high reference values.

| CONTAMINANT         | As<br>ICP-MS     | Cd<br>ICP-MS | Cr<br>XRF | Cu<br>XRF | Ni<br>XRF | Pb<br>ICP-MS | Zn<br>XRF |
|---------------------|------------------|--------------|-----------|-----------|-----------|--------------|-----------|
| CONTAMINANT         |                  |              |           |           |           |              |           |
| Background          | ppm <sup>#</sup> | ppm          | ppm       | ppm       | ppm       | ppm          | ppm       |
| values*             |                  | 0.5          | 45        | 14        | 4.8       | 37           | 27        |
| Anomalous           |                  |              |           |           |           |              |           |
| values*<br>ISQG-Low |                  | 0.7          | 50        | 16.5      | 5.5       |              | 30        |
| (Trigger Value)**   | 20               | 1.5          | 80        | 65        | 21        | 50           | 200       |
| ISQG-High**         | 70               | 10           | 370       | 270       | 52        | 220          | 410       |
| Sample ID           |                  |              |           |           |           |              |           |
| CSG13               | 3.6              | 0.55         | 39        | 16        | 49        | 19.8         | 60        |
| CSG16               | 2.5              | 0.23         | 30        | 43        | 9         | 11.8         | 28        |
| CSG18               | 0.7              | 0.52         | 37        | 20        | 14        | 14.8         | 46        |
| CSG20               | 0.4              | 0.32         | 34        | 20        | 6         | 12.8         | 34        |
| CSG23               | 0.4              | 0.15         | 39        | 97        | 15        | 14.4         | 29        |
| CSG25               | 0.4              | 0.12         | 32        | 34        | 14        | 12           | 29        |
| CSG27               | 6.8              | 0.12         | 32        | 149       | 56        | 20.7         | 37        |
| CSG29               | 3.7              | 0.15         | 43        | 28        | 6         | 18.2         | 31        |
| CSG31               | 1.1              | 0.14         | 29        | 36        | 5         | 14.4         | 27        |
| CSG33               | 2.6              | 0.18         | 40        | 44        | 10        | 18.7         | 38        |
| CSG34               | 1.1              | 0.18         | 40        | 11        | 17        | 16.8         | 32        |
| CSG36               | 0.4              | 0.05         | 31        | 36        | 23        | 13.8         | 27        |
| CSG38               | 0.4              | 0.15         | 34        | 24        | 2         | 12.5         | 26        |
| CSG39               | 0.4              | 0.13         | 33        | 8         | 4         | 9.6          | 19        |
| CSG41               | 0.8              | 0.18         | 36        | 20        | 1.3       | 10.4         | 18        |
| CSG43               | 2.2              | 0.05         | 28        | 17        | 1.3       | 12.1         | 26        |
| CSG45               | 0.4              | 0.11         | 36        | 24        | 12        | 12.7         | 32        |
| CSG48               | 0.4              | 0.11         | 32        | 42        | 7         | 13           | 33        |
| CSG51               | 2                | 0.05         | 25        | 11        | 7         | 11.5         | 23        |
| CSG53               | 1.9              | 0.11         | 25        | 9         | 1.3       | 10.5         | 21        |
| CSG55               | 1.8              | 0.13         | 22        | 73        | 11        | 14.5         | 39        |
| CSG57               | 1.9              | 0.11         | 22        | 7         | 1.3       | 11.7         | 24        |
| CSG59               | 0.4              | 0.15         | 28        | 12        | 5         | 9.2          | 17        |
| CSG62               | 0.4              | 0.11         | 23        | 21        | 9         | 8.3          | 17        |
| CSG64               | 0.4              | 0.05         | 29        | 15        | 3         | 9.1          | 14        |
| CSG65               | 0.4              | 0.24         | 26        | 13        | 12        | 10.6         | 27        |
| CSG68               | 1.6              | 0.05         | 14        | 9         | 1.3       | 8.8          | 17        |
| CSG71               | 3.9              | 0.05         | 31        | 17        | 2         | 15           | 34        |
| CSG73               | 2.8              | 0.05         | 32        | 11        | 5         | 17.2         | 40        |
| CSG74               | 2.5              | 0.05         | 27        | 44        | 8         | 17.5         | 32        |

<sup>\* -</sup> Values from Talbot and Chegwidden 1983

<sup>\*\* -</sup> Recommended sediment quality guidelines from ANZECC (2000)

<sup># -</sup> ppm - parts per million = mg/kg dry weight

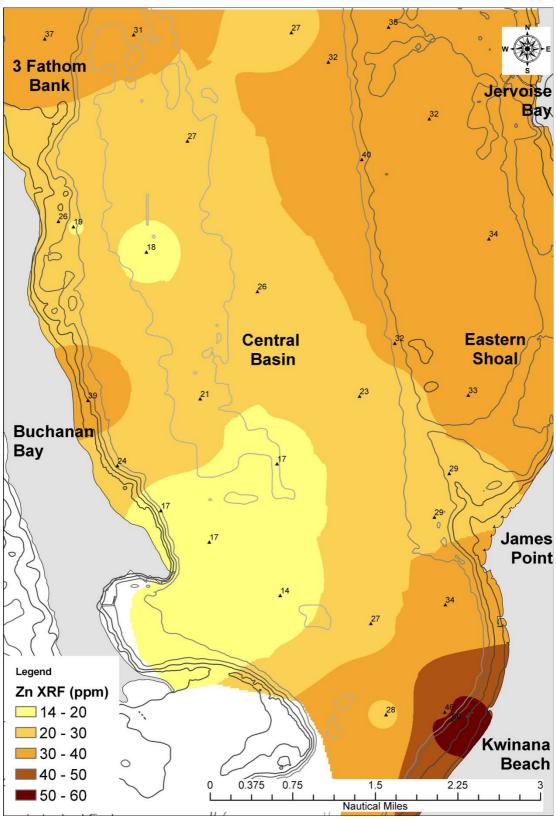



Figure 13: A map of the concentration of Zn in surface sediment samples from Cockburn Sound.

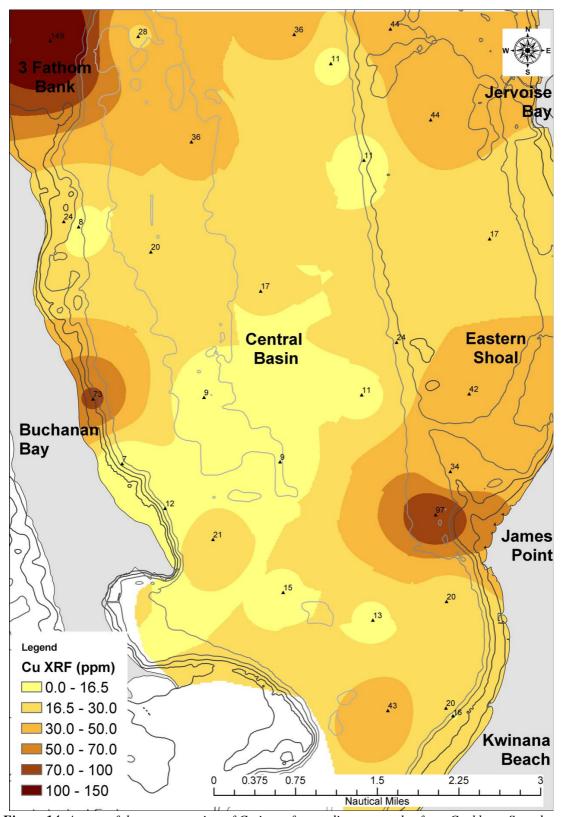



Figure 14: A map of the concentration of Cu in surface sediment samples from Cockburn Sound.

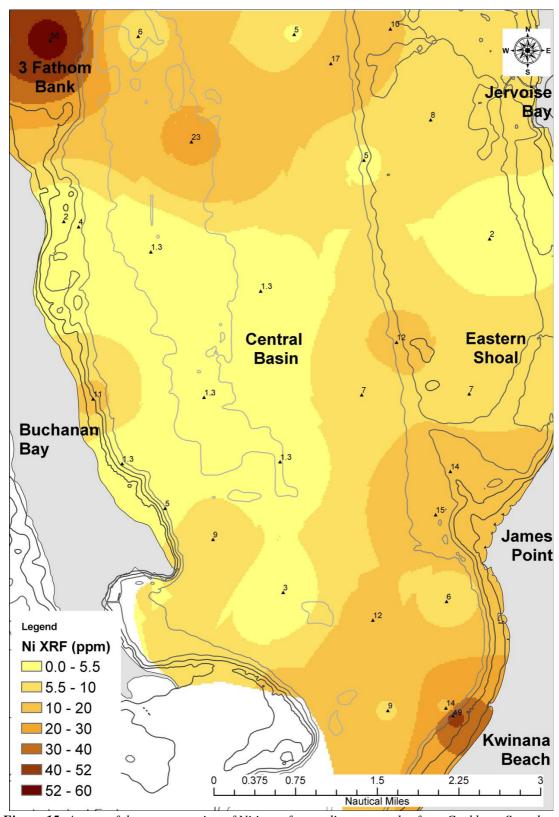



Figure 15: A map of the concentration of Ni in surface sediment samples from Cockburn Sound.

# **SUB-SURFACE SEDIMENTS**

Twelve vibracores ranging from 0.45 m to 6.10 m long were obtained from Cockburn Sound. Table 6 summarises the results of the vibracoring survey and simplified logs of the cores are provided in Figure 16. Photographs for selected downcore sedimentary units are provided in Figure 17 and detailed core logs and photographs are included in Appendix III. Appendix III also includes sample grain size data (sieve and laser measurements: Tables A3.1 and A3.2), CaCO<sub>3</sub> composition (Table A3.1) and XRF-ICPMS data (Table A3.3).

**Table 6:** Field data for the vibracores collected in Cockburn Sound.

| CORE ID | NORTHING<br>(M, ZN. 50) | EASTING<br>(M, ZN. 50) | WATER<br>DEPTH (m) | DATE/TIME          | RECOVERY<br>(m) | COMMENTS                                 |
|---------|-------------------------|------------------------|--------------------|--------------------|-----------------|------------------------------------------|
| CSV001  | 6431182                 | 379613                 | 13.4               | 11-MAR-04<br>04:34 | 2.73            | Eastern edge of Southern Flats           |
| CSV002  | 6431231                 | 380226                 | 20.2               | 11-MAR-04<br>03:57 | 6.10            | Southern Central Basin                   |
| CSV003  | 6431230                 | 382509                 | 5.0                | 11-MAR-04<br>03:03 | 0.45            | Offshore Kwinana<br>Beach                |
| CSV004  | 6436613                 | 376165                 | 9.1                | 10-MAR-04<br>05:38 | 2.49            | Buchanan Bay, east<br>Garden Island      |
| CSV005  | 6436663                 | 378581                 | 21.0               | 10-MAR-04<br>07:05 | 5.53            | Central Basin                            |
| CSV006  | 6436682                 | 381337                 | 15.6               | 10-MAR-04<br>07:48 | 2.32            | Southern edge of<br>Eastern Shoal        |
| CSV007  | 6436610                 | 376285                 | 15.4               | 10-MAR-04<br>06:14 | 2.26            | Buchanan Bay, east<br>Garden Island      |
| CSV008  | 6440433                 | 377909                 | 20.6               | 11-MAR-04<br>01:43 | 2.17            | Central Basin                            |
| CSV009  | 6442802                 | 377191                 | 19.7               | 11-MAR-04<br>01:02 | 3.00            | Northern Central Basin                   |
| CSV010  | 6442768                 | 379943                 | 17.6               | 11-MAR-04<br>00:30 | 2.40            | North eastern Central<br>Basin           |
| CSV011  | 6446911                 | 378496                 | 14.5               | 10-MAR-04<br>04:10 | Core lost       | No Recovery                              |
| CSV012  | 6447172                 | 376321                 | 11.1               | 10-MAR-04<br>03:17 | 2.63            | North of Parmelia<br>Bank/Owen Anchorage |
| CSV013  | 6431229                 | 382212                 | 8.6                | 11-MAR-04<br>06:45 | 2.90            | Offshore Kwinana<br>Beach                |

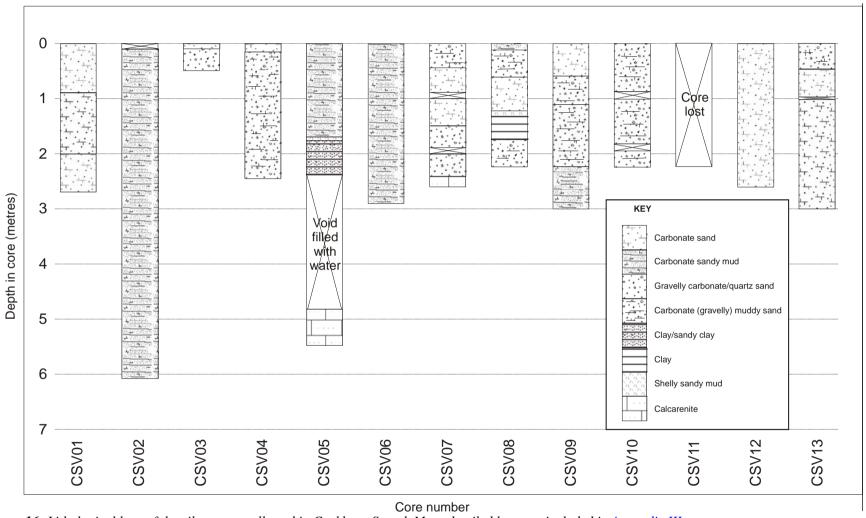


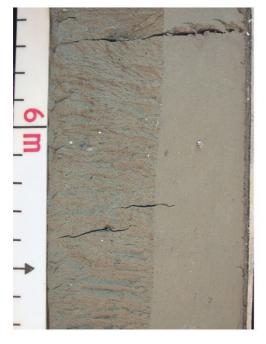

Figure 16: Lithological logs of the vibracores collected in Cockburn Sound. More detailed logs are included in Appendix III.



**A)** Shelly Carbonate/Quartz Sand - Core CSV03. Note platy nature of carbonate fraction.



**B)** Carbonate Sand - Core CSV01. Note dense matt of seagrass fibre within uniform shellsand sequence.




C) Carbonate Muddy Sand - CSV06.



**D)** Muddy Quartz Sand - Core CSV07. Note scattered shell fragments within coarse grained, well rounded quartz unit.

Figure 17: Photographs of the various lithological units evident in the vibracores from Cockburn Sound.



**E)** Basin Sandy Mud/Mud - CSV02. Uniform, cohesive sandy mud 6.0m below seabed in southern part of central mud basin.



**F)** Gravelly Shelly Mud - CSV05. Note sharp, unconformable contact with underlying clay unit.



**G)** Clay/Sandy Clay - CSV08. Stiff, mottled clay unit, may contain some organics.



**H)** Coastal Limestone/Calcarenite Gravel - CSV05. Gravel in a sandy mud matrix.

# Lithostratigraphic Units

Six distinct sub-surface units were identified in the cores and are described below in their stratigraphic order based upon the visual logs and the results of the sediment analyses (Figs. 16 and 17). Additionally, in core CSV05 (Fig. 16; Appendix III), water-filled sub-surface cavities were observed in the basal limestone unit.

- 1) Gravely shelly carbonate/quartz sand. This unit varies in colour from light grey-brown, pink-grey to green-grey (Fig. 17a) and is poorly sorted with fine to very coarse grained sand (mean grain size: 0.48 mm; standard deviation: 0.39 mm). The deposit includes scattered to abundant carbonate gravel that contains fragments of bivalve shells, some gastropods, echinoids and bryozoan, and abundant whole foraminifera. Calcium carbonate within the combined sand and mud fraction ranges from 40 to 60%. This unit was encountered in the southeastern margin of the sound near Kwinana Beach and likely extends to the shoreline.
- 2) Carbonate Sand to Muddy Sand. These sediments are light grey to grey, moderately to very poorly sorted, very fine to very coarse grained sand and muddy sand with varying proportions of carbonate gravel (fragments and whole shell, diatoms), plant fibers and decaying seagrass fragments (Fig. 17b). There was no evidence of any depositional structures in this unit. Total carbonate content for the sand is approximately 90% but is less for the more muddy sand (~80%). The sand facies is confined to the banks at the northern and southern margins of Cockburn Sound, the eastern shore of Garden Island and a sheet that covers the area immediately north of Garden Island. The unit becomes conformably muddier with depth (Fig. 17c), and the muddy sand is exposed on the bank slopes around the perimeter of the central basin.
- 3) Muddy Quartz Sand. This deposit comprises grey, loose, muddy (silt), moderately sorted, medium to very coarse grained, sub-rounded to rounded, quartz sand with scattered shell fragments (Fig. 17d). This facies was only encountered in one core (CSV07; Appendix III) and is less than 1 m thick. Calcium carbonate averages 17% in the top of the unit, but decreases abruptly to 5% below a depth of 2 m. The proportion of mud also decreases below 2 m, from 30% to less than 10%, while the mean grain size (0.4-0.65 mm) increases with depth. The unit also includes interbedded lenses of dark grey to reddish brown plant material and fine organic fibers. This deposit appears to be filling a depression within the basal limestone (Cross section B-B', Fig. 18).
- 4) Basin Mud and Sandy Mud. This deposit consists of cohesive, greenish-grey, structureless, poorly sorted, very fine grained, sandy carbonate muds (clayey silt), gravelly in places with fine, hair-like fibres and coarse grained shell fragments scattered throughout (Fig. 17e). There are occasional large (up to 5cm) whole bivalves and smaller (up to 1 cm) gastropods. In two cores (CSV05 and CSV08) the bottom 10 cm of this unit is composed of dark grey, cohesive, sandy mud with abundant whole shells (some articulated) and shell fragments (Fig. 17f). This deposit forms the majority of the central basin sediment fill.
- 5) Sandy Clay. This unit comprises oxidised, yellowish red with brown mottles (Fig. 17f, g), very fined grained (average mean grain size: 0.04 mm; standard deviation: 0.11 mm) firm to stiff sandy clay with remnant organic material, most likely roots. The sediment becomes sandier with depth (Core CSV05), and contains sparse pieces of organic material (possibly fossil rootlets). It forms a cap on the Pleistocene limestone that underlies the central basin muds.
- 6) Calcarenite Limestone Gravel: This deposit is light grey with irregular pieces of calcarenite gravel in a matrix of greenish grey, very poorly sorted sandy mud (Fig. 17h). The sand is very fine to very coarse grained calcareous quartzose sand. The limestone forms the bedrock of the study area,

and has been described as calcreted aeolianite limestone that is part of the Tamala Limestone Formation (Playford *et al.*, 1976).

### **Downcore Geochemical Data**

The predominance of marine or terrestrial sediments is also indicated by a number of other parameters, including Al<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, MgO, Na<sub>2</sub>O, SiO<sub>2</sub> and CaCO<sub>3</sub> (Figs. 18B-I). Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O and SiO<sub>2</sub> all show identical trends to the Nd/Sr ratio suggesting that these parameters are mainly associated with the input of terrestrial sediments. The predominance of CaCO<sub>3</sub> (of varying magnesium content) is a defining characteristic of marine-derived sediment in Cockburn Sound. Consequently, CaO, MgO and CaCO<sub>3</sub> contents show trends that are the reverse of that of the Nd/Sr ratio. The down-core profile of Na<sub>2</sub>O is also the reverse of that of the Nd/Sr ratio. In the surface of core CSV07, several parameters (including Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O and SiO<sub>2</sub>) all show a slight increase and indicate the recent input of terrestrial sediment at this site. Concentrations of various metals (As, Cd, Cr, Cu, Ni, Pb and Zn; Fig. 19A-G.) also increase with depth in cores CSV05 and CS07 as a consequence of an increase in the proportion of fine-grained terrestrial sediment. Cores CSV04, CSV06 and CSV09 all have similar and lower concentrations at depth.

The most significant geochemical variations, both down-core and between cores, are a result of the dominance of either marine or terrestrial sediments which have unique geochemical signatures. This is well reflected in the vertical profiles of the Nd/Sr ratio for the cores analysed (Fig.18A.). At the surface, all cores (except CSV06) have a very low Nd/Sr ratio (<0.01), indicating little detectable terrestrial sediment. The Nd/Sr ratio at the surface of CSV06, however, is relatively large (~1.3) and indicates a strong terrestrial sediment input, possibly from a spoil dump. At depth, cores CSV04, CSV06 and CSV09 remain dominated by marine sediments as indicated by the low Nd/Sr ratios (<0.003). In contrast, in core CSV07, below 1.5 m the Nd/Sr ratio gradually increases indicating a higher proportion of terrestrial sediment. In core CSV05 there is a large and marked increase in the Nd/Sr ratio below 1.7 m that indicates a major change to terrestrial sediment. The changes observed in cores CSV05 and CSV07 are consistent with the observed changes in sediment type described in the core logs (Fig. 16 and Appendix III). The upper section of core CSV05 comprises marine carbonate sandy mud overlying a reduced shelly mud layer. At depth there is a change to distinctively terrestrial sediments comprising mottled sandy clay and calcarenite gravel/sandy clay. In core CSV07, the sediments change from marine carbonate muddy sands to terrestrial muddy quartz sand.

Importantly, all cores show recent increases in some metal concentrations in the top half metre. This is particularly true of core CSV03 which has the highest concentrations of Cd, Cu, Pb and Zn at a depth of 0.44-0.45 m. Likewise, core CSV06 has elevated concentrations of As, Cr, Pb and Zn, and to a lesser extent Cu and Ni at 0.1-0.11 m, and core CSV09 has elevated concentrations of Cr, Cu, Ni, Pb, and Zn at 0.3-0.31 m. Cores CSV03, CSV06 and CV09 were collected from near Kwinana Beach, the Eastern Shoal and Three Fathom Bank where the surficial sediments were found to include fine terrestrial sediment with relatively high metal concentrations related to industrial sources (see Fig 11a.). Cores CSV04 and CSV07 also show slight increases in the surface concentrations of Cr, Cu, Pb and Zn. Overall, it appears that elevated levels of trace metals in surface sediment are widespread in Cockburn Sound.

In some cases, the highest concentrations of metals were found below the sediment surface. For example, the Ni concentration in CSV09 (sample depth: 0.3-0.31 m) was 392 ppm compared to nearby surface values of less than 10 ppm (surface sample: CSG29) Also, the Pb concentrations in CSV03 (sample depth: 0.44-0.45 m) and CSV06 (sample depth: 0.1-0.11 m) were 40 and 57 ppm respectively, compared to nearby surface values of less than 20 ppm (surface samples: CSG13 and

CSG45). Likewise, the Cu values in cores CSV03 (sample depth 0.44-0.45 m) and CSV09 (sample depth: 0.3-0.31 m) were 394 and 231 respectively compared to nearby surface values of less than 30 ppm (surface samples: CSG13 and CSG29). These results suggest that sediment quality has improved at sites CSV03, CSV06 and CSV09 in recent years. Interestingly, Nd/Sr ratios are elevated both in the near surface sample of core CSV03 (sample depth 0.44-0.45 m) and in the nearby surface sediment sample (CSG13; Nd/Sr ~ 0.0064). This suggests that there has been a sustained source of terrestrial sediment at this site, despite the observed lowering of metal concentrations between the surface and sub-surface. In core CSV06, the Nd/Sr ratio of the near surface sample (Nd/Sr = 1.28; sample depth 0.1-0.11 m) is significantly larger than the nearby surface sediment samples (~0.003) and suggests there may be a spoil dump at this site. The surface sediments near core CSV09 have also been identified as an isolated site of relatively high contamination despite the low Nd/Sr ratio in the near-surface sediments from the core (Nd/Sr = 0.0025; sample depth: 0.3-0.31 m).

Sediments within vibracores CSV04, CSV06 and CSV09 are relatively uniform with depth (Fig. 16 and Appendix III) and the metal concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) do not vary significantly with depth (Fig. 19). Interestingly, concentrations of As, Cd, Cr, Ni, Pb and Zn in these cores are lower than the *background* concentrations suggested by Talbot and Chegwidden (1983) based on surface sediment samples collected from across the sound. The background Cu concentration observed in the vibracores is greater than the anomalous values reported by Talbot and Chegwidden (1983) but less than the ISQG low trigger value that is based on overseas biological effects data. On the basis of these results, we suggest that new background values for trace metals in Cockburn Sound should be adopted (Table 5).

The geochemical composition of cores CSV05 and CSV07 also appears to be strongly influenced by iron and sulfate reduction, resulting in iron sulfide formation at depth (see Fig 20A-E). The sulfur concentration increases at a depth of 1.7 m in core CSV05, and below 1.8 m in core CSV07. At these depths, Fe also increases, and as a result the molar Fe:S ratio remains between 1 and 2 which is typical of iron sulfides. Further evidence of iron reduction is seen in the Fe:P ratio. The phosphorus concentration also increases at 1.7 m in core CSV05 and below 1.8 m in core CSV07. Since P is typically bound to iron oxides, iron reduction causes P to be lost from the sediments and while there is an overall increase in the P concentrations at these depths, the molar Fe:P ratio actually increases. At a depth of approximately 1.9 m in core CSV05, the S and P concentrations decrease significantly but the Fe concentration increases causing an overall increase in the molar Fe:S and Fe:P ratios. These distinct changes in CSV05 below 1.9 m are related to the distinct change in sediment facies (Fig. 16 and Appendix III). CSV05 consists of carbonate muddy sands to approximately 1.7 m. Below this depth there is a 0.1 m layer of dark grey, reduced shelly sandy mud which is where iron sulfides have been identified from the geochemical data. The lower part of the core consists of terrestrial sediments, mostly mottled sandy clay, and this is reflected in the marked changes in the sediment geochemistry.

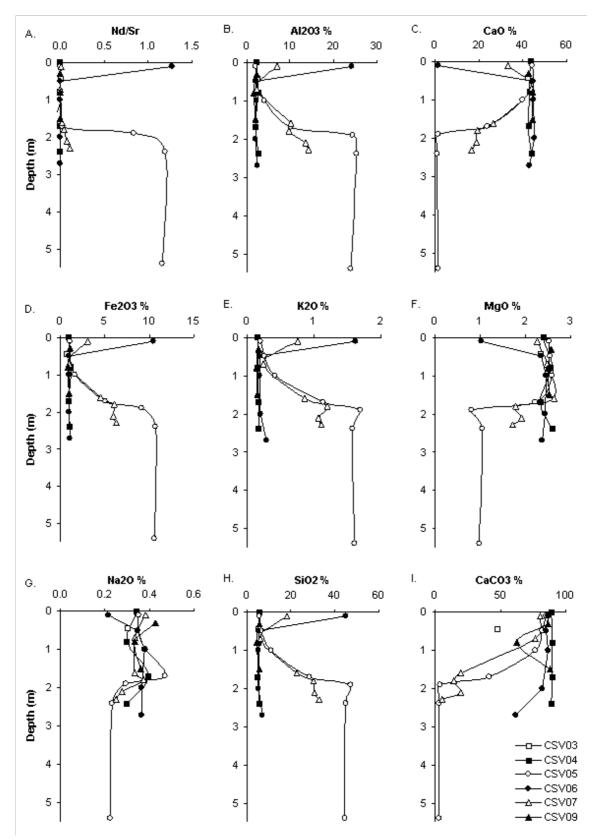



Figure 18: Vertical profiles of major element geochemical data in vibracores from Cockburn Sound

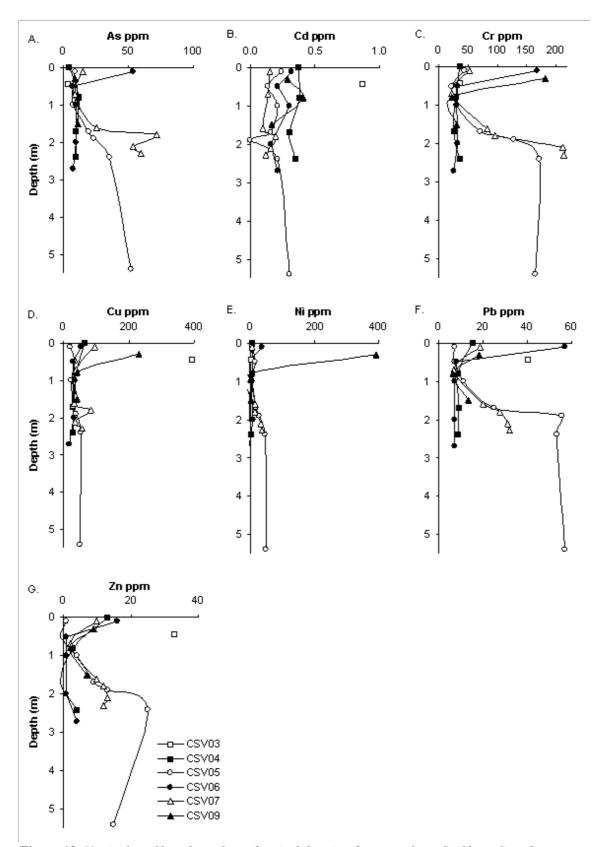



Figure 19: Vertical profiles of metal geochemical data in vibracores from Cockburn Sound

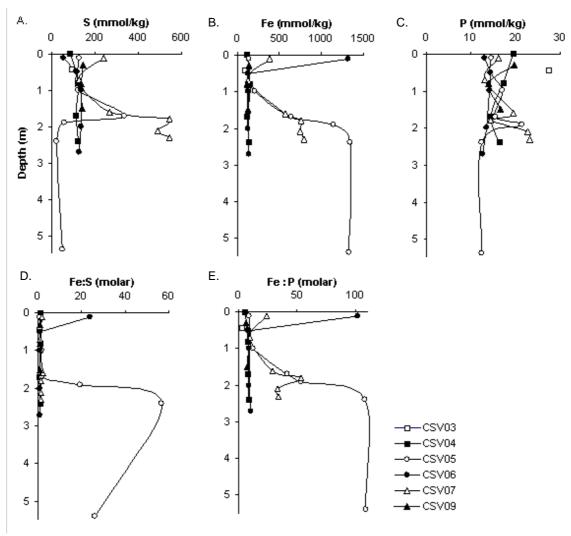



Figure 20: Vertical profiles of SO<sub>3</sub>, Fe:S and Fe:P ratios in vibracores from Cockburn Sound

# Discussion

## SURFACE SEDIMENT FACIES

Based on the surface sediment laboratory data, field descriptions and video transects of the seabed, four distinct surface facies were identified in Cockburn Sound (Table 7). The areal distribution of these deposits is shown in Figure 10. Because these and the associated sediment data (Figs. 6–11) are georeferenced and incorporated in *ArcInfo* shapefiles they represent reliable maps of surface sediment properties and can now be compared with the acoustic multi-beam backscatter data that was recently collected in the Cockburn Sound. A summary of the various facies characteristics is provided in Table 7.

**Table 7:** Summary of the physical and chemical characteristic of the surficial sediment types in Cockburn Sound.

| FACIES               | SEDIMENT<br>COMPOSITION                     | MEAN<br>GRAIN SIZE<br>& SD (mm) | %<br>CaCO3 | FINE FRACTION<br>GEOCHEMISTRY<br>(<63µM)    | LITHOSTRATIGRAPHIC<br>UNIT                             |
|----------------------|---------------------------------------------|---------------------------------|------------|---------------------------------------------|--------------------------------------------------------|
| Eastern<br>Nearshore | Gravelly shelly mixed carbonate quartz sand | $0.43 \pm 0.36$                 | >55%       | High Nd/Sr; High Zn,<br>Ni; Low Cu          | Safety Bay Sand                                        |
| Eastern<br>Shoal     | Carbonate<br>Muddy Sand                     | 0.12 - 0.43                     | >80%       | Low Nd/Sr; Mod Zn;<br>Low Cu, Ni            | Becher Sand (Semeniuk and Searle, 1985)                |
| Carbonate<br>Banks   | Well sorted<br>Carbonate<br>Sand            | 0.25 - 0.43                     | ~90%       | Low to mod Nd/Sr;<br>Mod Zn; High Cu,<br>Ni | Parmelia Bank and<br>Southern Flat Shellsand           |
| Central<br>Basin     | Carbonate<br>Sandy Mud                      | 0.023 - 0.12                    | ~80%       | Low to mod Nd/Sr;<br>Low Cu, Zn, Ni         | Bridport Calcilutite<br>(Semeniuk and Searle,<br>1987) |

The terrigenous component of the Eastern Nearshore quartz sand (gravely shelly mixed carbonate/quartz sand) is probably reworked from older deposits while the carbonate component is composed of the skeletal remnants of contemporary marine carbonate producing organisms. These sediments are part of the beach unit of this region known as the Safety Bay Sand (Passmore, 1970). The exact extent of this sediment type is unknown as it was only recovered in one sample (top of core CSV3) off Kwinana Beach (Fig. 10). Passmore (1970) reported that almost the entire land surface of the Rockingham and Peron Peninsulas, as well as the modern shallow-marine and dune sand of this area, was composed of Safety Bay Sand. A core collected off James Point by France (1977) included a similar sediment unit. Likewise, Semeniuk and Searle (1985) described the occurrence of this unit at Woodman Point, at the northern end of the sound.

The carbonate sand and muddy sand that forms Parmelia and Success Banks, the 'shellsand' resource of Cockburn Sound, has long been dredged commercially for the production of quicklime and cement. These Carbonate Banks areas (Fig. 10) are largely covered with seagrass and swept by tidal and wind-induced currents as well as oceanic swells. These currents winnow the fines from the banks, leaving behind the predominantly sand-size carbonate grains.

The distribution of Eastern Shoal sediment (carbonate muddy sand) indicates that the muddy sand is being transported off the northern carbonate banks into Cockburn Sound and is likely also being produced on the Eastern Shoal (Fig. 10). The combined carbonate sand and muddy sand facies mapped in this study are equivalent to the Becher Sand Unit of Semeniuk and Searle (1985). The Becher Sand was formerly part of the Safety Bay Sand which was divided into two distinct

lithological units; a beach - beach ridge/dune suite (Safety Bay Sand), and a seagrass bank suite (Becher Sand). Searle *et al.* (1988) further subdivided the Becher Sand into sand wave, seagrass and slope units, which recognised the internal variability of bank sediments related to variations in water depth and the influence of seagrass meadows. The carbonate sand (shellsand) facies and the carbonate muddy sand facies identified in this study correlate with the seagrass and the slope units respectively.

The Central Basin unit (carbonate sandy mud) partially infills the deep, relatively still-water environments of the central basin of Cockburn Sound (Fig. 10). This marine sediment was named the Bridport Calcilutite by Semeniuk and Searle (1987) who suggested that it is sourced from the adjacent seagrass banks where the fine carbonate material is removed from the surrounding bank and sheet units and transported into the central basin by the action of the prevailing currents and waves. The fines are then redeposited from suspension in the deeper more quiescent central basin. This muddy substrate is inhabited by molluscs and their skeletal remains also contributed to the deposit.

## **Geochemical Relationships**

The results of the principal components analysis of the combined sediment and geochemical data provide insights into the character of surficial sediments and their spatial distribution. These findings are useful for i) identifying the source and likely pathway of fine terrestrial sediment; ii) providing maps of variations in the physical character of sediment based on a range of sediment variables; and iii) assessing possible drivers for the loss of benthic biological communities in the sound over the last few decades.

The maps of site scores for PC1 (Fig. 11a) and the Nd/Sr ratios (Fig. 12) show a well-defined pattern of input of fine terrestrial sediment with relatively high metal concentrations from industrial sources at Kwinana Beach, adjacent to the Eastern Shoal, and possibly Jervoise Bay. These maps also indicate a likely anticlockwise transportation pathway of this sediment within the sound. Isolated sites with relatively high loadings for these trace element variables may be spoil dumps. It is possible that analysis of the swath bathymetry for these areas recently collected as part of the CWHM Project may reveal morphological evidence of dump sites.

Site scores for PC2, which has strong loadings for the sediment grain size variables, indicate significant variations in textural features of the surface sediments of Cockburn Sound (Fig. 11b). This data may be useful in understanding patterns of acoustic backscatter in the sound that reflect the influence of sediment texture on the wave-form of the return acoustic signal.

Sites with high scores in PC3 possibly reflect the relatively low concentrations of S, Na and Cl that appear to indicate the influence of submarine groundwater discharge into the sediments of Cockburn Sound (Fig. 11c). Given the high to moderate loadings for trace metals on Axes 1 and 3 (PC1 and PC3), it would be useful to compare maps of these site scores (Fig. 11a, c) with maps of benthic habitat loss in Cockburn Sound to test for any association between this ecological change and sediment contamination. Axis 3 also has moderate loadings for the clay:silt variable, therefore, site scores for PC3 may also help future interpretation of acoustic backscatter patterns.

# **Sediment Metal Concentrations**

Trace metal concentrations of Zn, Cu and Ni are significantly elevated at several sites (Table 5, Figs 13-15). These data suggest that fine contaminated sediment from industrial discharge has accumulated offshore, particularly near Kwinana Beach and James Point, and more broadly across the Eastern Shoal for Zn. Elevated levels were also found in samples from Buchanan Bay and Three Fathom Bank on the western margin of Cockburn Sound. The source of contamination at these sites

is not clear, but may be related to spoil dumps. These new data should be useful for the environmental management of the sound, especially if sites of sediment contamination are also areas of benthic habitat loss. As noted above, future analysis of swath coverages of the contaminated sites on the western margin of the sound should prove whether they are related to spoil dumps.

### **QUATERNARY STRATIGRAPHY**

The results of the vibracoring program (Fig. 16 and Appendix III), and logs of cores previously collected to assess the shellsand resource in the northern area of Cockburn Sound (Coastal and Marine Geosciences, 1998b; Dames and Moore, 1979) have been integrated into a series of west-east and south-north stratigraphic cross sections (Fig. 21). These sections provide new insights into the stratigraphy of the sound and will be ground-truthed through future sub-bottom profiling. The cross sections show that four Holocene lithostratigraphic units partially fill the depression in the Pleistocene calcarenite that forms the bedrock of Cockburn Sound. Previous studies of the stratigraphic relationships of coastal units on the Rottnest Shelf have reported a similar assemblage of Holocene deposits (Semeniuk and Searle 1985; Semeniuk and Searle 1987; Searle and Semeniuk 1985; Searle *et al.* 1988; Semeniuk *et al.* 1988). In the following sections, the major units encountered in this study are related to the published regional lithostratigraphy.

#### Holocene

Gravely shelly carbonate/quartz sand. This facies is part of the Safety Bay Sand, which is a 2 to 6 m thick sequence (tabular deposit) of laminated to structureless sand and shelly sand. It underlies dune deposits of the present coast and overlies the Becher Sand. A carbonate and quartz sand unit (Safety Bay Sand) is restricted to the eastern side of Cockburn Sound. This unit was encountered south of James Point (section C-C'; Fig. 21) where this sediment was emplaced in a beach environment and overlies the muddy sand facies of the Becher Sand.

Carbonate Sand/Muddy Sand. This sand and muddy sand facies is equivalent to the seagrass and slope units of the Becher Sand Unit (Semeniuk et al. 1988). The Becher Sand is Holocene in age; all radiocarbon ages for shells obtained from within this unit have are less than 7,000 years BP (Woods and Searle, 1983; Semeniuk and Searle 1985). The unit overlies and interfingers with the basin sandy muds (section C – C', Fig. 21). The Becher Sand is thickest in Parmelia Bank to the north and Southern Flats to the southwest of Cockburn Sound where this carbonate sand and muddy sand is at least 15 m thick. Previous drilling in Parmelia Bank (Coastal and Marine Geosciences, 1998b) shows this unit to be thickest in the centre of the north-south bedrock depression that underlies Cockburn Sound and thins towards the eastern side of the Garden Island Ridge (section A-A', Fig. 21). Cross sections A-A', C-C' and D-D' show that the Becher Sand overlies the basin muds (Fig. 21). Significantly, these results show that the bank sediments are being transported into Cockburn Sound via Parmelia Bank and the Southern Flats and are infilling the northern and southern margins of the central basin.

Muddy Quartz Sand. This facies is less than 1 m thick and appears to be infilling a depression within the limestone that forms the Garden Island Ridge (section B-B', Fig. 21). Possibly, this deposit is reworked sediment that marks the Holocene-Pleistocene unconformity. Alternatively, it may be a relict heavily leached surficial horizon of the Tamala Limestone, or a remnant deposit of Cooloongup Sand (Passmore, 1970).

Basin sandy mud/mud. This deposit represents the Bridport Calcilutite (Semeniuk and Searle, 1987). It is wholly Holocene with reported radiocarbon ages for the unit of less than 7,000 years BP (Semeniuk and Searle, 1987). There is a sharp, unconformable contact with the underlying Pleistocene clay unit (CSV05 and 08, Figs 17e, f). These basin muds occupy former depressions in

the underlying Pleistocene topography (Tamala Limestone), represent the basal Holocene marine unit encountered within Cockburn Sound and form most of the contemporary seabed (Fig. 10). The unit appears to have a concave lensoidal shape, being thinner in the middle of the central basin (<1.5m thick, sections B-B' and D-D'; Fig. 21) and thicker at the eastern and western margins. It also thickens to >6m in the south (section C-C'; Fig. 21). Further south in the Rockingham area this deposit underlies the coastal plain and is up to 10 m thick (Semeniuk and Searle, 1987).

## Pleistocene

Clay/sandy clay: This clay overlies calcarenite gravel (possibly calcrete) and appears to be a fossil soil that developed on the calcarenite prior to the Holocene marine transgression. The clay also appears to partly infilling depressions and cavities (possible karst features) within the coastal limestone (sections B-B' and D-D', Fig. 21). Vibracore CSV05 intercepted cavities that are filled with groundwater (Fig. 16) and likely form part of the regional shallow aquifer. The groundwater may be discharging into the marine sediments in Cockburn Sound where the clay unit does not form an effective seal between the aquifer and the overlying marine sediment fill, as also suggested by the surface sediment PCA results discussed previously.

Coastal limestone/calcarenite gravel: Tamala Limestone was recovered in the base of cores CSV05 and CSV07 (Fig. 21). The associated quartz sand may be a leached remnant of the calcarenite that infills surficial depressions or vugs in the calcarenite. Alternatively, the quartz sand is related to alluvial or aeolian depositional processes. All of these possible processes of deposition would have occurred during periods of lower sea level.

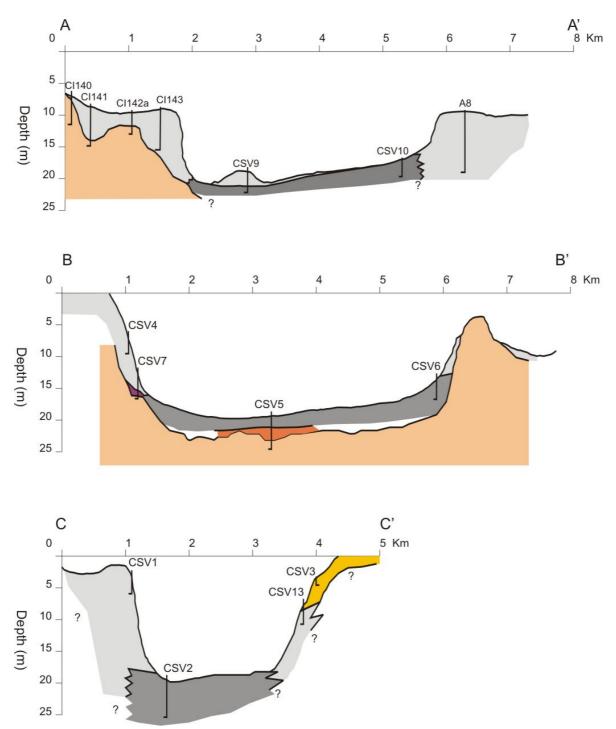
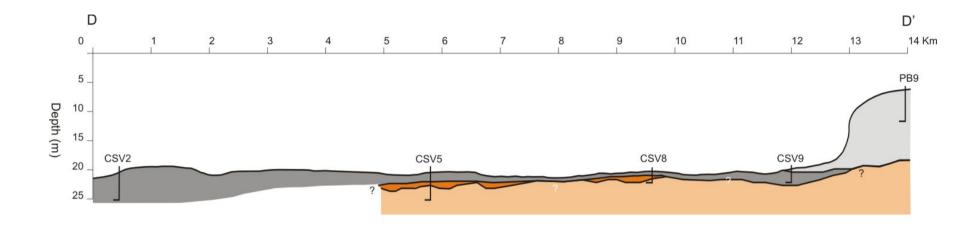




Figure 21: Stratigraphic cross sections of Cockburn Sound. The sections incorporate data obtained from the vibracores collected in the present study (CSV01-CSV13) and previous studies (cores C1140-C1143; A8; PB9). Locations of the cross sections are shown in Figure 4.



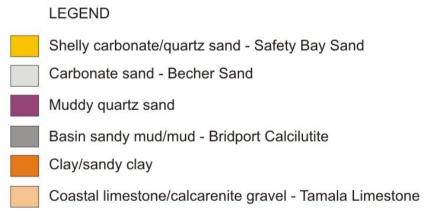



Figure 21: cont

### **Sub-Surface Geochemical Characteristics**

The comparison of surface and down-core geochemical data suggests that trace metal concentrations of modern sediment are much higher than pre-industrial levels. However, sediment quality appears to have improved at several sites where the sub-surface metal concentrations are higher than at the surface. This suggests that in the past metal contamination of the surface sediments was greater and these sediments have now been buried by sediment that is significantly less contaminated. The improved conditions at some sites are likely to be due to a lowering of industrial pressure, successful pollution reduction strategies and a change in the contaminant transport path. Since 1955 liquid waste products have been discharged into Cockburn Sound from the heavy industrial area on the eastern foreshore of the sound. The first comprehensive study of Cockburn Sound (1976-1979) identified a large variety of contaminants in industrial discharges to the sound (Department of Conservation and Environment, 1979). The Southern Metropolitan Coastal Waters Study (1991-1994) found that contaminant levels had decreased significantly since the late 1970s, due to large reductions in wastewater discharges from industry (Department of Environment Protection, 1996). This study also found that contaminated groundwater had replaced direct industrial pipeline discharge as the main nutrient input to the sound, which came mainly from the southern part of the Kwinana Industrial Area. Estimated amounts of metals and oil discharged by industry have continued to decrease due to improved waste treatment practices, and are presently about one sixth to one thousandth of those discharged in 1978 (DAL, 2001). In some cases, however, elevated subsurface metal concentrations may indicate the impact of a point source of pollution such as an old spoil dump.

Previously reported background metal concentrations for Cockburn Sound are consistently higher than pre-industrial background values observed at depth and reflect low levels of contamination themselves. The down-core geochemical data provides information on pre-industrial metal concentrations in sediments of the same type as modern surface sediment. Therefore, it appears that when compared to these new pre-industrial levels, the level of metal contamination in the surface sediments is greater than previously reported.

## **GEOLOGICAL EVOLUTION OF COCKBURN SOUND**

Based on the geomorphic, stratigraphic and sedimentological data presented above, Cockburn Sound has evolved into its present form in the following sequence:

- 1) With the rise of sea level in the early to middle Holocene the inner Rottnest shelf was flooded and the Cockburn-Warnbro Depression, between the Garden Island and Spearwood Ridges, was inundated. This low lying area is part of a large swale that formed between coastal dune ridges that were emplaced in the Late Pleistocene. The depression had a clay soil cover and possibly some karst landforms.
- 2) As the depression was filled by the rising sea to form the proto-Cockburn Sound there was some reworking of relict quartz-rich sand. These sediments accumulated on the western margin of the sound as muddy quartz sand and along the eastern shore as shelly carbonate/quartz sand (Safety Bay Sands).
- 3) Since being flooded, the northern, northeastern, western and southern margins of the sound have rapidly shoaled as large volumes of carbonate muddy sand and sand have been deposited in seagrass meadows (the Becher Sand). At the same time the central basin has been partially filled with carbonate sandy mud and mud (Bridport Calcilutite), a large proportion of which has been winnowed from the surrounding seagrass banks.
- 4) The fine fraction of surface sediments currently accumulating in much of Cockburn Sound has a terrestrial trace element signature and elevated levels of several trace metals. The spatial pattern of these data suggests major inputs of this sediment from the eastern coast, particularly at Kwinana Beach.

# Conclusions

Cockburn Sound is a large, low-energy coastal waterway located on a moderate to high-energy carbonate coast. It has formed in an elongate depression that sits in the lee of a cemented Pleistocene shore-parallel dune ridge. This study provides the following new insights into this coastal depositional environment:

- 1) Surface sediments in the sound are dominantly biogenic carbonates, with sandy mud and mud in the relatively deep (15–20 m) central basin. The marginal banks (2–10 m) comprise carbonate sand and there is mixed carbonate and quartz sand in the eastern nearshore zone. Maps of the distinctive surface sediment types can be used to ground-truth acoustic backscatter datasets and help explain textural patterns in the acoustic data.
- 2) Surface sediment Nd/Sr ratios and PCA results indicate that there is a higher proportion of fine terrestrial sediment on the eastern side of the sound and this sediment fraction contains elevated levels of some trace metals. The PCA results and the presence of water-filled cavities within the Tamala Limestone that underlies the central basin sediments suggest there may be submarine discharge of groundwater in a zone that extends from the northeastern coast westwards into the central basin.
- 3) Maps of surface sediment trace metal concentrations need to be compared with maps of benthic habitat loss, such as seagrass, to indicate whether there is a link between the decline in benthic habitat area and sediment contamination. Cu and Ni levels are higher and exceed trigger values near Kwinana Beach (Ni), Three Fathom Bank (Cu, Ni), northern central basin (Ni), James Point (Cu) and Buchanan Bay (Cu).
- 4) The most significant geochemical variations, both down-core and between cores, are a result of the dominance of either marine or terrestrial sediments which have unique geochemical signatures.
- 5) Previously reported background metal concentrations for Cockburn Sound are consistently higher than pre-industrial background values observed at depth and surface metal contamination may be greater than previously reported. However, there is evidence for improved conditions at some sites, mainly due to large reductions in wastewater discharges from industry.
- 6) The stratigraphy of Cockburn Sound reveals that much of the clay soil that formed on the original calcarenite land surface prior to the Holocene rise in sea level is preserved below the marine carbonate mud that has been deposited in the central basin. The central basin has only partially infilled and there is considerable accommodation space for the continued accumulation of muddy sediment. Up to four distinct lithostratigraphic units were found to comprise the sediment fill and the spatial distribution of these deposits will be better defined in future sub-bottom profiling of the sound.

# References

- ANZECC (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand), 2000. *National Water Management Strategy. Paper No.4. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 1. The Guidelines*. Department of Environment and Heritage, Canberra.
- Cambridge, M.L., 1979. *Cockburn Sound Environment Study*. Technical Report on Seagrass. Department of Conservation and Environment, Perth, Western Australia.
- Coastal and Marine Geosciences, 1998a. Geotechnical evaluation of shellsand resource Success Bank, Owen Anchorage Western Australia. Geotechnical Report # CC98/2. Prepared for Cockburn Cement Limited.
- Coastal and Marine Geosciences, 1998b. *Geotechnical evaluation of alternative marine shell sand resources in the Mewstone-Carnac Island area offshore of Fremantle, Western Australia.* Geotechnical Report # CC98/3. Prepared for Cockburn Cement Limited.
- Collins, L.B., 1988. Sediments and history of the Rottnest Shelf, southwest Australia: a swell dominated, non-tropical carbonate margin. *Sedimentary Geology*, **60**: 15-49.
- DAL, 2001. *The State of Cockburn Sound A Pressure-State-Response Report*. Prepared for Cockburn Sound Management Council by D.A. Lord and Associates Pty Ltd in association with PPK Environment and Infrastructure Pty Ltd. Report No. 01/187/1, June 2001.
- DAL, 2002. The Influence of the Garden Island Causeway on the Environmental Values of the Southern End of Cockburn Sound. Prepared by D.A. Lord and Associates Pty Ltd for Cockburn Sound Management Council. Report No. 02/247/1, August 2002.
- Dames and Moore, 1979. Report: Site investigation, Cockburn Sound dredging, Western Australia. Job No. 11354-001-71.
- Department of Conservation and Environment, 1979. *Cockburn Sound Environmental Study 1976-1979*. Department of Conservation and Environment, Report No. 2, Perth, Western Australia.
- Department of Construction, 1977. Wave Climate Cockburn Sound. Commonwealth of Australia, Department of Construction. Report No. MW 79. Maritime Works Branch, Melbourne, Victoria.
- Department of Environment, 2005. Environmental Management Plan for Cockburn Sound and its Catchment. Cockburn Sound Management Council, Department of Environment, Perth, Western Australia.
- Department of Environmental Protection, 1996. Southern Metropolitan Coastal Waters Study, Final Report. Department of Environmental Protection, Perth, Western Australia.
- Fairbridge, R.W., 1948. The geology and geomorphology of Point Peron, Western Australia. *Journal of the Proceedings of the Royal Society of Western Australia*, **33-36**: 35-69.

- France, R.E., 1977. The origin and sedimentology of barrier and fringing banks, Cockburn Sound, Western Australia. BSc. (Hons.) Thesis, Department of Geology, University of Western Australia.
- Hearn, C.J., 1991. A review of past studies of the hydrodynamics of Cockburn Sound and surrounding waters with an appraisal of physical provesses and recommendations for future data collection and modelling. Department of Geography and Oceanography, Australian Defence Force Academy. A contribution to the Southern Metropolitan Coastal Waters Study (1991-1994). Environmental Protection Authority, Perth, Western Australia.
- Kelletat, D., 1991. Geomorphological aspects of eolianites in Western Australia. In: *Von der Nordsee bis zum Inischen Ozsean*. H. Bruckner and U. Radtke (Eds). pp. 181-198. Stuttgart, Franz Steiner Verlag.
- McCulloch, M., Pailles, V., Moody, P., and Martin, C., 2003. Tracing the source of sediment and phosphorus into the Great Barrier Reef lagoon. *Earth and Planetary Science Letters* **210**: 249-258.
- Muller, G. and Gastner, M., 1981. The "karbonate bombe" a simple device for the determination of the carbonate content in sediments, soils and other materials. *Neus Fahrb. Mineral. Monatsh.*, **10**: 466-469.
- Murphy, P.J., 1979. *Cockburn Sound Study Technical Report on Industrial Effluents*. Department of Conservation and Environment. Report No. 6. Perth, Western Australia.
- Norris, K. and Hutton, J.T., 1969: An accurate X-Ray spectrographic method for the analysis of a wide range of geological samples. *Geochimica et Cosmochimica Acta*, **33**: 431-453.
- Passmore, J.R., 1970. Shallow coastal aquifers in the Rockingham District, Western Australia. *Water Research Foundation Australia Bulletin*, **18**: 83p.
- Pattiaratchi, C.B., Imberger J., Zaker N. and Svenson T., 1995. *Perth Coastal Waters Study. Project P2: Physical measurements*. University of Western Australia, Centre for Water Research Report WP 947 CP, 57pp.
- Playford, P. E., Cockbain, A. E. and Lowe, G.H., 1976. Geology of the Perth Basin. *Geological Survey of Western Australia Bulletin*, **124**: 311p.
- Price, D.M., Brooke, B.P. Woodroffe, C.D., 2001. Thermoluminescence dating of aeolianites from Lord Howe Island and south-west Western Australia. *Quaternary Science Reviews*, **20**: 841-846.
- Radke, L.C., Prosser, I., Robb, M., Brooke, B., Fredericks, D., Douglas, G.B. and Skemstad, J., 2004. The relationship between sediment and water quality and riverine sediment loads in the wave-dominated estuaries of southwest Western Australia. *Marine and Freshwater Research*, **55**: 1-16.
- Rosman, K.K.R., De Laeter, J.R. and Chegwidden, A., 1980. Distribution of cadmium in Cockburn Sound, Western Australia. *The Science of the Total Environment*, **16(2)**: 117-130.

- Searle, D.J. and Semeniuk, V., 1985. The natural sectors of the inner Rottnest Shelf coast adjoining the Swan Coastal Plain. *Journal of the Royal Society of Western Australia*, **67(3,4)**: 116-136.
- Searle, D.J. and Semeniuk, V., 1988. Petrology and origin of beach sand along the Rottnest Shelf coast, southwestern Australia. *Journal of the Royal Society of Western Australia*, **70(4)**: 119-128
- Searle, D.J., Semeniuk, V. and Woods, P.J., 1988. Geomorphology, stratigraphy and Holocene history of the Rockingham-Becher Plain, south-western Australia. *Journal of the Royal Society of Western Australia*, **70(4)**: 89-109.
- Semeniuk, V. and Searle, D.J., 1985. The Becher Sand, a new stratigraphic unit for the Holocene of the Perth Basin. *Journal of the Royal Society of Western Australia*, **67** (**3,4**): 109-115.
- Semeniuk, V. and Searle, D.J., 1987. The Bridport Calcilutite. *Journal of the Royal Society of Western Australia*, **70(1)**: 25-27.
- Semeniuk, V., Searle, D.J. and Woods, P.J., 1988. The sedimentology and stratigraphy of a cuspate foreland, southwestern Australia. *Journal of Coastal Research*, **4(4)**: 551-564.
- Smith, A.J., Turner, J.V., Herne, D.E. and Hick, W.P., 2003. *Quantifying Submarine Groundwater Discharge and Nutrient Discharge into Cockburn Sound, Western Australia*. A Technical Report to Coast and Clean Seas Project WA9911: Quantifying Submarine Groundwater Discharge and Demonstrating Innovative Clean-Up to Protect Cockburn Sound from Nutrient Discharge. CSIRO Land and Water, Wembly, Western Australia 6319. Technical Report No. 01/03. CGS Report No. 104.
- Talbot, V. and Chegwidden, A., 1983. Heavy metals in the sediments of Cockburn Sound, Western Australia, and its surrounding areas. *Environmental Pollution (Series B)*, **5**: 187-205.
- Woods, P.J. and Searle, D.J., 1983. Radiocarbon dating and Holocene history of the Becher/Rockingham Beach Ridge Plain, Western Australia. *Search* 14: 44-46.

# **APPENDIX I**

**Table A1.1:** Sediment grain size fractions (gravel/sand/mud) and CaCO3 content for the surface sediment samples.

| GA SAMPLE# | SAMPLE ID  | %GRAVEL | %SAND | %MUD  | CACO3 %<br>0-2 MM<br>FRACTION |
|------------|------------|---------|-------|-------|-------------------------------|
| 1408136    | 251/CSG002 | 0.92    | 19.65 | 79.43 | 76.0                          |
| 1408137    | 251/CSG009 | 2.32    | 89.51 | 8.17  | 88.7                          |
| 1408138    | 251/CSG011 | 1.58    | 70.84 | 27.58 | 63.3                          |
| 1408139    | 251/CSG013 | 4.91    | 89.25 | 5.84  | 86.7                          |
| 1408140    | 251/CSG014 | 1.50    | 28.26 | 70.24 | 75.0                          |
| 1408141    | 251/CSG015 | 0.82    | 12.78 | 86.40 | 76.0                          |
| 1408142    | 251/CSG016 | 1.02    | 10.56 | 88.42 | 75.5                          |
| 1408143    | 251/CSG017 | 1.23    | 10.26 | 88.51 | 75.0                          |
| 1408144    | 251/CSG018 | 1.09    | 25.97 | 72.94 | 74.0                          |
| 1408145    | 251/CSG019 | 2.85    | 23.75 | 73.40 | 77.0                          |
| 1408146    | 251/CSG020 | 3.13    | 21.36 | 75.50 | 79.1                          |
| 1408147    | 251/CSG021 | 6.52    | 60.08 | 33.40 | 64.9                          |
| 1408148    | 251/CSG022 | 3.18    | 31.81 | 65.01 | 80.1                          |
| 1408149    | 251/CSG023 | 0.24    | 21.10 | 78.66 | 79.1                          |
| 1408150    | 251/CSG024 | 1.84    | 37.58 | 60.57 | 81.1                          |
| 1408151    | 251/CSG025 | 18.42   | 60.87 | 20.71 | 85.7                          |
| 1408152    | 251/CSG026 | 2.15    | 45.24 | 52.62 | 80.6                          |
| 1408153    | 251/CSG027 | 0.57    | 98.89 | 0.54  | 91.2                          |
| 1408154    | 251/CSG028 | 1.15    | 93.70 | 5.15  | 89.2                          |
| 1408155    | 251/CSG029 | 0.07    | 92.83 | 7.10  | 87.2                          |
| 1408156    | 251/CSG030 | 1.28    | 57.44 | 41.29 | 82.6                          |
| 1408157    | 251/CSG031 | 3.75    | 55.73 | 40.51 | 79.1                          |
| 1408158    | 251/CSG032 | 5.89    | 65.56 | 28.54 | 82.1                          |
| 1408159    | 251/CSG033 | 3.53    | 86.42 | 10.05 | 83.6                          |
| 1408160    | 251/CSG034 | 2.49    | 32.81 | 64.69 | 76.5                          |
| 1408161    | 251/CSG035 | 0.44    | 30.57 | 68.99 | 77.0                          |
| 1408162    | 251/CSG036 | 0.70    | 34.09 | 65.21 | 77.0                          |
| 1408163    | 251/CSG037 | 2.77    | 42.35 | 54.88 | 77.5                          |
| 1408164    | 251/CSG038 | 6.90    | 77.87 | 15.23 | 78.1                          |
| 1408165    | 251/CSG039 | 3.80    | 31.57 | 64.63 | 83.1                          |
| 1408166    | 251/CSG040 | 0.45    | 38.32 | 61.23 | 75.0                          |
| 1408167    | 251/CSG041 | 6.72    | 41.46 | 51.82 | 79.1                          |
| 1408168    | 251/CSG042 | 0.44    | 24.46 | 75.10 | 78.6                          |
| 1408169    | 251/CSG043 | 7.89    | 38.86 | 53.25 | 78.6                          |
| 1408170    | 251/CSG044 | 6.04    | 43.69 | 50.27 | 80.6                          |
| 1408171    | 251/CSG045 | 2.36    | 49.65 | 47.99 | 80.6                          |
| 1408172    | 251/CSG046 | 17.49   | 71.67 | 10.84 | 84.1                          |

| GA SAMPLE# | SAMPLE ID  | %GRAVEL | %SAND | %MUD  | CACO3%<br>0-2 MM<br>FRACTION |
|------------|------------|---------|-------|-------|------------------------------|
| 1408173    | 251/CSG047 | 25.77   | 72.82 | 1.42  | 59.8                         |
| 1408174    | 251/CSG048 | 12.14   | 62.46 | 25.39 | 84.7                         |
| 1408175    | 251/CSG049 | 2.61    | 90.86 | 6.54  | 86.7                         |
| 1408176    | 251/CSG050 | 1.62    | 56.74 | 41.64 | 83.1                         |
| 1408177    | 251/CSG051 | 0.71    | 38.74 | 60.55 | 81.1                         |
| 1408178    | 251/CSG052 | 1.33    | 33.34 | 65.32 | 79.1                         |
| 1408179    | 251/CSG053 | 0.26    | 30.43 | 69.32 | 79.1                         |
| 1408180    | 251/CSG054 | 0.67    | 23.19 | 76.14 | 80.6                         |
| 1408181    | 251/CSG055 | 15.62   | 80.81 | 3.57  | 88.7                         |
| 1408182    | 251/CSG056 | 18.08   | 77.13 | 4.79  | 88.7                         |
| 1408183    | 251/CSG057 | 0.68    | 78.80 | 20.52 | 85.2                         |
| 1408184    | 251/CSG058 | 0.37    | 15.57 | 84.06 | 81.1                         |
| 1408185    | 251/CSG059 | 1.36    | 39.30 | 59.34 | 82.1                         |
| 1408186    | 251/CSG060 | 0.18    | 12.29 | 87.53 | 79.6                         |
| 1408187    | 251/CSG061 | 0.32    | 13.45 | 86.23 | 80.1                         |
| 1408188    | 251/CSG062 | 0.27    | 15.08 | 84.66 | 80.1                         |
| 1408189    | 251/CSG064 | 1.12    | 9.77  | 89.11 | 79.6                         |
| 1408190    | 251/CSG065 | 1.33    | 57.21 | 41.46 | 77.5                         |
| 1408191    | 251/CSG066 | 2.01    | 21.36 | 76.64 | 81.1                         |
| 1408192    | 251/CSG068 | 0.68    | 20.83 | 78.48 | 80.1                         |
| 1408193    | 251/CSG069 | 2.02    | 38.44 | 59.54 | 80.1                         |
| 1408194    | 251/CSG070 | 3.70    | 86.41 | 9.89  | 66.4                         |
| 1408195    | 251/CSG071 | 6.00    | 71.30 | 22.70 | 79.1                         |
| 1408196    | 251/CSG072 | 16.39   | 73.08 | 10.52 | 78.1                         |
| 1408197    | 251/CSG073 | 7.72    | 71.21 | 21.07 | 85.2                         |
| 1408198    | 251/CSG074 | 7.18    | 87.33 | 5.49  | 63.8                         |

**Table A1.2:** Average laser grain size data (Malvern Laser Analyser) for the surface sediment samples.

| samples. |         |         |          | D [4, 3] -       |             |          |       |
|----------|---------|---------|----------|------------------|-------------|----------|-------|
| SAMPLE   | D (0.1) | D (0.5) | D (0.9)  | VOLUME           | OBSCURATION | KURTOSIS | SKEW  |
| ID       | 2 (01.) | 2 (0.0) | 2 (0.0)  | WEIGHTED<br>MEAN |             |          | 0.1   |
| CSG002   | 2.568   | 15.721  | 70.115   | 31.209           | 16.69       | 37.39    | 5.265 |
| CSG009   | 68.925  | 234.337 | 459.604  | 253.029          | 8.1         | 0.112    | 0.551 |
| CSG011   | 7.197   | 120.73  | 434.249  | 180.4            | 15.72       | 4.375    | 1.923 |
| CSG013   | 43.763  | 298.307 | 873.064  | 395.659          | 6.75        | 1.894    | 1.376 |
| CSG014   | 2       | 13.257  | 72.659   | 32.325           | 29.63       | 32.87    | 5.091 |
| CSG015   | 1.939   | 12.17   | 51.993   | 22.592           | 19.35       | 122.57   | 9.133 |
| CSG016   | 1.783   | 11.205  | 50.908   | 23.045           | 25.52       | 95.57    | 8.562 |
| CSG017   | 2.049   | 11.386  | 55.847   | 26.164           | 29.91       | 58.4     | 6.855 |
| CSG018   | 1.969   | 12.041  | 96.854   | 42.645           | 24.18       | 26.796   | 4.758 |
| CSG019   | 2.025   | 17.075  | 91.482   | 39.765           | 33.5        | 28.446   | 4.665 |
| CSG020   | 1.755   | 16.104  | 106.653  | 54.596           | 33.02       | 20.657   | 4.3   |
| CSG021   | 3.221   | 67.144  | 739.269  | 234.57           | 23.52       | 3.162    | 1.857 |
| CSG022   | 2.456   | 21.825  | 341.372  | 105.56           | 24.17       | 12.156   | 3.302 |
| CSG023   | 2.148   | 16.741  | 83.68    | 36.802           | 25.8        | 34.29    | 5.08  |
| CSG024   | 2.098   | 30.569  | 129.536  | 61.933           | 20.17       | 19.485   | 4.03  |
| CSG025   | 5.181   | 168.336 | 802.546  | 296.129          | 12.28       | 1.887    | 1.473 |
| CSG026   | 2.92    | 44.49   | 260.677  | 101.395          | 24.84       | 10.188   | 2.994 |
| CSG027   | 170.412 | 296.411 | 516.557  | 322.629          | 3.58        | 0.241    | 0.83  |
| CSG028   | 29.918  | 271.478 | 520.675  | 286.548          | 8.89        | -0.104   | 0.404 |
| CSG029   | 15.181  | 210.934 | 453.334  | 230.75           | 10.04       | 0.169    | 0.674 |
| CSG030   | 5.858   | 87.272  | 442.381  | 166.606          | 13.48       | 9.039    | 2.802 |
| CSG031   | 4.612   | 74.299  | 390.203  | 145.796          | 13.53       | 8.47     | 2.706 |
| CSG032   | 4.6     | 94.796  | 451.098  | 169.578          | 17.54       | 5.492    | 2.185 |
| CSG033   | 16.602  | 232.511 | 707.488  | 310.481          | 9.47        | 1.407    | 1.276 |
| CSG034   | 2.514   | 24.402  | 157.753  | 63.875           | 17.55       | 11.746   | 3.183 |
| CSG035   | 1.944   | 18.771  | 125.568  | 56.781           | 37.67       | 16.185   | 3.776 |
| CSG036   | 2.64    | 31.93   | 282.831  | 100.592          | 18.57       | 11.833   | 3.277 |
| CSG037   | 2.614   | 22.729  | 183.45   | 68.994           | 25.8        | 10.742   | 3.091 |
| CSG038   | 7.195   | 218.894 | 814.415  | 325.691          | 15.47       | 2.248    | 1.505 |
| CSG039   | 2.408   | 27.655  | 261.845  | 92.084           | 34.72       | 13.519   | 3.412 |
| CSG040   | 2.52    | 22.15   | 187.893  | 66.79            | 29.46       | 9.679    | 2.969 |
| CSG041   | 2.701   | 33.081  | 344.595  | 107.348          | 29.57       | 5.843    | 2.388 |
| CSG042   | 2.073   | 22.646  | 107.463  | 54.191           | 21.29       | 20.601   | 4.251 |
| CSG043   | 2.163   | 38.911  | 394.87   | 120.397          | 20.17       | 6.901    | 2.563 |
| CSG044   | 2.315   | 46.123  | 296.223  | 104.111          | 21.85       | 8.462    | 2.773 |
| CSG045   | 2.304   | 48.008  | 188.726  | 81.646           | 25.83       | 11.268   | 2.955 |
| CSG046   | 8.639   | 247.374 | 849.515  | 352.193          | 10.4        | 1.407    | 1.31  |
| CSG047   | 182.648 | 546.005 | 1125.918 | 604.239          | 8.19        | 0.192    | 0.683 |
| CSG048   | 3.809   | 104.086 | 679.999  | 229.873          | 22.23       | 3.067    | 1.829 |
| CSG049   | 50.526  | 265.009 | 745.795  | 344.468          | 9.25        | 2.213    | 1.442 |
| CSG050   | 2.959   | 63.539  | 311.917  | 124.077          | 21.53       | 9.927    | 2.97  |
| CSG051   | 2.245   | 33.016  | 213.009  | 85.024           | 29.37       | 10.026   | 3.043 |
| CSG052   | 2.132   | 23.511  | 142.139  | 63.169           | 26.41       | 13.678   | 3.48  |
| CSG053   | 2.445   | 21.51   | 122.868  | 52.655           | 23.38       | 14.676   | 3.47  |
|          | -       | •       |          |                  |             | -        |       |

|         |         | RESIDUAL- | SIZES |      | % UNDE | ER   |      |       |       |       |       |
|---------|---------|-----------|-------|------|--------|------|------|-------|-------|-------|-------|
| MODE    | STD DEV | WEIGHTED  | 0.06  | 0.12 | 0.24   | 0.49 | 0.98 | 2     | 3.9   | 7.8   | 15.6  |
| 22.764  | 51.474  | 0.899     | 0     | 0    | 0      | 0.63 | 3.37 | 7.37  | 16.43 | 31.29 | 49.78 |
| 257.287 | 149.341 | 1.163     | 0     | 0    | 0      | 0    | 0.42 | 1.03  | 2.31  | 4.2   | 6.07  |
| 146.629 | 193.681 | 0.705     | 0     | 0    | 0      | 0.33 | 1.57 | 3.22  | 6.25  | 10.53 | 15.43 |
| 287.319 | 334.796 | 1.391     | 0     | 0    | 0      | 0.09 | 0.68 | 1.54  | 3.09  | 5.16  | 7.25  |
| 21.416  | 61.147  | 0.851     | 0     | 0    | 0      | 0.97 | 4.55 | 10    | 21.36 | 37.12 | 54.16 |
| 25.421  | 38.994  | 0.982     | 0     | 0    | 0      | 1    | 4.80 | 10.36 | 21.79 | 38.41 | 56.81 |
| 14.12   | 46.872  | 0.98      | 0     | 0    | 0      | 1.22 | 5.47 | 11.26 | 22.6  | 39.84 | 59.58 |
| 6.159   | 54.027  | 0.838     | 0     | 0    | 0      | 1    | 4.49 | 9.71  | 22.05 | 40.15 | 58.08 |
| 5.908   | 93.602  | 0.897     | 0     | 0    | 0      | 1.06 | 4.72 | 10.18 | 22.32 | 39.48 | 56.05 |
| 48.183  | 68.581  | 0.744     | 0     | 0    | 0      | 1.15 | 4.74 | 9.86  | 20.72 | 34.92 | 48.23 |
| 45.766  | 119.047 | 0.784     | 0     | 0    | 0      | 1.48 | 5.72 | 11.4  | 22.21 | 36.29 | 49.4  |
| 634.893 | 334.865 | 0.953     | 0     | 0    | 0      | 0.63 | 2.75 | 5.62  | 12.5  | 23.07 | 32.38 |
| 56.836  | 219.915 | 0.826     | 0     | 0    | 0      | 0.8  | 3.54 | 7.69  | 17.58 | 31.46 | 44.14 |
| 49.999  | 62.196  | 0.782     | 0     | 0    | 0      | 0.97 | 4.28 | 9.17  | 20.38 | 35.5  | 48.69 |
| 67.546  | 105.483 | 0.778     | 0     | 0    | 0      | 1.15 | 4.67 | 9.51  | 18.58 | 29.57 | 39.26 |
| 435.633 | 347.558 | 1.005     | 0     | 0    | 0      | 0.3  | 1.62 | 3.49  | 7.5   | 14.28 | 22.65 |
| 87.479  | 163.243 | 0.684     | 0     | 0    | 0      | 0.71 | 3.14 | 6.54  | 13.57 | 24.08 | 35.04 |
| 295.08  | 134.891 | 1.664     | 0     | 0    | 0      | 0    | 0    | 0     | 0     | 0     | 0     |
| 302.111 | 171.64  | 1.265     | 0     | 0    | 0      | 0    | 0.26 | 0.78  | 2.09  | 4.51  | 7.33  |
| 250.135 | 161.105 | 0.997     | 0     | 0    | 0      | 0.1  | 0.76 | 1.69  | 3.67  | 6.76  | 10.14 |
| 98.692  | 237.296 | 0.603     | 0     | 0    | 0      | 0.37 | 1.78 | 3.58  | 7.04  | 12.33 | 18.41 |
| 92.178  | 207.927 | 0.653     | 0     | 0    | 0      | 0.42 | 2.1  | 4.32  | 8.59  | 14.99 | 22.32 |
| 147.717 | 217.475 | 0.663     | 0     | 0    | 0      | 0.37 | 1.87 | 3.92  | 8.43  | 15.85 | 24.28 |
| 257.16  | 274.416 | 1.384     | 0     | 0    | 0      | 0.09 | 0.64 | 1.44  | 3.21  | 6.15  | 9.68  |
| 64.621  | 104.591 | 0.786     | 0     | 0    | 0      | 0.79 | 3.73 | 7.79  | 15.81 | 27.77 | 41.25 |
| 52.735  | 108.175 | 0.72      | 0     | 0    | 0      | 1.31 | 5.14 | 10.29 | 19.86 | 32.92 | 46.4  |
| 61.281  | 189.832 | 0.749     | 0     | 0    | 0      | 0.85 | 3.72 | 7.49  | 14.81 | 25.62 | 37.26 |
| 60.219  | 118.251 | 0.747     | 0     | 0    | 0      | 0.78 | 3.51 | 7.3   | 15.8  | 28.89 | 42.78 |
| 347.756 | 342.586 | 0.8       | 0     | 0    | 0      | 0.28 | 1.32 | 2.51  | 5.36  | 10.67 | 16.08 |
| 55.731  | 177.852 | 0.69      | 0     | 0    | 0      | 1.08 | 4.19 | 8.17  | 16.93 | 29.52 | 40.63 |
| 46.983  | 113.75  | 0.747     | 0     | 0    | 0      | 0.79 | 3.59 | 7.61  | 16.46 | 29.63 | 43.18 |
| 64.867  | 170.039 | 0.727     | 0     | 0    | 0      | 0.77 | 3.4  | 7.09  | 14.92 | 26.27 | 37.76 |
| 58.019  | 102.121 | 0.8       | 0     | 0    | 0      | 1.12 | 4.74 | 9.64  | 18.72 | 31.07 | 43.39 |
| 74.796  | 199.865 | 0.841     | 0     | 0    | 0      | 1.08 | 4.46 | 9.22  | 17.72 | 27.95 | 37.04 |
| 78.316  | 165.133 | 0.739     | 0     | 0    | 0      | 1.07 | 4.27 | 8.62  | 16.33 | 25.65 | 34.03 |
| 89.539  | 112.07  | 0.686     | 0     | 0    | 0      | 1.18 | 4.49 | 8.76  | 15.76 | 23.87 | 31.96 |
| 410.78  | 341.573 | 1.27      | 0     | 0    | 0      | 0.29 | 1.36 | 2.83  | 5.72  | 9.49  | 12.79 |
| 627.071 | 370.898 | 2.713     | 0     | 0    | 0      | 0    | 0.12 | 0.58  | 1.41  | 2.61  | 3.93  |
| 107.992 | 298.713 | 0.908     | 0     | 0    | 0      | 0.59 | 2.39 | 4.94  | 10.23 | 16.97 | 22.84 |
| 266.507 | 287.187 | 1.157     | 0     | 0    | 0      | 0.08 | 0.55 | 1.19  | 2.83  | 5.35  | 7.43  |
| 92.372  | 191.76  | 0.681     | 0     | 0    | 0      | 0.83 | 3.31 | 6.64  | 12.97 | 20.64 | 27.54 |
| 73.75   | 145.214 | 0.724     | 0     | 0    | 0      | 1.11 | 4.4  | 8.86  | 17.39 | 28.7  | 39.27 |
| 58.569  | 112.94  | 0.724     | 0     | 0    | 0      | 1.12 | 4.58 | 9.33  | 18.97 | 31.67 | 43.18 |
|         |         |           |       |      |        |      |      |       |       |       |       |
| 61.013  | 85.073  | 0.771     | 0     | 0    | 0      | 0.78 | 3.61 | 7.8   | 17.38 | 31.24 | 44.45 |

| 31    | 37    | 44    | 53    | 62.5  | 74    | 88    | 105   | 125   | 149   | 177   | 210   | 250   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 69.88 | 74.9  | 79.57 | 84.18 | 87.79 | 90.94 | 93.55 | 95.54 | 96.9  | 97.75 | 98.24 | 98.54 | 98.77 |
| 8.08  | 8.6   | 9.04  | 9.41  | 9.73  | 10.27 | 11.42 | 13.76 | 17.81 | 24.08 | 32.48 | 42.74 | 54.42 |
| 20.66 | 22.35 | 24.39 | 27.21 | 30.4  | 34.42 | 39.34 | 45.08 | 51.26 | 57.73 | 64.05 | 70.08 | 75.82 |
| 9.33  | 9.72  | 10.01 | 10.24 | 10.52 | 11.08 | 12.25 | 14.38 | 17.67 | 22.3  | 28.06 | 34.73 | 42.18 |
| 72.04 | 76.43 | 80.47 | 84.44 | 87.54 | 90.27 | 92.58 | 94.43 | 95.77 | 96.72 | 97.36 | 97.82 | 98.2  |
| 76.68 | 81.67 | 86.18 | 90.4  | 93.44 | 95.83 | 97.54 | 98.62 | 99.19 | 99.43 | 99.51 | 99.53 | 99.55 |
| 78.7  | 83.12 | 87.06 | 90.74 | 93.43 | 95.58 | 97.17 | 98.22 | 98.79 | 99.05 | 99.12 | 99.15 | 99.2  |
| 76.03 | 80.64 | 84.9  | 88.98 | 92    | 94.42 | 96.21 | 97.38 | 98.03 | 98.35 | 98.49 | 98.57 | 98.67 |
| 70.96 | 74.47 | 77.74 | 81.05 | 83.78 | 86.37 | 88.78 | 90.95 | 92.74 | 94.17 | 95.22 | 95.98 | 96.57 |
| 63.01 | 67.46 | 72.04 | 77.06 | 81.4  | 85.54 | 89.26 | 92.33 | 94.57 | 96.09 | 97.01 | 97.57 | 97.96 |
| 63.4  | 67.54 | 71.75 | 76.3  | 80.19 | 83.85 | 87.12 | 89.8  | 91.76 | 93.09 | 93.92 | 94.46 | 94.91 |
| 40.82 | 43.03 | 45.15 | 47.34 | 49.2  | 51.08 | 53.06 | 55.23 | 57.63 | 60.34 | 63.26 | 66.36 | 69.61 |
| 56.34 | 59.73 | 63.21 | 67.08 | 70.55 | 74.04 | 77.41 | 80.48 | 83.03 | 85.04 | 86.52 | 87.62 | 88.5  |
| 63    | 67.61 | 72.49 | 77.95 | 82.69 | 87.16 | 91.04 | 94.07 | 96.1  | 97.3  | 97.9  | 98.19 | 98.37 |
| 50.28 | 54.18 | 58.64 | 64.1  | 69.37 | 74.92 | 80.4  | 85.36 | 89.32 | 92.23 | 94.08 | 95.17 | 95.82 |
| 30.73 | 32.71 | 34.61 | 36.63 | 38.38 | 40.14 | 41.93 | 43.8  | 45.8  | 48.12 | 50.85 | 54.1  | 58.02 |
| 44.21 | 46.8  | 49.79 | 53.69 | 57.79 | 62.53 | 67.73 | 73.01 | 77.81 | 81.94 | 85.18 | 87.65 | 89.59 |
| 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0.06  | 1.26  | 4.96  | 11.8  | 21.99 | 35.34 |
| 10.16 | 10.93 | 11.63 | 12.22 | 12.54 | 12.73 | 12.97 | 13.74 | 15.62 | 19.36 | 25.34 | 33.72 | 44.42 |
| 13.66 | 14.52 | 15.29 | 16.06 | 16.8  | 17.82 | 19.5  | 22.31 | 26.61 | 32.75 | 40.56 | 49.75 | 59.94 |
| 24.49 | 26.7  | 29.56 | 33.65 | 38.25 | 43.86 | 50.32 | 57.22 | 63.87 | 69.95 | 75.05 | 79.18 | 82.53 |
| 30    | 32.65 | 35.85 | 40.11 | 44.63 | 49.87 | 55.66 | 61.66 | 67.33 | 72.49 | 76.88 | 80.58 | 83.74 |
| 31.84 | 33.74 | 35.76 | 38.26 | 40.91 | 44.16 | 48.12 | 52.75 | 57.79 | 63.1  | 68.3  | 73.24 | 77.88 |
| 12.83 | 13.49 | 14.15 | 15.01 | 16.08 | 17.69 | 20.1  | 23.52 | 27.93 | 33.34 | 39.42 | 45.96 | 52.9  |
| 54.8  | 58.55 | 62.46 | 66.92 | 71.04 | 75.3  | 79.5  | 83.38 | 86.65 | 89.28 | 91.28 | 92.83 | 94.13 |
| 60.22 | 64.17 | 68.24 | 72.76 | 76.75 | 80.67 | 84.32 | 87.49 | 89.95 | 91.77 | 93.02 | 93.93 | 94.7  |
| 49.4  | 53.15 | 57.21 | 61.93 | 66.29 | 70.73 | 75.01 | 78.85 | 81.98 | 84.46 | 86.33 | 87.8  | 89.11 |
| 55.99 | 59.59 | 63.33 | 67.55 | 71.39 | 75.29 | 79.07 | 82.53 | 85.41 | 87.78 | 89.65 | 91.21 | 92.65 |
| 20.52 | 21.66 | 22.84 | 24.24 | 25.67 | 27.42 | 29.62 | 32.36 | 35.65 | 39.55 | 43.93 | 48.77 | 54.09 |
| 52.24 | 56.06 | 60.17 | 64.87 | 69.1  | 73.29 | 77.23 | 80.68 | 83.43 | 85.58 | 87.2  | 88.49 | 89.69 |
| 56.97 | 60.91 | 64.92 | 69.27 | 73.04 | 76.67 | 80.03 | 83.02 | 85.51 | 87.63 | 89.42 | 91.04 | 92.61 |
| 48.87 | 52.01 | 55.27 | 58.99 | 62.39 | 65.91 | 69.42 | 72.79 | 75.83 | 78.6  | 81.08 | 83.39 | 85.7  |
| 56.41 | 60.68 | 65.39 | 70.92 | 75.99 | 81.04 | 85.69 | 89.57 | 92.35 | 94.14 | 95.09 | 95.55 | 95.83 |
| 46.22 | 49.11 | 52.31 | 56.19 | 59.95 | 64    | 68.16 | 72.17 | 75.7  | 78.7  | 81.12 | 83.14 | 84.98 |
| 42.53 | 45.46 | 48.94 | 53.41 | 57.97 | 63.04 | 68.35 | 73.5  | 77.97 | 81.66 | 84.47 | 86.62 | 88.41 |
| 41.39 | 44.46 | 47.99 | 52.5  | 57.18 | 62.58 | 68.52 | 74.61 | 80.21 | 85.07 | 88.85 | 91.64 | 93.68 |
| 16.03 | 16.9  | 17.81 | 18.95 | 20.2  | 21.86 | 24.1  | 27.05 | 30.65 | 34.93 | 39.68 | 44.81 | 50.34 |
| 5.07  | 5.35  | 5.64  | 5.96  | 6.24  | 6.52  | 6.79  | 7.11  | 7.56  | 8.33  | 9.67  | 11.87 | 15.34 |
| 28.11 | 29.71 | 31.62 | 34.26 | 37.25 | 40.96 | 45.37 | 50.25 | 55.12 | 59.78 | 63.89 | 67.5  | 70.79 |
| 9.08  | 9.43  | 9.74  | 10.11 | 10.6  | 11.49 | 13.09 | 15.75 | 19.65 | 24.97 | 31.48 | 38.94 | 47.18 |
| 34.92 | 37.51 | 40.67 | 44.92 | 49.5  | 54.91 | 60.97 | 67.27 | 73.15 | 78.31 | 82.41 | 85.5  | 87.83 |
| 48.96 | 52.04 | 55.61 | 60.11 | 64.6  | 69.5  | 74.5  | 79.2  | 83.12 | 86.18 | 88.35 | 89.89 | 91.11 |
| 55.32 | 59.25 | 63.5  | 68.45 | 72.97 | 77.5  | 81.77 | 85.49 | 88.37 | 90.5  | 91.97 | 93.04 | 93.95 |
| 56.71 | 60.5  | 64.68 | 69.65 | 74.27 | 78.96 | 83.41 | 87.27 | 90.26 | 92.47 | 94.02 | 95.15 | 96.09 |

| 300   | 350   | 420   | 500   | 590   | 710   | 840   | 1000  | 1190  | 1410  | 1680  | 2000 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| 99.02 | 99.26 | 99.57 | 99.85 | 99.99 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 66.82 | 76.51 | 86.15 | 93.03 | 97.39 | 99.81 | 100   | 100   | 100   | 100   | 100   | 100  |
| 81.22 | 85.24 | 89.33 | 92.56 | 95.03 | 97.15 | 98.53 | 99.47 | 99.95 | 100   | 100   | 100  |
| 50.25 | 57.04 | 64.77 | 71.73 | 77.86 | 84.06 | 88.98 | 93.21 | 96.42 | 98.55 | 99.69 | 100  |
| 98.59 | 98.92 | 99.33 | 99.68 | 99.92 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 99.58 | 99.64 | 99.72 | 99.82 | 99.91 | 99.98 | 100   | 100   | 100   | 100   | 100   | 100  |
| 99.29 | 99.4  | 99.56 | 99.72 | 99.85 | 99.96 | 100   | 100   | 100   | 100   | 100   | 100  |
| 98.85 | 99.07 | 99.38 | 99.67 | 99.88 | 99.99 | 100   | 100   | 100   | 100   | 100   | 100  |
| 97.1  | 97.55 | 98.13 | 98.72 | 99.24 | 99.7  | 99.92 | 100   | 100   | 100   | 100   | 100  |
| 98.32 | 98.65 | 99.08 | 99.49 | 99.81 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 95.43 | 95.98 | 96.78 | 97.64 | 98.46 | 99.24 | 99.73 | 99.96 | 100   | 100   | 100   | 100  |
| 72.99 | 75.81 | 79.14 | 82.4  | 85.59 | 89.22 | 92.38 | 95.26 | 97.49 | 98.98 | 99.84 | 100  |
| 89.35 | 90.14 | 91.31 | 92.73 | 94.31 | 96.14 | 97.61 | 98.75 | 99.44 | 99.78 | 99.94 | 100  |
| 98.59 | 98.84 | 99.22 | 99.59 | 99.87 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 96.32 | 96.76 | 97.43 | 98.17 | 98.89 | 99.56 | 99.91 | 100   | 100   | 100   | 100   | 100  |
| 62.68 | 66.97 | 72.26 | 77.37 | 82.09 | 87.03 | 91.03 | 94.49 | 97.12 | 98.85 | 99.82 | 100  |
| 91.26 | 92.56 | 94.07 | 95.53 | 96.86 | 98.18 | 99.11 | 99.74 | 99.97 | 100   | 100   | 100  |
| 51.05 | 64.28 | 78.14 | 88.45 | 95.17 | 99.27 | 100   | 100   | 100   | 100   | 100   | 100  |
| 56.99 | 67.73 | 79.31 | 88.28 | 94.44 | 98.69 | 99.99 | 100   | 100   | 100   | 100   | 100  |
| 70.59 | 78.87 | 87.14 | 93.12 | 97.02 | 99.48 | 100   | 100   | 100   | 100   | 100   | 100  |
| 85.32 | 87.3  | 89.42 | 91.35 | 93.15 | 95.09 | 96.69 | 98.08 | 99.09 | 99.71 | 99.94 | 100  |
| 86.54 | 88.63 | 90.89 | 92.89 | 94.66 | 96.45 | 97.83 | 98.91 | 99.62 | 99.94 | 100   | 100  |
| 82.21 | 85.44 | 88.81 | 91.61 | 93.92 | 96.12 | 97.71 | 98.92 | 99.68 | 99.96 | 100   | 100  |
| 60.19 | 66.24 | 73.14 | 79.35 | 84.77 | 90.09 | 94.04 | 97.1  | 99.06 | 99.94 | 100   | 100  |
| 95.37 | 96.39 | 97.56 | 98.58 | 99.35 | 99.87 | 100   | 100   | 100   | 100   | 100   | 100  |
| 95.5  | 96.26 | 97.23 | 98.19 | 99.01 | 99.68 | 99.95 | 100   | 100   | 100   | 100   | 100  |
| 90.43 | 91.57 | 93    | 94.42 | 95.77 | 97.19 | 98.31 | 99.18 | 99.75 | 99.97 | 100   | 100  |
| 94.09 | 95.32 | 96.74 | 97.99 | 98.96 | 99.68 | 99.95 | 100   | 100   | 100   | 100   | 100  |
| 59.94 | 65.01 | 70.99 | 76.54 | 81.53 | 86.63 | 90.7  | 94.22 | 96.92 | 98.73 | 99.65 | 100  |
| 90.95 | 92.1  | 93.57 | 95.05 | 96.42 | 97.8  | 98.78 | 99.46 | 99.79 | 99.94 | 100   | 100  |
| 94.23 | 95.57 | 97.06 | 98.3  | 99.21 | 99.83 | 100   | 100   | 100   | 100   | 100   | 100  |
| 88.13 | 90.21 | 92.67 | 94.9  | 96.78 | 98.43 | 99.42 | 99.93 | 100   | 100   | 100   | 100  |
| 96.19 | 96.65 | 97.4  | 98.24 | 99    | 99.67 | 99.96 | 100   | 100   | 100   | 100   | 100  |
| 86.88 | 88.58 | 90.75 | 92.93 | 94.97 | 97.01 | 98.45 | 99.39 | 99.87 | 99.99 | 100   | 100  |
| 90.12 | 91.58 | 93.41 | 95.18 | 96.78 | 98.28 | 99.27 | 99.83 | 99.98 | 100   | 100   | 100  |
| 95.21 | 96.24 | 97.31 | 98.24 | 99.01 | 99.66 | 99.94 | 100   | 100   | 100   | 100   | 100  |
| 56.35 | 61.55 | 67.78 | 73.71 | 79.21 | 85.01 | 89.71 | 93.76 | 96.82 | 98.81 | 99.91 | 100  |
| 20.59 | 26.45 | 35.05 | 44.73 | 54.77 | 66.27 | 76.15 | 85.04 | 91.98 | 96.69 | 99.44 | 100  |
| 74.03 | 76.78 | 80.2  | 83.69 | 87.1  | 90.85 | 93.93 | 96.56 | 98.45 | 99.57 | 99.99 | 100  |
| 55.98 | 63.19 | 71.12 | 77.88 | 83.47 | 88.76 | 92.69 | 95.87 | 98.13 | 99.5  | 99.99 | 100  |
| 89.66 | 90.96 | 92.45 | 93.93 | 95.38 | 96.96 | 98.21 | 99.18 | 99.79 | 99.98 | 100   | 100  |
| 92.3  | 93.38 | 94.81 | 96.27 | 97.61 | 98.87 | 99.65 | 99.97 | 100   | 100   | 100   | 100  |
| 94.91 | 95.79 | 96.93 | 98.02 | 98.94 | 99.67 | 99.95 | 100   | 100   | 100   | 100   | 100  |
| 96.98 | 97.72 | 98.58 | 99.29 | 99.77 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |

| SAMPLE<br>ID | D (0.1) | D (0.5) | D (0.9)  | D [4, 3] -<br>VOLUME<br>WEIGHTED<br>MEAN | OBSCURATION | KURTOSIS | SKEW  |
|--------------|---------|---------|----------|------------------------------------------|-------------|----------|-------|
| CSG054       | 2.128   | 21.902  | 138.986  | 58.926                                   | 29.27       | 13.931   | 3.497 |
| CSG055       | 17.926  | 387.73  | 880.048  | 432.776                                  | 9.49        | 0.162    | 0.727 |
| CSG056       | 37.85   | 343.731 | 809.404  | 399.518                                  | 9.41        | 0.572    | 0.903 |
| CSG057       | 6.814   | 384.181 | 896.834  | 412.828                                  | 16.81       | -0.358   | 0.607 |
| CSG058       | 1.523   | 14.674  | 80.91    | 39.375                                   | 44.14       | 23.818   | 4.543 |
| CSG059       | 2.483   | 21.404  | 170.764  | 64.029                                   | 22.15       | 13.289   | 3.344 |
| CSG060       | 2.136   | 12.967  | 63.553   | 31.459                                   | 34.49       | 39.39    | 5.797 |
| CSG061       | 2.2     | 13.125  | 62.553   | 29.913                                   | 35.58       | 45.148   | 6.115 |
| CSG062       | 2.245   | 13.659  | 63.69    | 31.941                                   | 32.42       | 37.716   | 5.688 |
| CSG064       | 2.176   | 12.195  | 59.319   | 27.506                                   | 32.37       | 49.338   | 6.297 |
| CSG065       | 2.886   | 43.138  | 318.172  | 114.947                                  | 26.92       | 7.465    | 2.492 |
| CSG066       | 2.192   | 15.873  | 87.491   | 41.356                                   | 31.34       | 18.263   | 3.999 |
| CSG068       | 1.795   | 19.348  | 104.14   | 50.934                                   | 33.14       | 18.508   | 4.047 |
| CSG069       | 2.264   | 32.356  | 279.541  | 97.571                                   | 25.95       | 9.909    | 3.027 |
| CSG070       | 12.772  | 252.594 | 808.919  | 346.3                                    | 10.24       | 1.471    | 1.298 |
| CSG071       | 4.229   | 158.852 | 723.308  | 272.643                                  | 20.89       | 3.486    | 1.801 |
| CSG072       | 16.972  | 257.971 | 899.946  | 376.358                                  | 10.84       | 1.714    | 1.396 |
| CSG073       | 4.846   | 156.785 | 659.193  | 254.157                                  | 16.92       | 3.94     | 1.864 |
| CSG074       | 65.945  | 371.72  | 1046.699 | 478.07                                   | 8.43        | 0.84     | 1.105 |

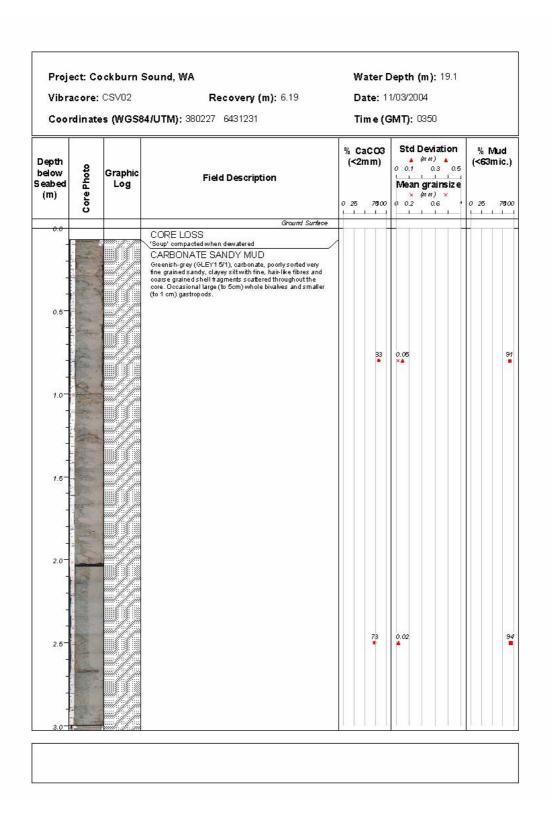
| MODE    | STD DEV | RESIDUAL- | SIZES | (μM) % L | INDER |      |      |       |       |       |       |
|---------|---------|-----------|-------|----------|-------|------|------|-------|-------|-------|-------|
| WIODL   | SIDDEV  | WEIGHTED  | 0.06  | 0.12     | 0.24  | 0.49 | 0.98 | 2     | 3.9   | 7.8   | 15.6  |
| 45.484  | 106.727 | 0.763     | 0     | 0        | 0     | 1.15 | 4.65 | 9.36  | 18.77 | 31.51 | 43.64 |
| 479.41  | 319.048 | 1.659     | 0     | 0        | 0     | 0.09 | 0.68 | 1.42  | 3.03  | 5.91  | 9.34  |
| 393.448 | 289.401 | 1.743     | 0     | 0        | 0     | 0.08 | 0.61 | 1.34  | 2.83  | 5.05  | 7.25  |
| 563.732 | 344.864 | 1.882     | 0     | 0        | 0     | 0.26 | 1.26 | 2.46  | 5.55  | 11.16 | 16.56 |
| 39.156  | 78.492  | 0.711     | 0     | 0        | 0     | 1.96 | 6.74 | 12.82 | 23.96 | 38.03 | 51.19 |
| 41.407  | 113.102 | 0.779     | 0     | 0        | 0     | 0.83 | 3.67 | 7.69  | 17.07 | 30.64 | 43.75 |
| 35.533  | 65.466  | 0.779     | 0     | 0        | 0     | 0.99 | 4.26 | 9.19  | 21.51 | 38.7  | 54.04 |
| 35.918  | 59.441  | 0.76      | 0     | 0        | 0     | 0.97 | 4.17 | 8.85  | 20.9  | 38.29 | 53.8  |
| 35.829  | 65.34   | 0.79      | 0     | 0        | 0     | 0.93 | 4.06 | 8.62  | 20.3  | 37.39 | 52.95 |
| 34.709  | 52.74   | 0.793     | 0     | 0        | 0     | 1    | 4.26 | 8.96  | 21.61 | 39.85 | 55.35 |
| 144.795 | 168.051 | 0.71      | 0     | 0        | 0     | 0.74 | 3.12 | 6.44  | 14.1  | 25.26 | 35.72 |
| 39.09   | 76.576  | 1.066     | 0     | 0        | 0     | 0.98 | 4.33 | 9.01  | 19.05 | 33.83 | 49.6  |
| 48.351  | 97.62   | 0.761     | 0     | 0        | 0     | 1.48 | 5.68 | 11.09 | 20.72 | 33.36 | 45.94 |
| 70.552  | 173.705 | 0.73      | 0     | 0        | 0     | 1.1  | 4.41 | 8.82  | 16.92 | 27.67 | 38.46 |
| 352.214 | 320.283 | 1.286     | 0     | 0        | 0     | 0.24 | 1.19 | 2.52  | 4.9   | 7.91  | 10.85 |
| 256.154 | 321.003 | 0.951     | 0     | 0        | 0     | 0.58 | 2.31 | 4.77  | 9.34  | 14.8  | 19.56 |
| 262.233 | 359.514 | 1.135     | 0     | 0        | 0     | 0.2  | 0.94 | 2.02  | 4.18  | 7.03  | 9.69  |
| 198.839 | 293.46  | 0.809     | 0     | 0        | 0     | 0.41 | 1.95 | 4.14  | 8.31  | 13.76 | 19.09 |
| 537.986 | 390.364 | 1.736     | 0     | 0        | 0     | 0.09 | 0.67 | 1.53  | 3.2   | 5.36  | 7.17  |

| 31    | 37    | 44    | 53    | 62.5  | 74    | 88    | 105   | 125   | 149   | 177   | 210   | 250   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 57.8  | 62.38 | 67.11 | 72.24 | 76.57 | 80.56 | 84.03 | 86.85 | 88.97 | 90.59 | 91.85 | 92.96 | 94.05 |
| 12.43 | 13.19 | 13.93 | 14.7  | 15.36 | 16.01 | 16.67 | 17.45 | 18.49 | 20.07 | 22.47 | 25.99 | 31    |
| 9.35  | 9.93  | 10.48 | 11.04 | 11.51 | 12.02 | 12.7  | 13.78 | 15.53 | 18.3  | 22.29 | 27.66 | 34.55 |
| 20.74 | 21.74 | 22.72 | 23.8  | 24.79 | 25.85 | 26.96 | 28.13 | 29.3  | 30.57 | 32.05 | 34.02 | 36.92 |
| 66.82 | 71.57 | 76.29 | 81.16 | 85.07 | 88.48 | 91.25 | 93.29 | 94.63 | 95.47 | 95.99 | 96.39 | 96.83 |
| 58.02 | 62.1  | 66.17 | 70.48 | 74.15 | 77.66 | 80.93 | 83.88 | 86.38 | 88.54 | 90.36 | 91.95 | 93.43 |
| 71.26 | 76.29 | 81.15 | 85.99 | 89.67 | 92.68 | 94.92 | 96.38 | 97.17 | 97.54 | 97.69 | 97.79 | 97.93 |
| 71.17 | 76.29 | 81.26 | 86.21 | 89.98 | 93.07 | 95.37 | 96.85 | 97.65 | 98.01 | 98.15 | 98.22 | 98.32 |
| 70.56 | 75.77 | 80.81 | 85.82 | 89.61 | 92.69 | 94.94 | 96.38 | 97.14 | 97.48 | 97.61 | 97.71 | 97.86 |
| 72.72 | 77.81 | 82.69 | 87.48 | 91.06 | 93.93 | 96.02 | 97.34 | 98.04 | 98.34 | 98.46 | 98.52 | 98.62 |
| 45.37 | 47.83 | 50.28 | 53.04 | 55.67 | 58.63 | 62.01 | 65.83 | 69.89 | 74.14 | 78.28 | 82.17 | 85.78 |
| 66.14 | 70.72 | 75.23 | 79.94 | 83.79 | 87.23 | 90.08 | 92.24 | 93.7  | 94.64 | 95.28 | 95.83 | 96.44 |
| 60.25 | 64.77 | 69.51 | 74.72 | 79.21 | 83.44 | 87.15 | 90.12 | 92.22 | 93.6  | 94.44 | 95.01 | 95.53 |
| 49.24 | 52.51 | 56.11 | 60.42 | 64.55 | 68.94 | 73.36 | 77.51 | 81.04 | 83.9  | 86.06 | 87.74 | 89.15 |
| 13.8  | 14.56 | 15.35 | 16.35 | 17.5  | 19.08 | 21.3  | 24.32 | 28.12 | 32.73 | 37.91 | 43.54 | 49.63 |
| 24.29 | 25.7  | 27.25 | 29.18 | 31.2  | 33.63 | 36.58 | 40.07 | 43.98 | 48.33 | 52.91 | 57.69 | 62.68 |
| 12.1  | 12.69 | 13.35 | 14.28 | 15.44 | 17.15 | 19.6  | 22.95 | 27.09 | 32    | 37.36 | 43.02 | 48.93 |
| 24.13 | 25.37 | 26.64 | 28.2  | 29.9  | 32.14 | 35.09 | 38.87 | 43.33 | 48.44 | 53.82 | 59.31 | 64.85 |
| 8.74  | 9.06  | 9.32  | 9.57  | 9.87  | 10.39 | 11.35 | 13.02 | 15.56 | 19.12 | 23.58 | 28.83 | 34.84 |

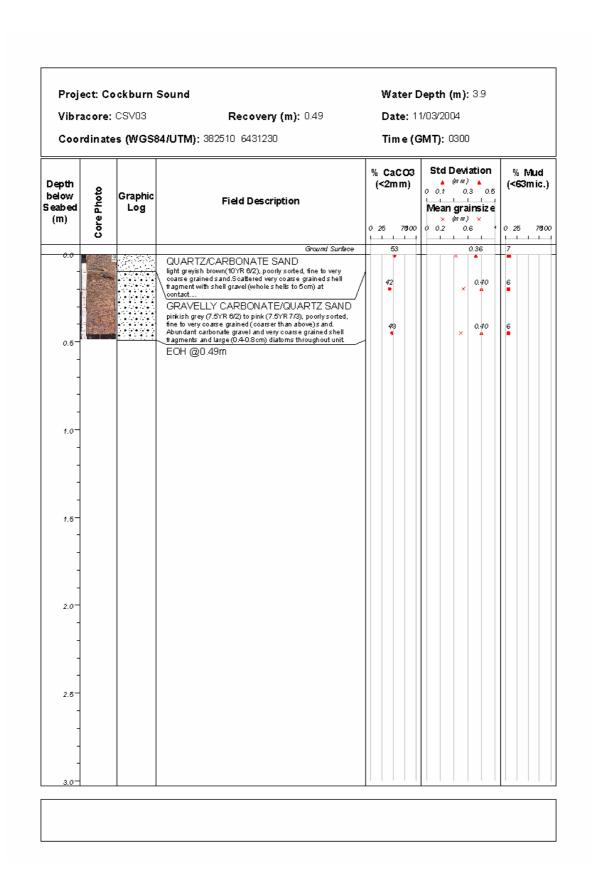
| 300   | 350   | 420   | 500   | 590   | 710   | 840   | 1000  | 1190  | 1410  | 1680  | 2000 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| 95.23 | 96.24 | 97.42 | 98.44 | 99.22 | 99.79 | 99.97 | 100   | 100   | 100   | 100   | 100  |
| 37.86 | 44.86 | 54.2  | 63.65 | 72.48 | 81.5  | 88.37 | 93.85 | 97.56 | 99.69 | 100   | 100  |
| 43.05 | 50.95 | 60.63 | 69.69 | 77.66 | 85.43 | 91.14 | 95.59 | 98.49 | 99.9  | 100   | 100  |
| 41.32 | 46.35 | 53.87 | 62.32 | 70.87 | 80.17 | 87.54 | 93.51 | 97.53 | 99.81 | 100   | 100  |
| 97.38 | 97.93 | 98.62 | 99.25 | 99.72 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 94.86 | 96    | 97.26 | 98.3  | 99.1  | 99.68 | 99.91 | 99.99 | 100   | 100   | 100   | 100  |
| 98.19 | 98.52 | 98.99 | 99.46 | 99.81 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 98.53 | 98.8  | 99.2  | 99.59 | 99.87 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 98.15 | 98.5  | 99    | 99.48 | 99.84 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 98.82 | 99.06 | 99.42 | 99.75 | 99.96 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 89.06 | 91.42 | 93.76 | 95.61 | 97.06 | 98.34 | 99.19 | 99.75 | 99.97 | 100   | 100   | 100  |
| 97.23 | 97.99 | 98.88 | 99.56 | 99.94 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| 96.16 | 96.81 | 97.69 | 98.56 | 99.28 | 99.84 | 100   | 100   | 100   | 100   | 100   | 100  |
| 90.54 | 91.75 | 93.3  | 94.87 | 96.34 | 97.83 | 98.9  | 99.64 | 99.95 | 100   | 100   | 100  |
| 56.22 | 61.88 | 68.57 | 74.84 | 80.52 | 86.37 | 90.96 | 94.79 | 97.56 | 99.26 | 99.96 | 100  |
| 67.91 | 72.26 | 77.22 | 81.7  | 85.64 | 89.63 | 92.8  | 95.54 | 97.65 | 99    | 99.71 | 100  |
| 55.14 | 60.37 | 66.49 | 72.29 | 77.67 | 83.43 | 88.22 | 92.48 | 95.83 | 98.15 | 99.58 | 100  |
| 70.41 | 74.85 | 79.73 | 84.02 | 87.73 | 91.41 | 94.27 | 96.64 | 98.36 | 99.37 | 99.85 | 100  |
| 41.62 | 47.61 | 54.9  | 62    | 68.78 | 76.26 | 82.68 | 88.61 | 93.45 | 96.91 | 99.15 | 100  |

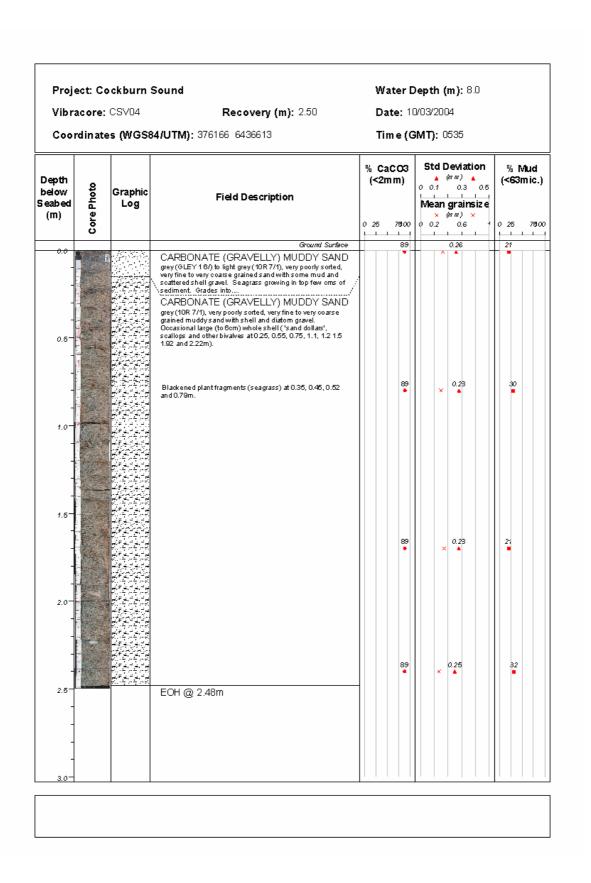
**APPENDIX II:** Trace and major element concentrations in the surface sediment samples (XRF and ICP-MS)

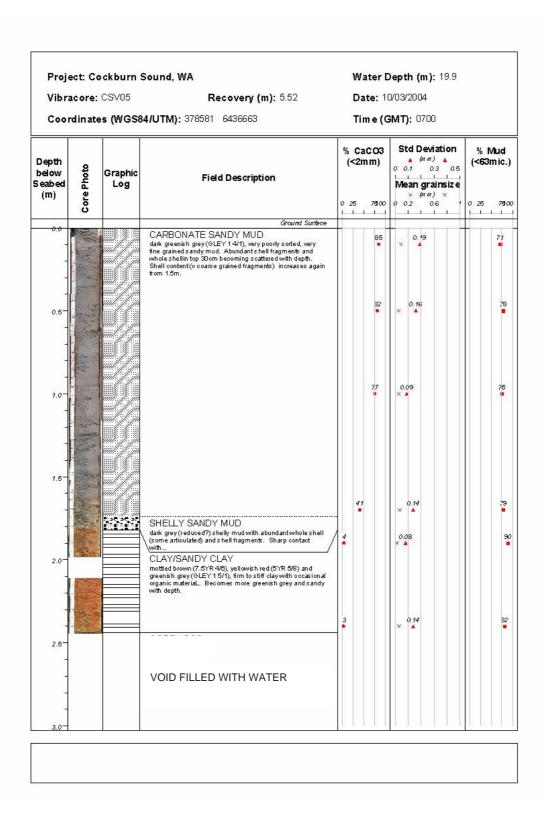
| SAMPLE | Cd<br>ICP-MS | Cr<br>XRF | Cu<br>XRF | Ni<br>XRF | Pb<br>ICP-MS | Zn<br>XRF | Ag<br>ICP-MS | AI2O3<br>XRF | As<br>ICP-MS | Ba<br>ICP-MS | Be<br>ICP-MS | Bi<br>ICP-MS | CaO<br>XRF | Ce<br>ICP-MS | CI<br>XRF |
|--------|--------------|-----------|-----------|-----------|--------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|-----------|
| NO     | ppm          | ppm       | ppm       | ppm       | ppm          | ppm       | ppm          | %            | ppm          | ppm          | ppm          | ppm          | %          | ppm          | %         |
| CSG13  | 0.55         | 39        | 16        | 49        | 19.8         | 60        | 0.1          | 3.196        | 3.6          | 54           | 0.4          | 0.2          | 37.585     | 30.3         | 5719      |
| CSG16  | 0.23         | 30        | 43        | 9         | 11.8         | 28        | 0.04         | 2.333        | 2.5          | 42           | 0.4          | 0.1          | 40.841     | 14.49        | 12468     |
| CSG18  | 0.52         | 37        | 20        | 14        | 14.8         | 46        | 0.11         | 2.947        | 0.7          | 51           | 0.3          | 0.2          | 39.964     | 22.29        | 11005     |
| CSG20  | 0.32         | 34        | 20        | 6         | 12.8         | 34        | 0.12         | 2.768        | <0.4         | 52           | 0.3          | 0.1          | 40.921     | 18.06        | 9706      |
| CSG23  | 0.15         | 39        | 97        | 15        | 14.4         | 29        | 0.16         | 2.676        | <0.4         | 54           | 0.3          | 0.1          | 41.775     | 16.94        | 6348      |
| CSG25  | 0.12         | 32        | 34        | 14        | 12           | 29        | 0.12         | 2.379        | < 0.4        | 44           | 0.2          | < 0.01       | 41.211     | 14.24        | 21023     |
| CSG27  | 0.12         | 32        | 149       | 56        | 20.7         | 37        | 0.08         | 2.414        | 6.8          | 52           | 0.2          | 0.1          | 27.848     | 10.95        | 212123    |
| CSG29  | 0.15         | 43        | 28        | 6         | 18.2         | 31        | 0.07         | 3.64         | 3.7          | 70           | 0.4          | < 0.01       | 36.359     | 17.71        | 11634     |
| CSG31  | 0.14         | 29        | 36        | 5         | 14.4         | 27        | 0.14         | 2.327        | 1.1          | 55           | 0.2          | 0.1          | 41.563     | 15.48        | 11246     |
| CSG33  | 0.18         | 40        | 44        | 10        | 18.7         | 38        | 0.12         | 3.074        | 2.6          | 54           | 0.3          | 0.2          | 39.098     | 18.28        | 19849     |
| CSG34  | 0.18         | 40        | 11        | 17        | 16.8         | 32        | 0.04         | 2.624        | 1.1          | 53           | 0.3          | 0.1          | 40.827     | 15.91        | 8138      |
| CSG36  | < 0.05       | 31        | 36        | 23        | 13.8         | 27        | 0.07         | 2.508        | < 0.4        | 51           | 0.2          | 0.1          | 41.226     | 17.11        | 5267      |
| CSG38  | 0.15         | 34        | 24        | 2         | 12.5         | 26        | 0.07         | 2.211        | < 0.4        | 44           | 0.2          | < 0.01       | 41.306     | 15.25        | 6366      |
| CSG39  | 0.13         | 33        | 8         | 4         | 9.6          | 19        | 0.05         | 2.206        | < 0.4        | 49           | 0.2          | < 0.01       | 43.059     | 15.18        | 3908      |
| CSG41  | 0.18         | 36        | 20        | <1.3      | 10.4         | 18        | 0.06         | 2.623        | 0.8          | 51           | 0.3          | < 0.01       | 42.218     | 17.62        | 2169      |
| CSG43  | < 0.05       | 28        | 17        | <1.3      | 12.1         | 26        | 0.05         | 2.485        | 2.2          | 51           | 0.3          | < 0.01       | 42.064     | 18.21        | 7813      |
| CSG45  | 0.11         | 36        | 24        | 12        | 12.7         | 32        | 0.1          | 2.938        | <0.4         | 54           | 0.2          | 0.1          | 41.649     | 18.59        | 6965      |
| CSG48  | 0.11         | 32        | 42        | 7         | 13           | 33        | 0.02         | 2.717        | < 0.4        | 48           | 0.2          | < 0.01       | 41.353     | 18.73        | 7110      |
| CSG51  | < 0.05       | 25        | 11        | 7         | 11.5         | 23        | < 0.01       | 2.455        | 2            | 47           | 0.2          | 0.1          | 42.572     | 18.34        | 5994      |
| CSG53  | 0.11         | 25        | 9         | <1.3      | 10.5         | 21        | < 0.01       | 2.409        | 1.9          | 48           | 0.2          | <0.01        | 42.685     | 16.41        | 3315      |
| CSG55  | 0.13         | 22        | 73        | 11        | 14.5         | 39        | 0.07         | 2.162        | 1.8          | 43           | 0.3          | < 0.01       | 37.976     | 12.19        | 58541     |
| CSG57  | 0.11         | 22        | 7         | <1.3      | 11.7         | 24        | < 0.01       | 2.359        | 1.9          | 44           | 0.2          | < 0.01       | 41.714     | 13.53        | 8056      |
| CSG59  | 0.15         | 28        | 12        | 5         | 9.2          | 17        | 0.07         | 1.939        | < 0.4        | 45           | 0.2          | < 0.01       | 42.154     | 14.66        | 9255      |
| CSG62  | 0.11         | 23        | 21        | 9         | 8.3          | 17        | 0.07         | 1.907        | < 0.4        | 43           | 0.3          | < 0.01       | 43.297     | 12.7         | 2462      |
| CSG64  | < 0.05       | 29        | 15        | 3         | 9.1          | 14        | 0.04         | 2.01         | < 0.4        | 45           | 0.3          | < 0.01       | 42.424     | 13           | 4837      |
| CSG65  | 0.24         | 26        | 13        | 12        | 10.6         | 27        | 0.04         | 2.752        | <0.4         | 66           | 0.2          | < 0.01       | 41.043     | 18.64        | 5716      |
| CSG68  | < 0.05       | 14        | 9         | <1.3      | 8.8          | 17        | < 0.01       | 1.993        | 1.6          | 99           | 0.2          | < 0.01       | 43.729     | 13.74        | 5482      |
| CSG71  | < 0.05       | 31        | 17        | 2         | 15           | 34        | <0.01        | 3.456        | 3.9          | 131          | 0.3          | 0.1          | 41.825     | 17.74        | 4354      |
| CSG73  | < 0.05       | 32        | 11        | 5         | 17.2         | 40        | <0.01        | 2.933        | 2.8          | 51           | 0.3          | 0.1          | 40.634     | 17.49        | 4400      |
| CSG74  | < 0.05       | 27        | 44        | 8         | 17.5         | 32        | 0.05         | 2.732        | 2.5          | 51           | 0.3          | 0.2          | 37.585     | 30.3         | 5719      |


| SAMPLE | Cs<br>ICP-MS | Dy<br>ICP-MS | Er<br>ICP-MS | Eu<br>ICP-MS | Fe2O3T<br>XRF | Fe    | Ga<br>ICP-MS | Gd<br>ICP-MS | Ge<br>ICP-MS | Hf<br>ICP-MS | Ho<br>ICP-MS | K2O<br>XRF | La<br>ICP-MS | L<br>ICP-MS | MgO<br>XRF |
|--------|--------------|--------------|--------------|--------------|---------------|-------|--------------|--------------|--------------|--------------|--------------|------------|--------------|-------------|------------|
| NO     | ppm          | ppm          | ppm          | ppb          | %             | ppm   | ppm          | ppm          | ppm          | ppm          | ppm          | %          | ppm          | ppm         | %          |
| CSG13  | 0.44         | 2.18         | 1.3          | 437          | 1.403         | 9813  | 3.8          | 2.42         | 0.3          | 6            | 0.41         | 0.226      | 17.48        | 0.13        | 2.349      |
| CSG16  | 0.3          | 0.92         | 0.59         | 208          | 1.131         | 7910  | 2.7          | 1.11         | 0.2          | 0.9          | 0.17         | 0.25       | 7.65         | 0.04        | 2.437      |
| CSG18  | 0.41         | 1.84         | 1.15         | 488          | 1.338         | 9358  | 3.5          | 2            | 0.6          | 1.3          | 0.38         | 0.249      | 13.43        | 0.14        | 2.426      |
| CSG20  | 0.42         | 1.3          | 8.0          | 318          | 1.273         | 8903  | 3.1          | 1.47         | 0.5          | 1.4          | 0.29         | 0.253      | 9.94         | 0.11        | 2.356      |
| CSG23  | 0.4          | 1.24         | 0.73         | 276          | 1.206         | 8435  | 3.1          | 1.18         | 0.4          | 1.3          | 0.25         | 0.237      | 8.83         | 0.09        | 2.221      |
| CSG25  | 0.32         | 1.01         | 0.62         | 221          | 1.017         | 7113  | 2.8          | 0.97         | 0.4          | 1.2          | 0.2          | 0.262      | 7.76         | 0.09        | 2.248      |
| CSG27  | 0.41         | 0.64         | 0.38         | 169          | 1.194         | 8351  | 3.1          | 0.7          | 0.3          | 1            | 0.13         | 0.738      | 5.64         | 0.06        | 3.207      |
| CSG29  | 0.58         | 1.09         | 0.66         | 301          | 1.487         | 10400 | 4.6          | 1.18         | 0.4          | 1.5          | 0.23         | 0.314      | 8.98         | 0.09        | 2.488      |
| CSG31  | 0.28         | 0.95         | 0.61         | 212          | 1.015         | 7099  | 2.7          | 0.96         | 0.2          | 1.4          | 0.2          | 0.229      | 7.97         | 0.08        | 2.208      |
| CSG33  | 0.38         | 1.11         | 0.77         | 269          | 1.199         | 8386  | 3.5          | 1.17         | 0.2          | 2            | 0.26         | 0.289      | 9.53         | 0.11        | 2.184      |
| CSG34  | 0.36         | 0.94         | 0.56         | 240          | 1.071         | 7491  | 3            | 1.02         | 0.2          | 1.3          | 0.19         | 0.235      | 8.07         | 0.08        | 2.163      |
| CSG36  | 0.31         | 0.91         | 0.62         | 233          | 1.08          | 7554  | 3            | 1.05         | 0.2          | 1.7          | 0.2          | 0.221      | 8.61         | 0.08        | 2.284      |
| CSG38  | 0.3          | 0.79         | 0.48         | 218          | 0.929         | 6497  | 2.7          | 0.9          | 0.2          | 1            | 0.17         | 0.207      | 7.52         | 0.06        | 2.245      |
| CSG39  | 0.32         | 0.89         | 0.55         | 224          | 0.974         | 6812  | 2.5          | 1            | 0.1          | 1.2          | 0.19         | 0.206      | 7.66         | 0.08        | 2.293      |
| CSG41  | 0.33         | 0.96         | 0.64         | 254          | 1.205         | 8428  | 3.2          | 1.06         | 0.2          | 1.6          | 0.21         | 0.224      | 8.59         | 0.08        | 2.395      |
| CSG43  | 0.31         | 0.97         | 0.55         | 188          | 1.1           | 7693  | 2.7          | 1.04         | 0.2          | 1.8          | 0.17         | 0.239      | 8.83         | 0.03        | 2.303      |
| CSG45  | 0.39         | 1.16         | 0.73         | 276          | 1.255         | 8777  | 3.5          | 1.16         | 0.2          | 2.1          | 0.24         | 0.258      | 9.24         | 0.09        | 2.283      |
| CSG48  | 0.34         | 1.11         | 0.61         | 247          | 1.167         | 8162  | 3.1          | 1.18         | 0.1          | 1.8          | 0.21         | 0.227      | 9.88         | 0.08        | 2.127      |
| CSG51  | 0.32         | 1.1          | 0.75         | 191          | 1.071         | 7491  | 2.6          | 1.18         | 0.2          | 1.7          | 0.2          | 0.235      | 9.25         | 0.04        | 2.311      |
| CSG53  | 0.31         | 0.99         | 0.56         | 196          | 1.071         | 7491  | 2.6          | 1.04         | 0.1          | 1.5          | 0.16         | 0.227      | 8.11         | 0.03        | 2.348      |
| CSG55  | 0.46         | 0.81         | 0.55         | 176          | 0.89          | 6225  | 2.6          | 0.9          | 0.1          | 0.9          | 0.19         | 0.331      | 6.72         | 0.08        | 2.37       |
| CSG57  | 0.29         | 0.8          | 0.5          | 166          | 0.97          | 6784  | 2.7          | 0.89         | 0.2          | 8.0          | 0.13         | 0.213      | 6.81         | 0.02        | 2.368      |
| CSG59  | 0.27         | 0.86         | 0.56         | 192          | 0.904         | 6323  | 2.3          | 0.9          | 0.1          | 1.1          | 0.19         | 0.206      | 7.39         | 0.08        | 2.314      |
| CSG62  | 0.26         | 0.71         | 0.46         | 205          | 0.901         | 6302  | 2.3          | 0.83         | 0.1          | 0.9          | 0.16         | 0.183      | 6.27         | 0.06        | 2.429      |
| CSG64  | 0.29         | 0.78         | 0.51         | 204          | 0.976         | 6826  | 2.3          | 0.87         | < 0.02       | 0.9          | 0.16         | 0.203      | 6.39         | 0.06        | 2.305      |
| CSG65  | 0.39         | 1.34         | 0.87         | 326          | 1.257         | 8791  | 3.2          | 1.38         | 0.1          | 1.7          | 0.27         | 0.268      | 9.96         | 0.11        | 2.344      |
| CSG68  | 0.22         | 0.83         | 0.56         | 207          | 0.905         | 6330  | 2.2          | 0.88         | 0.2          | 1.5          | 0.15         | 0.218      | 6.56         | 0.04        | 2.321      |
| CSG71  | 0.31         | 1.06         | 0.63         | 198          | 1.43          | 10001 | 3.2          | 1.19         | 0.2          | 1.7          | 0.18         | 0.269      | 9.56         | 0.04        | 2.018      |
| CSG73  | 0.32         | 1            | 0.64         | 196          | 1.189         | 8316  | 3.3          | 1.09         | 0.2          | 1.3          | 0.17         | 0.22       | 9.03         | 0.04        | 2.171      |
| CSG74  | 0.33         | 1.11         | 0.69         | 203          | 1.102         | 7707  | 2.8          | 1.08         | 0.2          | 1.9          | 0.19         | 0.247      | 9.42         | 0.03        | 2.075      |

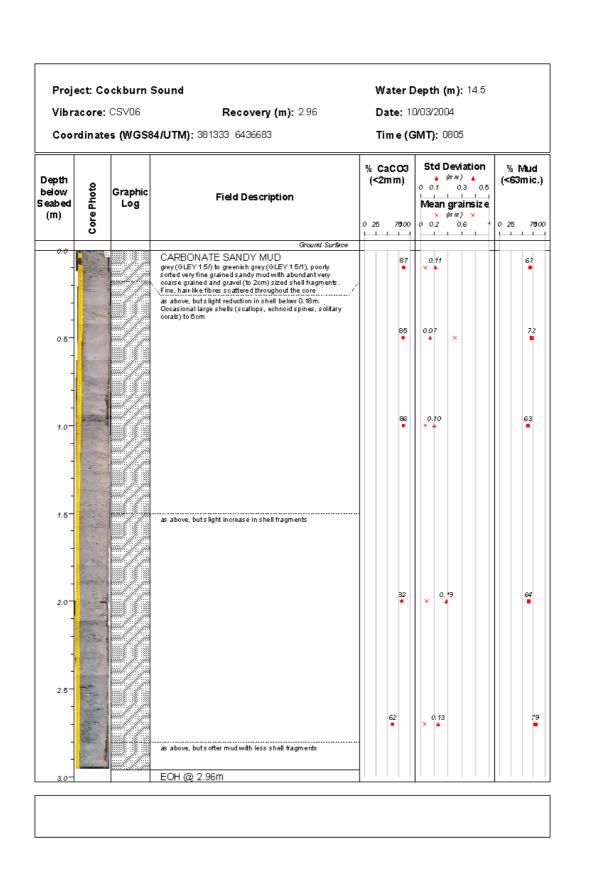
| SAMPLE | MLOI<br>Calculate | MnO<br>XRF | Mn   | Mo<br>ICP-MS | Na2O<br>XRF | Nb<br>ICP-MS | Nd<br>ICP-MS | P2O5<br>XRF | Pr<br>ICP-MS | Rb<br>ICP-MS | Sb<br>ICP-MS | Sc<br>XRF | SiO2<br>XRF | Sm<br>ICP-MS |
|--------|-------------------|------------|------|--------------|-------------|--------------|--------------|-------------|--------------|--------------|--------------|-----------|-------------|--------------|
| NO     | %                 | %          | ppm  | ppm          | %           | ppm          | ppm          | %           | ppm          | ppm          | ppm          | ppm       | %           | ppm          |
| CSG13  | 41.962            | <0.001     | <7.7 | 1.8          | 0.832       | 4.1          | 13.65        | 0.46        | 3.74         | 12.4         | 1.6          | <1.6      | 9.96        | 2.6          |
| CSG16  | 41.803            | < 0.001    | <7.7 | 1.9          | 1.624       | 2.4          | 6.09         | 0.173       | 1.65         | 9.5          | 12.8         | <1.6      | 6.853       | 1.25         |
| CSG18  | 40.559            | < 0.001    | <7.7 | 1.3          | 1.095       | 3.1          | 10.81        | 0.372       | 2.92         | 12.1         | 3.2          | <1.6      | 8.363       | 2.13         |
| CSG20  | 40.505            | 0.005      | 39   | 1.3          | 1.034       | 2.8          | 7.87         | 0.207       | 2.15         | 11.2         | 0.5          | 5         | 8.194       | 1.4          |
| CSG23  | 40.96             | < 0.001    | <7.7 | 1.6          | 0.811       | 2.5          | 6.88         | 0.16        | 1.93         | 11.1         | 6.6          | <1.6      | 7.916       | 1.09         |
| CSG25  | 40.224            | 0.005      | 39   | 1.4          | 1.648       | 2.3          | 5.8          | 0.168       | 1.64         | 9.9          | 8.7          | <1.6      | 7.416       | 0.97         |
| CSG27  | 16.065            | 0.013      | 101  | 2.2          | 15.159      | 3.4          | 4.22         | 0.204       | 1.21         | 11.6         | 1.1          | <1.6      | 9.237       | 0.63         |
| CSG29  | 39.113            | 0.007      | 54   | 1.3          | 1.127       | 3.4          | 7.28         | 0.208       | 2.03         | 15.9         | 4.1          | <1.6      | 12.615      | 1.11         |
| CSG31  | 42.056            | < 0.001    | <7.7 | 1.2          | 1.084       | 2.3          | 6.08         | 0.139       | 1.67         | 9.9          | 7.9          | <1.6      | 6.852       | 0.91         |
| CSG33  | 40.046            | 0.005      | 39   | 1.8          | 1.865       | 2.7          | 6.94         | 0.184       | 2.02         | 11.9         | 4.9          | <1.6      | 8.687       | 1.13         |
| CSG34  | 42.318            | < 0.001    | <7.7 | 1.2          | 0.865       | 2.3          | 6.22         | 0.14        | 1.74         | 10.9         | 0.5          | <1.6      | 7.513       | 0.97         |
| CSG36  | 42.45             | 0.005      | 39   | 1.4          | 0.786       | 2.4          | 6.44         | 0.146       | 1.85         | 9.9          | 3.9          | <1.6      | 7.422       | 1.04         |
| CSG38  | 43.057            | < 0.001    | <7.7 | 0.8          | 0.778       | 2.1          | 6.02         | 0.147       | 1.67         | 9.7          | 0.4          | 3         | 7.139       | 0.9          |
| CSG39  | 42.092            | < 0.001    | <7.7 | 1            | 0.642       | 2.2          | 5.99         | 0.128       | 1.65         | 9.5          | 0.4          | <1.6      | 6.739       | 0.96         |
| CSG41  | 41.402            | < 0.001    | <7.7 | 1.2          | 0.535       | 2.5          | 6.77         | 0.137       | 1.97         | 10.9         | 4.3          | <1.6      | 7.655       | 1.13         |
| CSG43  | 41.452            | < 0.001    | <7.7 | 1.2          | 1.069       | 2.3          | 6.59         | 0.137       | 1.87         | 10.7         | 7.4          | <1.6      | 7.149       | 1.33         |
| CSG45  | 40.308            | 0.005      | 39   | 1.2          | 0.939       | 2.8          | 7.1          | 0.141       | 2.03         | 11.4         | 11.9         | <1.6      | 8.201       | 1.4          |
| CSG48  | 41.829            | 0.005      | 39   | 1            | 0.843       | 2.7          | 7.44         | 0.15        | 2.14         | 10           | 0.5          | <1.6      | 7.525       | 1.23         |
| CSG51  | 41.645            | < 0.001    | <7.7 | 1.1          | 0.876       | 2.5          | 6.93         | 0.135       | 1.99         | 10.4         | 0.7          | 3         | 6.882       | 1.34         |
| CSG53  | 41.975            | < 0.001    | <7.7 | 8.0          | 0.774       | 2.3          | 6.31         | 0.135       | 1.78         | 10.1         | 0.9          | 2         | 6.873       | 1.29         |
| CSG55  | 37.777            | < 0.001    | <7.7 | 1.1          | 4.152       | 1.9          | 4.91         | 0.155       | 1.36         | 8.5          | 6.7          | <1.6      | 6.771       | 0.71         |
| CSG57  | 42.057            | < 0.001    | <7.7 | 0.7          | 0.921       | 2.2          | 5.3          | 0.149       | 1.49         | 9.3          | 3.9          | 2         | 7.149       | 1.15         |
| CSG59  | 42.854            | < 0.001    | <7.7 | 1.2          | 0.996       | 1.9          | 5.89         | 0.131       | 1.63         | 8.3          | 4            | <1.6      | 6.243       | 0.89         |
| CSG62  | 42.772            | < 0.001    | <7.7 | 1.2          | 0.552       | 1.8          | 4.95         | 0.131       | 1.38         | 7.8          | 6.4          | 2         | 6.36        | 0.78         |
| CSG64  | 43.045            | < 0.001    | <7.7 | 1.3          | 0.674       | 2            | 5.2          | 0.133       | 1.48         | 8.8          | 5.6          | 4         | 6.584       | 0.86         |
| CSG65  | 40.044            | 0.006      | 46   | 1.3          | 0.727       | 2.7          | 7.59         | 0.214       | 2.24         | 11.3         | 2.7          | 7         | 9.28        | 1.41         |
| CSG68  | 41.969            | < 0.001    | <7.7 | 0.7          | 0.749       | 2            | 5.17         | 0.127       | 1.48         | 8.7          | 0.6          | 2         | 6.176       | 0.92         |
| CSG71  | 40.108            | 0.006      | 46   | 1            | 0.657       | 2.9          | 7.34         | 0.166       | 1.99         | 10.9         | 4.7          | <1.6      | 8.278       | 1.38         |
| CSG73  | 42.663            | < 0.001    | <7.7 | 1.3          | 0.685       | 2.6          | 6.69         | 0.154       | 1.95         | 11.8         | 4.3          | <1.6      | 7.529       | 1.37         |
| CSG74  | 42.642            | < 0.001    | <7.7 | 1.3          | 1.56        | 2.6          | 7.25         | 0.162       | 2.05         | 10.1         | 5.9          | 5         | 7.646       | 1.46         |

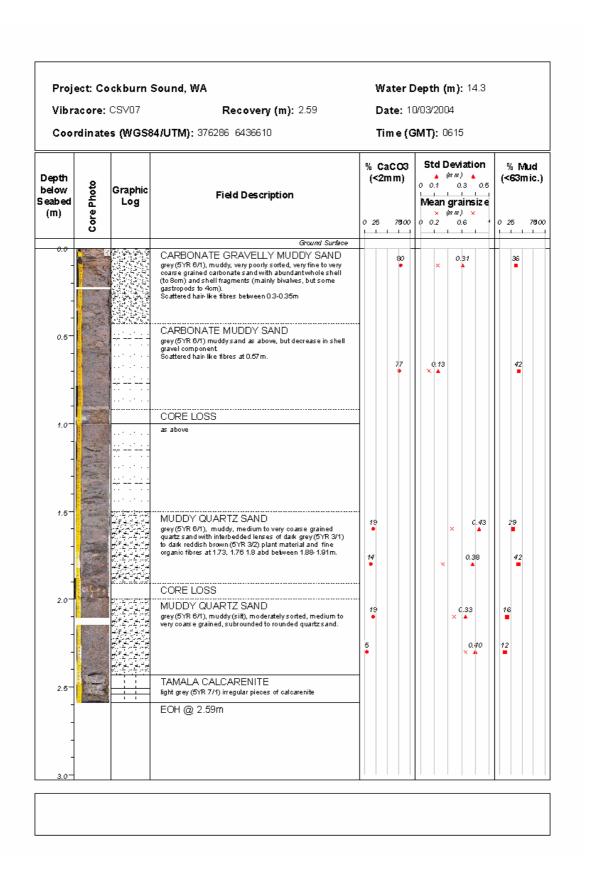

| SAMPLE | Sn<br>ICP-MS | SO3   | Sr<br>ICD MS | Ta     | Tb     | Th     | TiO2  | U<br>ICD MS | V   | Y<br>ICD MS | Yb     | Zr     |
|--------|--------------|-------|--------------|--------|--------|--------|-------|-------------|-----|-------------|--------|--------|
| NO     |              | XRF   | ICP-MS       | ICP-MS | ICP-MS | ICP-MS | XRF   | ICP-MS      | XRF | ICP-MS      | ICP-MS | ICP-MS |
|        | ppm          | %     | ppm          | ppm    | ppm    | ppm    | %     | ppm         | ppm | ppm         | ppm    | ppm    |
| CSG13  | 1.4          | 0.895 | 2110         | 0.2    | 0.28   | 10     | 0.205 | 3.8         | 20  | 16.4        | 1.08   | 246.8  |
| CSG16  | 1.4          | 0.975 | 2464         | <0.06  | 0.09   | 4.6    | 0.127 | 3.5         | 14  | 6.8         | 0.43   | 31.6   |
| CSG18  | 0.9          | 1.06  | 2333         | 0.3    | 0.28   | 6      | 0.159 | 4.42        | 15  | 14.3        | 0.89   | 46     |
| CSG20  | 0.9          | 0.987 | 2336         | 0.2    | 1.06   | 5.7    | 0.15  | 3.79        | 18  | 9.4         | 0.64   | 52.2   |
| CSG23  | 1.1          | 0.839 | 2353         | 0.2    | 0.18   | 5.2    | 0.144 | 3.34        | 16  | 7.9         | 0.62   | 49.7   |
| CSG25  | 8.0          | 0.854 | 2261         | 0.1    | 0.14   | 5.1    | 0.121 | 3.27        | 21  | 6.8         | 0.52   | 44     |
| CSG27  | 1.2          | 2.242 | 1576         | 0.3    | 0.27   | 4.3    | 0.163 | 1.42        | 27  | 4.3         | 0.33   | 37.1   |
| CSG29  | 1.3          | 0.928 | 2263         | 0.2    | 0.17   | 5.8    | 0.199 | 2.59        | 31  | 7           | 0.58   | 54     |
| CSG31  | 1.4          | 0.901 | 2431         | 0.1    | 0.16   | 5.4    | 0.131 | 3.04        | 13  | 6.9         | 0.58   | 53.6   |
| CSG33  | 1.2          | 0.878 | 1983         | 0.2    | 0.18   | 7.2    | 0.171 | 3.08        | 26  | 8.6         | 0.71   | 79.4   |
| CSG34  | 1.7          | 0.914 | 2180         | 0.2    | 0.16   | 5.6    | 0.129 | 3.33        | 19  | 6.4         | 0.49   | 49.7   |
| CSG36  | 1.3          | 0.817 | 2374         | 0.2    | 0.16   | 5.8    | 0.141 | 3.01        | 14  | 6.2         | 0.51   | 62.4   |
| CSG38  | 8.0          | 0.859 | 2443         | 0.2    | 0.1    | 5.3    | 0.115 | 2.78        | 14  | 5.7         | 0.43   | 38.4   |
| CSG39  | 0.6          | 0.757 | 2470         | 0.1    | 0.13   | 4.6    | 0.14  | 3.15        | 10  | 6.2         | 0.47   | 44.7   |
| CSG41  | 0.9          | 0.866 | 2463         | 0.2    | 0.16   | 6.1    | 0.146 | 4.5         | 15  | 7           | 0.58   | 62.2   |
| CSG43  | 1.1          | 0.719 | 2439         | < 0.06 | 0.28   | 6.6    | 0.133 | 2.76        | 14  | 6.5         | 0.52   | 73     |
| CSG45  | 1.2          | 0.797 | 2308         | 0.2    | 0.17   | 6.3    | 0.165 | 3.21        | 18  | 7.6         | 0.61   | 78.5   |
| CSG48  | 1            | 0.832 | 2231         | 0.2    | 0.16   | 5.7    | 0.145 | 2.85        | 19  | 6.7         | 0.51   | 67.1   |
| CSG51  | 0.9          | 0.726 | 2494         | < 0.06 | 0.12   | 6      | 0.135 | 2.9         | 13  | 7.8         | 0.59   | 66.7   |
| CSG53  | 8.0          | 0.665 | 2497         | < 0.06 | 0.1    | 5.7    | 0.13  | 2.69        | 16  | 6.3         | 0.51   | 57.3   |
| CSG55  | 0.7          | 1.064 | 2084         | 0.1    | 0.12   | 4.3    | 0.125 | 2.43        | 16  | 5.8         | 0.46   | 31.3   |
| CSG57  | 0.7          | 0.827 | 2521         | < 0.06 | 0.07   | 4.7    | 0.126 | 3.17        | 15  | 6           | 0.39   | 32.8   |
| CSG59  | 0.6          | 0.857 | 2490         | 0.1    | 0.13   | 5      | 0.107 | 3.14        | 15  | 6.1         | 0.44   | 43     |
| CSG62  | 1.1          | 0.735 | 2681         | < 0.06 | 0.12   | 4.2    | 0.111 | 2.82        | 10  | 5.4         | 0.37   | 32.5   |
| CSG64  | 0.6          | 0.785 | 2588         | 0.1    | 0.12   | 3.9    | 0.121 | 2.91        | 18  | 5           | 0.38   | 30.1   |
| CSG65  | 1            | 0.939 | 2364         | 0.2    | 0.18   | 5.6    | 0.167 | 4.03        | 16  | 9           | 0.69   | 61.9   |
| CSG68  | 0.5          | 0.745 | 2682         | < 0.06 | 0.07   | 5.2    | 0.12  | 2.66        | 15  | 6.5         | 0.49   | 62.8   |
| CSG71  | 1.2          | 0.758 | 2207         | 0.2    | 0.1    | 5.7    | 0.166 | 2.84        | 22  | 7           | 0.5    | 64.6   |
| CSG73  | 1.4          | 0.9   | 2282         | 0.1    | 0.1    | 5.8    | 0.146 | 3.76        | 19  | 7.3         | 0.56   | 51.5   |
| CSG74  | 1.1          | 0.817 | 2098         | < 0.06 | 0.1    | 5.5    | 0.136 | 2.54        | 25  | 7.3         | 0.57   | 77.9   |

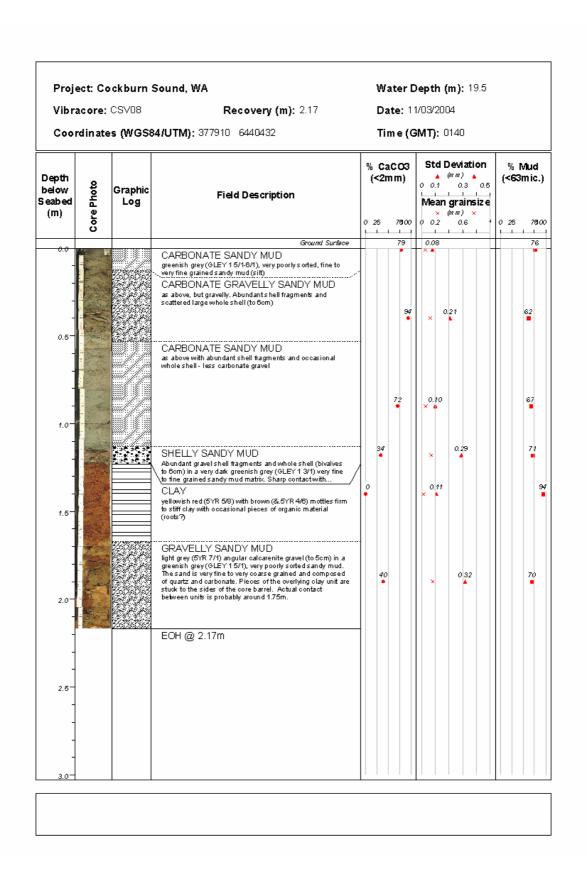

APPENDIX III: Logs of vibracores from Cockburn Sound

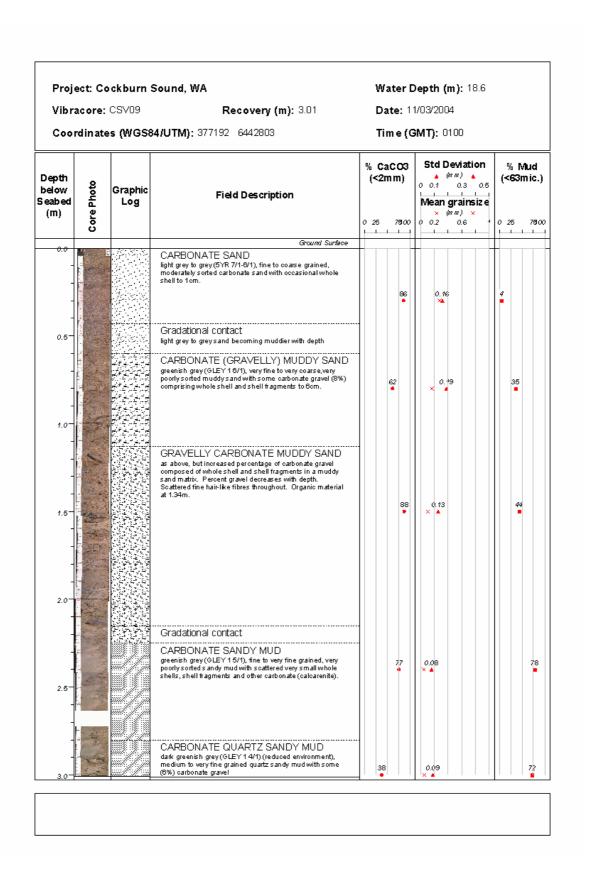

|                                 | acore:     | ckburn :<br>CSV01 | Recovery (m): 2.70                                                                                                                                                      | Water Depth (m): 24  Date: 11/03/2004 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |
|---------------------------------|------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|                                 |            |                   | 4/UTM): 379613 6431182                                                                                                                                                  | Date: 11/03/2004 Time (GMT): 0430     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |
| Depth<br>below<br>Geabed<br>(m) | Core Photo | Graphic<br>Log    | Field Description                                                                                                                                                       | % Ca<br>(<2n                          | nm)<br>791∞ | Std Deviation    (mm)   (mm) | o.5 |  |  |  |  |  |
| 0.0                             |            | - Dec 200- 12     | Ground Surface                                                                                                                                                          |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |
| -                               |            |                   | Carbonate Sand light grey (7.5YR7/1), moderately sorted fine to coars e grained sand with abundant very coarse grained shell fragments & occasional large whole shells. |                                       | 89          | 0.24<br>×4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5   |  |  |  |  |  |
| 0.5                             |            |                   | bivalves (mussels) to 7cm between 0.29-0.36m                                                                                                                            |                                       | 92          | 0.2€<br>× <b>≜</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3   |  |  |  |  |  |
| -                               |            |                   | Dense fibrous mat of seagrass derived material in sands<br>between 0.85-0.8m                                                                                            |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |
| 1.0                             |            |                   | Carbonate Sand as above, buts lightly finer below 0.9 m. fibrous mat of seagrass derived material between 1.15-                                                         |                                       | 92          | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3   |  |  |  |  |  |
| 1.5                             |            |                   | 1.25m                                                                                                                                                                   |                                       | 93          | 0.†9<br>¥.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3   |  |  |  |  |  |
| -                               |            |                   | fibrous material between 1.68-1.78m                                                                                                                                     |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |
| 2.0 <del>-</del><br>-           |            |                   | Carbonate Sand<br>as above, butslightly finer. Fine to medium grained,<br>moderately sorted oarbonate sand                                                              |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |
| -<br>2.5 -                      |            |                   | fibrous material between 2.15-2.2m, 2.3-2.38m and 2.45-<br>2.62m.                                                                                                       |                                       | 92          | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2   |  |  |  |  |  |
| -                               |            |                   | EOH @ 2.7m                                                                                                                                                              |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |
| 3.0                             |            |                   |                                                                                                                                                                         |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |

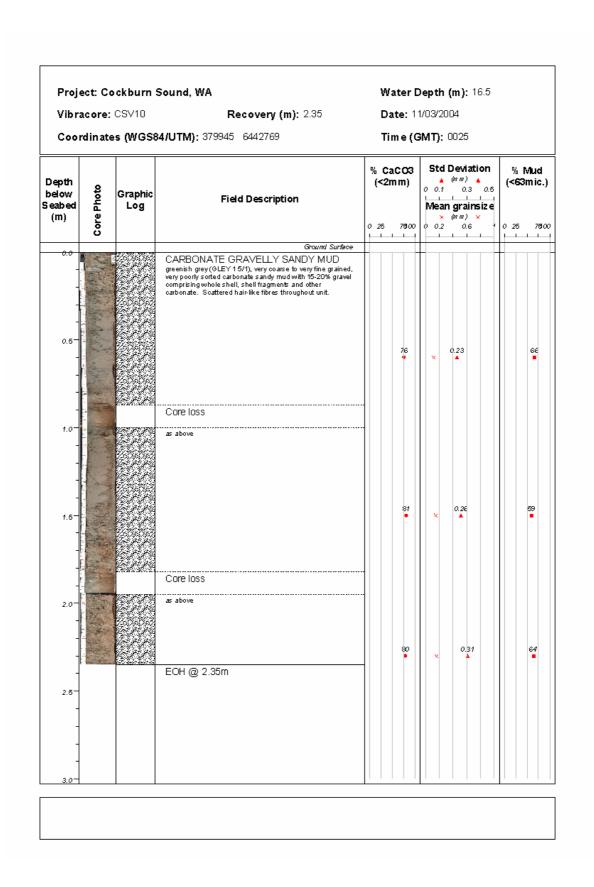


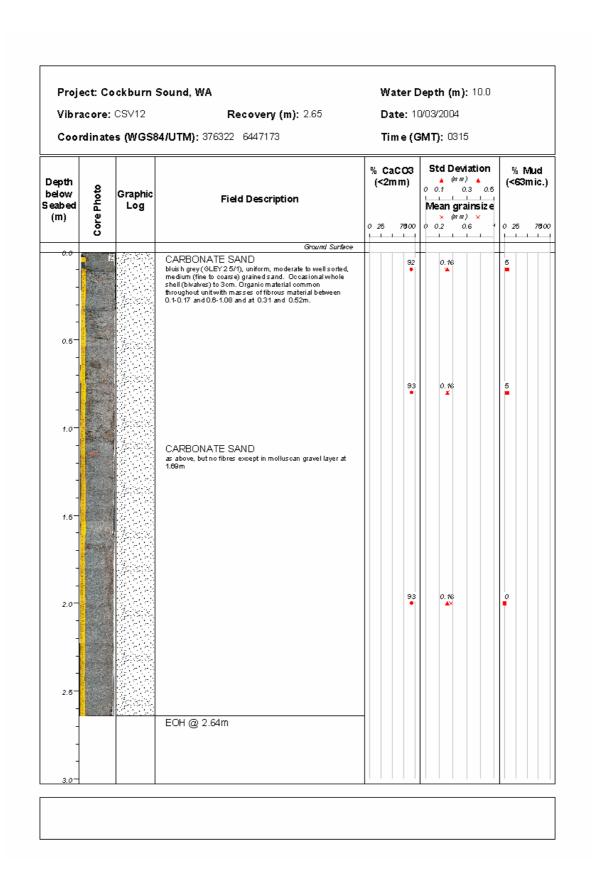


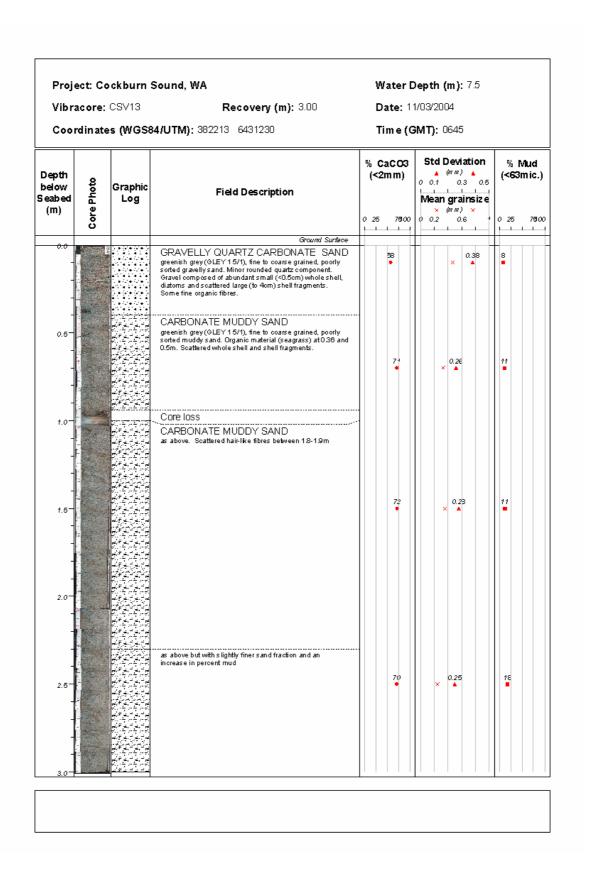





|                                | acore:     |                | Sound, WA<br>Recovery (m): 5.52                                                                                                                                                 |   |     | iter D<br>te: 10   |        |             |                                                 | 0.0          |              |
|--------------------------------|------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|--------------------|--------|-------------|-------------------------------------------------|--------------|--------------|
| Cool                           | rd in ate  | s (WGS8        | 4/UTM): 378581 6436663                                                                                                                                                          |   | Tir | ne (G              | M      | r): 0       | 700                                             |              |              |
| Depth<br>below<br>eabed<br>(m) | Core Photo | Graphic<br>Log | Field Description                                                                                                                                                               | 0 | <2n | CO3<br>1m)<br>7800 | о<br>М | o.1<br>lean | Deviat<br>(m m)<br>0.3<br>grain<br>(m m)<br>0.6 | 0.5<br>Siz e | Mud<br>Smic. |
| 3.5 —                          |            |                | VOID FILLED WITH WATER                                                                                                                                                          |   |     |                    |        |             |                                                 |              |              |
| 5.0                            |            |                | CALCARENTITE GRAVEL/SANDY CLAY Pieces of irregularly shaped calcarente (Tamala Umestone) to 7cm within a greeny grey to orangey brown, fine to coarse grained quartz sandy clay | 3 |     |                    | ×      | 0.14        |                                                 |              | 32           |
| -<br>6.0                       |            |                |                                                                                                                                                                                 |   |     |                    |        |             |                                                 |              |              |














## **APPENDIX III**

Table A3.1: Grain size data (gravel/sand/mud) for vibracore samples

| GA SAMPLE# | SAMPLE ID & DEPTH (m) | %GRAVEL | %SAND | %MUD | COMBINED SAND<br>& MUD CaCO3% |
|------------|-----------------------|---------|-------|------|-------------------------------|
| 1419971    | 251/CSV001_0.1-0.11   | 2.9     | 96.3  | 0.8  | 89.2                          |
| 1419972    | 251/CSV001_0.5-0.51   | 3.8     | 95.7  | 0.5  | 91.8                          |
| 1419973    | 251/CSV001_0.99-1     | 4.0     | 94.9  | 1.1  | 92.3                          |
| 1419974    | 251/CSV001_1.5-1.51   | 0.1     | 98.6  | 1.2  | 93.3                          |
| 1419975    | 251/CSV001_2.5-2.51   | 0.0     | 99.0  | 1.0  | 91.8                          |
| 1419976    | 251/CSV002_0.8-0.81   | 0.4     | 15.0  | 84.6 | 83.1                          |
| 1419977    | 251/CSV002_2.5-2.51   | 0.6     | 6.7   | 92.7 | 73.0                          |
| 1419978    | 251/CSV002_4.5-4.51   | 0.1     | 4.5   | 95.4 | 80.1                          |
| 1419979    | 251/CSV002_5.99-6     | 0.0     | 9.4   | 90.6 | 80.1                          |
| 1419980    | 251/CSV003_0-0.01     | 6.7     | 90.0  | 3.2  | 52.7                          |
| 1419981    | 251/CSV003_0.2-0.21   | 7.6     | 91.0  | 1.4  | 42.0                          |
| 1419982    | 251/CSV003_0.44-0.45  | 23.5    | 74.8  | 1.7  | 47.6                          |
| 1419983    | 251/CSV004_0-0.01     | 6.3     | 84.6  | 9.2  | 88.7                          |
| 1419984    | 251/CSV004_0.8-0.81   | 9.1     | 79.7  | 11.2 | 89.2                          |
| 1419985    | 251/CSV004_1.7-1.71   | 5.9     | 80.0  | 14.1 | 89.2                          |
| 1419986    | 251/CSV004_2.4-2.41   | 4.1     | 80.7  | 15.2 | 88.7                          |
| 1419987    | 251/CSV005_0.1-0.11   | 12.4    | 23.2  | 64.4 | 85.2                          |
| 1419988    | 251/CSV005_0.5-0.51   | 2.2     | 26.9  | 70.9 | 82.1                          |
| 1419989    | 251/CSV005_0.99-1     | 1.1     | 26.5  | 72.4 | 76.5                          |
| 1419990    | 251/CSV005_1.7-1.71   | 6.9     | 19.7  | 73.4 | 41.0                          |
| 1419991    | 251/CSV005_1.9-1.91   | 10.6    | 15.4  | 74.0 | 4.0                           |
| 1419992    | 251/CSV005_2.4-2.41   | 2.5     | 22.1  | 75.4 | 3.0                           |
| 1419993    | 251/CSV005_5.4-5.41   | 27.8    | 22.9  | 49.4 | 3.0                           |
| 1419994    | 251/CSV006_0.1-0.11   | 15.2    | 36.8  | 48.0 | 86.7                          |
| 1419995    | 251/CSV006_0.5-0.51   | 1.4     | 31.1  | 67.6 | 85.2                          |
| 1419996    | 251/CSV006_0.99-1     | 1.7     | 38.0  | 60.2 | 86.2                          |
| 1419997    | 251/CSV006_2-2.01     | 1.6     | 36.9  | 61.5 | 82.1                          |
| 1419998    | 251/CSV006_2.7-2.71   | 8.0     | 25.3  | 66.8 | 61.8                          |
| 1419999    | 251/CSV007_0.1-0.11   | 19.7    | 53.0  | 27.3 | 80.1                          |
| 1420000    | 251/CSV007_0.7-0.71   | 2.7     | 57.7  | 39.6 | 77.0                          |
| 1420001    | 251/CSV007_1.6-1.61   | 1.6     | 67.8  | 30.6 | 19.2                          |
| 1420002    | 251/CSV007_1.79-1.8   | 0.7     | 76.7  | 22.6 | 14.1                          |
| 1420003    | 251/CSV007_2.1-2.11   | 0.4     | 89.8  | 9.9  | 19.2                          |
| 1420004    | 251/CSV007_2.3-2.31   | 1.6     | 90.9  | 7.5  | 5.0                           |
| 1420005    | 251/CSV008_0-0.01     | 2.0     | 26.2  | 71.7 | 78.6                          |
| 1420006    | 251/CSV008_0.4-0.41   | 21.0    | 29.3  | 49.7 | 94.3                          |
| 1420007    | 251/CSV008_0.9-0.91   | 2.1     | 34.4  | 63.5 | 71.5                          |
| 1420008    | 251/CSV008_1.18-1.19  | 10.5    | 27.8  | 61.6 | 33.9                          |
| 1420009    | 251/CSV008_1.4-1.41   | 2.1     | 8.8   | 89.1 | 0.0                           |
| 1420010    | 251/CSV008_1.9-1.91   | 23.0    | 34.9  | 42.1 | 39.5                          |

| GA SAMPLE# | SAMPLE ID &<br>DEPTH (m) | %GRAVEL | %SAND | %MUD | COMBINED SAND<br>& MUD CaCO3% |
|------------|--------------------------|---------|-------|------|-------------------------------|
| 1420011    | 251/CSV009_0.3-0.31      | 2.4     | 95.5  | 2.1  | 86.2                          |
| 1420012    | 251/CSV009_0.8-0.81      | 8.7     | 67.9  | 23.4 | 62.3                          |
| 1420013    | 251/CSV009_1.5-1.51      | 27.4    | 47.7  | 24.9 | 88.2                          |
| 1420014    | 251/CSV009_2.4-2.41      | 2.9     | 22.6  | 74.5 | 76.5                          |
| 1420015    | 251/CSV009_3-3.01        | 6.0     | 29.3  | 64.6 | 38.0                          |
| 1420016    | 251/CSV010_0.6-0.61      | 15.1    | 40.5  | 44.5 | 76.0                          |
| 1420017    | 251/CSV010_1.5-1.51      | 20.8    | 38.7  | 40.5 | 81.1                          |
| 1420018    | 251/CSV010_2.3-2.31      | 21.2    | 36.3  | 42.4 | 79.6                          |
| 1420019    | 251/CSV012_0.1-0.11      | 0.3     | 98.1  | 1.7  | 92.3                          |
| 1420020    | 251/CSV012_0.8-0.81      | 0.6     | 98.7  | 0.7  | 92.8                          |
| 1420021    | 251/CSV012_2-2.01        | 0.3     | 99.3  | 0.4  | 92.8                          |
| 1420022    | 251/CSV013_0.1-0.11      | 15.8    | 79.9  | 4.3  | 57.8                          |
| 1420023    | 251/CSV013_0.7-0.71      | 1.4     | 91.8  | 6.8  | 71.0                          |
| 1420024    | 251/CSV013_1.5-1.51      | 1.0     | 88.6  | 10.4 | 72.0                          |
| 1420025    | 251/CSV013_2.5-2.51      | 2.4     | 84.2  | 13.4 | 70.4                          |

 Table A3.2: Average laser grain size data (Malvern Laser Analyser) for the vibracore samples

| 1419971<br>1419972 |                                            |                  |                    |                    | D [4, 3] - VOLUM<br>WEIGHTED MEAI |
|--------------------|--------------------------------------------|------------------|--------------------|--------------------|-----------------------------------|
| 1419972            | 251/CSV001_0.1-0.11                        | 177.557          | 385.265            | 765.705            | 428.9                             |
| 1410072            | 251/CSV001_0.5-0.51                        | 171.918          | 379.36             | 807.374            | 438.065                           |
| 1419973            | 251/CSV001_0.99-1                          | 166.538          | 320.595            | 589.872            | 349.952                           |
| 1419974            | 251/CSV001_1.5-1.51                        | 167.753          | 341.124            | 638.672            | 372.468                           |
| 1419975            | 251/CSV001_2.5-2.51                        | 135.703          | 254.951            | 468.286            | 279.572                           |
| 1419976            | 251/CSV002_0.8-0.81                        | 1.314            | 16.439             | 59.047             | 28.167                            |
| 1419977            | 251/CSV002_2.5-2.51                        | 0.964            | 13.999             | 52.16              | 21.159                            |
| 1419978            | 251/CSV002_4.5-4.51                        | 0.963            | 15.857             | 52.915             | 22.133                            |
| 1419979            | 251/CSV002_5.99-6                          | 1.081            | 17.516             | 61.261             | 31.611                            |
| 1419980            | 251/CSV003_0-0.01                          | 102.591          | 301.337            | 960.091            | 426.228                           |
| 1419981            | 251/CSV003_0.2-0.21                        | 123.834          | 438.978            | 1114.958           | 536.27                            |
| 1419982            | 251/CSV003_0.44-0.45                       | 109.289          | 372.281            | 1093.113           | 498.713                           |
| 1419983            | 251/CSV004_0-0.01                          | 5.605            | 287.942            | 699.886            | 326.856                           |
| 1419984            | 251/CSV004_0.8-0.81                        | 3.77             | 248.3              | 699.829            | 299.132                           |
| 1419985            | 251/CSV004_1.7-1.71                        | 7.514            | 313.837            | 740.883            | 349.441                           |
| 1419986            | 251/CSV004_2.4-2.41                        | 2.822            | 235.597            | 637.869            | 273.984                           |
| 1419987            | 251/CSV005 0.1-0.11                        | 1.441            | 32.786             | 168.912            | 88.628                            |
| 1419988            | 251/CSV005_0.5-0.51                        | 1.595            | 32.424             | 90.367             | 64.107                            |
| 1419989            | 251/CSV005_0.99-1                          | 1.438            | 33.155             | 98.904             | 52.874                            |
| 1419990            | 251/CSV005_1.7-1.71                        | 0.932            | 11.606             | 234.777            | 69.193                            |
| 1419991            | 251/CSV005_1.7-1.71<br>251/CSV005_1.9-1.91 | 0.853            | 6.785              | 66.868             | 31.74                             |
| 1419992            | 251/CSV005_2.4-2.41                        | 0.747            | 3.983              | 293.48             | 61.424                            |
| 1419993            | 251/CSV005_5.4-5.41                        | 0.747            | 3.963<br>4.57      | 287.504            | 61.465                            |
|                    | _                                          |                  |                    |                    |                                   |
| 1419994            | 251/CSV006_0.1-0.11                        | 1.551            | 38.384             | 137.47             | 70.085                            |
| 1419995            | 251/CSV006_0.5-0.51                        | 1.432            | 34.672             | 108.203            | 52.368                            |
| 1419996            | 251/CSV006_0.99-1                          | 2.003            | 43.978             | 131.431            | 67.062                            |
| 1419997            | 251/CSV006_2-2.01                          | 2.017            | 42.378             | 141.42             | 88.45                             |
| 1419998            | 251/CSV006_2.7-2.71                        | 0.866            | 16.855             | 120.83             | 58.633                            |
| 1419999            | 251/CSV007_0.1-0.11                        | 2.756            | 131.191            | 714.598            | 245.478                           |
| 1420000            | 251/CSV007_0.7-0.71                        | 3.32             | 87.513             | 281.774            | 121.403                           |
| 1420001            | 251/CSV007_1.6-1.61                        | 2.641            | 396.092            | 1062.528           | 456.014                           |
| 1420002            | 251/CSV007_1.79-1.8                        | 4.928            | 141.765            | 892.225            | 332.746                           |
| 1420003            | 251/CSV007_2.1-2.11                        | 8.503            | 478.017            | 927.847            | 487.114                           |
| 1420004            | 251/CSV007_2.3-2.31                        | 24.137           | 632.805            | 1196.226           | 656.33                            |
| 1420005            | 251/CSV008_0-0.01                          | 1.552            | 25.893             | 105.198            | 50.029                            |
| 1420006            | 251/CSV008_0.4-0.41                        | 1.778            | 40.682             | 433.783            | 126.012                           |
| 1420007            | 251/CSV008_0.9-0.91                        | 1.556            | 38.017             | 133.538            | 64.702                            |
| 1420008            | 251/CSV008_1.18-1.19                       | 1.137            | 12.897             | 588.514            | 143.576                           |
| 1420009            | 251/CSV008_1.4-1.41                        | 1.003            | 7.335              | 42.687             | 28.225                            |
| 1420010            | 251/CSV008_1.9-1.91                        | 0.856            | 8.975              | 633.952            | 164.078                           |
| 1420011            | 251/CSV009_0.3-0.31                        | 116.279          | 250.142            | 499.926            | 281.596                           |
| 1420012            | 251/CSV009_0.8-0.81                        | 3.768            | 111.678            | 416.563            | 169.024                           |
| 1420013            | 251/CSV009_1.5-1.51                        | 2.633            | 76.325             | 258.533            | 110.401                           |
| 1420014            | 251/CSV009_2.4-2.41                        | 0.971            | 18.126             | 110.474            | 47.124                            |
| 1420015            | 251/CSV009 3-3.01                          | 0.975            | 18.207             | 145.464            | 53.812                            |
| 1420016            | 251/CSV010_0.6-0.61                        | 1.894            | 30.552             | 375.768            | 119.607                           |
| 1420017            | 251/CSV010_1.5-1.51                        | 2.221            | 39.79              | 513.018            | 151.51                            |
| 1420018            | 251/CSV010_2.3-2.31                        | 1.876            | 33.559             | 580.634            | 162.929                           |
| 1420019            | 251/CSV012_0.1-0.11                        | 136.11           | 287.498            | 530.331            | 309.486                           |
| 1420019            | 251/CSV012_0.1-0.11<br>251/CSV012_0.8-0.81 | 150.312          | 303.674            | 543.835            | 323.932                           |
| 1420020            | 251/CSV012_0.8-0.81<br>251/CSV012_2-2.01   | 192              |                    |                    |                                   |
|                    | _                                          |                  | 342.948            | 604.977            | 373.851<br>472.316                |
| 1420022            | 251/CSV013_0.1-0.11                        | 89.631           | 362.446            | 1032.77            | 472.316                           |
| 1420023            | 251/CSV013_0.7-0.71                        | 43.755           | 272.089            | 698.041            | 332.589                           |
| 1420024<br>1420025 | 251/CSV013_1.5-1.51<br>251/CSV013_2.5-2.51 | 37.822<br>14.963 | 290.793<br>173.189 | 760.057<br>568.013 | 358.156<br>245.615                |

| SAMPLE ID &<br>DEPTH (m)                   | OBSCURATION | KURTOSIS        | SKEW  | MODE   | STANDARD<br>DEVIATION | RESIDUAL<br>WEIGHTED<br>MEAN |
|--------------------------------------------|-------------|-----------------|-------|--------|-----------------------|------------------------------|
| 251/CSV001_0.1-0.11                        | 5.6         | 0.419           | 0.749 | 395.47 | 238.63                | 2.37                         |
| 251/CSV001_0.5-0.51                        | 6.35        | 0.781           | 0.981 | 377.41 | 258.08                | 2.15                         |
| 251/CSV001_0.99-1                          | 6.19        | 0.392           | 0.694 | 325.38 | 171.24                | 1.57                         |
| 251/CSV001_1.5-1.51                        | 6.06        | 0.234           | 0.649 | 353.71 | 188.42                | 1.76                         |
| 251/CSV001_2.5-2.51                        | 7.35        | 0.545           | 0.77  | 256.37 | 134.49                | 1.44                         |
| 251/CSV002_0.8-0.81                        | 17.12       | 50.249          | 6.229 | 28.14  | 48.71                 | 1.08                         |
| 251/CSV002_2.5-2.51                        | 17.79       | 2.891           | 1.603 | 27.86  | 22.51                 | 1.15                         |
| 251/CSV002_4.5-4.51                        | 14.96       | 2.332           | 1.455 | 29.05  | 22.30                 | 1.15                         |
| 251/CSV002_5.99-6                          | 13.57       | 38.691          | 5.661 | 28.20  | 59.39                 | 1.17                         |
| 251/CSV003_0-0.01                          | 12.81       | 1.582           | 1.371 | 230.84 | 360.46                | 1.77                         |
| 251/CSV003_0.2-0.21                        | 8.74        | 0.361           | 0.935 | 709.26 | 398.49                | 2.51                         |
| 251/CSV003_0.44-0.45                       | 10.09       | 0.622           | 1.083 | 728.92 | 401.83                | 2.01                         |
| 251/CSV004_0-0.01                          | 18.43       | 0.178           | 0.79  | 396.13 | 264.67                | 1.42                         |
| 251/CSV004_0.8-0.81                        | 22.47       | 0.111           | 0.875 | 432.62 | 277.53                | 1.46                         |
| 251/CSV004 1.7-1.71                        | 18.24       | 0.01            | 0.714 | 436.07 | 278.38                | 1.51                         |
| 251/CSV004_2.4-2.41                        | 19.17       | -0.103          | 0.791 | 405.78 | 253.35                | 1.20                         |
| 251/CSV005_0.1-0.11                        | 16.9        | 17.12           | 3.911 | 50.31  | 186.34                | 0.85                         |
| 251/CSV005_0.5-0.51                        | 11.82       | 43.496          | 6.071 | 47.10  | 155.53                | 0.81                         |
| 251/CSV005_0.99-1                          | 13.6        | 32.367          | 5.139 | 50.58  | 89.71                 | 0.81                         |
| 251/CSV005_1.7-1.71                        | 13.6        |                 |       |        |                       |                              |
| 251/CSV005_1.7-1.71<br>251/CSV005_1.9-1.91 |             | 8.256<br>21.409 | 2.924 | 3.70   | 143.97                | 1.20                         |
| 251/CSV005_1.9-1.91<br>251/CSV005_2.4-2.41 | 20.41       |                 | 4.385 | 13.45  | 79.02                 | 1.35                         |
| 251/CSV005_5.4-5.41                        | 19.26       | 5.305           | 2.523 | 2.58   | 137.10                | 1.59                         |
| 251/CSV005_0.1-0.11                        | 17.89       | 5.338           | 2.523 | 2.45   | 135.35                | 1.55                         |
| _                                          | 13.61       | 14.238          | 3.547 | 63.22  | 114.35                | 0.86                         |
| 251/CSV006_0.5-0.51                        | 12.71       | 20.98           | 4.007 | 59.53  | 73.54                 | 0.99                         |
| 251/CSV006_0.99-1                          | 14.52       | 24.083          | 4.349 | 70.21  | 100.55                | 0.72                         |
| 251/CSV006_2-2.01                          | 11.27       | 29.987          | 5.089 | 64.44  | 189.43                | 0.72                         |
| 251/CSV006_2.7-2.71                        | 13.7        | 16.292          | 3.864 | 38.63  | 125.44                | 1.13                         |
| 251/CSV007_0.1-0.11                        | 21.23       | 3.399           | 1.878 | 167.88 | 314.68                | 1.05                         |
| 251/CSV007_0.7-0.71                        | 10.8        | 4.994           | 1.832 | 158.44 | 126.30                | 0.69                         |
| 251/CSV007_1.6-1.61                        | 8.87        | -0.091          | 0.783 | 685.22 | 426.00                | 2.06                         |
| 251/CSV007_1.79-1.8                        | 8.13        | 0.236           | 1.052 | 641.01 | 375.74                | 1.38                         |
| 251/CSV007_2.1-2.11                        | 13.36       | -0.436          | 0.302 | 585.36 | 328.39                | 3.10                         |
| 251/CSV007_2.3-2.31                        | 13.81       | -0.21           | 0.307 | 725.34 | 400.77                | 4.30                         |
| 251/CSV008_0-0.01                          | 12.38       | 19.825          | 4.038 | 52.00  | 82.79                 | 0.97                         |
| 251/CSV008_0.4-0.41                        | 16.64       | 6.386           | 2.538 | 54.61  | 214.66                | 0.93                         |
| 251/CSV008_0.9-0.91                        | 11.37       | 18.648          | 3.879 | 63.28  | 98.64                 | 0.84                         |
| 251/CSV008_1.18-1.19                       | 17.03       | 6.6             | 2.599 | 5.03   | 293.40                | 1.15                         |
| 251/CSV008_1.4-1.41                        | 14.34       | 99.917          | 9.175 | 13.80  | 108.53                | 1.20                         |
| 251/CSV008_1.9-1.91                        | 18.6        | 5.729           | 2.404 | 2.93   | 316.55                | 1.39                         |
| 251/CSV009_0.3-0.31                        | 6.58        | 1.378           | 1.02  | 256.03 | 161.66                | 1.22                         |
| 251/CSV009_0.8-0.81                        | 12.25       | 4.919           | 1.953 | 162.31 | 188.81                | 0.74                         |
| 251/CSV009_1.5-1.51                        | 15.48       | 8.272           | 2.359 | 118.32 | 127.28                | 0.71                         |
| 251/CSV009_2.4-2.41                        | 18.88       | 16.97           | 3.76  | 55.07  | 82.15                 | 1.14                         |
| 251/CSV009_3-3.01                          | 15.66       | 11.659          | 3.006 | 81.25  | 84.88                 | 0.96                         |
| 251/CSV010_0.6-0.61                        | 11.68       | 11.613          | 3.19  | 45.08  | 229.22                | 0.92                         |
| 251/CSV010_1.5-1.51                        | 19.21       | 7.443           | 2.588 | 55.42  | 257.78                | 0.94                         |
| 251/CSV010_2.3-2.31                        | 10.8        | 7.595           | 2.72  | 45.09  | 308.98                | 0.89                         |
| 251/CSV012_0.1-0.11                        | 3.32        | 0.079           | 0.515 | 302.80 | 158.11                | 1.33                         |
| 251/CSV012_0.8-0.81                        | 3.21        | 0.13            | 0.458 | 317.61 | 159.25                | 1.44                         |
| 251/CSV012_2-2.01                          | 4.45        | 0.194           | 0.813 | 344.91 | 160.58                | 1.79                         |
| 251/CSV013_0.1-0.11                        | 8.37        | 0.794           | 1.107 | 619.63 | 383.56                | 1.83                         |
| 251/CSV013_0.7-0.71                        | 10.99       | 0.884           | 1.066 | 321.04 | 255.11                | 1.22                         |
| 251/CSV013_1.5-1.51                        | 11.83       | 0.864           | 1.093 | 355.70 | 281.26                | 1.27                         |
| 251/CSV013_1.5-1.51<br>251/CSV013_2.5-2.51 | 19.36       | 0.964<br>4.575  | 1.984 | 173.08 | 245.78                | 0.93                         |

| SAMPLE ID &      | SIZE | S (IIIM)         | % UND | )ED  |       |       |       |       |       |       |       |       |
|------------------|------|------------------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| DEPTH (m)        | 0.06 | ο (μινί)<br>0.12 | 0.24  | 0.49 | 0.98  | 2     | 3.9   | 7.8   | 15.6  | 31    | 37    | 44    |
| CSV001_0.1-0.11  | 0    | 0                | 0     | 0.00 | 0.30  | 0.96  | 1.82  | 2.76  | 3.51  | 4.03  | 4.23  | 4.43  |
| CSV001_0.5-0.51  | 0    | 0                | 0     | 0.00 | 0.00  | 0.27  | 0.87  | 1.63  | 2.16  | 2.62  | 2.79  | 2.94  |
| CSV001_0.99-1    | 0    | 0                | 0     | 0.00 | 0.00  | 0.08  | 0.65  | 1.48  | 1.98  | 2.52  | 2.75  | 2.95  |
| CSV001_1.5-1.51  | 0    | 0                | 0     | 0.00 | 0.00  | 0.10  | 0.68  | 1.50  | 2.11  | 2.76  | 3.01  | 3.25  |
| CSV001_2.5-2.51  | 0    | 0                | 0     | 0.00 | 0.00  | 0.05  | 0.67  | 1.55  | 1.88  | 2.13  | 2.19  | 2.20  |
| CSV002_0.8-0.81  | 0    | 0                | 0     | 1.86 | 7.61  | 13.89 | 22.52 | 33.28 | 48.51 | 71.12 | 77.16 | 82.58 |
| CSV002_2.5-2.51  | 0    | 0                | 0     | 2.85 | 10.18 | 17.73 | 26.79 | 37.68 | 52.87 | 74.65 | 80.41 | 85.60 |
| CSV002_4.5-4.51  | 0    | 0                | 0     | 2.91 | 10.18 | 17.09 | 24.86 | 34.62 | 49.54 | 72.74 | 79.08 | 84.79 |
| CSV002_5.99-6    | 0    | 0                | 0     | 2.51 | 9.12  | 15.22 | 22.30 | 31.63 | 46.57 | 69.89 | 76.15 | 81.74 |
| CSV003_0-0.01    | 0    | 0                | 0     | 0.15 | 0.80  | 1.64  | 2.83  | 4.08  | 5.18  | 6.61  | 6.87  | 6.90  |
| CSV003_0.2-0.21  | 0    | 0                | 0     | 0.00 | 0.31  | 0.84  | 1.98  | 3.59  | 4.73  | 5.69  | 5.88  | 5.91  |
| CSV003_0.44-0.45 | 0    | 0                | 0     | 0.00 | 0.38  | 0.92  | 2.15  | 3.78  | 4.93  | 6.14  | 6.35  | 6.38  |
| CSV004_0-0.01    | 0    | 0                | 0     | 0.66 | 2.29  | 4.21  | 7.82  | 11.65 | 14.28 | 17.17 | 18.00 | 18.83 |
| CSV004_0.8-0.81  | 0    | 0                | 0     | 0.97 | 3.39  | 6.21  | 10.21 | 14.08 | 18.09 | 23.77 | 25.36 | 26.86 |
| CSV004_1.7-1.71  | 0    | 0                | 0     | 0.74 | 2.62  | 4.75  | 7.50  | 10.13 | 12.92 | 16.69 | 17.75 | 18.77 |
| CSV004_2.4-2.41  | 0    | 0                | 0     | 1.27 | 4.33  | 7.81  | 12.15 | 16.19 | 20.56 | 26.36 | 27.93 | 29.39 |
| CSV005_0.1-0.11  | 0    | 0                | 0     | 2.06 | 7.18  | 12.72 | 19.34 | 26.03 | 34.12 | 48.40 | 53.68 | 59.37 |
| CSV005_0.5-0.51  | 0    | 0                | 0     | 1.76 | 6.63  | 11.71 | 17.40 | 23.36 | 31.17 | 48.33 | 55.27 | 62.79 |
| CSV005_0.99-1    | 0    | 0                | 0     | 2.10 | 7.34  | 12.30 | 17.59 | 23.51 | 31.51 | 47.71 | 53.98 | 60.78 |
| CSV005_1.7-1.71  | 0    | 0                | 0     | 2.86 | 10.57 | 19.41 | 31.14 | 43.41 | 54.96 | 66.75 | 69.88 | 72.95 |
| CSV005_1.9-1.91  | 0    | 0                | 0     | 2.74 | 12.20 | 25.39 | 39.19 | 52.86 | 68.88 | 82.46 | 84.79 | 86.66 |
| CSV005_2.4-2.41  | 0    | 0                | 0     | 3.80 | 14.91 | 31.23 | 49.46 | 64.15 | 73.29 | 78.09 | 79.03 | 79.97 |
| CSV005_5.4-5.41  | 0    | 0                | 0     | 4.39 | 15.62 | 30.65 | 46.58 | 60.31 | 71.73 | 78.24 | 79.16 | 79.96 |
| CSV006_0.1-0.11  | 0    | 0                | 0     | 1.93 | 6.81  | 12.04 | 18.47 | 25.10 | 32.76 | 44.40 | 48.95 | 54.23 |
| CSV006_0.5-0.51  | 0    | 0                | 0     | 2.17 | 7.42  | 12.31 | 17.74 | 24.11 | 32.77 | 46.77 | 52.03 | 57.94 |
| CSV006_0.99-1    | 0    | 0                | 0     | 1.43 | 5.39  | 9.99  | 15.84 | 21.74 | 28.84 | 40.25 | 44.73 | 50.02 |
| CSV006_2-2.01    | 0    | 0                | 0     | 1.50 | 5.65  | 9.95  | 14.61 | 19.76 | 27.27 | 40.62 | 45.64 | 51.28 |
| CSV006_2.7-2.71  | 0    | 0                | 0     | 3.22 | 11.45 | 19.18 | 27.56 | 36.78 | 48.47 | 63.30 | 67.42 | 71.48 |
| CSV007_0.1-0.11  | 0    | 0                | 0     | 1.15 | 4.08  | 7.62  | 12.93 | 18.24 | 23.36 | 29.79 | 31.39 | 32.85 |
| CSV007_0.7-0.71  | 0    | 0                | 0     | 1.17 | 4.32  | 7.41  | 10.87 | 14.61 | 19.53 | 28.77 | 31.88 | 35.07 |
| CSV007_1.6-1.61  | 0    | 0                | 0     | 1.08 | 4.24  | 8.15  | 12.70 | 17.04 | 21.09 | 25.21 | 26.22 | 27.17 |
| CSV007_1.79-1.8  | 0    | 0                | 0     | 0.29 | 1.72  | 4.10  | 8.24  | 13.88 | 22.25 | 32.71 | 35.16 | 37.40 |
| CSV007_2.1-2.11  | 0    | 0                | 0     | 0.34 | 1.81  | 4.06  | 6.93  | 9.68  | 12.23 | 14.43 | 14.90 | 15.35 |
| CSV007_2.3-2.31  | 0    | 0                | 0     | 0.23 | 1.31  | 3.02  | 5.10  | 7.11  | 8.98  | 10.45 | 10.71 | 10.94 |
| CSV008_0-0.01    | 0    | 0                | 0     | 1.67 | 6.57  | 12.29 | 20.22 | 29.51 | 39.94 | 54.53 | 59.56 | 64.96 |
| CSV008_0.4-0.41  | 0    | 0                | 0     | 1.77 | 6.06  | 11.00 | 18.09 | 25.09 | 32.03 | 43.36 | 47.55 | 52.12 |
| CSV008_0.9-0.91  | 0    | 0                | 0     | 1.85 | 6.77  | 11.85 | 17.27 | 22.94 | 30.61 | 44.22 | 49.18 | 54.64 |
| CSV008_1.18-1.19 | 0    | 0                | 0     | 2.20 | 8.55  | 16.29 | 27.63 | 41.60 | 52.61 | 60.93 | 63.25 | 65.71 |
| CSV008_1.4-1.41  | 0    | 0                | 0     | 1.81 | 9.67  | 22.40 | 36.83 | 51.38 | 69.06 | 84.82 | 87.85 | 90.42 |
| CSV008_1.9-1.91  | 0    | 0                | 0     | 3.16 | 11.87 | 23.12 | 36.05 | 47.93 | 57.05 | 63.72 | 65.28 | 66.75 |
| CSV009_0.3-0.31  | 0    | 0                | 0     | 0.00 | 0.00  | 0.27  | 1.21  | 2.39  | 3.05  | 4.01  | 4.28  | 4.44  |
| CSV009_0.8-0.81  | 0    | 0                | 0     | 0.83 | 3.19  | 5.99  | 10.24 | 14.98 | 19.64 | 25.53 | 27.44 | 29.59 |
| CSV009_1.5-1.51  | 0    | 0                | 0     | 1.11 | 4.15  | 7.88  | 13.47 | 19.05 | 24.32 | 31.45 | 33.87 | 36.67 |
| CSV009_2.4-2.41  | 0    | 0                | 0     | 2.89 | 10.09 | 17.05 | 26.20 | 36.70 | 47.43 | 60.54 | 64.57 | 68.75 |
| CSV009_3-3.01    | 0    | 0                | 0     | 2.75 | 10.05 | 18.13 | 28.12 | 38.14 | 47.73 | 58.45 | 61.57 | 64.83 |
| CSV010_0.6-0.61  | 0    | 0                | 0     | 1.25 | 5.26  | 10.52 | 18.65 | 27.78 | 37.50 | 50.31 | 54.23 | 58.20 |
| CSV010_1.5-1.51  | 0    | 0                | 0     | 1.09 | 4.46  | 8.99  | 16.87 | 25.65 | 34.26 | 45.16 | 48.55 | 52.06 |
| CSV010_2.3-2.31  | 0    | 0                | 0     | 1.39 | 5.46  | 10.59 | 18.50 | 27.20 | 36.16 | 48.31 | 52.14 | 56.06 |
| CSV012_0.1-0.11  | 0    | 0                | 0     | 0.00 | 0.11  | 0.54  | 1.19  | 2.06  | 2.87  | 3.97  | 4.40  | 4.79  |
| CSV012_0.8-0.81  | 0    | 0                | 0     | 0.00 | 0.04  | 0.45  | 1.10  | 1.97  | 2.80  | 3.88  | 4.31  | 4.74  |
| CSV012_2-2.01    | 0    | 0                | 0     | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| CSV013_0.1-0.11  | 0    | 0                | 0     | 0.12 | 0.73  | 1.55  | 2.75  | 3.99  | 5.30  | 6.88  | 7.14  | 7.32  |
| CSV013_0.7-0.71  | 0    | 0                | 0     | 0.24 | 1.10  | 2.18  | 3.62  | 5.09  | 6.84  | 9.13  | 9.61  | 10.01 |
| CSV013_1.5-1.51  | 0    | 0                | 0     | 0.25 | 1.13  | 2.22  | 3.60  | 5.02  | 6.87  | 9.39  | 9.94  | 10.40 |
| CSV013_2.5-2.51  | 0    | 0                | 0     | 0.50 | 1.87  | 3.45  | 5.44  | 7.44  | 10.22 | 14.27 | 15.08 | 15.74 |
|                  |      |                  |       |      |       |       |       |       |       |       |       |       |

| SAMPLE ID &<br>DEPTH (m) | 62.5  | 74    | 88    | 105   | 125   | 149   | 177   | 210   | 250   | 300            |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|
| CSV001_0.1-0.11          | 4.60  | 4.6   | 4.6   | 4.63  | 5.12  | 6.71  | 9.92  | 15.2  | 22.92 | 33.29          |
| CSV001_0.5-0.51          | 2.95  | 2.95  | 2.95  | 3.21  | 4.3   | 6.72  | 10.83 | 16.87 | 25.01 | 35.28          |
| CSV001_0.99-1            | 3.01  | 3.01  | 3.01  | 3.16  | 4.21  | 6.98  | 12.13 | 20.11 | 31.07 | 44.74          |
| CSV001_1.5-1.51          | 3.42  | 3.42  | 3.42  | 3.58  | 4.62  | 7.13  | 11.66 | 18.6  | 28.21 | 40.51          |
| CSV001_2.5-2.51          | 2.20  | 2.2   | 2.36  | 3.85  | 7.39  | 13.78 | 23.04 | 34.81 | 48.43 | 62.88          |
| CSV002_0.8-0.81          | 91.13 | 93.91 | 95.93 | 97.26 | 98.03 | 98.44 | 98.63 | 98.74 | 98.85 | 99.03          |
| CSV002_2.5-2.51          | 93.77 | 96.38 | 98.22 | 99.32 | 99.85 | 99.99 | 100   | 100   | 100   | 100            |
| CSV002_4.5-4.51          | 93.72 | 96.49 | 98.36 | 99.43 | 99.9  | 100   | 100   | 100   | 100   | 100            |
| CSV002_5.99-6            | 90.38 | 93.11 | 95.04 | 96.3  | 97.03 | 97.44 | 97.69 | 97.9  | 98.14 | 98.47          |
| CSV003_0-0.01            | 6.91  | 7.18  | 8.17  | 10.37 | 14.07 | 19.45 | 26.12 | 33.66 | 41.67 | 49.81          |
| CSV003_0.2-0.21          | 5.91  | 6.04  | 6.59  | 7.88  | 10.15 | 13.58 | 18.01 | 23.25 | 29.15 | 35.64          |
| CSV003_0.44-0.45         | 6.39  | 6.64  | 7.51  | 9.4   | 12.54 | 17.04 | 22.59 | 28.82 | 35.45 | 42.28          |
| CSV004_0-0.01            | 20.55 | 21.49 | 22.65 | 24.18 | 26.25 | 29.13 | 32.94 | 37.85 | 44.09 | 51.84          |
| CSV004_0.8-0.81          | 29.66 | 30.94 | 32.31 | 33.88 | 35.77 | 38.21 | 41.31 | 45.24 | 50.21 | 56.46          |
| CSV004_1.7-1.71          | 20.74 | 21.66 | 22.69 | 23.96 | 25.61 | 27.91 | 31.04 | 35.24 | 40.8  | 48.01          |
| CSV004_2.4-2.41          | 32.00 | 33.11 | 34.25 | 35.57 | 37.24 | 39.52 | 42.59 | 46.65 | 51.93 | 58.65          |
| CSV005_0.1-0.11          | 71.33 | 76.59 | 81.22 | 84.92 | 87.52 | 89.21 | 90.23 | 90.9  | 91.49 | 92.19          |
| CSV005_0.5-0.51          | 78.06 | 84.31 | 89.36 | 92.92 | 94.93 | 95.77 | 95.81 | 95.81 | 95.81 | 95.86          |
| CSV005_0.99-1            | 75.11 | 81.43 | 86.96 | 91.32 | 94.27 | 96    | 96.8  | 97.07 | 97.14 | 97.29          |
| CSV005_1.7-1.71          | 78.83 | 81.32 | 83.53 | 85.36 | 86.77 | 87.85 | 88.7  | 89.47 | 90.33 | 91.46          |
| CSV005_1.9-1.91          | 89.54 | 90.65 | 91.69 | 92.65 | 93.52 | 94.32 | 95.06 | 95.79 | 96.54 | 97.35          |
| CSV005_2.4-2.41          | 82.03 | 83.09 | 84.17 | 85.19 | 86.04 | 86.71 | 87.25 | 87.82 | 88.71 | 90.22          |
| CSV005_5.4-5.41          | 81.68 | 82.65 | 83.73 | 84.83 | 85.82 | 86.65 | 87.31 | 87.98 | 88.9  | 90.42          |
| CSV006_0.1-0.11          | 66.86 | 73.2  | 79.24 | 84.46 | 88.39 | 91.08 | 92.68 | 93.59 | 94.21 | 94.87          |
| CSV006_0.5-0.51          | 71.47 | 78.01 | 84.11 | 89.26 | 93.01 | 95.43 | 96.71 | 97.27 | 97.51 | 97.77          |
| CSV006_0.99-1            | 63.22 | 70.23 | 77.25 | 83.66 | 88.79 | 92.5  | 94.8  | 96.03 | 96.62 | 96.96          |
| CSV006_2-2.01            | 64.36 | 70.92 | 77.31 | 83.03 | 87.56 | 90.84 | 92.88 | 94.01 | 94.58 | 94.9           |
| CSV006_2.7-2.71          | 79.37 | 82.77 | 85.83 | 88.39 | 90.33 | 91.73 | 92.67 | 93.35 | 93.93 | 94.59          |
| CSV007_0.1-0.11          | 35.92 | 37.88 | 40.55 | 44.17 | 48.63 | 53.81 | 59.2  | 64.43 | 69.28 | 73.64          |
| CSV007_0.7-0.71          | 41.96 | 45.72 | 50.15 | 55.45 | 61.47 | 68.13 | 74.83 | 81.15 | 86.78 | 91.46          |
| CSV007_1.6-1.61          | 29.04 | 29.96 | 30.96 | 32.08 | 33.28 | 34.62 | 36.09 | 37.82 | 40.02 | 43.1           |
| CSV007_1.79-1.8          | 41.60 | 43.53 | 45.46 | 47.31 | 48.95 | 50.39 | 51.65 | 52.94 | 54.55 | 56.92          |
| CSV007_2.1-2.11          | 16.39 | 16.99 | 17.64 | 18.31 | 18.95 | 19.61 | 20.42 | 21.73 | 24.1  | 28.33          |
| CSV007_2.3-2.31          | 11.46 | 11.79 | 12.2  | 12.64 | 13.06 | 13.43 | 13.77 | 14.26 | 15.26 | 17.45          |
| CSV008_0-0.01            | 76.43 | 81.59 | 86.2  | 89.97 | 92.66 | 94.43 | 95.47 | 96.1  | 96.59 | 97.14          |
| CSV008_0.4-0.41          | 62.04 | 66.64 | 70.91 | 74.61 | 77.53 | 79.81 | 81.54 | 82.99 | 84.41 | 86.02          |
| CSV008_0.9-0.91          | 66.98 | 73.08 | 79.03 | 84.38 | 88.67 | 91.85 | 93.93 | 95.19 | 95.96 | 96.55          |
| CSV008_1.18-1.19         | 71.03 | 73.55 | 75.93 | 78.02 | 79.67 | 80.93 | 81.84 | 82.55 | 83.21 | 84             |
| CSV008_1.4-1.41          | 94.38 | 95.65 | 96.56 | 97.13 | 97.44 | 97.6  | 97.7  | 97.8  | 97.94 | 98.13          |
| CSV008_1.9-1.91          | 69.46 | 70.6  | 71.7  | 72.8  | 73.91 | 75.1  | 76.36 | 77.72 | 79.2  | 80.88          |
| CSV009_0.3-0.31          | 4.46  | 4.71  | 5.63  | 7.86  | 11.96 | 18.44 | 27.18 | 37.85 | 49.96 | 62.77          |
| CSV009_0.8-0.81          | 35.22 | 38.76 | 43.05 | 48.1  | 53.63 | 59.56 | 65.5  | 71.28 | 76.85 | 82.15          |
| CSV009_1.5-1.51          | 44.25 | 49.04 | 54.72 | 61.14 | 67.77 | 74.3  | 80.16 | 85.17 | 89.31 | 92.63          |
| CSV009_2.4-2.41          | 77.59 | 81.75 | 85.68 | 89.13 | 91.85 | 93.83 | 95.14 | 95.98 | 96.6  | 97.18          |
| CSV009_3-3.01            | 72.09 | 75.85 | 79.78 | 83.69 | 87.27 | 90.39 | 92.89 | 94.8  | 96.25 | 97.38          |
| CSV010_0.6-0.61          | 66.17 | 69.7  | 72.99 | 75.95 | 78.47 | 80.67 | 82.57 | 84.31 | 86.02 | 87.79          |
| CSV010_1.5-1.51          | 59.47 | 62.98 | 66.41 | 69.63 | 72.5  | 75.03 | 77.23 | 79.2  | 81.1  | 83.1           |
| CSV010_2.3-2.31          | 63.88 | 67.3  | 70.44 | 73.19 | 75.48 | 77.42 | 79.06 | 80.53 | 81.96 | 83.46          |
| CSV012_0.1-0.11          | 5.22  | 5.22  | 5.42  | 6.23  | 8.31  | 12.4  | 18.92 | 28.01 | 39.61 | 53.25          |
| CSV012_0.8-0.81          | 5.23  | 5.23  | 5.24  | 5.53  | 6.77  | 9.78  | 15.25 | 23.6  | 34.97 | 49.02          |
| CSV012_2-2.01            | 0.00  | 0.00  | 0.00  | 0.00  | 0.38  | 2.46  | 6.88  | 14.25 | 24.91 | 38.81          |
| CSV013_0.1-0.11          | 7.81  | 8.49  | 9.81  | 12.07 | 15.35 | 19.68 | 24.77 | 30.41 | 36.5  | 43.06          |
| CSV013_0.7-0.71          |       | 12.01 |       |       |       |       |       |       | 46.07 |                |
| _                        | 11.03 |       | 13.72 | 16.45 | 20.29 | 25.36 | 31.42 | 38.34 |       | 54.61<br>51.41 |
| CSV013_1.5-1.51          | 11.47 | 12.4  | 13.94 | 16.37 | 19.79 | 24.33 | 29.8  | 36.13 | 43.32 | 51.41          |
| CSV013_2.5-2.51          | 17.65 | 19.64 | 22.98 | 28.06 | 34.69 | 42.65 | 51.07 | 59.36 | 67.13 | 74.12          |

| SAMPLE ID &<br>DEPTH (m) | 350   | 420   | 500   | 590   | 710   | 840   | 1000  | 1190  | 1410  | 1680  | 2000 |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| CSV001_0.1-0.11          | 43.39 | 55.99 | 67.71 | 77.71 | 86.93 | 93.19 | 97.52 | 99.76 | 100   | 100   | 100  |
| CSV001_0.5-0.51          | 44.86 | 56.48 | 67.17 | 76.36 | 85.08 | 91.32 | 96.01 | 98.92 | 99.96 | 100   | 100  |
| CSV001_0.99-1            | 56.97 | 70.73 | 81.9  | 90.01 | 96.11 | 99.21 | 100   | 100   | 100   | 100   | 100  |
| CSV001_1.5-1.51          | 51.93 | 65.45 | 77.19 | 86.4  | 93.95 | 98.24 | 99.97 | 100   | 100   | 100   | 100  |
| CSV001_2.5-2.51          | 74.06 | 84.95 | 92.51 | 97.16 | 99.69 | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV002_0.8-0.81          | 99.23 | 99.54 | 99.83 | 99.99 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV002_2.5-2.51          | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV002_4.5-4.51          | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV002_5.99-6            | 98.82 | 99.27 | 99.67 | 99.93 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV003_0-0.01            | 56.21 | 63.14 | 69.28 | 74.86 | 80.94 | 86.19 | 91.07 | 95.01 | 97.77 | 99.47 | 100  |
| CSV003_0.2-0.21          | 41.3  | 48.25 | 55.33 | 62.53 | 71.02 | 78.71 | 86.05 | 92.07 | 96.34 | 99.06 | 100  |
| CSV003_0.44-0.45         | 47.83 | 54.22 | 60.43 | 66.62 | 73.91 | 80.59 | 87.06 | 92.48 | 96.42 | 98.99 | 100  |
| CSV004_0-0.01            | 59.12 | 68.11 | 76.5  | 83.74 | 90.46 | 95.04 | 98.21 | 99.83 | 100   | 100   | 100  |
| CSV004_0.8-0.81          | 62.46 | 70.08 | 77.46 | 84.06 | 90.45 | 94.95 | 98.12 | 99.81 | 100   | 100   | 100  |
| CSV004_1.7-1.71          | 55.07 | 64.15 | 72.99 | 80.88 | 88.5  | 93.84 | 97.62 | 99.65 | 99.99 | 100   | 100  |
| CSV004_2.4-2.41          | 65.09 | 73.17 | 80.77 | 87.3  | 93.23 | 97.04 | 99.42 | 99.99 | 100   | 100   | 100  |
| CSV005_0.1-0.11          | 92.92 | 93.94 | 95.03 | 96.1  | 97.28 | 98.25 | 99.06 | 99.6  | 99.9  | 99.99 | 100  |
| CSV005_0.5-0.51          | 96.09 | 96.57 | 97.15 | 97.73 | 98.35 | 98.85 | 99.25 | 99.55 | 99.78 | 99.93 | 100  |
| CSV005_0.99-1            | 97.58 | 98.1  | 98.69 | 99.23 | 99.7  | 99.91 | 99.98 | 100   | 100   | 100   | 100  |
| CSV005_1.7-1.71          | 92.68 | 94.43 | 96.28 | 97.94 | 99.34 | 99.91 | 100   | 100   | 100   | 100   | 100  |
| CSV005_1.9-1.91          | 98.04 | 98.8  | 99.41 | 99.81 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV005_2.4-2.41          | 92.05 | 94.73 | 97.35 | 99.25 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV005_5.4-5.41          | 92.24 | 94.9  | 97.49 | 99.33 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV006_0.1-0.11          | 95.58 | 96.63 | 97.75 | 98.75 | 99.59 | 99.94 | 100   | 100   | 100   | 100   | 100  |
| CSV006_0.5-0.51          | 98.14 | 98.76 | 99.41 | 99.88 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV006_0.99-1            | 97.25 | 97.74 | 98.35 | 98.95 | 99.54 | 99.86 | 99.99 | 100   | 100   | 100   | 100  |
| CSV006_2-2.01            | 95.16 | 95.57 | 96.1  | 96.7  | 97.42 | 98.08 | 98.7  | 99.22 | 99.61 | 99.87 | 100  |
| CSV006_2.7-2.71          | 95.26 | 96.23 | 97.3  | 98.32 | 99.26 | 99.78 | 99.97 | 100   | 100   | 100   | 100  |
| CSV007_0.1-0.11          | 76.83 | 80.22 | 83.35 | 86.4  | 89.88 | 92.94 | 95.71 | 97.84 | 99.21 | 99.92 | 100  |
| CSV007_0.7-0.71          | 94.4  | 96.8  | 98.26 | 99.13 | 99.67 | 99.87 | 99.99 | 100   | 100   | 100   | 100  |
| CSV007 1.6-1.61          | 46.55 | 51.85 | 58.19 | 65.16 | 73.53 | 81.01 | 87.91 | 93.38 | 97.16 | 99.4  | 100  |
| CSV007_1.79-1.8          | 59.71 | 64.15 | 69.52 | 75.39 | 82.25 | 88.1  | 93.17 | 96.84 | 99.06 | 99.98 | 100  |
| CSV007_2.1-2.11          | 33.73 | 42.45 | 52.82 | 63.73 | 75.8  | 85.36 | 92.9  | 97.7  | 99.87 | 100   | 100  |
| CSV007 2.3-2.31          | 20.72 | 26.85 | 35.24 | 45.29 | 58.07 | 69.89 | 80.97 | 89.78 | 95.77 | 99.28 | 100  |
| CSV008_0-0.01            | 97.7  | 98.46 | 99.17 | 99.7  | 99.97 | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV008_0.4-0.41          | 87.55 | 89.61 | 91.77 | 93.89 | 96.13 | 97.86 | 99.14 | 99.83 | 99.99 | 100   | 100  |
| CSV008_0.9-0.91          | 97.04 | 97.73 | 98.47 | 99.16 | 99.74 | 99.96 | 100   | 100   | 100   | 100   | 100  |
| CSV008_1.18-1.19         | 84.88 | 86.26 | 88.01 | 90.03 | 92.56 | 94.84 | 96.91 | 98.43 | 99.36 | 99.89 | 100  |
| CSV008_1.4-1.41          | 98.33 | 98.59 | 98.85 | 99.06 | 99.25 | 99.44 | 99.63 | 99.78 | 99.9  | 99.97 | 100  |
| CSV008_1.9-1.91          | 82.44 | 84.48 | 86.68 | 88.96 | 91.65 | 94.03 | 96.23 | 97.97 | 99.11 | 99.72 | 100  |
| CSV009_0.3-0.31          | 72.79 | 82.78 | 90    | 94.74 | 97.97 | 99.5  | 99.95 | 100   | 100   | 100   | 100  |
| CSV009_0.8-0.81          | 86.13 | 90.17 | 93.34 | 95.73 | 97.71 | 98.89 | 99.56 | 99.88 | 99.99 | 100   | 100  |
| CSV009_1.5-1.51          | 94.75 | 96.63 | 97.96 | 98.87 | 99.52 | 99.8  | 99.94 | 100   | 100   | 100   | 100  |
| CSV009_2.4-2.41          | 97.75 | 98.54 | 99.3  | 99.84 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV009_3-3.01            | 98.13 | 98.87 | 99.44 | 99.82 | 100   | 100   | 100   | 100   | 100   | 100   | 100  |
|                          |       |       |       |       |       |       |       |       |       |       |      |
| CSV010_0.6-0.61          | 89.3  | 91.1  | 92.83 | 94.42 | 96.06 | 97.34 | 98.39 | 99.17 | 99.68 | 99.95 | 100  |
| CSV010_1.5-1.51          | 84.9  | 87.22 | 89.63 | 92.02 | 94.59 | 96.59 | 98.09 | 99.03 | 99.59 | 99.92 | 100  |
| CSV010_2.3-2.31          | 84.79 | 86.51 | 88.32 | 90.19 | 92.37 | 94.33 | 96.18 | 97.73 | 98.87 | 99.64 | 100  |
| CSV012_0.1-0.11          | 64.91 | 77.5  | 87.3  | 94.06 | 98.69 | 100   | 100   | 100   | 100   | 100   | 100  |
| CSV012_0.8-0.81          | 61.43 | 75.12 | 85.88 | 93.3  | 98.36 | 99.95 | 100   | 100   | 100   | 100   | 100  |
| CSV012_2-2.01            | 51.72 | 66.77 | 79.4  | 88.82 | 95.99 | 99.36 | 100   | 100   | 100   | 100   | 100  |
| CSV013_0.1-0.11          | 48.7  | 55.55 | 62.34 | 68.99 | 76.48 | 83    | 89.01 | 93.83 | 97.21 | 99.32 | 100  |
| CSV013_0.7-0.71          | 61.94 | 70.43 | 78.03 | 84.47 | 90.5  | 94.72 | 97.79 | 99.65 | 99.99 | 100   | 100  |
| CSV013_1.5-1.51          | 58.51 | 66.91 | 74.64 | 81.38 | 87.92 | 92.71 | 96.41 | 98.78 | 99.92 | 100   | 100  |
| _<br>CSV013_2.5-2.51     | 79.04 | 83.83 | 87.61 | 90.66 | 93.63 | 95.9  | 97.78 | 99.08 | 99.84 | 99.99 | 100  |

**Table A3.3:** Trace and major element concentrations in the vibracore samples (XRF and ICP-MS)

| GA      | SAMPLE ID &      | Ag<br>ICP-MS | Al2O3<br>XRF | As<br>ICP-MS | Ba<br>ICP-MS | Be<br>ICP-MS | Bi<br>ICP-MS | CaO<br>XRF | Cd<br>ICP-MS | Ce<br>ICP-MS | CI<br>XRF | Cr<br>XRF | Cs<br>ICP-MS | Cu<br>XRF |
|---------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|-----------|-----------|--------------|-----------|
| SAMPLE# | DEPTH (m)        | ppm          | %            | ppm          | ppm          | ppm          | ppm          | %          | ppm          | ppm          | ppm       | ppm       | ppm          | ppm       |
| 1419982 | CSV003_0.44-0.45 | 0.47         | 2.406        | 3.5          | 47           | 0.3          | <0.01        | 42.033     | 0.86         | 30.78        | 523       | 35        | 0.36         | 394       |
| 1419983 | CSV004_0-0.01    | 0.1          | 2.292        | 4.5          | 38           | 0.2          | < 0.01       | 43.41      | 0.37         | 13.53        | 207       | 36        | 0.3          | 67        |
| 1419984 | CSV004_0.8-0.81  | 0.07         | 2.617        | 11.8         | 37           | 0.5          | < 0.01       | 43.189     | 0.38         | 13.53        | 89        | 28        | 0.35         | 40        |
| 1419985 | CSV004_1.7-1.71  | 0.24         | 2.123        | 9.6          | 42           | 0.2          | < 0.01       | 42.331     | 0.3          | 15.01        | 619       | 25        | 0.29         | 31        |
| 1419986 | CSV004_2.4-2.41  | < 0.01       | 2.728        | 10.2         | 40           | 0.2          | < 0.01       | 43.778     | 0.35         | 15.11        | 8         | 36        | 0.36         | 31        |
| 1419987 | CSV005_0.1-0.11  | 0.05         | 1.954        | 9.2          | 51           | 0.2          | < 0.01       | 44.531     | 0.24         | 15.42        | 47        | 43        | 0.25         | 22        |
| 1419988 | CSV005_0.5-0.51  | < 0.01       | 2.159        | 7.4          | 66           | -0.1         | < 0.01       | 44.181     | 0.14         | 16.15        | 0         | 22        | 0.3          | 35        |
| 1419989 | CSV005_0.99-1    | 0.02         | 4.126        | 7.3          | 95           | 0.4          | < 0.01       | 39.688     | 0.21         | 24.5         | 189       | 31        | 0.56         | 23        |
| 1419990 | CSV005_1.7-1.71  | 0.13         | 10.13        | 19.6         | 240          | 1.3          | 0.1          | 23.631     | 0.16         | 67.79        | 0         | 71        | 1.52         | 29        |
| 1419991 | CSV005_1.9-1.91  | 0.1          | 24.309       | 23.2         | 296          | 2.8          | 0.3          | 1.193      | -0.1         | 276.4        | 0         | 128       | 3.62         | 39        |
| 1419992 | CSV005_2.4-2.41  | 0.25         | 25.22        | 35.5         | 236          | 3.6          | 0.3          | 0.867      | 0.21         | 227.7        | 0         | 171       | 4.04         | 54        |
| 1419993 | CSV005_5.4-5.41  | 0.12         | 23.807       | 52.2         | 243          | 4.2          | 0.4          | 1.367      | 0.3          | 166.2        | 346       | 165       | 3.39         | 52        |
| 1419994 | CSV006_0.1-0.11  | 0.27         | 24.223       | 54           | 257          | 3.4          | 0.3          | 1.351      | 0.32         | 184.2        | 0         | 168       | 3.98         | 54        |
| 1419995 | CSV006_0.5-0.51  | 0.05         | 1.945        | 6.7          | 44           | 0.4          | < 0.01       | 44.941     | 0.21         | 14.03        | 787       | 32        | 0.25         | 30        |
| 1419996 | CSV006_0.99-1    | 0.25         | 2.155        | 9.5          | 45           | 0.3          | < 0.01       | 44.597     | 0.3          | 14.61        | 1153      | 31        | 0.29         | 35        |
| 1419997 | CSV006_2-2.01    | 0.11         | 2.137        | 9.7          | 51           | 0.3          | < 0.01       | 45.188     | 0.16         | 14.57        | 88        | 32        | 0.3          | 32        |
| 1419998 | CSV006_2.7-2.71  | 0.07         | 2.443        | 7.7          | 73           | 0.5          | < 0.01       | 43.129     | 0.21         | 18.52        | 66        | 25        | 0.3          | 17        |
| 1419999 | CSV007_0.1-0.11  | 2.68         | 6.883        | 15.1         | 174          | 0.9          | < 0.01       | 33.21      | 0.15         | 46.76        | 0         | 52        | 1.08         | 95        |
| 1420000 | CSV007_0.7-0.71  | < 0.01       | 2.276        | 9            | 63           | 0.3          | < 0.01       | 44.029     | 0.14         | 15.99        | 73        | 21        | 0.32         | 40        |
| 1420001 | CSV007_1.6-1.61  | < 0.01       | 10.156       | 25.8         | 177          | 1.2          | < 0.01       | 26.398     | 0.1          | 63.5         | 69        | 82        | 1.74         | 34        |
| 1420002 | CSV007_1.79-1.8  | 0.06         | 9.589        | 72.2         | 271          | 1.5          | 0.1          | 19.032     | 0.2          | 98.59        | 40        | 96        | 1.5          | 84        |
| 1420003 | CSV007_2.1-2.11  | < 0.01       | 13.626       | 53.9         | 225          | 1.7          | 0.2          | 18.751     | 0.16         | 152.4        | 0         | 211       | 2.53         | 37        |
| 1420004 | CSV007_2.3-2.31  | 0.08         | 14.128       | 60.1         | 224          | 1.9          | 0.3          | 16.479     | 0.12         | 163.5        | 0         | 213       | 2.75         | 58        |
| 1420011 | CSV009_0.3-0.31  | 0.15         | 2.322        | 9.4          | 43           | 0.3          | < 0.01       | 42.601     | 0.29         | 14.43        | 625       | 181       | 0.29         | 231       |
| 1420012 | CSV009_0.8-0.81  | < 0.01       | 1.487        | 11.1         | 45           | 0.3          | < 0.01       | 44.469     | 0.41         | 13.13        | 53        | 21        | 0.24         | 41        |
| 1420013 | CSV009_1.5-1.51  | 0.07         | 2.079        | 11.1         | 40           | 0.4          | < 0.01       | 44.156     | 0.17         | 14.53        | 125       | 30        | 0.27         | 41        |

| SAMPLE ID &<br>DEPTH (m) | Dy<br>ICP-MS | Er<br>ICP-MS | Eu<br>ICP-MS | Fe2O3T<br>XRF | Ga<br>ICP-MS | Gd<br>ICP-MS | Ge<br>ICP-MS | Hf<br>ICP-MS | Ho<br>ICP-MS | K2O<br>XRF | La<br>ICP-MS | Lu<br>ICP-MS | MgO<br>XRF |
|--------------------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|------------|
|                          | ppm          | ppm          | ppb          | %             | ppm          | ppm          | ppm          | ppm          | ppm          | %          | ppm          | ppm          | %          |
| CSV003_0.44-0.45         | 394          | 0.98         | 333          | 0.776         | 2.6          | 1.77         | 0.4          | 7.5          | 0.32         | 0.189      | 16.7         | 0.15         | 2.318      |
| CSV004_0-0.01            | 67           | 0.64         | 233          | 0.942         | 2.6          | 1.02         | 0.4          | 1.3          | 0.22         | 0.167      | 7.07         | 0.08         | 2.385      |
| CSV004_0.8-0.81          | 40           | 0.56         | 233          | 1.178         | 3            | 0.98         | 0.3          | 0.7          | 0.2          | 0.164      | 6.93         | 0.07         | 2.544      |
| CSV004_1.7-1.71          | 31           | 0.53         | 210          | 0.968         | 2.8          | 0.95         | < 0.02       | 1.2          | 0.18         | 0.171      | 7.48         | 0.06         | 2.329      |
| CSV004_2.4-2.41          | 31           | 0.53         | 239          | 1.15          | 3.2          | 1.01         | 0.2          | 8.0          | 0.19         | 0.178      | 7.47         | 0.06         | 2.597      |
| CSV005_0.1-0.11          | 22           | 0.71         | 205          | 1.071         | 2.1          | 1.05         | 0.2          | 1.3          | 0.23         | 0.209      | 7.85         | 0.09         | 2.518      |
| CSV005_0.5-0.51          | 35           | 0.71         | 256          | 1.015         | 2.6          | 1.11         | 0.3          | 1.6          | 0.23         | 0.259      | 8.03         | 0.09         | 2.543      |
| CSV005_0.99-1            | 23           | 0.86         | 349          | 1.634         | 5            | 1.54         | 0.4          | 2.6          | 0.28         | 0.417      | 12.08        | 0.11         | 2.591      |
| CSV005_1.7-1.71          | 29           | 2.34         | 903          | 5.081         | 12.3         | 4.21         | 8.0          | 6.9          | 0.82         | 1.137      | 33.19        | 0.32         | 2.225      |
| CSV005_1.9-1.91          | 39           | 5.76         | 2992         | 9.131         | 32.6         | 11.95        | 1.8          | 11.5         | 2.01         | 1.697      | 93.06        | 0.79         | 0.796      |
| CSV005_2.4-2.41          | 54           | 7.45         | 3558         | 10.674        | 31.7         | 14.88        | 1.7          | 9.5          | 2.68         | 1.582      | 102.8        | 0.99         | 1.044      |
| CSV005_5.4-5.41          | 52           | 7.32         | 3280         | 10.565        | 34.4         | 13.76        | 1.4          | 8.8          | 2.45         | 1.604      | 88.49        | 0.98         | 0.98       |
| CSV006_0.1-0.11          | 54           | 7.57         | 3460         | 10.521        | 31.2         | 15.16        | 1.6          | 10           | 2.73         | 1.617      | 92.56        | 0.99         | 1.019      |
| CSV006_0.5-0.51          | 30           | 0.48         | 196          | 0.976         | 2.2          | 0.89         | 0.2          | 1.2          | 0.17         | 0.183      | 7.19         | 0.06         | 2.357      |
| CSV006_0.99-1            | 35           | 0.5          | 202          | 1.037         | 2.6          | 0.98         | 0.2          | 1.1          | 0.19         | 0.194      | 7.45         | 0.06         | 2.458      |
| CSV006_2-2.01            | 32           | 0.57         | 217          | 0.99          | 2.4          | 1.08         | 0.2          | 1.2          | 0.21         | 0.206      | 7.6          | 0.06         | 2.436      |
| CSV006_2.7-2.71          | 17           | 0.85         | 272          | 1.08          | 2.9          | 1.3          | 0.2          | 2            | 0.29         | 0.296      | 9.42         | 0.11         | 2.369      |
| CSV007_0.1-0.11          | 95           | 1.41         | 670          | 3.105         | 8.2          | 2.89         | 0.5          | 4.3          | 0.51         | 0.758      | 22.68        | 0.19         | 2.257      |
| CSV007_0.7-0.71          | 40           | 0.64         | 241          | 1.019         | 2.6          | 1.12         | 0.2          | 1.5          | 0.22         | 0.253      | 8.1          | 0.08         | 2.478      |
| CSV007_1.6-1.61          | 34           | 1.88         | 880          | 4.558         | 12.8         | 3.68         | 0.7          | 4.6          | 0.66         | 0.858      | 31.27        | 0.23         | 2.621      |
| CSV007_1.79-1.8          | 84           | 4.29         | 1431         | 6.073         | 13.7         | 7.04         | 0.9          | 14.3         | 1.47         | 1.197      | 49.06        | 0.56         | 1.789      |
| CSV007_2.1-2.11          | 37           | 4.84         | 2115         | 5.978         | 16           | 9.17         | 0.9          | 12.2         | 1.74         | 1.061      | 82.29        | 0.61         | 1.905      |
| CSV007_2.3-2.31          | 58           | 5.38         | 2280         | 6.293         | 15.8         | 10.36        | 8.0          | 13.4         | 2.01         | 1.11       | 88.96        | 0.69         | 1.717      |
| CSV009_0.3-0.31          | 231          | 0.62         | 214          | 1.078         | 2.7          | 1.1          | 0.2          | 2.4          | 0.22         | 0.17       | 7.74         | 0.09         | 2.568      |
| CSV009_0.8-0.81          | 41           | 0.57         | 178          | 0.888         | 1.6          | 0.93         | < 0.02       | 1.9          | 0.19         | 0.148      | 7.47         | 0.08         | 2.49       |
| CSV009_1.5-1.51          | 41           | 0.5          | 196          | 1.022         | 2.4          | 0.97         | 0.2          | 1.4          | 0.16         | 0.162      | 7.6          | 0.06         | 2.515      |

| SAMPLE ID &      | MLOI<br>Calculate | MnO<br>XRF | Mo<br>ICP-MS | Na2O<br>XRF | Nb<br>ICP-MS | Nd<br>ICP-MS | Ni<br>XRF | P2O5<br>XRF | Pb<br>ICP-MS | Pr<br>ICP-MS | Rb<br>ICP-MS | Sb<br>ICP-MS | Sc<br>XRF | SiO2<br>XRF |
|------------------|-------------------|------------|--------------|-------------|--------------|--------------|-----------|-------------|--------------|--------------|--------------|--------------|-----------|-------------|
| DEPTH (m)        | %                 | %          | ppm          | %           | ppm          | ppm          | ppm       | %           | ppm          | ppm          | ppm          | ppm          | ppm       | %           |
| CSV003_0.44-0.45 | 45.209            | 0.005      | 2.3          | 0.305       | 3            | 13.02        | 4         | 0.194       | 40.2         | 3.66         | 11           | 3.5          | 4         | 5.271       |
| CSV004_0-0.01    | 43.426            | < 0.001    | 2.4          | 0.344       | 1.8          | 5.8          | 7         | 0.138       | 15.1         | 1.6          | 9.8          | 4.8          | 2         | 5.778       |
| CSV004_0.8-0.81  | 42.975            | < 0.001    | 2.7          | 0.302       | 2            | 5.65         | 6         | 0.122       | 8.6          | 1.51         | 10.5         | 3            | <1.6      | 5.53        |
| CSV004_1.7-1.71  | 45.259            | < 0.001    | 2.4          | 0.397       | 1.8          | 5.92         | <1.3      | 0.101       | 8.7          | 1.67         | 10.1         | 5            | <1.6      | 4.966       |
| CSV004_2.4-2.41  | 42.022            | < 0.001    | 3.2          | 0.301       | 2.1          | 6.06         | 4         | 0.116       | 8.5          | 1.71         | 11.2         | 1.9          | <1.6      | 5.748       |
| CSV005_0.1-0.11  | 42.05             | < 0.001    | 3.1          | 0.351       | 2            | 6.29         | 5         | 0.104       | 7.3          | 1.73         | 9.3          | 4            | <1.6      | 5.803       |
| CSV005_0.5-0.51  | 41.293            | 0.005      | 3.1          | 0.349       | 2.4          | 6.4          | 16        | 0.101       | 7.2          | 1.84         | 12.1         | 1            | <1.6      | 6.7         |
| CSV005_0.99-1    | 38.37             | 0.007      | 4.2          | 0.385       | 4.8          | 9.22         | 7         | 0.12        | 10.9         | 2.62         | 20.5         | 0.4          | <1.6      | 11.101      |
| CSV005_1.7-1.71  | 25.394            | 0.024      | 6.3          | 0.472       | 12.1         | 25.25        | 17        | 0.109       | 25           | 7.03         | 57.1         | 4            | 14        | 28.241      |
| CSV005_1.9-1.91  | 13.164            | 0.038      | 2.7          | 0.294       | 29.7         | 82.69        | 29        | 0.152       | 55.4         | 23.38        | 116.5        | 9.3          | 27        | 47.088      |
| CSV005_2.4-2.41  | 13.651            | 0.024      | 3.4          | 0.233       | 23.9         | 89.47        | 47        | 0.088       | 53.4         | 25.27        | 109.4        | 10.5         | 26        | 45.05       |
| CSV005_5.4-5.41  | 15.217            | 0.025      | 3.1          | 0.227       | 21.7         | 83.88        | 50        | 0.087       | 57.1         | 21           | 101.5        | 4.6          | 12        | 44.303      |
| CSV006_0.1-0.11  | 14.033            | 0.026      | 3.2          | 0.214       | 24           | 84.83        | 37        | 0.092       | 56.8         | 22.97        | 106.4        | 4.3          | 25        | 45.071      |
| CSV006_0.5-0.51  | 42.377            | < 0.001    | 2.8          | 0.349       | 1.8          | 5.87         | <1.3      | 0.101       | 8.2          | 1.58         | 9.2          | 5            | <1.6      | 5.368       |
| CSV006_0.99-1    | 42.066            | < 0.001    | 4.6          | 0.38        | 2            | 5.8          | 3         | 0.1         | 7.3          | 1.66         | 10           | 6.1          | <1.6      | 5.408       |
| CSV006_2-2.01    | 41.506            | < 0.001    | 6.2          | 0.365       | 2            | 6.14         | 9         | 0.096       | 7.1          | 1.65         | 10.5         | 8.0          | <1.6      | 5.538       |
| CSV006_2.7-2.71  | 41.528            | 0.005      | 4            | 0.368       | 2.7          | 7.38         | <1.3      | 0.089       | 7.2          | 2.12         | 13.4         | 0.5          | <1.6      | 7.207       |
| CSV007_0.1-0.11  | 32.426            | 0.019      | 3.1          | 0.386       | 8            | 18.04        | 7         | 0.114       | 18.8         | 5.05         | 40.1         | 0.7          | 6         | 18.223      |
| CSV007_0.7-0.71  | 41.617            | < 0.001    | 4.6          | 0.334       | 2.4          | 6.55         | <1.3      | 0.092       | 6.6          | 1.82         | 12.2         | 7.4          | 3         | 6.413       |
| CSV007_1.6-1.61  | 29.414            | 0.018      | 7.1          | 0.336       | 10.4         | 22.97        | 14        | 0.137       | 19.8         | 6.73         | 52           | 4.6          | 10        | 22.6        |
| CSV007_1.79-1.8  | 26.236            | 0.038      | 20.9         | 0.373       | 12.8         | 37.94        | 16        | 0.101       | 27.5         | 10.51        | 55           | 8.8          | 13        | 30.233      |
| CSV007_2.1-2.11  | 22.409            | 0.029      | 13.3         | 0.279       | 14.8         | 59.82        | 34        | 0.161       | 30.9         | 16.7         | 58           | 4.7          | 13        | 30.822      |
| CSV007_2.3-2.31  | 21.747            | 0.029      | 15           | 0.251       | 15.8         | 62.71        | 36        | 0.165       | 32.1         | 17.48        | 60.5         | 5.4          | 17        | 32.679      |
| CSV009_0.3-0.31  | 43.004            | 0.007      | 2.7          | 0.426       | 3            | 6.12         | 392       | 0.139       | 18.2         | 1.72         | 9.9          | 4.4          | 3         | 5.923       |
| CSV009_0.8-0.81  | 44.086            | < 0.001    | 2.2          | 0.337       | 1.6          | 5.63         | 3         | 0.098       | 6.3          | 1.61         | 7.7          | 7.3          | <1.6      | 4.494       |
| CSV009_1.5-1.51  | 42.281            | < 0.001    | 2            | 0.36        | 1.8          | 6.02         | 4         | 0.117       | 13.2         | 1.68         | 9.5          | 1.1          | 2         | 5.75        |

| SAMPLE ID &<br>DEPTH (m) | Sm<br>ICP-MS | Sn<br>ICP-MS | SO3<br>XRF | Sr<br>ICP-MS | Ta<br>ICP-MS | Tb<br>ICP-MS | Th<br>ICP-MS | TiO2<br>XRF | U<br>ICP-MS | V<br>XRF | Y<br>ICP-MS | Yb<br>ICP-MS | Zn<br>XRF | Zr<br>ICP-MS |
|--------------------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|-------------|-------------|----------|-------------|--------------|-----------|--------------|
| DEPIN (III)              | ppm          | ppm          | %          | ppm          | ppm          | ppm          | ppm          | %           | ppm         | ppm      | ppm         | ppm          | ppm       | ppm          |
| CSV003_0.44-0.45         | 2.31         | 4            | 0.762      | 2025         | <0.06        | 0.56         | 6.9          | 0.182       | 7.26        | 28       | 11.4        | 0.88         | 33        | 289.8        |
| CSV004_0-0.01            | 1.22         | 2            | 0.704      | 2327         | < 0.06       | 0.16         | 3.9          | 0.118       | 6.04        | 20       | 7.4         | 0.53         | 13        | 44.8         |
| CSV004_0.8-0.81          | 1.17         | 1.5          | 0.972      | 2578         | < 0.06       | 0.13         | 3.8          | 0.115       | 17.68       | 31       | 7.4         | 0.45         | 3         | 25.1         |
| CSV004_1.7-1.71          | 1.17         | 2            | 0.924      | 2871         | < 0.06       | 0.14         | 5.4          | 0.098       | 18.2        | 34       | 7.6         | 0.42         | < 0.5     | 48.2         |
| CSV004_2.4-2.41          | 1.3          | 1.8          | 0.969      | 2593         | < 0.06       | 0.14         | 4.7          | 0.124       | 21.44       | 36       | 7.6         | 0.48         | 4         | 30.2         |
| CSV005_0.1-0.11          | 1.28         | 1            | 1.001      | 2581         | < 0.06       | 0.15         | 4.3          | 0.112       | 10.71       | 14       | 7.9         | 0.58         | 1         | 48.3         |
| CSV005_0.5-0.51          | 1.23         | 1.9          | 0.936      | 2710         | < 0.06       | 0.18         | 4.5          | 0.159       | 8.2         | 10       | 8.5         | 0.63         | < 0.5     | 65.1         |
| CSV005_0.99-1            | 1.99         | 1.5          | 0.997      | 2366         | < 0.06       | 0.24         | 6.7          | 0.268       | 6           | 17       | 9.8         | 0.71         | 4         | 96.3         |
| CSV005_1.7-1.71          | 4.76         | 2.5          | 2.7        | 1146         | 0.6          | 0.7          | 15.9         | 0.658       | 6.04        | 40       | 22.5        | 2.17         | 9         | 243.1        |
| CSV005_1.9-1.91          | 15.63        | 4.5          | 0.47       | 97.9         | 1.8          | 1.77         | 67.3         | 1.54        | 5.89        | 145      | 65          | 5.32         | 13        | 443.5        |
| CSV005_2.4-2.41          | 18.51        | 4.4          | 0.189      | 74.5         | 1.4          | 2.17         | 64.6         | 1.257       | 4.88        | 179      | 82.1        | 6.26         | 25        | 335.5        |
| CSV005_5.4-5.41          | 16.54        | 5.2          | 0.406      | 72.2         | 1.9          | 2.08         | 77.6         | 1.263       | 5.43        | 181      | 89.3        | 6.38         | 15        | 361.9        |
| CSV006_0.1-0.11          | 17.43        | 5            | 0.439      | 66.5         | 1.3          | 2.23         | 63.4         | 1.279       | 5.15        | 181      | 87.7        | 6.48         | 16        | 377          |
| CSV006_0.5-0.51          | 1.1          | 1            | 0.919      | 2504         | < 0.06       | 0.13         | 4            | 0.117       | 9.01        | 17       | 6.3         | 0.4          | 1         | 45.1         |
| CSV006_0.99-1            | 1.17         | 0.9          | 1.081      | 2494         | < 0.06       | 0.16         | 3.8          | 0.126       | 10.82       | 16       | 6.5         | 0.42         | 1         | 35.3         |
| CSV006_2-2.01            | 1.17         | 0.6          | 1.097      | 2622         | < 0.06       | 0.14         | 3.5          | 0.136       | 11.63       | 17       | 6.8         | 0.5          | 1         | 40.8         |
| CSV006_2.7-2.71          | 1.42         | 1.1          | 1.018      | 2542         | < 0.06       | 0.21         | 5            | 0.175       | 8.52        | 15       | 9.3         | 0.73         | 4         | 73.6         |
| CSV007_0.1-0.11          | 3.46         | 2.3          | 1.919      | 1821         | 0.2          | 0.4          | 11.2         | 0.456       | 4.9         | 32       | 15.1        | 1.29         | 10        | 150.1        |
| CSV007_0.7-0.71          | 1.07         | 0.6          | 1.024      | 2766         | < 0.06       | 0.14         | 4.2          | 0.153       | 9.94        | 18       | 8.1         | 0.56         | 2         | 54.6         |
| CSV007_1.6-1.61          | 4.48         | 2            | 2.135      | 1334         | 0.4          | 0.62         | 17.8         | 0.567       | 13.48       | 52       | 21          | 1.65         | 10        | 161.4        |
| CSV007_1.79-1.8          | 7.54         | 1.7          | 4.358      | 861.5        | 0.6          | 1.09         | 22.4         | 0.755       | 16.8        | 137      | 46.3        | 3.64         | 12        | 514          |
| CSV007_2.1-2.11          | 11.06        | 2.8          | 3.926      | 717.5        | 0.7          | 1.38         | 30.6         | 0.854       | 14.53       | 123      | 57.4        | 4.11         | 13        | 461.3        |
| CSV007_2.3-2.31          | 11.93        | 2.6          | 4.372      | 579.9        | 0.8          | 1.49         | 34.7         | 0.85        | 12.73       | 133      | 60.8        | 4.58         | 12        | 481.4        |
| CSV009_0.3-0.31          | 1.2          | 2            | 1.181      | 2413         | < 0.06       | 0.15         | 4.2          | 0.164       | 10.02       | 23       | 7.8         | 0.57         | 9         | 92.1         |
| CSV009_0.8-0.81          | 1.14         | 0.8          | 1.098      | 2640         | < 0.06       | 0.17         | 2.2          | 0.112       | 12.66       | 29       | 4.6         | 0.53         | 2         | 52.2         |
| CSV009_1.5-1.51          | 1.25         | 0.9          | 1.131      | 2610         | < 0.06       | 0.13         | 4.1          | 0.13        | 8.25        | 21       | 6.4         | 0.4          | 7         | 55.6         |