Abstract

Australia's North West Margin (NWAM) is segmented into four discrete basins which have distinct rift and reactivation histories: Carnarvon, offshore Canning (Roebuck), Browse and Bonaparte. Bonaparte Basin incorporates Vulcan and Petrel sub-basins. The Bonaparte Basin stands out as an extensive sedimentary basin which has a geological history spanning almost the entire Phanerozoic, with up to 20 km of sediment accumulation in the centre. Browse Basin has considerably less thick sediment accumulation ? 12 km at maximum, which is still high for general hydrocarbon potential estimation. The structural architecture of the region is the product of a number of major tectonic events, including: ? Late Devonian northeast-southwest extension in the Petrel Sub-basin; ? Late Carboniferous northwest-southeast extension in the proto-Malita Graben, Browse Basin and proto-Vulcan Sub-basin; ? Late Triassic north-south compression; ? Early-Mid Jurassic development of major depocentres in the Exmouth, Barrow and Dampier sub-basins, and extension in the Browse Basin; ? Mid-Late Jurassic breakup in the Argo Abyssal Plain, onset of thermal sag in the Browse basin and extension in the Bonaparte Basin; ? Valanginian breakup in the Gascoyne and Cuvier abyssal plains, and onset of thermal sag in the Bonaparte Basin; and ? Late Miocene reactivation and flexural downwarp of the Timor Trough and Cartier Sub-basin Many of these events have involved processes of lower crustal extension and are strongly controlled by the pre-existing regional structural fabrics and basement character. Most reliable information on basement and deep crustal structure in the region comes from combined ocean-bottom seismograph (OBS) and deep reflection profiling along several regional transects (including Vulcan and Petrel transects in the Bonaparte Basin, and one transect in the Browse Basin). Average spacing between the OBSs of 30 km and shot spacing of 100 m with data recording to maximum offsets of 300 km enabled development of accurate crustal-scale seismic velocity models. Deep reflection data along the coincident profiles were recorded as part of Geoscience Australia?s regional grid of seismic lines. Consistent interpretation of several key horizons tied to petroleum exploration wells through the entire grid created the basis for co-interpretation of the OBS and deep reflection data supplemented by gravity field modelling.
Google map showing geographic bounding box with values North bound -10.0 East bound 132.0 West bound 122.0 South bound -22.0
Related Links

Product Type/Sub Type

nonGeographicDataset

Constraints

Non-Exclusive licence to publish copyright (please provide TRIM link)

IP Owner

Commonwealth of Australia (Geoscience Australia)

Author(s)

Date (publication)

2003-01-01T00:00:00

Product Type

nonGeographicDataset

Topic Category

geoscientificInformation

GA Catalogue Number

41976 Resource http://www.ga.gov.au/metadata-gateway/metadata/record/41976/

Keywords

External Publication
Conference Paper
crustal structure
AU-NT
Earth Sciences

Resource Language

English

Resource Character Set

utf8

Resource Security Classification

unclassified

Geographic Extent

North bound
-10.0
East bound
132.0
West bound
122.0
South bound
-22.0

Lineage

Unknown

Digital Transfer Options

onLine

Distributor

Role
distributor
Organisation Name
Commonwealth of Australia (Geoscience Australia)
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address

Source Description

Source data not available.

Metadata File Identifier

a05f7892-b76b-7506-e044-00144fdd4fa6

Metadata Standard Name

ANZLIC Metadata Profile: An Australian/New Zealand Profile of AS/NZS ISO 19115:2005, Geographic information - Metadata

Metadata Standard Version

1.1

METADATA SECURITY CLASSIFICATION

unclassified

Metadata Contact

Role
custodian
Organisation Name
Commonwealth of Australia (Geoscience Australia)
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address
Related Links