Abstract

We have developed a holistic method for simultaneously calibrating, processing, and inverting frequency-domain airborne electromagnetic data. A spline-based, 3D, layered conductivity model covering the complete survey area was recovered through inversion of the entire raw airborne data set and available independent conductivity and interface-depth data. The holistic inversion formulation includes a mathematical model to account for systematic calibration errors such as incorrect gain and zerolevel drift. By taking these elements into account in the inversion, the need to preprocess the airborne data prior to inversion is eliminated. Conventional processing schemes involve the sequential application of a number of calibration corrections, with data from each frequency treated separately. This is followed by inversion of each multifrequency sample in isolation from other samples. By simultaneously considering all of the available information in a holistic inversion, we are able to exploit interfrequency and spatial-coherency characteristics of the data. The formulation ensures that the conductivity and calibration models are optimal with respect to the airborne data and prior information. Introduction of interfrequency inconsistency and multistage error propagation stemming from the sequential nature of conventional processing schemes is also avoided. We confirm that accurate conductivity and calibration parameter values are recovered from holistic inversion of synthetic data sets.We demonstrate that the results from holistic inversion of raw survey data are superior to the output of conventional 1D inversion of final processed data. In addition to the technical benefits, we expect that holistic inversion will reduce costs by avoiding the expensive calibrationprocessing- recalibration paradigm. Furthermore, savings may also be made because specific high-altitude zero-level observations, needed for conventional processing, may not be required.
Google map showing geographic bounding box with values North bound East bound West bound South bound
Downloads
For information on acquiring this product,
please contact Geoscience Australia Client Services via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).

Product Type/Sub Type

nonGeographicDataset - External Publication - Scientific Journal Paper

Constraints

license
Creative Commons Attribution 3.0 Australia Licence

IP Owner

Commonwealth of Australia (Geoscience Australia)

Author(s)

Date (publication)

2006

Product Type

nonGeographicDataset

Topic Category

geoscientificInformation

Keywords

External Publication
Scientific Journal Paper
AEM
geophysics
Earth Sciences

Resource Language

English

Resource Character Set

utf8

Resource Security Classification

unclassified

Lineage

Unknown

Digital Transfer Options

onLine

DISTRIBUTION Format

pdf

Distributor

Role
distributor
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address

Metadata File Identifier

a05f7892-cc4c-7506-e044-00144fdd4fa6

Metadata Standard Name

ANZLIC Metadata Profile: An Australian/New Zealand Profile of AS/NZS ISO 19115:2005, Geographic information - Metadata

Metadata Standard Version

1.1

Metadata Date Stamp

2014-02-14

METADATA SECURITY CLASSIFICATION

unclassified

Metadata Contact

Role
pointOfContact
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address
Downloads
For information on acquiring this product,
please contact Geoscience Australia Client Services via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).