Abstract

We measured the light absorption properties of two naturally occurring Australian hydrocarbon oils, a Gippsland light crude oil and a North West Shelf light condensate. Using these results in conjunction with estimated sensor environmental noise thresholds, the theoretical minimum limit of detectability of each oil type (as a function of oil thickness) was calculated for both the hyperspectral HYMAP and multispectral Quickbird sensors. The Gippsland crude oil is discernable at layer thickness of 20 micro metres or more in the Quickbird green channel. The HYMAP sensor was found to be theoretically capable of detecting a layer of Gippsland crude oil with a thickness of 10 micro metres in approximately six sensor channels. By contrast, the North West Shelf light condensate was not able to be detected by either sensor for any thickness up to 200 icro metres. Optical remote sensing is therefore not applicable for detecting diagnostic absorption features associated with this light condensate oil type, which is considered representative for the prospective Australian Northwest Shelf area. We conclude that oil type is critical to the applicability of optical remote sensing for natural oil slick detection and identification. We recommend that a sensor- and oil-specific sensitivity study should be conducted prior to applying optical remote sensors for oil exploration. The oil optical properties were obtained using two different laboratory methods, a reflectance-based approach and transmittance-based approach. The reflectance-based approach was relatively complex to implement, but was chosen in order to replicate as closely as possible real world remote sensing measurement conditions of an oil film on water. The transmittance-based approach, based upon standard laboratory spectrophotometric measurements was found to generate results in good agreement with the reflectance-based approach. Therefore, for future oil- and sensor-specific sensitivity studies, we recommend the relatively accessible transmittance-based approach, which is detailed in this paper.
Google map showing geographic bounding box with values North bound -9.0 East bound 156.0 West bound 110.0 South bound -44.0
Related Links
For information on acquiring this product,
please contact the Geoscience Australia Sales Centre via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).

Please note that support hours are 9 am to 5 pm weekdays

Product Type/Sub Type

dataset - External Publication - Article

Constraints

license
Creative Commons Attribution 3.0 Australia Licence

IP Owner

Commonwealth of Australia (Geoscience Australia)

Author(s)

Date (publication)

2008

Product Type

dataset

Topic Category

geoscientificInformation

Keywords

External Publication
Article
petroleum exploration
hydrocarbons
satellite imagery
remote sensing
Earth Sciences

Resource Language

English

Resource Character Set

utf8

Resource Security Classification

unclassified

Geographic Extent

North bound
-9.0
East bound
156.0
West bound
110.0
South bound
-44.0

Lineage

Unknown

Digital Transfer Options

onLine

Distributor

Role
distributor
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address

Metadata File Identifier

a05f7892-db3c-7506-e044-00144fdd4fa6

Metadata Standard Name

ANZLIC Metadata Profile: An Australian/New Zealand Profile of AS/NZS ISO 19115:2005, Geographic information - Metadata

Metadata Standard Version

1.1

Metadata Date Stamp

2008-11-14

METADATA SECURITY CLASSIFICATION

unclassified

Metadata Contact

Role
pointOfContact
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address
Related Links
For information on acquiring this product,
please contact the Geoscience Australia Sales Centre via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).

Please note that support hours are 9 am to 5 pm weekdays