Abstract

Despite growing concerns about potential enhancement of global warming and slope failure by methane produced by gas hydrate dissociation, much uncertainty surrounds estimates of gas hydrate reservoir sizes, as well as methane fluxes and oxidation rates at the sea floor. For cold seep sediments of the eastern Mediterranean Sea, depth-dependent methane concentrations and rates of anaerobic oxidation of methane (AOM) are constrained by modeling the measured pore-water sulfate profile. The calculated dissolved methane distribution and flux are sensitive to the advective flow velocity, which is estimated from the depth distributions of conservative pore-water constituents (Na, B). Near-complete anaerobic oxidation of the upward methane flux is supported by the depth distributions of indicative biomarkers, and the carbon isotopic compositions of organic matter and dissolved inorganic carbon. Pore-water and solid-phase data are consistent with a narrow depth interval of AOM, 14-18 cm below the sediment-water interface. Based on an isotopic mass balance, the biomass of the microbial population carrying out oxidation of methane coupled to sulfate reduction at the given methane flux represents about 20% of the total organic carbon, which is a significant pool of in situ formed organic matter. Model results indicate that the asymptotic methane concentration is reached a few meters below the sediment surface. The predicted asymptotic concentration is close to the in situ saturation value with respect to gas hydrate, suggesting that the rate of shallow gas hydrate formation is controlled by the ascending methane flux. The proposed model approach can be used to predict the formation of gas hydrate, and to quantify methane fluxes plus transformation rates in surface sediments where fluid advection is an important transport mechanism.
Google map showing geographic bounding box with values North bound 44.0 East bound 36.0 West bound 16.0 South bound 36.0
Related Links
For information on acquiring this product,
please contact Geoscience Australia Client Services via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).

Product Type/Sub Type

dataset - External Publication - Scientific Journal Paper

Constraints

license
Creative Commons Attribution 3.0 Australia Licence

IP Owner

Commonwealth of Australia (Geoscience Australia)

Author(s)

Date (publication)

2003

Product Type

dataset

Topic Category

geoscientificInformation

Keywords

External Publication
Scientific Journal Paper
marine
model
Earth Sciences

Resource Language

English

Resource Character Set

utf8

Resource Security Classification

unclassified

Geographic Extent

North bound
44.0
East bound
36.0
West bound
16.0
South bound
36.0

Lineage

Unknown

Digital Transfer Options

onLine

Distributor

Role
distributor
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address

Metadata File Identifier

a05f7892-ee2e-7506-e044-00144fdd4fa6

Metadata Standard Name

ANZLIC Metadata Profile: An Australian/New Zealand Profile of AS/NZS ISO 19115:2005, Geographic information - Metadata

Metadata Standard Version

1.1

Metadata Date Stamp

2009-10-07

METADATA SECURITY CLASSIFICATION

unclassified

Metadata Contact

Role
pointOfContact
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address
Related Links
For information on acquiring this product,
please contact Geoscience Australia Client Services via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).