Citation

Li, J., Potter, A., Huang, Z., Daniell, J.J. & Heap, A.D., 2010. Predicting Seabed Mud Content across the Australian Margin: Comparison of Statistical and Mathematical Techniques Using a Simulation Experiment. Record  2010/011. Geoscience Australia, Canberra.

Abstract

In this study, we conducted a simulation experiment to identify robust spatial interpolation methods using samples of seabed mud content in the Geoscience Australian Marine Samples database. Due to data noise associated with the samples, criteria are developed and applied for data quality control. Five factors that affect the accuracy of spatial interpolation were considered: 1) regions; 2) statistical methods; 3) sample densities; 4) searching neighbourhoods; and 5) sample stratification. Bathymetry, distance-to-coast and slope were used as secondary variables. Ten-fold cross-validation was used to assess the prediction accuracy measured using mean absolute error, root mean square error, relative mean absolute error (RMAE) and relative root mean square error. The effects of these factors on the prediction accuracy were analysed using generalised linear models. The prediction accuracy depends on the methods, sample density, sample stratification, search window size, data variation and the study region. No single method performed always superior in all scenarios. Three sub-methods were more accurate than the control (inverse distance squared) in the north and northeast regions respectively; and 12 sub-methods in the southwest region. A combined method, random forest and ordinary kriging (RKrf), is the most robust method based on the accuracy and the visual examination of prediction maps. This method is novel, with a relative mean absolute error (RMAE) up to 17% less than that of the control. The RMAE of the best method is 15% lower in two regions and 30% lower in the remaining region than that of the best methods in the previously published studies, further highlighting the robustness of the methods developed. The outcomes of this study can be applied to the modelling of a wide range of physical properties for improved marine biodiversity prediction. The limitations of this study are discussed. A number of suggestions are provided for further studies.
Google map showing geographic bounding box with values North bound -8.0 East bound 165.0 West bound 105.0 South bound -50.0
Downloads
For information on acquiring this product,
please contact the Geoscience Australia Sales Centre via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).

Please note that support hours are 9 am to 5 pm weekdays

Product Type/Sub Type

dataset - GA Publication - Record

Constraints

license
Creative Commons Attribution 3.0 Australia Licence

IP Owner

Commonwealth of Australia (Geoscience Australia)

Author(s)

Date (publication)

2010

Product Type

dataset

Topic Category

geoscientificInformation

Keywords

GA Publication
Record
marine
model
geoscience
environmental
numerical modelling
GIS
Earth Sciences

Resource Language

English

Resource Character Set

utf8

Resource Security Classification

unclassified

Geographic Extent

North bound
-8.0
East bound
165.0
West bound
105.0
South bound
-50.0

Lineage

Unknown

Digital Transfer Options

onLine

DISTRIBUTION Format

pdf

Distributor

Role
distributor
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address

Metadata File Identifier

a05f7892-f002-7506-e044-00144fdd4fa6

Metadata Standard Name

ANZLIC Metadata Profile: An Australian/New Zealand Profile of AS/NZS ISO 19115:2005, Geographic information - Metadata

Metadata Standard Version

1.1

Metadata Date Stamp

2010-02-24

METADATA SECURITY CLASSIFICATION

unclassified

Metadata Contact

Role
pointOfContact
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address
Downloads
For information on acquiring this product,
please contact the Geoscience Australia Sales Centre via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).

Please note that support hours are 9 am to 5 pm weekdays