View the online abstract for Seismic reflection imaging of mineral systems: Three case histories

Abstract

Mineral deposits can be described in terms of their mineral systems, i.e., fluid source, migration pathway, and trap. Source regions are difficult to recognize in seismic images. Many orebodies lie on or adjacent to major fault systems, suggesting that the faults acted as fluid migration pathways through the crust. Large faults often have broad internal zones of deformation fabric, which is anisotropic. This, coupled with the metasomatic effects of fluids moving along faults while they are active, can make the faults seismically reflective. For example, major gold deposits in the Archaean Eastern Goldfields province of Western Australia lie in the hanging-wall block of regional-scale faults that differ from other nearby faults by being highly reflective and penetrating to greater depths in the lower crust. Coupled thermal, mechanical, and fluid-flow modeling supports the theory that these faults were fluid migration pathways from the lower to the upper crust. Strong reflections are also recorded from two deeply penetrating faults in the Proterozoic Mt. Isa province in northeastern Australia. Both are closely related spatially to copper and copper-gold deposits. One, the Adelheid fault, is also adjacent to the large Mt. Isa silver-lead-zinc deposit. In contrast, other deeply penetrating faults that are not intrinsically reflective but are mapped in the seismic section on the basis of truncating reflections have no known mineralization. Regional seismic profiles can therefore be applied in the precompetitive area selection stage of exploration. Applying seismic techniques at the orebody scale can be difficult. Orebodies often have complex shapes and reflecting surfaces that are small compared to the diameter of the Fresnel zone for practical seismic frequencies. However, if the structures and alteration haloes around the orebodies themselves, seismic techniques may be more successful. Strong bedding-parallel reflections were observed from the region of alteration around the Mt. Isa silver-lead-zinc orebodies using high-resolution profiling. In addition, a profile in Tasmania imaged an internally nonreflective bulge within the Que Hellyer volcanics, suggesting a good location to explore for a volcanic hosted massive sulfide deposit. These case studies provide a pointer to how seismic techniques could be applied during mineral exploration, especially at depths greater than those being explored with other techniques.
Google map showing geographic bounding box with values North bound East bound West bound South bound

Product Type/Sub Type

nonGeographicDataset

Constraints

Creative Commons Attribution 4.0 International Licence

IP Owner

Commonwealth of Australia (Geoscience Australia)

Author(s)

Date (publication)

2000-01-01T00:00:00

Product Type

nonGeographicDataset

Topic Category

geoscientificInformation

GA Catalogue Number

71064 Product http://www.ga.gov.au/metadata-gateway/metadata/record/71064/

Keywords

External Publication
Scientific Journal Paper
Earth Sciences

Resource Language

English

Resource Character Set

utf8

Resource Security Classification

unclassified

Digital Transfer Options

onLine

Distributor

Role
distributor
Organisation Name
Commonwealth of Australia (Geoscience Australia)
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address

Metadata File Identifier

a05f7892-f99e-7506-e044-00144fdd4fa6

Metadata Standard Name

ANZLIC Metadata Profile: An Australian/New Zealand Profile of AS/NZS ISO 19115:2005, Geographic information - Metadata

Metadata Standard Version

1.1

METADATA SECURITY CLASSIFICATION

unclassified

Metadata Contact

Role
pointOfContact
Organisation Name
Commonwealth of Australia (Geoscience Australia)
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address